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Abstract 28 

Despite increasing interest in the role of reward in motor learning, the underlying mechanisms remain 29 

ill-defined. In particular, the contribution of explicit processes to reward-based motor learning is 30 

unclear. To address this, we examined subject’s (n=30) ability to learn to compensate for a gradually 31 

introduced 25⁰ visuomotor rotation with only reward-based feedback (binary success/failure). Only 32 

two-thirds of subjects (n=20) were successful at the maximum angle. The remaining subjects initially 33 

followed the rotation but after a variable number of trials began to reach at an insufficiently large 34 

angle and subsequently returned to near baseline performance (n=10). Furthermore, those that were 35 

successful accomplished this largely via a large explicit component, evidenced by a reduction in reach 36 

angle when asked to remove any strategy they employed. However, both groups displayed a small 37 

degree of remaining retention even after the removal of this explicit component. All subjects made 38 

greater and more variable changes in reach angle following incorrect (unrewarded) trials. However, 39 

subjects who failed to learn showed decreased sensitivity to errors, even in the initial period in which 40 

they followed the rotation, a pattern previously found in Parkinsonian patients. In a second 41 

experiment, the addition of a secondary mental rotation task completely abolished learning (n=10), 42 

whilst a control group replicated the results of the first experiment (n=10). These results emphasize a 43 

pivotal role of explicit processes during reinforcement-based motor learning, and the susceptibility of 44 

this form of learning to disruption has important implications for its potential therapeutic benefits. 45 

 46 

Keywords 47 

Motor Learning, Reward, Strategies, Visuomotor Adaptation 48 

 49 

New & Noteworthy 50 

We demonstrate that learning a visuomotor rotation with only reward-based feedback is principally 51 

accomplished via the development of a large explicit component. Furthermore, this form of learning is 52 

susceptible to disruption with a secondary task. The results suggest that future experiments utilizing 53 

reward-based feedback should aim to dissect the roles of implicit and explicit reinforcement learning 54 
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systems. Therapeutic motor learning approaches based on reward should be aware of the sensitivity to 55 

disruption. 56 

 57 

Introduction 58 

The motor system’s ability to adapt to changes in the environment is essential for maintaining 59 

accurate movements (Tseng et al., 2007). Such adaptive behavior is thought to involve several distinct 60 

learning systems (Haith and Krakauer, 2013; Izawa and Shadmehr, 2011; Smith et al., 2006). For 61 

example, the two-state model proposed by Smith et al. (2006) has been able to explain a range of 62 

results in force-field adaptation paradigms in which a force is applied to perturb a reaching 63 

movement. The model states that learning is accomplished via both ‘fast’ and ‘slow’ processes, the 64 

‘fast’ process learns rapidly but has poor retention, whereas the ‘slow’ process learns more slowly but 65 

retains this information over a longer timescale. Subsequently using a visuomotor rotation paradigm, 66 

in which the visible direction of a cursor is rotated from the actual direction of hand movement, it has 67 

been suggested that the ‘fast’ process resembles explicit re-aiming whereas the ‘slow’ process is 68 

implicit (McDougle et al., 2015). The implicit aspect may be composed of several different processes 69 

(McDougle et al., 2015), the first and most widely researched being cerebellar adaptation (Izawa et 70 

al., 2012). However, additional processes such as use-dependent plasticity and reinforcement of 71 

actions that lead to task success are required to fully explain experimental findings (Huang et al., 72 

2014). Haith and Krakauer (2013) have proposed a scheme based on these four processes that 73 

attempts a synthesis between the principles of motor learning and the distinction between model-74 

based and model-free mechanisms proposed for reinforcement learning and decision-making (Doll et 75 

al., 2016).  76 

 77 

The addition of rewarding feedback has proven beneficial in increasing retention of adaptation (Galea 78 

et al., 2015; Shmuelof et al., 2012; Therrien et al., 2016) and motor skills (Abe et al., 2011; Chen et 79 

al., 2018; Dayan et al., 2014). Findings such as these have generated interest in the possibility that the 80 

addition of reward to rehabilitation regimes may improve the length of time that adaptations are 81 
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maintained after training (Goodman et al., 2014; Quattrocchi et al., 2017; Shmuelof et al., 2012). 82 

However, it is still unclear which of the multiple systems mediating motor learning reward may be 83 

acting on. Motor learning via purely reward based feedback is also possible and has been applied in 84 

two separate forms: binary and graded. Graded point based reward is often based on the distance of 85 

the reaching movement from the target and provides information about the magnitude but not the 86 

direction of the error (Manley et al., 2014; Nikooyan and Ahmed, 2015). Graded feedback has proved 87 

sufficient for learning abrupt rotations (Nikooyan and Ahmed, 2015), however, in certain conditions 88 

explicit awareness is required for successful learning (Manley et al., 2014). An alternative method is 89 

to only provide binary feedback in which the reward signals task success, such as hitting a target 90 

(Izawa and Shadmehr, 2011; Pekny et al., 2015; Therrien et al., 2016). In contrast to graded feedback, 91 

only gradually introduced perturbations have successfully been learnt via binary feedback alone (van 92 

der Kooij and Overvliet, 2016) and the contribution of explicit processes has yet to be examined.  93 

 94 

In classical visuomotor adaptation, in which full visual feedback of the cursor is available, gradual 95 

adaptation is considered to be largely implicit (Galea et al., 2010). However, this may not be the case 96 

when only end-point feedback is provided (Saijo and Gomi, 2010). The question remains as to 97 

whether learning a gradually introduced visuomotor rotation based on binary feedback also mainly 98 

involves implicit processes. Various methods (Huberdeau et al., 2015) have been used to separate the 99 

implicit and explicit components of learning such as asking subjects to verbally report aiming 100 

directions (McDougle et al., 2015; Taylor et al., 2014) and forcing subjects to move at reduced 101 

reaction times (Haith et al., 2015; Leow et al., 2017). In the current paradigm, we assessed the 102 

contribution of explicit processes at the end of the learning period by removing all feedback but 103 

asking subjects to maintain their performance. Subsequently, we asked subjects to remove any explicit 104 

strategy they may have been using. Such an approach has previously been used to measure the relative 105 

implicit and explicit components of adaptation to different sizes of visuomotor rotations (Werner et 106 

al., 2015). It is important to note that here we define the explicit component to learning as the amount 107 

that participants could remove on request. Such a definition maybe more akin to awareness (Werner et 108 

al., 2015) or a form of cognitive control (Cavanagh et al., 2009), rather than an explicit strategy which 109 
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is often defined as a subject’s ability to verbalize the strategy they have employed. Therefore, we do 110 

not believe subjects had to be able to verbalize a strategy in order for learning to be defined as 111 

explicit. 112 

 113 

Our second approach to investigating the explicit contribution to learning based on binary feedback 114 

was the introduction of a dual task in order to divide cognitive load and suppress the use of explicit 115 

processes. Dual task designs have previously successfully been employed to disrupt explicit processes 116 

in adaptation (Galea et al., 2010; Taylor and Thoroughman, 2007, 2008), sequence learning (Brown 117 

and Robertson, 2007) and motor skill learning (Liao and Masters, 2001). Various forms of dual task 118 

have been used such as counting auditory stimuli (Maxwell et al., 2001), repeating an auditory 119 

stimulus (Galea et al., 2010) or recalling words from a memorized list (Keisler and Shadmehr, 2010). 120 

We selected a mental rotation task based on using an electronic library of three-dimensional shapes 121 

(Peters and Battista, 2008; Shepard and Metzler, 1971). This particular task was selected in order to 122 

maximize the likelihood of interfering with the explicit re-aiming process. Indeed, it has previously 123 

been shown that both spatial working memory and mental rotation ability correlate with performance 124 

in the early ‘fast’ phase of adaptation (Anguera et al., 2009; Christou et al., 2016). Additionally, 125 

depletion of spatial working memory resources prior to visuomotor adaptation is detrimental to 126 

performance in the early phase (Anguera et al., 2012).  Furthermore, the same prefrontal regions are 127 

activated during the early phase of adaptation and during the performance of a mental rotation task 128 

(Anguera et al., 2009). It has also been suggested that the explicit process of re-aiming in response to 129 

visuomotor rotations may involve a mental rotation of the required movement direction 130 

(Georgopoulos and Massey, 1987)  131 

 132 

If the learning of a gradually introduced rotation via binary feedback is dominated by explicit 133 

processes, this should be evidenced by a large change in performance when subjects are asked to 134 

remove any strategy. Furthermore, the dual task should severely disrupt learning and could possibly 135 

unmask any implicit process.  136 

 137 
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Materials and Methods 138 

Subjects 139 

Sixty healthy volunteers aged between 18 and 35 participated in the study. Forty subjects (thirty-seven 140 

females, mean age = 19.9 years) completed experiment 1 and twenty (fifteen females, mean age = 141 

21.6 years) in experiment 2. The number of subjects was selected to match the group size that is 142 

commonly employed within the field of motor learning (Morehead et al., 2017; Shmuelof et al., 2012; 143 

Therrien et al., 2016) and was not based on a priori power analysis. All subjects were right-handed 144 

with no history of neurological or motor impairment and had normal or corrected-normal vision. 145 

Volunteers were recruited from the undergraduate pool in the School of Psychology and wider student 146 

population at the University of Birmingham and all gave written informed consent. Subjects were 147 

remunerated with their choice of either course credits or money (£7.50/hour). The study was approved 148 

by the local ethics committee of the University of Birmingham and performed in accordance with 149 

those guidelines. 150 

 151 

Experimental Protocol    152 

A similar paradigm has previously been employed and the current protocol was designed to replicate 153 

this as closely as possible (Therrien et al., 2016). In addition to the rotation of 15°, we extended this 154 

paradigm to a 25° rotation. Subjects performed reaching movements with their right arm using a 155 

KINARM (B-KIN Technologies), Figure 1A. Subjects were seated in front of a horizontally placed 156 

mirror that reflected the visual stimuli presented on a screen above (60 Hz refresh rate). Reaching 157 

movements were performed in the horizontal plane whilst subjects held the handle of a robotic 158 

manipulandum, with the arm hidden from view by the mirror.  159 

 160 

Experiment 1 161 

Two different paradigms were employed in Experiment 1, both consisted of a gradually introduced 162 

rotation of the required angle of reach for a trial to be considered successful. The maximal extent of 163 

the rotation was either 15° (n=10) or 25° (n=30). The motivation for the use of the two different 164 
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magnitudes of rotation was first to replicate the results of Therrien et al. (2016) and subsequently to 165 

investigate if subjects could successfully adapt to a larger angle (25⁰) than previously employed in 166 

binary feedback based motor learning. Subjects were required to learn the rotation on the basis of only 167 

binary feedback indicating if they had successfully hit the target region. After the rotation had reached 168 

the maximal extent, all feedback was extinguished and two further blocks of trials were performed to 169 

assay the level of retention and to what extent this was explicit in nature.  170 

 171 

A total of 470 or 670 trials were performed for the 15° and 25° paradigms, respectively. Each trial 172 

followed an identical sequence. Initially a starting position was displayed on screen (red colored 173 

circle, 1cm radius), after subjects had moved the position of the cursor (white circle, 0.5cm radius) 174 

into the starting position, the starting position changed color from red to green. After a small delay 175 

(randomly generated, 500-700ms), in which subjects had to maintain the position of the cursor within 176 

the starting circle, a target (red circle, 1cm radius) appeared directly in front of the starting circle at a 177 

distance of 10cm. Subjects were instructed to make rapid ‘shooting’ movements that intercepted a 178 

visual target, they were instructed that they did not have to attempt to terminate their movement in the 179 

target but pass directly through it (Figure 1B). If the cursor intercepted a ‘reward region’ (±5.67°), 180 

initially centered on the visible target, the movement was considered successful and the target 181 

changed color from red to green and a large (8x8cm) green ‘tick’ was displayed at a distance of 20cm 182 

directly in front of the starting position (Figure 1C). However, if the cursor did not intercept the 183 

reward region the trial was considered unsuccessful and the visible target disappeared from view. 184 

Movement times, defined as the time from leaving the starting circle to reaching a radial distance of 185 

10cm, were constrained to a range of 200-1000ms. Movements outside of this range but at the correct 186 

angle were counted as incorrect trials and no tick was displayed. As a visual cue, movements outside 187 

of the acceptable duration were signaled with a change of the target color, blue for too slow and 188 

yellow for too fast. After the completion of a reaching movement the robot returned the handle to the 189 

start position and subjects were instructed to passively allow this whilst maintaining their grip on the 190 

handle, during the passive movement subjects continued to receive no visual feedback of hand 191 

position. Reaction times, defined as the difference in time between the appearance of the target and 192 
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the time at which the cursor left the starting circle, were limited to a maximum 600ms. If a movement 193 

was not initiated before this time, the target disappeared and the next trial began after a small delay 194 

and these trials were excluded from further analysis. 195 

 196 

After an initial period of ten trials, in which the cursor position was constantly visible, for the 197 

remainder of the experiment it was extinguished. The only feedback subjects received was a binary 198 

(success/fail) signal indicating if the angle of reach was correct, in the form of a change of target color 199 

and the appearance of the tick. For an initial period of forty trials, the reward region remained 200 

centered on the position of the visual target, after this it was shifted in steps of 1° every twenty trials. 201 

The number of trials within the initial period and the rate of introduction of the rotation were identical 202 

in the 15⁰ and 25⁰ paradigms, only the total number of trials required to reach the maximum angle 203 

differed. This manipulation ensured that for a reaching movement to be considered correct it must be 204 

made at an increasingly rotated angle from the visual target (Figure 1C). Subjects were pseudo-205 

randomly assigned to groups that received either a clockwise or counter-clockwise rotation. Once the 206 

reward region had reached the maximal angle, either 15° or 25°, it was held constant for an additional 207 

twenty trials. Subsequently, subjects were informed that they would no longer receive any feedback 208 

about their performance but that they should continue to perform in the same manner as before; this 209 

‘Maintain’ block consisted of fifty trials. Following this, subjects were asked a series of simple 210 

questions to assay their awareness of the rotation; answers were noted by the experimenter. Firstly, 211 

subjects were asked ‘Did you notice anything change during the course of the experiment?’. 212 

Secondly, ‘Did you deliberately change anything about how you were performing the task?’. If the 213 

answer to the second question was affirmative they were asked a follow-up question ‘What did you 214 

do?’. Subsequently all subjects were told ‘During the task we secretly moved the position of the target 215 

that you had to hit. You will still not receive information on whether you hit the target or not but 216 

please try to move as you did at the start of the experiment’.  Throughout the text we refer to this 217 

instruction as being asked to remove any strategy.  Crucially subjects were not informed of the 218 

direction or magnitude of the rotation they had experienced. The final ‘Remove’ block consisted of 219 

fifty trials.  220 
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 221 

In order to test for any effects on retention due to the passage of time it took subjects to respond to the 222 

questions we performed a control experiment. The first 570 trials of the experiment were identical to 223 

the 25° paradigm previously described. However, at the end of the first block of fifty trials of no 224 

visual feedback (Maintain 1 block) subjects were asked to respond verbally to two questions from the 225 

BAS reward responsiveness section of the BIS/BAS questionnaire. These questions were selected on 226 

the basis of pilot experiments which demonstrated that they took approximately the same length of 227 

time to complete as the awareness related questions described previously. After subjects had 228 

responded to these questions they performed another block of fifty trials in which they received no 229 

feedback but were instructed to continue reaching in the same manner as before (Maintain 2 block). 230 

Subsequently, subjects were asked the task awareness questions, those that occurred in between 231 

Maintain and Remove blocks in the main experiment. The answers were noted down by the 232 

experimenter and subjects were then instructed to remove any strategy they had employed and then 233 

completed another fifty trials without visual or binary feedback (Remove block). For this experiment, 234 

we recruited an additional ten subjects who were successful in compensating for the final angle of 235 

rotation (fifteen in total recruited), the direction of the rotation was counterbalanced between subjects.    236 

 237 

The position of the handle throughout the task was recorded at a sampling rate of 1 kHz and saved for 238 

offline analysis. 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 
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 248 

Figure 1. Experimental design. A, Subjects held the handle of robotic manipulandum with their right 249 

hand, the position of the arm and handle was hidden from sight and feedback was provided on a 250 

horizontal screen. B, Subjects made ‘shooting’ movements from a starting position (green circle) 251 

towards a target (red circle), after the initial practice trials the position of the cursor (white circle) 252 

was no longer visible at any point. C, Successful trials were indicated to the subject with the display 253 

of a green tick after the cursor had passed through a region centered on the target, over the course of 254 

the paradigm the position of the reward region gradually moved (solid green circle to dashed green 255 

circle) whilst the visible target (red circle) remained in the central location. By the end of the learning 256 

period a successful reach (dotted white line) was rotated by a maximum of either 15° or 25°. D, Time-257 

course of Experiment 2, at the same time as the target appeared on screen a ‘shape’ was also 258 

displayed slightly above it, the subject was asked to memorize this shape. After the reach was 259 

completed and the hand returned to the starting position subjects used their left hand to respond with 260 

a button press as to whether they believed the new shape shown on screen was a rotated version of the 261 

shape or an entirely different shape.   262 

 263 

 264 

 265 
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Experiment 2 266 

Experiment 2 comprised of the same reaching task as Experiment 1 but with the addition of a mental 267 

rotation dual task. The dual task required subjects to hold a three-dimensional shape in working 268 

memory for the duration of the reaching movement (Figure 1D). Subjects had to respond with a 269 

button press using their left hand to indicate if a shape displayed at the end of the reaching movement 270 

was a rotated version of a shape displayed at the time of target presentation or a different shape. 271 

 272 

Shapes had the form of a series of connected cubes, alternately colored grey and white, they were 273 

selected from an electronic library designed on the basis of the Shepard and Metzler type stimuli 274 

(Peters and Battista, 2008; Shepard and Metzler, 1971). All rotations were performed within the plane 275 

of the screen, i.e. although the stimuli represented three-dimensional shapes all rotations were in two-276 

dimensions. A subset of 26 shapes were selected from the library for use in this experiment and are 277 

available on https://osf.io/vwr7c/. The trial protocol was the same as that employed in Experiment 1 278 

but at the time when the target circle appeared, a randomly selected shape from the subset was 279 

displayed in an 8x8cm region at a position 20cm away from the starting position. Subjects were 280 

instructed to commit this shape to memory. The shape remained visible on screen until the end of the 281 

reaching movement, the point at which the radial amplitude of the cursor exceeded 10cm. The shape 282 

was then extinguished and the same binary feedback as employed in Experiment 1 was displayed. 283 

After the robot had guided the handle back to the starting position a second shape was displayed in the 284 

same position as the first. In half of the trials this was an identical shape to the first one but had 285 

undergone a rotation selected at random from a uniform distribution of 0-360°, in the other half of 286 

trials it was a different shape selected at random from the library. The order of trials in which the 287 

shape was either rotated or different was randomized and subjects had a maximum of 2s to respond. 288 

Subjects in the Dual Task group (n=10) were instructed to press the right-sided button of two buttons 289 

on a button box held in their left hand if they believed the second shape to be a rotated version of the 290 

first one and the left-sided button if they believed it was a different shape. Importantly subjects were 291 

given no feedback on their performance in the dual task but were informed prior to the experiment 292 

that this would be monitored, the responses were recorded and analyzed offline. This design was 293 
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selected in order to avoid any interfering effects of rewarding feedback from the dual task with the 294 

binary feedback in the reaching task. As a control, another group of subjects received identical visual 295 

stimuli but were instructed to press a random button of the two on each trial. Subjects were pseudo-296 

randomly assigned to either the Control or Dual Task groups.  297 

 298 

For Experiment 2, the familiarization period at the start of the experiment, in which the position of the 299 

cursor was visible, was extended to twenty trials in order for subjects to have sufficient time to 300 

acclimatize to the additional timing requirements of the button press. The paradigm subsequently 301 

followed that of Experiment 1 with a maximal angular rotation of 25°. 302 

 303 

Data Analysis 304 

All data analysis was performed with custom written routines in MATLAB (The Mathworks) and 305 

extracted data and all code required to reproduce the analysis and figures in this paper are freely 306 

available on (https://osf.io/vwr7c/). 307 

 308 

The end point angle of each reaching movement was calculated either at the time that the cursor 309 

intercepted the reward region or in the case of incorrect trials when the cursor reached a radial 310 

amplitude of 10cm. An angle of zero degrees was defined as a movement directly ahead, i.e. toward 311 

the visible target position. A positive angle of rotation was defined as a clockwise shift of the reward 312 

region, and reach angles and target positions for the counter-clockwise rotation were sign-transformed 313 

to positive values for comparability. The ‘Baseline’ period was defined as the first forty trials without 314 

visual feedback of the cursor, during which the reward region was centered on the visual target. 315 

Subjects were considered to have successfully learnt the rotation if the mean end point angle of the 316 

reaching movements fell within the reward region during the last twenty trials before the ‘Maintain’ 317 

period, a time at which the rotation was held constant at its maximal value.  318 

 319 

During the retention phase of the experiment (last one hundred trials), we calculated the amount of 320 

retention that could be accounted for by explicit and implicit processes. A subject’s implicit retention 321 
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was defined as the difference between the mean reach angle in the final fifty trials (‘Remove’ blocks), 322 

after subjects had been instructed to remove any strategy they had been using, and mean reach angle 323 

during the ‘Baseline’ blocks. A subject’s explicit retention was defined as the difference between the 324 

mean reach angle during the ‘Maintain’ blocks, the first fifty trials after removal of binary feedback in 325 

which subjects were instructed to continue reaching as before, and the implicit retention.  326 

 327 

In order to analyze the effect of reward on subjects behavior, we conducted trial-by-trial analysis in a 328 

manner similar to one that has previously been employed for analysis of reaching performance in 329 

response to binary feedback (Pekny et al., 2015). The change in reach angle following trial n, ∆𝑢(𝑛), 330 

was defined as the difference between consecutive trials:  331 

 332 

∆𝑢(𝑛) = 𝑢(𝑛+1) −  𝑢𝑛 

 333 

Subsequently we examined the distributions of ∆𝑢 following only rewarded (correct) or unrewarded 334 

(wrong) trials. The resulting distributions of ∆𝑢 were non-normal and therefore we analyzed and 335 

report the median and median absolute deviation (MAD) of each subject’s distributions. We also 336 

examined the absolute change in reach angle |∆𝑢|, i.e. the magnitude of change regardless of 337 

direction.  338 

 339 

In order to investigate the effects of a reward history spanning multiple trials we examined the |∆𝑢| 340 

following all possible combinations of success in the previous three trials. We first searched each 341 

subject’s responses for the occurrence of all eight possible sequences of reward and calculated the 342 

mean change in reach angle following each. We then quantified this behavior using a model in which 343 

|∆𝑢| was a function of the outcome of the previous three trials as well as variability (𝜀 ) that could not 344 

be accounted for by the recent outcomes (Pekny et al., 2015):  345 

 346 

|𝑢(𝑛)| = 𝛼0(1 − 𝑅(𝑛)) + 𝛼1(1 − 𝑅(𝑛 − 1)) + 𝛼2(1 − 𝑅(𝑛 − 2)) + 𝜀 
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 347 

In the above equation, 𝑅 represents the presence of reward on a given trial with a value of 1 for a 348 

correct trial, 𝑅(𝑛) therefore represents the presence of reward on the previous trial with 𝑅(𝑛 − 1) and 349 

𝑅(𝑛 − 2)  the preceding two trials. The components 𝛼0 , 𝛼1 and 𝛼2  represent the sensitivity to the 350 

outcomes of these trials with higher values indicating subjects made larger changes in response to the 351 

outcome of that trial. The values of these components were estimated using the least squares error 352 

solution to the equation using the mean value of |∆𝑢| recorded for each sequence on a subject-by-353 

subject basis. We repeated this analysis using |∆𝑢| of every occurrence of a sequence (i.e. trial-by-354 

trial analysis rather than using a mean value), and obtained similar estimates for the components. The 355 

model fits for both methods are reported as R2 values in the results section. 356 

 357 

The verbal responses to the questions asked before the start of the ‘Remove’ block was noted down by 358 

the experimenter and analyzed offline. A subject’s awareness of the perturbation and efforts to 359 

deliberately counter it were rated on a scale of 0, 0.5 and 1, with 0 indicating no awareness and 1 360 

indicating full awareness, including deliberately aiming at a rotated angle. A score of 0.5 was given 361 

when subjects were aware of some change throughout the course of the experiment but could not 362 

accurately state the nature of the perturbation or what they changed about their movement to counter 363 

it. 364 

 365 

Statistical Analysis 366 

Statistical analysis was performed in MATLAB. In order to test for initial effects mixed design 367 

ANOVAs were used, with Group (25RotSucces, 25RotFail etc.) as the between-subjects factor and 368 

time-point (Baseline, 15° Block, Maintain etc.) or MeasuredVariable (Median ∆𝑢 , Reward 369 

Component etc.) as the within-subjects factor. The Greenhouse-Geiser correction was applied in cases 370 

of violation of sphericity and corrected p-values and degrees of freedom are reported in the text. In 371 

cases in which a significant interaction was found in the ANOVA, post-hoc tests were performed to 372 

test for differences between groups at each TimePoint or MeasuredVariable. As data was often found 373 
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to be non-normally distributed using Kolmogorov-Smirnov tests, the non-parametric Kruskal-Wallis 374 

test was applied throughout. In cases of a significant effect of group on an individual outcome 375 

measure, further pairwise comparisons of mean group ranks were employed and Bonferroni corrected 376 

p-values are reported in the text. For tests of a difference of a single group from zero, such as in 377 

testing for implicit learning, Wilcoxon-Signed Rank tests were employed and Bonferroni corrected p-378 

values are reported in the text. A critical significance level of α=0.05 was used to determine statistical 379 

significance. The probability density estimates displayed as shaded regions in distribution plot figures 380 

were estimated using a Gaussian kernel. 381 

 382 

Results 383 

Experiment 1: Successfully learning to compensate for a 25ᵒ rotation includes a large explicit 384 

component 385 

We first sought to investigate the size of a gradual introduced visuomotor rotation that subjects can 386 

learn based on binary feedback. All subjects who experienced the 15⁰ rotation (15Rot group) learnt to 387 

fully compensate (Figure 2A). Successful compensation was defined as having a mean reach angle 388 

within the reward region in the final twenty trials before the retention phase. However, for the 25⁰ 389 

group (25Rot, magenta group, Figure 2B), the average reach direction fell outside the reward region, 390 

indicating incomplete learning. Underlying the mean performance was a split in behavior: some 391 

subjects successfully learnt the full rotation, whereas one third of subjects did not. On the basis of this 392 

behavior, they were categorized into two subgroups: 25RotSuccess (red group, N=20) and 25RotFail 393 

(blue group, N=10), respectively. 394 

 395 

Next, we compared reach angle for the three groups (15Rot, 25RotSuccess and 25RotFail) at specific 396 

time points in order to gain an understanding at which stage the difference emerged (Figure 2C, D). 397 

Despite no difference between groups at baseline (H(2) = 4.03, p = 0.13, Kruskal Wallis), a difference 398 

had emerged at 15° (H(2) = 9.63, p = 0.008; Figure 2C). Specifically, reach angle for the 25RotFail 399 

group was lower than both the 15Rot (p = 0.022) and the 25RotSuccess groups (p = 0.014). During 400 
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the ‘Maintain’ phase, when binary feedback had been removed but subjects were instructed to 401 

continue reaching as before, there was a significant effect of group (H(2) = 20.08, p < 0.001; Figure 402 

2B, C). Unsurprisingly, the 25RotSuccess group was greater than the 15Rot (p = 0.002) and the 403 

25RotFail groups (p < 0.001). Crucially, after subjects were instructed to remove any strategy and 404 

reach as they did at the beginning of the experiment, there was no difference between the groups 405 

(H(2) = 0.78, p = 0.68; Figure 2B, C). Analysis of the reach angles during the paradigm revealed that 406 

even at a rotation of 15° there was divergence between the 25RotFail and 25RotSuccess groups. 407 

Furthermore, the instruction to remove any strategy resulted in a return to a similar level of 408 

performance across all three groups.  409 

 410 

We probed the nature of learning by calculating the implicit and explicit components of retention 411 

(Figure 2D). Implicit retention reflected the retention after removal of any strategies, whereas Explicit 412 

retention represented the change in behavior accounted for by the removal of strategies. The Explicit 413 

component of the 25RotSuccess group was greater than both 15Rot (p = 0.006) and 25RotFail (p = 414 

0.006). Furthermore, only the 25RotSuccess (Z = 210, p < 0.001) group had a significant Explicit 415 

component to their retention. Whilst there was no effect of Group on the Implicit component (H(2) = 416 

1.84, p = 0.40), both groups in the 25° paradigm showed a significant difference from 0 417 

(25RotSuccess, Z = 193, p = 0.001; 25RotFail, Z = 48, p = 0.014), however, the 15Rot group was no 418 

longer significant after correction for multiple comparisons (Z = 48, uncorrected p = 0.037, corrected 419 

p = 0.111). Therefore, whilst all three groups showed a similar small level of implicit retention, only 420 

the subjects who successfully learnt the 25° rotation showed evidence for explicit learning. Whilst at a 421 

group level there was no evidence for an explicit component to retention in either the 15Rot or 422 

25RotFail groups, there was variability within the groups with 2 subjects in each group displaying 423 

Explicit components greater than 10⁰.   424 

 425 
 426 

It is possible that the reduction in reach angle observed between the ‘Maintain’ and ‘Remove’ blocks 427 

in the 25RotSuccess group could be accounted for by the decay of a labile memory during the time in 428 
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which the awareness questions were asked (Smith et al., 2006). In the 25Rot paradigm, the time 429 

between the end of the ‘Maintain’ block and the start of the ‘Remove’ block was 37.16±8.49s. The 430 

time taken for the two control questions between the ‘Maintain 1’ and ‘Maintain 2’ blocks for the ten 431 

subjects in 25RotControl group was 49.48±8.63s, and for the awareness questions and instruction to 432 

remove strategy between ‘Maintain 2’ and ‘Remove’ was 45.80±13.38s. There was no significant 433 

difference between the length of time taken for either set of questions in the 25RotControl group and 434 

those in the 25Rot group (H(2) = 5.47, p = 0.065; Figure 2E). Crucially, we observed no difference in 435 

reach angle between ‘Maintain 1’ and ‘Maintain 2’ (Z=36, p=0.432). However, there was a clear 436 

reduction in reach angle following the instruction to remove any strategy between ‘Maintain 2’ and 437 

‘Remove’ (Z=52, p=0.010). These results indicate that the passage of time is not the critical factor 438 

causing the reduction in reach angle observed, but rather it is the instruction to remove any strategy 439 

subjects had employed. 440 
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  441 

Figure 2. Experiment 1: group performance.  A, Reach angle averaged over blocks of 5 trials, solid 442 

colored lines represent the mean of each group and the shaded region represents SEM. The average 443 

behavior of subjects in the 15Rot paradigm (Orange) fell consistently within the rewarded region 444 

(grey shaded region) indicating successful learning. B, Average reach angle over blocks for all 445 

subjects in the 25Rot paradigm (magenta) and also the same subjects split into two groups based on 446 
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success at the final angle (25RotSuccess – red, 25RotFail – blue). C, Distribution plots displaying the 447 

reach angles for subjects in the three groups at various timepoints throughout the experiment with 448 

individual data points overlaid on an estimate of the distribution. Horizontal black line in the 449 

distribution represents the group median. D, Distribution plots of the computed variables of Implicit 450 

(‘Remove-Baseline’) and Explicit (‘Maintain-Implicit’) retention. Significance stars above horizontal 451 

black bars indicate differences between the groups (* P < 0.05, ** P < 0.01, *** P <0.001). 452 

Significance stars below the distributions represent a significant difference from zero. E, Reach angle 453 

averaged over blocks of 5 trials for subjects in the 25RotControl group. There was no reduction in 454 

reach angle during the time taken for the control questions between Maintain 1 and Maintain 2 455 

blocks. However, when subjects were subsequently asked to remove their strategy, the period between 456 

Maintain 2 and Remove blocks, a significant reduction in reach angle was observed.  457 

 458 

In order to understand the mechanism of learning, and how this might differ between the 459 

25RotSuccess and 25RotFail groups, we examined trial-by-trial behavior. Two distinct types of 460 

behavior were apparent (Figure 3). Behavior in those that failed (Figure 3B) was initially similar to 461 

successful subjects (Figure 3A), but at some point subjects began to fail to reach at a sufficient angle. 462 

Subsequently the angle of reach began to decline over further trials, despite a continued lack of 463 

reward. However, given the length of the paradigm it unclear if this reduction was limited to the angle 464 

of the last successful trial they experienced or would have continued to baseline levels given more 465 

trials. The angles at which subjects in the 25RotFail group failed varied (mean=13.0±5.1⁰), but all 466 

displayed the same pattern of return to baseline (Figure 3C). Given the apparently similar behavior in 467 

the initial learning stage, it is important to know whether there are differences even at this early stage. 468 

To this end, we only included trials in the initial successful period for the 25RotFail group in all 469 

subsequent analysis of trial-by-trial behavior, i.e. trials on the left-hand side of the vertical colored 470 

line for each subject (Figure 3C). For the 25RotSuccess and 15Rot groups all trials during the learning 471 

period were analyzed. Crucially, there was no difference in the percentage of correct trials within this 472 

period between the groups (H(2) = 2.19, p = 0.33). 473 

 474 
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 475 

Figure 3. Experiment 1: trial-by-trial behavior. Example of trial by trial reach angles from a subject 476 

who was successful at the final angle (A) and one who was unsuccessful (B). In each case rewarded 477 

trials are indicated with a circular marker and non-rewarded trials with a ‘x’. The grey shaded 478 

region indicates the reward region. C, Failure points for subjects in the 25RotFail group, thick lines 479 

are the mean reach angle for each subject at each rotation angle, thin lines represent mean of each 480 

block (average of 5 trials), colors go from hot to cold matching failure angles ranging from high to 481 

low. Vertical lines represent the last angle at which mean reach fell within rewarded region for each 482 

subject. The mean and standard deviation of all angles of failure is displayed as text. 483 
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 484 

Next, we examined if changes in reach angle were affected by the outcome of the previous trial. A 485 

similar analysis has been employed previously (Pekny et al., 2015). We examined the distributions of 486 

∆𝑢 following only rewarded (Correct) or unrewarded (Wrong) trials. The resulting distributions of ∆𝑢 487 

were non-normal and therefore we report the median and median absolute deviation from the median 488 

(MAD). Whilst the median ∆𝑢 was greater following unrewarded trials (F(1,37) = 119.80, p < 0.001; 489 

Figure 4A), this effect was similar across groups (F(2,37) = 1.18, p = 0.64). Similarly, the MAD of ∆𝑢 490 

was also greater following Wrong trials, indicating that not only did all groups make larger changes in 491 

reach angle but also that there was greater variability in these changes (Figure 4B). Despite a 492 

significant interaction with Group (F(2,37) = 5.32, p = 0.019), the trend for a higher MAD of ∆𝑢 493 

following Wrong trials for the 25RotSuccess group (Figure 4B) did not reach significance after 494 

correction for multiple comparisons (H(2) = 5.63, p = 0.06). Subsequently we repeated the analysis 495 

but considered the absolute change in reach angle (|∆𝑢|, Figure 4C, D). Here there was a significant 496 

interaction with Group for both median |∆𝑢|  (F(2,37) = 7.89, p = 0.003) and MAD of |∆𝑢| (F(2,37) = 497 

7.39, p = 0.004) following Wrong trials. Post-hoc tests revealed that the 25RotSuccess group 498 

displayed a significantly greater median |∆𝑢| (p = 0.024) and MAD of |∆𝑢| (p = 0.035) than the 499 

25RotFail group. There was no difference between the groups in the magnitude or variability of the 500 

change in reach angle after correct trials. The analysis of the absolute changes in reach angle reveal 501 

that even during the period in which they are successful, the 25RotFail group made smaller and less 502 

variable changes following unrewarded trials.  503 

 504 

In addition to the effect of the previous trial it is possible that subjects were sensitive to a history of 505 

outcomes spanning multiple previous trials (Pekny et al., 2015). In order to investigate the effects of 506 

reward history, we examined the |∆𝑢| following all possible combinations of success in the previous 507 

three trials (Figure 4E). We quantified this behavior using a model in which |∆𝑢| was a function of 508 

the outcome of the previous three trials. The components 𝛼0, 𝛼1 and 𝛼2 represent the sensitivity to the 509 

outcome of the last three trials with 𝛼0 being the most recent (Figure 4F), 𝜀 represents variability that 510 
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could not be accounted for by the recent outcomes. There was an interaction between component and 511 

group (F(3.49,64.51) = 4.49, p = 0.004). All groups were most sensitive to the most recent trial 512 

outcome (𝛼0) with the 25RotSuccess group displaying significantly greater change than 25RotFail (p 513 

= 0.001). There was no difference between groups for other components indicating that differences in 514 

behavior were driven by the sensitivity to the outcome of the most recent trial. R2 values for model 515 

fits based on the mean |∆𝑢| of each sequence had a mean of 0.90 and a range of 0.67 to 0.99, model 516 

fits based on a trial by trial basis had a mean R2 of 0.39 and a range of 0.15 to 0.57. From these results 517 

it becomes apparent that, even in the initial period of success, subjects who will go on to fail to learn 518 

the full rotation show a decreased sensitivity to errors. 519 

 520 

There was no difference between groups for either movement time (H(2) = 4.82, p = 0.090) or 521 

reaction time (H(2) = 4.01, p = 0.13). The mean of the median movement times across subjects was 522 

0.38±0.08s. Additionally, within the 25RotFail group reaction and movement times did not differ 523 

before and after the point of failure (Z = 28, p = 1 and Z = 40, p = 0.23 respectively). In response to 524 

the questions asked to probe awareness, we found no significant difference between the groups (χ2(2) 525 

= 3.75, p = 0.15). However, within the 25RotSuccess group there was a significantly non-uniform 526 

distribution of answers (χ2(2) = 9.1, p = 0.005) with 60% of participants reporting a specific strategy 527 

to counter the rotation and only one reporting not to notice any change. The remainder of subjects 528 

reported some awareness of a change (categorized as 0.5 on our scale), or an explicit effort to counter 529 

it, but were often not confident in describing the change or could not easily verbalize their strategy. 530 

There was no difference between the subjects reporting full or partial awareness in terms of the 531 

quantified Explicit component to retention (Z = 123, p = 0.837). 532 

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (147.188.108.081) on March 22, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



23 
 

 533 

Figure 4. Experiment 1: performance after correct and incorrect trials.  Analysis of the effects of the 534 

success of the previous trial and reward history on trial by trial changes in reach angle for the three 535 

groups in Experiment 1 (15Rot – Orange, 25RotSuccess – Red, 25RotFail – Blue). Median (A) and 536 

MAD (B) of change in reach angle separated by the success of the previous trial. Median (C) and 537 

MAD (D) of the absolute change in reach angle separated by the success of the previous trial. E, The 538 

absolute change in reach angle following all combinations of trial success over the previous three 539 

trials. F, Sensitivity to the outcomes of each of the previous trials. Significance stars above horizontal 540 

black bars indicate differences between the groups (* P < 0.05, ** P < 0.01). 541 
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 542 

Experiment 2: Addition of a dual task prevents learning 543 

Following the finding of Experiment 1 that successful reinforcement-based motor learning involves a 544 

strong explicit component, we sought to investigate if it was possible to disrupt learning by dividing 545 

cognitive load. To this end, we required subjects to hold a shape in memory during the period of 546 

movement (Figure 1D).  547 

 548 

The DualTask (N=10) group displayed little learning and none successfully compensated for the 549 

maximum rotation (Green group, Figure 5A). As in Experiment 1, the Control (N=10) group on 550 

average fell short of complete learning (Purple group, Figure 5A, B), indicated by the mean reach 551 

direction falling outside the reward region in the final learning blocks. However, the average of the 552 

group obscures a similar split in behavior with only six subjects successfully learning the full rotation 553 

and four failing to do so, which we will label (ControlSuccess and ControlFail, respectively; Figure 554 

5B). 555 

 556 

Examining performance in the same time periods as Experiment 1 (Figure 5C) revealed no difference 557 

between the three groups at baseline (H(2) = 0.38, p = 0.83). However, by the time the angle of 558 

rotation had increased to 15° a significant difference had already emerged (H(2) = 6.88, p = 0.03), 559 

with the DualTask group displaying lower reach angle than ControlSuccess (p = 0.011).  560 
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 561 

Figure 5. Experiment 2: group performance. Change in reach angle over blocks (average of 5 trials) 562 

during the dual task experiment. A, Group performance for the DualTask (Green) and Control 563 

(Purple) task groups, the line indicates the mean and shaded region the SEM. The grey shaded region 564 

represents the reward region. B, the split of the control task group into ControlSuccess (Dark Red) 565 

and ControlFail (Blue). C, Distribution plots displaying the performance at different time points for 566 

the dual task, and split control groups. The shaded region represents an estimation of the distribution 567 

and is overlaid with data for each individual subject. D, Distribution plots of the difference in reach 568 

angle during retention phases indicating the implicit and explicit components of retention. 569 

Significance stars above horizontal black bars indicate differences between the groups (* P < 0.05, 570 

** P < 0.01). 571 
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 572 

As can be seen from the performance of individuals in the DualTask group (Figure 6), there were very 573 

few correct trials (mean angle of failure 6.0°) rendering the analysis of trials within the successful 574 

period employed for Experiment 1 invalid. Despite this limitation for the DualTask group, the 575 

analysis could still elucidate differences between the ControlSuccess and ControlFail groups and 576 

reassuringly the mean angle of failure in ControlFail group is 13°, similar to Experiment 1. However, 577 

the small group numbers preclude statistical comparison between the ControlSuccess and ControlFail 578 

groups but the pattern of behavior was visually similar to that in Experiment 1 (Figure 7). Overall the 579 

analysis of sensitivity to reward history produced remarkably similar results to Experiment 1 with the 580 

primary difference between those who learn and those who fail to do so being the sensitivity to the 581 

outcome of the most recent trial (Figure 7F). 582 

 583 

 584 

  585 

 586 

 587 
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 588 

Figure 6. Experiment 2: trial-by-trial behavior. Example of trial by trial reach angles from a subject 589 

performing the dual task (A) rewarded trials are indicated with a circular marker and non-rewarded 590 

trials with a ‘x’. The grey shaded region represents the reward region. B, Failure points for subjects 591 

in the DualTask group, thick lines are the mean reach angle for each subject at each rotation angle, 592 

thin lines represent mean of each block, colors go from hot to cold matching failure angles ranging 593 

from high to low. Vertical lines represent the last angle at which mean reach fell within rewarded 594 

region for each subject. Th mean and standard deviation of the angle of failure is reported as text in 595 

the figure. 596 

 597 

Finally, the DualTask subjects successfully engaged in the task mental rotation task as evidenced by a 598 

significant difference in percentage of correct button presses (H(2) = 15.30, p < 0.001). The DualTask 599 

group responded correctly (67.21 ± 3.60%) more than either the ControlSuccess (p = 0.014) and the 600 

ControlFail (p = 0.002) groups. Engagement in the DualTask increased reaction time when compared 601 
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to ControlSuccess (p = 0.007). There was no effect of Group on movement time (H(2) = 0.33, p = 602 

0.84).  603 

 604 

Figure 7. Experiment 2: performance after correct and incorrect trials. Analysis of the effects of the 605 

success of the previous trial and reward history on trial by trial changes in reach angle for the two 606 

groups performing the control task in Experiment 2. Distribution plots for median (A) and MAD (B) 607 

of change in reach angle separated by the success of the previous trial. Median (C) and MAD (D) of 608 

the absolute change in reach angle separated by the success of the previous trial. E, the absolute 609 
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change in reach angle following all combinations of trial success over the previous three trials. F, 610 

sensitivity to the outcomes of each of the previous trials.  611 

 612 

Discussion 613 

 614 

The role of explicit processes during reinforcement-based motor learning was previously unclear. 615 

Here, we reveal that successfully learning to compensate for large, gradually introduced, rotations 616 

based on binary (reinforcement-based) feedback involves the development of a strong explicit 617 

component, and that not all subjects are able to do so. In both Experiment 1 and the Control group of 618 

Experiment 2 only two thirds of subjects were able to successfully learn a large perturbation, and 619 

those that did accomplished this principally via explicit processes. Analysis of the trial-by-trial 620 

behavior indicated that subjects adjusted their motor commands mainly in response to incorrect trials, 621 

and that they were most sensitive to errors made in the most recent trial. Subjects who would go on to 622 

fail to learn the full rotation exhibited reduced sensitivity to errors, even in the initial period in which 623 

they successfully followed the rotation. Further evidence for the explicit nature of the learning in this 624 

task was provided by Experiment 2, where increasing cognitive load via the addition of a dual task 625 

prevented learning. 626 

 627 

Previous experiments investigating the learning of rotations based on binary feedback have employed 628 

relatively small angles (Izawa and Shadmehr, 2011; Pekny et al., 2015; Therrien et al., 2016), with the 629 

15° rotation used by Therrien et al. (2016) the largest reported to date. Indeed, when a rotation of 15° 630 

was used in Experiment 1 all subjects were successful in fully compensating for the visual rotation. 631 

Furthermore, there was no evidence for an explicit component to retention in the subjects who learnt 632 

the 15° rotation. In contrast, successful subjects in both experiments with a 25° rotation demonstrated 633 

a large explicit component to the learning, evidenced by a large reduction in the reach angle when 634 

asked to remove any strategy. It could therefore be speculated that multiple mechanisms might be 635 

available when learning from binary feedback, but that if the size of the perturbation exceeds a certain 636 
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magnitude an explicit process is required to compensate for it. Previously it has been suggested that 637 

additional learning mechanisms are recruited in response to gradually introduced visuomotor rotations 638 

when only end-point feedback is available, (Izawa and Shadmehr, 2011; Saijo and Gomi, 2010). 639 

Indeed Saijo and Gomi (2010) suggest, on the basis of an increase in reaction times, that explicit 640 

changes in motor planning occur in this paradigm. Furthermore, similarly to the results presented 641 

here, the authors also find that not all subjects are able to accomplish this. However, none of the 642 

previous studies investigating learning of rotations based on binary feedback (Izawa and Shadmehr, 643 

2011; Pekny et al., 2015; Therrien et al., 2016) have attempted to dissect the role of implicit and 644 

explicit processes. However, learning a rotation based on binary feedback was not accompanied by a 645 

change in perceived hand position, as was found when learning was based on full visual feedback of 646 

the cursor (Izawa and Shadmehr, 2011). This could be taken as evidence that the learning described 647 

by the authors was also explicit in nature in contrast to the implicit, cerebellar-driven, adaptation.  648 

 649 

There is increasing appreciation of the role of explicit processes in traditional visuomotor adaptation 650 

paradigms, in which visibility of the cursor ensures that both direction and magnitude of the error are 651 

available (Bond and Taylor, 2015, 2017). The use of an ‘error-clamp’ technique has estimated the 652 

limit of implicit adaptation based on sensory prediction errors to be at around 15° (Morehead et al., 653 

2017). Such an estimate is roughly in accordance with other estimates obtained either by the use of 654 

forcibly reduced movement preparation times (Haith et al., 2015; Leow et al., 2017), self-reporting of 655 

aiming directions (Bond and Taylor, 2015) or the difference between trials with and without an 656 

explicit component (Werner et al., 2015). It is important to note in our data that all groups, with the 657 

exception of those performing the dual task, display a small amount of retention even after the 658 

removal of the explicit component suggesting that there is some implicit aspect to the learning. 659 

Presumably the implicit learning process triggered in the current study is distinct from the sensory 660 

prediction error driven processes as here the error signal is binary in nature and provides no 661 

information about direction or magnitude of error. However, it is interesting that such implicit 662 

processes appear to be unable to compensate for rotations greater than 15-20°, with explicit 663 

mechanisms required for greater angles. Haith and Krakauer (2013) have proposed a theoretical 664 
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framework in which model-based (strategic/explicit) and implicit model-free (reinforcement/use-665 

dependent) learning processes contribute to motor learning. Our findings suggest that in the current 666 

paradigm these processes might be engaged but that implicit processes are limited in the size of 667 

rotation they can learn. It remains to be seen if this is a limitation of magnitude, as with learning from 668 

sensory prediction errors, or a limitation of speed. In other words, if the rotation was introduced more 669 

gradually or held constant for a longer period, could this implicit process account for all learning? It is 670 

unclear whether the implicit retention observed here reflects use-dependent learning, implicit 671 

reinforcement learning or a combination of both (Diedrichsen et al., 2010). However, the current 672 

experimental design does not allow us to dissociate between these possibilities. Interestingly, the 673 

greatest amount of implicit retention was observed in the 25RotControl group who had received an 674 

additional fifty no feedback trials. Given the lack of reward in these trials, this suggests that use-675 

dependent learning at least contributes to the implicit retention observed.           676 

 677 

We measured the explicit contribution to learning via the use of an include/exclude design similar to 678 

Werner et al. (2015), which probes the contribution at the end of learning. Other approaches such as 679 

asking subjects to verbally report the aiming direction (Taylor et al., 2014) have the advantage of 680 

probing the relative contributions of implicit and explicit processes throughout learning. However, it 681 

has been suggested that this method may increase the explicit component by priming subjects that re-682 

aiming is beneficial (Leow et al., 2017; Taylor et al., 2014). Such priming may be particular powerful 683 

in paradigms like the current one as it has been shown that explicit awareness of the dimensions over 684 

which to explore is required for motor learning based on binary feedback (Manley et al., 2014). 685 

Alternatively, forcing subjects to respond at reduced reaction times can also suppresses the explicit 686 

component of adapting to a rotation (Haith et al., 2015; Leow et al., 2017). However, Leow et al. 687 

(2017) report that even at extremely short reaction times re-aiming to a single target, as used here, is 688 

still possible. In future, approaches such as measuring eye movement (Rand and Rentsch, 2016) may 689 

be beneficial to measure the explicit component during learning without priming subjects. 690 

 691 
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There is ongoing debate about the precise definition of the terms implicit and explicit when applied in 692 

a motor learning context (Kleynen et al., 2014). As the authors note implicit and explicit learning may 693 

not represent a dichotomy but instead ends of a continuum. The results of this experiment suggest that 694 

indeed a binary distinction may not be possible as successful participants here demonstrate awareness 695 

but mixed levels of verbalizable strategies, even when they are able to return to reaching at baseline 696 

angles on request. Distinction of these possibilities is further complicated by relying on questionnaires 697 

(Shanks and John, 1994). Moreover, responses are not always easy to classify into categories and 698 

some subjects hold their views in low-confidence. Here we define the explicit component to learning 699 

as the amount that participants could remove on request. Such a definition of explicit motor control 700 

(Mazzoni and Wexler, 2009) could be more akin to awareness (Werner et al., 2015) or a form of 701 

cognitive control (Cavanagh et al., 2009), rather than an explicit strategy which is often defined as a 702 

subject’s ability to verbalize the strategy they have employed. 703 

 704 

In order to investigate the mechanism through which subjects learnt to counter the rotation we 705 

employed the same analysis as Pekny et al., (2015). However, their study didn’t involve learning as 706 

such, as the rotation was immediately washed out. Despite this, our results are remarkably similar, in 707 

that subjects in both studies made larger and more variable changes in actions following trials in 708 

which they made an error. Sidarta et al. (2016) have also described a similar pattern of behavior when 709 

subjects attempt to find a hidden target zone based on binary feedback, with greater reductions in 710 

error following incorrect trials. Our results indicate that subjects who were unable to learn the full 711 

rotation made smaller and less variable changes in response to errors and this was primarily driven by 712 

their sensitivity to the outcome of the previous trial. Learning from errors has been suggested to be a 713 

signature of explicit reinforcement learning, in contrast to learning from success in implicit learning 714 

(Loonis et al., 2017). Therefore, the finding that the difference between successful and unsuccessful 715 

subjects in the current experiments was in response to errors further supports the idea that it is the 716 

sensitivity of the explicit system that is important for this task. However, from the data presented here 717 

it is impossible to determine if the corrections following errors are explicit in nature or due to implicit 718 

motor variability (He et al., 2016; Wu et al., 2014). In future, similar experiments investigating the 719 
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presence of neural signatures of explicit learning in tasks such as this may be able to shed light on 720 

which process underlie trial-by-trial changes (Loonis et al., 2017). Interestingly, the pattern of reduced 721 

sensitivity to errors found for unsuccessful subjects in the current experiment was similar to that 722 

described for parkinsonian patients (Pekny et al., 2015). Genetic variability in various aspects of the 723 

dopaminergic system has previously been linked to differential performance in reinforcement learning 724 

(Frank et al., 2007, 2009), and the balance of model-free and model-based decision-making systems 725 

(Doll et al., 2016). Future experiments assessing if the same genetic principles apply to motor learning 726 

based on reward may be useful in not only explaining the variation in response but also cementing the 727 

links between the principles of reinforcement learning and motor learning (Chen et al., 2017, 2018). 728 

Interestingly, the magnitude of changes made in response to errors in a binary feedback based motor 729 

learning task was correlated with connectivity changes between motor areas, prefrontal cortex and the 730 

intraparietal sulcus (Sidarta et al., 2016). The prefrontal cortex and intraparietal sulcus have been 731 

associated with the model-based decision making system (Gläscher et al., 2010), adding further 732 

evidence for a pivotal role of explicit systems in reward-based motor learning. However, it should be 733 

noted that effects of attention and motivation cannot be ruled out in the current paradigm. Therefore, 734 

accompanying neurophysiological measures of these variables may be useful in elucidating their 735 

possible contribution. 736 

 737 

The efficacy of the dual task paradigm employed here in preventing learning is remarkable. Dual 738 

tasks have previously been employed in conjunction with motor adaptation to visuomotor rotations 739 

(Galea et al., 2010), force-fields (Keisler and Shadmehr, 2010; Taylor and Thoroughman, 2007, 740 

2008), as well as during the learning of motor skills (Maxwell et al., 2001) and sequence learning 741 

(Brown and Robertson, 2007). Galea et al. (2010) demonstrated that a secondary task can slow the 742 

rate of adaptation to both a gradually and abruptly introduced visuomotor rotation. Keisler and 743 

Shadmehr (2010) found that a declarative memory task could interfere with the ‘fast’ adaptation 744 

system but that a demanding cognitive task without the memory component did not. Furthermore, 745 

inhibition of the ‘fast’ process led to an increase in the ‘slow’, non-declarative process. Similarly in a 746 

sequence learning task a dual task with a declarative element increased the procedural learning 747 
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suggesting that these two aspects of learning may be in competition (Brown and Robertson, 2007). It 748 

could therefore be hypothesized that the use of a dual task in the current paradigm would shift 749 

learning from explicit to the implicit system. However, the current data suggest that this did not occur 750 

and for this paradigm the explicit system is necessary to compensate for large rotations, and cannot be 751 

substituted for by an increase in the use of the implicit learning system. Alternatively, if the implicit 752 

system is not engaged by the nature of this task then it would be impossible for it to compensate for 753 

the disruption of the explicit system. Arguing against this possibility is the fact that implicit retention 754 

was observed in this paradigm, suggesting that the implicit system is indeed engaged, at least to some 755 

degree. Whereas previous experiments have employed secondary tasks that involve more verbal 756 

systems (Galea et al., 2010; Keisler and Shadmehr, 2010; Taylor and Thoroughman, 2007), we 757 

selected the dual task which would have the maximum likelihood of disrupting the explicit system 758 

(Anguera et al., 2009; Georgopoulos and Massey, 1987). As the difficulty of the secondary task has 759 

been linked with the amount of disruption (Taylor and Thoroughman, 2008), it is also possible that 760 

the specific nature of the task may also be important and this is an interesting area for future study. 761 

One other possibility is that constant impairment of performance due to the secondary task may 762 

reduce intrinsic motivation of subjects (Liao and Masters, 2001). 763 

 764 

The distinction between implicit and explicit reinforcement systems engaging in learning motor tasks 765 

is not merely academic. At least part of the increased interest in the addition of reward to motor 766 

adaptation and learning is due to the finding that it increases retention (Abe et al., 2011; Dayan et al., 767 

2014, 2014; Galea et al., 2015; Shmuelof et al., 2012; Therrien et al., 2016), along with the promise 768 

this may have in a rehabilitation setting (Goodman et al., 2014; Quattrocchi et al., 2017). However, if 769 

the benefits are primarily due to explicit or strategic processes, they may be poorly transferred to other 770 

environments and be susceptible to disruption. In line with this, it has been demonstrated that motor 771 

skills, such as golf putting or playing table tennis, are less disrupted by manipulations such as dividing 772 

cognitive load, reducing reaction times or performing in stressful situations when learnt implicitly 773 

(Liao and Masters, 2001; Maxwell et al., 2001). If the final goal of the addition of reward to motor 774 

learning tasks is to increase retention for practical rehabilitation then it may be that methods that 775 
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increase the implicit contribution are required such as employing learning by analogy, reducing errors 776 

during learning or the addition of dual tasks (Liao and Masters, 2001). However, the choice and 777 

difficulty of the dual task should be made with caution as from the data presented here it may be too 778 

disruptive and ultimately prevent learning. 779 
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Figure 1. Experimental design. A, Subjects held the handle of robotic manipulandum with their right 918 

hand, the position of the arm and handle was hidden from sight and feedback was provided on a 919 

horizontal screen. B, Subjects made ‘shooting’ movements from a starting position (green circle) 920 

towards a target (red circle), after the initial practice trials the position of the cursor (white circle) 921 

was no longer visible at any point. C, Successful trials were indicated to the subject with the display 922 

of a green tick after the cursor had passed through a region centered on the target, over the course of 923 

the paradigm the position of the reward region gradually moved (solid green circle to dashed green 924 

circle) whilst the visible target (red circle) remained in the central location. By the end of the learning 925 

period a successful reach (dotted white line) was rotated by a maximum of either 15° or 25°. D, Time-926 

course of Experiment 2, at the same time as the target appeared on screen a ‘shape’ was also 927 

displayed slightly above it, the subject was asked to memorize this shape. After the reach was 928 

completed and the hand returned to the starting position subjects used their left hand to respond with 929 

a button press as to whether they believed the new shape shown on screen was a rotated version of the 930 

shape or an entirely different shape. 931 

 932 

Figure 2. Experiment 1: group performance.  A, Reach angle averaged over blocks of 5 trials, solid 933 

colored lines represent the mean of each group and the shaded region represents SEM. The average 934 

behavior of subjects in the 15Rot paradigm (Orange) fell consistently within the rewarded region 935 

(grey shaded region) indicating successful learning. B, Average reach angle over blocks for all 936 

subjects in the 25Rot paradigm (magenta) and also the same subjects split into two groups based on 937 

success at the final angle (25RotSuccess – red, 25RotFail – blue). C, Distribution plots displaying the 938 

reach angles for subjects in the three groups at various timepoints throughout the experiment with 939 

individual data points overlaid on an estimate of the distribution. Horizontal black line in the 940 

distribution represents the group median. D, Distribution plots of the computed variables of Implicit 941 

(‘Remove-Baseline’) and Explicit (‘Maintain-Implicit’) retention. Significance stars above horizontal 942 

black bars indicate differences between the groups (* P < 0.05, ** P < 0.01, *** P <0.001). 943 

Significance stars below the distributions represent a significant difference from zero. E, Reach angle 944 

averaged over blocks of 5 trials for subjects in the 25RotControl group. There was no reduction in 945 
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reach angle during the time taken for the control questions between Maintain 1 and Maintain 2 946 

blocks. However, when subjects were subsequently asked to remove their strategy, the period between 947 

Maintain 2 and Remove blocks, a significant reduction in reach angle was observed. 948 

 949 

Figure 3. Experiment 1: trial-by-trial behavior. Example of trial by trial reach angles from a subject 950 

who was successful at the final angle (A) and one who was unsuccessful (B). In each case rewarded 951 

trials are indicated with a circular marker and non-rewarded trials with a ‘x’. The grey shaded 952 

region indicates the reward region. C, Failure points for subjects in the 25RotFail group, thick lines 953 

are the mean reach angle for each subject at each rotation angle, thin lines represent mean of each 954 

block (average of 5 trials), colors go from hot to cold matching failure angles ranging from high to 955 

low. Vertical lines represent the last angle at which mean reach fell within rewarded region for each 956 

subject. The mean and standard deviation of all angles of failure is displayed as text. 957 

 958 

Figure 4. Experiment 1: performance after correct and incorrect trials.  Analysis of the effects of the 959 

success of the previous trial and reward history on trial by trial changes in reach angle for the three 960 

groups in Experiment 1 (15Rot – Orange, 25RotSuccess – Red, 25RotFail – Blue). Median (A) and 961 

MAD (B) of change in reach angle separated by the success of the previous trial. Median (C) and 962 

MAD (D) of the absolute change in reach angle separated by the success of the previous trial. E, The 963 

absolute change in reach angle following all combinations of trial success over the previous three 964 

trials. F, Sensitivity to the outcomes of each of the previous trials. Significance stars above horizontal 965 

black bars indicate differences between the groups (* P < 0.05, ** P < 0.01). 966 

 967 

Figure 5. Experiment 2: group performance. Change in reach angle over blocks (average of 5 trials) 968 

during the dual task experiment. A, Group performance for the DualTask (Green) and Control 969 

(Purple) task groups, the line indicates the mean and shaded region the SEM. The grey shaded region 970 

represents the reward region. B, the split of the control task group into ControlSuccess (Dark Red) 971 

and ControlFail (Blue). C, Distribution plots displaying the performance at different time points for 972 

the dual task, and split control groups. The shaded region represents an estimation of the distribution 973 
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and is overlaid with data for each individual subject. D, Distribution plots of the difference in reach 974 

angle during retention phases indicating the implicit and explicit components of retention. 975 

Significance stars above horizontal black bars indicate differences between the groups (* P < 0.05, 976 

** P < 0.01). 977 

 978 

Figure 6. Experiment 2: trial-by-trial behavior. Example of trial by trial reach angles from a subject 979 

performing the dual task (A) rewarded trials are indicated with a circular marker and non-rewarded 980 

trials with a ‘x’. The grey shaded region represents the reward region. B, Failure points for subjects 981 

in the DualTask group, thick lines are the mean reach angle for each subject at each rotation angle, 982 

thin lines represent mean of each block, colors go from hot to cold matching failure angles ranging 983 

from high to low. Vertical lines represent the last angle at which mean reach fell within rewarded 984 

region for each subject. Th mean and standard deviation of the angle of failure is reported as text in 985 

the figure. 986 

 987 

Figure 7. Experiment 2: performance after correct and incorrect trials. Analysis of the effects of the 988 

success of the previous trial and reward history on trial by trial changes in reach angle for the two 989 

groups performing the control task in Experiment 2. Distribution plots for median (A) and MAD (B) 990 

of change in reach angle separated by the success of the previous trial. Median (C) and MAD (D) of 991 

the absolute change in reach angle separated by the success of the previous trial. E, the absolute 992 

change in reach angle following all combinations of trial success over the previous three trials. F, 993 

sensitivity to the outcomes of each of the previous trials.  994 

 995 
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