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Abstract: n-alkanes and their blends, are characterized as phase change materials (PCMs) due to their superior 

thermodynamic performances, for storing thermal energy in various practical applications (solar or wind energy). 

Such materials present some limitations, including lower thermal conductivity, supercooling, phase segregation, 

volume expansion, among others. To address these problems, microencapsulation of n-alkanes and their blends is 

being successfully developed. A considerable amount of works has been published in this regard. Hence, the aim of 

this review is focused on two aspects: summarize the pure n-alkanes and their blends PCMs; describe their 

microencapsulation. PCM-interesting characteristics (transition temperatures and enthalpies) of pure n-alkanes, 

multinary alkanes and paraffins (over 140 types) were listed, while the phase equilibrium evaluations of multinary 

alkanes were elaborated. The essential information: core and shell materials, crystallization and melting 

characteristics, encapsulation/thermal storage efficiencies, thermal conductivities and synthesis methods of 

microencapsulated n-alkanes and their blends were listed (over 200 types). A brief introduction of the synthesis 

methods, such as physical, chemical, physical-chemical and self-assembly processes, were presented. The 

characterization of microcapsules like thermal properties (phase change behaviors, thermal conductivity and thermal 

stability), physical properties (microcapsules size distribution & morphologies, efficiencies, mechanical strength and 

leakage) and chemical properties were discussed and analyzed. Finally, the practical applications of 

microencapsulated n-alkanes and their blends in the field of slurry, buildings, textiles and foam were reported.  

 

keywords: n-alkanes; phase change materials; microencapsulation; thermal energy storage; microencapsulated phase 

change materials  
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Nomenclature 

Cn pure n-alkanes ∆nc difference of carbon atom number 

C2p even-numbered n-alkanes Acronyms  

C2p+1 odd-numbered n-alkanes AFM atomic force microscopy  

d diameter (m) DSC differential scanning calorimetry 

Een encapsulation efficiency FT-IR fourier transformation infrared spectroscopy 

Ees energy storage efficiency LHES latent heat energy storage 

FP freezing point (˚C/K) LFA laser flash apparatus 

LH latent heat (J/g) MPCM microencapsulated phase change material 

Lr leakage rate PCMs phase change materials 

Mt mass of microcapsules after a certain time (g) PSD particle size distribution 

M0 mass of dried microcapsules (g) SEM scanning electron microscope 

MP melting point (˚C/K) TES thermal energy storage 

nc carbon atom number TGA thermogravimetric analysis 

Tmo melting onset temperature (˚C) WR weight ratio 

Tmp melting peak temperature (˚C) XRD X-ray diffraction 

Tco crystallization onset temperature (˚C) Greek symbols 

Tcp crystallization peak temperature (˚C) λ thermal conductivity (W/m·K) 

x molar faction Subscripts  

∆Hm melting enthalpy (J/g) c core 

∆Hc crystallization enthalpy (J/g) w shell 

∆Ts supercooling degree (˚C) p MPCM particles 
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1 Introduction 

Latent heat energy storage (LHES) using phase change materials (PCMs) is one of the most efficient methods 

to store thermal energy, such as in the renewable energy systems (solar or wind energy), building, refrigeration, 

textile, among others. PCMs have the competitive merits of higher thermal storage capacity and isothermal behavior, 

in contrast to sensible heat energy storage. Admittedly, high energy storage density and capacity for charging and 

discharging are the desirable features of any heat/cold thermal energy storage (TES) systems. These systems with 

PCMs as thermal energy materials have been investigated for many years 1-12. 

In general, the PCMs with solid-liquid phase change are mainly used to store thermal energy. Abhat 13 proposed 

a commonly used classification of these PCMs, organic and inorganic, as shown in Figure 1. 

Among organic materials perspective for LHES, alkanes and their blends, many referred to as paraffins, are 

very attractive for using as PCM due to their superior thermodynamic performances, such as stable phase change, 

minimal supercooling, high enthalpies, among others. However, they also have limitations such as lower thermal 

conductivity, phase segregation and volume expansion in the process of phase transition. In addition, the leakage 

problem might occur during the melting process as well. These problems have been addressed by microencapsulated 

PCMs (MPCMs), which are named as 'PCM microcapsules'. Figure 2 shows a typical structure of microcapsules 

which pack the PCMs core individually with the organic or inorganic shell, and the microencapsulation working 

principle is introduced as well. The size of microcapsules can vary from few nanometers to microns. 

Microencapsulation helps to overcome low thermal conductivity by increasing the surface to volume ratio for the 

PCM. Microcapsules also provide a stable structure can therefore handle liquids as a solid material and prevent 

leakage of the melted PCMs. 

Currently, even though many reviews with respect to the various PCMs for TES are available 2, 13-16, as well as 

the review articles related to the microencapsulation of PCMs 17-24, however, to the best of our knowledge, the 

literature review on the n-alkanes PCMs and their microencapsulation for TES is never found. Actually, the 

n-alkanes and their blends had been extensively studied for the past five decades, but only a few works were related 

to their PCMs utilization. In contrary, the researches in regard to microencapsulated n-alkanes and their blends as 

PCMs showed a prosperous upward tendency in recent decade. Undoubtedly, the researches on these two aspects 

supplement each other. Therefore, a main line to link these two aspects is essential (Materials →Microcapsules). To 

this end, this paper attempts to summarize the n-alkanes and their blends PCMs firstly (the blue dot line in Figure 1), 

and then describes their microencapsulation systematically. The synthesis techniques, thermal properties, physical 

properties and chemical properties are summarized and analyzed. Finally, the practical applications of 

microencapsulated n-alkanes and their blends in the field of slurry, buildings, textiles and foam were reported. 
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Figure 1 Classification of PCM (redrawn based on the Ref. 13) 

 

Figure 2 Structure and working principle of microencapsulation 
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2 Pure n-alkanes and their blends as PCMs 

2.1 Pure n-alkanes 

The properties of pure n-alkanes CnH2n+2 (hereafter denoted by Cn) have been studied extensively in literatures, 

which include melting point, enthalpy, heat capacity, conductivity, density, among others. Among these properties, 

melting point and enthalpy are the PCM-interesting characteristics that predominantly affect the performance of a 

TES system.  

In regard to these two properties, the most comprehensive review of 67 Cn (carbon number C1~C390) was 

presented by Dirand et al. 25. In addition to this, a part of Cn (within the range of carbon number in Dirand et al's 

review) were measured by Himran et al. 26, Rajabalee et al. 27, Ventola et al. 28-29, Mondieig et al. 30 and Huang et al. 
31 using DTA or DSC instruments as well.  

Dirand et al 25 distinguished the thermodynamic data of the Cn into four parts: melting points, enthalpies, 

order-disorder (o-d) transition enthalpies and disorder-disorder (d-d) transition temperatures. This is due to the fact 

that the Cn have complex polymorphic nature with the existence of a mesostate, therefore, the phase change 

processes were very complicated and simply characterized by a solid-solid and a solid-liquid equilibrium transitions 

at constant temperature 25, 30. Regardless of the complex phase change behavior of Cn, Figure 3 depicted the two 

dominating properties (melting points and enthalpies) of Cn from octane to pentacontane (C8~C50) by summarizing 

and averaging the available data obtained by the above mentioned literatures. It should be noted that the enthalpies 

showed in Figure 3 are the solid-solid and solid-liquid transition enthalpies. The data accuracies in Figure 3 were 

estimated, the melting points and the enthalpies with the deviations of ±1% and ±3%, respectively.  

Except for thermodynamic properties, the thermophysical properties (specific heat capacity, density, thermal 

conductivity, among others) of Cn were studied by Huang et al. 31, Atkinsion et al. 32, Johansen 33, Watanabe 34 and 

Vargaftik 35, and a summarized review with respect to these properties was conducted by Kenisarin 36. 
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Figure 3. Melting points and enthalpies of some Cn on the basis of Dirand et al. 25 (from C8 to C50) 

2.2 Multinary Cn 

Generally, the Cn have specific melting points and enthalpies, which limit their practical applications. However, 

their blends (binary, ternary or multinary systems) have proved the greater value as tunable PCMs for TES systems 

because the temperature range are substantially enlarged and enriched. 

If following the permutation and combination theory, the binary and ternary mixtures of the Cn (41 types in the 
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present work) should have 2 3
41 41 820 10660 11480C C+ = + =  groups. It is absolutely impossible to accomplish the 

studies for these huge groups of combination. Dirand et al. 37 pointed out that the behavior of mixtures of Cn's have 

to obey the four laws of thermodynamics: (a) Phase stability; (b) Miscibility in the solid state; (c) Size of molecules; 

and (d) Thermodynamic representation of phase equilibrium. According to these fundamental laws, the possible 

combinations are therefore dramatically reduced.  

2.2.1 Binary systems 

Alkanes have complex crystalline structures for the odd and even numbers of carbons in the chain. Dirand et al. 
37 and Craig et al 38 proposed the following classification with the key structures from C13-C60. The odd-number Cn 

have 'C23-Pbcm' orthorhombic structure (C13-C41), as shown in Figure 4(a), the even-number Cn have 'C18-P1' 

triclinic structure for C14-C26, as shown in Figure 4(b), 'C36-P21/a' monoclinic structure for C28-C36, 'Pbca' 

orthorhombic structure for C38, C40 and C44, and 'C36-Pca21' orthorhombic structure for C46, C50 and C60 
38. These 

different structures will influence their solid state miscibility as well as the phase change characteristics of their 

mixtures. Karvchenko 39 proposed a basic rule to predict the miscibility in the binary systems of Cn from the 

different factor of the molecule lengths, as shown in Table 1. 

  

(a) 'C23-Pbcm' key structure of odd-numbered C2p+1’s 

(11≤2p +1≤41) 

(b) 'C18-P1' key structure of even-numbered C2p’s (6≤2p 

≤26) 

Figure 4 Key structures of odd-numbered and even-numbered Cn 
38 

Table 1. Miscibility of binary Cn mixtures versus number difference of Carbon atoms in the solid state at room 

temperature according to Kravchenko's predictions 39 (nc is the carbon atoms numbers) 

∆nc=nc-nc' Total miscibility Partial miscibility No miscibility Comments 

1 nc>161 17 > nc > 7 nc<8 1 if the two consecutive C2p and C2p+1 do not 

have the same crystalline structure, they 

cannot form a continuous solid solution. 

2 nc>33 34 > nc > 13 nc<14 

4 nc>67 68 > nc > 27 nc<28 
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Based on this rule, the studies related to binary mixtures of Cn's as PCMs were performed. The engineering 

blends prioritization for a specific application temperature, the blends phase equilibrium evaluation to select 

congruent melting or eutectic type of more suitable compositions as potential PCMs, are the primary focused issues 

in this review. Gunasekara et al. 40 presented a review of phase equilibrium in the design of suitable blended PCMs 

for TES, and summarized a series of Cn blends systems. However, some of the Cn blends were still missing. 

Therefore, based on their work, Table 2 summarized more comprehensive binary Cn mixtures (C8~C50) by listing the 

PCM-interesting characteristics, and the temperature range is from 211.7K to 359.1K (-61.5˚C~86.0˚C) 25-28, 39-61. 

The compositions are either weight, molar, or volumetric percentage, while the enthalpy are either kJ/kg or kJ/mol. 

Table 2. Thermodynamic characteristics of binary mixtures of Cn's PCM for TES based on Ref. 40 (NA: not available; 

MP: melting point)  

No. Binary  Characteristics2 
Composition  

(ww%, amol%, vV%) 
MP(K) 

Enthalpy 

(kkJ/kg, mkJ/mol) 
Year Ref. 

1 C8-C10 E a16C10 211.7 NA 1995 27 

2 C10-C12 E a20C12 238.2 NA 2002 29 

3 C11-C12 P  a65C12 251.2 NA 

4 C11-C13 E  a23C13 246.1 NA 

5 C11-C18 IIM3 w21C18 279.6 NA 2015 41 

6 C12-C13 ICM a17.7C13 257.5 k185 2017 42-43 

7 C12-C14 E  a19C14 258.2 NA 1996 44 

8 C12-C15 E a24 C15
 258.6 m25.8 1998 45 

9 C13-C14 P a25C13 272.0 k212-110 2002 29 

10 C13-C15 E a20C15 266.4 m26 1998 46 

11 C14-C15 E a15C15 276.2 NA 2005 47 

12 C14-C16 E v8.33C16 274.9 k156.2 1999 48 

 ICM a6.74C16 274.9 k146 2003 49 

 ICM a7.7C16 275.0 k146  2004 50 

 E a17.5C16 276.2 NA 2004, 2005 30, 47 

13 C14-C18 E NA 275.3 k227.5 2004 51 

14 C14-C21 E NA 278.6 k200.3 

15 C14-C22 E NA 278.7 k234.3 

16 C15-C16 P a86C16 287.2 NA 1997 52 

17 C15-C17 ICM a12.5C17 281.2 NA 1996, 1997 44, 52 

18 C15-C18 E NA 282.2 k271.9 2007 53 

19 C15-C21 E a6.5C21 281.5 k163 1996 44 

20 C15-C22 E NA 281.6 k214.8 2004 51 

21 C16-C17 E a8.1C17 289.3 NA 1997, 2004 30, 52 

22 C16-C18 E, P a12.5C18,
a78C18 288.2, 295.3 NA 2004 30 

23 C16-C28 E a5C28 290.4 NA 2000 54  

24 C16-C41 E a4C41 290.5 NA 
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2 E-eutectic; P-peritectic; ICM-isomorphous congruent minimum melting; IIM-isomorphous incongruent melting 

(ascendant type); PIP-partially isomorphous peritectic 
3 in IIM type, the melting point is extracted from the proposed data in literature for molar percentage of ~20 mol% 

in n-alkanes with longer chains. 

As shown in Table 2, a part of studies aimed at finding the right compositions in the right Cn blends for PCM 

utilization. The first priority is to adjust the melting point of blends at the required temperature level in practical 

application, and then to choose the blends having a narrow thermal window that can store or release 95% of the total 

latent heat. Simultaneously, several studies with respect to the phase equilibrium were proposed as well, and 

potential PCM materials for TES might be found in light of some features (eutectic or peritectic point) in binary 

solidus-liquidus phase diagrams. Among these investigations focused on engineering or potential binary blended 

PCMs, systematic evaluations on a group of substantial binary mixtures were conducted by Ventola et al. and 

Mondieig et al. 28-30. Mondieig et al. 30 ascertained that the group of Cn had a rich, complex polymorphic nature with 

the existence of mesostate. This mesostate regarded as rotator (R) is a crystalline state, having rotational freedom 

along their long axes, between the normal, ordered solid state and liquid. As a consequence, the Cn blends appeared 

25 C17-C18 P a88C18 298.3 NA 2004 30 

26 C17-C19 ICM a5C19 295.0 m38.9 1996 55 

27 C18-C19 E a6C19 299.3 NA 2004 30 

28 C18-C20 E, P a6C20,
 a90C20 301.2, 308.4 NA 

29 C18-C21 E NA 299.2 173.9 2004 51 

30 C18-C22 E NA 300.2 203.8 

31 C19-C20 P a94C20 308.3 NA 2004 30 

32 C19-C21 ICM a10C21 305.5 m43.5 1985 56 

33 C20-C21 E a5C21 308.5 NA 2004 30 

34 C20-C22 E a3C22 309.5 NA 1996 44 

35 C21-C22 P a5C22 316.8 m48.7 1999 57 

36 C21-C23 P a1.5C23 313.7 NA 1996 58 

37 C22-C23 IIM3 a20C23 317.4 NA 1998 59 

38 C22-C24 IIM3 a20C24 317.9 NA 2004 30 

39 C23-C24 IIM3 a20C24 320.6 NA 

40 C23-C25 IIM3 a20C25 321.9 m52.6 1999 60 

41 C25-C27 P a96C27 330.3 NA 2004 30 

42 C25-C28 ICM 24.6C28 327.0 NA 1995, 1996 61-62 

43 C26-C28 P a93C28 333.3 m62.3 2004 63 

44 C28-C41 E a8C41 337.2 NA 2000 54 

45 C32-C34 IIM3 a20C34 343.0 k172 2005 28 

46 C32-C36 ICM a5C36 342.2 k168 

47 C34-C36 IIM3 a20C36 346.5 k171 

48 C36-C40 PIP a50C40 350.2 k223 

49 C40-C44 PIP a52C44 355.2 k229 

50 C44-C50 E a9C50 359.1 NA 1995, 1996 61-62 
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very complex phase change behaviors (melting or freezing types), and sometimes, the confusion conclusions 

presented by different investigators are inevitable. 

Generally, as mentioned by Gunasekara et al. 40, it is accepted that the binary systems belonging to the 

completely or almost completely isomorphous congruent types are C15-C17
44, 52, C17-C19

55, C19-C21
56, C25-C28

61-62, 

C32-C36
28, the binary isomorphous incongruent melting systems (ascendant type) found are C11-C18

41, all the odd-odd 

and odd-even blends from C22 to C24
30, 59, C23-C25

60, C32-C34 and C34-C36
28. The remainders are partially isomorphous. 

The phase change characteristics of these binary Cn blends include: eutectic, peritectic, isomorphous congruent 

melting (ICM), isomorphous incongruent melting (IIM) and partially isomorphous peritectic (PIP) 40, which are 

elaborated in Table 2. Actually, most of these phase change characteristics are deduced from the binary phase 

diagram, and hence Figure 5 depicted the typical phase diagrams of eutectic system (C8-C10), peritectic system 

(C15-C16) and ICM system (C15-C17) that were redrawn by extracting the figure data from the original literatures 27, 52.  
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(b) C15-C17 and C15-C16 (redrawn based on Ref.52) 

Figure 5 Phase diagrams of binary systems C8-C10, C15-C17 and C15-C16 (redrawn based on Ref. 27 and Ref. 52)  

(a) C8-C10 (redrawn based on Ref.27) (b) C15-C17 and C15-C16 (redrawn based on Ref.52) 

The most frequently studied binary Cn system is C14-C16 
30, 40, 47-50, however, the reported phase change 

characteristics of these works have discrepancies. For example, it has been reported with a eutectic 48, an 

isomorphous congruent minimum melting type 49 50, and as a partially isomorphous system with a eutectic and a 

peritectic 30. The temperatures of these eutectic/congruent melting points are rather close, but the compositions vary 

from each other (in Table 2). Actually, the confusion in regard to the C14-C16 binary system is the distinction 
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between a partially isomorphous eutectic and an isomorphous congruent minimum melting type. Overall evaluations 

including crystallography, miscibility and phase equilibrium of C14-C16 blends were conducted by Ventolà et al. 29 

and Mondieig et al. 30, which are crucial for a deep understanding of the system's phase change behaviors. As 

mentioned in Craig et al's work 38, both components of the C14 and C16 have 'P1' triclinic structure. Hence, He et al. 
48 pointed out that the C14-C16 binary is an isomorphous system and found a eutectic point of the laboratory-grade 

C14-C16 mixture occurs at 91.67% C14 (8.33% C16), and the phase change temperature at this point is approximately 

1.7°C. But four years later, they ascertained that this point is not a eutectic point 49. Subsequently Mondieig et al. 30 

said that the system should be partially isomorphous with a eutectic and a peritectic, and there were a eutectic 

three-phase equilibrium (x is from 0.09 to 0.30) and a perictectic one (x is from 0.46 to 0.93) at high temperature 

side. The other confused binary system is C12-C13. Yilmaz et al. 64 presented the liquidus line of C12-C13 and found a 

maximum melting point of -3.3°C at 80% C13, whereas Ventolà et al. 29 identified a eutectic composition in this 

system. Most recently, Gunasekara et al. 40, 42-43 carried out an overall experimental investigation of C12-C13, The 

obtained phase diagram indicated a congruent minimum-melting solid solution and polymorphs phases at lower 

temperatures. However, the system does not represent a eutectic, which is against to phase diagrams proposed by the 

Yilmaz et al. 64 and Ventolà et al. 29.  

Thanks to these discrepancies and confusions, a full understanding of the phase equilibrium of binary Cn, 

primarily the construction of the solidus is required, for the sake of seeking the appropriate PCM for a specified TES 

system. 

2.2.2 Multinary systems 

Compared to the binary systems, a relatively small number of investigations with respect to the ternary and 

multinary systems were performed. Table 3 summarized the PCM-interesting characteristics of ternary mixtures of 

Cn (C11~C36). Since a set of compositions for these ternary systems were reported in the literatures, in order to select 

a PCM with similar phase change behavior of a pure compound 29, the compositions with narrowest thermal window 

were listed in Table 3. Actually, few works were related to the right compositions selection of PCM, except for 

Ventolà et al.28-29. Ventolà et al.28-29 proposed some potential PCM compositions to cater to the application 

temperatures (-11˚C and 70~85˚C), within a narrow thermal window, storing or releasing 95% of the total heat. They 

also indicated that the thermal window should be as small as possible (just 1~2˚C) for most of practical applications. 

Multinary Cn systems were conducted by Craig et al. 65 (C18-C19-C20-C21-C22, C19-C20-C21-C22-C23, 

C20-C21-C22-C23-C24, C21-C22-C23-C24-C25, C22-C23-C24-C25-C26), however, the main content was to determine the 

unit-cell parameters and to present the crystallographic high resolution synchrotron diffraction data, which was 

irrelevant to the present subject. 

As a consequence, as most of ternary or multinary Cn mixtures are not directly PCM-ideal materials (like 

congruent melting or eutectic types), the phase change characteristics, such as phase diagrams, phase separation, 

among others., need to be better evaluated to confirm their potential and suitability as PCMs.  

Table 3. Thermodynamic characteristics of ternary mixtures of Cn's PCM for TES( NA: not available) 

No. Ternary  Composition (mol%) MP (K) 
Thermal  

Window δ95%(K) 
Enthalpy (kJ/kg) Year Ref. 

1 C11-C12-C13 3C11, 85C12, 12C13 257.1 1.2 141.3 2002 29 

2 C12-C13-C14 51C12, 40C13, 9C14 261.4 1.6 144.1 
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Paraffins and paraffin waxes consist of a mixture of hydrocarbon molecules containing between twenty to forty 

carbon atoms (80%~95% Cn), which are produced from petroleum, coal or oil shale. Therefore, paraffins can be 

identified as the unrefined alkanes blends. Generally, paraffins are relatively cheap in comparison with pure Cn and 

have high enthalpies, which are the common PCMs utilized in practical applications. The melting points and 

enthalpies for laboratorial and commercial paraffins PCMs have been reported extensively nowadays 68 69 70.  

2.3 Summaries and discussions 

In PCM literature with Cn and their blends as a whole, it is well known that the Cn have the merits of 

chemically stable, noncorrosive and high enthalpies, in particular are regarded as the ideal PCMs. However, the 

specific melting points and relative high price limit their practical applications. Simultaneously, the Cn blends can 

provide suitable materials to work as PCM if two conditions are respect. The first is to find the right compositions in 

the right Cn blends to obtain the melting point at the required level of temperature. The second one is to choose 

blends having a narrow thermal window that can store or release 95% of the total latent heat. 

To employ Cn blends as PCM with robust performances, an overall understanding of their phase diagrams and 

phase change behaviors is crucial. A narrow thermal window (phase change temperature range) with no phase 

separation is the properties pursued for an ideal and functional PCM.  

Generally, the phase diagrams of Cn blends are complex, and previous works showed that congruent melting 

compositions are definitely the most expected for PCMs, with the solid and liquid in equilibrium having the same 

composition. Eutectics, peritectics, ICM, IMM, PIP types of phase change characteristics are elaborated through 

phase diagrams in this review as well. Among these phase change behaviors, eutectics and peritectics have been 

considered largely from a PCM selection perspective; even though peritectics are not ideal because of the 

supercooling and phase separation might occur in peritectics nonequilibrium cooling process. Furthermore, the 

literature assessment presented here, mostly focused on the binary Cn systems. Some popular systems to be 

considered as PCM were specified, for example, C14-C16, C15-C18, C15-C21, C18-C21, C20-C22, C26-C28, and C44-C50, 

among others. The ternary systems for PCMs were rarely involved, except for the C11-C12-C13, C12-C13-C14 and 

C32-C34-C36. 

Despite numerous studies have proposed, there is still a lot to explore. First, it is interesting that the binary 

system with a large discrepancy in chain length (∆nc≥6) still showed a eutectic characteristic (C11-C18, C14-C21, 

C14-C22, C15-C21, C15-C22, C16-C28, C16-C41, C28-C41), which does not respect the basic laws revealed by Dirand et al. 

and Karvchenko 37, 39. Therefore, a huge amount of new combinations can be created, and then deserve further 

investigations. Second, ternary systems are the neglected category in the PCM-context (few works published), but 

are promising for exploration in the future. Finally, the phase equilibrium identification of Cn blends is done to 

3 C14-C15-C16 73C14, 14C15, 13C16 276.3 0.5 NA 1999 66 

4 C15-C16-C17 77C15, 7C16, 16C17 283.2 0.6 NA 1997 52 

5 C16-C17-C18 80C16, 10C17, 10C18 289.5 NA NA 1999 66 

6 C18-C19-C20 90C18,5C19, 5C20 300.6 0.2 NA 

7 C19-C20-C21 90C19,5C20, 5C21 305.5 0.2 NA 

8 C16-C28-C41 50C16, 24C28, 26C41 347.7 NA NA 2000 54 

9 C22-C23-C24 48C22, 48.5C23, 3.5C24 319.0 NA NA 1999 67 

10 C32-C34-C36 34C32, 31C34, 35C36 345.2 1.0 NA 2005 28 
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various levels by different works; some are very comprehensive, while some are just preliminary. The confusions in 

regard to the phase change characteristics of blends C14-C16, C12-C13 mentioned above are attributed to this issue. To 

obtain PCM-design conclusions of a blend, a comprehensive phase equilibrium study is fundamental, which may 

require multiple testing technologies: DSC, TGA, XRD, FT-IR, and SEM, among others. Cn blends could be quite 

complex, e.g. with intricate metastable phases such like mesostates, that require such a combination of detection 

techniques. Therefore, the comprehensive studies in related to phase equilibrium of Cn blends are worth improving. 

3 Microencapsulation of n-alkanes and their blends in PCMs design 

This section has three sub-sections, which includes: Summarization of microencapsulated Cn and their blends, 

Synthesis methods for Cn and their blends microcapsules, and Characterization of microencapsulated Cn and their 

blends. 

The first sub-section 3.1 summarized the microcapsules with various core materials: Cn, Paraffins, Cn blends 

and Cn mixed with other compositions (Tables 4-7). Based on the information in Tables 4-7, the sub-section 3.2 

described the synthesis methods and elaborated some typical examples in regard to these methods. The last 

sub-section 3.3 discussed the characterization of microencapsulated Cn and their blends. 

3.1 Summarization of microencapsulated Cn and their blends 

This sub-section summarized the microcapsules with various core materials: Cn, Paraffins, Cn blends and Cn 

mixed with other compositions, for their use as PCM in practical applications from 2007 to 2017. Their most 

important information chosen here are: compositions of both core and shell materials, crystallization and melting 

characteristics, encapsulation/energy storage efficiency, thermal conductivity and synthesis method. Their remainder 

information, for instance, shell characterization, chemical properties, thermal reliability, applications, among others, 

are discussed in sub-sections 3.3 & Section 4. 

An enormous amount of experimental results are available concerning the microencapsulated Cn and their 

blends as PCMs. To bring-about their PCM design highlights, the data in the following tables are thus chosen along 

certain basic concepts regarding: microcapsules synthesis methods, microcapsules modification methods, and the 

multinary core or shell materials respectively. 

� In regard to the synthesis methods of microcapsules. There are many different synthesis methods of 

microcapsules, which need various chemical reagents, such as initiator, cross-linking agent, nucleating 

agent, monomer, surfactant, emulsifier, among others. The different mass fraction of these chemical 

reagents will cause various core-shell ratio, shell morphology, encapsulation efficiency (section 3.3.3.2), 

among others. In this situation, the information of microencapsulation with highest encapsulation 

efficiency are chosen and listed in the tables. Normally, the highest encapsulation efficiency 

microcapsules also have highest enthalpy of melting and crystallization for the same core in most of 

studies. 

� In regard to the modification of microcapsules. For instance, nano-particles can be used to enhance the 

shell/core thermal conductivities or to intensify the strength of shell structure; graphene oxide can be used 

to prevent the leakage of microencapsulation, among others. In this circumstance, the information of 

microcapsules with and without modified materials are listed in the tables. 

� In regard to the multinary core or shell materials. Some literatures presented the microencapsulation with 

multi-compositions core or shell. In this situation, all the combinations are listed in the tables.  
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3.1.1 Cn and modified Cn microcapsules 

Table 4. Characterization of Cn and modified Cn microcapsules (NA: not available) 

Shell Core  Crystallization Melting Een & Ees 

(%) 

λ 

(W/m·K) 
Synthesis method Ref. 

Components4 WR (w/w%) Components FP (˚C) LH (J/g) MP (˚C) LH (J/g) 

MF  C12 -29.30 187.2 -7.80 187.2 90.0 NA in-situ polymerization 
71 

AS  C14 
e1.98 111.0 e6.02 113.5 70.2 NA phase separation 72 

ABS  e1.37 104.8 e5.91 107.1 66.3 

PC  e2.23 110.9 e7.16 113.2 74.7 

PUF  C14 2.81 134.5 9.01 134.2 61.8 NA in-situ polymerization 
73 

PS-co-EA NA C14 -0.18 184.9 7.97 182.7 79.3 NA emulsion polymerization 74 

SiO2  C14 
e-0.39 139.9 e2.39 140.1 62.0 

0.1250~ 

0.1510 
interfacial polymerization 75 

CaCO3  C14 
e1.58 58.2 e5.35 58.5 es25.9 

0.4920~ 

0.6500 
self-assembly 

76 

PMMA-co-PUF 28.8:71.2 C14 3.70 183.2 9.60 185.9 87.5 NA in-situ polymerization 77 

PMMA  2.80 133.8 8.10 133.6 63.4 

PUF  3.30 159.5 8.30 171.8 78.5 

PMMA  C15 
e6.10 e119.0 10.00 107.0 NA NA suspension polymerization 78 

PS-co-EA NA C15 5.20 127.9 11.60 121.8 69.2 NA emulsion polymerization 74 

PFR  C16 3.91 96.5 17.29 98.1 38.0 NA phase separation 
79 

PS  C16 NA  NA 22.74 80.3 NA NA suspension polymerization 
80 

GA-co-GEL NA C16 NA NA 21.00 144.7 NA NA complex coacervation 
81 

PMMA  C16 14.85 128.2 17.34 145.6 61.4 NA emulsion polymerization 82 

PBA  C16 14.54 120.6 16.58 120.2 50.7 NA emulsion polymerization 
83 

PMMA  C16 12.60 100.0 21.60 96.0 NA NA suspension polymerization 
84 
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PODMMA  21.40 109.0 19.50 108.0 NA 

EC  C16 19.51 147.1 15.25 140.8 71.7 NA emulsion polymerization 85 

PS/GO NA C16 10.60 190.5 24.90 183.1 es78.5 NA emulsion polymerization 
86 

PS-co-EA NA C16 17.23 149.6 24.04 140.5 81.6 NA emulsion polymerization 74 

MUF  C16 7.70 169.8 14.70 167.4 es84.7 0.0530 emulsion polymerization 
87 

MUF/GP 99.3:0.7 10.70 155.3 15.90 154.2 es77.8 e0.1030 

MUF/GP 98.7:1.3 NA 138.3 15.80 136.5 es69.1 0.1540 

MUF/GP 97.4:2.6 NA 103.6 14.60 104.7 es52.2 e0.1650 

PUF   C16 10-12 87-116 20-23 86-115 NA 0.0557 interfacial polymerization 
88 

PUF/Ag NPs 93.4:6.6 10-12 73-94 19-23 83-105 NA 0.0663 

PUF/Ag NPs 87.7:12.3 4-12 76-131 22-26 73-137 NA 0.0664 

PUF/Ag NPs 78.1:21.9 7-13 70-89 21-23 71-89 NA 0.1231 

MMA-co-AA NA C16 15.30 79.6 16.20 84.5 25.6 NA emulsion polymerization 
89 

PMMA  C16 8.60 NA 18.30 62.9 28.9 NA suspension polymerization 
90  

BA-co-MMA NA 7.60 NA 19.40 63.1 28.9 NA 

PMMA  C17 18.40 84.2 18.20 81.5 38.0 NA emulsion polymerization 
91 

PS-co-EA NA C17 17.23 149.6 24.04 140.5 81.6 NA emulsion polymerization 74 

SiO2  C17 16.15 61.4 21.90 60.3 30.9 NA sol-gel process 
92 

MF  C18 28.70 145.0 40.60 144.0 59.0 NA in-situ polymerization 
93 

PUF  C18 26.5-17.7 17.4 26.0-33.0 18.8 NA NA in-situ polymerization 94 

TiO2  C18 21.00 92.0 28.70 97.0 NA NA spraying 
95 

GA-co-GEL NA C18 NA NA 30.30 165.8 NA NA complex coacervation 
81 

MF  C18 23.14 149.2 26.91 146.5 es69.0 NA in-situ polymerization  96 

PU  C18 27.04 188.9 22.82 187.9 88.0 NA interfacial polymerization 
97 

PU  C18 22.60 187.9 27.00 188.9 88.0 NA interfacial polymerization 
98  
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PMF  23.10 149.2 26.90 146.5 68.3 NA in-situ polymerization 

SiO2  C18 22.10 185.6 27.10 184.9 85.9 0.4568 sol-gel process 99 

SiO2  C18 22.00 NA 27.10 NA NA 0.3290 interfacial polymerization 
100 

St-co-DVB 90.7:9.3 C18 16.00 127.0 29.00 125.0 56.8 NA suspension polymerization 101 

PEMA  C18 29.80 197.1 32.70 198.5 89.5 0.1600 emulsion polymerization 
102  

PMMA  30.20 205.9 31.90 208.7 94.7 0.1400 

PMMA  C18 18.30 174.4 36.80 173.7 es77.3 NA suspension polymerization 103 

PDVB  C18 19.00 220.0 29.00 220.0 NA NA suspension polymerization 
104 

PMMA  C18 4.50 182.8 35.20 156.4 es75.3 NA suspension polymerization 
105 

PU  C18 25.19 e159.5 28.61 e159.1 NA NA in-situ polymerization 
106  

PU/Fe3O4 NA 26.16 e169.7 28.81 e165.7 NA 

MMA-co-AMA 90.9:9.1 C18 10.60 50.0 27.80 68.5 30.9 NA in-situ polymerization 107 

BMA-co-MAA NA C18 
e23.85 125.8 e21.85 130.3 es56.9 NA suspension polymerization  

108 

PBA  C18 13.40 123.7 31.60 126.4 es55.6 NA suspension polymerization 
109  

PBMA  16.60 124.6 29.10 120.3 es54.4 

CaCO3  C18 23.43 82.2 29.19 84.4 40.4 1.2640 self-assembly  
110 

SiO2  C18 23.72 84.9 27.96 87.6 41.8 0.8910 sol-gel process 
111 

BMA-co-BA 57.1:42.9 C18 12.90 125.5 30.90 116.4 es53.7 NA suspension polymerization 
112 

BMA-co-BA-co-MAA 57.1:28.6:14.3 11.70 130.0 30.90 136.3 es59.2 NA 

BMA-co-MAA 57.1:42.9 12.30 152.9 32.80 144.3 es66.0 NA 

BMA-co-AA 57.1:42.9 16.60 143.0 27.60 141.5 es63.2 NA 

PSMA  C18 21.50 94.8 21.80 87.9 es40.6 NA suspension polymerization 
113 

PMMA  C18 22.60 90.0 29.00 91.0 NA NA suspension polymerization 84  

PODMMA  22.80 100.0 28.20 98.0 NA 

PODMAA  C18 15.40 90.0 31.50 91.0 26.0 NA suspension polymerization 
114 
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PDDA  C18 25.82 124.4 27.34 124.4 es58.0 NA self-assembly 
115 

MPS-co-VTMS 25:75 C18 17.42 169.4 27.84 166.7 es76.0 NA self-assembly 116 

PAA  C18 26.50 126.0 31.80 125.0 NA NA spraying 
117 

PLMA  C18 10.60 108.9 28.60 118.0 es50.4 NA suspension polymerization 118 

PU  C18 19.40 173.2 28.60 170.4 66.7 NA interfacial polymerization 
119 

SiO2  C18 24.27 72.2 32.56 73.5 35.6 NA sol-gel process 
92 

PMMA  C18 13.20 153.7 24.92 132.1 es78.0 NA suspension polymerization 120 

PMMA:UM-Si3N4 76.9:23.1 13.60 140.3 25.24 139.2 es76.3 

PMMA:M-Si3N4 97.1:2.9 15.24 151.3 24.54 150.3 es82.3 

PMMA:M-Si3N4 94.3:5.7 14.69 150.5 24.31 146.9 es81.1 

PMMA:M-Si3N4 87:13 16.37 138.2 24.27 143.0 es76.7 

PMMA:M-Si3N4 76.9:23.1 16.14 122.1 25.33 121.11 es66.4 

PUF  C18 20-22 91-115 30-34 94-117 NA 0.0695 interfacial polymerization 
88  

PUF/Ag NPs 94.1:5.9 18-22 142-168 33-36 143-168 NA 0.0978 

MMA-co-AA  C18 25.90 84.4 26.40 86.1 34.7 NA emulsion polymerization 89 

OSi  C18 24.58 102.0 27.92 107.5 51.3  interfacial polymerization  
121 

SiO2  C18 24.17 98.85 27.35 109.5 51.5 0.4483 interfacial polymerization  
122 

SiO2  C18 26.22 226.3 28.32 227.7 NA NA sol-gel process 
123 

TiO2  C18 15.28 40.7 25.68 42.8 22.5 NA sol-gel process 
124 

PMMA/SiO2 66.7:33.3 C18 13.66 131.4 24.30 129.8 66.4 NA emulsion polymerization 125 

PU/PUT NA C18 23.20 141.0 28.60 143.0 NA NA interfacial polymerization 
126  

PU  24.00 130.0 27.90 133.0 NA 

PUF  C18 20.40 175.0 30.70 176.0 81.0 NA in-situ polymerization 127 

MF  C18 
e21.00 137.2 NA NA 67.5 NA in-situ polymerization 

128 

PMMA/TiO2 97.2:2.8 C18 20.65 139.3 24.60 139.9 es67.6 NA suspension polymerization 
129  
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PMMA  20.56 148.3 24.99 153.8 es73.2 

MMA-co-MPS 75:25 C18 16.91 166.1 26.20 165.3 74.9 NA suspension polymerization 130 

MF  C18 25.26 137.9 28.22 137.1 59.3 NA in-situ polymerization 
131 

MF/CNT-PSS NA C18 18.81 207.4 29.85 211.2 es80.1 0.2500 self-assembly 132 

MF   18.86 218.5 30.32 222.0 es84.2 0.1900   

MMA-co-MAA NA C18 26.40 87.7 27.30 94.2 NA NA emulsion polymerization 
133 

PMMA/PIM 95.9:4.1 C18 15.16 129.5 24.73 129.7 66.4 NA suspension polymerization 134  

PMMA  14.89 152.6 24.89  149.2 76.3 

PMMA  C18 14.90 125.0 22.80 123.0 55.4 NA emulsion polymerization 
135 

PAMA  C18 11.40 106.6 31.80 104.8 51.3 NA suspension polymerization 
136 

SF  C18 14.74 90.2 22.82 88.2 46.7 NA self-assembly 
137 

SF  C18 
e18.50 e70.0 e22.50 e68.0 NA NA self-assembly 138 

GA-co-GEL NA C19 NA NA 34.00 44.1 NA NA complex coacervation 
81 

PMMA  C19 31.03 142.9 31.23 139.2 60.3 NA emulsion polymerization 
139 

SA  C19 18.52 81.9 32.10 81.7 56.0 NA electro spraying 140 

SA  C19 28.76 120.9 35.65 107.3 84.3 NA electro spraying 
141 

SiO2  C19 26.24 80.8 36.89 74.8 41.1 NA sol-gel process 
92 

PMMA  C20 34.90 87.5 35.20 84.2 35.0 NA emulsion polymerization 
142 

EC-co-MC 90.9:9.1 C20 30.60 186.1 38.00 202.4 90.0 NA self-assembly 
143 

PSX  C20 
e30.34 e88.8 e39.37 e160.4 NA NA emulsion polymerization 144 

Fe3O4/SiO2 NA C20 33.42 169.6 39.15 170.2 71.8 NA self-assembly 145 

CaCO3  C20 33.22 85.4 37.29 86.1 37.9 1.0570 self-assembly 
146 

PMMA  C20 32.70 111.0 40.20 110.0 NA NA suspension polymerization 84  

PODMMA  31.40 110.0 39.20 113.0 NA 

MF  C20 33.60 162.4 38.40 166.6 NA NA emulsion polymerization 
147 
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TiO2  C20 36.29 150.9 42.73 152.5 78.0 0.7490 sol-gel process 148 

ZnO  C20 
e30.70 135.6 39.80 136.4 e69.5 NA in-situ polymerization 149 

SiO2  C20 31.86 78.6 40.48 81.2 33.0 NA sol-gel process 
92 

ZrO2  C20 36.74 121.3 43.59 126.5 64.7 NA self-assembly  150 

MMA-co-AA NA C20 33.80 88.4 31.70 90.9 32.9 NA emulsion polymerization 
89 

TiO2/Fe3O4 NA C20 32.40 144.2 38.60 144.7 53.8 NA 
self-assembly and 

interfacial polymerization 
151 

ZrO2  C20 39.37 158.4 45.25 163.9 64.5 0.9060 in-situ polymerization 
152 

Cu2O  C20 32.52 163.1 38.71 165.3 61.6 3.6520 self-assembly  
153 

TiO2/GP NA C20 
e33.00 e168.0 e40.90 e170.0 NA e0.7000 interfacial polymerization 154  

TiO2  e32.10 e162.0 e40.95 e164.0 NA e0.6500 

MMA-co-MAA NA C20 35.50 101.4 36.30 107.7 NA NA emulsion polymerization 133 

Ag/SiO2 NA C20 
e31.02 e166.5 e40.86 e168.2 NA NA interfacial polymerization 155 

CNP/GEL/SA NA C20 32.37 105.1 35.42 114.7 41.5 NA complex coacervation 
156 

Ch/CNP NA C20 32.76 114.5 35.53 120.5 43.6 NA complex coacervation 157 

PMMA  C21 39.59  137.9 39.24 138.2 NA 0.1800 emulsion polymerization 
158 

PMMA  C22 40.60 48.7 41.00 54.6 28.0 NA emulsion polymerization 
159 

PUT  C22 34.00 88.0 42.00 79.0 31.6 NA interfacial polymerization 
160 

Fe3O4/SiO2 NA C22 40.00 156.3 44.90 157.6 NA NA interfacial polymerization 161 

PMMA  C28 53.20 88.5 50.60 86.4 43.0 NA emulsion polymerization 162 

PMMA  C28 60.66 156.1 60.02 152.5 NA 0.2000 emulsion polymerization 158 

PS  C32 61.80 174.8 70.90 285.5 es61.2 NA emulsion polymerization 163 

4 Melamine-Formaldehyde (MF); Acrylonitrile-styrene copolymer (AS); Acrylonitrile-styrene-butadiene copolymer (ABS); Polycarbonate (PC); Poly(urea-formaldehyde) 

(PUF); Styrene-co-Ethylacrylate (PS-co-EA); Poly(methyl methacrylate) (PMMA); Phenolic resin (PFR); Polystyrene (PS); Gum arabic (GA); Gelatin (GEL); Gum 

arabic-co-Gelatin (GA-co-GEL); Poly(butyl acrylate) (PBA); Poly(butyl methacrylate) (PBMA); Poly(n-octadecyl acrylate-methyl methacrylate) (PODMMA); Ethyl 
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cellulose (EC); Graphene oxide (GO); Melamine-urea-formaldehyde (MUF); Graphene (GP); Nano particles (NPs); Poly(methyl methacrylate-co-acrylic acid) 

(MMA-co-AA); Poly(butyl acrylate-co-methyl methacrylate) (BA-co-MMA); Polyurea (PU); Polymelamine-Formaldehyde (PMF); Styrene-divinybenzene (St-co-DVB); 

Poly(ethyl methacrylate) (PEMA); Poly(divinybenzene) (PDVB); Poly(methyl methacrylate-co-allyl methacrylate) (MMA-co-AMA); Poly(n-butyl 

methacrylate-co-methacrylic acid) (BMA-co-MAA); Poly(n-butyl methacrylate-co-butyl acrylate) (BMA-co-BA); Poly(n-butyl methacrylate-co-butyl acrylate-co-methacrylic 

acid) (BMA-co-BA-co-MAA); Poly(n-butyl methacrylate-co-acrylic acid) (BMA-co-AA); Poly(stearyl methacrylate) (PSMA); Poly(n-octadecyl methacrylate-co- 

methacrylic acid) (PODMAA); Poly(diallyldimethylammonium chloride) (PDDA); 3-(trimethoxysilyl) propyl methacrylate-co-vinyltrimethoxysilane (MPS-co-VTMS); 

Polyamic acid (PAA); Poly(lauryl methacrylate) (PLMA); Unmodified Si3N4 (UM-Si3N4); Modified Si3N4 (M-Si3N4); Organosilica (OSi); Polyurethane (PUT); Poly(methyl 

methacrylate-co-3-(trimethoxysilyl) propyl methacrylate) (MMA-co-MPS); Carbon nanotube (CNT); Poly(4-styrenesulfonic acid) sodium (PSS); Poly(methyl 

methacrylate-co-methacrylic acid) (MMA-co-MAA); Pigment (PIM); Poly(Allyl methacrylate) (PAMA); Silk fibroin (SF); Sodium alginate (SA); Ethyl cellulose-co-methyl 

cellulose (EC-co-MC); Polysiloxane (PSX); Clay nano-particles (CNP); Chitosan (Ch) 
e data extracted from the figures in literatures 
es Ees data from the literature according to Eq.(3) in Section 3.3.2.2 
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3.1.2 Paraffins microcapsules 

Table 5. Characterization of Paraffins microcapsules (NA: not available) 

Shell Core  Crystallization Melting Een & 

Ees (%) 

λ 

(W/m·K) 
Synthesis method Ref. 

Components5 WR (w/w%) Components FP (˚C) LH (J/g) MP (˚C) LH (J/g) 

PS  Paraffin NA NA e42.04 e41.7 20.6 NA suspension polymerization 
164 

PUF  Paraffin 50.40 201.2 53.30 200.4 97.9 NA in-situ polymerization 
165 

SiO2  Paraffin 58.27 107.1 58.37 165.7 87.5 NA sol-gel method 166 

St-co-MMA 20:80 Paraffin NA NA e41.81 e83.7 43.2 NA suspension polymerization 
167 

PMMA  Paraffin NA NA 28.00 101.0 61.2 NA emulsion polymerization 
168 

PMMA   Paraffin 50.10 112.3 55.80 106.9 66.0 NA self-assembly 169 

MF/nano-Al2O3 100:0 Paraffin 47.3-28.7 106.5 33.6-54.1 112.7 es65.9 NA in-situ polymerization 
170 

92.3:7.7 49.1-31.8 110.6 36.9-55.5 115.3 es68.0 

88.9:11.1 48.4-31.9 87.9 37.4-56.1 98.3 es59.0 

78.9:21.1 43.1-26.1 89.4 38.7-60.2 101.4 es57.4 

71.4:28.6 43.2-26.2 88.5 38.6-59.9 94.4 es55.0 

65.2:34.8 42.6-25.2 79.1 39.9-61.6 84.1 es49.1 

MMA-co-AA NA Paraffin NA NA 60.00 113.0 NA NA emulsion polymerization 
171 

SiO2  Paraffin 45.00 43.8 56.50 45.5 31.7 NA in-situ polymerization 172 

PMMA  Paraffin NA NA e61.5 e140.3 60.7 NA emulsion polymerization 
173 

PAM  Paraffin 14-31 121.7 29-41 122.1 87.0 NA interfacial polymerization 
174 

SiO2  Paraffin 55.78 144.1 57.96 156.9 82.2 NA sol-gel process 
175 

PLA  Paraffin 50.20 170.5 58.20 176.6 NA NA emulsion polymerization 
176 

BMA-co-MAA NA Paraffin e50.85 e102.0 e53.85 e99.0 es69.9 NA suspension polymerization  108 

TiO2  Paraffin 56.80 147.2 58.60 164.1 87.1 NA sol-gel process 
177 

PU/Fe3O4 NPs NA Paraffin 47.82 105.6 56.54 101.1 NA e0.2320 interfacial polymerization 
178 
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  Paraffin 48.90 98.2 56.32 94.3 NA e0.2530 

  Paraffin 49.39 91.3 56.29 85.7 NA e0.3100 

  Paraffin 49.69 87.4 55.85 83.28 NA e0.3180 

PAn  Paraffin 48.95 121.0 56.63 108.9 79.9 NA in-situ polymerization  179 

PUF  Paraffin NA NA 26.10 74.2 52.8 NA in-situ polymerization 
180 

PUF  Paraffin NA NA 26.20 47.7 37.4 NA in-situ polymerization 181 

MAA-co-EMA 57.1:42.9 Paraffin 26.30 103.2 29.30 102.9 es62.6 NA suspension polymerization 
182 

PLMA  Paraffin 23.04 73.0 29.50 76.7 es45.5 NA suspension polymerization 
118 

SiO2  Paraffin 23.29 110.8 26.12 111.7 61.9 0.3948 self-assembly 183 

PHEMA  Paraffin 48.06 167.3 57.88 168.0 97.7 NA redox polymerization 
184 

PS-co-EA NA Paraffin 37.41 49.1 42.39 49.0 32.1 NA emulsion polymerization 
185 

SiO2  Paraffin 57.40 83.1 49.20 89.7 es50.8 NA emulsion polymerization 
186 

SiO2/GO NA 57.70 81.6 49.70 87.1 es49.6 

PMMA:SiO2 NA Paraffin 19.80 71.0 26.80 69.9 es57.4 NA self-assembly 187 

MF/GO NA Paraffin NA NA 41.08 202.8 93.9 NA in-situ polymerization 
188  

MF NA NA 39.85 200.3 92.7 

St-co-AA-co-BA NA Paraffin e13.80 e109.7 e20.80 e112.1 NA NA in-situ polymerization  189 

MF  Paraffin NA NA 47.66 126.0 65.0 NA in-situ polymerization 
190 

MF/GP NA Paraffin 57.10 85.0 50.50 90.8 51.1 0.3120 in-situ polymerization 
191  

MF  57.10 94.9 49.90 102.9 57.5 0.2610 

PMMA/(BN/TiO2) 66.7:33.3 Paraffin 51.60 141.5 53.00 140.8 72.1 
0.3527~ 

0.4419 
emulsion polymerization 

192 

PMMA  Paraffin NA NA 59.90 137.2 89.5 NA suspension polymerization 
193 

SiO2  Paraffin NA NA 49.00 13.0 11.0 NA interfacial polymerization 
194 

PS-co-MAA NA Paraffin 49.25 94.7 51.48 96.0 es69.5 NA emulsion polymerization 195 
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EMA-co-AA-co-St-co-T

MPTA 
NA Paraffin 24.90 115.3 30.70 117.8 es70.8 NA suspension polymerization 

196 

PU  Paraffin NA NA 27.5 92.5 44.5 NA interfacial polymerization 
197 

MR  Paraffin NA NA 39.8 92.2 NA 
e0.1880~ 

0.2660 
purchased 198 

MMA-co-MA/Al2O3NPs 90.9:9.1 Paraffin 22.54 110.0 22.47 110.4 64.3 0.2442 emulsion polymerization 199 

   23.19 104.3 23.43 105.5 61.2 0.2786   

   23.32 92.4 23.75 93.4 54.2 0.3104   

   22.76 84.0 23.14 84.5 49.2 0.3409   

   22.03 75.5 23.49 76.3 44.3 0.3591   

   22.58 75.1 22.96 75.4 43.9 0.3816   

PMMA  RT21 8.0 111.9 21.90 113.4 85.6 NA suspension polymerization 
200 

PMMA  RT21 7.90 111.9 22.00 113.9 86.3 NA suspension polymerization 
201 

PMMA  RT25 NA NA 20.73 113.9 NA NA suspension polymerization 202 

LDPE-co-EVA NA RT27 NA NA 28.40 98.1 49.3 NA spray drying 
203 

PMMA  RT27 e7.50 167.0 e22.00 163.2 NA NA suspension polymerization 
204 

CaCO3  RT28 27.41 107.2 23.33 105.8 59.0 0.714 self-assembly 205 

CaCO3  RT42 49.36 137.8 49.41 138.7 58.2 0.817   

CaCO3   RT42 NA NA 48.62 143.6 NA 0.814 self-assembly 
206 

St-co-BA 70:30 RT80 55.20 25.0 80.90 23.9 es80.0 NA emulsion polymerization 
207 

5 Styrene-co-methyl methacrylate (St-co-MMA); Polyamide (PAM); Polylactic acid (PLA); Polyaniline (PAn); Poly(methacrylic acid-co-ethyl methacrylate) (MAA-co-EMA); 

Poly(2-hydroxyethyl methacrylate) (PHEMA); Styrene-co-acrylic acid-co-n-butyl acrylate (St-co-AA-co-BA); Boron nitride (BN); Ploy(styrene -co-methylacrylic acid) 

(PS-co-MAA); Poly(ethyl methacrylate-co- acrylic acid-co-styrene-co-trimethylolpropane triacrylate) (EMA-co-AA-co-St-co-TMPTA); Melamine resin (MR); Poly(Methyl 

methacrylate-co-methacrylate) (MMA-co-MA); Poly(Styrene-co-butyl acrylate) (St-co-BA); Carbon nanofibers (CNFs) 
e data extracted from the figures in literatures 
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es Ees data from the literature according to Eq.(3) in Section 3.3.2.2  
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3.1.3 Cn & paraffin blends microcapsules 

Table 6. Characterization of Cn & paraffin blends microcapsules (NA: not available) 

Shell Core Crystallization Melting 
Een & Ees 

(%) 

λ 

(W/m·K) 
Synthesis method Ref. 

Components Components 
WR 

(w/w%) 
FP (˚C) LH (J/g) MP (˚C) LH (J/g) 

PUF C16:C20 66:34 24.5-12.0 54.8 9.0-23.5 51.7 NA NA in-situ polymerization 
94 

PMMA C17:C24 90:10 20.14 83.8 20.22 86.0 50.2 NA emulsion polymerization 208 

C18:C19 95:5 26.44 112.3 26.45 117.9 65.3 

C19:C24 95:5 30.96 99.0 31.22 104.9 55.8 

C20:C24 90:10 35.75 165.5 35.88 169.3 65.4 

PS C18:C24 90:10 16.48 152.8 25.96 156.4 64.4 NA emulsion polymerization 
209 

MF C18:C20 66.7:33.3 NA NA 33.00 144.0 NA NA in-situ polymerization 
210 

PU Paraffin 

(solid:liquid) 
30:70 NA NA 28.10 58.4 NA NA interfacial polymerization 211 

LDPE-co-EVA RT27:CNFs 98:2   27.60 95.6 48.1 NA spray drying 
203 

MMA RT21:RT58 95:5 17.51 108.3 22.28 110.4 83.6 NA suspension polymerization 212 

CaCO3 RT28:RT42 50:50 27.67; 40.62 122.8 19.76; 34.76 82.8 57.4 0.701 self-assembly 
205 
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3.1.4 Microencapsulation of Cn mixed with other compositions  

Table 7. Characterization of microencapsulation of Cn mixed with other compositions (NA: not available) 

Shell Core Crystallization Melting 
Een & Ees 

(%) 

λ 

(W/m·

K) 

Synthesis method Ref. 
Components6 

WR 

(w/w%) 
Components 

WR 

(w/w%) 
FP (˚C) LH (J/g) MP (˚C) LH (J/g) 

EP  C14:DMB 50:50 e-4.50 NA e5.50 54.7 42.1 NA interfacial polymerization 213 

PUF  C18:PEG600 13:87 27.0-25.2 1.6 26.0-32.5 3.9 NA NA in-situ polymerization 94 

  
C16:PEG1000: 

Na2CO3·10H2O 
11:50:39 15.8-13.4 42.5 13.0-23.5 44.6 NA    

MMA-co-AMA 90.9:9.1 C18:PPy 89.4:10.6 11.70 29.2 28.2 141.4 63.7 NA in-situ polymerization 107 

PU/PUT NA Paraffin:BS 
90.9:9.1- 

66.7:33.3 
NA NA 28-35 58.1-87.6 42.2-63.7 NA interfacial polymerization 214 

MMA-co-DVB 95:5 Paraffin:BS 90:10 28.17 33.3 34.7 117.5 85.2 NA in situ polymerization 
215 

PU/PUT NA Paraffin:BS 83.3:16.7 NA NA 33.70 82.6 59.4 NA interfacial polymerization 
216 

   50:50 NA NA 32.29 80.1 58.2    

   66.7:33.3 NA NA 32.51 72.4 55.0    

DVB-co-AMA 50:50 Paraffin:BS 50:50 NA NA 32.12 94.0 68.3 NA suspension polymerization 
217 

PU  
C18: 

1-tetradecanol 
92.9:7.1 22.40 164.4 30.20 165.5 NA NA interfacial polymerization 

119 

  C18:paraffin 98.3:1.7 17.50 159.9 28.10 161.9 NA    

SiO2  
Paraffin: 

P(GMA-EDMA) 
NA e53.5 e78.0 e55.5 e78.8 NA NA sol-gel process 

218 

6 Epoxy polymer (EP); Dimethylbenzene (DMB); polypyrrole (PPy); poly(glycidylmethacrylate-ethylene dimethacrylate) (P(GMA-EDMA)); Butyl stearate (BS); 

poly(methylmethacrylate-co-divinylbenzene) (MMA-co-DVB); poly(divinylbenzene-co- allyl methacrylate) (DVB-co-AMA) 
e data extracted from the figures in literatures 
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3.2 Synthesis methods for Cn and their blends microcapsules 

In this sub-section, a brief description of each synthesis method (as mentioned in Table 4-7) is summarized 

firstly. Then, some typical examples in regard to these methods are elaborated.  

Normally, the commonly used synthetic techniques for Cn and their blends microcapsules can be classified 

under three categories: physical, chemical and physical-chemical methods. Apart from these technologies, other 

methods such as self-assembly, also exist in some literatures. 

3.2.1 Physical methods  

The physical method retains the original chemical compositions of the shell materials, which are formed by 

physical processes like dehydration, adhesion, among others.  

In many physical methods, Electrospraying, as the most commonly used method for microcapsules synthesis, is 

introduced in this sub-section.  

Electrospraying 

� General processes
117
: (1) preparing the PCM solution and shell material solution in two separate syringes; 

(2) two separated solutions are fed into different nozzles (outer and inner nozzle) at the particular feed 

rates; (3) the fabricated microcapsules are collected in a container and gently stirred for curing; (4) 

washing and drying the microcapsules. 

� A typical example: Figure 6 shows the schematic of microencapsulation using electrospraying method 

according to Yuan et al.'s work 117. At first, PAA solution and liquid C18 were placed in two separate 

plastic syringes, and then injected into the coaxial composite nozzle. The PAA solutions were extruded 

through outer nozzle while the C18 solutions were came out through the inner nozzle. Finally, the 

fabricated microcapsules were dripped into a container, washed and dried. The diameters of 

microcapsules ranged from 0.5 to 3 µm. 

 

Figure 6 Schematic of electrospraying method for the C18 microencapsulation (redrawn based on Ref. 117)  

3.2.2 Chemical method 

Generally, there are 4 types of polymerization processes namely in-situ polymerization, interfacial 

polymerization, suspension polymerization and emulsion polymerization, which are described below. 
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3.2.2.1 In-situ polymerization 

� General processes 71
: (1) the synthesis of the pre-polymer solution through the mixture of pre-polymers 

(shell materials) and solvents (water); (2) preparation of oil/water (O/W) emulsion with emulsifier 

(sometimes modifying agent); (3) microcapsules formation by adding this pre-polymer into the O/W 

emulsion; (4) microcapsules collection by rinsing, filtering and drying. This method is typically used for 

organic shell materials like MF and PUF. 

� A typical example: Figure 7 shows the schematic of microencapsulation using in-situ polymerization 

method according to Zhu et al.'s work 71. A pre-polymer was first synthesized by mixing melamine and 

formalin solution in the distilled water (formation of MF shell). Then, C12 was dispersed in aqueous 

sodium hydroxide solution to form an emulsion (O/W emulsion). The pre-polymer was added to the C12 

emulsion by droplets to achieve polymerization. Finally, the microcapsules were rinsed and air-dried at 

room temperature. In this work, it was indicated that the average capsule diameters were strongly affected 

by the stirring rates. The size range is from 330nm to 15.69µm. 

 

Figure 7 Schematic of in-situ polymerization for the C12 microencapsulation (redrawn based on Ref. 71) 

3.2.2.2 Interfacial polymerization 

� General processes 
97
: (1) formation of the oil phase with PCM and hydrophobic monomers; (2) dissolve 

the hydrophilic monomers in the aqueous solution; (3) microcapsules formation the by adding hydrophilic 

groups in the form of droplets into oil phase; (4) microcapsules collection by filtering, washing and 

drying from the emulsion. This method is typically used for organic shell materials like PU and PUT. 

� A typical example: Figure 8 shows the schematic of microencapsulation using interfacial polymerization 

method according to the work of Zhang and Wang 97. Firstly, the mixed oil solution consisting of C18 and 

TDI was dispersed in an aqueous solution to form an oil-in-water microemulsion (oil phase C18/TDI 

mixture). Then, the other requisite monomer, amine, was dropped into the emulsion and reacts with TDI. 

As a result, a urea-linked polymeric shell was formed at the oil-water interfaces. Finally, the resultant 

microcapsules were filtered, washed and dried. The particle size of the microcapsules was within a range 

of 3~12 µm. 
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Figure 8 Schematic of interfacial polymerization for the C18 microencapsulation (redrawn based on Ref. 97) 

3.2.2.3 Suspension polymerization 

� General processes
80
: (1) PCM, monomers and initiators form the oil phase and suspend in the aqueous 

solution as discrete droplets (add surfactants); (2) initiators triggering the microcapsules polymerization 

from the oil phase (core materials); (3) separation of microcapsules from the emulsion. This method is 

typically used for organic shell materials like PMMA. 

� A typical example: Figure 9 shows the schematic of microencapsulation using suspension polymerization 

method according to Ai et al.'s work 80.The first step was emulsifying the oil phase into aqueous phase. 

Casein molecules as the mini-reactors act to stabilize the fine oil droplets through the polymerization 

period. Then, The C16, monomers and initiators formed the oil phase. The precipitation polymerization 

took place within the oil droplets after the temperature was elevated. Finally, phase separation of polymer 

occurred, resulting polymer particles precipitate and move to the interface of oil droplets. The size of the 

microcapsules was within a range of 3~15 µm. 

 Figure 9 Schematic of suspension polymerization for the C16 microencapsulation (redrawn based on Ref. 80) 

3.2.2.4 Emulsion polymerization 

� General processes
219
: (1) PCM and monomers form the oil phase and suspend in the aqueous solution as 

discrete droplets (add surfactants); (2) initiators are dissolved in the aqueous phase; (3) initiators 

triggering the microcapsules polymerization; (4) separation of microcapsules from the emulsion. This 

method is typically used for organic shell materials like PMMA and PS. 

� A typical example: Figure 10 shows the schematic of microencapsulation using suspension 

polymerization method according to Macro's work 219. The first step was preparing the wax and 

monomers emulsion in hot water with stirrer and detergents, then the initiators was dissolved into aqueous 

solution and polymer shell grew between the interphase of wax and water, finally, a highly cross linked 

polymer formed the dense shell on each droplet of wax. The size of the microcapsules was within a range 

of 2~20 µm. 
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 Figure 10 Schematic of emulsion polymerization for the paraffin microencapsulation (redrawn based on Ref. 219) 

3.2.3 physical-chemical methods 

3.2.3.1 Coacervation 

� General processes
220-221

: (1) dispersion of the PCM in an aqueous solution containing the shell polymer; 

(2) deposition of the coating material (polymer) on the core material; (3) rigidizing of the coating material 

by thermal, cross linking or desolvation techniques to obtain microcapsules. 

� A typical example: Figure 11 shows the schematic of microencapsulation using coacervation method 

according to the work of Uddin et al. and Fabien 220-221. In Uddin's work, firstly, gelatine solution was 

prepared by dissolving in distilled water. Then, the solid paraffin was dispersed in the gelatine solution by 

gentle stirring and maintaining the temperature at a constant value. At this temperature, paraffin particles 

melted and, apparently, became coated with gelatine. Finally, the microencapsulated paraffin was 

hardened with cross-link agent and dehydrated by ethyl alcohol. Microencapsulated paraffin sizes are 

approximately 500 µm which are larger than the other synthesis methods. 

 

Figure 11 Schematic of coacervation method for the paraffin microencapsulation (redrawn based on Ref. 220-221) 

3.2.3.2 Sol-gel process 

� General processes
111
: (1) formation of oil phase with PCM and surfactants (emulsifiers) (PCM O/W 

emulsion) (2) preparation of sol solution by dissolving the precursor compounds in water under an acidic 

environment; (3) microcapsules formation through condensation polymerization by adding sol solution 

into the PCM O/W emulsion drop by drop; (4) separation of microcapsules from the emulsion. This 

method is typically used for inorganic shell materials like silica and titanium oxide. 

� A typical example: Figure 12 shows the schematic of microencapsulation using sol-gel method according 

to He et al.'s works 111. The oily C18 was first dispersed in an aqueous solution containing a nonionic 

surfactant (PEO-PPO-PEO) to form a stable O/W emulsion. Then, the silica sol was prepared by 

dissolving sodium silicate in water under an acidic or weakly alkaline circumstance. Afterwards, the silica 

sol was added into the O/W emulsion drop by drop, leading to the formation of silica gel surrounding the 
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C18 micelles. Finally, the silica wall was successfully fabricated onto the surface of the C18 droplets.  

 

Figure 12 Schematic of sol-gel method for the C18 microencapsulation (redrawn based on Ref. 111) 

3.2.4 Other methods 

Gao et al. 153 fabricated a microencapsulated C20 capsules through a self-assembly process, as shown in Figure 

13. First, O/W emulsion containing C20 micelles was built first with the aid of surfactant. Then, CuSO4 was added 

into the emulsion system, copper ions were attracted onto the surfaces of C20 micelles and form a self-assemble 

system with copper species at the oil-water interface. Next, a Cu(OH)2 layer was generated surrounding the C20 

micelles through precipitation reaction by adding a NaOH aqueous solution into this self-assemble system. The 

Cu(OH)2 layer was further reduced with glucose reducing agent, Finally, a well-defined Cu2O shell encapsulating 

the C20 core was fabricated. This method actually has two key factors: the first is the selection of an appropriate 

surfactant template that can supply specific and local interactions among the core materials to attract precursors for 

self-assembly themselves, and the second one is the accurate control of a balance between the deposition and 

precipitation of precursors at the oil-water interface. 

 

Figure 13 Schematic of self-assembly for the C20 microencapsulation (redrawn based on Ref. 153) 
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3.3 Characterization of microencapsulated Cn and their blends 

The Cn and their blends microcapsules should be characterized from three aspects including thermal, physical 

and chemical properties to examine their microencapsulation properties, determine their application ranges, and 

propose improvement methods of properties. The thermal, physical and chemical properties comprise several key 

sub-properties, respectively. In this sub-section, the method of characterization for each property is firstly described; 

the corresponding microencapsulation characteristics and their improvement methods are then elaborated with some 

typical examples.  

3.3.1 Thermal properties 

3.3.1.1 Phase change properties 

The phase change properties of bulk PCM and MPCM are generally measured by differential scanning 

calorimetry (DSC) analysis. As shown in Figure. 14, DSC testing results are presented in the form of endothermic 

and exothermic curves with temperature variations during heating and cooling phases, respectively. By analyzing the 

curves, the key phase change properties can be obtained as follows:  

Tmo: The melting onset temperature in endothermic curves; 

Tmp: The melting peak temperature in endothermic curves; 

∆Hm: The melting enthalpy in endothermic curves; 

Tco: The crystallization onset temperature in exothermic curves; 

Tcp: The crystallization peak temperature in exothermic curves; 

∆Hc: The crystallization enthalpy in exothermic curves; 

∆Ts: Supercooling degree, defined as Tmp-Tcp. 

 

Figure 14 DSC thermograms of as-synthesized and CRL-immobilized microcapsules 151 

The thermal conductance, geometric confinement or nucleation induction of shell results in the shift of the 

phase change temperature 188-189. The melting temperature of Cn in the microcapsules is generally similar to that of 

the bulk Cn. In contrast, the crystallization temperature of Cn in the microcapsules is significantly lowered compared 

to that of the bulk Cn. This means that Cn will experience severe supercooling when it is encapsulated in 

microcapsules, which is most likely owing to the lack of nuclei in such a tiny space 212. Supercooling results in that 

the latent heat is released at a lower temperature or in a wider temperature range, which is disadvantageous for the 

energy storage application. Therefore, the supercooling is still a major obstacle to the widespread application of 
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microencapsulated Cn and hence lots of efforts have been devoted to reduce the supercooling of Cn in microcapsules. 

Currently, there mainly exist two types of methods to eliminate or suppress the supercooling. One is to add 

nucleating agents into core to promote heterogeneous nucleation, such as paraffin or alcohols with high freezing 

point and solid nanoparticles. Another is to modify the shell composition and structure to mediate a homogeneous 

nucleation by shell-induced heterogeneous nucleation. Wu et al. 119 reported that adding around 8.3 wt% paraffin or 

1-tetradecanol into core materials can suppress supercooling of microencapsulated C18. Similarly, Al-Shannaq et al. 
212 selected 5wt% RT58 or 15 wt% 1-octadecanol as nucleating agents to decrease the supercooling of 

microencapsulated RT21 from 14˚C to less than 5˚C. Tang et al. 114 developed a novel microencapsulated C18 with 

ODMA-co-MAA copolymer as shell to realize low supercooling. The use of ODMA led to the formation of a 

number of small alkyl nanodomains on the inner wall of shell, which can act as nuclei to induce the heterogeneous 

nucleation of C18 in the microcapsules; thus the supercooling degree of microencapsulated C18 with the 

ODMA-co-MAA copolymer as shell is notably lower than that with MF as shell. Cao et al.222 optimized the 

composition and structure of the adopted MF resin shell by adjusting ratio of melamine to formaldehyde, pH of 

pre-polymer, and pH of emulsion to achieve shell-induced nucleation of the triclinic and rotator phases and thus 

suppress the supercooling. Besides modified organic shell, inorganic shell also has a positive role in diminishment 

of supercooling. Tang et al. 123 selected SiO2 as shell to microencapsulating C18 to realize extremely low 

supercooling, which is less than that of the bulk or pure C18. This is because that the microstructure with no 

cross-linking on its interior wall of the silica shell is helpful for the nucleation of C18. The second method is 

generally more advantageous in the effective latent heat of the MPCM microcapsules, because the effective latent 

heat will be reduced by the relatively large amount of additive in the first method. 

The latent heat of MPCM is lower than that of pure PCM because of the shell existing. In order to increase the 

latent heat of MPCM the thinner or lighter shells are required, which will cause more challenges in the synthesis 

process and material selection of shell. Tang et al. 123 confirmed that the dosage reduction of the raw materials used 

to synthesize shell can increase the latent heats of the MPCM decrease accordingly. Wan et al. 189 found that the 

latent heat of fusion increases with the increase in the percentage of pentaerythritol triacrylate (PETA) which was 

employed as cross-linking agents. They explained it by that a higher degree of cross-linking can lead to higher 

core/shell size ratio. When the content of PETA was increased from 4 wt% to 22 wt%, the latent heat of melting of 

the PCM microcapsules measured was increased from 87.9 J/g to 112.1 J/g. Compared those microcapsules 

containing C18 in Table 4, it can be seen that the microcapsules using SiO2 as shell 123 has much higher latent heat 

than the others, and it thus has advantages in thermal energy storage. 

3.3.1.2 Thermal conductivity 

Currently no sufficient information on the measurement of thermal conductivity of single MPCM particle can 

be found in the literature. Although the thermal conductivity of MPCM was measured using laser flash apparatus 

(LFA, LINSEIS LFA1000) by Chai et al. 148, an EKO HC-110 thermal conductivity meter by Yu et al. 110 or a 

Sweden Hot Disk thermal conductivity meter with 7577 probe by Jiang et al. 199, 205, they did not specify how to test 

the thermal conductivity of a single microcapsule. Pressing massive microcapsules into a tablet is likely a feasible 

measurement method to approximately obtain the thermal conductivity of single microcapsule 21, 198, 206. The thermal 

conductivity of single microcapsule can be theoretically estimated based on the composite sphere approach as 

follows 223-224: 
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1 1 p c

p p c c w p c

d d

d d d dλ λ λ

−
= +  (1) 

where λp, λc and λw are the thermal conductivities of the single MPCM particle, the core material and the shell material, 

respectively; dp and dc are the diameter of the single MPCM particle and core, respectively.  

One of the aims of Cn or paraffin microencapsulation is to increase the heat transfer surface to overcome their low 

conductivities. However, the MPCMs using organic polymers as shells still exhibit poor heat transfer property due to 

its low thermal conductivities of the organic shells. The poor heat transfer property results in a low efficiency of 

thermal storage and release, which has been regarded as a dominating drawback in energy storage application 91. Fast 

heat transfer in MPCMs is required to enable a prompt response during the charging and discharging processes of the 

thermal energy. Therefore the thermal conductivity of MPCMs needs to be enhanced. Several methods of elevating 

the thermal conductivity of MPCMs have been proposed by researchers recently. One is to modify the shell with 

inorganic nanoparticles, including Fe3O4 
178, Al2O3 

199, graphene 87, 191, CNT 132, BN/TiO2 
192. Jiang 199 employed 

emulsion polymerization to embed Al2O3 nanoparticles into P(MMA-co-MA) shell, which improved the thermal 

conductivity of the paraffin microcapsules. They reported that the thermal conductivity of the paraffin microcapsules 

would increase from 0.2442 W/(m·K) to 0.3816 W/(m·K) when the mass ratio of Al2O3 nanoparticles was increased 

from 0 to 38%. Another is to directly adopt inorganic materials as shells, such as TiO2 
138, 148, SiO2 

75, 111, CaCO3 
76, 110, 

ZrO2 
152 and Cu2O 153. Wang’s research group 148 used TiO2 as shell to microencapsulate C20 through sol–gel method 

to increase the thermal conductivity from 0.161 W/(m·K) to 0.749 W/(m·K). They also employed ZrO2  
152 and Cu2O 

153 to microencapsulate C20 to obtained higher thermal conductivity of the microcapsules without decreasing thermal 

storage capacity. It should be noted that although the thermal conductivity of MPCM is further increased with the 

increase in the mass ratio of inorganic nanoparticles or shell, the latent heat of phase change correspondingly 

decreased. A compromise should be made between the two aspects of energy storage performances. 

3.3.1.3 Thermal stability 

Thermal stablitity of MPCM includes two aspects, which are thermal degradation behavior and thermal 

reliability. The thermal degradation behavior indicates the temperatre limit of stable operation of MCPM, which is 

investigated by thermogravimetric analysis (TGA) under continueously heating 166, 208. Jiang et al. 145 conducted the 

thermal degradation test for C20 microcapsules with Fe3O4/SiO2 shell using TGA. The TGA curves for pure C20 and 

C20 microcapsules with differnet core/shell mass ratios are shown in Figure 15. This figure shows a typical one-step 

thermal degradation behavior for all smaples presents and a remarkable increment in thermal degradation 

temperature (at which the sample undergoes the most rapid mass loss) after C20 was microencapsulated. They stated 

that the compact Fe3O4/SiO2 hybrid shell hindered the decomposition of microencapsulated C20 and thus improved 

thermal degradation temperature of the microcapsules. Zhang et al. 188 reported that a two-step thermal degradation 

process was observed for a GO-modified MF/paraffin microcapsule. They pointed out that the first step thermal 

degradation is attributed to the thermal decomposition of paraffin and a decrease in the dosage of GO is helpful to 

elevating the thermal degradation temperature of first step due to formation of less defect shell. The increase in 

thermal degradation temperature ensures the stable work of MPCM at a higher temperature far above the melting 

point of core PCM.  
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Figure 15 TGA curves of (a) pure C20 and the Fe3O4/SiO2 hybrid shell microencapsulated C20 synthesiezed with 

core/shell mass ratios of (b) 7/3, (c) 5/5 and (d) 4/6 145 

The thermal reliability enables long-term serving durability of MPCMs, which is analyzed by DSC based on a 

large number of repeated thermal cycles of alternate melting and solidification 116, 121. If the properties of phase 

change exhibit tiny or even no change after sufficient thermal cycles, the MPCM is regarded as thermally reliable. 

Chai et al. 148performed thermal reliability tests of a representative C20 microcapsule sample with TiO2 shell using 

DSC. Figure 16 shows the multiple DSC curves of over 100 thermal cycles of the microcapsule. This figure 

indicates that their synthesized microcapsules can maintain stable phase change properties for a long-term utility 

period. Fourier transform infrared (FT-IR) spectroscopy can also be used to exam the thermal reliability through 

testing chemical composition as an auxiliary means 162. Sarı et al. 91demonstrated the FT-IR spectra of PMMA/C17 

microcapsules before and after thermal cycling, which are shown in Figure 17. This figure shows that the 

frequencies of characteristic peaks have little change after 5000 thermal cycles, which means no effects of thermal 

cycling on chemical structure of the microcapsules and no chemical degradation during thermal cycling. Therefore, 

their synthesized microcapsules are thermally stable from the viewpoint of chemical structure. 

 

Figure 16 DSC curves over 100 cycles for the C20 microcapsule with TiO2 shell 148 
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Figure 17 FT-IR Spectra of PMMA/C17 microcapsules before and after thermal cycling 91 

3.3.2 Physical properties 

3.3.2.1 Microcapsule size distribution 

The sizes of PCM microcapsules are crucial to their thermal storage performance, especially for MPCM slurry 

application 160, 223-224. The particle size distribution (PSD) of microcapsules can be measured using a diameter 

distribution analyzer 107 or a scanning electron microscope (SEM) 90, 123. The PSD is affected by many factors, such 

as viscosity of materials, shell compositions, process parameters and synthesis methods. de Cortazar et al. 173 

pointed out that the average particle size increased with paraffin/MMA ratio and explained it by taking into account 

viscosity of the system, which affected the onset of acoustic cavitation and thus droplet size. Lashgari et al. 90 

reported that the average sizes of C16 microcapsules using PMMA and BA-co-MMA as shells were 140 μm and 155 

μm, respectively. De Castro et al. 160 found that the increase of the homogenization speed resulted in a smaller 

average particle size and a narrow size distribution of C22/PU microcapsules through interfacial polymerization. 

When the homogenization speed increased from 6000 rpm to 20000 rpm, the average particle size decreased from 

10 μm to 2 μm. Su et al. 21 summarized the statistics results of PSD of capsules prepared via various synthesis 

methods, which indicated that the size distribution range is notably different from each other for the various 

methods. 

3.3.2.2 Efficiencies 

Two types of efficiencies of microencapsulation were adopted in the literatures: encapsulation efficiency and 

energy storage efficiency. Generally, these two efficiencies were mainly affected by the ratio of core/shell, the mass 

of emulsifier and cross-link agent, as well as the synthesis methods.  

The encapsulation and the energy storage efficiency are calculated using Eq. (2) and Eq.(3), where ∆Hm,MPCM 

and ∆Hc,MPCM are the melting and crystallization enthalpies of the PCM microcapsule 97, 99, ∆Hm,PCM and ∆Hc,PCM are 

the crystallization enthalpies of pure PCM. The latent heat is measured by differential scanning calorimeter (DSC). 

� Encapsulation efficiency 99 

,MPCM

,PCM

100%m

en

m

H
E

H

∆
= ×

∆

 (2) 

� Energy storage efficiency 97 
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,MPCM ,MPCM

,PCM ,PCM

100%m c

es

m c

H H
E

H H

∆ + ∆
= ×

∆ + ∆

 (3) 

Basically, these two efficiencies represent the ratio of core PCM to shell materials. In the above Tables 4-7, the 

values of Een were listed if only Een or both Een and Ees are available in the literatures. Otherwise, the values of Ees 

were listed but marked 'es' as a superscript in front of the data.  

3.3.2.3 Microcapsule morphologies 

The morphologies of the fabricated microcapsules can be examined by a SEM after coating a gold layer with a 

thickness of several nanometres 183. The key morphologies which need to be confirmed are as follows: (a) whether 

agglomeration of microcapsules exists; (b) whether the shape of microcapsules is spherical; and (c) whether cracks, 

dents or defects exist on shell surface. The morphologies of microcapsules are markedly affected by types of 

emulsifiers, types of cross-linking agents and shell compositions. Su et al. 190 compared the morphologies of paraffin 

microcapsules with MF shell under two different types of emulsifiers. The emulsifier with higher value of 

hydrophilic–lipophilic balance (HLB) led to the agglomeration of microcapsules as shown in Figure 18(a), while the 

emulsifier with a lower HLB value prevented the agglomeration but resulted in more obvious dents on the shell 

surface as shown in Figure 18(b). Qiu et al. 109 analysed the effects of cross-linking agents on the morphologies of 

C18 microcapsules with PBA shell. They found that the dimples on the surface of the microcapsules using 

divinylbenzene (DVB) as cross-linking agent were less in number and larger in size compared with those using 

pentaerythritol triacrylate (PETA) as cross-linking agent as shown in Figure 19. Meanwhile, DVB as cross-linking 

agent largely improved the degree of adhesions of microcapsules compared to PETA. Lashgari et al. 90 reported that 

the C16 microcapsules with PMMA shell were wrinkled although they have spherical profile as shown in Figure  

20(a), while the microcapsules with BA-co-MMA polymer shell exhibited smooth surface and absence of wrinkles 

as shown in Figure 20(b). It was explained by that BA-co-MMA offers greater flexibility and lower interfacial 

tension with C16 compared to MMA.  

  
Figure 18 SEM images of paraffin microcapsules under different emulsifiers with (a) high HLB and (b) low HLB  

190 
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Figure 19 SEM images of C18 microcapsules with (a) PETA and (b) DVB as cross-linking agents 109 

   

Figure 20 SEM images of C16 microcapsules with (a) PMMA shell and (b) BA-co-MMA polymer shell 90 

3.3.2.4 Mechanical strength 

The mechanical integrity of microcapsules is the basis of successful application of microcapsules in thermal 

energy storage, however the PCM microcapsules are confronted with the possibility of rupture during repeated 

thermal charging-discharging cycling, especially in its usage as slurries because of repeatedly pumping 23. The 

mechanical strength of microcapsules thus needs to be carefully considered. The mechanical properties of 

microcapsules can be analysed by atomic force microscopy (AFM) 203, 225-226. Borreguero et al. 203 applied AFM 

probe to exert forces on RT27 microcapsules with LDPE-EVA copolymer shell and they found that the force 

required to produce the same deformation of microcapsules increased by approximately 83% when 2 wt% of carbon 

nanofibers was added into microcapsules. Giro-Paloma et al. 225 used AFM in nanoindentation mode to determine 

the maximum force that paraffin microcapsules with acrylate shell can afford before breakage at different 

temperatures. Values of effective modulus were calculated for microcapsule agglomerates of 150 µm in diameter 

and single microcapsule of 6 µm according to the measured results. They pointed out that values of effective 

Young's modulus depended on the temperature and particle size. The agglomerates presented higher effective 

modulus than single microcapsule and the effective Young's modulus of single microcapsule showed a remarkable 

decrease at 80 ℃ because this temperature is close to the acrylate shell glass transition temperature. They also 

compared the mechanical properties between paraffin microcapsules with acrylate and MF shells 226. It was 

concluded that the acrylate shell exhibited better breakage resistance compared to MF shell, because the MF shell 

prepared using in-situ polymerisation tended to be more brittle and pressure-sensitive. When the temperature rose to 

make the paraffin become liquid state, the mechanical properties would be notably lowered.  

3.3.2.5 Leakage of PCM 

When the shell of PCM microcapsules possesses porous structure or cracks, leaking of liquid core PCM occurs. 

Page 40 of 66

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

41 

 

And once leakage paths are formed, the core PCM will constantly leak until the PCM is depleted. Leakage rates (Lr) 

at different times are usually used to indicate the leakage-prevention performance of microcapsule structure. A 

typical measuring procedure of Lr is as follows 188: A certain mass M0 of dried microcapsules are individually put on 

filter papers. Then they are moved into an oven in which the temperature is fixed over the melting point of core 

PCM. The samples need to be taken out from the oven periodically at a prescribed time interval to weigh their mass 

which are indicated by Mt. The leakage rate is defined as 

0

0

(%)= 100t

r

M M
L

M

−
×  (4) 

Although the increase of shell thickness can enhance leakage-prevention performance, it will weaken the 

encapsulation ratio simultaneously. Zhang et al. 188 proposed a GO-modified paraffin microcapsules with MF shell 

to enhance leakage-prevention performance with high encapsulation ratio. They stated that the added GO nanosheets 

were situated at the interface between the core and the shell and successfully served as a protective screen to prevent 

leakage of paraffin, as shown in Figure 21. Their measured results manifested that this structure of dual protective 

screens comprising GO layer and MF shell slowed down the leakage of paraffin and thus could lengthen the service 

life of paraffin microcapsules. Al-Shannaq et al. 212 used mass loss analysis to test the permeability of core RT21 

through the PMMA shell of microcapsules and compare the leakage rates of core RT21 from microcapsules with and 

without nucleating agent, which was used to suppress supercooling. Their testing results indicated that the leakage 

rate of RT21 from the microcapsules significantly decreased after RT58 was added and the increase of RT58 

concentration resulted in smaller leakage. They explained it by that the RT58 may form a protective layer between 

the core RT21 and the PMMA shell. This suggests that the nucleating agent RT58 does not only diminish 

supercooling, but could also enhance leakage-prevention performance of the RT21 microcapsules with PMMA shell. 

 

Figure 21 Schematic view for possible permeation through the shells of (a) MEPCM-00 and (b) MEPCMs with GO. 
188 

3.3.3 Chemical properties 

3.3.3.1 Fourier transformation infrared spectroscopy (FT-IR) 

The Fourier transformation infrared spectroscopy (FT-IR) was used to identify the functional groups in organic 

polymers, inorganic compounds and chemical characterization of the MPCMs. Almost all of the investigations listed 

in Table 4-7 had performed this analysis.  

Normally, the chemical compositions of PCMs before and after microencapsulation were examined by FT-IR. 

The obtained spectra were compared to determine whether a change occurred in chemical structures during the 

microencapsulation process. For example, P(MMA-co-MA) shell with nano-Al2O3 inlay microcapsules containing 

paraffin as core was synthesized through emulsion polymerization 199. The FTIR spectra of nano-Al2O3, paraffin and 

P(MMA-co-MA) shell as well as microencapsulated paraffin modified with different percentages of nano-Al2O3 
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were shown in Figure 22. The results confirmed the successful encapsulation of paraffin within the P(MMA-co-MA) 

shell with no chemical interaction, and the paraffin microcapsules had been successfully modified with nano-Al2O3 

as well. 

 

Figure 22 The FTIR spectra of nano-Al2O3, paraffin, copolymer shell and microcapsules modified with different 

amount of nano-Al2O3: (1) nano-Al2O3, (2) paraffin, (3) 0%, (4) 16%, (5) 27%, (6) 33%, (7) 38%, and (8) 

P(MMA-co-MA) 199 

3.3.3.2 X-ray diffraction (XRD) 

The X-ray diffraction was used to determine the crystalline structures of microcapsules, which was typically 

suitable for the inorganic shell materials. For example, Zhang et al. 155 synthesized the microcapsules based on C20 

core and silver/silica double-layered shell through interfacial polymerization. The XRD measurement was 

performed to investigate the crystalline structure of the silver/silica double-layered microcapsules, and the 

diffraction patterns are illustrated in Figure 23. The results suggested the sliver layer on the microcapsule surface 

retained good crystallinity and only an amorphous silica shell was fabricated onto the C20 core.  

 

Figure 23 XRD patterns of the as-synthesized microcapsules and the silver/silica double-layered microcapsules 

obtained at different reaction time 

3.4 Summaries and discussions 

When Cn and their blends microcapsules are prepared, the characterization of these microcapsules are required 

to examine their microencapsulation properties, in order to further determine their application ranges and propose 

improvement methods of their properties. The characterization is generally conducted from three aspects including 
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thermal, physical and chemical properties to comprehensively evaluate the microcapsules. Multiple testing 

technologies such as DSC, LFA, TGA, SEM, AFM, FT-IR and XRD are used to explore these properties. 

The main thermal properties are phase change temperature, latent heat, thermal conductivity and thermal 

stability. After PCM is microencapsulated, the shift of the phase change temperature occurs. Generally, the melting 

temperature slightly changes while the freezing temperature is notably decreased. The supercooling thus becomes a 

key barrier to the widespread application of microencapsulated Cn. In the literature, some methods to diminish or 

suppress the supercooling have been proposed, which can be classified into two sorts. One is to add nucleating 

agents into core to promote heterogeneous nucleation and another is to modify the composition and structure of shell 

to enable shell-induced heterogeneous nucleation. The effective latent heat in the first method will be reduced by the 

relatively large amount of additive and thus the second method is basically more advantageous from this point of 

view. It is inevitable that the latent heat decreases after microencapsulation of PCM because of shell existing. 

Utilization of the thinner or lighter shells can increase the latent heat of PCM microcapsules, but could cause more 

challenges in the synthesis process and material selection of shell. Types and dosage of shell materials and 

cross-linking agents should be precisely tailored to obtain the thinner or lighter shells. Due to its low thermal 

conductivities of the organic polymer shells, the PCM microcapsules with organic shells exhibit poor heat transfer 

property. The thermal conductivity of PCM microcapsules needs to be enhanced to enable a prompt response during 

the charging and discharging processes of thermal energy. The methods of elevating the thermal conductivity of 

PCM microcapsules proposed in the literature can also be classified two categories. One is to modify the organic 

shell using inorganic nanoparticles, such as Fe3O4, Al2O3, graphene, CNT, BN/TiO2. Another is to directly employ 

inorganic shells, such as TiO2, SiO2, CaCO3, ZrO2 and Cu2O. It should be noted that a compromise should be made 

between the thermal conductivity and the latent heat. Thermal stablitity of PCM microcapsules includes thermal 

degradation behavior and thermal reliability. High thermal degradation temperature ensures the stable work of PCM 

microcapsules at a high temperature far above the melting point of core PCM and good thermal reliability enables 

long-term serving durability of PCM microcapsules. Suitable shell materials or more perfect shell structure is 

helpful for elevating thermal degradation temperature amd achieving good thermal reliability.  

The primary physical properties are microcapsule size distribution, efficiencies, microcapsule morphologies, 

mechanical strength, and leakage-prevention of PCM. Various microcapsule size distributions can be obtained by 

adjusting mass ratios of materials, shell compositions, process parameters and synthetic methods. The encapsulation 

efficiency and energy storage efficiency can be used to indicate the room for improvement in latent heat of PCM 

microcapsules. All the methods to elevate latent heat can be employed to augment the encapsulation efficiency and 

energy storage efficiency. The ideal morphologies of microcapsules should be spherical shape without 

agglomeration and without cracks, dents or defects on shell surface. Better morphologies of microcapsules can be 

achieved by adjusting types of emulsifiers, types of cross-linking agents and shell compositions. Excellent 

mechanical strength is required to maintain the integrity of microcapsules during repeated thermal 

charging-discharging cycling or repeatedly pumping in its usage as slurries. Additives like carbon nanofibers and 

adoption of shell materials with high flexibility and with glass transition temperature far away from phase change 

temperature is beneficial to the increase of mechanical strength. It should be noted that the mechanical strength will 

be decreased as PCM becomes liquid state. The leakage-prevention performance is closely related to the long term 

usability. A structure of dual protective screens formed by shell and additives like GO nanosheets can effectively 

slow down the leakage of PCM and thus lengthen the service life of PCM microcapsules. 
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The chemical properties are mainly chemical compositions or crystalline structures of PCM microcapsules. 

They can be used to indicate the chemical compatibility between core, shell and additives, and to check whether the 

shell has been successfully modified by nanoparticles or whether the multilayer shell has been successfully 

synthesized. They also can be used to aid the investigation of thermal reliability of PCM microcapsules.  

Although lots of studies have been devoted to improvement of the properties of PCM microcapsules, there are 

still some key issues which need to be addressed: (1) Most of those prepared PCM microcapsules listed in Table 4 

still have a high supercooling degree and low thermal conductivity. More effective methods are required to eliminate 

supercooling and increase thermal conductivity in the case of maintaining high latent heat for various PCM 

microcapsules. (2) The service life of PCM microcapsules need to be evaluated more precisely and be further 

prolonged. Thus more effective methods are required to prevent PCM in microcapsules from leaking. (3) MPCM 

slurry is a dominating application of PCM microcapsules, which undergoes repeatedly pumping in actual utilization. 

Therefore, the observed of morphologies and the measurements of mechanical strength of PCM microcapsules 

should be performed in repeatedly pumping conditions. (4) The microencapsulated pure Cn which can be found in 

the literature only refer to C12 to C32 as shown in Table 4, whereas the Cn with lower melting points such as C8~C11 

and higher melting points such as C33~C50 as shown in Figure 1 have not yet been involved in the 

microencapsulation study or application. Table 2 and Table 3 summarize lots of binary mixtures and ternary 

mixtures of Cn, whose melting points are different from the corresponding pure Cn. These mixtures thus enrich the 

melting points of optional PCM and enable more precise solution of melting points. However, it can be found that 

most of these mixtures have not yet involved in the microencapsulation study or application by comparison with 

Table 6. Therefore, more studies should be conducted on microencapsulation of those Cn and their mixtures 

mentioned above. 
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4 Applications 

4.1 Slurry 

When the PCM microcapsules are dispersed into a carrier fluid (e.g. water) at the assistance of an appropriate 

amount of surfactant, MPCM slurry is formed. As they combine the latent heat of the PCM microcapsules and sensible 

heats of both the liquid and PCM microcapsules, MPCM slurry has high thermal storage capacity and strong heat 

transfer capacity. MPCM slurry is a multifunctional solid/liquid mixture, which can serve as both heat transfer fluids 

(HTFs) and thermal storage medium (TSM). MPCM slurry has various potential applications, such as cooling storage 
227,  solar thermal collector and storage 191, 228 and microchannel heat exchangers 229. There are different levels of the 

scientific and technological issues which need to be addressed before realistic applications of MPCM slurry as HTFs 

and TSM.  

At a material level, the thermophysical properties of MPCM slurry need to be clearly identified and predicted, 

such as thermal conductivity, specific heat, viscosity and density. Zhang et al. 223 studied the thermal and rheological 

properties of a series of MPCM slurries at low concentration of microcapsules. They measured the thermal 

conductivity and specific heat of MPCM slurry by the Hot Disk and the viscosity by a rheometer. Their study 

indicated that the predicted values of thermal conductivity and specific heat using those models adopted by Goel et al. 
230 agreed well with the experimental data. The models for predicting the thermal and rheological properties of MPCM 

slurries are summarized and analyzed by Chen et al. 231. These models have been widely employed as the basis of the 

experimental or numerical studies on heat transfer performance of MPCM slurries 224, 232-233. There are also some 

studies devoted to the thermal performance improvement of MPCM slurries or development of novel PMCM slurries 

with excellent performances. Liu et al. 191 dispersed the paraffin@MF/graphite microcapsules into an ionic liquid to 

form a novel HTF. They found that this new kind of HTF exhibited an enhancement of 13% in thermal conductivity as 

the mass fraction of paraffin@MF/graphite was 20% and an increase by double in thermal storage capacity as 

compared to the base fluid.  

At a component level, the heat transfer and hydrodynamic properties of MPCM slurry in ducts or channels and 

the thermal storage characteristics in a tank or container need to be figured out. A review on studies of heat transfer 

and hydrodynamic properties of MPCM slurry was conducted by Chen et al. 231. They pointed out that wall 

temperature, heat transfer coefficient, Nusselt number are uesed to reflect the heat transfer properties of MPCM 

slurry indirectly or directly, while pressure drop and pumping power are used to estimate the degree of 

hydrodynamic challenge caused by high viscosity of MPCM slurry. Qiu et al. 234 reviewed the heat ransfer 

enhancement mechanism of MPCM slurry, which consists of microconvection caused by microencapsules, 

migration of microcapsules within the boudnary layer, and phase change heat latent. They also collocated and 

evluated the parameters that have impact on the heat transfer properties of MPCM slurry under the condition of 

laminar and turbulent flow, mainly including concentration of microcapslues, size of microcapsules, Stephan 

number, Peclet number, Reynolds number as well as Prandtl number. Song et al. 235 carried out experimental studies 

on laminar heat transfer of MPCM slurry using low-melting-point liqud metal as a carrier fluid. They reported that 

the heat transfer coefficient increases with increasing volume concentration of microcapsules and Reynolds number. 

Kong et al. 236 conducted pressure drop and heat transfer experiments for MPCM slurries in a helically coiled tube 

under turbulent flow conditions. They found that a helically coiled tube was more suitable than a straight tube for 

convection heat transfer of MPCM slurry, although the heat transfer enhancement was restricted by high viscosity. 
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Zhang et al. 237 compared the thermal storage characterisitcs of MPCM slurry storage device (coil-in-tank) and 

stratified water storage tank (SWST). They observed that although the thermal storage capacity of MPCM slurry 

was much higher than that of water, the overall charging/dischanging rates of the slurry storage device were much 

lower than the idealized SWST, implying that an optimized design for MPCM slurry thermal storage device was 

further required. 

At a system level, the compatibility of selected MPCM slurry with a heat exchange system or thermal energy 

system and the integrated system performnce should be carefully considered. Zhang et al. 227 experimentally 

investigated the phase transition of MPCM slurry running in a thermal storage test system. They found that the 

extraction of latent heat of MPCM slurry was not entirely complete due to supercooling in a practical air 

conditioning system integrated with thermal storage. Therefore supercooling would lower the partical storage 

capacity of MPCM slurry at a limited cooling temperature or the effiency of a cooling storage system. Qiu et al. 238 

conducted an experimental study concerning the overall performance of a novel PV/T thermal and power system 

ultilizing MPCM slurry. It was presented that the effects of various solar radiations, Reynolds numbers and 

concentrations of microcapsules on the performances of the PV/T system. At their recommended operational 

conditions, the net overall solar efficiencies of the system could achieve up to 80.8–83.9%. Kong et al. 239 performed 

field evaluation of ground source heat pump systems (GSHP) employing MPCM slurries as working fluids. They 

reported that the performance coefficient of the GSHP system was elevated by up to 4.9% due to higher heat 

capacity of MPCM slurries and progressive cavity pumps were more beneficial to durability of MPCM slurries than 

centrifugal pumps. 

4.2 Buildings 

For the building applications, MPCMs are always embedded into concrete mixes, cement mortar, wallboards, 

gypsum plasters, sandwich panels, slabs, among others, which act to increase the thermal inertia for the same mass 

of buildings 20. Actually, the concrete is one of the most useful materials in buildings, and most of researchers are 

focused on the embedment of MPCMs into concrete to enhance the thermal and acoustic insulation of walls in 

recent years. However, from an economic point of view, only the lower cost of the synthesized MPCMs has 

potential for a pilot application. 

Cabeza et al. 240 studied a new concrete with paraffin microcapsules on thermal aspects. They found that the 

energy storage in the walls containing paraffin microcapsules were contributed to an improved thermal inertia and 

smoother fluctuations of temperature, which demonstrated a commendable opportunity in energy saving for 

buildings. Giro-Paloma et al. 201 synthesized the microencapsulated RT21, and tested their mechanical properties 

like elastic modulus, load at maximum displacement, displacement at maximum load by nano-indentation technique. 

In addition to this, an important parameter for considering use in building, the release of volatile organic compounds 

(VOCs), were studied. The results indicated that the RT21 microcapsules had better mechanical resistance and 

stiffness, and showed better stability with less short-term emission of VOCs as well. Aguayo et al. 241 proposed a 

new application of paraffin microcapsules in infrastructural concrete for mitigating early-age cracking and 

freeze-and-thaw induced damage. Figure 24 depicted the microstructure of cement pastes incorporating MPCMs. 

The results ascertained that the compressive strength of cement mortars with MPCMs was noted to be strongly 

dependent on the encapsulation properties. Cao et al. 242 fabricated the concretes by mixing the microencapsulated 

RT27 into Portland cement concrete (PCC) and geopolymer concrete (GPC), it was found that the thermal 

performance of concrete was improved significantly by adding the microcapsules, simultaneously, the significant 
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loss in compressive strength was observed. However, the compressive strength still satisfied the mechanical 

European regulation for concrete applications. Sant et al. 243-244 synthesized the paraffin microcapsules, and applied 

them into cement-based composites. The results showed that the existence of MPCMs would not affect the drying 

shrinkage of cementitious composites, but in specific cases, it may slightly improve the durability of cementitious 

composites. Beyond that, the effect of MPCMs on the thermal deformation behavior was examined. The thermal 

deformation coefficient of microcapsules was similar to the shell materials. Finally, a rule was presented for 

designing the mortar composites with MPCMs which find use in built environment. 

 

Figure 24 Microstructure of cement pastes incorporating MPCMs (a) PCM-M dispersed in cement paste, (b) 

breakage of PCM-M agglomerates into individual nodules in the cement paste, (c) cement hydration products on 

individual PCM-M nodules, (d) PCM-E dispersed in cement paste, (e) intact PCM-E microcapsule with hydration 

products around, and (f) dense reaction product around a PCM-E particle. 241 

4.3 Textiles 

Application of microencapsulated Cn and Cn's blends in the textile industries was an old topic but had 

continually growing interest in recent years. Many studies have been done on microencapsulated Cn textiles 

materials.  

As Nelson 245 reported, microcapsules can be coated on the surface of fabric or embedded within fiber. Sarier et 

al. 81, 94 reported that the thermal enhancement of the fabrics could be achieved by incorporating C16, C18 and C19 

microcapsules through coating. The energy storage capacities of the fabrics with microcapsules were found to be 

2.5~4.5 times enhanced compared to the reference fabrics for particular temperature intervals. Later on, They 

indicated that the microencapsulated C16 and C18 with silver nanoparticles have very high thermal storage capacities, 

good durability, thermal stability and improved thermal conductivity, which are fairly appropriate for industrial 

applications in the field of textiles like sportswear and protective clothing, medical textiles and automotive and 

agriculture textiles 88. Alay et al. 82-83 fabricated the C16 microcapsules and added to woven fabrics by cad-cure 

method. The results showed that the cotton, cotton/polyester, and microfiber polyester fabrics treated with 

microcapsules at the same concentration were capable of heat absorbing 4.95 J/g, 10.02 J/g, and 8.38 J/g, 

respectively. These discrepancies were attributed to the chemical compatibility of the fabric material and shell 

material of microcapsules. Moghaddam et al. 140-141 prepared microencapsulated C19 for textiles application, and they 

found that that C19 microcapsules had a high energy-storing density (>137.83 J/g) and proper temperature of 

solid–liquid change (30~31˚C), which were suitable for thermo-regulating textile. Most recently, Aksoy et al. 89, 133, 

156-157 fabricated the microencapsulated C18 and C20 as additive used to improve thermal comfort and flame retardant 
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property of the textiles. SEM images demonstrated that the microcapsules could be distributed onto textile substrates 

homogeneously and durable to repeated washings (as shown in Figure 25). Meanwhile, thermo-regulating properties 

of the fabrics with microcapsules were proved via thermal history measurement results. Sun and Iqbal 210 

synthesized the nanocapsules with C18 and C20 mixture as the core materials, and applied them on a cotton fabric via 

a pad-dry-cure process. The results indicated that nanocapsules have better durability on cotton fabric than MPCMs. 

The latent heat was decreasing faster for MPCM than nanoencapsulated PCM after washing. 

 

Figure 25 SEM images of the fabrics treated with P(MMA-co-MAA)/n-octadecane-3 microcapsule using Fixapret 

F-ECO resin (a) rubbing test applied, (b) 5 cycles washed, (c) 10 cycles washed, and (d) 20 cycles washed 133 

4.4 Foam 

Integration of MPCMs into foams can improve their thermal performances, especially in thermal-insulating 

ability. Polyurethane, polystryrene foams with MPCMs can be applied in areas like automotive interiors, medical 

products, among others. 

You et al. 246 fabricated the polyurethane foams containing C18 microcapsules. They found that the enthalpy of 

the foam increased with the increase of the content of MPCMs, and the maximum value of 12 J/g was achieved 

when the weight ratio of MPCMs/Polyurethane foam is 12.59%. Borreguero et al. 247-248 produced polyurethane 

foams incorporating different percentages of RT27 microcapsules. It was observed that the foam with 18 wt% of 

microcapsules can improve the TES capacity and hold the mechanical properties of the foam without fillers. 21 wt% 

of microcapsules resulted in a reduction in mechanical properties but with compressive strength and modulus higher 

than those exhibited by the foams containing 11 wt%. Then, 18 wt% of two types microcapsules (with different shell 

materials) were synthesized and added to the polyurethane foams 249, and Figure 26 illustrated the SEM images of 

polyurethane foams containing 18 wt % of mSP-(PS-RT27). The results indicated that the microcapsules with 

highest particle size from PS and the agglomeration of the microcapsules from PMMA, led to the strut rupture, 

damaging the final mechanical performance. Three years later, they successfully produced rigid polyurethane foams 
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containing up to a 40 wt% content of mSD-(LDPE-EVA-RT27) 250. These foams as temperature-regulating materials 

have a latent heat of 34.4 J/g which is higher than that reported value in literature for similar materials. Qiu et al. 77, 

118, 182, 196 formed the polystyrene foams containing C14, C18 and paraffin microcapsules, and all the experimental 

results demonstrated that the foam treated by microcapsules had a better thermoregulatory property than the raw 

foam. 

  

Figure 26 SEM images with 200× magnification of PU foams containing 18 wt % of mSP-(PS-RT27) 249 

5 Conclusions and outlook 

A main line from materials to their microcapsules (Cn and Cn's blends to their microcapsules) as PCMs for TES 

systems was presented in this review. At first, PCM-interesting characteristics (transition temperatures and 

enthalpies) of Cn, multinary Cn and paraffins were listed, while the phase equilibrium evaluations of binary Cn were 

elaborated. Then, the microencapsulated Cn and Cn's blends with respect to the synthesis methods, physical 

properties, thermal properties and chemical properties were presented and analyzed. Finally, the practical 

applications of microencapsulated Cn and their blends were reported.  

In this review, the temperature range of the summarized Cn and Cn's blends is from 211K to 366K 

(-62˚C~93˚C), while the temperature range of the summarized microencapsulated Cn and Cn's blends is from 244K 

to 354K (-29˚C ~81˚C). 

Review demonstrated that: 

(1) The fixed melting points of Cn limit their practical applications; however, the Cn's blends have proved the 

greater value as tunable PCMs because the temperature range are substantially enlarged and enriched. To employ 

Cn's blends as PCM with robust performances, a narrow thermal window with no phase separation is the properties 

pursued. The phase change behaviors of Cn's blends are close related to the phase equilibrium. Various types of 

phase change characteristics are elaborated through phase diagrams, and it is admitted that the eutectics and 

peritectics have been considered largely from a PCM selection perspective.  

(2) The supercooling is prevalent for PCM microcapsules, which can be suppressed or eliminated by adding 

nucleating agents or modify the composition and structure of shell to induce heterogeneous nucleation. The thermal 

conductivity of PCM microcapsules can be elevated by modifying the organic shell using inorganic nanoparticles or 

directly employing inorganic shells. A compromise should be made between the thermal conductivity and the latent 

heat. Suitable shell materials or more perfect shell structure is helpful for elevating thermal degradation temperature. 

Better morphologies of microcapsules can be achieved by adjusting types of emulsifiers, types of cross-linking 
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agents and shell compositions. Suitable additives in shell or adoption of shell materials with high flexibility and 

glass transition temperature far away from phase change is beneficial to the increase of the mechanical strength. A 

structure of dual protective screens formed by shell and additives can effectively slow down the leakage of PCM and 

thus lengthen the service life of PCM microcapsules. The chemical compositions and crystalline structures of PCM 

microcapsules should be tested to certify the chemical compatibility between materials and success of shell 

modification or hybrid shell synthesis. 

Outlook: 

(1) For materials (Cn and Cn's blends) level: Firstly, the published studies indicated that the binary system with 

a large discrepancy in chain length (∆nc≥6) still showed a eutectic characteristic, which does not respect the basic 

thermodynamic and miscible laws. Therefore, a huge amount of new combinations can be created, and deserve 

further investigations. Secondly, ternary systems are the neglected category in the PCM-context (few works 

published), but are promising for exploration in the future. Finally, a comprehensive phase equilibrium analysis is a 

fundamental way to indentify the phase change characteristics of Cn's blends, but now it is still insufficient, the 

relative studies are worth improving. 

(2) For microcapsules level: Firstly, more effective methods are required to eliminate supercooling and increase 

thermal conductivity in the case of maintaining high latent heat for various PCM microcapsules. Secondly, the 

service life of PCM microcapsules need to be evaluated more precisely and be further prolonged. Thirdly, the 

observed of morphologies and the measurements of mechanical strength of PCM microcapsules should be 

performed in repeatedly pumping conditions for slurry application. Finally, microencapsulation of more Cn and their 

mixtures which are not involved in the literature should be studies to enrich the optional range or values of melting 

points of PCM microcapsules. Except for the application areas in slurry, building, textiles and foam, the PCM 

microcapsules may also have the potential to be applied in solar air heater, refrigeration, liquid air thermal energy 

storage systems, among others. 
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