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Representing and Reasoning with Logical and Probabilistic Knowledge on Robots

Mohan Sridharan
Electrical and Computer Engineering
The University of Auckland, New Zealand
m.sridharan@auckland.ac.nz

Abstract

This paper describes an architecture that enables
robots to represent and reason with logic-based and
probabilistic descriptions of uncertainty and do-
main knowledge. An action language is used to
describe tightly-coupled transition diagrams of the
domain at two different resolutions. For any given
goal, reasoning with commonsense knowledge at
coarse-resolution provides a plan of abstract ac-
tions. To implement each such abstract action, the
relevant part of the fine-resolution transition dia-
gram is identified, and used with a probabilistic
representation of the uncertainty in sensing and ac-
tuation, to obtain a sequence of concrete actions.
The outcomes of executing these concrete actions
are used for subsequent coarse-resolution reason-
ing. We illustrate the architecture’s capabilities us-
ing examples of a mobile robot finding and moving
objects in an indoor domain.

1 Introduction

Robots assisting humans often need to represent and reason
with incomplete and uncertain knowledge at different levels
of abstraction. Close to the sensorimotor level, information is
typically represented probabilistically to quantitatively model
the uncertainty in sensing and actuation (“the robotics book
is on the shelf with probability 0.9”). Robots also benefit
from reasoning with more abstract commonsense knowledge,
including knowledge that holds in all but a few exceptional
situations (“books are typically in the library”’) and may not
be easy to represent probabilistically. One open problem in
robotics and artificial intelligence is to represent and reason
with these two types of knowledge. As a step towards ad-
dressing this problem, our prior paper described an architec-
ture that coupled non-monotonic logical reasoning and prob-
abilistic reasoning [Zhang er al., 2014]. Here, we view the
architecture’s reasoning system as an interplay between a lo-
gician and a statistician. The former has an abstract, coarse-
resolution view of the world, perceiving an office domain, for
instance, as a collection of connected rooms containing dif-
ferent types of objects, with the robot able to move between
rooms and find objects. If the goal is to find a specific book,
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the logician provides a plan of abstract actions that may di-
rect the robot to go to the library, where books are normally
stored. The first action of this plan, e.g., “move to the lab” that
is the first room on the way to the library, will be passed to a
statistician, who has a different world view. The statistician
believes the office domain has grid cells in different rooms,
and although the robot is capable of moving to a neighboring
cell and checking a cell for a target object, these actions only
succeed with some probability that is known or learned over
time. To move to the lab, the statistician has the robot move
from cell to cell, observe its position, and revise its belief of
its position. If the statistician has a sufficiently high confi-
dence that the robot has moved to the lab, this information is
reported back to the logician—otherwise, failure is reported
after some time, and the logician has to diagnose and replan.
Even this simple scenario shows that a robot needs the abil-
ity to represent and manipulate both logical and probabilistic
knowledge. This paper reports our experience in the design
of such a robot using knowledge representation and reason-
ing tools tailored towards different reasoning tasks. In com-
parison with our prior work [Zhang et al., 20141, we intro-
duce precise (and some new) definitions of basic notions used
to build the domain’s mathematical models—these contribu-
tions are also described in [Sridharan and Gelfond, 2016].

We used action description language AL, [Gelfond and In-
clezan, 2013] to describe the state transition diagram mod-
eling possible trajectories of the domain. AL, supports a
concise representation for complex relationships, and for
recorded histories of actions and observations. We expanded
the standard notion of recorded history to include default
knowledge about the initial state. Other action languages that
allow causal laws specifying default values of fluents at ar-
bitrary time steps [Lee er al., 2013] occasionally pose dif-
ficulties with representing exceptions to such defaults when
the domain is expanded. Reasoning with theories in AL, is
performed by reducing planning, diagnostics and other tasks
to computing answer sets of a program in CR-Prolog, a vari-
ant of Answer Set Prolog (ASP) that allows us to represent
and reason with defaults and their exceptions [Balduccini and
Gelfond, 2003]. This reduction, which considers histories
with initial state defaults, is the first novel contribution—
it builds on the close relationship between action languages
and logic programming with answer set semantics. Existing
solvers help automate the reasoning [Leone ef al., 2006].



The second novel contribution is the precise definition of
the statistician’s world view as a refinement of the logician’s
transition diagram. The new diagram is viewed as the re-
sult of increasing the resolution of the robot’s ability to see
the world, e.g., it includes newly discovered cells in rooms,
and relations and actions involving these cells. Although
this refinement may require some domain knowledge, our
novel mathematical definition includes axioms that precisely
establish the relationship between the coarse-resolution and
fine-resolution diagrams, and describe the effects of obser-
vations. Next, the fine-resolution description is randomized,
i.e., modified to consider the non-deterministic effects of fine-
resolution actions and observations. The third novel con-
tribution is to expand AL; by a construct that supports the
representation of such effects. Probabilities are then associ-
ated with the purely logical diagram to obtain a probabilis-
tic diagram. Reasoning in this new diagram also considers
belief states, i.e., probability distributions over states of the
logical diagram. Theoretically, the statistician can now use
probabilistic graphical models such as a partially observable
Markov decision process (POMDP) to select and execute the
“best” action, make observations, and update the belief state
until an abstract action provided by the logician is completed
with high probability, or all hope of doing so is lost. How-
ever, POMDP algorithms consider all possible combinations
of physical states and actions, which can become intractable
even for a comparatively small domain. To avoid this prob-
lem, the robot zooms to the part of the fine-resolution diagram
that is relevant to the execution of the coarse-resolution action
provided by the logician. For instance, to “move from room
R; toroom R,”, domain properties and actions related to other
rooms and objects are eliminated, dramatically reducing the
size of the corresponding diagram. The fourth contribution
is a precise definition of zooming, which helps automate this
process. Finally, this zoomed part is represented in the for-
mat suitable for use with POMDP solvers. The correspond-
ing policy is invoked to execute a sequence of concrete ac-
tions that implements the abstract action, with the outcomes
added to the coarse-resolution history. We use the following
example to demonstrate these contributions and design steps.

Example 1. [Office Domain] Consider a robot assigned the
goal of moving specific objects to specific places in an office
domain. This domain contains:

e The sorts: place, thing, robot, and ob ject, with ob ject
and robot being subsorts of thing. Sorts textbook, printer
and kitchenware, are subsorts of the sort ob ject.

e Places: of fice, main_library, aux_library, and kitchen,
some of which are directly accessible from each other.

e An instance of the sort robot, called rob;, and a number
of instances of subsorts of the sort 0b ject.

This domain illustrates many of the representation, reason-
ing, perception, and actuation challenges that exist in more
complex robotics domains.

2 Related Work

Logic-based representations and probabilistic graphical mod-
els have been used to control sensing, navigation and interac-
tion for robots [Bai et al., 2014; Hawes et al., 2010]. Formu-

lations based on probabilistic representations (by themselves)
make it difficult to perform commonsense reasoning, whereas
approaches based on logic programming tend to require con-
siderable prior knowledge of the domain and the agent’s ca-
pabilities, and make it difficult to merge new, unreliable infor-
mation with an existing knowledge base. Theories of reason-
ing about actions and change, and the non-monotonic logical
reasoning ability of ASP, have been used by an international
research community, e.g., for natural language human-robot
interaction [Chen et al., 2012], control of unmanned aerial
vehicles [Balduccini et al., 2014], and coordination of robot
teams [Saribatur ef al., 2014]. However, the basic version of
ASP does not support probabilistic representation of uncer-
tainty, whereas a lot of information extracted from sensors
and actuators is represented probabilistically.

Researchers have designed architectures for robots that
combine logic-based and probabilistic algorithms for task
and motion planning [Kaelbling and Lozano-Perez, 2013],
couple declarative programming and continuous-time plan-
ners for path planning in teams [Saribatur et al., 2014],
combine a probabilistic extension of ASP with POMDPs
for human-robot dialog [Zhang and Stone, 2015], com-
bine logic programming and reinforcement learning to dis-
cover domain axioms [Sridharan et al., 2016], or use a
three-layered organization for representing knowledge and
reasoning with first-order logic and probabilities in open
worlds [Hanheide et al., 2015]. Some general formula-
tions that combine logical and probabilistic reasoning include
Markov logic network [Richardson and Domingos, 2006],
Bayesian logic [Milch et al., 2006], and probabilistic exten-
sions to ASP [Baral et al., 2009; Lee and Wang, 2015]. How-
ever, algorithms based on first-order logic do not support non-
monotonic logical reasoning and do not provide the desired
expressiveness—it is not always possible to associate num-
bers with logic statements to express degrees of belief. Al-
gorithms based on logic programming do not support one or
more of the desired capabilities such as incremental revision
of (probabilistic) information, and reasoning with large prob-
abilistic components. As a step towards addressing these lim-
itations, we have developed architectures that couple declara-
tive programming and probabilistic graphical models [Zhang
et al., 2014; 2015]. Here, we expand on our prior work to de-
scribe the systematic construction of robots with the desired
knowledge representation and reasoning capabilities.

3 Logician’s Description
We start with the logician’s view of the world.

Action Language AL;: The logician’s state transition dia-
gram is specified as a system description (theory) in a variant
of action language AL;, which allows statements of the form:

a causes f(x) =y if body
f(x) =y if body
impossible ag,...,a, if body

The first statement describes an action’s direct effect—if ac-
tion a is executed in a state satisfying body, the value of fluent
f in the resulting state would be y. For instance:

move(R,Pl) causes loc(R) = Pl



says that robot R moving to place P/ will end up in P/. The
second statement, a state constraint, says that f(x) =y in any
state that satisfies statements in body. For instance:

loc(Ob) = Pl if loc(R) = Pl, in_hand(R,Ob)

requires that the object grasped by a robot share the robot’s lo-
cation. The third statement prohibits simultaneous execution
of actions ay, . ..,a, in a state satisfying body. The functions
in these statements are of two types, those whose values can
be changed by actions (fluents) and those whose values can-
not be changed (statics). Fluents can be basic or defined; the
former is subject to inertia laws while the latter is defined in
terms of other fluents. Formal semantics of AL, is discussed
at length in [Gelfond and Kahl, 2014]. Unfortunately, it only
allows boolean fluents, a restriction that is removed by our
variant of the language (details below).

Histories with defaults: The logician’s knowledge also con-
tains a recorded history, a collection of the robot’s ob-
servations and actions. This recorded history typically
consists of statements of the form obs(f,y,true,i) (or
obs(f,y, false,i))—at step i of the robot’s trajectory, the
value of fluent f is observed to be (or not to be) y; and
hpd(a,i)—action a was successfully executed (i.e., hap-
pened) at step i. The recorded history defines a collection of
models, trajectories of the system compatible with this record.
The robot can benefit substantially from some forms of de-
fault knowledge, e.g., it can be told that books are normally
kept in the library. To represent such knowledge, we intro-
duced an additional type of historical record:

initial default f(x) =y if body

to assume that in the initial state that satisfies body, the value
of f(%) is y. For instance, the following statements:

initial default loc(X) = main_library if textbook(X)
initial default loc(X) = of fice if textbook(X),
loc(X) # main_library.

encode the most likely and the second most likely location
for a textbook. Such defaults may substantially simplify the
logician’s planning, e.g., the plan for finding textbook b will
consist of going directly to the library and looking there. De-
faults are also useful for diagnostics, e.g., if #b is not found in
the library, the robot would realize that this observation de-
feats the first default, try the second default, and look in the
office. To ensure such behavior, we redefined the notion of
a model of a history, and designed a new algorithm for com-
puting such models. Given an AL, theory & and history ¢,
we construct program I1(Z, 5¢) with the encoding of & in
ASP, and the atoms representing observations and actions of
¢ with initial state defaults. This encoding supports indi-
rect exceptions to defaults (like observation above) and uses
CR-Prolog, which justifies our departure from standard ASP.

Planning and diagnostics: The description of the logician’s
knowledge, as provided above, is sufficient for adequately
performing planning and diagnostics, which are reduced to
computing answer sets of [1(2, .7) with a standard encoding
of the robot’s goal. We use an efficient ASP solver, SPARC,

which expands CR-Prolog and provides explicit constructs to
specify objects, relations, and their sorts [Balai er al., 2013].
Atoms of the form occurs(action, step) in the answer set ob-
tained by solving I1(2, ), represent the shortest sequence
of abstract actions for achieving the logician’s goal. Prior
research results in the theory of action languages and ASP
ensure that the plan is provably correct. Suitable atoms in the
answer set can also be used for diagnostics.

Example 2. [Logician’s view of the world]

The logician’s system description Py of the domain in Ex-
ample 1 consists of sorted signature Yz and axioms describ-
ing transition diagram 7y. Yy defines the names of objects
and functions available for use, e.g., the sorts place, thing,
robot, and object, with object and robot being subsorts of
thing. The statics include the relation next_to(place, place),
which describes if two places are next to each other. The do-
main’s fluents are loc : thing — place and in_hand : robot X
object — boolean—these are basic fluents. The domain’s
actions are move(robot, place), grasp(robot,object), and
putdown(robot,ob ject). The domain dynamics are defined
using causal laws:

move(R,Pl) causes loc(R) = Pl

grasp(R,0b) causes in_hand(R,Ob)

putdown(R,ODb) causes —in_hand(R,Ob)
state constraint:

loc(Ob) = Pl if loc(R) = Pl, in_hand(R,O0b)

and executability conditions such as:
impossible move(R,Pl,) if loc(R) = Pl},—next to(Pl;,Ply)
impossible grasp(R,0b) if loc(R) # loc(Ob)
impossible purdown(R,0b) if — in_hand(R,Ob)
For any given domain, the part of ¥y described so far is un-
likely to change substantially. However, the last step in the
constructions of Xy, which populates the basic sorts with
specific objects, e.g robot = {rob,} and place = {ry,...,ry},
is likely to undergo frequent revisions. Ground instances of
axioms are obtained by replacing variables by ground terms
from the corresponding sorts.

In 7y, actions are assumed to be deterministic, and values
of fluents are assumed to be observable, which supports fast,
tentative planning and diagnostics for achieving the goals.
This domain representation is ideally tested extensively by
including various recorded histories and using the resulting
programs to solve various reasoning tasks.

4 Statistician’s Description
Next, we describe our design of the statistician.

Refinement: We begin with the deterministic version of the
statistician’s world, given by system description Z;, defining
a transition diagram 7 that is a (deterministic) refinement
of the logician’s diagram Ty—7; is the result of magnify-
ing some objects in signature Xy of system description Zgy
of 7. Newly discovered parts of the magnified objects are
called the refined components, e.g., every room is magnified
and viewed as a collection of its component cells. We say that
a signature Xy refines signature Yy if it is obtained by:



e Replacing every basic sort sty of Xy, whose elements were
magnified, by its coarse-resolution version st; = sty, and
fine-resolution counterpart st;, = {01, ...,0, } consisting of
the components of magnified elements of sty, e.g., replace
sort place = {rl ey r,,} of rooms in Xy by:

place® ={ry,...,r,}
place ={ci,...,cm}

where the rooms are magnified to discover component cells
Cly-+-sCm.

e Introducing static relation component between magnified
objects from st; and the newly-discovered objects from sz,
e.g., component(c,r) is true iff cell ¢ is in room r.

e Replacing sort fluent of Xy by its coarse-resolution copy
fluent* (a defined fluent) and its fine-resolution counter-
part fluent (a basic fluent). For instance:

loc* : thing — place*
loc : thing — place

Other fluents (and their signatures) are unchanged.

e Obtaining actions of Xy by replacing the magnified param-
eters of actions from Xy by their fine-resolution counter-
parts. For instance, ¥ includes original actions grasp and
putdown, and new action move(robot,cell). ¥, also has
knowledge-producing action rest (robot, fluent ,value) that
activates algorithms to check the value of an observable
fluent of &, in a given state, e.g., test(R,loc(Th),Cell).
We also add fluents to describe the result of testing, e.g.,
observed(robot, fluent ,value) is true if the most recent
(direct or indirect) observation of fluent returned value.

Axioms of Z include axioms of 2y, and domain-dependent

axioms relating coarse-resolution fluents and their fine-

resolution counterparts, e.g., in our example domain:

loc*(Th) = Rm if component(Cl,Rm), loc(Th) =Cl

where we define static component (c, r) for every cell ¢ within
room r—also, static next_to(cy,cz) holds for adjacent cells
not separated by obstacles. More importantly, &; has basic
knowledge fluents that model the direct and indirect knowl-
edge effects of sensing, and introduce axioms relating these
fluents and the test actions. For instance:

test(R,F,Y) causes dir_obs(R,F,Y) =trueif F =Y.

In our example, robot rob testing cell ¢ for object o will make
basic knowledge fluent dir_obs(roby,loc(0),¢) true if the ob-
jectis indeed there—the fluent has three possible values, true,
false and undef, and is initially set to the third value. Another
fluent, indir_obs(roby,loc(0),R) holds if loc(o) is observed
to be true in some component cell of room R. The fluent’s
value is observed if it is observed directly or indirectly. It
is the responsibility of the designers to make sure that the
transition diagram 7, specified by our system description 7,
matches the following formal definitions of refinement.

Definition 1. [Refinement of a state]
A state 6 of Ty is said to be a refinement of state ¢ of Ty if:
e For every magnified fluent f from the signature of Xy:

fx)=yeo iff f*(x)=yed

e For every other fluent of Xy:

fx)=yeoiff f(x)=y€s

Definition 2. [Refinement of a system description]
Let ; and 9y be system descriptions with transition dia-
grams 7, and Ty respectively. Z; is a refinement of Zy if:

e States of 1 are the refinements of states of 7g.

e TFor every transition (o7,a’ ;) of Ty, every fluent f in
a set F' of simultaneously observable fluents, and every re-
finement &; of oy, there is a path P in 7, from &; to a re-
finement & of o, such that:

e Every action of P is executed by the robot which exe-
cutes a’’.

e Every state of P is a refinement of o7 or 03, i.e., no un-
related fluents are changed.

o observed(R,f,Y) = true € & if (f =Y) € 6, and
observed(R, f,Y) = false € &, if (f=Y) & .

Randomization: Next, to expand 7, to capture the non-
determinism in action execution and observations on the
robot, we extended ALy by non-deterministic causal laws:

a causes f(x) : {Y :p(Y)}if body

a causes f(X) : sort_name if body

The first statement says that if action a is executed in a state
satisfying body, f may take on any value from the set {Y :
p(Y)}Nrange(f) in the resulting state—the second statement
says that f may take any value from {sort _nameNrange(f)}.
The randomized fine-resolution description % is obtained
by replacing each action’s deterministic causal laws in 7,
by non-deterministic ones, declaring the affected fluent as a
random fluent. For instance, the new causal law for move is:

move(R,C,) causes loc(R) = {C:range(loc(R),C)}
where defined fluent range is given by:

range(loc(R),C) if loc(R) =C
range(loc(R),C) if loc(R) = Cy, next to(C,C})

where a robot moving to a cell can end up in any cell within
range, e.g., the current cell and its immediate neighbors.

To complete the statistician’s model with probabilistic in-
formation, we run experiments that sample specific instances
of each ground non-deterministic causal law in Zg, have
the robot execute the corresponding action multiple times,
and collect statistics (e.g., counts) of the number of times
each outcome of the corresponding fluent is obtained. These
statistics are collected in an initial training phase, and used
to compute causal probabilities of action outcomes and the
probability of observations being correct. Local symmetry
assumptions are used to simplify this collection of statis-
tics, e.g., movement from a cell to one of its neighbors
is assumed to be the same for any cell—the designer pro-
vides the required domain-specific information. In our exam-
ple, if rob; in cell ¢; may reach {c,c2,c3} when executing
move(roby,c;), the probabilities of these outcomes may be
0.1, 0.8, and 0.1 respectively. Similarly, 0.85 may be the
probability with which a specific object can be recognized
in a specific cell. Any prior beliefs about these probabilities



(e.g., from a human) are used as initial beliefs that are revised
by the experiments.

Zooming: The statistician uses Zg and the computed prob-
abilities for fine-resolution execution of the transition 7 =
(01,a,06,) € 1. Since reasoning probabilistically about all
of Z1r may result in incorrect behavior and be computation-
ally intractable, the statistician identifies the part T.g(T) of
Trr that is necessary for the fine-resolution execution of a”* —
we call this operation zooming. The following definitions are
used to identify refinements of ] and oy, the states of T;g
relevant to 7', and remove irrelevant fluents and actions.

Definition 3. [Direct relevance]
An element y of a basic sort sty of Py is directly relevant to
transition T of 7y if:

e Element y occurs in a'*; or

e For some f, f(x) =y belongs to 6] or 6, but not both.
Consider the transition corresponding to robot rob; moving
from the kitchen to the of fice, i.e., a” = move(roby,of fice).
For this transition, element rob; of sort robot, and elements
of fice and kitchen of sort place, are relevant.

Definition 4. [Zoom]

To construct Zrz(T), we need to determine the signature and
the axioms describing the transition diagram 7;£(7'). The sig-
nature of Zrr(T) is constructed as follows:

H.
)

1. If sty is a sort of Py with at least one element directly
relevant to T':

e If sort sty is not magnified, it is its own zoomed coun-
terpart st; .

e If sort sty is magnified, st,f is the set of components of
elements of sty directly relevant to 7.

The zoomed counterparts form a hierarchy of basic sorts
of Z1r(T) (with subclass relation inherited from Z;g). In
our example, the sorts of Zx(T') are robot; = {rob;} and
place; = {c; : ¢; € kitchenUof fice}.

2. Functions of Zjg(T) are those of Ppx restricted to the
identified sorts. Functions in our example include loc(rob;)
taking Values. from place;, nex{lo( places, plqcei), and re-
stricted functions related to testing these functions’ values.

3. Actions of Zx(T) are restricted to the identified sorts. In
our example, relevant actions are of the form move(rob,c;)
and test(roby,loc(roby),c;), where c; € placé; .

Axioms of Z1x(T) are those of P restricted to the signa-
ture of Z1g(T). In our example, this interpretation removes
the causal laws for grasp and put_down, and removes the
state constraint related to fluent in_hand. Also, in the axioms
corresponding to action move, C can only take values from
any cell in the kitchen or the of fice.

Example 3. [Example of zoom]
If rob; has to execute a = grasp(roby,tb)) to pickup text-
book tby in the of fice, zooming constructs the signature:

e Relevant sorts of Py are robot, ob ject, and place, and
st; = {robot; ,object; , place; } are the zoomed counter-
parts in Zyx(T), with robot; = {rob}, object; = {tb,}
and place; ={c; : ¢; € of fice}.

e Functions of Zix(T) include (a) loc(robot;) and
loc(object;), basic fluents that takes values from
placei; (b) static next_to(place;,places); (c) de-
fined fluent range(loc(robot;),place;);  and (d)
knowledge fluent dir_obs restricted to st7, e.g.,
dir_obs(robot; ,loc(object;), place; ).

e Actions of Z1x(T) include (a) move(robot; , place; ); (b)
grasp(robotj ,ob ject; ); (c) putdown(robot; ,ob ject; ); and
(d) knowledge-producing actions to test the location of
roby and tb;.

Axioms of Zig(T) include:

move(roby,c;) causes loc(rob;) = {C: range(loc(roby),C)}
grasp(roby,tb) causes in_hand(roby,tb,) = {true, false}
test(roby,loc(tby),c;) causes dir_obs(roby,loc(tby),c;)

= {true, false} if loc(tby) =c;
impossible move(roby,c;) if loc(robi) = c;, ~next_to(cj,c;)

where range(loc(rob;),C) may hold for values that are el-
ements of placei and within the range of the robot’s cur-
rent location. The states of 7,z(7) thus include atoms of the
form loc(roby) = ¢; and loc(tby) = c;, where ¢;,¢;j € placej,
in_hand(roby,tb}), direct observations of these atoms, and
statics.  Actions include move(roby,c;), grasp(roby,tby),
putdown(rob,tb) and test actions.

POMP construction: The statistician uses the system de-
scription Zg(T), and the learned probabilities, to construct
a partially observable Markov decision process (POMDP) for
the probabilistic implementation of ¢ . It may be possible to
use other computationally efficient probabilistic models for
specific actions. However, POMDPs provide (a) quantifiable
trade-off between accuracy and efficiency in the presence of
uncertainty; and (b) near-optimal solution if the POMDP is
modeled correctly. Furthermore, our architecture only con-
structs a POMDP for the relevant part of the domain, and
many of the POMDPs may be precomputed.

A POMDP is described by a tuple (S*, AL,z T OF, RL)
for a goal state [Littman, 1996]. Elements of this tuple are the
set of states, set of actions, set of values of observable fluents,
the state transition function, the observation function, and the
reward specification. The last three elements are based on the
statistics acquired during randomization—please see [Zhang
et al., 2015]. The POMDP formulation considers states to
be partially observable, and reasons with probability distri-
butions over the states, called belief states. Functions Tt
and O describe a probabilistic transition diagram over be-
lief states. The POMDP formulation also implicitly includes
a history of observations and actions—the current belief state
is assumed to be the result of all information obtained so far.
The POMDP tuple is used to compute a policy that maps be-
lief states to actions, using an algorithm that maximizes the
reward over a planning horizon. The policy is used to choose
an action in the current belief state, revising the belief state
through Bayesian updates after executing the action and re-
ceiving an observation. The belief update continues until a
terminal action is executed because it has a higher (expected)
utility than continuing to execute non-terminal actions. The
corresponding observations and action outcomes revise ¢,




to be used for subsequent reasoning by the logician. If 7y is
constructed correctly, and the POMDP correctly captures the
domain dynamics, following an optimal policy produced by
an exact POMDP solver is most likely (among all possible
policies) to achieve the goal state [Littman, 1996]. Since we
use an approximate solver for computational efficiency, we
obtain a bound on the regret (i.e., loss in value) due to the
computed policy [Ong et al., 2010].

Example 4. [POMDP construction]

Consider the implementation of af = move(roby,kitchen),
with rob; in the of fice and one cell in each room. As-
sume that (a) move from a cell to a neighboring cell suc-
ceeds with probability 0.85—otherwise, the robot remains
where it is; (b) non-terminal actions have unit cost; and (c)
terminating the POMDP policy after reaching cell 1 (kitchen)
receives a large positive reward (100), whereas termination
in cell O (of fice) receives —100. In the description below,
states are possible robot locations, and absb is a terminal
state. Actions correspond to the robot moving to specific
cells, testing its cell location, or terminating the policy. The
robot observes its cell location or receives no observation.
Knowledge-producing actions do not cause a state transition,
and actions that change the state do not provide observations.
For each state s; and action a;, the corresponding ASP pro-
gram I1(Zr(T),si,a;) is solved to (a) identify inconsisten-
cies and eliminate impossible states, e.g., the robot and an ob-
ject cannot be in different locations when the robot is holding
the object; and (b) identify and eliminate impossible transi-
tions in the construction of T%.

discount: 0.99
states: robot-0 robot-1 absb

actions: move-0 move-1 test-0 test--1 done
rob-found rob-not-found none

observations:

o\

Transition function format

$ T : action S x S’ —-> [0, 1]
T: move-0

1 0 0

0.85 0.15 0

0 0 1

T: move-1

0.15 0.85 0

0 1 0

0 0 1

T: test-robot-0
identity

T: test-robot-1
identity

T: done
uniform

o

Observation function format
O : action : s_1 z_1i -> [0,
S x Z —> [0, 1]

o\

1] (or)

o

@)

none 1
none 1

move-0
move-1 : x

O

O: test-robot-0
0.95 0.05
0
0

(@)

.05 0.95
0 1

(@}

O: test-robot-1
0.05 0.95
0
0

(@)

.95 0.05
0 1

o

O

done : % none 1
Reward function format
R : action : s_1i s_1i’
* 1ox oK% o =1
done robot-0 : « -100
done robot-1 : % : 100

real value

00 T ool oe

5 Reasoning System

For any given goal, the reasoning system first has the logi-
cian use Py and S (with initial state defaults) to explain
inconsistencies and compute a plan of abstract actions. For
an abstract action, the statistician zooms to Z;z(T), the rele-
vant part of the randomized fine-resolution refinement of %y,
using Z;x(T) and probabilities (of action outcomes) to con-
struct a POMDP. The policy obtained by solving the POMDP
is invoked to execute a sequence of concrete actions, with
the corresponding outcomes being added to 57 and used
by the logician for subsequent reasoning. Similar to prior
work [Zhang er al., 2014], experimental results in simulation
and on a physical robot finding and moving objects between
rooms—not reported here due to space limitations, see [Srid-
haran et al., 2015]—indicate that the architecture scales well,
is more accurate and computationally efficient than a prob-
abilistic approach, and supports reasoning with violation of
defaults, and with unreliable observations and actions.

6 Conclusions

This paper described the design of robots that can represent
and reason with logic-based and probabilistic descriptions of
domain knowledge and uncertainty. Our architecture uses
tightly-coupled transition diagrams of the domain at two lev-
els of granularity. For any given goal, non-monotonic log-
ical reasoning at the coarse-resolution plans a sequence of
abstract actions. Each abstract action is implemented proba-
bilistically as a sequence of concrete actions by zooming to
the relevant part of the fine-resolution description. The indi-
vidual design steps are illustrated using examples.
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