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ARTICLE INFO ABSTRACT

Keywords: Deep-fried battered and breaded coatings provide foods with texture, flavour, reduced moisture loss and oil
Batter uptake. The physical characteristics of deep-fried batter and breadcrumb coatings was investigated for deep-fried

Breadcrumb prawns. Previous data on the effect of breadcrumb size on the microstructure of the coating is limited, therefore
Iggep-fry breadcrumbs were divided using the following sieve sizes and then applied to the coating in order to investigate
Tif&:fs the effect of breadcrumb size on the physical and mechanical properties: 4.0 mm, 2.8 mm, 2.0 mm, 1.4 mm,

1.0 mm, 710 pm, 500 pm, 355 um. After frying, internal morphology was studied using X-ray microCT showing
that the total porosity of coatings decreases with breadcrumb size whilst pore size distribution and structure
thickness distribution increased with breadcrumb size. As crispness is a fundamental sensorial property of deep-
fried battered products, crispness was evaluated by uniaxial compression to acquire mechanical and acoustical
measurements simultaneously. Results showed decreasing breadcrumb size reduced the number of multiple
failures, reduced jagged appearance of the force profile was observed, reduced maximum compression force and
acoustic emission, which has been used as a representative of crispness. This study provides evidence of the
importance of breadcrumb size in deep-fried battered and breaded formulations.

1. Introduction to batter coatings

The palatability of deep-fried foods is due in part to its unique fla-
vour, taste and texture (Fiszman & Salvador, 2003). The high tem-
peratures used for frying results in a desirable texture that is recognised
as a dry and crisp crust contrasting a moist and tender core (Mellema,
2003). As well as enhancing the texture, a crusted coating prevents
dehydration of the core, aids browning and reducing oil uptake into the
core (Altunakar, Sahin, & Sumnu, 2004). Deep-fat frying is a simulta-
neous process of heat and mass transfer whereby water and other so-
luble materials are lost from the material being fried as oil penetrates
the product (Mellema, 2003).

Batter is a flour and water mixture with additional salt, gums and
seasonings, two main types are recognised; adhesion batters or tem-
pura-type batters (Varela & Fiszman, 2011). Adhesion batters act as an
interface layer between product and breadcrumb coating (Fiszman &
Salvador, 2003), whereas tempuras are leavened chemically to create a
puffed texture (Xue & Ngadi, 2007). Battered and breaded products
have grown in popularity and are assessed on appearance, uniformity of
coating, colour, crispness, adhesion and flavour (Loewe, 1993). As a
textural attribute, crispness perception has been shown to be a com-
bination of tactile and auditory components and depends on macro-
scopic and microscopic features within the food (Vickers, 1988).
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1.1. Deep-fat frying process

Products are typically coated with a predusting layer to absorb ex-
cess moisture and provide additional adhesion for batter and bread-
crumb layer (Mukprasirt, Herald, Boyle, & Rausch, 2000). Battered and
breaded products are fully submerged into cooking oil and as surface
temperature of the coating rises rapidly, surface moisture is evaporated
off to allow surface drying and shrinkage (Mellema, 2003). The tem-
perature of surrounding oil subsequently decreases but is compensated
for by convection (Mellema, 2003). Other chemical changes that occur
during crust formation include protein denaturation, non-enzymatic
browning, caramelisation of sugars, glass transitions, oxidation and
starch gelatinisation (Altunakar et al., 2004). Development of a positive
pressure gradient within the fried product causes moisture to be re-
leased as vapour via cracks, open capillaries or explosive evaporation,
thus creating voids and entry points for oil to penetrate (Mellema,
2003). As vapour creates voids for oil penetration, it is suggested that
oil uptake is largely determined by moisture content (Mellema, 2003).
In fact, it has been shown that food with high moisture loss result in
higher oil uptake (Gamble, Rice, & Selman, 1987). Therefore, moisture
and oil content have a large influence on crisp texture. Studies focusing
on the relationship between crispness and high moisture products are
limited and measurement procedures are different depending on pro-
duct type (Antonova, Mallikarjunan, & Duncan, 2003).
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Oil that penetrates the voids act as both as a heat transfer me-
chanism and a final ingredient, with reports of up to 1/3 of the total
products weight being oil (Mellema, 2003). High levels of oil ensure
structural integrity of batter is maintained by preventing shrinkage and
collapse, providing satiety but also posing as a health risk. Numerous
studies have suggested that oil absorption occurs predominantly during
post-frying cooling (Aguilera, Stanley, & Baker, 2000; Moreira, Sun, &
Chen, 1997; Moreno & Bouchon, 2013).

1.2. Crispness perception

‘Wet’ crisp such as apples, contain fluid within their cells balanced
by intracellular forces from strength and elasticity of the cell wall, thus
creating turgidity (Vickers & Bourne, 1976). Rupture of these cell walls
produces a sound pressure wave that is responsible for the perception of
crispness (Vickers & Bourne, 1976). ‘Dry’ crisp such as potato chips
have brittle cell walls with air-filled cavities (Duizer, 2001). A con-
tinuous force exceeding a threshold will bend and break this brittle
material, fragments will bend back to their original shape, thus setting
of vibrations and sound pressure wave (Vickers & Bourne, 1976). Deep-
fried battered and breaded products have properties of both wet and
dry crisp, in that they are cellular structures that contain both air and
liquid oil.

A combination of acoustic and force deformation measurements can
be used as an indication for oral crispness (Chen, Karlsson, & Povey,
2005; Duizer, 2001; Taniwaki & Kohyama, 2012). Humans perceive
sound of cellular structure breakage via air conduction to the ear and
bone conduction through the tongue, cheeks and mandible to the ear
(Duizer, 2001). As low frequencies are absorbed by muscle tissue
during bone conduction, the recordings of crispness are louder than
sound perceived during mastication (De Belie, Harker, & De
Baerdemaeker, 2002). When force is applied to a material, the stored
strained energy is converted to acoustic energy, individual molecules in
the air are displacing others causing a vibration and thus a sound wave
is propagated.

1.3. Breadcrumb coating

Breadcrumb coating derives from baked bread that is dried and
comminuted to form smaller sizes (Pickford, 2003). Breadcrumbs often
consists of a mixture of sizes to create a non-uniform layer.

As battered and breaded products will have differences in mor-
phology and composition between the layers, this study aims to char-
acterise the physical properties of a battered and breaded coating only.
Information on the effect of breadcrumb size is limited, this study aims
to characterise the physical properties of breadcrumb coatings of dif-
ferent crumb size. Properties investigated included total porosity, pore
size distribution, compression force and acoustic emission as indicators
of crispness.

2. Materials & method

Standard samples consist of white prawns (spec 50-60, Hyperama
Plc, UK) butterflied and deveined, then coated with predust flour, batter
and then breadcrumb coating. To investigate the effect of breadcrumb
size, breadcrumbs were separated using the following sieve apertures:
4.0mm, 2.8mm, 2.0mm, 1.4mm, 1.0mm, 710 um, 500 um, 355 um
(Endecotts Ltd. London, England). Each size as an outer coating was
investigated post-fry. All samples were fried in at 195 °C for 42 s in soya
bean oil (Fryer model NPDF3, Parry Catering Ltd UK).

2.1. Coating pick-up
The amount of coating adhering to the sample prior to frying was

calculated by the weight of coated sample divided by weight of sample
before coating multiplied by 100. Pick-up percentage was calculated for
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each coating step (predust, batter, breadcrumb). To avoid batter drip-
ping from the sample effecting the measurement of pick up, samples
were allowed to drip for 30 s before weighing.

2.2. Moisture and oil content

Moisture and oil content were calculated for the coating post-fried
to assess changes in moisture and oil content with breadcrumb size.
Moisture content was determined by difference in weight after vacuum
oven-drying for 24 h at 70 °C. Oil content was determined by Soxhlet
solvent extraction for 5-6 h, followed by rotary evaporation. Samples
were carried out in three replicates.

2.3. Confocal microscopy

Batter and breadcrumb coating cross-sections were stained after
frying with Nile red (Sigma Aldrich 72485, UK) (0.01%) to observe the
depth of oil penetration. A confocal microscope (Leica TCS SP5,
Germany) was used to acquire images after exciting at 543 nm with a
He/Ne laser. Image acquisition was performed at a pinhole size of
100 um with 10 X magnification objective lens.

2.4. X-ray micro computed tomography (MicroCT)

Samples were scanned using a voltage of 59 kV, current of 100 pA
and no filter (Skyscan 1172, Bruker, Belgium). Samples were covered in
parafilm to prevent moisture lost. NRecon, CTAn and CTVox was used
to reconstruct images and carry out 3D analysis. Experiments were
carried out in three replicates.

2.5. Texture and sound emission analysis

Compression testing was carried out using a TA XT plus Texture
Analyser (Stable Micro Systems Ltd. UK) with 5 kg load cell, 3 g trigger
force, P/40 cylindrical aluminum probe at a constant speed of 0.5 mm/
s. Deep-fried battered and breaded coating were peeled from the sub-
strate, cut into 20 mm diameter shapes and subjected to 60% com-
pression ratio with top surface of the coating facing upwards.

Acoustic envelope detector (AED) (TA-XT Plus, Stable Micro
Systems Ltd., UK) was used for force-displacement acoustic measure-
ments and recorded using Texture Exponent. A microphone (12 mm
diameter) was positioned 7 cm horizontally from center of platform.
Calibration was carried out using a sound calibrator at 94dB and
114 dB at 1000 Hz. Any background noise was filtered using 3.125 kHz
corner frequency. A gain of AED was set at 3 with data acquisition rate
set to 500 points per second for force and sound measurements. Ten
replications were performed for each sample. Parameters extracted
included: Maximum force, area under force curve, force peaks (drops in
force above 0.049N), maximum sound pressure level and number of
sound peaks (drop in sound pressure level above 10 dB).

2.6. Statistical analysis

One-way ANOVA and post-hoc Tukey test was performed to eval-
uate any differences between samples.

3. Results and discussion
3.1. Microstructure of fried batter and breadcrumb coatings

The microstructure of batter coatings has been previously explored
with microscopy techniques (Llorca, Hernando, Pérez-Munuera,
Fiszman, & Lluch, 2001; Moreno & Bouchon, 2013). The use of mi-
croscopy to study internal morphology of deep-fat fried batter is de-
monstrated in Fig. 1, which shows a decrease in fluorescence deeper
within the coating, highlighting differences in structure throughout the
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Fig. 1. CLSM image shows cross-section of fried batter and breadcrumb (not sieved) coating stained with Nile Red to observe depth of oil penetration. Stain shows

differences in morphology at layers of the crust.

sample. Regions of high fluorescence are clustered at the surface of the
coating, suggesting oil accumulates within breadcrumb pieces. This is
in contrast to low fluorescence deeper within the coating, where
moisture content is higher than at the surface and oil content is lower.
The depth of oil penetration can also be observed; a longer fry time is
required for deeper oil penetration.

Microscopy techniques are limited in terms of resolution and require
laborious sample preparation. As a result, MicroCT has been employed
in this study for its non-invasive and high resolution ability to quantify
structural parameters; total porosity, pore size distribution and struc-
tural thickness. These physical parameters are structural modifications
caused by heat and mass transfer during deep-fat frying, the degree of
these structural changes will affect mass migration (Adedeji & Ngadi,
2011).

Surface topography influences batter oil drainage during cooling
but an understanding of the internal morphology provides an indication
of permeability and space for oil absorption (Moreno & Bouchon,
2013). Prior to scanning, the surface of coatings became visibly more
uniform and with a smoother surface with decreasing breading size. 2D
greyscale slices shown in Fig. 2 demonstrate that with decreasing
breadcrumb size, coatings appear to be visibly thinner, large pores are
clustered towards the top of the coating whilst the majority of small
pores are seen towards the core. Pores shaded grey appear to have an
attenuation for x-ray, suggesting they are filled with oil as opposed to
air. A prominent batter layer can also be seen with decreasing bread-
crumb size suggesting higher moisture content, which is supported by
Table 1. Moisture content increases whilst oil content decreases with
breadcrumb size, a high moisture layer suggests a soft and pliant core
(Luyten, Plijter, Van Vliet, 2004).

As fried batter is a cellular structure, porosity is a structural prop-
erty of interest and can be defined as the volume of pores relative to the
volume of the entire matrix (Dogan, Sahin, & Sumnu, 2005). Total
porosity is highest for coatings with the largest breadcrumb size
(Fig. 3), a higher porosity has been shown to result in a higher per-
ception of crispness (Van Koerten, Schutyser, Somsen, & Boom, 2015).

From Fig. 3, total porosity of breadcrumb coatings from apertures
4.0 mm and 2.8 mm are significantly different to those from 2.8 mm to
710 um and 500 pm to control (batter without any breadcrumb), sug-
gesting that total porosity decreases with breadcrumb size. This is
evident from the 2D greyscale images (Fig. 2) that show the structure
becoming thinner with decreasing breadcrumb size whilst a high
moisture batter layer is more prominent. This can be explained as
breadcrumb size decreases, breadcrumbs are able to provide an even
distribution of coverage across the surface, as some batter loses adhe-
sion during the frying process, a full coverage of breadcrumbs provides
a sealed barrier to prevent batter being lost (Van Koerten et al., 2015).
Subsequently, a longer fry time may be required for oil to penetrate the
coating to create a porous structure. Evaporation of moisture at the
surface is also quicker than moisture migration deeper within the
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product, therefore a crisp crust is able to form (Van Koerten et al.,
2015).

Studying the range of pore size within batter coatings were of in-
terest because the presence of micropores is suggested to influence mass
transfer during frying (Mellema, 2003). In fact, the smaller the pores
the higher the amount of fat absorbed via capillary forces during
cooling (Moreira et al., 1997).

MicroCT analysis of pore size distribution shows that coatings with
the largest breadcrumb size (4.0 mm aperture) has the widest dis-
tribution of pore sizes and the largest pore sizes (Fig. 4). Whilst de-
creasing breadcrumb size shows a narrowing range in pore size dis-
tribution. In fact, breadcrumbs from less than 2.8 mm aperture shows
the majority of pore sizes to be < 201 um. This suggests that pore size is
batter dependent for coatings with breadcrumbs < 2.8 mm aperture.
This is in agreement with previous studies that showed pore size dis-
tribution for deep-fried breaded coatings to range between 9 and
201 um (Adedeji & Ngadi, 2009). However, the effect of breadcrumb
size on pore size was not investigated. A wide range of pore sizes creates
heterogeneities within a structure with varying structural strength and
fracture mechanics, this translates to a desirable crisp texture.

Fig. 4 shows that coatings with breadcrumb sizes greater than
2.8 mm suggest that pore size is breadcrumb dependent, therefore a
wider distribution is seen. Total porosity and pore size co-determine the
amount of oil that is absorbed into the structure and has been found to
increase with frying time (Van Koerten et al., 2015). Therefore, the
findings in this study demonstrate the importance of breadcrumb size in
fried foods formulation.

As oil absorption is influenced by porosity and pore size, visualising
the internal structure allows a clear understanding of the arrangement
of pores and the degree of open and closed porosity (Fig. 5). Colour-
coding analysis shows large breadcrumb coatings (Fig. 5A) to have a
wider range and large pore sizes (> 1000 um), smaller breadcrumb
coatings (Fig. 5B) have a smaller range and smaller pore sizes
(~500 um). Fig. 5A shows pores to be more clustered in comparison to
Fig. 5B, suggesting differences in structural thickness between bread-
crumb coatings.

The matrix between the pores acts as a scaffolding for the structure,
this structural thickness could provide an indication of mechanical
strength and therefore affect compression force. Compression force
would translate to the amount biting force required to fracture the
structure, therefore an indication of crispness perception. MicroCT
analysis has shown that the percentage volume for structural thickness
for batter coatings varies with breadcrumb sizes (Fig. 6). Structural
thickness range for large breadcrumb coatings (4.0 mm) is narrow
(9-220 um) but as breadcrumb size decreases, a wider range in struc-
ture thickness is seen (9-797 um). As expected, structural thickness
appears to be inversely proportional to pore size distribution and total
porosity. All coatings also show porosity to be dominated by open pores
as opposed to closed pores, meaning that the majority of pores are
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Top surface of coating

1mm

batter with
no breadcrumbs

Fig. 2. MicroCT 2D-slice image of batter and breadcrumb coatings peeled away from the substrate post-frying. 2D-slice grey scale image displays differences in
morphology from top surface (top of each image) to bottom surface (bottom of each image) of coating. Each image is labelled with size of aperture used to separate
breadcrumb size.

interconnected. A higher proportion of open porosity allows space for the composition of moisture within the matrix will change during frying
oil to be deposited. (Luyten et al., 2004). Therefore the concentration will affect the me-

The strength of the matrix will also depend on material properties, chanics of the protein and starch matrix and subsequently affect frac-
moisture is lost during frying which enables a crisp crust to form. ture propagation (Luyten et al., 2004). The loss of crispness by moisture
Moisture is a common plasticiser which enables mobility of polymers, plasticiser is also governed by the glass transition phenomenon (Slade &
Table 1

Moisture content percentage (wt/wt) and oil content percentage (wt/wt) of deep-fried battered and breadcrumb coatings with variable breadcrumb sizes. Results for
largest (4.0 mm), intermediate (2.0 mm, 1.4 mm, 1.0 mm) and smallest (500 pm, 355 pm) breadcrumb size have been stated for oil content percentage. Decreasing
breadcrumb coating size show a general increase in moisture content and decrease in oil content.

Standard coating 4.0 mm 2.8 mm 2.0 mm 1.4 mm 1.0 mm 710 pm 500 pm 355 um Batter only
Moisture content 23.8(=1.8) 26.3(*14) 263(*=33) 270(*x28) 298(=0.1) 31.8(*x1.6) 320(=*=19) 339(*3.00 353(*1.1) 50.6(=*26)
% (wt/wt)
Oil content% (wt/ 49.1 (= 4.3) 428 (*1.3) - 416 (=09 416(*x1.0) 411(=%=1.8) - 40.0 (=1.2) 338(*0.6) -
wt)
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40mm  28mm  2.0mm

14mm  1.0mm 710pm 500pm 355pm  control

Size of apertures used to separate breadcrumbs (mm/pm)

Fig. 3. Summary of total porosity of batter and breadcrumb coatings from
MicroCT analysis. 8 sizes of breadcrumb coating used with apertures listed.
Identical letters indicate no significant difference at p > 0.05 according to
Tukeys HSD.

Levine, 1995). Therefore, an understanding of components such as
starch matrix and protein-rich phases is necessary to understand the
crisp texture. Thermal and rheological properties will also assist in
understanding the phase transitions during the frying and aging pro-
cess.

3.2. Texture and acoustic emission analysis of crispness

The effect of breadcrumb size on acoustic emission has been pre-
viously investigated and no significant differences were found (Maskat
& Kerr, 2002). However, the size of breadcrumbs investigated were
separated using a mesh size ranging 250-850 um (Maskat & Kerr,
2002), this study focuses on a wider range of apertures and therefore a
wider range of breadcrumb sizes.

In terms of texture analysis, battered and breaded coatings have
been previously analysed by separating from the core before and after
frying (Fan, Singh, & Pinthus, 1997; Maskat & Kerr, 2002). This study
focuses on the deformation of the coating alone, however, during
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mastication the deformation of the coating will also depend on the
mechanics of the high moisture core, where a combination of com-
pression and shear are involved (Luyten et al., 2004).

As expected with crisp foods, the force-deformation profiles show
multiple fracture events (Fig. 7), which is indicative of fracture events
occurring simultaneously and is perceived as crispness (Maskat & Kerr,
2002). Once fracture stress, fracture energy and critical stress intensity
have been reached, fracture will begin again at the top of the curve
(Luyten & Vliet, 1995). The force that is required for subsequent frac-
tures will depend on the composition of material and size of previous
fractures (Luyten et al., 2004). This jagged behavior is particularly
prominent of large breadcrumb coatings (4.0 mm and 2.8 mm aper-
ture), this can be explained as battered and breaded coatings consist of
a high moisture core and a rough uneven surface. A highly rough sur-
face is due to breadcrumbs lack of ability to merge with the batter.
Smaller breadcrumbs are able to merge and be contained within the
batter to form a smooth and uniform layer which is able to retain more
moisture than large breading size coatings (Maskat & Kerr, 2002). A
higher retained moisture content explains why a lower compression
force is required to compress 60% strain of smaller breadcrumb coat-
ings and reduced jagged behaviour is seen (Fig. 7).

Breadcrumb structure contains regions of defects that are weaker in
strength, this could be due to differences in meso-structure e.g. in-
gredients have phase separated (Scanlon & Zghal, 2001). This results in
stress being concentrated and a fracture point is created (Luyten &
Vliet, 1995; Vincent, Jeronimidis, Khan, & Luyten, 1991). Once crack
propagation has begun, the surrounding material around the crack re-
laxes and any stored elastic energy becomes available for acoustic
emission or reshaping the deformed structure (Luyten et al., 2004).

The relationship between force drops and sound pressure level (SPL)
can be in one-to-one correspondence (Chen et al., 2005), indicating
large structural breakdown to be accompanied by high SPL. However,
as shown in Fig. 8 this is not always true, multiple acoustic peaks are
due to heterogeneities in the microstructure (porosity, pore size,
structural thickness, high moisture core), therefore multiple crack and
fracture events are occurring simultaneously. Sound peaks occur as the
sample begins to deform and last for the entire duration of testing.

Fig. 8 and Table 2 shows that both large (4.0 mm aperture) and
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Fig. 4. MicoCT analysis of pore size distribution of batter and breadcrumb coatings. Distribution between 9 and 201 um has been highlighted as shown in graph in

right hand corner.
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Fig. 5. MicroCT analysis of pore size distribution processed by CTVox into colour coded 3D model of A) Breadcrumb coating form 4.0 mm aperture B) Breadcrumb

coating from 1.4 mm aperture.
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Fig. 6. MicroCT analysis of structure thickness distribution for batter and

breadcrumb coatings.
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Fig. 7. Texture analysis force profile of batter and breadcrumb coatings with
variable breadcrumb sizes.

small (1.4 mm aperture) breadcrumb coatings to have the similar peak
SPL (> 70dB), however the number of sound peaks decreases
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significantly with smaller breadcrumbs (86.2-14.4) due to a smoother
coverage over the battered substrate. SPL values and sound intensity
has been previously found to be lower for less crisp products and high
moisture (Seymour & Ann, 1988).

Table 2 presents the acoustic and mechanical parameters for deep-
fried battered and breaded coatings with variable breadcrumb size.
Maximum force, force peaks (drops in force more than 0.049N), area,
SPL and number of sound peaks show significant decrease with
breadcrumb size.

Maximum force is representative of hardness, whilst area under the
force curve is representative of the work of compression or toughness.
Both parameters decrease with breadcrumb size, this can be explained
as although structural thickness increases with smaller breadcrumb size
(Fig. 6) moisture content also increases (Table 1) resulting in reduced
structural stiffness and crispness perception.

Force peaks are indicative of jaggedness of the force profile curve
(Salvador, Varela, Sanz, & Fiszman, 2009), as supported by Fig. 7, a
jagged curve with several fracture events is typical of a crispy products
(Salvador et al., 2009).

Table 2 shows that large breadcrumb coatings (4.0 mm) show high
SPL and number of sound peaks, which is indicative of a loud, brittle
and weak structure with many structural breakdowns (Salvador et al.,
2009) and so can be perceived as more crisp than samples with low SPL
and low number of sound peaks. The fracture and acoustic behaviour of
cellular structures such as fried batter has been shown to depend on
composition of microstructure.

4. Conclusion

This research has demonstrated the importance of breadcrumb size
on the physical and mechanical properties of fried batter coatings.
MicroCT has enabled structural parameters such as total porosity, pore
size distribution and structural thickness to be quantified and provide
an in depth understanding of the internal microstructure of batter and
breadcrumb coatings. Morphological parameters such as porosity is
necessary to relate mechanics of the solid matrix to product behaviour
but also for understanding the degree of mass transfer between oil and
water.

As breadcrumb coatings decrease from 4.0 mm aperture to 355 um
aperture, total porosity, maximum compression force, area, sound
pressure level, force peaks and number of sound peaks decreases.
Simultaneously, pore size distribution and moisture content increases,
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Fig. 8. Force-displacement of sound pressure level (dB), force (N) versus Distance (mm) for A) breadcrumb coating from 4.0 mm aperture B) breadcrumb coating

from 1.4 mm aperture.

Table 2

Mean values of mechanical and acoustic parameters from texture analyser and AED for batter and breadcrumb coatings with varying breaderumb size. 2°® Different
letters for the same row refer to a significant difference (p < 0.05) according to Tukey’s Test.

Parameter 4.0 mm 2.8 mm 2.0 mm 1.4 mm 1.0 mm 710 pm 500 pm 355 um

Max Force (N) 455 + 8.6 29.82 = 5.6° 21.4 + 2.8 125 = 27¢ 133 + 49¢ 933 = 36% 748 £ 2.7 495 + 2.0°
Area (N.sec) 84.5 + 24.5° 49.0 + 85° 346 + 59" 162 = 54° 189 * 10.6° 894 + 45 7.64 * 21° 45 = 1.0°
Force peaks (drops in force more than 0.049N) 0.88 + 0.3* 0.881 + 0.8° 0.36 + 0.1°> 0.28 + 02® 035 = 0.3° 0.16 + 0.1°> 0.17 + 01> 0.3 = 0.1°
Max SPL (dB) 75.1 + 4.6° 743 * 3.6 729 + 597 733 + 44® 757 + 23" 747 + 74 7089 + 53" 678 + 3.1°
Number of sound peaks 86.2 * 29.2* 62.4 * 17.9° 559 * 12.2° 396 * 15.8° 39.9 + 11.3° 33.0 = 132" 326 + 14.0° 14.4 + 4.9

these parameters collectively could result in reduced crispness per-
ception. Reduced crispness perception will also be due to changes in the
solid matrix, therefore material properties and composition could be
investigated. Results shown in this study provide an indication of in-
strumental testing for crispness. As crispness is a sensorial attribute,
further work will look to correlate instrumental measurements with
sensory testing.
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