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Abstract 

Using the Positive Degree Days approach and ERA-Interim reanalysis downscaled data, we ran a 

melt model spatially gridded at 200 m with annual temporal resolution over 32 years and estimated 

surface melt and runoff on the Antarctic Peninsula. Our model was calibrated and validated 

independently by field measurements. The maximum surface melt values occurred in 1985 (129 

Gt), and the maximum runoff (40 Gt) occurred in 1993; both parameters showed minimum values 

in 2014 (26 Gt and 0.37 Gt, respectively). No significant trends are present. Two widespread 

positive anomalies occurred in 1993 and 2006. Our results reveal that the floating ice areas produce 

an average of 68% of runoff and 61% of surface melt, emphasizing their importance to coastal 

hydrography. During the seven years preceding the Larsen B collapse, surface melt retention was 

higher than 95% on floating ice areas, and negative runoff anomalies persisted. Excluding the 

islands, the vicinity of this former ice shelf exhibits the highest specific surface melt and runoff 

along the studied area. 
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1  Introduction 

 The Antarctic Peninsula is a region that is warming far faster than the global average. Up to 

the millenium the annual mean air temperature has increased by 2.5-3.0°C (Turner et al. 2005, 

Trenberth et al. 2007, Steig et al. 2009). The number of days with positive air temperature and 

consequently the duration of melt events every year have increased at a rate of 0.5 ±0.3 days year−1 

over the 1980 – 2002 period (Torinesi et al. 2003). This climatic scenario increases surface melt, 

which accelerated over the twentieth century (Abram et al. 2013). Since the millenium a significant 

cooling trend was observed (Turner et al. 2016) that also shows glaciological implications (Oliva et 

al  2017). 

Surface melt (SM) has been regarded as one of the major factors associated with the 

breakup and disintegration of the Larsen A and B ice shelves (Scambos et al. 2003).  Surface runoff 

(SR) from land-based ice masses directly and indirectly influences short-term sea-level changes. It 

adds freshwater to the oceans and lubricates the glacier bed, causing potential changes in and 

acceleration of the glacier mass flux (Pfeffer et al. 1991, Zwally et al. 2002, Vaughan 2006, 

Osmanoglu et al. 2014). Recent studies have shown that ocean temperature is the leading factor that 

determines large ice shelves’ thinning (Pritchard et al. 2012). The resulting decreased buttress 

(Fürst et al. 2016), in turn, accelerates the ice flux of marine-terminating glaciers, resulting in a 

dynamic thinning much larger than the losses caused by surface melt (Wouters et al. 2015). Though 

not the main contributors to mass loss and ice shelf breakup, SM and SR are highly associated with 

the observed changes on the AP.  

SM, SR and ice discharge from glaciers by calving are the main drivers for freshwater input 

in the surrounding oceans of the AP. Freshwater supplies are important components in coastal 

ecosystems because they influence the physical and chemical settings of the water column, affecting 

both the structure and the function of coastal food webs (Moline et al. 2004). Studies in shallow, 

circulation-restricted bays of King George Island showed that suspended particulate matter 
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transported by glacier runoff can reduce light availability in shallow waters (Schloss et al. 2012) 

and govern the availability of macro nutrients for phytoplankton production (Nędzarek 2008, 

Kienteca Lange et al. 2014). Even far from the coast, Dierssen et al. (2002) found phytoplanktonic 

blooms to be associated with glacier melt. Hodson et al. (2017) reported the occurrence of 

biologic activity hotspots associated to iron enrichment supplied by glacial weathering.  

 Previous studies investigated SM and SR on AP primarily through remote sensing and 

regional climate modelling. Using passive microwave data (1978-present), studies addressing 

changes in melt extent, duration and water amounts could not find a significant temporal trend. 

However, these studies note decreasing, though statistically insignificant, trends for melt extent, 

melt index and total annual melt (Torinesi et al. 2003, Liu et al. 2006a, Kuipers Munneke et al. 

2012, Trusel et al. 2013). The only positive trend in melt duration was found by Torinesi et al. 

(2003) from 1980 to 2000. They found that melting lasts for an average of 50 days on the AP, 

reaching a maximum of 100, with an increasing trend of 0.5±0.3 day year-1 (1980-1999). Liu et al. 

(2006) determined a median melt duration of 59 days with an absolute variation of 5.39 days and a 

melt extent ranging from 2.5x105 km2 to 3.5x105 km2. Barrand et al. (2013) combined remote 

sensing observations and simulations from the regional model RACMO2 to investigate melt 

conditions, finding melt extents ranging from 2.8x105 km2 to 3.3x105 km2 (QuickSCAT) and 

1.8x105 km2 to 3x105 km2 (RACMO2 regional atmospheric model) from 2000 to 2009. 

Quantitative estimates of melt rates or freshwater input to the ocean are even scarcer. Van 

de Berg et al. (2005) showed a maximum annual melt of 0.5 m water equivalent (w.e.) yr-1 

occurring on the Larsen ice shelf’s northern edge from 1958 to 2002. Vaughan (2006) estimated 

values for SM in the year 2000 tof 54±26 Gt (450±216 mm we). He considered only the grounded 

ice portion of the AP and predicted an increase in SM to 100±46 Gt for 2050 assuming the current 

increasing trend of annual mean air temperature. Hock et al. (2009) estimated that from 1961 to 

2004, an increase in the sea level of 0.22±0.16 mm yr-1 resulted from the contribution of mass loss 
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from glaciers and ice caps surrounding Antarctica, mostly AP. More recently, Kuipers Munneke et 

al. (2012) found SM values ranging from 20 to 130 Gt yr-1 for the AP. The analysis considered the 

entire Antarctic ice sheet and surrounding ice shelves, from 1979 to 2009, and showed no statically 

significant decreasing trend.  

In this study, we present comprehensive estimates for surface melt and runoff on the 

Antarctic Peninsula and surrounding islands. We run a Positive Degree Day-based glacier melt 

model adapted from Vaughan (2006) and Pfeffer et al. (1991), driven by data from the global 

reanalysis project ERA-Interim (ERAI) from the European Center for Medium-range Weather 

Forecast (ECMWF). We calibrate and validate the model via a multi-criteria scheme using in-situ 

observations and long-term surface mass balance records. Our model runs cover the 1981-2014 

period. 

 

2 Study site 

 

 The AP is a region with strong latitudinal and longitudinal gradients of climatic parameters 

(Morris & Vaughan, 2003). The central mountain range, reaching more than 2000 m a.s.l., forms a 

major obstacle in the southern hemisphere polar vortex (Fig. 1). Although the climate of the AP 

west coast and adjacent islands is cold maritime, the conditions are much more continental on the 

east coast and further south. Consequently, summer melt regularly occurs along the west coast at 

lower elevations. Frequent warm foehn-type winds on the east coast are known to cause 

considerable surface melt, and cold barrier winds lead to cold air mass outbreaks from the Filchner-

Ronne Ice Shelf along the AP’s mountains to the north. Such foehn events impact the surface 

temperature regionally in time scales varying from hours to seasons (Cape et al., 2015). Larsen-

C/D, Wilkins and George-VI ice shelves are the largest low-elevation areas. The plateau of the 

Antarctic Peninsula is dominated by a dry snow zone, indicating mean annual surface temperatures 
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below -11°C (Rau & Braun 2002). Large mountain glaciers drain from the plateau to both sides of 

the AP. The small islands surrounding the peninsula are covered by ice caps and ice fields. 

 

 

3 Data 

 The AP does not have a well-distributed weather station network with long time series (see 

Fig. 1). In this case, a feasible alternative to the spatial interpolation of uneven observations is to 

use data provided by reanalysis projects. Such datasets incorporate available observations to 

minimize the errors of the prediction model.  

 ERAI is a reanalysis product from ECMWF. It provides data from 1979 to the present 

in a finest spatial resolution of approximately 0.7o. Compared with previous versions, such as 

ERA-40 and ERA-15, the temperature bias over Antarctica has been reduced. The orography in the 

model is an average of finer resolution digital elevation models, such as GTOPO30 (Gesch et al. 

1999). This averaging smoothes the highly complex topography of the AP.  

 To better represent the topography, we used the RAMP DEM (Liu et al. 2001) as the input 

for an altitudinal lapse-rate downscaling method, which was evaluated using near surface air 

temperature data from 28 weather stations. The resulting grid cell size after downscaling was 

200 m x 200 m. 

 Direct ablation measurements were available from 3 sources: (i) Measurements in 10-14 

day intervals at 29 mass balance stakes during the austral summer from 2007 to 2012 at the 

Bellingshausen Dome in King George Island – South Shetland Islands (Stake line 1) (Tab. 1; 

Mavlyulov 2014). (ii) Continuous surface melt measurements available from a sonic ranging sensor 

(SR50) operated over 42 days of the 1997/98 austral summer at daily intervals (Braun et al, 2001; 

2004). . (iii) Mass balance stakes readings during summer field campaigns (Stake line 2). These 
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measurements were conducted during two summer seasons (1997/1998 and 1999/2000) on the 

Bellingshausen Dome (Braun et al, 2001; 2004). 

 Spatially-integrated summer and winter mass balances of the Hurd and Johnsons glaciers in 

Hurd Peninsula, Livingston Island were available for 10 years (Navarro et al. 2013, data provided 

by the World Glacier Monitoring System). A 14-year record of the annual surface mass balance of 

Glaciar Bahia del Diablo, Vega Island was used as a quantitative reference for the northeastern AP 

region (Skvarca et al. 2004, Marinsek & Ermolin 2015). 

 

4 Methods 

 

4.1 ERA-Interim temperature downscaling  

 To account for the spatiotemporal variation in the air temperature altitudinal lapse rates 

along the study area, we computed the temperature and geopotential height differences between the 

1000 hPa and 750 hPa pressure levels. Thereafter, we calculated the ratio between the two 

differences for each day and grid element and applied the given lapse rate (eq. 1) to the elevation 

difference between the RAMP-DEM and the ERAI geopotential height at the surface (eq. 2). The 

result was then reduced from the temperature at 2 m (eq. 3).  

 

 
lr (ϕ , λ , d )=

T 1000 (ϕ ,λ , d )− T 750(ϕ ,λ , d )

h1000 (ϕ ,λ , d )− h750 (ϕ , λ , d )     (eq. 1) 

 dh= hERA− sfc− hRAMP− DEM       (eq. 2) 

 T DS(ϕ ,λ , d )= T 2m (ϕ ,λ , d )+ (dh(ϕ ,λ , d )∗lr (ϕ ,λ , d ))   (eq. 3) 
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where lr is the lapse rate, T1000, T750, h1000 and h750 are the temperatures and geopotential heights at 

1000 hPa and 750 hPa, respectively, hERA-sfc is the geopotential height of the surface, hRAMP-DEM is the 

elevation given by RAMP DEM (Liu et al. 2001), TDS is the temperature downscaled, T2m is the 

temperature 2 m above the surface, φ and λ are the latitude and longitude, and d is the day. For each 

model grid cell, we used the ERAI cell with the cell centre closest to the model grid centre.   

 It is worth noting that the lapse-rate method for air temperature downscaling only accounts 

for the decrease of the air temperature due to the vertical variation inside the ERA-Interim grid 

elements. It does not include any further dynamic process that may affect the air temperature which 

are not already represented in the ERA-interim global climatic model. It also represents the free 

atmosphere and does not account for any local effects or boundary-layer processes. 

 

4.2 Surface melt (SM) and runoff (SR) computations 

 The positive degree day (PDD) is the sum of daily positive near surface air temperatures 

during a given period (in this case, one year) (Vaughan, 2006). When multiplied by a melt factor 

(MF), it provides the total SM: 

 ����, �, �� = �
∑ �
���, �, �����, �, ����������     (eq. 4) 

 ����, �, �� = 1, ���
���, �, �� > 0
���, �, �� = 0, ���
���, �, �� < 0 

where d is the first day of the annual melting periods (October 1st in this case), d is the number of 

days in the same period, and TDS is the daily mean of the near surface air temperature. .  

 The energy balance at the surface implies that melt can occur when the air temperature is 

equal or below 0°C, and even not occur when the temperature is positive. In this sense, the 0°C 
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threshold for melt occurrence may be considered an artificial threshold. In order to determine the 

more suitable threshold, we ran our model considering 5 different thresholds for the same period 

covered by the study of Barrand et. al (2013), i.e., from 1999 to 2002. We then compared the mean 

melt duration of the period as estimated by our model against the QuickSCAT-derived estimates 

obtained by Barrand et al (2013). Besides the classical PDD approach, which considers that melt 

occurs when the air temperature is positive, we also considered that melt can occur when the air 

temperature is equal to and above 0°C,  above -1°C, above -0.5°C, above 0.5°C and above 1°C. The 

latter two thresholds were tested in order to account for the known overestimation of the ERAI-

derived air temperature on the AP. 

SR is calculated as the difference between SM and the amount of meltwater retained in the 

snowpack through refreezing, pore filling and capillarity:   

 �� = �� −��       (eq. 5) 

with M0 given by (Pfeffer et al. 1991) 

 � = !
"#�$ + �# − ��� &'()*')') +    (eq. 6) 

where c is the heat capacity of ice, L is the latent heat of fusion of ice, C is the snow accumulation, 

Tf is the temperature of the firn at the beginning of the melt season (in positive Celsius degrees 

below the freezing point), is the initial firn density (taken as 400 kg m-3) and ρpc is the pore close-off 

density (taken as 830 kg m-3). After setting ρc = 400 kg m-3 and ρpc = 830 kg m-3 (Vaughan 2006), M0 

we get 

 � = ,0.003�$ + 0.521#      (eq. 7) 

 After assuming that Tf is the mean air temperature of the previous year in each grid cell, the 

only unknown variable for calculating M0 is C. We approximate C as the annual accumulation for 

each grid element given by ERAI (resampled by nearest neighbour to the model grid). Hence, we 

Page 9 of 42 Antarctic Science - For Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



estimate the accumulation and temperature-driven changes in retention for each year, and we 

estimate the SR using eq. 5.  

 

4.3 Calibration and validation of the model 

 We applied a multi-criteria calibration and validation scheme with rigorous data splitting 

for model calibration, data downscaling and model validation.  

 To validate the downscaling approach, we compared monthly PDDs computed from the 

downscaled ERAI data and from weather station data (records longer than 10 years). The analysis 

was restricted to the months from October to March to focus on the melt periods. The PDDs 

correlation strength and the sum of errors were utilized as quality indicators.  

 The melt model was calibrated by tuning the melt factor using ERAI downscaled data in 

equation 4 to achieve an optimal fit to the ablation records (N=300) of stake line 1. A melt factor of 

5.4 mm w.e. K d-1 was determined with r2=0.65 using all available records. When stakes are 

considered individually, the melt factor takes values between 2.2 mm and 12.6 mm w.e. K d-1 

(although both of them are extreme values). The melt factor is well within the range reported for 

comparable arctic regions and at the upper bound for Antarctica (Huybrechts & Oerlemans 1990, 

Braithwaite & Zhang 2000, Hock 2003).   

 Independent validation of the model performance was carried out using a variety of datasets 

at different locations and different time intervals. We compared the melt rates at stake line 2 and the 

SR50 continuous record over a 6-week melt period, both on King George Island. The surface mass 

balance records provided an integrated error estimate for summer and winter (Livingston Island) 

(Navarro et al. 2013) or an entire glacier mass balance year (Vega Island) (Skvarca et al. 2004, 

Marinsek & Ermolin 2015).  
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5 Results  

 

5.1 PDD threshold and spatial representation of the mean melt duration (MMD). 

 By spatially comparing the annual mean melt duration from 1999 to 2002 (Fig. 2), we 

observe that the best performance is achieved when using the 0°C threshold. The energy balance 

at the surface determines that melting can occur at temperatures below 0°C. However, the 

comparisons made between the ERAI-derived and the weather stations-derived PDDs (section 

5.2, Tab.3) show that both are very well correlated, although the absolute values are 

overestimated. This may explain the best performance of the 0°C threshold for determining 

the MMD, although it could be expected that a lower temperature would result in a better 

representation of the MMD. 

  

5.2 Downscaling and melt model performance 

 

 The ERAID-derived PDDs showed very good agreement with weather station data. 

Correlation coefficients ranged from 0.58 to 1.0, with the majority above 0.9 (Tab. 3). Nevertheless, 

absolute values were overestimated by ERAID-derived data.  

 We validated the SM using two other independent point ablation measurements carried out 

in the Bellingshausen Dome (Stake line 2 and SR50). Compared to these datasets, the modelled SM 

produced a slight underestimation of the surface ablation. After 41 days of ablation monitoring with 

the SR50, we found a final difference of 80 mm w.e. between the modelled and the measured 

ablation. The RMSE was 7.19 mm w.e., and the bias was 4.9 mm w.e. The linear correlation of 

Page 11 of 42 Antarctic Science - For Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



our ablation estimates with Stake line 2 was 0.86 (Fig. 3), with RMSE of  19.08 mm w.e. and 

bias of 7.14 mm w.e..  

We compared our SM estimations in the Hurd Peninsula (Livingston Island) to 

measurements carried out by Navarro et al. (2013) on the Hurd Glacier (HG) and Johnsons Glacier 

(JG) from 2002 to 2011 (Fig. 4). The same study also measured the winter accumulation, which we 

used to evaluate the accumulation estimate over the same periods. The correlation of the modelled 

ablation with HG was 0.61 and with JG was 0.68, with RMSE of 158 mm w.e.. The accumulation 

correlations were 0.8 (HG) and 0.49 (JG), with RMSE of  247 mm w.e. . Values always ranged on 

the same scale and did not show a fixed over- or underestimation,. Additionally, we estimated the 

annual surface mass balance of Glaciar Bahia del Diablo (Vega Island) and compared it to field 

measured data from this site (Skvarca et al. 2004, Marinsek & Ermolin 2015). The error was lower 

than 200 mm w.e. for 9 of the 13 analysed years, the correlation between the measured and the 

modelled SMB was 0.67, and the RMSE was 214 mm w.e..  

The average ablation was underestimated in the SR50 and SL2 validation site, 

respectively 0.14 mm we (2% below the observation) and 11.4 mm we (20% above the 

observation). The average summer ablation of Livinston Island was overestimated in 120.45 

mm we (17% above the observation), whereas the winter accumulation was overestimated in 

107.69 mm we (16% above the observation). The annual mass balance of the Bahía del Diablo 

glacier was overestimated in 30.52 mm we (20% above the observation). The best correlation 

between the modeled and the observed time series was found with the SL2 observations, 

which is expected as the SL2 is located at the MF calibration site. Although the SR50 

measurements were also performed at the calibration site, the PDD method is acknowledged 

for its poorer performing on the daily time scale when compared to longer time scales. 
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The observational data available for validating this study is composed by 

measurements performed in time intervals ranging from daily to annual, implying in different 

magnitudes of abblation, accumulation and mass balance. To account for the diverse 

measurement magnitudes, we computed the normalized RMSE considering the range of the 

observed measurements. The normalized RMSE ranged from 0.16 to 0.25, with the lowest 

value associated to the SL2 validation site and the highest value associated to the winter 

accumulation on Livingston Island. It was expected that the model would have a worst 

performance out of the melt factor calibration site because melt factors tipically vary in 

regions as large as the Antarctic Peninsula. However, a better comparison of errors would 

require longer measurements carried out in similar time scales. 

 

5.3 Surface melt and runoff time series 

 The annual time series for the mean near surface air temperature and PDDs and the total 

SM, Mo and SR are presented in Figure 5 for the total, grounded and floating areas of the AP. The 

years correspond to the melt season that started in November of the previous year.  

The mean near surface air temperature does not represent the PDDs’ interannual variability. 

Both series show r
2

 = 0.11, which is not surprising considering there are no PDDs during most 

months that compose the annual mean temperature.  

Total SM had maximum values in 1985 (129 Gt) and 1993 (127 Gt) and a minimum value 

in 2014 (26 Gt). The mean and standard deviation values for the entire period and area were 75±54 

Gt, or 46±15 Gt and 25±8 Gt when considering separately floating and grounded areas, 

respectively. SR had a maximum value in 1993 (40 Gt) and a minimum value in 2014 (0.37 Gt), 

with a mean 9±8 Gt and, for floating and grounded areas, 5±6 Gt and 3±2 Gt, respectively.  

  Since 2008, both SM and SR have persistently shown negative anomalies considering the 
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entire period. The same happened from 1996 to 2002 but only for SR. The period 1996 to 2002 is 

also characterized by a lower interannual variability in the mean air temperature, PDDs and SM, 

whereas M0 has not shown the same behaviour. Hence, the decoupling of SR and SM for this period 

might be associated with high accumulation rates.  

 The spatial distribution of the mean and standard deviation of SM and SR is presented in 

Figure 6. The effects of foehn winds are clearly reflected in the mean SM (Fig. 6-a) for the western 

border of the Larsen C ice shelf (LCIS), showing that these types of events are large and persistent 

enough to be represented in a global reanalysis.  

 

5.4 Surface melt and surface runoff regions 

 We divided the AP in 11 sub-regions to analyse the spatial SM and SR variations in the 

major drainage basins and ice shelves, bays and topographical features. Because the areas of the 

regions considered are different, we computed the specific SM and SR (SM/A and SR/A, in m 

w.e.; Fig. 7). The largest SM/A and SR/A correspond to the South Shetland Islands (SSI). 

Excluding the islands, SM/A and SR/A are larger in the E-LB region.  

 The regional SM/A time series have a higher correlation than the SR/A time series. Most 

areas’ SM/A and SR/A are better correlated with the immediate neighbour area to the east or the 

west sides. The northern areas (W-N1, W-N2, E-N and E-LB) and northern islands (SSI and Joi) 

show very similar SM and SR temporal behaviours; the differences strongly reflect the elevation 

profiles. E-N shows a higher correlation with SSI (0.91) and Joi (0.91) than W-N1 (0.86 and 0.74, 

respectively). E-LC correlates better with E-LB, although the absolute amounts are considerably 

smaller. E-S correlates better with W-S than any other region, showing that there is a more 

pronounced climatic difference, in terms of interannual variability, between the regions in the E-LC 

latitude range.  
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 The distribution of the SM and SR along the elevation profiles reveals that more than 90% 

of the SM/A (SR/A) is produced at elevations between 0 m and 500 m (400 m). This proportion 

decreases with elevation in all regions, except for the E-LC. In this area, SM/A is higher in the 

elevation range of 100 to 200 m than 0-100 m. The occurrence of foehn-type winds in this area 

leads to higher temperatures near the border with the grounding line, increasing melt.  

SR/A is better distributed along the profile, and 90% occurs below an altitude of 400 m. 

The SSI and the Joi also show similar distribution patterns. The W-Wi and the W-S have 45% and 

50% of SM/A, respectively, restricted to 0-100 m. The W-MB shows 90% of SR/A restricted to 0-

200 m. The greatest difference is found between the northern regions (E-N, E-LB, W-N1, W-N2, 

SSI and Joi) and the southwestern regions (W-S, W-MB and W-Wi). E-S has a distribution with 

characteristics between both. E-LC is a special case, where more melt is produced between 100-200 

m a.s.l. than between 0-100 m a.s.l., as a result of foehn-type winds.  

 

6 Discussion 

The high correlation between ERAID-derived and weather stations-derived PDDs 

demonstrates the consistency of the temporal variability of the modelled PDDs. On the other 

hand, very high RMSEs show that the PDDs absolute values are not well represented by ERAID. 

An overestimation of air temperature over Antarctica is recognized in previous ERA datasets (van 

de Berg et al. 2005), which is also observed by our study.  

 The comparative analysis between the ERAI-derived MMD and the QuickSCAT-derived 

MMD (Barrand et al., 2013) showed that the first is underestimated on high-slope areas and 

overestimated on the northern tip of the Larsen-C ice shelf. The terrain slope is a major difficulty 

for atmospheric models and even for remote sensing data processing. Therefore, a worst 

performance in high-slope areas is expected. Besides that the northern Larsen C MMD 
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overestimation occurs in flat areas, it may also be related to a topography-related problem. The 

northwestern Larsen C is influenced by foehn-type winds, whose proper modelling is highly 

dependent on accurate representation of terrain elevation. 

However, it is also worth noting that Luckman et al. (2014) compared Envisat/ASAR melt 

duration maps with the same QuickSCAT-derived data (Barrand et al., 2013), and found melt 

durations up to 25 days longer than the latter. The authors attribute this difference to the different 

spatial resolution of both datasets in the region of Larsen C influenced by foehn-type winds. This 

suggests that perhaps the QuickSCAT reference data is actually underestimating the melt duration 

in Larsen C, which would indicate that the MMD found in the present study is less overestimated.   

Our approach for tuning the melt factor to ERAID PDDs using in-situ ablation 

measurements allowed for a compensation of the PDDs overestimation. Both the SM temporal 

variability and absolute SM values are consistent with the SR50 measurements. Our 80 mm w.e. 

underestimation over 40 days is acceptable, particularly considering that we used a simple approach 

applied to global reanalysis data. We also found a small underestimation and good correspondence 

with SL2 ablation measurements. The comparisons with integrated SMB from Hurd Peninsula and 

Glaciar Bahía del Diablo show that our results are reliable for a regional-scale analysis on the 

northern AP. However, it should also be noted that we have no quantitative melt or surface mass 

balance data to assess the quality of our products for more southern sites on the AP. 

A remaining bias from the PDD overestimation not compensated for by the MF tuning would result 

in a larger melt area. However, the spatial distribution of PDDs is in agreement with recent works 

addressing the melt occurrence in AP through QuickScat and regional modelling (Kuipers Munneke 

et al. 2012, Barrand et al. 2013, Trusel et al. 2013, van Wessen et al., 2016 ). In some regions, our 

data indicates a smaller melt area, which can be attributed to the enhanced resolution of our grid 

after the ERAI temperature downscaling. QuickScat data have spatial resolution of 5 km and 

RACMO2.3 of 5.5 km, whereas our temperatures were downscaled to a 200 m x 200 m grid. 
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Both SM and SR spatial distribution and time series are generally in good agreement with 

the most recent studies addressing surface melt patterns in the AP (Tedesco & Monaghan 2009, 

Kuipers Munneke et al. 2012, Barrand et al. 2013, Trusel et al. 2013, Välisuo et al. 2014, van 

Wessen et al., 2016), but the absolute values are higher than those presented by previous studies. 

Nevertheless, comparisons of surface melt derived from RACMO with 27 km resolution 

against QuickSCAT derived data showed an underestimation of SM, melt onset date and melt 

season duration by RACMO (Kuipers Munneke et al. 2012, Barrand et al. 2013, Trusel et 

al.2013). van Wessen et al (2016) presents estimates of SM provided by RACMO with 5.5 km 

resolution considerably smaller than those obtained by the previous model version. 

Comparisons of QuickSCAT-derived melt area on Larsen C against higher resolution 

Envisat-ASAR derived data further suggest that even QuickSCAT-derived melt area is 

underrepresented in the area. Such discrepancies between the different studies depicts the 

high uncertainties involved in modeling mass balance terms in Antarctic Peninsula.   

The effects of foehn-type winds are visible in the distributed mean SM , contrasting with 

their poor representation in previous modeling studies (Kuipers Munneke et al. 2012, van Wessen et 

al. 2016). In general, our SM time series agrees well with the temporal behaviour of the SM time 

series estimated by Kuipers Munneke et al. (2012) for the AP. In spite of the uncertainties 

associated with our approach, the results are consistent with direct field measurements (Figs. 2 and 

3) and  with previous. 

Wouters et al. (2015) found a total mass loss of 300 Gt from 2000 to 2014. The study 

comprised the grounded portion of the AP southern sector. During the same period, and considering 

the grounded area of the entire AP, losses by SR were 95 Gt. The contributions of the mass losses 

by SR to glacier thinning and possible sea-level rise are thus small compared to ice-flux 

acceleration and increased calving. Nevertheless, the role of the floating areas as a direct freshwater 

source to the adjacent ocean is remarkable. While they comprise 24% of the total area, produce 68% 
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of the mean SR and 61% of the mean SM. Additionally, the fate of the liquid water is different from 

the fate of the ice when entering the ocean, and it impacts water’s physic-chemical characteristics 

and biota differently.  

The AP floating area has reduced in extent by 18% since 1950 (Cook & Vaughan 2010). 

This reduction is progressively advancing southwards. The sea-level rise around the AP, 

predominantly driven by stheric expansion (Rye et al. 2014), suggests that the oceanic forcing will 

continue leading to further and more dramatic ice shelf disintegration. In the future, it is likely that 

the melting area of the AP will be further reduced. Both LCIS and the Wilkins ice shelf are the main 

SM and SR sources and are partially unstable. It is predicted that the LCIS will soon undergo a 

large calving event caused by the development and propagation of a rift, which will remove 

between 9% and 12% of its area (Jansen et al. 2015). After a large breakup event in February 2008, 

the 3100 km2 of the northern portion of the Wilkins ice shelf was at risk of collapse (Braun et al. 

2009). A narrow ice bridge collapsed later, in April 2009 (Humbert et al. 2010). Consequently, ice 

shelf breakups may reduce the absolute amounts of water input to the ocean in the form of SR. 

The accumulation rate on the AP has doubled since 1850 (Thomas et al. 2008), which, 

according to the Pfeffer et al. (1991) approach,  increases meltwater retention. Nevertheless, Abram 

et al. (2013) showed that SM intensified much faster. The melt intensity recorded in the ice core 

analysed by the authors increased from 0.5% to 4.9% over the 20th century. The grounded area 

presently retains an average of 91% of the SM, which will reduce if the observed trends continue; 

this may lead to an increase in the maximum height where SR occurs and an increase in SR 

intensity at lower elevations.  

It is possible to differentiate the SM/A and SR/A time series in the 11 regions, even though 

the model is fed by global reanalysis data. The temperature downscaling using altitudinal lapse-

rates variations in space and time allowed for a East-West differentiation in the northern tip of the 

AP. W-N2 region lies on the same latitude range of E-LB, and it shows SM/A and SR/A 

Page 18 of 42Antarctic Science - For Review

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



approximately 50% lower than the latter region. The difference may be explained by topographic 

control (E-LB has a mean elevation 330 m lower) and smaller altitudinal temperature lapse rates on 

the east side of the AP (Morris and Vaughan, 2003; this study). 

The analysis of SM/A and SR/A altitudinal distribution in the regions revealed that they are 

determined, concomitantly, by the latitudinal range and E-W climatic differences. Though the 

western side is warmer, the southwestern regions show the worst distribution due to the cold climate 

and higher temperature altitudinal lapse rates. Due to higher accumulation rates in the west, SR is 

even more restricted to low-elevation areas.  

Two positive anomalies for both SM and SR, widespread through all regions, took place in 

1993 and 2006. They coincide with the highest melt index and melt extent found by Tedesco & 

Monaghan (2009) for the entire Antarctic continent and are associated with the Southern Annular 

Mode (SAM) and Southern Oscillation Index (SOI) negative anomalies. It demonstrates the AP SM 

and SR are closely linked to global climatic patterns and oscillations but remain poorly known on 

the local spatial scales.   

 

7 Conclusions & outlook 

 Using the global reanalysis ERAI, we ran a PDD-based model for SM and SR estimation, 

calibrated and validated with local measurements. Our results are in good agreement with previous 

local, regional and continental studies and can be used to reasonably investigate the combined 

influence of latitudinal, longitudinal and elevation differences along the Antarctic Peninsula on 

the spatio-temporal variability of SM and SR. Our ERAI-derived distributed PDDs are strongly 

correlated with weather station-derived PDDs. By applying a melt factor of 5.4 mm PDD-1, we 

found good agreement with local measurements of SM. 
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The entire 1981-2014 period averages are 75 Gt (SM) and 9 Gt (SR), with a very high 

interannual variability (σSM = 54 Gt and σSR = 8 Gt). Although previous studies have found an 

exponential relation between PDDs and annual mean air temperature, we observe that the PDDs’ 

interannual variability (and thereafter the value of SM) is not well represented by the mean air 

temperature. Maximum values occurred in 1985 for SM (129 Gt) and 1993 for SR (40 Gt). Since 

2008, both variables have shown persistently negative anomalies, with minimum absolute values 

occurring in 2014 (SM = 26 Gt, SR = 0.37 Gt). Nevertheless, no statistically significant temporal 

trends are present in our time series. 

From 1996 to 2002, we observe persistent negative anomalies only for SR. During this 

period, SM retention was always above 95% on the post-2002 floating ice areas. We suggest that 

this persistent high retention is possibly linked to the Larsen B breakup mechanisms that took place 

in 2002. The post-2002 floating ice areas are responsible for an SR average of 68% on the AP, 

highlighting their key importance to coastal hydrography as a freshwater source. 

 By dividing the AP into 11 regions, we observe that the largest SM/A and SR/A occur in 

the South Shetlands Islands, followed by the vicinity of the Larsen B ice shelf. This finding reveals 

the importance of the elevation and climatic differences between the western and eastern sides of 

the AP. Due to Larsen-C Ice Shelf, the east side has a flatter elevation profile, but generally also a 

smaller altitudinal decrease rate in temperature and lower accumulation rates than the west side, 

resulting in higher SM/A and SR/A in the east, despite the higher warming trends recorded in 

weather stations located in the west. 

The large discrepancies among studies considering the same area and period indicate that 

further efforts are required to provide a better spatial distribution of field-measured SMB data. The 

same recommendation can be made for weather stations. The discrepancies are possibly due to the 

high complexity of global, regional and local climatic forcing combined with the equally complex 

internal structure of the snow and ice layers.   
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8 Details of data deposit 

 The new data presented in this paper will be archived at the PANGAEA data server 

(www.pangaea.de). PANGAEA is an information system hosted by the Alfred Wegener Institute, 

Helmholtz Center for Polar and Marine Research (AWI) and the Center for Marine Environmental 

Sciences, University of Bremen (MARUM). 
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Figure 1: Map showing the study area and data-source distribution. Elevation contours are 

extracted from RAMP-DEM (Liu et al. 2001). Weather stations are represented by yellow 

diamonds and labelled with numbers, as shown in Table 2. The top right detailed map of King 

George Island shows the glaciological stakes and ultrasonic ranger used for calibration and 

validation in the Bellingshausen Dome and the Fildes Peninsula. Magenta squares show locations 

in Livingston and Vega islands, where long-term surface mass balance records are available. 
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Figure 2: Comparison of the mean melt duration (MMD) derived from ERAI-based air 

temperature data against QuickSCAT-derived maps. Six different thresholds are applied to 

ERAI-derived data to determine the occurrence of melt: A T>1°C, B T>0.5°C, C T>0°C, D 

T>=0°C, E T>-0.5°C, and F T>-1°C. 
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Figure 3: a MF estimation, b validation against ablation measured at Stake line 2 (1997/1998, 

1999/2000) and c SR50 (40 consecutive days, from Dec/1997 to Jan/1998) 
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Figure 4: Comparison of modelled area-averaged SMB in: a the Hurd Peninsula (Livingston 

Island) with summer and winter SMB from the Hurd (HG) and Johnsons (JG) Glaciers (Navarro et 

al, 2013) and b Baia del Diablo Glacier’s (Vega Island) annual SMB (Skvarca et al, 2004; 

Marinsek and Ermolin, 2015). 
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Figure 5: a Mean temperature, b mean PDDs, c total SM, d total potential retention and e total SR 

annual time series for the total (continuous line, diamonds), grounded ice (dotted line, upward-

pointing triangles) and floating ice (dotted line, downward-pointing triangles) areas. In d, the right 

axis shows scale for the floating area. 
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Figure 6: Maps showing: a mean SM and its standard deviation (a') over the 1980-2014 period and 

b the mean SR and its standard deviation (b') over the same period.  
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Figure 7: Surface melting (SM) and surface runoff (SR) over the Antarctic Peninsula: a to k show 

the SM (continuous line, circles) and SR (continuous line, squares) time series separated for each 

AP region; l shows the mean and standard deviation of the SR maximum elevation of SR in each 

region; map m delimits each region. 
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Tables 

 

Table 1: Data used for the calibration and validation of the SM and SR model. KGI denotes King 

George Island, LIV: Livingston Island, VI: Vega Island, Cal: calibration data, Val: validation data. 

Dataset Type Period 
of measurement 

Location Elevation 
range 
(m a.s.l.) 

Usage Reference 

Weather 
station 

Meteorol. 
records 

Variable 
(see Tab. 2) 

Variable 
(see Tab. 

2) 

Variable 
(see Tab. 2) 

Cal NOAA 

Stake line 1 
 

29 ablation 
stakes 

2007-2012 KGI 54-261 Cal Mavlyulov (2014) 

Stake line 2 
 

22 ablation 
stakes 

1997/1998 
1999/2000 

KGI 85-300 
85-205 

Val Braun et al. 
(2001, 2004) 

SR50 Ultrasonic 
ranger 

02/12/1997-
 2/01/1998 

KGI 85 Val Braun et al. 
(2001, 2004) 

SMBs Summer, 
integrated 

2001-2011 LIV 0-370 Val Navarro et al. (2013) 

SMBw Winter, 
integrated 

2001-2011 LIV 0-370 Val Navarro et al. (2013) 

SMBa Annual, 
integrated 

1999-2014 VI 75-630 Val Skvarca et al. (2004), 
Marinsek & Ermolin 

(2015) 
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Table 2: Weather stations used in this study for the validation of PDDs estimated from ERAI. The 

correlation coefficient and RMSE were calculated between monthly PDDs derived from weather 

station (WS)  measurements and ERAI estimation, excluding the months from April to September.  

WS label 

on map 

WS 

name 

Latitude Longitude Elevation Period Number of 

months 

r2 RMSE 

1 Ferraz -62.08 -58.38 18 2008-2011 18 0.96 146.19 

2 King George -62.08 -58.40 267 2001-2002 6 1.00 21.48 

3 Arctowski 
-62.16 -58.46 3 

1979-1990 67 0.97 147.08 

4 Jubany 
-62.23 -58.65 20 

1980-2014 178 0.98 129.79 

5 King Sejong 
-62.21 -58.75 11 

1991-2013 137 0.96 130.42 

6 Dinamet (Uruguay) -62.17 -58.83 10 1985-2014 171 0.98 95.62 

7 Bellingshausen 
-62.20 -58.93 16 

1979-2014 209 0.98 90.30 

8 Frei (Base) -62.25 -58.93 10 1979-1985 39 0.99 88.43 

8 Frei (Station) 
-62.25 -58.93 10 

1985-2014 174 0.99 67.95 

9 Great Wall 
-62.21 -58.96 10 

1985-2014 173 0.98 87.81 

10 Arturo Prat 
-62.50 -59.68 5 

1979-2014 186 0.99 80.11 

11 Juan Carlos 
-62.66 -60.38 10 

1989-2014 48 0.90 246.56 

12 Joinville Island -63.18 -55.40 75 2007-2013 30 0.97 22.65 

13 Esperanza 
-63.40 -56.98 8 

1979-2014 209 0.92 195.08 

14 O’Higgins 
-63.31 -57.90 10 

1979-2014 213 0.94 60.52 

15 Marambio 
-64.23 -56.71 198 

1979-2014 213 0.93 90.32 

16 Primavera -64.17 -60.95 50 1979-1982 19 0.64 110.21 

17 Matienzo -64.97 -60.05 32 1979-1987 33 0.96 35.12 

18 Racer Rock 
-64.16 -61.53 17 

1991-2006 73 0.92 18.79 

19 Gonzalez -64.80 -62.85 10 1981-1982 4 0.98 6.07 

20 Palmer 
-64.76 -64.08 8 

1979-2004 97 0.90 225.83 

21 Bonaparte Point 
-64.78 -63.06 8 

1997-2014 44 0.97 12.55 

22 Faraday/Vernadsky 
-65.25 -64.26 9 

1979-2014 139 0.90 40.52 

23 Larsen Ice Shelf 
-66.96 -60.55 17 

1995-2014 115 0.99 6.43 
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24 Rothera 
-67.56 -68.13 15 

1979-2013 167 0.96 26.96 

25 San Martin 
-68.13 -67.13 4 

1979-2014 213 0.84 6.29 

26 Butler Island 
-72.21 -60.33 91 

1990-2014 140 0.90 3.16 

27 Fossil Bluff 
-71.33 -68.35 55 

1986-2013 74 0.58 0.89 

28 Uranus 
-71.43 -68.93 780 

1990-2005 73 0.98 13.44 
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Point-by-point answers to the reviwers comments 

The authors would like to thank both reviewers for their valuable comments and suggestions to improve the

quality of the manuscript. We revised the manuscript addressing their comments. All the modifications made

in  the  manuscript  are  marked  in  bold.  Herein,  we  present  a  point-by-point  response  addressing  their

comments and respectfully submit to your kind consideration.

Reviewers' Comments to Author:

Reviewer: 1

R: Not sure what the red text in the MS represents: is this a re-submission with highlighted changes 

compared to a previous version?

A: Yes.

R: English must be significantly improved.

A: The manuscript was submitted to proof read (Elsevier language service) previously to the be submitted to 

Antarctic Science. Moreover, Dr. Nicholas Barrand is a native English speaker and have also revised the 

language of the entire text. We would definetely be wiling to improve the language, but it would be very 

helpfull if the reviewer could kindly provide more specific comments on the expected improvements.  

R: Uncertainty estimates for melt and runoff are lacking throughout the MS. Are uncertainties 5%, 

10%, 50%?

A: Uncertainties of melt, mass balance and accumulation were added in section 5.2 Downscaling and melt 

model performance. 

R: Abstract: These numbers are very different from a modelling study that was recently published by 

Van Wessem and others (2016). That study suggested that a) maximum melt flux of ~50 Gt occurred in

1992, b) maximum runoff occurred in 1992 and did not exceed 20 Gt, c) there is an outspoken negative

trend in melt rate. All these three results are at odds with the numbers presented here. Possible reasons

should at least be discussed.

A: We discuss the differences compared to Van Wessem and others (2016) and also previous studies in 

section 6 Discussion. 

In response to the specific (a, b and c) comments of the reviewer, we would like to add the following 

comments.
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In our study, the years correspond to the melt season that started in November of the previous year (see line 

41, page 12 or MS). Hence, our results of 1993 correspond to November/1992 - October/1993. We adopted 

this definition to avoid spliting the melt season, because Summer starts in December and lasts until March in 

the southern hemisphere.

In most years of our study, splitting the melt seasons results in lower peaks of surface melt (see fig. 1) and a 

considerably different overall behavior of the time series. The data variability suggests that generally there 

are not two subsequent melt peaks (either positive or negative). For example, our study indicate that the total 

melt during the calendar year of 1992 was ~118 Gt. Tough, this high value is due to a peak in 

december/1992, which is part of the 1992/1993 melt season (see fig. 2). On the other hand, the 1991/1992 

melt season was not distincly intense.

Our understanding of van Wassen et al (2016) is that their year correspond to the calendar year. That per se 

will bring up different values in both studies, especially considering the extremely high variability of the 

melt rates during melt season. 

Figure 1 – Comparison of total melt estimates per year considering calendar year (i.e., Jan-Dec, blue), and 

melt season year (i.e. November/Year-1 – October/Year, red).
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Figure 2 – Total melt estimates by month from jan/1991 to dec/1993.  

Furtherly, there must be a misinterpretation of the van Wessem et al (2016) results by the reviewer, because 

the values presented by van Wessen et al (2016) are different of those indicated by the reviewer comment. 

Would that be possible that the reviewer looked at the data on figure 7 of their article without noticing that 

the dashed and continuous line correspond to the eastern and western AP (so the totals would have to be 

summed for comparing with our results on the entire AP)? The maximum and minimum values are also 

discussed by the authors (see page 279): 

“Of the SMB components (other than RU, that is small), the variability of M is the largest (15 Gt yr−1 , 45 %

of the mean), reaching its peak in 1992 (73 Gt yr−1 ), and minima (  11 Gt yr−1) in 1986 and 2014∼ .”

“Runoff of meltwater is small but its variability is as high as its mean (4 Gt yr−1 ); peak years, 1992 and 

1995 in particular, reach values of up to 15 Gt yr−1 , following the peaks in snowmelt.” 

Another point is that the results of van Wessem et al (2016) regarding meltwater production are quite smaller

than previous versions of RACMO estimates and we have not found a direct comparision of the melt 

estimates provided by RACMO 5.5km against observational or remote sensing derived surface melt. 

The validation of RACMO 5.5km is performed against surface mass balance data, and it is clear that 

precipitation rates dominate the SMB of AP. Hence, it is possible that improvements of SMB estimates 
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provided by RACMO5.5km (in comparison to RAMCO 27km) may be related to a better representation of 

precipitation, and not necessarily accompanied by improved representation of snowmelt. 

It sounds unlike that an improvement of model resolution and physics would lead to a worst representation of

surface melt. However, it is worth noting that: 

- The validation results presented in van Wessem et al (2016) are unikely perfomed against highly positive 

SMB data. 

- Comparisons of data from RACMO 27km against QuickSCAT-derived data showed that RACMO 27km 

underestimates meltflux over Antactica on ~40 Gt (in average) (Trusel et al 2013). The underestimation 

reached 110 mm we on average in Wilkins ice shelf, for example. 

- Melt onset date on Wilkins and Larsen C derived from RACMO 27km data occurs about 40 days later than 

data derived from QuickSCAT data (Barrand et al, 2013). 

- Melt duration is overall underestimated by RACMO 27km compared to QuickSCAT data (Barrand et al, 

2013).

- QuickSCAT-derived melt duration is underestimated by ~25 days on Larsen C when compared to Envisat-

ASAR-derived data (Luckman et al).

Satellite-derived data suggest that RACMO 27 km derived surface melt is mostly underestimated on the AP. 

RACMO5.5km provides even lower estimates of surface melt, which are not compared to field 

measurements neither satellite-derived estimates (to our knowledge). 

Regarding the temporal trend, our results (as originally presented) do not have a significant trend. However, 

if we had considered the calendar year, we would have a significant (99%) decreasing trend of 0.75 Gt year -1.

R: p. 6, l. 23: "ERAI is the most recent reanalysis release from ECMWF. It provides data from 1979 to 

the present in a finest spatial resolution of 0.125 x 0.125." This must be a downscaled product; the 

native resolution of ERA-Interim is closer to 0.7 degrees. The most recent reanalysis release of 

ECMWF is ERA5.

A: The authors are thankfull for the comment and changed the information in the manuscript.

R: p. 6, l. 34: The RAMP DEM is an old data product. Why not use more recent DEMs? See for 

instance: http://dro.dur.ac.uk/20036/

A: We adopted the RAMP DEM product because it provides elevation data on ice shelves.  
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R: Section 4.1: The main interest of this aper is to reconstruct T2m over the AP. Why then deriving 

free atmosphere lapse rates and nit T2m lapse rates? 

A: This approach was adopted to obtain spatially-variable lapse rates avoiding the effects of the ERA Interim

coarse resolution. By calculating the lapse rates between two adjacent ERA interim cells, we would be 

considering the spatial variation of the temperature entirely as a topographic effect.  

R: Section 4.2: if daily temperatures are used, a lower threshold may be preferable, see e.g. 

doi:10.1029/2010GL044123

A: The threshold used is the one that better performed for deriving melt area (see section ).  

R: Section 4.2: Using accumulation from ERA-Interim in a topographically complex region as the AP 

in combination with the highly simplified parameterization of Pfeffer (1991) renders the runoff 

obtained in this study as unreliable. So it cannot be judged as robust until at least some proof is 

presented that they are.

A: We removed the “robust” term.

Minor/textual comments

R: p 3, l. 24: I do not see the rationale for introducing the somwhat awkward abbreviation SM. Why 

not simply M or ME? Similar for runoff.

A: Despite that the authors somwhat agree with the reviewer, the lack of the awkward S in front of M (and 

R) has been subject of criticism for not stressing that the estimates were exclusively of surface melt and 

runoff produced by surface melt. We decided to keep the S to be sure that we are precisely informing what 

exactly we are presenting, despite its awkwardness. 

R: p. 3, l. 41: Not melt, but runoff causes mass loss.

A: The authors are thankfull for the comment and corrected the ms accordingly. 

R: p. 4, l. 42: A paper discussing freshwater input into the ocean from the AP is: 

http://www.sciencedirect.com/science/article/pii/S0967064516303228

A: The authors are thankfull for the reference. 

R: p. 6, l. 36: Please avoid use of the phrase "surface air temperature". It is either surface OR air 

temperature. If you use 2 m temperature, please simply state so. For varying measurement heights, 

which I assume is the case here, "near surface air temperature" is acceptable.

A: The authors are thankfull for the comment and corrected the ms accordingly.
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R: p. 8, l. 52: "Whereas it is recognized that the surface temperature may be a better parameter for 

estimating the surface melt when compared to the air temperature" This makes no sense. Surface 

temperature of a melting snow surface is constant, and can therefore not be used to estimate melt 

variations.

A: The authors are thankfull for the comment and corrected the ms accordingly.

R: p. 11, l. 56: These were stake measurements in ice with known density?

A: Yes. 

R: Fig. 5: please use sensible y-axis values in all plots.

A: The authors are thankfull for the comment and corrected the figure accordingly.

Reviewer: 2

The authors would like to greatly thank Dr. Francisco Navarro for the very detailed revision of the MS in 

terms of both scientific content and language. All modifications suggested by the reviewer are incorporated 

in the revised version of the MS.  
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