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Clearance of Apoptotic Cells by 
Tissue epithelia: A Putative Role for 
Hepatocytes in Liver efferocytosis
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Toxic substances and microbial or food-derived antigens continuously challenge the 
liver, which is tasked with their safe neutralization. This vital organ is also important for 
the removal of apoptotic immune cells during inflammation and has been previously 
described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and 
necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue 
homeostasis. Much of the research into this form of immunological control has focused 
on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver 
resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is 
known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, 
which lack key receptors that mediate phagocytosis in macrophages. Herein, we dis-
cuss recent developments that increased our understanding of efferocytosis in tissues, 
with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in 
health and in inflammation, highlighting the role of phagocytic epithelia.
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KeY POiNTS

•	 Efferocytosis	is	a	vital	process	in	tissues	that	can	be	carried	out	by	multiple	cell	types,	including	
blood	derived	and	tissue	resident	phagocytes.

•	 Hepatocytes	are	competent	efferocytes	and	play	an	important	role	in	the	clearance	of	dead	cells	in	
health	and	in	inflammation.

•	 Epithelial	 cell	 efferocytosis	 is	 understudied	 and	 involves	 distinct	 mechanisms	 to	 professional	
phagocytes.

•	 Defects	 in	 efferocytosis	have	been	 linked	 to	diseases	 such	as	 autoimmunity,	 failure	 to	prevent	
metastasis,	failure	to	limit	infection.

•	 Understanding	molecular	mechanisms	of	efferocytosis	may	reveal	new	pathways	for	therapeutic	
intervention	to	alleviate	inflammation.

eFFeROCYTOSiS iN THe LiveR

Efferocytosis,	the	clearance	of	dead	and	dying	cells,	 is	 important	to	prevent	tissue	damage	and	
promote	 the	 resolution	 of	 inflammation	 (1).	The	 liver	 has	 evolved	 into	 an	 expert	 in	 defusing	
biochemical	threats	emanating	from	food	or	microbial	antigens,	which	reach	the	organ	along	with	
75%	of	its	blood	supply	that	arrives	through	venous	blood	from	the	gut.	Hepatocytes	comprise	
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FiguRe 1 | Organization of liver-resident and recirculating efferocytes.  
(A) Hepatocytes are spread over three zones, exposed to different levels  
of oxygen and nutrients. Hepatocytes in zone 1 proximal to the portal triad 
(portal vein, hepatic artery, bile duct) have access to arterial and venous 
blood entering the liver through the circulation. Hepatocytes in zone 3 have 
less access to oxygen and nutrients and are exposed to blood draining into 
the central vein. Hematoxylin-eosin stain, scale bar represents 50 µm. (B) A 
plethora of liver resident and recirculating cells are able to engulf apoptotic 
and necrotic cells and clear them to maintain tissue homeostasis. Kupffer 
cells, monocytes and macrophages (mϕ) are the best-characterized 
efferocytes in the liver.
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80%	of	liver	cells	and	constitute	the	biochemical	powerhouses	
of	 the	 liver	 parenchyma,	 and	 as	 a	 result	 they	 often	 perish	 in	
their	 duties	 to	 absorb	 toxic	 substances.	 To	 cope	 with	 loss	 of	
hepatic	 epithelia,	 the	 liver	has	 evolved	 the	 remarkable	 ability	
to	regenerate.

To	perform	their	detoxification	roles,	hepatocytes	are	stra-
tegically	 organized	 roughly	 into	 two	 hepatocyte-thick	 cords,	
flanked	 by	 a	 thin	 layer	 of	 fenestrated	 endothelia	 (Figure  1).	
Nutrient-rich	 blood	 enters	 the	 liver	 via	 the	 portal	 vein	 and	
oxygen-rich	blood	via	the	hepatic	artery,	which,	together	with	
a	bile	duct,	form	the	liver	portal	triad	(Figure 1A).	Blood	from	
both	sources	mixes	in	the	specialized	hepatic	capillaries	termed	
sinusoids,	 and	 drains	 toward	 the	 central	 vein.	 Hepatocytes	
near	the	portal	triads	(designated	zone	1)	can	be	damaged	by	
the	 inflammatory	 infiltrate	 during	 interface	 hepatitis,	 when	
immune	 cells	 cross	 the	 sinusoidal	 endothelia	 and	 reach	 the	
parenchyma.	Zone	2	is	found	mid-distance	from	a	portal	triad	
and	the	draining	central	vein	(zone	3).	Periportal	hepatocytes	

near	zone	1	have	access	to	oxygenated	blood	from	the	hepatic	
artery,	and	nutrients	from	the	portal	blood	supply	that	arrives	
from	 the	 gut.	 Oxygen	 and	 nutrient	 levels	 reduce	 toward	 the	
central	 vein	 and	 hepatocytes	 in	 zone	 3	 are	 found	 in	 hypoxic	
conditions.	 Fenestrations	 in	 the	 sinusoids	 allow	 hepatocytes	
access	 to	solutes	and	 immune	cells	reaching	through	the	 fen-
estrations	from	the	circulation	(2,	3),	but	prevent	unregulated	
migration	of	immune	cells	to	the	parenchyma	(4).

Cells	that	perish	in	the	sinusoidal	spaces	are	cleared	by	cir-
culating	phagocytes	(monocytes,	dendritic	cells,	neutrophils),	
liver-resident	macrophages	termed	Kupffer	cells,	and	by	sinu-
soidal	 endothelia	 (Figure  1B).	 The	 best-characterized	 liver	
efferocytes	are	macrophages,	both	those	derived	from	mono-
cytes	 infiltrating	 from	the	circulation,	and	 the	 self-renewing	
populations	of	Kupffer	cells.	It	is	understood	that	professional	
phagocytes	are	activated	during	injury	and	adapt	their	pheno-
type	following	the	encounter	of	cellular	debris,	danger	signals,	
and	soluble	mediators	of	the	inflammatory	milieu.	The	critical	
role	 of	 liver	macrophages	 including	Kupffer	 cells	 in	 the	 ebb	
and	 flow	 of	 inflammation	 was	 recently	 reviewed	 by	 Tacke’s	
group	(5,	6).

Activated	 hepatic	 stellate	 cells	 can	 also	 engulf	 apoptotic	
hepatocytes,	which	in	turn	lead	to	increases	in	tumor	growth	
factor-β	 (TGF-β)	 secretion	 (7).	Biliary	 epithelial	 cells	 (BECs)	
also	 take	part	 in	 efferocytosis	 of	 neighboring	 apoptotic	 cells;	
an	important	adaptation	for	diseases	associated	with	increased	
BEC	 apoptosis	 such	 as	 primary	 biliary	 cholangitis	 (8).	 The	
phagocytic	 activity	 of	 hepatocytes	 was	 noted	 in	 1992	 (9).	
Hepatocyte	 efferocytosis	 assists	 in	 parenchymal	 housekeep-
ing	 to	 rapidly	dispose	of	cell	 remnants	and	prevent	excessive	
inflammation.

Hepatocyte	 death	 from	 biochemical	 toxicity	 (necrosis)	
occurs	 in	 health	 as	 part	 of	 normal	 homeostasis,	 however,	
liver	damage	 is	 exacerbated	 in	 infection	or	 in	 alcoholic,	 drug	
or	 ischemia-induced	liver	 injury	where	 large	areas	of	necrotic	
lesions	 are	 evident	 (Figure  2).	 Acute-on-chronic	 liver	 failure	
is	 a	 syndrome	 associated	 with	 exacerbation	 of	 hepatitis	 B	
infection	 (HBV)	 and	 characterized	 by	 broad	 areas	 of	 hepatic	
necrosis	in	cirrhotic	patients	(Figure 2A).	Lymphocyte	infiltra-
tion	is	often	seen	in	the	parenchyma	in	chronic	liver	diseases.	
Crispe	 and	 others	 have	 elegantly	 put	 forward	 the	 “graveyard	
theory”	 where	 the	 liver	 is	 primary	 site	 for	 the	 disposal	 of	
spent	 immune	 cells	 (10).	 Figure  2B	 shows	 hepatic	 epithelia	
in	 the	 process	 of	 engulfing	 immune	 cells	 that	 have	 perished	
in	 the	 parenchyma,	 and	 this	 is	 seen	 predominantly	 near	 the	
portal	 regions.	Conversely,	 in	 cases	 of	 acute	 liver	 injury	 such	
as	 paracetamol	 overdose	 (POD),	 hepatocyte	 necrosis	 due	 to	
loss	of	ATP	is	noted	around	the	centrilobular	regions	(zone	3,		
Figure 2C).	Histological	features	of	necrotic	hepatocytes	include	
eosinophilic	degradation	and	pyknotic	nuclei,	which	are	readily	
detectable	by	hematoxylin-eosin	staining	(inset,	Figure 2C).

Hepatocytes	also	clear	away	cells	that	have	triggered	the	mole-
cular	 cascade	 of	 events	 of	 programmed	 cell	 death	 (apoptosis)	
(Figures 2B,D),	but	can	actively	destroy	live	autoreactive	immune	
cells	by	direct	engulfment	as	noted	for	CD8+	T cells	undergoing	
suicidal emperipolesis	 (11).	 Immune	 cell	 death	 and	 liver	 dam-
age	 are	 exacerbated	 in	 chronic	 liver	 inflammation	 of	 multiple	
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FiguRe 2 | Hepatocytes engulf necrotic and apoptotic cells in acute-on-chronic liver injury caused by hepatitis B infection (HBV) and in paracetamol injury (POD). 
(A) Hematoxylin–eosin staining of acute-on-chronic liver injury in a patient with HBV infection. Large areas of hepatocyte necrosis are evident. Inset image shows 
dark stained hepatocyte nuclei in live hepatocytes (L) and pyknotic or karyolytic nuclei in necrotic hepatocytes (N). (B) Healthy hepatocytes with clearly marked 
nuclei are seen phagocytosing small apoptotic cells (arrows). Note hepatocyte invaginations which have formed to enable capture of apoptotic cells.  
(C) Hematoxylin-eosin staining of liver with paracetamol-induced injury, which causes centrilobular necrosis. Inset shows pink cytoplasm in necrotic hepatocytes  
(N) compared to surviving non-discolored hepatocytes with clearly defined nuclei (L). (D) In situ end labeling (ISEL) of apoptotic cell nuclei is seen here in pink, in  
a liver with ischemia-reperfusion injury. The marked hepatocyte has a non-apoptotic nucleus seen in blue, and has engulfed an apoptotic cell with a pink nucleus. 
Neighboring apoptotic hepatocytes can be seen with pink nuclei, and non-apoptotic cells with blue nuclei. The bars show 20 µm.

3

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

etiologies,	 including	autoimmune,	metabolic,	viral,	and	genetic	
diseases	(12,	13).	The	rapid	processing	of	dead	and	dying	cells	is	
vital	to	moderate	inflammation	(12,	14,	15).

It	 is	 remarkable	 how	 little	 we	 know	 about	 the	 molecular	
mechanisms	that	govern	the	ability	of	the	largest	internal	organ	
in	the	body	to	mediate	the	clearance	of	damaged	or	dying	cells,	
given	that	 this	 is	one	of	 the	 liver’s	major	 functions.	Herein,	we	
bring	together	research	on	hepatocyte	efferocytosis	and	place	it	
into	context	with	current	molecular	knowledge	on	the	clearance	
of	dead	cells	by	immune	phagocytes.

CLeARANCe OF APOPTOTiC AND 
NeCROTiC CeLLS

Cells	die	through	a	wide	array	of	processes,	each	situational	and	
requiring	 their	own	dedicated	cascade	of	 signaling	events.	The	
most	frequent	forms	of	cell	death	are	attributed	to	apoptosis	or	
necrosis.	Apoptosis,	 an	 active	 form	of	programmed	cell	death,	
is	characterized	by	the	initiation	of	specific	inducible	pathways	
(16,	17).	This	includes	the	extrinsic	pathway;	the	engagement	of	
extracellular	signals,	including	Fas	ligand	(FasL)	(18)	and	tumor	
necrosis	 factor	 family	 cytokines	 (TNF)	 (19),	 amongst	 others,	
to	 their	 respective	 death	 receptors	which	 initiates	 intracellular	
death	 signaling.	 Apoptosis	 can	 also	 be	 triggered	 intrinsically;	
certain	 signals,	 such	 as	 a	 lack	 of	 growth	 factors,	 endoplasmic	
reticulum	stress	or	DNA	damage,	can	induce	a	shift	in	expression	
of	Bcl-2	family	mitochondrial	proteins	(20).	Increased	activity	of	
proapoptotic	proteins	lead	to	cytochrome	C	release	and	caspase	
9	activation.	Apoptosis	pathways	result	in	the	activation	of	effec-
tor	caspases	(3,	6,	and	7),	which	in	turn	begin	to	proteolytically	
degrade	 the	 cell’s	 components.	 Apoptotic	 cells	 are	 generally	

smaller	than	live	cells	and	can	be	identified	by	the	formation	of	
surface	blebs	(16).

Necrosis	 is	 considered	 a	 passive,	 unprogrammed	 type	 of	
cell	 death	 and	 is	 often	 incurred	 accidentally,	 although	 active	
mechanisms	 of	 necrosis	 have	 also	 been	 reported	 (21).	While	
multiple	 mechanisms	 can	 induce	 necrosis,	 the	 major	 causes	
are	 attributed	 to	 compromising	 of	 the	 plasma	 membrane,	 or	
depletion	 of	 energy	 (22).	 Furthermore,	 apoptotic	 cells	 can	 be	
converted	 to	necrotic	 cells	 (also	known	as	 secondary necrosis)	
if	ATP	 levels	 fall	 below	 the	quantity	 required	 to	 complete	 the	
active	apoptotic	process	(23).	The	appearance	of	necrotic	cells	is	
often	swollen	with	disrupted	organelle	and	plasma	membranes	
(24).	The	nucleus	 is	often	broken	down	and	will	be	unstained	
by	hematoxylin	(Figure 2).	As	necrosis	often	occurs	in	areas	of	
tissues,	rather	than	the	single	cell	death	hallmark	of	apoptosis,	
often	multiple	necrotic	cells	can	be	identified	in	one	area.	Due	
to	their	lack	of	integrity,	necrotic	cells	will	often	form	cell	debris,	
which	can	induce	liver	damage	if	not	cleared	swiftly,	as	we	dis-
cuss	in	later	sections.

Upon	the	death	of	a	cell,	its	corpse	must	be	cleared	through	
efferocytosis.	This	is	a	specialist	form	of	phagocytosis,	whereby	
fragments	of	 the	dying	 cells	 are	 engulfed	by	other	 cells,	which	
in	 turn	 degrade	 and	 recycle	 their	 components.	Although	 both	
apoptotic	 and	 necrotic	 cells	 are	 often	 captured	 by	 the	 same	
efferocytes,	 each	 are	 recognized	 through	 different	 means	 and	
yield	 differing	 response	 in	 the	 predatory	 cell	 (25).	 Apoptotic	
cells	are	most	commonly	recognized	through	the	display	of	the	
phospholipid	 phosphatidylserine	 (PtdSer)	 on	 the	 outer	 leaf	 of	
the	 plasma	membrane	 that	 can	 be	 recognized	 by	many	 recep-
tors	 [phosphatidylserine	 receptors	 (PSRs)]	 directly	 (26)	 or	 via	
association	with	low-density	lipoprotein	(27,	28).	Of	note,	in	a	rat	
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FiguRe 3 | Visualizing efferocytosis by confocal microscopy. Hepatic epithelia were cocultured with violet-labeled staurosporin-treated apoptotic Jurkat T cells in 
the presence of pHrodo red, which only fluoresces in conditions of low pH (Thermo Fisher Scientific). CellMask Plasma Membrane stain was added to the culture 
media to label all exposed cell membranes before imaging. (A) Non-internalized apoptotic cells (blue) attached to hepatocytes were labeled by CellMask Plasma 
Membrane in white, and they were not labeled by pHrodo red dye (white arrow). (B) Internalized dead cells were not accessible to the membrane dye, confirming 
internalization (yellow arrow). Complete internalization into an acidic compartment was confirmed by pHrodo red, which detected efferosome acidification as early  
as 3 hours following engulfment. The scale bar indicates 5 µm.
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liver	model,	it	was	shown	that	recognition	of	apoptotic	cells	from	
mice	or	humans	was	reduced	compared	to	rat	cells;	it	is	therefore	
possible	that	species-specific	recognition	molecules	can	mediate	
efferocytosis	(29).

A	 phenotypic	 aspect	 of	 apoptotic	 cells	 is	 that,	 although	
shriveled,	the	cell	remains	intact	as	a	singular	body.	This	allows	
for	 a	 clean	 removal	 of	 the	 dying	 cells	 by	 efferocytes,	 usually	
without	 provoking	 an	 inflammatory	 response.	 How	 intact	
a	 necrotic	 cell	 remains	 is	 reflected	 through	 the	 manner	 in	
which	cell	death	was	induced.	As	such,	multiple	modalities	for	
necrotic	cell	recognition	are	necessary	to	guarantee	their	clear-
ance.	Some	reports	have	suggested	that	necrotic	cells	can	also	be	
recognized	by	PSRs	(30).	However,	due	to	the	lack	of	integrity	
of	most	necrotic	cells,	they	are	often	recognized	through	mol-
ecules	exposed	by	necrotic	death	(25).	The	same	mechanisms	
are	 also	 used	 to	 detect	 pathogens.	 For	 example,	 complement	
receptors	and	Fc	receptors	detect	opsonized	necrotic	cells,	and	
this	 recognition	 can	 trigger	 signaling	 events	 that	 activate	 the	
phagocyte	(31–35).	As	such,	necrotic	cells	are	engulfed	through	
the	 detection	 of	 autoantigens,	 which	 often	 increases	 the	 risk	
for	 autoimmune	disease.	Necrotic	 cells	 can	 also	 be	 indirectly	
recognized	through	opsonin	engagement	of	other	cellular	com-
ponents.	For	example,	ficolin-2	and	-3	have	been	shown	to	bind	
DNA,	facilitating	the	clearance	of	late-apoptotic/necrotic	cells	
through	 interactions	 with	 calreticulin	 (33,	 36).	 A	 ubiquitous	
mechanism	for	clearance	of	necrotic	cells	remains	uncertain.

The	differences	between	recognition,	and	thus	further	down-
stream	signaling	of	apoptotic	and	necrotic	cells,	result	in	conversing		
consequences	 for	 the	 efferocyte	 (37).	 Apoptotic	 cell	 clear-
ance	 generally	 leads	 to	 the	 production	 of	 anti-inflammatory	
stimuli	 and	 pro-resolution	 signals	 for	 inflammation	 such	 as	
interleukin	 10	 (IL-10)	 and	 TGF-β	 (38).	 Conversely,	 necrotic	
clearance	 generally	 results	 in	 pro-inflammatory	 signaling,	 as	

many	of	the	recognition	receptors	are	also	required	for	pathogen	
recognition.	In	the	liver,	the	signals	associated	with	hepatocyte	
death	were	recently	reviewed	by	Brenner	and	colleagues	(39).	
In	this	work	the	importance	of	the	extent	and	duration	of	dead	
cell	 accumulation	was	 highlighted,	 as	mild	 and	 localized	 cell	
death	can	aid	regeneration	and	exert	hepatoprotective	effects.	
Equally,	prolonged	and	wide-spread	cell	death	can	exacerbate	
liver	injury.

eXPeRiMeNTAL SYSTeMS TO STuDY 
eFFeROCYTOSiS

Multiple	 techniques	 have	 been	 described	 for	 both	 in  vivo	
and	 in  vitro	 studies	 of	 efferocytosis.	 Fluorescent	 dye-labeled	
efferocytes	 can	be	 “fed”	 alternatively	 labeled	dead	 cells	 under	
varying	 conditions	 and	 time	 courses.	 Early	 apoptosis	 can	 be	
confirmed	by	Annexin	V	labeling	of	the	cell	surface	as	it	binds	
directly	to	PtdSer,	although	care	must	be	taken	when	studying	
certain	activated	cell	types	or	using	calcium-sensitive	protocols	
(40).	Later	stages	of	apoptosis	or	necrosis	are	often	confirmed	
with	cell	 impermeable	DNA	dyes	such	as	7AAD	or	TOPRO-3	
iodide,	which	 can	 enter	 cells	 once	 the	membrane	 is	 compro-
mised.	Combined	 labeling	with	Annexin	V	and	a	membrane-
impermeable	DNA	 label	was	 developed	 to	 identify	 the	 stages	
of	apoptotic	cells	in	more	detail	(41).	Cells	can	then	be	assessed	
by	 flow	 cytometry,	 or	 imaged	 by	 fluorescent	 microscopy.	
Complete	internalization	of	dead	cells	can	be	confirmed	by	lack	
of	access	to	membrane	dyes	added	to	the	culture	media	(such	as	
CellMask	Plasma	Membrane	Stains,	Thermo	Fisher	Scientific)	
or	demonstration	of	efferosome	acidification	using	pH	indicator	
dyes	 (Figure  3).	Quantitative	 analyses	 by	 confocal	 and	 time-
lapse	microscopy	can	be	useful	to	determine	the	frequency	and	
kinetic	of	efferocytosis	in vitro.
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Fluorescent	 labeling	 of	 dead	 cells	 and	 efferocytes	 may	 also	
be	 adapted	 for	 flow	 cytometry-based	 studies,	whereby	double-
positive	cells	represent	efferocytes	containing	cargo.	This	form	of	
analysis	has	been	used	to	study	the	clearance	of	neuraminidase-
treated	red	blood	cells	in	mice	(42).	Other	studies	opt	to	analyze	
efferocytosis	using	downstream	secreted	molecules	as	proxy	 to	
utilize	alternative	techniques	such	as	reporter	assays.	The	capacity	
of	Scavenger	Receptor	Class	F	Member	1	(SCARF1)	to	act	as	a	
dead-cell	receptor	on	transfected	HEK293T cells,	for	example,	was	
confirmed	using	IL-8	mRNA	production	as	a	marker	of	NF-κB	
activation	following	apoptotic	and	necrotic	cell	efferocytosis	(43).

Efferocytosis	is	not	often	as	straightforward	to	detect	in vivo.	
Fluorescent	 labeling	 can	 enable	 temporal	 measurements	 in	
mouse	models	 by	 intravital	 imaging	 of	 the	 liver	 (44),	 but	 the	
technique	remains	to	be	adapted	successfully	for	use	in	human	
tissues	ex vivo.	Molecular	markers	of	cell	death	for	use	with	fixed	
tissue	are	often	important	for	the	confirmation	of	efferocytosis.	
Caspase	 3/7	 activation	 or	 their	 effects	 can	 be	 measured	 to	
delineate	apoptotic	bodies	by	immunohistochemistry	(IHC)	or	
immunofluorescence	(IF)	(45).	DNA	end-labeling	is	frequently	
used	 to	 confirm	 the	 death	 of	 cells	 in	 tissues.	 End-labeling	
involves	 the	 addition	 of	 labeled	 nucleotides	 to	 DNA	 breaks	
induced	throughout	multiple	modalities	of	death,	using	a	DNA	
polymerase.	This	was	historically	used	 for	 in  situ	 end	 labeling	
(ISEL)	of	fixed	tissue	sections	as	part	of	IHC	chromagen	stain-
ing	(Figure 2D)	(46).	This	was	then	adapted	for	the	creation	of	
terminal	 deoxynucleotidyl	 transferase	 (TdT)	 dUTP	 Nick-End	
Labeling	(TUNEL)	(47)	which	substitutes	a	polymerase	for	TdT.	
This	 adaptation	 allows	 for	 the	use	 of	many	different	modified	
forms	of	labeled	nucleotides	(often	dUTP),	such	as	non-reactive	
protein	tags	or	fluorophores.	TUNEL	staining	has	been	altered	
to	specifically	identify	cells	in	late-stage	apoptosis.

Further	stains	 for	cell	membrane	proteins	or	specific	nucleic	
proteins	can	be	used	to	determine	complete	engulfment	of	dead	
cells.	Many	of	these	techniques	were	exemplified	in	a	recent	study	
of	macrophage/monocyte	 efferocytosis	 in	models	 of	 acute	 liver	
injury	(48).	In	this	work,	Antoniades	and	colleagues	studied	the	
mechanism	of	resolution	of	liver	inflammation	through	apoptotic	
cell	clearance	by	macrophages/monocytes	via	Mer	tyrosine	kinase	
receptor	(MerTK).	Staining	for	myeloperoxidase	(activated	neu-
trophils)	 combined	with	 TUNEL	 allowed	 for	 the	 identification	
of	apoptotic	neutrophils	 in	human	liver,	both	through	IHC	and	
IF	staining.	Additionally,	fluorescent	monocytes	were	cocultured	
in  vitro	 with	 alternatively	 fluorescent	 apoptotic	 hepatic	 cells	 or	
neutrophils.	 The	 ability	 of	 these	 monocytes	 to	 clear	 apoptotic	
cells	was	then	assessed	through	fluorescent	microscopy	and	flow	
cytometry.	 Both	 techniques	 were	 used	 to	 show	 the	 increased	
capacity	of	monocytes	for	dead	cell	clearance	following	stimula-
tion	with	secretory	leukocyte	protease	inhibitor.

THe MeCHANiSM OF DeAD CeLL 
CAPTuRe BY PROFeSSiONAL AND  
NON-PROFeSSiONAL eFFeROCYTeS

Phagocytes	 express	 several	 receptors	 to	 recognize	 and	 sub-
sequently	 clear	 dying	 cells	 from	 the	 tissues	 (49–51).	 In	 the	

case	 of	 professional	 phagocytes	 (e.g.,	 macrophages)	 multiple	
apoptotic	 and	 necrotic	 cell	 receptors	 have	 been	 character-
ized	 and	 these	 remain	 relevant	 in	 the	 liver	 (37,	 52)	 (Table  1).		
First	described	in	1992,	it	is	now	widely	accepted	that	apoptotic	
cells	 are	 recognized	 through	 their	 expression	 of	 PtdSer	 on	 the	
outer	 leaf	 of	 the	 plasma	membrane	 (53,	 54).	 Several	 receptors	
directly	recognize	PtdSer,	many	of	which	are	expressed	by	profes-
sional	phagocytes	(55).	These	include	stabilin-1,	stabilin-2,	brain-
specific	angiogenesis	inhibitor	1	(BAI1),	and	RAGE,	as	well	as	the	
TIM	family	of	 transmembrane	glycoproteins,	 including	TIM-1,	
-3,	and	-4	(56–61).	Mammary,	alveolar	and	mesangial	epithelia	
recognize	 apoptotic	 cells	 via	 the	 PSR,	 CD36,	 the	 vitronectin	
receptor	αvβ3,	and	CD91	(62–64).	Of	note,	molecules	that	bind	
PtdSer	 such	 as	 high-mobility	 group	 box	 1	 (HMGB1)	 can	 also	
downregulate	apoptotic	cell	clearance	(65,	66).

It	 is	 common	 for	 PtdSer	 to	 be	 recognized	 in	 complex	with	
certain	bridging	molecules.	Some	of	the	most	well-studied	PtdSer	
receptors,	 the	TAM	 tyrosine	 kinases	 (Tyro3,	Axl,	 and	MerTK)	
work	in	this	manner	(102);	notably,	hepatocytes	express	Axl	but	
not	Tyro3	or	MerTK	(103).	The	earliest	known	examples	of	these	
are	Gas6	and	Protein	S	(104,	105).	Gas6	is	universally	recognized	
by	 TAM	 receptors,	 whereas	 Protein	 S,	 which	 is	 expressed	 in	
hepatocytes,	 is	not	recognized	by	Axl.	Similarly,	 integrins	αvβ3	
and	αvβ5	have	been	shown	to	promote	efferocytosis	through	the	
recognition	of	PtdSer	in	complex	with	lactadherin,	also	known	as	
milk	fat	globule	EGF	factor	8	(MFG-E8)	(67,	68,	106).

The	entirety	of	apoptotic	cell	recognition	does	not	lie	with	the	
detection	of	PtdSer	expression.	It	was	shown	that	Tubby	protein	
and	 its	 relative	 Tubby-like	 protein	 1	 (TuLP1),	 which	 do	 not	
bind	PtdSer,	specifically	localize	at	the	surface	of	apoptotic	cells	
and	could	act	as	TAM	receptor	bridging	molecules	in	a	similar	
manner	 to	Gas6,	which	 in	 turn	promoted	 apoptotic	 cell	 clear-
ance	(89).	All	TAM	tyrosine	kinases	recognized	TuLP1,	whereas	
Tubby	 was	 exclusively	 recognized	 by	MerTK	 on	macrophages	
and	retinal	pigment	cells.	Mechanisms	of	 immune	surveillance	
and	 signaling	have	also	been	 shown	 to	 contribute	 to	apoptotic	
cell	 clearance.	 Components	 of	 the	 complement	 pathway	 have	
been	shown	to	induce	phagocytosis	in	macrophages	and	DCs	by	
opsonizing	apoptotic	cells,	including	C1q	and	C3	(34,	78,	107).	
Furthermore,	 SIGN-R1,	 a	 mouse	 analog	 of	 human	 mannose	
receptor	DC-SIGN,	was	shown	to	bind	apoptotic	cells	and	induce	
their	labeling	with	C3	and	subsequent	clearance	by	marginal	zone	
macrophages	(92).

Recognition	 of	 apoptotic	 cells,	 although	 important,	 is	 not		
sufficient	for	macrophages	to	engulf	and	clear	them.	Downstream	
intracellular	signaling	is	necessary	for	 load-processing	follow-
ing	capture.	An	important,	highly-conserved	signaling	pathway	
has	 been	 described	 downstream	 from	most	 common	PtdSer-
receptors,	involving	GTPase	Rac1	and	ELMO1-DOCK180	inter-
actions	(50).	TAM-family	molecules,	αvβ5	integrins	and	BAI1	act	
as	docks	for	apoptotic	cells,	leading	to	intracellular	signaling	via	
this	pathway	(108,	109).	Upon	engagement	of	an	apoptotic	cell	
by	these	receptors,	DOCK180	is	recruited	by	ELMO1	(110,	111).		
In	 complex,	 these	 proteins	 act	 as	 guanine	 exchange	 factors,	
allowing	for	Rac1	activation,	which	induces	necessary	cytoskel-
etal	 arrangements	 required	 for	 complete	 engulfment	 of	 the	
prey	cell.	Stabilin	1	and	2	have	also	been	shown	to	activate	this	
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TABLe 1 | Efferocytosis receptors in professional phagocytes and tissue epithelia.

Name Cell type Target Reference

Professional phagocyte receptors (macrophages/dendritic cells)

αvβ3 integrins Macrophages Lactadherin (MFG-E8)—PtdSer, vitronectin (67–69)
αvβ5 integrins Macrophages Lactadherin (MFG-E8)—PtdSer, vitronectin (67, 69–72)

Dendritic cells
Axl Monocytes/macrophages Gas6-PtdSer, Tubby-like protein 1 (GULP),  

Protein S
(73–76)

BAI1 (brain-specific angiogenesis inhibitor 1) Macrophages PtdSer (77)
Calrecticulin/CD91 Monocytes, macrophages, neutrophils Complement component C1q (34)
CD11/b/c/CD18 Monocytes, macrophages, neutrophils,  

human DCs
Complement component C3bi (78, 79)

CD14 Macrophages Phospholipids (not PtdSer-dependent) (80, 81)
CD36 Macrophages Thrombospondin + PtdSer + oxLDLs (82–84)
Clec9a Dendritic cells Necrotic cells, exposed actin filaments (85, 86)
LOX1 Macrophages oxLDLs—PtdSer (28, 87)
MARCO Macrophages Uncertain (88)
MerTK Monocytes/macrophages Gas6-PtdSer, Tubby, Protein S, Tubby-like  

protein 1, Protein S
(75, 89, 90)

Phosphatidylserine receptor (PSR) Monocytes/macrophages PtdSer (91)
RAGE (receptor for advanced glycation end 
products)

Alveolar macrophages PtdSer (60)

SCARF1 Monocytes and dendritic cells Complement component C1q—PtdSer (43)
Scavenger receptor A (SR-A) Macrophages Uncertain (88)
SIGN-R1 (specific intercellular adhesion molecule- 
3-grabbing nonintegrin-related 1) (murine)

Mouse marginal zone macrophages Not confirmed for apoptotic cells (92)

Stabilin-1 (CLEVER-1) Tissue-specific, alternatively activated 
macrophages

PtdSer (61)

Stabilin-2 Macrophages PtdSer (57)
TIM-3 (T cell/transmembrane, immunoglobulin,  
and mucin 3)

Dendritic cells PtdSer (93)

TIM-4 Monocytes/macrophages PtdSer (94)
Tyro3 (sky) Monocytes/macrophages Gas6-PtdSer, Protein S, Tubby-like protein 1, 

Protein S
(73–76)

Non-professional phagocytes

αvβ5 integrins Retinal epithelial cells Lactadherin (MFG-E8)-PtdSer (95)
ASGPR (asialoglycoprotein receptor) Hepatocytes asialoglycoprotein (96, 97)
CD36 Retinal Pigment cells PtdSer (98)
KIM-1 (kidney injury molecule 1)/TIM1 T cell/
transmembrane, immunoglobulin, and mucin 1

Injured kidney endothelial cells PtdSer (99)

LOX1 Endothelial cells oxLDLs—PtdSer. Ca2+-dependent (28, 100)
MerTK Retinal pigment cells Gas6-PtdSer, Tubby, Protein S, Tubby-like protein (89, 90)
Phosphatidylserine receptor (PSR) Fibroblasts PtdSer (91)

Epithelial cells
T and B lymphocytes (ectopic expression)

SCARF-1 (SREC-1) Endothelial cells Complement component C1q—PtdSer (43)
Stabilin-1 (Clever-1) Human sinusoidal endothelial cells PtdSer (101)
Stabilin-2 Human sinusoidal endothelial cells PtdSer (101)
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pathway	 through	 the	 adaptor	 protein	 GULP	 (109,	 112,	 113).		
Completion	 of	 apoptotic	 cell	 engulfment	 also	 commonly	
invol	ves	the	activation	of	nuclear	receptors.	Loose	nucleotides	
released	 from	 dying	 cells	 commonly	 act	 as	 “eat-me”	 signals,	
and	 can	 engage	 purigenic	 P2	 receptors	 (P2X	 and	P2Y),	 lead-
ing	 to	 an	 increased	 capacity	 for	 efferocytosis	 in	macrophages	
(114,	115).	 It	was	 recently	 shown	 that	 liver	X	 receptor	 (LXR)	
was	necessary	for	the	capture	and	processing	of	apoptotic	cells	
by	macrophages	and	dendritic	cells	 (116,	117).	LXR	responds	
to	 oxysterols	 found	 in	 engulfed	 apoptotic	 cells.	 Stimulation	
of	 LXR	 upregulated	MerTK	 and	 anti-inflammatory	 cytokines	
IL-10	and	TGF-β,	while	also	leading	to	the	downregulation	of	
proinflammatory	cytokines	such	as	IL-1β,	CCL2,	and	MARCO.	

A-Gonzalez	and	Hidalgo	reviewed	nuclear	receptors	and	their	
role	 in	macrophage	 efferocytosis	 recently	 (118).	 LXRα	medi-
ates	 fatty	 acid	 regulation	 in	 hepatocytes	 (119),	 but	 its	 role	 in	
hepatocyte	efferocytosis	remains	to	be	determined.

Non-professional	phagocytes,	such	as	epithelial	cells	express	
multifunctional	 scavenger	 receptors,	 or	 molecules	 that	 exert	
alternative	 functions	 in	 other	 cell	 types.	 For	 example,	 TIM-1,	
also	known	as	kidney	injury	molecule	1	(KIM-1),	 is	known	to	
possess	multiple	immune	functions,	including	CD4+	T-cell	and	
mast	cell	activation	(59).	However,	TIM-1	was	also	upregulated	
in	 kidney	 epithelia	 following	 injury,	 allowing	 for	 a	 temporary	
efferocytic	capability	 (99).	Certain	cell-exclusive	receptors	and	
modulators	 associated	 with	 apoptotic	 cell	 clearance	 have	 also	
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been	described.	Apoptotic	 cell	 clearance	 in	 the	 liver	 has	 been	
shown	 to	 involve	 asialoglycoprotein	 receptor	 (ASGPR)	 on	
hepatocytes	(96).	This	ASGPR1	and	ASGPR2	complex	is	critical	
for	receptor-mediated	endocytosis	of	terminally	desialylated	gly-
coproteins	and	is	restricted	to	the	liver.	Autoantibodies	to	ASGPR	
have	been	found	in	patients	and	models	of	autoimmune	hepatitis	
(120–122).	 Resolvin	 D1	 is	 also	 important	 in	 liver	 protection	
from	ischemia/reperfusion	injury,	by	enhancing	efferocytosis	by	
M2-polarizing	macrophages	 (123).	 Furthermore,	 phagocytosis	
by	 retinal	 pigment	 cells,	 although	 mostly	 conducted	 through	
MerTK,	 was	 shown	 to	 be	 increased	 through	 recognition	 of	
ATP-binding	cassette	subfamily	F	member	1	(ABCF1)	released	
from	 apoptotic	 photoreceptor	 outer	 segments	 (124).	 Overall,	
it	appears	that	although	the	broad	function	of	recognition	and	
engulfment	of	apoptotic	cells	is	conserved	throughout	many	cell	
types,	multiple	mechanisms	exist	 that	conduct	 these	processes	
across	phagocytes,	both	homo-	and	heterotypically.

ReguLATiON OF eFFeROCYTOSiS

External	stimuli	are	pertinent	for	regulation	of	dead	cell	clear-
ance	 by	 efferocytosis.	 As	 such,	 “find-me”	 signals	 released	 by	
apoptotic	cells	are	often	necessary	for	the	guidance	of	efferocytes	
to	their	prey	(53).	The	best-characterized	examples	of	these	are	
extracellular	nucleotides	(115).	It	was	shown	that	upon	caspase	
3/7	 activation	 in	 apoptotic	 cells,	ATP	 and	UTP	 released	 from	
apoptotic	 cells	 could	 recruit	monocytes/macrophages	 through	
recognition	 by	P2Y2.	Conversely,	molecules	with	 the	 opposite	
effect	known	as	“don’t eat-me”	signals	have	also	been	described.	
CD47	is	the	most	notable,	having	been	shown	to	provide	resist-
ance	to	clearance	by	macrophages	on	malignant	cells	and	more	
recently	 on	 atherosclerotic	 plaques	 (125,	 126).	 Similar	 “find-
me”	 signals	may	be	utilized	by	non-motile	 phagocytes,	which	
extend	protrusions	to	collect	apoptotic	cells	for	clearance	but	are	
restricted	to	targets	within	their	tissue	niche.

Due	to	the	influence	of	dying	cells	on	the	immune	response,	
cytokine	 and	 growth	 factor	 stimulation	 of	 both	 professional		
and	non-professional	phagocytes	 can	 regulate	 their	 capacity	 to	
clear	 dead	 cells.	 Apoptotic	 T-cell	 lymphomas	 release	 sphingo-
sine-1-phosphate,	 a	 bioactive	 lipid	 often	 involved	 in	 immune	
cell	recruitment,	leading	to	the	recruitment	of	macrophages	and	
monocytes	 (127).	 Similarly,	 certain	 chemokines,	 tasked	 with	
immune	cell	recruitment	have	also	been	shown	to	increase	phago-
cyte	recruitment	to	areas	of	apoptotic	cells.	CX3CL1	(fractalkine)	
was	shown	to	recruit	macrophages	to	its	source,	apoptotic	Burkitt	
lymphoma	cells	(128).

Multiple	cytokines	have	varying	effects	on	efferocytosis	(129).	
Most	notably,	secretion	of	IL-3	and	IL-14	increased	efferocytosis	
in	 macrophages	 through	 activation	 of	 PPAR	 and	 increase	 in	
CD36	expression	(130,	131).	IL-4	has	been	reported	to	upregulate	
expression	of	other	PtdSer-receptors	such	as	stabilin	1and	2	(61).	
IL-10	and	TGF-β	can	also	 increase	efferocytes	by	macrophages	
(132,	 133).	 In	 contrast,	 pro-inflammatory	 cytokines	 reduce	
the	 capacity	 for	 dead	 cell	 engulfment:	TNF-α	 has	 been	 shown	
to	 inhibit	 efferocytosis	 in	macrophages	 (134)	 and	 both	 IFN-γ	
secretion	and	receptiveness	were	reversely	correlated	with	anti-
inflammatory	cytokines	and	receptors	 including	 IL-4	and	TIM	

receptors	(59,	129,	135).	However,	 this	was	not	always	the	case	
for	these	cytokines.	Both	TNF-α	and	IFN-γ	have	been	shown	to	
increase	 LOX-1,	which	may	 recognize	 apoptotic	 cells	 by	 LDL-
labeled	PtdSer.	Furthermore,	 IFN-γ	activation	of	macrophages,	
in	the	absence	of	other	pro-inflammatory	stimuli,	was	shown	to	
increase	apoptotic	uptake	(135).

The	 ability	 of	 phagocytes	 to	 clear	 dead	 cells	 is	 also	 subject	
to	 regulation.	 This	 is	 the	 result	 of	 alterations	 in	 gene	 expres-
sion,	which	 can	 function	 as	negative	 feedback	 following	 initial	
engulfment	of	dying	cells.	For	example,	 it	has	been	shown	that	
macrophages,	upon	engulfing	apoptotic	cells	can	undergo	a	form	
of	 activation	 and	 reprograming	 (136).	 As	 well	 as	 skewing	 the	
macrophage	 to	 a	more	 anti-inflammatory	phenotype,	which	 in	
turn	promotes	inflammatory	resolution,	both	mouse	and	human	
macrophages	can	upregulate	CXCR4	during	efferocytosis,	which	
in	 turn	 encourages	 their	 recruitment	 to	 draining	 lymph	nodes	
(137).	These	macrophages	were	also	shown	to	subsequently	reduce	
their	efferocytosis	capacity.	Thus,	apoptotic	cells	can	reduce	local	
levels	of	efferocytosis	as	well	as	promote	them.

More	 recently	 macrophages	 were	 shown	 to	 regulate	 effero-
cytosis	 in	 surrounding	 non-circulating	 phagocytes,	 such	 as	
pha	go		cytic	airway	epithelial	cells	(138).	In	response	to	IL-4	and	
IL-13,	which	 are	 secreted	by	 epithelia	 and	 stimulated	Th2	cells,	
macrophages	 upregulated	 secretion	 of	 both	 insulin-like	 growth	
factor	1	(IGF-1)	and	microvesicles	containing	anti-inflammatory	
signals.	Both	microvesicles	 and	 IGF-1,	 in	 turn,	 fed	back	 to	 epi-
thelia,	causing	a	reduction	of	apoptotic	cell	clearance	in	favor	of	
microvesicle	uptake.

In	the	context	of	the	liver,	some	of	the	mechanisms	described	
for	 the	 regulation	 of	 efferocytosis	 apply	 to	 circulating	 and	
resident	macrophages/monocytes.	 Further,	 the	 neuronal	 guid-
ance	protein	netrin-1	has	been	shown	to	promote	resolution	of	
ischemia/reperfusion	injury,	in	part	by	increasing	the	capacity	of	
Kupffer	cells	to	engulf	apoptotic	cells	(139).	The	same	molecule	
was	 shown	 to	 promote	 liver	 regeneration	 (139).	 In	 a	 mouse	
model	of	 colon	 carcinoma	metastasis	 in	 the	 liver,	 intercellular	
cell	 adhesion	 molecule	 1-deficient	 macrophages	 cocultured	
with	 tumor	cells	 showed	 increased	efferocytosis	dependent	on	
phosphatidylinositol	3	kinase	(140).

Environmental	 factors	 can	 also	 affect	 phagocytosis,	 and	
this	extends	to	the	clearance	of	dead	cells;	studies	 in	human	
skin	 have	 demonstrated	 that	 ethanol	 can	 reduce	 phagocytic	
function	 (141),	 and	 there	 have	 been	 reports	 on	 increased	
phagocytosis	 in	 ethanol-fed	 rats,	 which	 was	 modulated	 by	
diet	 (142).	 Hepatocyte	 phagocytosis	 of	 apoptotic	 cells	 was	
decreased	in	ethanol-fed	rats	compared	to	controls,	therefore	
the	 effects	 of	 ethanol	 on	 efferocytosis	 may	 be	 cell	 type-
dependent	(97).	It	is	unclear	whether	professional	phagocytes	
play	a	role	in	the	regulation	of	efferocytosis	by	hepatocytes	and	
liver	endothelial	cells.

THe iMPACT OF eFFeROCYTOSiS  
BY TiSSue ePiTHeLiA

Non-professional	efferocytes	are	important	throughout	all	devel-
opmental	stages	of	an	organism	and	can	take	over	the	clearance	
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of	 apoptotic	 cells	 in	 the	 absence	 of	 professional	 phagocytes	
(143).	 This	 was	 confirmed	 in	 PU.1	 knockout	 mice	 that	 lack	
macrophages,	 and	 the	 removal	 of	 apoptotic	 cells	 required	 for	
foot-limb	development	was	instead	performed	by	mesenchymal	
cells	(144).	Non-professional	phagocytes	therefore	contribute	to	
efferocytosis,	even	at	the	earliest	stages	of	development.

Some	of	the	best-studied	phagocytic	epithelia	are	bronchial	
and	 alveolar	 epithelial	 cells	 (138,	 145,	 146).	 Epithelial	 cells	
lining	 the	 respiratory	 tract	make	 first	 contact	 with	 airborne	
allergens	such	as	house	dust	mite	antigens.	Subsequent	inflam-
matory	stimuli,	 including	 the	recruitment	of	basophils,	mast	
cells	 and	 lymphocytes,	 result	 in	 epithelial	 cell	 injury.	 Lung	
epithelia	 clear	 their	 dying	 neighbors	 through	 PtdSer	 and	
Rac1-dependent	mechanisms,	which	can	be	modified	experi-
mentally	(146).	As	with	macrophages,	apoptotic	cell	clearance	
by	 lung	 epithelia	 induced	 anti-inflammatory	 cytokines	 such	
as	IL-10	and	TGF-β.	Conditional	Rac1	deletion	in	mouse	lung	
epithelia	 resulted	 in	 an	 exacerbated	 immune	 response	 and	
greater	 epithelial	 damage.	 These	 studies	 demonstrated	 the	
efficiency	and	importance	for	lung	epithelial	cell	efferocytosis	
in	the	regulation	of	lung	inflammation	(146,	147).

Retinal	epithelial	cell	efferocytosis	has	also	been	well	charac-
terized	(148–151).	Light-sensing	cells	of	the	retina	are	frequently	
turned	 over	 via	 programmed-cell	 death,	 often	 succumbing	 to	
autophagy-associated	 death,	 called	 autolysis	 (152,	 153).	 Dys-
regulation	of	autophagy	in	these	cells	has	been	frequently	reported	
to	 increase	 retinal	 pigment	 cell	 death	 (152,	 154).	 Although	 a	
normal	part	of	age-related	macular	degeneration,	failure	to	clear	
these	 dying	 cells	 can	 accelerate	 retinal	 damage.	 Together	 with	
professional	 phagocytes,	 retinal	 pigment	 cells	 are	 also	 charged	
with	the	removal	of	dead	cells,	in	a	manner	dependent	on	MerTK.

Throughout	the	lifecycle	of	an	organism,	the	removal	of	imma-
ture	 cells	 or	 those	with	high	 turnover	 is	necessary	 to	maintain	
tissue	homeostasis.	Intravital	microscopy	has	revealed	how	hair	
follicles	in	mice	regress	through	programmed	cell	death	of	hair-
producing	 basal	 epithelial	 cells	 (155).	 Neighboring	 cells	 of	 the	
same	type	then	clear	apoptotic	cells	through	mechanisms	requir-
ing	TGF-β	signaling.	In	response	to	kidney	damage,	epithelial	cells	
recognize	 and	engulf	PtdSer-positive	 apoptotic	 cells	via	KIM-1	
or	TIM-1	(99).	Colonic	epithelial	cells	have	also	been	shown	to	
engulf	their	apoptotic	neighbors,	which	aids	in	maintaining	low	
levels	of	inflammation	(156).

Studies	in	multiple	progenitor	types	have	recently	identified	
their	 importance	 in	 efferocytosis.	 Skeletal	muscle	 progenitors	
recognizing	PtdSer	on	neighboring	apoptotic	cells,	receive	the	
signal	 to	 differentiate	 and	 fuse	 into	 multinuclear	 myofibers	
(157).	Mesenchymal	stem	cells	take	their	cues	from	bone	mar-
row	 apoptotic	 cells	 via	 efferocytosis	 and	 undergo	 osteogenic	
differentiation	 (158).	 Chondrogenic	 progenitor	 cells	 display	
macrophage-like	abilities	in	that	they	react	to	“find-me”	signals	
from	apoptotic	 cells	 (159),	 and	non-motile	 chondrocytes	 also	
have	a	role	in	efferocytosis	(160).	As	previously	discussed,	neu-
ronal	progenitors	which	apoptose	following	failure	to	complete	
neural	circuits	 throughout	neurogenesis,	were	recognized	and	
cleared	by	other	progenitor	cells	via	Rac1	activation	following	
ELMO-1	signaling	(161).	Of	note,	neuronal	and	hepatic	epithe-
lia	can	be	derived	from	common	progenitor	cells.

Through	its	cardinal	role	 in	the	neutralization	of	 toxic	sub-
stances,	 to	 its	 frequent	 influx	 and	 arresting	 of	 leukocytes,	 the	
liver	has	evolved	to	cope	well	with	cell	death	(10,	162).	Although	
hepatocytes	 are	 somewhat	 resistant	 to	 intrinsic	 apoptotic	
pathways	 (163–165),	 many	 death	 receptors	 are	 ubiquitously	
expressed	throughout	the	liver,	increasing	their	susceptibility	to	
extrinsic	apoptosis	by	exposure	to	pro-inflammatory	cytokines	
such	as	TNF	family	molecules	including	TNF-related	apoptosis-
inducing	 ligand	 (TRAIL)	 (166–170).	 Clearance	 of	 apoptotic	
cells	 by	 macrophages	 is	 a	 pro-resolution	 process,	 however,	
liver-infiltrating	macrophages	and	Kupffer	cells	can	upregulate	
death	 ligands	 in	 the	 liver,	 including	FasL,	TNF-α,	 and	TRAIL,	
increasing	the	rate	of	local	hepatocyte	death	and	the	risk	of	fur-
ther	inflammation	(171,	172).	Acute	injury	such	as	ischemia	and	
the	resulting	trauma	from	hypoxia/reoxygenation	can	also	result	
in	similar	sudden	increases	in	necrotic	cell	death	(164,	165,	169).	
Furthermore,	steatosis—accumulation	of	lipids	associated	with	a	
multitude	of	fatty	liver	diseases—can	cause	wide	hepatocyte	cell	
death	via	lipoapoptosis	induced	by	ER	stress-mediated	intrinsic	
pathways	 (173,	174).	Ethanol-induced	 injury	 can	 also	have	 an	
impact	 on	 receptor-mediated	 endocytosis	 by	 the	 ASGPR	 and	
efferocytosis	(175–178).

Failure	to	clear	dead	cells	from	the	parenchyma	is	accumula-
tively	detrimental	to	the	liver;	clearance	of	necrotic	cells—both	
primary	 and	 secondary,	 resulting	 from	 uncleared	 apoptotic	
cells—results	 in	 increase	 in	 pro-inflammatory	 cell	 influx	 and	
cytokine	 secretion,	 leading	 to	 further	 damage	 to	 the	 liver	
(14).	 HMGB1	 is	 important	 in	 liver	 protection	 from	 ischemia/
reperfusion	 injury	 (179),	 yet	 in	 a	 sterile	 model	 it	 acted	 as	 a	
damage-associated	molecular	pattern	that	enhanced	liver	injury	
in	 both	 ischemia/reperfusion	 and	POD	models	 (180).	 Interac-
tions	bet	ween	ASGPR	on	hepatocytes	and	B220	epitope	of	CD45	
assist	 in	the	capture	and	trapping	of	apoptotic	cells	 in	the	 liver		
(96,	 181,	 182).	 The	 impact	 of	 hepatocyte	 efferocytosis	 on	 the	
inflammatory	milieu	remains	to	be	established.

Beyond	the	capacity	of	hepatocytes	for	erythrocytosis	(183),	
further	 evidence	 or	 insights	 into	 the	 mechanisms	 or	 anti-
inflammatory	impact	of	hepatocyte	efferocytosis	have	not	been	
elucidated.	 Hepatocytes	 express	 an	 array	 of	 immunomodula-
tory	cytokines,	 including	TNF-α	and	IL-10	(184–186);	 it	 is	not	
known	whether	 these	are	modulated	during	efferocytosis	 as	 in	
lung	 epithelia	 and	 in	 professional	 phagocytes.	 Understanding	
the	molecular	mechanisms,	purpose	and	regulation	of	dead	cell	
clearance	 by	 hepatocytes	 is	 vital	 to	 estimate	 its	 impact	 on	 the	
onset	and	resolution	of	inflammation,	as	elevation	in	hepatocyte	
apoptosis	 is	 key	 to	 the	 pathogenesis	 and	 progression	 of	 most	
forms	of	liver	disease	(14).	Outstanding	questions	on	hepatocyte	
efferocytosis	include:

	–	 What are the molecules that mediate recognition and engulfment 
of apoptotic and/or necrotic cells by hepatocytes?	ASGPR	is	thus	
far	 the	 only	 receptor	 restricted	 to	 hepatocyte	 efferocytosis;	
despite	 its	multiple	roles	 in	receptor-mediated	efferocytosis,	
ASGPR-deficient	mice	develop	normally	yet	have	exacerbated	
pathology	in	liver	injury	models	(177,	187).

	–	 Is efferocytosis by hepatocytes in portal and centrilobular 
regions mediated by the same molecular mechanisms?	These	
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TABLe 2 | The role of efferocytosis in liver diseases.

Liver disease efferocytosis relevance Reference

Autoimmune 
hepatitis

Hepatocyte stress and correlations to disease (39, 121, 
195)Autoantibodies targeting ASGPR

Primary biliary 
cholangitis

Phagocytes were shown to contain PDC-E2 
immunogen

(8, 196, 
199–201)

Biliary injury clearance is linked to autoimmunity

Biliary injury clearance alleviates liver fibrosis

Primary 
sclerosing 
cholangitis

Collection of genome-wide studies that show a 
role of apoptosis 

(202)

Alcohol injury Ethanol exacerbates injury in ASGPR-deficient 
model

(97, 177, 
178, 203, 

204)

Fatty liver 
diseases

The role of specialized proresolving mediators  
in obese individuals (enhance efferocytosis)

(205–207)

Other liver 
injuries

Alpha 1 antitrypsin rescues macrophage 
efferocytosis

(139, 196, 
208)

Netrin 1 rescues efferocytosis in murine I/R injury 
model

Efferocytosis and tissue remodeling in rat bile duct 
ligation model

Although efferocytosis is critical for liver homeostasis, there is limited information on 
specific efferocytosis pathways that contribute to liver disease pathogeneses. The 
importance of dead cell clearance is better established than the mechanisms that 
mediate efferocytosis in the inflamed or injured liver.
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regions	 have	 differential	 access	 to	 apoptotic	 and	 necrotic	
cells,	respectively,	as	well	as	nutrient,	inflammatory	infiltrate	
and	oxygenation	levels	that	may	all	influence	the	capacity	for	
efferocytosis.

	–	 How is hepatocyte efferocytosis regulated in health, infection, 
inflammation and cancer?

	–	 Can hepatocyte efferocytosis be modulated by pharmacological 
interventions?

	–	 Does efferocytosis affect the ability of hepatocytes to regenerate 
during injury?

CLiNiCAL iMPLiCATiONS OF DeFeCTS  
iN eFFeROCYTOSiS

Failure	to	remove	dying	cells,	both	apoptotic	and	necrotic,	have	
been	 connected	 to	 disease	 exacerbation	 (49).	Accumulation	 of	
dying	cells	increases	the	availability	of	proimmunogenic	factors	
and	can	increase	the	risk	of	autoimmunity,	especially	as	death-
recognition	 becomes	 skewed	 to	 proinflammatory	 recognition	
of	secondary-necrotic	cells.	This	topic	was	explored	in	a	recent	
special	issue	in	Frontiers	in	Immunology	(188).

Defects	in	efferocytosis	have	also	been	shown	to	be	beneficial	
for	 the	 longevity	of	 tumors.	Upregulation	 in	 the	“don’t-eat	me”	
signal	CD47	was	reported	in	myeloid	leukemia	(189,	190)	which	
was	associated	with	increased	tumor	survival	and	poorer	prog-
nosis.	Similar	pathogenic	consequences	of	aberrant	efferocytosis	
have	 been	 exemplified	 through	 deficiencies	 in	 death	 receptors	
(1).	Loss	of	axl,	MerTK,	and	its	associated	ligand,	Gas6,	have	all	
been	shown	to	promote	the	growth	of	colon	cancers	(191,	192).	
Conversely,	 loss	 of	 stabilin-1	 has	 shown	 to	 reduce	 growth	 of	
implanted	tumors	in	knockout	mice,	due	to	reduced	recruitment	
of	 tumor-associated	 lymphocytes	 and	 macrophages	 (193).	 As	
such,	 loss	of	death-receptor	 expression	 is	not	 always	beneficial	
for	 cancer	 vitality.	 However,	 loss	 of	 other	 receptors	 for	 dying	
cells	has	displayed	varying	phenotypes	associated	with	the	lack	
of	 apoptotic	 cell	 clearance.	 Loss	 of	 SCARF1	 and	 axl	 has	 been	
reported	to	promote	autoimmunity	(43,	194).

Similar	dangers	to	those	mentioned	above	regarding	deficien-
cies	in	dying	cell	clearance	are	apparent	for	many	liver	diseases.	In	
the	context	of	the	liver,	the	effects	of	efferocytosis	in	autoimmune	
family	disorders	have	not	been	established	directly.	Reports	on	
efferocytosis	in	liver	diseases	are	listed	in	Table 2.	Clearance	of	
dying	cells	 in	the	 liver	 is	 thought	to	reduce	the	risk	of	autoim-
mune	hepatitis	and	promote	reversal	of	fibrosis	by	macrophages	
(195,	196).	In	primary	biliary	cholangitis,	efferocytosis	by	biliary	
epithelia	may	be	 important	 in	defining	 the	 tissue	 specificity	of	
the	autoimmune	response	(8,	197).	It	 is	worth	considering	that	
standard	of	care	treatments	for	autoimmune	conditions	include	
corticosteroid	 regimens,	which	have	been	 shown	 to	upregulate	
efferocytosis	(49,	198).	Prevention	of	efferocytosis	may	therefore	
exacerbate	liver	diseases.

As	 well	 as	 causing	 hepatocyte	 necrosis,	 chronic	 alcohol	
exposure	 was	 reported	 to	 reduce	 macrophage	 efferocytosis	
through	 diminishing	MFG-E8	 expression	 (209).	 Prevention	 of	
efferocytosis	by	macrophages	in	the	liver	could	increase	further	
inflammatory	 stimuli,	 although	 it	 is	 not	 clear	 how	 hepatocyte	

efferocytosis	would	be	affected.	Contrarily,	reduced	efferocytosis	
in	certain	disease	models	has	been	shown	to	be	beneficial.	Loss	
of	the	dead-cell	receptor	TIM4,	for	example,	in	a	mouse	model	of	
ischemia/reperfusion	injury	reduced	immune	cell	infiltration	and	
hepatocyte	 damage	 (210).	 Understanding	 the	 protein-specific	
and	situational	benefits	or	detriments	to	reduced	efferocytosis	in	
diseases	of	the	liver	and	other	organs	can	give	insights	into	possible	
therapeutics	for	tissue	damage	and	autoimmunity.

CONCLuSiON

Recent	advances	in	epithelial	cell	efferocytosis	have	highlighted	
the	 importance	of	 tissue	 epithelia	 in	 the	 everyday	 clearance	of	
billions	of	apoptotic	cells.	Compared	to	professional	efferocytes,	
there	 is	 little	 known	 regarding	 the	 receptors	 and	 molecular	
processes	involved	in	the	recognition	of	apoptotic	and	necrotic	
cells	 by	 non-professional	 phagocytes,	 including	molecules	 that	
may	confer	tissue-specific	function.	Given	the	impact	of	effero-
cytosis	on	 the	pathogenesis	of	autoimmunity,	 tissue	 injury	and	
tumor	 biology	 (211),	 molecules	 driving	 efficient	 clearance	 of	
dead	cells	are	valid	therapeutic	targets.	Hepatocyte	efferocytosis,	
accomplished	at	least	in	part	by	the	liver-restricted	ASGPR,	is	an	
attractive	 target	 for	 therapeutic	 intervention	 for	a	multitude	of	
liver	diseases.

eTHiCS STATeMeNT

This	study	was	carried	out	in	accordance	with	the	recommenda-
tions	of	LREC	06/Q2708/11,	South	Birmingham,	Birmingham,	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


10

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

UK.	All	 subjects	gave	written	 informed	consent	 in	accordance	
with	the	Declaration	of	Helsinki.

AuTHOR CONTRiBuTiONS

SPD,	GMR,	and	ZS	performed	stains	for	immunohistochemistry	
and	immunofluorescence	for	illustrative	purposes,	and	wrote	the	
manuscript.

ACKNOwLeDgMeNTS

We	thank	Janine	Fear	and	Bridget	Gunson	for	excellent	labora-
tory	 and	 patient	 data	management,	 and	 the	 staff	 and	 patients	

at	 the	Queen	Elizabeth	Hospital	Liver	 and	Hepatobiliary	Unit,	
Birmingham,	UK.

FuNDiNg

SPD	is	supported	by	a	PhD	studentship	from	the	Medical	Research	
Council	 (MRC)	 Centre	 for	 Immune	 Regulation,	 University	 of	
Birmingham,	UK.	GMR	 is	 supported	by	 the	National	 Institute	
for	 Health	 Research	 (NIHR)	 Birmingham	 Liver	 Biomedical	
Research	Unit,	University	of	Birmingham,	UK.	ZS	is	supported	
by	a	Royal	Society	Dorothy	Hodgkin	Fellowship,	the	Wellcome	
Trust	Institutional	Strategic	Support	Fund,	and	MRC	Confidence	
in	Concept	award.

ReFeReNCeS

1.	 Arandjelovic	S,	Ravichandran	KS.	Phagocytosis	of	apoptotic	cells	in	homeo-
stasis.	Nat Immunol	(2015)	16:907–17.	doi:10.1038/ni.3253	

2.	 Guidotti	 LG,	 Inverso	 D,	 Sironi	 L,	 Di	 Lucia	 P,	 Fioravanti	 J,	 Ganzer	 L,		
et  al.	 Immunosurveillance	 of	 the	 liver	 by	 intravascular	 effector	 CD8(+)	
T cells.	Cell	(2015)	161:486–500.	doi:10.1016/j.cell.2015.03.005	

3.	 Warren	 A,	 Le	 Couteur	 DG,	 Fraser	 R,	 Bowen	 DG,	 McCaughan	 GW,		
Bertolino	P.	T lymphocytes	interact	with	hepatocytes	through	fenestrations	
in	murine	liver	sinusoidal	endothelial	cells.	Hepatology	(2006)	44:1182–90.	
doi:10.1002/hep.21378	

4.	 Edwards	 S,	 Lalor	 PF,	 Nash	 GB,	 Rainger	 GE,	 Adams	 DH.	 Lymphocyte	
traffic	 through	 sinusoidal	 endothelial	 cells	 is	 regulated	 by	 hepatocytes.	
Hepatology	(2005)	41:451–9.	doi:10.1002/hep.20585	

5.	 Krenkel	O,	Tacke	F.	Liver	macrophages	 in	 tissue	homeostasis	and	disease.		
Nat Rev Immunol	(2017)	17:306–21.	doi:10.1038/nri.2017.11	

6.	 Tacke	 F.	 Targeting	 hepatic	 macrophages	 to	 treat	 liver	 diseases.	 J Hepatol	
(2017)	66:1300–12.	doi:10.1016/j.jhep.2017.02.026	

7.	 Canbay	A,	Taimr	P,	Torok	N,	Higuchi	H,	Friedman	S,	Gores	GJ.	Apoptotic	
body	engulfment	by	 a	human	 stellate	 cell	 line	 is	profibrogenic.	Lab Invest	
(2003)	83:655–63.	doi:10.1097/01.LAB.0000069036.63405.5C	

8.	 Rong	GH,	Yang	GX,	Ando	Y,	 Zhang	W,	He	XS,	 Leung	 PS,	 et  al.	Human	
intrahepatic	biliary	epithelial	cells	engulf	blebs	from	their	apoptotic	peers.	
Clin Exp Immunol	(2013)	172:95–103.	doi:10.1111/cei.12046	

9.	 Soji	T,	Murata	Y,	Ohira	A,	Nishizono	H,	Tanaka	M,	Herbert	DC.	Evidence	
that	 hepatocytes	 can	 phagocytize	 exogenous	 substances.	 Anat Rec	 (1992)	
233:543–6.	doi:10.1002/ar.1092330408	

10.	 Crispe	IN,	Dao	T,	Klugewitz	K,	Mehal	WZ,	Metz	DP.	The	liver	as	a	site	of	
T-cell	apoptosis:	graveyard,	or	killing	field?	Immunol Rev	(2000)	174:47–62.	
doi:10.1034/j.1600-0528.2002.017412.x	

11.	 Benseler	 V,	 Warren	 A,	 Vo	 M,	 Holz	 LE,	 Tay	 SS,	 Le	 Couteur	 DG,	 et  al.	
Hepatocyte	entry	leads	to	degradation	of	autoreactive	CD8	T cells.	Proc Natl 
Acad Sci U S A	(2011)	108:16735–40.	doi:10.1073/pnas.1112251108	

12.	 Guicciardi	ME,	Malhi	H,	Mott	JL,	Gores	GJ.	Apoptosis	and	necrosis	in	the	
liver.	Compr Physiol	(2013)	3:977–1010.	doi:10.1002/cphy.c120020

13.	 Malhi	H,	Gores	GJ,	Lemasters	JJ.	Apoptosis	and	necrosis	in	the	liver:	a	tale	of	
two	deaths?	Hepatology	(2006)	43:S31–44.	doi:10.1002/hep.21062	

14.	 Malhi	H,	Guicciardi	ME,	Gores	GJ.	Hepatocyte	death:	a	 clear	and	present	
danger.	Physiol Rev	(2010)	90:1165–94.	doi:10.1152/physrev.00061.2009	

15.	 Green	DR.	The	end	and	after:	how	dying	cells	impact	the	living	organism.	
Immunity	(2011)	35:441–4.	doi:10.1016/j.immuni.2011.10.003	

16.	 Elmore	 S.	 Apoptosis:	 a	 review	 of	 programmed	 cell	 death.	 Toxicol Pathol	
(2007)	35:495–516.	doi:10.1080/01926230701320337	

17.	 Kerr	JF,	Wyllie	AH,	Currie	AR.	Apoptosis:	a	basic	biological	phenomenon	
with	 wide-ranging	 implications	 in	 tissue	 kinetics.	 Br J Cancer	 (1972)	
26:239–57.	doi:10.1038/bjc.1972.33	

18.	 Strasser	A,	 Jost	PJ,	Nagata	S.	The	many	roles	of	FAS	receptor	 signaling	 in	
the	 immune	 system.	 Immunity	 (2009)	 30:180–92.	 doi:10.1016/j.immuni.	
2009.01.001	

19.	 Flusberg	DA,	Sorger	PK.	Surviving	apoptosis:	life-death	signaling	in	single	
cells.	Trends Cell Biol	(2015)	25:446–58.	doi:10.1016/j.tcb.2015.03.003	

20.	 Wong	WW,	Puthalakath	H.	Bcl-2	family	proteins:	the	sentinels	of	the	mito-
chondrial	 apoptosis	 pathway.	 IUBMB Life	 (2008)	 60:390–7.	 doi:10.1002/
iub.51	

21.	 Proskuryakov	 SY,	 Gabai	 VL,	 Konoplyannikov	 AG.	 Necrosis	 is	 an	 active	
and	controlled	form	of	programmed	cell	death.	Biochemistry (Mosc)	(2002)	
67:387–408.	doi:10.1023/A:1015289521275	

22.	 Trump	 BF,	 Berezesky	 IK,	 Chang	 SH,	 Phelps	 PC.	 The	 pathways	 of	 cell	
death:	 oncosis,	 apoptosis,	 and	 necrosis.	 Toxicol Pathol	 (1997)	 25:82–8.	
doi:10.1177/019262339702500116	

23.	 Leist	M,	Single	B,	Castoldi	AF,	Kuhnle	S,	Nicotera	P.	Intracellular	adenos-
ine	 triphosphate	 (ATP)	 concentration:	 a	 switch	 in	 the	decision	between	
apoptosis	 and	 necrosis.	 J Exp Med	 (1997)	 185:1481–6.	 doi:10.1084/jem.	
185.8.1481	

24.	 Majno	G,	Joris	I.	Apoptosis,	oncosis,	and	necrosis.	An	overview	of	cell	death.	
Am J Pathol	(1995)	146:3–15.	

25.	 Poon	IK,	Hulett	MD,	Parish	CR.	Molecular	mechanisms	of	 late	apoptotic/
necrotic	 cell	 clearance.	 Cell Death Differ	 (2010)	 17:381–97.	 doi:10.1038/
cdd.2009.195	

26.	 Li	MO,	 Sarkisian	MR,	Mehal	WZ,	 Rakic	 P,	 Flavell	 RA.	 Phosphatidylse-
rine	 receptor	 is	 required	 for	 clearance	 of	 apoptotic	 cells.	 Science	 (2003)	
302:1560–3.	doi:10.1126/science.1087621	

27.	 Fernandez-Castaneda	A,	Arandjelovic	S,	Stiles	TL,	Schlobach	RK,	Mowen	KA,		
Gonias	 SL,	 et  al.	 Identification	 of	 the	 low	 density	 lipoprotein	 (LDL)	
receptor-related	 protein-1	 interactome	 in	 central	 nervous	 system	myelin	
suggests	a	role	in	the	clearance	of	necrotic	cell	debris.	J Biol Chem	(2013)	
288:4538–48.	doi:10.1074/jbc.M112.384693	

28.	 Murphy	JE,	Tacon	D,	Tedbury	PR,	Hadden	JM,	Knowling	S,	Sawamura	T,	
et  al.	 LOX-1	 scavenger	 receptor	mediates	 calcium-dependent	 recognition	
of	 phosphatidylserine	 and	 apoptotic	 cells.	 Biochem J	 (2006)	 393:107–15.	
doi:10.1042/BJ20051166	

29.	 Chionna	A,	Panzarini	E,	Pagliara	P,	De	Luca	A,	Caforio	S,	Abbro	L,	et al.	
Hepatic	clearance	of	apoptotic	lymphocytes:	simply	removal	of	waste	cells?	
Eur J Histochem	(2003)	47:97–104.	doi:10.4081/813	

30.	 Brouckaert	 G,	 Kalai	 M,	 Krysko	 DV,	 Saelens	 X,	 Vercammen	 D,		
Ndlovu	 MN,	 et  al.	 Phagocytosis	 of	 necrotic	 cells	 by	 macrophages	 is	
phosphatidylserine	dependent	and	does	not	 induce	 inflammatory	cyto-
kine	 production.	 Mol Biol Cell	 (2004)	 15:1089–100.	 doi:10.1091/mbc.
E03-09-0668	

31.	 Guilliams	M,	Bruhns	P,	Saeys	Y,	Hammad	H,	Lambrecht	BN.	The	function	
of	Fcgamma	receptors	in	dendritic	cells	and	macrophages.	Nat Rev Immunol	
(2014)	14:94–108.	doi:10.1038/nri3666	

32.	 Fraser	DA,	Pisalyaput	K,	Tenner	AJ.	C1q	enhances	microglial	clearance	of	
apoptotic	neurons	and	neuronal	blebs,	 and	modulates	 subsequent	 inflam-
matory	cytokine	production.	J Neurochem	(2010)	112:733–43.	doi:10.1111/j.	
1471-4159.2009.06494.x	

33.	 Honore	C,	Hummelshoj	T,	Hansen	BE,	Madsen	HO,	Eggleton	P,	Garred	P.	
The	innate	immune	component	ficolin	3	(Hakata	antigen)	mediates	the	clear-
ance	of	late	apoptotic	cells.	Arthritis Rheum	(2007)	56:1598–607.	doi:10.1002/
art.22564	

34.	 Ogden	 CA,	 deCathelineau	 A,	 Hoffmann	 PR,	 Bratton	 D,	 Ghebrehiwet	 B,	
Fadok	VA,	et al.	C1q	and	mannose	binding	lectin	engagement	of	cell	surface	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/ni.3253
https://doi.org/10.1016/j.cell.2015.03.005
https://doi.org/10.1002/hep.21378
https://doi.org/10.1002/hep.20585
https://doi.org/10.1038/nri.2017.11
https://doi.org/10.1016/j.jhep.2017.02.026
https://doi.org/10.1097/01.LAB.0000069036.63405.5C
https://doi.org/10.1111/cei.12046
https://doi.org/10.1002/ar.1092330408
https://doi.org/10.1034/j.1600-0528.2002.017412.x
https://doi.org/10.1073/pnas.1112251108
https://doi.org/10.1002/cphy.c120020
https://doi.org/10.1002/hep.21062
https://doi.org/10.1152/physrev.00061.2009
https://doi.org/10.1016/j.immuni.2011.10.003
https://doi.org/10.1080/01926230701320337
https://doi.org/10.1038/bjc.1972.33
https://doi.org/10.1016/j.immuni.
2009.01.001
https://doi.org/10.1016/j.immuni.
2009.01.001
https://doi.org/10.1016/j.tcb.2015.03.003
https://doi.org/10.1002/iub.51
https://doi.org/10.1002/iub.51
https://doi.org/10.1023/A:1015289521275
https://doi.org/10.1177/019262339702500116
https://doi.org/10.1084/jem.
185.8.1481
https://doi.org/10.1084/jem.
185.8.1481
https://doi.org/10.1038/cdd.2009.195
https://doi.org/10.1038/cdd.2009.195
https://doi.org/10.1126/science.1087621
https://doi.org/10.1074/jbc.M112.384693
https://doi.org/10.1042/BJ20051166
https://doi.org/10.4081/813
https://doi.org/10.1091/mbc.E03-09-0668
https://doi.org/10.1091/mbc.E03-09-0668
https://doi.org/10.1038/nri3666
https://doi.org/10.1111/j.
1471-4159.2009.06494.x
https://doi.org/10.1111/j.
1471-4159.2009.06494.x
https://doi.org/10.1002/art.22564
https://doi.org/10.1002/art.22564


11

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

calreticulin	 and	CD91	 initiates	macropinocytosis	 and	uptake	 of	 apoptotic	
cells.	J Exp Med	(2001)	194:781–95.	doi:10.1084/jem.194.6.781	

35.	 Paidassi	 H,	 Tacnet-Delorme	 P,	 Verneret	 M,	 Gaboriaud	 C,	 Houen	 G,		
Duus	 K,	 et  al.	 Investigations	 on	 the	 C1q-calreticulin-phosphatidylserine	
interactions	 yield	 new	 insights	 into	 apoptotic	 cell	 recognition.	 J Mol Biol	
(2011)	408:277–90.	doi:10.1016/j.jmb.2011.02.029	

36.	 Jensen	ML,	Honore	C,	Hummelshoj	T,	Hansen	BE,	Madsen	HO,	Garred	P.	
Ficolin-2	 recognizes	DNA	and	participates	 in	 the	 clearance	 of	 dying	host	
cells.	Mol Immunol	(2007)	44:856–65.	doi:10.1016/j.molimm.2006.04.002	

37.	 Lawrence	T,	Willoughby	DA,	Gilroy	DW.	Anti-inflammatory	lipid	mediators	
and	insights	into	the	resolution	of	inflammation.	Nat Rev Immunol	(2002)	
2:787–95.	doi:10.1038/nri915	

38.	 Szondy	Z,	Sarang	Z,	Kiss	B,	Garabuczi	E,	Koroskenyi	K.	Anti-inflammatory	
mechanisms	 triggered	 by	 apoptotic	 cells	 during	 their	 clearance.	 Front 
Immunol	(2017)	8:909.	doi:10.3389/fimmu.2017.00909	

39.	 Brenner	C,	Galluzzi	L,	Kepp	O,	Kroemer	G.	Decoding	cell	death	signals	in	liver	
inflammation.	J Hepatol	(2013)	59:583–94.	doi:10.1016/j.jhep.2013.03.033	

40.	 Birge	 RB,	 Boeltz	 S,	 Kumar	 S,	 Carlson	 J,	Wanderley	 J,	 Calianese	 D,	 et  al.	
Phosphatidylserine	 is	 a	 global	 immunosuppressive	 signal	 in	 efferocytosis,	
infectious	disease,	and	cancer.	Cell Death Differ	(2016)	23:962–78.	doi:10.1038/	
cdd.2016.11	

41.	 Jiang	 L,	 Tixeira	 R,	 Caruso	 S,	 Atkin-Smith	 GK,	 Baxter	 AA,	 Paone	 S,		
et  al.	 Monitoring	 the	 progression	 of	 cell	 death	 and	 the	 disassembly	 of	
dying	 cells	 by	 flow	 cytometry.	 Nat Protoc	 (2016)	 11:655–63.	 doi:10.1038/
nprot.2016.028	

42.	 Bratosin	 D,	 Estaquier	 J,	 Ameisen	 JC,	 Aminoff	 D,	 Montreuil	 J.	Flow	
cytometric	 approach	 to	 the	 study	 of	 erythrophagocytosis:	 evidence	 for	
an	 alternative	 immunoglobulin-independent	 pathway	 in	 agammaglob-
ulinemic	 mice.	 J Immunol Methods	 (2002)	 265:133–43.	 doi:10.1016/
S0022-1759(02)00076-5	

43.	 Ramirez-Ortiz	 ZG,	 Pendergraft	 WF	 III,	 Prasad	 A,	 Byrne	 MH,	 Iram	 T,	
Blanchette	CJ,	 et  al.	The	 scavenger	 receptor	 SCARF1	mediates	 the	 clear-
ance	 of	 apoptotic	 cells	 and	 prevents	 autoimmunity.	 Nat Immunol	 (2013)	
14:917–26.	doi:10.1038/ni.2670	

44.	 Grandjean	CL,	Montalvao	 F,	Celli	 S,	Michonneau	D,	 Breart	 B,	Garcia	Z,		
et al.	 Intravital	 imaging	reveals	 improved	Kupffer	cell-mediated	phagocy-
tosis	as	a	mode	of	action	of	glycoengineered	anti-CD20	antibodies.	Sci Rep	
(2016)	6:34382.	doi:10.1038/srep34382	

45.	 Leers	MP,	Bjorklund	V,	Bjorklund	B,	Jornvall	H,	Nap	M.	An	immunohisto-
chemical	study	of	the	clearance	of	apoptotic	cellular	fragments.	Cell Mol Life 
Sci	(2002)	59:1358–65.	doi:10.1007/s00018-002-8513-8	

46.	 Wheeldon	EB,	Williams	 SM,	 Soames	AR,	 James	NH,	Roberts	RA.	Quan-
titation	 of	 apoptotic	 bodies	 in	 rat	 liver	 by	 in  situ	 end	 labelling	 (ISEL):	
correlation	with	morphology.	Toxicol Pathol	 (1995)	23:410–5.	doi:10.1177/	
019262339502300317	

47.	 Kyrylkova	 K,	 Kyryachenko	 S,	 Leid	M,	 Kioussi	 C.	 Detection	 of	 apoptosis	
by	 TUNEL	 assay.	 Methods Mol Biol	 (2012)	 887:41–7.	 doi:10.1007/978-1-	
61779-860-3_5	

48.	 Triantafyllou	E,	Pop	OT,	Possamai	LA,	Wilhelm	A,	Liaskou	E,	Singanayagam	A,		
et  al.	 MerTK	 expressing	 hepatic	 macrophages	 promote	 the	 resolution	 of	
inflammation	in	acute	liver	failure.	Gut	(2018)	67(2):333–47.		doi:10.1136/
gutjnl-2016-313615	

49.	 Poon	IK,	Lucas	CD,	Rossi	AG,	Ravichandran	KS.	Apoptotic	cell	clearance:	
basic	biology	and	therapeutic	potential.	Nat Rev Immunol	(2014)	14:166–80.	
doi:10.1038/nri3607	

50.	 Penberthy	 KK,	 Ravichandran	 KS.	 Apoptotic	 cell	 recognition	 receptors	
and	 scavenger	 receptors.	 Immunol Rev	 (2016)	 269:44–59.	 doi:10.1111/
imr.12376	

51.	 Armstrong	A,	Ravichandran	KS.	Phosphatidylserine	receptors:	what	is	the	
new	RAGE?	EMBO Rep	(2011)	12:287–8.	doi:10.1038/embor.2011.41	

52.	 Elliott	 MR,	 Ravichandran	 KS.	 The	 dynamics	 of	 apoptotic	 cell	 clearance.		
Dev Cell	(2016)	38:147–60.	doi:10.1016/j.devcel.2016.06.029	

53.	 Ravichandran	KS.	Find-me	and	eat-me	signals	 in	apoptotic	cell	clearance:	
progress	 and	 conundrums.	 J Exp Med	 (2010)	 207:1807–17.	 doi:10.1084/
jem.20101157	

54.	 Fadok	VA,	Voelker	DR,	Campbell	PA,	Cohen	JJ,	Bratton	DL,	Henson	PM.	
Exposure	 of	 phosphatidylserine	 on	 the	 surface	 of	 apoptotic	 lymphocytes	
triggers	 specific	 recognition	 and	 removal	 by	 macrophages.	 J Immunol	
(1992)	148:2207–16.	

55.	 Medina	CB,	Ravichandran	KS.	Do	not	let	death	do	us	part:	‘find-me’	signals	
in	communication	between	dying	cells	and	the	phagocytes.	Cell Death Differ	
(2016)	23:979–89.	doi:10.1038/cdd.2016.13	

56.	 Park	 D,	 Tosello-Trampont	 AC,	 Elliott	 MR,	 Lu	 M,	 Haney	 LB,	 Ma	 Z,	
et al.	BAI1	is	an	engulfment	receptor	for	apoptotic	cells	upstream	of	the	
ELMO/Dock180/Rac	 module.	 Nature	 (2007)	 450:430–4.	 doi:10.1038/
nature06329	

57.	 Park	SY,	Kim	SY,	 Jung	MY,	Bae	DJ,	Kim	 IS.	Epidermal	 growth	 factor-like	
domain	repeat	of	stabilin-2	recognizes	phosphatidylserine	during	cell	corpse	
clearance.	Mol Cell Biol	(2008)	28:5288–98.	doi:10.1128/MCB.01993-07	

58.	 Park	SY,	Jung	MY,	Kim	HJ,	Lee	SJ,	Kim	SY,	Lee	BH,	et al.	Rapid	cell	corpse	
clearance	by	stabilin-2,	a	membrane	phosphatidylserine	receptor.	Cell Death 
Differ	(2008)	15:192–201.	doi:10.1038/sj.cdd.4402242	

59.	 Freeman	 GJ,	 Casasnovas	 JM,	 Umetsu	 DT,	 DeKruyff	 RH.	 TIM	 genes:		
a	family	of	cell	surface	phosphatidylserine	receptors	that	regulate	innate	and	
adaptive	 immunity.	 Immunol Rev	 (2010)	 235:172–89.	 doi:10.1111/j.0105-	
2896.2010.00903.x	

60.	 He	 M,	 Kubo	 H,	 Morimoto	 K,	 Fujino	 N,	 Suzuki	 T,	 Takahasi	 T,	 et  al.	 	
Receptor	for	advanced	glycation	end	products	binds	to	phosphatidylserine	
and	assists	in	the	clearance	of	apoptotic	cells.	EMBO Rep	(2011)	12:358–64.	
doi:10.1038/embor.2011.28	

61.	 Park	SY,	Jung	MY,	Lee	SJ,	Kang	KB,	Gratchev	A,	Riabov	V,	et al.	Stabilin-1	
mediates	 phosphatidylserine-dependent	 clearance	 of	 cell	 corpses	 in	 alter-
natively	activated	macrophages.	J Cell Sci	(2009)	122:3365–73.	doi:10.1242/
jcs.049569	

62.	 Hughes	 J,	 Liu	 Y,	 Van	 Damme	 J,	 Savill	 J.	Human	 glomerular	 mesangial	
cell	 phagocytosis	 of	 apoptotic	 neutrophils:	mediation	 by	 a	 novel	 CD36-
independent	 vitronectin	 receptor/thrombospondin	 recognition	 mech-
anism	 that	 is	 uncoupled	 from	 chemokine	 secretion.	 J Immunol	 (1997)	
158:4389–97.	

63.	 Sexton	 DW,	 Blaylock	 MG,	Walsh	 GM.	 Human	 alveolar	 epithelial	 cells	
engulf	apoptotic	eosinophils	by	means	of	integrin-	and	phosphatidylser-
ine	 receptor-dependent	 mechanisms:	 a	 process	 upregulated	 by	 dexa-
methasone.	 J Allergy Clin Immunol	 (2001)	 108:962–9.	 doi:10.1067/mai.	
2001.119414	

64.	 Monks	 J,	 Rosner	 D,	 Geske	 FJ,	 Lehman	 L,	 Hanson	 L,	 Neville	 MC,	 et  al.	
Epithelial	cells	as	phagocytes:	apoptotic	epithelial	cells	are	engulfed	by	mam-
mary	alveolar	epithelial	cells	and	repress	inflammatory	mediator	release.	Cell 
Death Differ	(2005)	12:107–14.	doi:10.1038/sj.cdd.4401517	

65.	 Liu	G,	Wang	J,	Park	YJ,	Tsuruta	Y,	Lorne	EF,	Zhao	X,	et al.	High	mobility	
group	 protein-1	 inhibits	 phagocytosis	 of	 apoptotic	 neutrophils	 through	
binding	to	phosphatidylserine.	J Immunol	 (2008)	181:4240–6.	doi:10.4049/
jimmunol.181.6.4240	

66.	 Banerjee	 S,	 de	 Freitas	 A,	 Friggeri	 A,	 Zmijewski	 JW,	 Liu	 G,	 Abraham	 E.	
Intracellular	 HMGB1	 negatively	 regulates	 efferocytosis.	 J Immunol	 (2011)	
187:4686–94.	doi:10.4049/jimmunol.1101500	

67.	 Andersen	MH,	 Berglund	 L,	 Rasmussen	 JT,	 Petersen	 TE.	 Bovine	 PAS-6/7	
binds	 alpha	 v	 beta	 5	 integrins	 and	 anionic	 phospholipids	 through	 two	
domains.	Biochemistry	(1997)	36:5441–6.	doi:10.1021/bi963119m	

68.	 Hanayama	 R,	 Tanaka	 M,	 Miwa	 K,	 Shinohara	 A,	 Iwamatsu	 A,	 Nagata	 S.	
Identification	 of	 a	 factor	 that	 links	 apoptotic	 cells	 to	 phagocytes.	 Nature	
(2002)	417:182–7.	doi:10.1038/417182a	

69.	 Savill	 J,	 Dransfield	 I,	 Hogg	 N,	 Haslett	 C.	 Vitronectin	 receptor-mediated	
phagocytosis	 of	 cells	 undergoing	 apoptosis.	 Nature	 (1990)	 343:170–3.	
doi:10.1038/343170a0	

70.	 Akakura	S,	Singh	S,	Spataro	M,	Akakura	R,	Kim	JI,	Albert	ML,	et al.	The	
opsonin	 MFG-E8	 is	 a	 ligand	 for	 the	 alphavbeta5	 integrin	 and	 triggers	
DOCK180-dependent	Rac1	activation	for	the	phagocytosis	of	apoptotic	cells.	
Exp Cell Res	(2004)	292:403–16.	doi:10.1016/j.yexcr.2003.09.011	

71.	 Albert	 ML,	 Kim	 JI,	 Birge	 RB.	 alphavbeta5	 integrin	 recruits	 the	 CrkII-
Dock180-rac1	 complex	 for	 phagocytosis	 of	 apoptotic	 cells.	 Nat Cell Biol	
(2000)	2:899–905.	doi:10.1038/35046549	

72.	 Albert	ML,	Pearce	SF,	Francisco	LM,	Sauter	B,	Roy	P,	Silverstein	RL,	et al.	
Immature	 dendritic	 cells	 phagocytose	 apoptotic	 cells	 via	 alphavbeta5	 and	
CD36,	 and	 cross-present	 antigens	 to	 cytotoxic	T  lymphocytes.	 J Exp Med	
(1998)	188:1359–68.	doi:10.1084/jem.188.7.1359	

73.	 Lemke	G,	Burstyn-Cohen	T.	TAM	receptors	and	the	clearance	of	apoptotic	
cells.	Ann N Y Acad Sci	(2010)	1209:23–9.	doi:10.1111/j.1749-6632.2010.	
05744.x	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1084/jem.194.6.781
https://doi.org/10.1016/j.jmb.2011.02.029
https://doi.org/10.1016/j.molimm.2006.04.002
https://doi.org/10.1038/nri915
https://doi.org/10.3389/fimmu.2017.00909
https://doi.org/10.1016/j.jhep.2013.03.033
https://doi.org/10.1038/cdd.2016.11
https://doi.org/10.1038/cdd.2016.11
https://doi.org/10.1038/nprot.2016.028
https://doi.org/10.1038/nprot.2016.028
https://doi.org/10.1016/S0022-1759(02)00076-5
https://doi.org/10.1016/S0022-1759(02)00076-5
https://doi.org/10.1038/ni.2670
https://doi.org/10.1038/srep34382
https://doi.org/10.1007/s00018-002-8513-8
https://doi.org/10.1177/
019262339502300317
https://doi.org/10.1177/
019262339502300317
https://doi.org/10.1007/978-1-
61779-860-3_5
https://doi.org/10.1007/978-1-
61779-860-3_5
https://doi.org/10.1136/gutjnl-2016-
313615
https://doi.org/10.1136/gutjnl-2016-
313615
https://doi.org/10.1038/nri3607
https://doi.org/10.1111/imr.12376
https://doi.org/10.1111/imr.12376
https://doi.org/10.1038/embor.2011.41
https://doi.org/10.1016/j.devcel.2016.06.029
https://doi.org/10.1084/jem.20101157
https://doi.org/10.1084/jem.20101157
https://doi.org/10.1038/cdd.2016.13
https://doi.org/10.1038/nature06329
https://doi.org/10.1038/nature06329
https://doi.org/10.1128/MCB.01993-07
https://doi.org/10.1038/sj.cdd.4402242
https://doi.org/10.1111/j.0105-
2896.2010.00903.x
https://doi.org/10.1111/j.0105-
2896.2010.00903.x
https://doi.org/10.1038/embor.2011.28
https://doi.org/10.1242/jcs.049569
https://doi.org/10.1242/jcs.049569
https://doi.org/10.1067/mai.
2001.119414
https://doi.org/10.1067/mai.
2001.119414
https://doi.org/10.1038/sj.cdd.4401517
https://doi.org/10.4049/jimmunol.181.6.4240
https://doi.org/10.4049/jimmunol.181.6.4240
https://doi.org/10.4049/jimmunol.1101500
https://doi.org/10.1021/bi963119m
https://doi.org/10.1038/417182a
https://doi.org/10.1038/343170a0
https://doi.org/10.1016/j.yexcr.2003.09.011
https://doi.org/10.1038/35046549
https://doi.org/10.1084/jem.188.7.1359
https://doi.org/10.1111/j.1749-6632.2010.
05744.x
https://doi.org/10.1111/j.1749-6632.2010.
05744.x


12

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

74.	 Lu	 Q,	 Gore	 M,	 Zhang	 Q,	 Camenisch	 T,	 Boast	 S,	 Casagranda	 F,	 et  al.	 	
Tyro-3	 family	 receptors	 are	 essential	 regulators	 of	mammalian	 spermato-
genesis.	Nature	(1999)	398:723–8.	doi:10.1038/19554	

75.	 Nagata	 K,	 Ohashi	 K,	 Nakano	 T,	 Arita	 H,	 Zong	 C,	 Hanafusa	 H,	 et  al.	
Identification	of	the	product	of	growth	arrest-specific	gene	6	as	a	common	
ligand	for	Axl,	Sky,	and	Mer	receptor	tyrosine	kinases.	J Biol Chem	 (1996)	
271:30022–7.	

76.	 Xiong	W,	Chen	Y,	Wang	H,	Wang	H,	Wu	H,	Lu	Q,	et al.	Gas6	and	the	Tyro	3		
receptor	 tyrosine	 kinase	 subfamily	 regulate	 the	 phagocytic	 function	 of	
Sertoli	cells.	Reproduction	(2008)	135:77–87.	doi:10.1530/REP-07-0287	

77.	 Das	 S,	 Sarkar	A,	Ryan	KA,	 Fox	 S,	 Berger	AH,	 Juncadella	 IJ,	 et  al.	 Brain	
angiogenesis	inhibitor	1	is	expressed	by	gastric	phagocytes	during	infection	
with	Helicobacter pylori	 and	mediates	 the	 recognition	and	engulfment	of	
human	 apoptotic	 gastric	 epithelial	 cells.	 FASEB J	 (2014)	 28:2214–24.	
doi:10.1096/fj.13-243238	

78.	 Mevorach	 D,	 Mascarenhas	 JO,	 Gershov	 D,	 Elkon	 KB.	 Complement-
dependent	clearance	of	apoptotic	cells	by	human	macrophages.	J Exp Med	
(1998)	188:2313–20.	doi:10.1084/jem.188.12.2313	

79.	 Patel	PC,	Harrison	RE.	Membrane	ruffles	capture	C3bi-opsonized	particles	
in	activated	macrophages.	Mol Biol Cell	(2008)	19:4628–39.	doi:10.1091/mbc.
E08-02-0223	

80.	 Devitt	A,	Moffatt	OD,	Raykundalia	C,	Capra	JD,	Simmons	DL,	Gregory	CD.	
Human	 CD14	 mediates	 recognition	 and	 phagocytosis	 of	 apoptotic	 cells.	
Nature	(1998)	392:505–9.	doi:10.1038/33169	

81.	 Devitt	 A,	 Pierce	 S,	 Oldreive	 C,	 Shingler	 WH,	 Gregory	 CD.	 CD14-
dependent	 clearance	of	 apoptotic	 cells	by	human	macrophages:	 the	 role	
of	 phosphatidylserine.	Cell Death Differ	 (2003)	 10:371–82.	 doi:10.1038/
sj.cdd.4401168	

82.	 Navazo	MD,	Daviet	L,	Savill	J,	Ren	Y,	Leung	LL,	McGregor	JL.	Identification	
of	 a	 domain	 (155–183)	 on	 CD36	 implicated	 in	 the	 phagocytosis	 of	
apoptotic	 neutrophils.	 J Biol Chem	 (1996)	 271:15381–5.	 doi:10.1074/
jbc.271.26.15381	

83.	 Savill	 J,	Hogg	N,	Haslett	C.	Macrophage	 vitronectin	 receptor,	CD36,	 and	
thrombospondin	 cooperate	 in	 recognition	 of	 neutrophils	 undergoing	
programmed	 cell	 death.	 Chest	 (1991)	 99:6s–7s.	 doi:10.1378/chest.99.3_	
Supplement.6S-a	

84.	 Savill	 J,	 Hogg	 N,	 Ren	 Y,	 Haslett	 C.	 Thrombospondin	 cooperates	 with	
CD36	and	 the	vitronectin	 receptor	 in	macrophage	 recognition	of	neutro-
phils	 undergoing	 apoptosis.	 J Clin Invest	 (1992)	 90:1513–22.	 doi:10.1172/
JCI116019	

85.	 Zhang	JG,	Czabotar	PE,	Policheni	AN,	Caminschi	I,	Wan	SS,	Kitsoulis	S,		
et al.	The	dendritic	cell	receptor	Clec9A	binds	damaged	cells	via	exposed	
actin	filaments.	 Immunity	 (2012)	36:646–57.	doi:10.1016/j.immuni.2012.	
03.009	

86.	 Sancho	D,	Joffre	OP,	Keller	AM,	Rogers	NC,	Martinez	D,	Hernanz-Falcon	P,		
et  al.	 Identification	 of	 a	 dendritic	 cell	 receptor	 that	 couples	 sensing	 of	
necrosis	to	immunity.	Nature	(2009)	458:899–903.	doi:10.1038/nature07750	

87.	 Sambrano	 GR,	 Steinberg	 D.	 Recognition	 of	 oxidatively	 damaged	 and	
apoptotic	 cells	 by	 an	 oxidized	 low	density	 lipoprotein	 receptor	 on	mouse	
peritoneal	macrophages:	 role	 of	membrane	 phosphatidylserine.	 Proc Natl 
Acad Sci U S A	(1995)	92:1396–400.	doi:10.1073/pnas.92.5.1396	

88.	 Wermeling	F,	Chen	Y,	Pikkarainen	T,	Scheynius	A,	Winqvist	O,	Izui	S,	et al.	
Class	A	scavenger	 receptors	 regulate	 tolerance	against	apoptotic	cells,	 and	
autoantibodies	against	these	receptors	are	predictive	of	systemic	lupus.	J Exp 
Med	(2007)	204:2259–65.	doi:10.1084/jem.20070600	

89.	 Caberoy	NB,	Zhou	Y,	Li	W.	Tubby	and	tubby-like	protein	1	are	new	MerTK	
ligands	 for	 phagocytosis.	 EMBO J	 (2010)	 29:3898–910.	 doi:10.1038/
emboj.2010.265	

90.	 Caberoy	 NB,	 Alvarado	 G,	 Li	W.	 Tubby	 regulates	microglial	 phagocytosis	
through	 MerTK.	 J Neuroimmunol	 (2012)	 252:40–8.	 doi:10.1016/j.jneuroim.	
2012.07.009	

91.	 Fadok	VA,	Bratton	DL,	Rose	DM,	Pearson	A,	Ezekewitz	RA,	Henson	PM.		
A	 receptor	 for	 phosphatidylserine-specific	 clearance	 of	 apoptotic	 cells.	
Nature	(2000)	405:85–90.	doi:10.1038/35011084	

92.	 Prabagar	MG,	Do	Y,	 Ryu	 S,	 Park	 JY,	 Choi	HJ,	 Choi	WS,	 et  al.	 SIGN-R1,		
a	C-type	lectin,	enhances	apoptotic	cell	clearance	through	the	complement	
deposition	pathway	by	interacting	with	C1q	in	the	spleen.	Cell Death Differ	
(2013)	20:535–45.	doi:10.1038/cdd.2012.160	

93.	 Nakayama	M,	 Akiba	 H,	 Takeda	 K,	 Kojima	 Y,	 Hashiguchi	M,	 Azuma	M,		
et al.	Tim-3	mediates	phagocytosis	of	apoptotic	cells	and	cross-presentation.	
Blood	(2009)	113:3821–30.	doi:10.1182/blood-2008-10-185884	

94.	 Miyanishi	 M,	 Tada	 K,	 Koike	 M,	 Uchiyama	 Y,	 Kitamura	 T,	 Nagata	 S.	
Identification	 of	 Tim4	 as	 a	 phosphatidylserine	 receptor.	 Nature	 (2007)	
450:435–9.	doi:10.1038/nature06307	

95.	 Nandrot	EF,	Anand	M,	Almeida	D,	Atabai	K,	Sheppard	D,	Finnemann	SC.	
Essential	role	for	MFG-E8	as	ligand	for	alphavbeta5	integrin	in	diurnal	reti-
nal	phagocytosis.	Proc Natl Acad Sci U S A	(2007)	104:12005–10.	doi:10.1073/
pnas.0704756104	

96.	 Dini	 L,	 Autuori	 F,	 Lentini	 A,	 Oliverio	 S,	 Piacentini	 M.	The	 clearance	 of	
apoptotic	 cells	 in	 the	 liver	 is	mediated	 by	 the	 asialoglycoprotein	 receptor.	
FEBS Lett	(1992)	296:174–8.	doi:10.1016/0014-5793(92)80373-O	

97.	 McVicker	BL,	Tuma	DJ,	Kubik	JA,	Hindemith	AM,	Baldwin	CR,	Casey	CA.		
The	 effect	 of	 ethanol	 on	 asialoglycoprotein	 receptor-mediated	 phagocy-
tosis	 of	 apoptotic	 cells	 by	 rat	 hepatocytes.	Hepatology	 (2002)	 36:1478–87.	
doi:10.1002/hep.1840360625	

98.	 Ryeom	SW,	Sparrow	JR,	Silverstein	RL.	CD36	participates	in	the	phagocy-
tosis	of	rod	outer	segments	by	retinal	pigment	epithelium.	J Cell Sci	(1996)	
109(Pt	2):387–95.	

99.	 Ichimura	 T,	 Asseldonk	 EJ,	 Humphreys	 BD,	 Gunaratnam	 L,	 Duffield	 JS,	
Bonventre	 JV.	 Kidney	 injury	molecule-1	 is	 a	 phosphatidylserine	 receptor	
that	confers	a	phagocytic	phenotype	on	epithelial	cells.	J Clin Invest	(2008)	
118:1657–68.	doi:10.1172/JCI34487	

100.	 Oka	K,	 Sawamura	T,	Kikuta	K,	 Itokawa	 S,	Kume	N,	Kita	T,	 et  al.	 Lectin-
like	 oxidized	 low-density	 lipoprotein	 receptor	 1	mediates	 phagocytosis	 of	
aged/apoptotic	 cells	 in	 endothelial	 cells.	Proc Natl Acad Sci U S A	 (1998)	
95:9535–40.	doi:10.1073/pnas.95.16.9535	

101.	 Lee	 SJ,	 Park	 SY,	 Jung	 MY,	 Bae	 SM,	 Kim	 IS.	 Mechanism	 for		
phosphatidylserine-dependent	 erythrophagocytosis	 in	 mouse	 liver.	 Blood	
(2011)	117:5215–23.	doi:10.1182/blood-2010-10-313239	

102.	 Lemke	 G.	 Biology	 of	 the	 TAM	 receptors.	 Cold Spring Harb Perspect Biol	
(2013)	5:a009076.	doi:10.1101/cshperspect.a009076	

103.	 Qi	N,	Liu	P,	Zhang	Y,	Wu	H,	Chen	Y,	Han	D.	Development	of	a	spontaneous	
liver	 disease	 resembling	 autoimmune	 hepatitis	 in	mice	 lacking	 tyro3,	 axl	
and	mer	receptor	tyrosine	kinases.	PLoS One	(2013)	8:e66604.	doi:10.1371/
journal.pone.0066604	

104.	 Hafizi	 S,	 Dahlback	 B.	 Gas6	 and	 protein	 S.	 Vitamin	 K-dependent	 ligands	
for	the	Axl	receptor	tyrosine	kinase	subfamily.	FEBS J	(2006)	273:5231–44.	
doi:10.1111/j.1742-4658.2006.05529.x	

105.	 Stitt	 TN,	 Conn	 G,	 Gore	 M,	 Lai	 C,	 Bruno	 J,	 Radziejewski	 C,	 et  al.	 The	
anticoagulation	 factor	 protein	 S	 and	 its	 relative,	Gas6,	 are	 ligands	 for	 the	
Tyro	 3/Axl	 family	 of	 receptor	 tyrosine	 kinases.	 Cell	 (1995)	 80:661–70.	
doi:10.1016/0092-8674(95)90520-0	

106.	 Andersen	 MH,	 Graversen	 H,	 Fedosov	 SN,	 Petersen	 TE,	 Rasmussen	 JT.	
Functional	analyses	of	two	cellular	binding	domains	of	bovine	lactadherin.	
Biochemistry	(2000)	39:6200–6.	doi:10.1021/bi992221r	

107.	 Nauta	AJ,	 Trouw	 LA,	Daha	MR,	 Tijsma	O,	Nieuwland	R,	 Schwaeble	WJ,		
et al.	Direct	binding	of	C1q	to	apoptotic	cells	and	cell	blebs	 induces	com-
plement	 activation.	 Eur J Immunol	 (2002)	 32:1726–36.	 doi:10.1002/1521-	
4141(200206)32:6<1726::AID-IMMU1726>3.0.CO;2-R	

108.	 Elliott	 MR,	 Zheng	 S,	 Park	 D,	 Woodson	 RI,	 Reardon	 MA,	 Juncadella	 IJ,		
et al.	Unexpected	requirement	 for	ELMO1	in	clearance	of	apoptotic	germ	
cells	in vivo.	Nature	(2010)	467:333–7.	doi:10.1038/nature09356	

109.	 Kim	S,	 Park	 SY,	Kim	SY,	Bae	DJ,	 Pyo	 JH,	Hong	M,	 et  al.	Cross	 talk	 bet-
ween	engulfment	receptors	stabilin-2	and	integrin	alphavbeta5	orchestrates	
engulfment	 of	 phosphatidylserine-exposed	 erythrocytes.	 Mol Cell Biol	
(2012)	32:2698–708.	doi:10.1128/MCB.06743-11	

110.	 Gumienny	TL,	Brugnera	E,	Tosello-Trampont	AC,	Kinchen	JM,	Haney	LB,	
Nishiwaki	K,	et al.	CED-12/ELMO,	a	novel	member	of	the	CrkII/Dock180/
Rac	pathway,	is	required	for	phagocytosis	and	cell	migration.	Cell	(2001)	
107:27–41.	doi:10.1016/S0092-8674(01)00520-7

111.	 Brugnera	E,	Haney	L,	Grimsley	C,	Lu	M,	Walk	SF,	Tosello-Trampont	AC,	
et al.	Unconventional	Rac-GEF	activity	is	mediated	through	the	Dock180-
ELMO	complex.	Nat Cell Biol	(2002)	4:574–82.	doi:10.1038/ncb824

112.	 Park	SY,	Kang	KB,	Thapa	N,	Kim	SY,	Lee	SJ,	Kim	IS.	Requirement	of	adaptor	
protein	 GULP	 during	 stabilin-2-mediated	 cell	 corpse	 engulfment.	 J Biol 
Chem	(2008)	283:10593–600.	doi:10.1074/jbc.M709105200	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/19554
https://doi.org/10.1530/REP-07-0287
https://doi.org/10.1096/fj.13-243238
https://doi.org/10.1084/jem.188.12.2313
https://doi.org/10.1091/mbc.E08-02-0223
https://doi.org/10.1091/mbc.E08-02-0223
https://doi.org/10.1038/33169
https://doi.org/10.1038/sj.cdd.4401168
https://doi.org/10.1038/sj.cdd.4401168
https://doi.org/10.1074/jbc.271.26.15381
https://doi.org/10.1074/jbc.271.26.15381
https://doi.org/10.1378/chest.99.3_
Supplement.6S-a
https://doi.org/10.1378/chest.99.3_
Supplement.6S-a
https://doi.org/10.1172/JCI116019
https://doi.org/10.1172/JCI116019
https://doi.org/10.1016/j.immuni.2012.
03.009
https://doi.org/10.1016/j.immuni.2012.
03.009
https://doi.org/10.1038/nature07750
https://doi.org/10.1073/pnas.92.5.1396
https://doi.org/10.1084/jem.20070600
https://doi.org/10.1038/emboj.2010.265
https://doi.org/10.1038/emboj.2010.265
https://doi.org/10.1016/j.jneuroim.2012.07.009
https://doi.org/10.1016/j.jneuroim.2012.07.009
https://doi.org/10.1038/35011084
https://doi.org/10.1038/cdd.2012.160
https://doi.org/10.1182/blood-2008-10-185884
https://doi.org/10.1038/nature06307
https://doi.org/10.1073/pnas.0704756104
https://doi.org/10.1073/pnas.0704756104
https://doi.org/10.1016/0014-5793(92)80373-O
https://doi.org/10.1002/hep.1840360625
https://doi.org/10.1172/JCI34487
https://doi.org/10.1073/pnas.95.16.9535
https://doi.org/10.1182/blood-2010-10-313239
https://doi.org/10.1101/cshperspect.a009076
https://doi.org/10.1371/journal.pone.0066604
https://doi.org/10.1371/journal.pone.0066604
https://doi.org/10.1111/j.1742-4658.2006.05529.x
https://doi.org/10.1016/0092-8674(95)90520-0
https://doi.org/10.1021/bi992221r
https://doi.org/10.1002/1521-
4141(200206)32:6 < 1726::AID-IMMU1726 > 3.0.CO;2-R
https://doi.org/10.1002/1521-
4141(200206)32:6 < 1726::AID-IMMU1726 > 3.0.CO;2-R
https://doi.org/10.1038/nature09356
https://doi.org/10.1128/MCB.06743-11
https://doi.org/10.1016/S0092-8674(01)00520-7
https://doi.org/10.1038/ncb824
https://doi.org/10.1074/jbc.M709105200


13

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

113.	 Park	SY,	Kim	SY,	Kang	KB,	Kim	IS.	Adaptor	protein	GULP	is	 involved	 in	
stabilin-1-mediated	 phagocytosis.	 Biochem Biophys Res Commun	 (2010)	
398:467–72.	doi:10.1016/j.bbrc.2010.06.101	

114.	 Marques-da-Silva	C,	Burnstock	G,	Ojcius	DM,	Coutinho-Silva	R.	Purinergic	
receptor	 agonists	 modulate	 phagocytosis	 and	 clearance	 of	 apoptotic	 cells	
in	 macrophages.	 Immunobiology	 (2011)	 216:1–11.	 doi:10.1016/j.imbio.	
2010.03.010	

115.	 Elliott	MR,	Chekeni	FB,	Trampont	PC,	Lazarowski	ER,	Kadl	A,	Walk	SF,		
et  al.	 Nucleotides	 released	 by	 apoptotic	 cells	 act	 as	 a	 find-me	 signal	 to	
promote	 phagocytic	 clearance.	 Nature	 (2009)	 461:282–6.	 doi:10.1038/
nature08296	

116.	 A-Gonzalez	 N,	 Bensinger	 SJ,	 Hong	 C,	 Beceiro	 S,	 Bradley	MN,	 Zelcer	 N,	
et  al.	Apoptotic	 cells	 promote	 their	 own	 clearance	 and	 immune	 tolerance	
through	activation	of	the	nuclear	receptor	LXR.	Immunity	(2009)	31:245–58.	
doi:10.1016/j.immuni.2009.06.018	

117.	 Chen	Q,	Chen	J,	Chen	J,	Lu	XJ.	Molecular	and	functional	characterization	
of	 liver	X	 receptor	 in	 ayu,	Plecoglossus altivelis:	 regulator	of	 inflammation	
and	 efferocytosis.	 Dev Comp Immunol	 (2016)	 65:358–68.	 doi:10.1016/j.
dci.2016.08.007	

118.	 A-Gonzalez	 N,	 Hidalgo	 A.	 Nuclear	 receptors	 and	 clearance	 of	 apoptotic	
cells:	 stimulating	 the	macrophage’s	 appetite.	Front Immunol	 (2014)	 5:211.	
doi:10.3389/fimmu.2014.00211	

119.	 Pawar	A,	Botolin	D,	Mangelsdorf	DJ,	Jump	DB.	The	role	of	liver	X	receptor-	
alpha	 in	 the	 fatty	 acid	 regulation	 of	 hepatic	 gene	 expression.	 J Biol Chem	
(2003)	278:40736–43.	doi:10.1074/jbc.M307973200	

120.	 Diao	 J,	 Michalak	 TI.	 Composition,	 antigenic	 properties	 and	 hepatocyte	
surface	 expression	 of	 the	woodchuck	 asialoglycoprotein	 receptor.	 J Recept 
Signal Transduct Res	(1996)	16:243–71.	doi:10.3109/10799899609039951	

121.	 Poralla	T,	Treichel	U,	Lohr	H,	Fleischer	B.	The	asialoglycoprotein	receptor	
as	 target	 structure	 in	 autoimmune	 liver	 diseases.	 Semin Liver Dis	 (1991)	
11:215–22.	doi:10.1055/s-2008-1040439	

122.	 Treichel	U,	 Poralla	 T,	Hess	G,	Manns	M,	Meyer	 zum	 Büschenfelde	 KH.		
Autoantibodies	 to	 human	 asialoglycoprotein	 receptor	 in	 autoimmune-	
type	 chronic	 hepatitis.	 Hepatology	 (1990)	 11:606–12.	 doi:10.1002/hep.	
1840110413	

123.	 Kang	 JW,	 Lee	 SM.	 Resolvin	 D1	 protects	 the	 liver	 from	 ischemia/
reperfusion	 injury	 by	 enhancing	 M2	 macrophage	 polarization	 and	
efferocytosis.	Biochim Biophys Acta	 (2016)	 1861:1025–35.	 doi:10.1016/j.
bbalip.2016.06.002	

124.	 Guo	 F,	 Ding	 Y,	 Caberoy	 N,	 Alvarado	 G,	Wang	 F,	 Chen	 R,	 et  al.	 ABCF1	
extrinsically	regulates	retinal	pigment	epithelial	cell	phagocytosis.	Mol Biol 
Cell	(2015)	26:2311–20.	doi:10.1091/mbc.E14-09-1343	

125.	 Kojima	Y,	Volkmer	 JP,	McKenna	K,	Civelek	M,	Lusis	AJ,	Miller	CL,	 et  al.	
CD47-blocking	antibodies	restore	phagocytosis	and	prevent	atherosclerosis.	
Nature	(2016)	536:86–90.	doi:10.1038/nature18935	

126.	 Majeti	R,	Chao	MP,	Alizadeh	AA,	Pang	WW,	Jaiswal	S,	Gibbs	KD	Jr,	et al.		
CD47	 is	 an	 adverse	 prognostic	 factor	 and	 therapeutic	 antibody	 target	
on	 human	 acute	 myeloid	 leukemia	 stem	 cells.	 Cell	 (2009)	 138:286–99.	
doi:10.1016/j.cell.2009.05.045	

127.	 Gude	 DR,	 Alvarez	 SE,	 Paugh	 SW,	 Mitra	 P,	 Yu	 J,	 Griffiths	 R,	 et  al.	 	
Apoptosis	induces	expression	of	sphingosine	kinase	1	to	release	sphingosine-	
1-phosphate	 as	 a	 “come-and-get-me”	 signal.	 FASEB J	 (2008)	 22:2629–38.		
doi:10.1096/fj.08-107169	

128.	 Truman	LA,	Ford	CA,	Pasikowska	M,	Pound	JD,	Wilkinson	SJ,	Dumitriu	IE,		
et al.	CX3CL1/fractalkine	is	released	from	apoptotic	lymphocytes	to	stimu-
late	macrophage	chemotaxis.	Blood	(2008)	112:5026–36.	doi:10.1182/blood-	
2008-06-162404	

129.	 Korns	D,	 Frasch	 SC,	 Fernandez-Boyanapalli	 R,	Henson	 PM,	 Bratton	DL.	
Modulation	 of	macrophage	 efferocytosis	 in	 inflammation.	Front Immunol	
(2011)	2:57.	doi:10.3389/fimmu.2011.00057	

130.	 Szanto	A,	Balint	BL,	Nagy	ZS,	Barta	E,	Dezso	B,	Pap	A,	et al.	STAT6	transcrip-
tion	factor	is	a	facilitator	of	the	nuclear	receptor	PPARgamma-regulated	gene	
expression	in	macrophages	and	dendritic	cells.	Immunity	(2010)	33:699–712.	
doi:10.1016/j.immuni.2010.11.009	

131.	 Berry	 A,	 Balard	 P,	 Coste	 A,	 Olagnier	 D,	 Lagane	 C,	 Authier	 H,	 et  al.	 	
IL-13	 induces	 expression	 of	 CD36	 in	 human	monocytes	 through	 PPAR-
gamma	 activation.	 Eur J Immunol	 (2007)	 37:1642–52.	 doi:10.1002/eji.	
200636625	

132.	 Xu	W,	 Roos	 A,	 Schlagwein	 N,	Woltman	 AM,	 Daha	MR,	 van	 Kooten	 C.	
IL-10-producing	macrophages	preferentially	clear	early	apoptotic	cells.	Blood	
(2006)	107:4930–7.	doi:10.1182/blood-2005-10-4144	

133.	 Freire-de-Lima	 CG,	 Xiao	 YQ,	 Gardai	 SJ,	 Bratton	 DL,	 Schiemann	 WP,		
Henson	 PM.	 Apoptotic	 cells,	 through	 transforming	 growth	 factor-beta,	
coordinately	 induce	 anti-inflammatory	 and	 suppress	 pro-inflammatory	
eicosanoid	and	NO	synthesis	 in	murine	macrophages.	 J Biol Chem	 (2006)	
281:38376–84.	doi:10.1074/jbc.M605146200	

134.	 McPhillips	K,	 Janssen	WJ,	Ghosh	M,	Byrne	A,	Gardai	S,	Remigio	L,	et al.	
TNF-alpha	 inhibits	 macrophage	 clearance	 of	 apoptotic	 cells	 via	 cytosolic	
phospholipase	A2	 and	 oxidant-dependent	mechanisms.	 J Immunol	 (2007)	
178:8117–26.	doi:10.4049/jimmunol.178.12.8117	

135.	 Fernandez-Boyanapalli	RF,	Frasch	SC,	McPhillips	K,	Vandivier	RW,	Harry	BL,		
Riches	DW,	et al.	Impaired	apoptotic	cell	clearance	in	CGD	due	to	altered	
macrophage	 programming	 is	 reversed	 by	 phosphatidylserine-dependent	
production	 of	 IL-4.	 Blood	 (2009)	 113:2047–55.	 doi:10.1182/blood-2008-	
05-160564	

136.	 Ariel	A,	Serhan	CN.	New	lives	given	by	cell	death:	macrophage	differen-
tiation	 following	 their	 encounter	 with	 apoptotic	 leukocytes	 during	 the	
resolution	of	inflammation.	Front Immunol	(2012)	3:4.	doi:10.3389/fimmu.	
2012.00004	

137.	 Angsana	 J,	Chen	 J,	Liu	L,	Haller	CA,	Chaikof	EL.	Efferocytosis	as	a	 regu-
lator	of	macrophage	chemokine	 receptor	expression	and	polarization.	Eur 
J Immunol	(2016)	46:1592–9.	doi:10.1002/eji.201546262	

138.	 Han	CZ,	Juncadella	IJ,	Kinchen	JM,	Buckley	MW,	Klibanov	AL,	Dryden	K,		
et al.	Macrophages	redirect	phagocytosis	by	non-professional	phago	cytes	
and	 influence	 inflammation.	 Nature	 (2016)	 539:570–4.	 doi:10.1038/
nature20141	

139.	 Schlegel	M,	Kohler	D,	Korner	A,	Granja	T,	Straub	A,	Giera	M,	 et  al.	The	
neuroimmune	 guidance	 cue	 netrin-1	 controls	 resolution	 programs	 and	
promotes	 liver	regeneration.	Hepatology	 (2016)	63:1689–705.	doi:10.1002/
hep.28347	

140.	 Yang	M,	Liu	J,	Piao	C,	Shao	J,	Du	J.	ICAM-1	suppresses	tumor	metastasis	by	
inhibiting	macrophage	M2	polarization	 through	blockade	of	efferocytosis.	
Cell Death Dis	(2015)	6:e1780.	doi:10.1038/cddis.2015.144	

141.	 Schopf	 RE,	 Trompeter	 M,	 Bork	 K,	 Morsches	 B.	 Effects	 of	 ethanol	 and	
acetaldehyde	on	phagocytic	functions.	Arch Dermatol Res	(1985)	277:131–7.	
doi:10.1007/BF00414111	

142.	 Earnest	 DL,	 Abril	 ER,	 Jolley	 CS,	 Martinez	 F.	 Ethanol	 and	 diet-induced	
alterations	in	Kupffer	cell	function.	Alcohol Alcohol	(1993)	28:73–83.	

143.	 Schwegler	M,	Wirsing	AM,	Dollinger	AJ,	Abendroth	B,	Putz	F,	Fietkau	R,	
et al.	Clearance	of	primary	necrotic	cells	by	non-professional	phagocytes.	
Biol Cell	(2015)	107(10):372–87.	doi:10.1111/boc.201400090	

144.	 Wood	 W,	 Turmaine	 M,	 Weber	 R,	 Camp	 V,	 Maki	 RA,	 McKercher	 SR,		
et al.	Mesenchymal	cells	engulf	and	clear	apoptotic	footplate	cells	in	macro-
phageless	PU.1	null	mouse	embryos.	Development	(2000)	127:5245–52.	

145.	 Fond	AM,	Lee	CS,	Schulman	IG,	Kiss	RS,	Ravichandran	KS.	Apoptotic	cells	
trigger	 a	 membrane-initiated	 pathway	 to	 increase	 ABCA1.	 J Clin Invest	
(2015)	125:2748–58.	doi:10.1172/JCI80300	

146.	 Juncadella	IJ,	Kadl	A,	Sharma	AK,	Shim	YM,	Hochreiter-Hufford	A,	Borish	L,		
et al.	Apoptotic	cell	clearance	by	bronchial	epithelial	cells	critically	 influences	
airway	inflammation.	Nature	(2013)	493:547–51.	doi:10.1038/nature11714	

147.	 Penberthy	KK,	Juncadella	IJ,	Ravichandran	KS.	Apoptosis	and	engulfment	
by	 bronchial	 epithelial	 cells.	 Implications	 for	 allergic	 airway	 inflam-
mation.	 Ann Am Thorac Soc	 (2014)	 11(Suppl	 5):S259–62.	 doi:10.1513/
AnnalsATS.201405-200AW	

148.	 Burstyn-Cohen	 T,	 Lew	 ED,	 Traves	 PG,	 Burrola	 PG,	 Hash	 JC,	 Lemke	 G.	
Genetic	 dissection	 of	TAM	 receptor-ligand	 interaction	 in	 retinal	 pigment	
epithelial	 cell	 phagocytosis.	 Neuron	 (2012)	 76:1123–32.	 doi:10.1016/j.
neuron.2012.10.015	

149.	 Szatmari-Toth	M,	Kristof	 E,	Vereb	 Z,	Akhtar	 S,	 Facsko	A,	 Fesus	 L,	 et  al.	
Clearance	of	autophagy-associated	dying	retinal	pigment	epithelial	cells	–	a	
possible	source	for	inflammation	in	age-related	macular	degeneration.	Cell 
Death Dis	(2016)	7:e2367.	doi:10.1038/cddis.2016.133	

150.	 Petrovski	G,	Berenyi	E,	Moe	MC,	Vajas	A,	Fesus	L,	Berta	A,	et al.	Clearance	
of	 dying	 ARPE-19	 cells	 by	 professional	 and	 nonprofessional	 phagocytes	
in  vitro—implications	 for	 age-related	macular	 degeneration	 (AMD).	Acta 
Ophthalmol	(2011)	89:e30–4.	doi:10.1111/j.1755-3768.2010.02047.x	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.bbrc.2010.06.101
https://doi.org/10.1016/j.imbio.
2010.03.010
https://doi.org/10.1016/j.imbio.
2010.03.010
https://doi.org/10.1038/nature08296
https://doi.org/10.1038/nature08296
https://doi.org/10.1016/j.immuni.2009.06.018
https://doi.org/10.1016/j.dci.2016.08.007
https://doi.org/10.1016/j.dci.2016.08.007
https://doi.org/10.3389/fimmu.2014.00211
https://doi.org/10.1074/jbc.M307973200
https://doi.org/10.3109/10799899609039951
https://doi.org/10.1055/s-2008-1040439
https://doi.org/10.1002/hep.
1840110413
https://doi.org/10.1002/hep.
1840110413
https://doi.org/10.1016/j.bbalip.2016.06.002
https://doi.org/10.1016/j.bbalip.2016.06.002
https://doi.org/10.1091/mbc.E14-09-1343
https://doi.org/10.1038/nature18935
https://doi.org/10.1016/j.cell.2009.05.045
https://doi.org/10.1096/fj.08-107169
https://doi.org/10.1182/blood-
2008-06-162404
https://doi.org/10.1182/blood-
2008-06-162404
https://doi.org/10.3389/fimmu.2011.00057
https://doi.org/10.1016/j.immuni.2010.11.009
https://doi.org/10.1002/eji.
200636625
https://doi.org/10.1002/eji.
200636625
https://doi.org/10.1182/blood-2005-10-4144
https://doi.org/10.1074/jbc.M605146200
https://doi.org/10.4049/jimmunol.178.12.8117
https://doi.org/10.1182/blood-2008-
05-160564
https://doi.org/10.1182/blood-2008-
05-160564
https://doi.org/10.3389/fimmu.
2012.00004
https://doi.org/10.3389/fimmu.
2012.00004
https://doi.org/10.1002/eji.201546262
https://doi.org/10.1038/nature20141
https://doi.org/10.1038/nature20141
https://doi.org/10.1002/hep.28347
https://doi.org/10.1002/hep.28347
https://doi.org/10.1038/cddis.2015.144
https://doi.org/10.1007/BF00414111
https://doi.org/10.1111/boc.201400090
https://doi.org/10.1172/JCI80300
https://doi.org/10.1038/nature11714
https://doi.org/10.1513/AnnalsATS.201405-200AW
https://doi.org/10.1513/AnnalsATS.201405-200AW
https://doi.org/10.1016/j.neuron.2012.10.015
https://doi.org/10.1016/j.neuron.2012.10.015
https://doi.org/10.1038/cddis.2016.133
https://doi.org/10.1111/j.1755-3768.2010.02047.x


14

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

151.	 Irschick	 EU,	 Sgonc	 R,	 Bock	 G,	Wolf	 H,	 Fuchs	 D,	 Nussbaumer	W,	 et  al.	
Retinal	pigment	epithelial	phagocytosis	and	metabolism	differ	 from	those	
of	macrophages.	Ophthalmic Res	(2004)	36:200–10.	doi:10.1159/000078778	

152.	 Kaarniranta	K,	Sinha	D,	Blasiak	J,	Kauppinen	A,	Vereb	Z,	Salminen	A,	et al.	
Autophagy	and	heterophagy	dysregulation	leads	to	retinal	pigment	epithe-
lium	 dysfunction	 and	 development	 of	 age-related	 macular	 degeneration.	
Autophagy	(2013)	9:973–84.	doi:10.4161/auto.24546	

153.	 Kevany	 BM,	 Palczewski	 K.	 Phagocytosis	 of	 retinal	 rod	 and	 cone	 pho-
toreceptors.	 Physiology (Bethesda)	 (2010)	 25:8–15.	 doi:10.1152/physiol.	
00038.2009	

154.	 Mitter	SK,	Song	C,	Qi	X,	Mao	H,	Rao	H,	Akin	D,	et al.	Dysregulated	auto-
phagy	 in	 the	RPE	 is	 associated	with	 increased	 susceptibility	 to	 oxidative	
stress	and	AMD.	Autophagy	(2014)	10:1989–2005.	doi:10.4161/auto.36184	

155.	 Mesa	KR,	Rompolas	 P,	 Zito	G,	Myung	P,	 Sun	TY,	 Brown	 S,	 et  al.	Niche-
induced	cell	death	and	epithelial	phagocytosis	regulate	hair	follicle	stem	cell	
pool.	Nature	(2015)	522:94–7.	doi:10.1038/nature14306	

156.	 Lee	 CS,	 Penberthy	 KK,	 Wheeler	 KM,	 Juncadella	 IJ,	 Vandenabeele	 P,		
Lysiak	JJ,	et al.	Boosting	apoptotic	cell	clearance	by	colonic	epithelial	cells	
attenuates	inflammation	in vivo.	Immunity	(2016)	44:807–20.	doi:10.1016/j.
immuni.2016.02.005	

157.	 Hochreiter-Hufford	 AE,	 Arandjelovic	 S,	 Ravichandran	 KS.	 Using	 phos-
phatidylserine	 exposure	 on	 apoptotic	 cells	 to	 stimulate	myoblast	 fusion.	
Methods Mol Biol	(2015)	1313:141–8.	doi:10.1007/978-1-4939-2703-6_10	

158.	 Tso	GH,	Law	HK,	Tu	W,	Chan	GC,	Lau	YL.	Phagocytosis	of	apoptotic	cells	
modulates	 mesenchymal	 stem	 cells	 osteogenic	 differentiation	 to	 enhance	
IL-17	and	RANKL	expression	on	CD4+	T cells.	Stem Cells	(2010)	28:939–54.	
doi:10.1002/stem.406	

159.	 Seol	D,	McCabe	DJ,	Choe	H,	Zheng	H,	Yu	Y,	Jang	K,	et al.	Chondrogenic	
progenitor	 cells	 respond	 to	 cartilage	 injury.	 Arthritis Rheum	 (2012)	
64:3626–37.	doi:10.1002/art.34613	

160.	 Jiao	K,	Zhang	 J,	Zhang	M,	Wei	Y,	Wu	Y,	Qiu	ZY,	 et  al.	The	 identification	
of	 CD163	 expressing	 phagocytic	 chondrocytes	 in	 joint	 cartilage	 and	 its	
novel	 scavenger	 role	 in	 cartilage	 degradation.	PLoS One	 (2013)	 8:e53312.	
doi:10.1371/journal.pone.0053312	

161.	 Lu	 Z,	 Elliott	 MR,	 Chen	 Y,	 Walsh	 JT,	 Klibanov	 AL,	 Ravichandran	 KS,		
et al.	Phagocytic	activity	of	neuronal	progenitors	regulates	adult	neurogene-
sis.	Nat Cell Biol	(2011)	13:1076–83.	doi:10.1038/ncb2299	

162.	 Crispe	 IN.	 Hepatic	 T  cells	 and	 liver	 tolerance.	 Nat Rev Immunol	 (2003)	
3:51–62.	doi:10.1038/nri981	

163.	 Humphreys	EH,	Williams	KT,	Adams	DH,	Afford	SC.	Primary	and	malignant	
cholangiocytes	undergo	CD40	mediated	Fas	dependent	 apoptosis,	 but	 are	
insensitive	to	direct	activation	with	exogenous	Fas	ligand.	PLoS One	(2010)	
5:e14037.	doi:10.1371/journal.pone.0014037	

164.	 Bhogal	RH,	Weston	CJ,	Curbishley	SM,	Bhatt	AN,	Adams	DH,	Afford	SC.	
Variable	 responses	 of	 small	 and	 large	 human	hepatocytes	 to	 hypoxia	 and	
hypoxia/reoxygenation	(H-R).	FEBS Lett	(2011)	585:935–41.	doi:10.1016/j.
febslet.2011.02.030	

165.	 Bhogal	 RH,	Weston	 CJ,	 Curbishley	 SM,	 Adams	 DH,	 Afford	 SC.	 Auto-
phagy:	 a	 cyto-protective	 mechanism	 which	 prevents	 primary	 human	
hepatocyte	apoptosis	during	oxidative	stress.	Autophagy	(2012)	8:545–58.	
doi:10.4161/auto.19012	

166.	 Faubion	WA,	Gores	GJ.	Death	receptors	in	liver	biology	and	pathobiology.	
Hepatology	(1999)	29:1–4.	doi:10.1002/hep.510290101	

167.	 Afford	 SC,	Hubscher	 S,	 Strain	 AJ,	 Adams	DH,	Neuberger	 JM.	 Apoptosis	
in	 the	 human	 liver	 during	 allograft	 rejection	 and	 end-stage	 liver	 disease.	
J Pathol	(1995)	176:373–80.	doi:10.1002/path.1711760408	

168.	 Afford	SC,	Randhawa	S,	Eliopoulos	AG,	Hubscher	SG,	Young	LS,	Adams	DH.		
CD40	 activation	 induces	 apoptosis	 in	 cultured	 human	 hepatocytes	 via	
induction	of	 cell	 surface	 fas	 ligand	 expression	 and	 amplifies	 fas-mediated	
hepatocyte	 death	 during	 allograft	 rejection.	 J Exp Med	 (1999)	 189:441–6.	
doi:10.1084/jem.189.2.441	

169.	 Bhogal	 RH,	 Curbishley	 SM,	Weston	CJ,	 Adams	DH,	Afford	 SC.	 Reactive	
oxygen	species	mediate	human	hepatocyte	injury	during	hypoxia/reoxygen-
ation.	Liver Transpl	(2010)	16:1303–13.	doi:10.1002/lt.22157	

170.	 Bhogal	RH,	Weston	CJ,	Curbishley	SM,	Adams	DH,	Afford	SC.	Activation	
of	CD40	with	platelet	derived	CD154	promotes	 reactive	oxygen	 species	
dependent	 death	 of	 human	 hepatocytes	 during	 hypoxia	 and	 reoxygen-
ation.	PLoS One	(2012)	7:e30867.	doi:10.1371/journal.pone.0030867	

171.	 Kiener	PA,	Davis	PM,	Starling	GC,	Mehlin	C,	Klebanoff	SJ,	Ledbetter	 JA,		
et  al.	 Differential	 induction	 of	 apoptosis	 by	 Fas-Fas	 ligand	 interactions	
in	 human	 monocytes	 and	 macrophages.	 J Exp Med	 (1997)	 185:1511–6.	
doi:10.1084/jem.185.8.1511	

172.	 Canbay	 A,	 Feldstein	 AE,	 Higuchi	 H,	 Werneburg	 N,	 Grambihler	 A,		
Bronk	SF,	et al.	Kupffer	cell	engulfment	of	apoptotic	bodies	stimulates	death	
ligand	and	cytokine	expression.	Hepatology	(2003)	38:1188–98.	doi:10.1053/
jhep.2003.50472	

173.	 Wei	Y,	Wang	D,	Topczewski	F,	Pagliassotti	MJ.	Saturated	fatty	acids	induce	
endoplasmic	 reticulum	stress	and	apoptosis	 independently	of	 ceramide	 in	
liver	cells.	Am J Physiol Endocrinol Metab	(2006)	291:E275–81.	doi:10.1152/
ajpendo.00644.2005	

174.	 Wang	D,	Wei	Y,	Pagliassotti	MJ.	Saturated	fatty	acids	promote	endoplasmic	
reticulum	stress	and	liver	injury	in	rats	with	hepatic	steatosis.	Endocrinology	
(2006)	147:943–51.	doi:10.1210/en.2005-0570	

175.	 McVicker	 BL,	 Casey	 CA.	 Ethanol-impaired	 hepatic	 protein	 trafficking:	
concepts	from	the	asialoglycoprotein	receptor	system.	Clin Biochem	(1999)	
32:557–61.	doi:10.1016/S0009-9120(99)00055-7	

176.	 McVicker	BL,	Casey	CA.	Effects	of	ethanol	on	receptor-mediated	endo-
cytosis	 in	 the	 liver.	 Alcohol	 (1999)	 19:255–60.	 doi:10.1016/S0741-8329	
(99)00043-9	

177.	 Lee	 SM,	 Casey	 CA,	 McVicker	 BL.	 Impact	 of	 asialoglycoprotein	 receptor	
deficiency	on	the	development	of	liver	injury.	World J Gastroenterol	(2009)	
15:1194–200.	doi:10.3748/wjg.15.1194	

178.	 Casey	CA,	Lee	SM,	Aziz-Seible	R,	McVicker	BL.	Impaired	receptor-mediated	
endocytosis:	 its	 role	 in	 alcohol-induced	 apoptosis.	 J Gastroenterol Hepatol	
(2008)	23(Suppl	1):S46–9.	doi:10.1111/j.1440-1746.2007.05275.x	

179.	 Huang	 H,	 Nace	 GW,	 McDonald	 KA,	 Tai	 S,	 Klune	 JR,	 Rosborough	 BR,		
et al.	Hepatocyte-specific	high-mobility	group	box	1	deletion	worsens	
the	 injury	 in	 liver	 ischemia/reperfusion:	 a	 role	 for	 intracellular	 high-	
mobility	group	box	1	in	cellular	protection.	Hepatology	(2014)	59:1984–97.	
doi:10.1002/hep.26976	

180.	 Huebener	P,	Pradere	JP,	Hernandez	C,	Gwak	GY,	Caviglia	JM,	Mu	X,	et al.	
The	HMGB1/RAGE	axis	triggers	neutrophil-mediated	injury	amplification	
following	necrosis.	J Clin Invest	(2015)	125:539–50.	doi:10.1172/JCI76887	

181.	 Dalton	 SR,	 Wiegert	 RL,	 Baldwin	 CR,	 Kassel	 KM,	 Casey	 CA.	 Impaired	
receptor-mediated	 endocytosis	 by	 the	 asialoglycoprotein	 receptor	 in	
ethanol-fed	 mice:	 implications	 for	 studying	 the	 role	 of	 this	 receptor	 in	
alcoholic	 apoptosis.	 Biochem Pharmacol	 (2003)	 65:535–43.	 doi:10.1016/
S0006-2952(02)01555-1	

182.	 Dini	L,	Pagliara	P,	Carla	EC.	Phagocytosis	of	apoptotic	cells	by	liver:	a	mor-
phological	study.	Microsc Res Tech	(2002)	57:530–40.	doi:10.1002/jemt.10107	

183.	 Rosin	A,	Doljanski	L.	Erythrocytes	in	the	cytoplsm	and	nuclei	of	liver	cells.	
Br J Exp Pathol	(1944)	25:111–5.	

184.	 Alfrey	EJ,	Most	D,	Wang	X,	Lee	LK,	Holm	B,	Krieger	NR,	et al.	Interferon-
gamma	and	interleukin-10	messenger	RNA	are	up-regulated	after	orthot-
opic	 liver	 transplantation	 in	 tolerant	rats:	evidence	 for	cytokine-mediated	
immune	 dysregulation.	 Surgery	 (1995)	 118:399–404;	 discussion	 404–5.	
doi:10.1016/S0039-6060(05)80351-4	

185.	 Rowell	DL,	 Eckmann	 L,	Dwinell	MB,	Carpenter	 SP,	 Raucy	 JL,	 Yang	 SK,		
et al.	Human	hepatocytes	express	an	array	of	proinflammatory	cytokines	
after	 agonist	 stimulation	 or	 bacterial	 invasion.	 Am J Physiol	 (1997)	
273:G322–32.	

186.	 Stonans	I,	Stonane	E,	Russwurm	S,	Deigner	HP,	Bohm	KJ,	Wiederhold	M,		
et al.	HepG2	human	hepatoma	cells	express	multiple	cytokine	genes.	Cyto-
kine	(1999)	11:151–6.	doi:10.1006/cyto.1998.0366	

187.	 Dalton	SR,	Lee	SM,	King	RN,	Nanji	AA,	Kharbanda	KK,	Casey	CA,	et al.	
Carbon	 tetrachloride-induced	 liver	 damage	 in	 asialoglycoprotein	 receptor-	
deficient	 mice.	 Biochem Pharmacol	 (2009)	 77:1283–90.	 doi:10.1016/j.bcp.	
2008.12.023	

188.	 Munoz	 LE,	 Berens	 C,	 Lauber	 K,	 Gaipl	 US,	 Herrmann	M.	 Apoptotic	 cell	
clearance	and	its	role	in	the	origin	and	resolution	of	chronic	inflammation.	
Front Immunol	(2015)	6:139.	doi:10.3389/fimmu.2015.00139

189.	 Jaiswal	S,	Jamieson	CH,	Pang	WW,	Park	CY,	Chao	MP,	Majeti	R,	et al.	CD47	
is	upregulated	on	circulating	hematopoietic	stem	cells	and	leukemia	cells	to	
avoid	phagocytosis.	Cell	(2009)	138:271–85.	doi:10.1016/j.cell.2009.05.046	

190.	 Chao	MP,	Alizadeh	AA,	Tang	C,	Myklebust	 JH,	Varghese	B,	Gill	 S,	 et  al.	
Anti-CD47	antibody	synergizes	with	rituximab	to	promote	phagocytosis	and	

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1159/000078778
https://doi.org/10.4161/auto.24546
https://doi.org/10.1152/physiol.
00038.2009
https://doi.org/10.1152/physiol.
00038.2009
https://doi.org/10.4161/auto.36184
https://doi.org/10.1038/nature14306
https://doi.org/10.1016/j.immuni.2016.02.005
https://doi.org/10.1016/j.immuni.2016.02.005
https://doi.org/10.1007/978-1-4939-2703-6_10
https://doi.org/10.1002/stem.406
https://doi.org/10.1002/art.34613
https://doi.org/10.1371/journal.pone.0053312
https://doi.org/10.1038/ncb2299
https://doi.org/10.1038/nri981
https://doi.org/10.1371/journal.pone.0014037
https://doi.org/10.1016/j.febslet.2011.02.030
https://doi.org/10.1016/j.febslet.2011.02.030
https://doi.org/10.4161/auto.19012
https://doi.org/10.1002/hep.510290101
https://doi.org/10.1002/path.1711760408
https://doi.org/10.1084/jem.189.2.441
https://doi.org/10.1002/lt.22157
https://doi.org/10.1371/journal.pone.0030867
https://doi.org/10.1084/jem.185.8.1511
https://doi.org/10.1053/jhep.2003.50472
https://doi.org/10.1053/jhep.2003.50472
https://doi.org/10.1152/ajpendo.00644.2005
https://doi.org/10.1152/ajpendo.00644.2005
https://doi.org/10.1210/en.2005-0570
https://doi.org/10.1016/S0009-9120(99)00055-7
https://doi.org/10.1016/S0741-8329
(99)00043-9
https://doi.org/10.1016/S0741-8329
(99)00043-9
https://doi.org/10.3748/wjg.15.1194
https://doi.org/10.1111/j.1440-1746.2007.05275.x
https://doi.org/10.1002/hep.26976
https://doi.org/10.1172/JCI76887
https://doi.org/10.1016/S0006-2952(02)01555-1
https://doi.org/10.1016/S0006-2952(02)01555-1
https://doi.org/10.1002/jemt.10107
https://doi.org/10.1016/S0039-6060(05)80351-4
https://doi.org/10.1006/cyto.1998.0366
https://doi.org/10.1016/j.bcp.2008.12.023
https://doi.org/10.1016/j.bcp.2008.12.023
https://doi.org/10.3389/fimmu.2015.00139
https://doi.org/10.1016/j.cell.2009.05.046


15

Davies et al. Efferocytosis by Liver Epithelia

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 44

eradicate	non-Hodgkin	lymphoma.	Cell	(2010)	142:699–713.	doi:10.1016/j.
cell.2010.07.044	

191.	 Bosurgi	L,	Bernink	JH,	Delgado	Cuevas	V,	Gagliani	N,	Joannas	L,	Schmid	ET,	
et al.	Paradoxical	role	of	the	proto-oncogene	Axl	and	Mer	receptor	tyrosine	
kinases	 in	 colon	 cancer.	 Proc Natl Acad Sci U S A	 (2013)	 110:13091–6.	
doi:10.1073/pnas.1302507110	

192.	 Akitake-Kawano	 R,	 Seno	 H,	 Nakatsuji	 M,	 Kimura	 Y,	 Nakanishi	 Y,		
Yoshioka	 T,	 et  al.	 Inhibitory	 role	 of	 Gas6	 in	 intestinal	 tumorigenesis.	
Carcinogenesis	(2013)	34:1567–74.	doi:10.1093/carcin/bgt069	

193.	 Karikoski	 M,	 Marttila-Ichihara	 F,	 Elima	 K,	 Rantakari	 P,	 Hollmen	 M,		
Kelkka	T,	et al.	Clever-1/stabilin-1	controls	cancer	growth	and	metastasis.	
Clin Cancer Res	(2014)	20:6452–64.	doi:10.1158/1078-0432.CCR-14-1236	

194.	 Weinger	 JG,	Brosnan	CF,	 Loudig	O,	Goldberg	MF,	Macian	F,	Arnett	HA,	
et  al.	 Loss	 of	 the	 receptor	 tyrosine	 kinase	 Axl	 leads	 to	 enhanced	 inflam-
mation	 in	 the	CNS	 and	 delayed	 removal	 of	myelin	 debris	 during	 experi-
mental	 autoimmune	 encephalomyelitis.	 J Neuroinflammation	 (2011)	 8:49.	
doi:10.1186/1742-2094-8-49	

195.	 Czaja	AJ.	Targeting	apoptosis	 in	autoimmune	hepatitis.	Dig Dis Sci	 (2014)	
59:2890–904.	doi:10.1007/s10620-014-3284-2	

196.	 Popov	Y,	Sverdlov	DY,	Bhaskar	KR,	Sharma	AK,	Millonig	G,	Patsenker	E,		
et  al.	 Macrophage-mediated	 phagocytosis	 of	 apoptotic	 cholangiocytes	
contributes	 to	 reversal	 of	 experimental	 biliary	 fibrosis.	 Am J Physiol 
Gastrointest Liver Physiol	 (2010)	 298:G323–34.	 doi:10.1152/ajpgi.	
00394.2009	

197.	 Allina	 J,	Hu	B,	Sullivan	DM,	Fiel	MI,	Thung	SN,	Bronk	SF,	 et  al.	T  cell	
targeting	 and	 phagocytosis	 of	 apoptotic	 biliary	 epithelial	 cells	 in	 pri-
mary	 biliary	 cirrhosis.	 J Autoimmun	 (2006)	 27:232–41.	 doi:10.1016/j.
jaut.2006.11.004	

198.	 Garabuczi	 E,	 Sarang	 Z,	 Szondy	 Z.	 Glucocorticoids	 enhance	 prolonged	
clearance	 of	 apoptotic	 cells	 by	 upregulating	 liver	 X	 receptor,	 peroxisome	
proliferator-activated	receptor-delta	and	UCP2.	Biochim Biophys Acta	(2015)	
1853:573–82.	doi:10.1016/j.bbamcr.2014.12.014	

199.	 Sasaki	 M,	 Kakuda	 Y,	 Miyakoshi	 M,	 Sato	 Y,	 Nakanuma	 Y.	 Infiltration	
of	 inflammatory	 cells	 expressing	 mitochondrial	 proteins	 around	 bile	
ducts	 and	 in	 biliary	 epithelial	 layer	may	 be	 involved	 in	 the	 pathogenesis	
in	 primary	 biliary	 cirrhosis.	 J Clin Pathol	 (2014)	 67:470–6.	 doi:10.1136/
jclinpath-2013-201917	

200.	 Lleo	 A,	 Selmi	 C,	 Invernizzi	 P,	 Podda	 M,	 Coppel	 RL,	 Mackay	 IR,	 et  al.	
Apotopes	and	the	biliary	specificity	of	primary	biliary	cirrhosis.	Hepatology	
(2009)	49:871–9.	doi:10.1002/hep.22736	

201.	 Webb	 GJ,	 Hirschfield	 GM.	 Primary	 biliary	 cholangitis	 in	 2016:	 high-	
definition	 PBC:	 biology,	 models	 and	 therapeutic	 advances.	 Nat Rev 
Gastroenterol Hepatol	(2017)	14:76–8.	doi:10.1038/nrgastro.2016.201	

202.	 Karlsen	 TH,	 Folseraas	 T,	 Thorburn	 D,	 Vesterhus	 M.	 Primary	 sclerosing	
cholangitis	 –	 a	 comprehensive	 review.	 J Hepatol	 (2017)	 67(6):1298–323.	
doi:10.1016/j.jhep.2017.07.022	

203.	 McVicker	BL,	Thiele	GM,	Tuma	DJ,	Casey	CA.	Hepatocyte-mediated	cyto-
toxicity	and	host	defense	mechanisms	in	the	alcohol-injured	liver.	Hepatol 
Int	(2014)	8(Suppl	2):432–8.	doi:10.1007/s12072-013-9511-7	

204.	 Casey	 CA,	 McVicker	 BL,	 Donohue	 TM	 Jr,	 McFarland	MA,	Wiegert	 RL,	
Nanji	AA.	Liver	asialoglycoprotein	receptor	levels	correlate	with	severity	of	
alcoholic	liver	damage	in	rats.	J Appl Physiol	(2004)	96:76–80.	doi:10.1152/
japplphysiol.00375.2003	

205.	 Lopategi	 A,	 Lopez-Vicario	 C,	 Alcaraz-Quiles	 J,	 Garcia-Alonso	 V,	 Rius	 B,	
Titos	E,	et al.	Role	of	bioactive	lipid	mediators	in	obese	adipose	tissue	inflam-
mation	and	endocrine	dysfunction.	Mol Cell Endocrinol	(2016)	419:44–59.	
doi:10.1016/j.mce.2015.09.033	

206.	 Lopez-Vicario	 C,	 Rius	 B,	 Alcaraz-Quiles	 J,	 Garcia-Alonso	 V,	 Lopategi	 A,	
Titos	E,	et al.	Pro-resolving	mediators	produced	from	EPA	and	DHA:	over-
view	of	the	pathways	involved	and	their	mechanisms	in	metabolic	syndrome	
and	related	liver	diseases.	Eur J Pharmacol	(2016)	785:133–43.	doi:10.1016/j.
ejphar.2015.03.092	

207.	 Titos	 E,	 Rius	 B,	 Lopez-Vicario	 C,	 Alcaraz-Quiles	 J,	 Garcia-Alonso	 V,		
Lopategi	 A,	 et  al.	 Signaling	 and	 immunoresolving	 actions	 of	 resolvin	D1	
in	inflamed	human	visceral	adipose	tissue.	J Immunol	(2016)	197:3360–70.	
doi:10.4049/jimmunol.1502522	

208.	 Serban	 KA,	 Petrusca	 DN,	 Mikosz	 A,	 Poirier	 C,	 Lockett	 AD,	 Saint	 L,		
et  al.	 Alpha-1	 antitrypsin	 supplementation	 improves	 alveolar	macrophages	
efferocytosis	 and	 phagocytosis	 following	 cigarette	 smoke	 exposure.	 PLoS 
One	(2017)	12:e0176073.	doi:10.1371/journal.pone.0176073	

209.	 Wang	X,	Bu	HF,	Zhong	W,	Asai	A,	Zhou	Z,	Tan	XD.	MFG-E8	and	HMGB1	
are	 involved	 in	 the	 mechanism	 underlying	 alcohol-induced	 impairment	
of	 macrophage	 efferocytosis.	 Mol Med	 (2013)	 19:170–82.	 doi:10.2119/
molmed.2012.00260	

210.	 Ji	H,	Liu	Y,	Zhang	Y,	Shen	XD,	Gao	F,	Busuttil	RW,	et al.	T-cell	immunoglobu-
lin	and	mucin	domain	4	(TIM-4)	signaling	in	innate	immune-mediated	liver	
ischemia-reperfusion	 injury.	 Hepatology	 (2014)	 60:2052–64.	 doi:10.1002/
hep.27334	

211.	 Fond	AM,	Ravichandran	KS.	Clearance	of	dying	cells	by	phagocytes:	mech-
anisms	and	implications	for	disease	pathogenesis.	Adv Exp Med Biol	(2016)	
930:25–49.	doi:10.1007/978-3-319-39406-0_2	

Disclaimer:	This	 article/paper/report	 presents	 independent	 research	 funded	 by	
the	NIHR	Birmingham	Biomedical	Research	Centre	at	 the	University	Hospitals	
Birmingham	NHS	Foundation	Trust	and	the	University	of	Birmingham.	The	views	
expressed	 are	 those	 of	 the	 author(s)	 and	not	necessarily	 those	 of	 the	NHS,	 the	
NIHR	or	the	Department	of	Health.

Conflict of Interest Statement:	The	authors	declare	 that	 the	 research	was	 con-
ducted	in	the	absence	of	any	commercial	or	financial	relationships	that	could	be	
construed	as	a	potential	conflict	of	interest.

Copyright © 2018 Davies, Reynolds and Stamataki. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) or licensor are credited and that the original publication in this 
journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.cell.2010.07.044
https://doi.org/10.1016/j.cell.2010.07.044
https://doi.org/10.1073/pnas.1302507110
https://doi.org/10.1093/carcin/bgt069
https://doi.org/10.1158/1078-0432.CCR-14-1236
https://doi.org/10.1186/1742-2094-8-49
https://doi.org/10.1007/s10620-014-3284-2
https://doi.org/10.1152/ajpgi.
00394.2009
https://doi.org/10.1152/ajpgi.
00394.2009
https://doi.org/10.1016/j.jaut.2006.11.004
https://doi.org/10.1016/j.jaut.2006.11.004
https://doi.org/10.1016/j.bbamcr.2014.12.014
https://doi.org/10.1136/jclinpath-2013-201917
https://doi.org/10.1136/jclinpath-2013-201917
https://doi.org/10.1002/hep.22736
https://doi.org/10.1038/nrgastro.2016.201
https://doi.org/10.1016/j.jhep.
2017.07.022
https://doi.org/10.1007/s12072-013-9511-7
https://doi.org/10.1152/japplphysiol.00375.2003
https://doi.org/10.1152/japplphysiol.00375.2003
https://doi.org/10.1016/j.mce.2015.09.033
https://doi.org/10.1016/j.ejphar.2015.03.092
https://doi.org/10.1016/j.ejphar.2015.03.092
https://doi.org/10.4049/jimmunol.1502522
https://doi.org/10.1371/journal.pone.0176073
https://doi.org/10.2119/molmed.2012.00260
https://doi.org/10.2119/molmed.2012.00260
https://doi.org/10.1002/hep.27334
https://doi.org/10.1002/hep.27334
https://doi.org/10.1007/978-3-319-39406-0_2
http://creativecommons.org/licenses/by/4.0/

	Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis
	Key Points
	Efferocytosis in the Liver
	Clearance of Apoptotic and Necrotic Cells
	Experimental Systems to Study Efferocytosis
	The Mechanism of Dead Cell Capture by Professional and Non-Professional Efferocytes
	Regulation of Efferocytosis
	The Impact of Efferocytosis by Tissue Epithelia
	Clinical Implications of Defects in Efferocytosis
	Conclusion
	Ethics Statement
	Author Contributions
	Acknowledgments
	Funding
	References


