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Abbreviations 
 
 

 
 
 
 

  

Abbreviation 
 

Definition 

ABG Arterial Blood Gas 
ACP Acute Cor Pulmonale 
ALI Acute Lung Injury 
ARDS Acute Respiratory Distress Syndrome 
CI Confidence Interval 
CO2 Carbon Dioxide 
CVP Central Venous Pressure 
Ees:Ea Ratio of elastance of right ventricle to elastance of pulmonary artery 

system  
ECLS Extra Corporeal Life Support 
HA 
HR 

Hypercapnic Acidosis 
Heart Rate 

IL-8 Interleukin 8 
LPV Lung Protective Ventilation 
mPAP Mean Pulmonary Arterial Pressure 
MV Mechanical Ventilation 
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 
OR Odds Ratio 
PA Pulmonary Artery 
PaCO2 Partial Pressure of arterial Carbon Dioxide 
PaO2 Partial Pressure of arterial Oxygen 
PBW Predicted Body Weight 
PEEP Positive End Expiratory Pressure 
Ppao Pulmonary artery Occlusion Pressure 
Pplat Plateau Pressure 
PVR Pulmonary Vascular Resistance 
RV Right Ventricle 
RVEDA/LVEDA Ratio of Right Ventricular End Diastolic Area to Left Ventricular End 

Diastolic Area 
RVEF Right Ventricular Ejection Fraction 
RVSWI Right Ventricular Stroke Work Index 
SVR Systemic Vascular Resistance 
TEE Trans Esophageal Echocardiography 
TTE Trans Thoracic Echocardiography 
VILI Ventilator Induced Lung Injury 
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Abstract 

 

Lung protective ventilation has become the cornerstone of management in patients with 

ARDS.  A subset of patients are unable to tolerate lung protective ventilation without 

significant carbon dioxide elevation.  In these patients permissive hypercapnia is used. 

Although thought to be benign, it is becoming increasingly evident that elevated carbon 

dioxide levels have significant physiological effects. In this narrative review, we highlight 

clinically relevant end organ effects in both animal models and clinical studies. We also 

explore the association between elevated carbon dioxide, acute cor pulmonale and ICU 

mortality. We conclude with a brief review of alternative therapies for CO2 management 

currently under investigation in patients with moderate to severe ARDS.  
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1. Introduction 

 

An improved understanding of the pathophysiology and clinical management of 

acute respiratory distress syndrome (ARDS) has led to lung protective ventilation (LPV) 

becoming a cornerstone of management. Early strategies of mechanical ventilation in 

ARDS were tailored to achieve tidal volume ventilation of 10-15 ml/kg predicted body 

weight (PBW) 1.  High pressure, high tidal volume ventilation strategies were utilized to 

overcome densely consolidated, poorly compliant lung regions in an effort to achieve 

adequate arterial oxygenation and normal carbon dioxide (CO2) levels 2,3.  This notion 

was disproven when the landmark ARMA trial by the ARDS Network demonstrated 

significant mortality benefit, (22% reduction) with pressure and volume limited LPV 

(6ml/kg vs 12 ml/kg PBW) 1. LPV may improve outcomes through several mechanisms 

including: decreased stretch and sheer forces applied to the alveolar wall (volutrauma 

and barotrauma), less cyclic recruitment-derecruitment of atelectatic areas of lung 

(atelectrauma) and attenuation of systemic cytokine response (biotrauma) 4. 

Unfortunately, mortality in severe ARDS remains high – upwards of 40% 5. A 

consequence of low tidal volume ventilation is a reduced ability to clear CO2 due to 

reduced minute ventilation. A subset of patients cannot tolerate LPV without significant 

PaCO2 elevation.  In these patients, a higher respiratory rate to increase minute 

ventilation and lower PaCO2 or permissive hypercapnia to facilitate low tidal volume 

ventilation, are used. Although initially thought to be benign or even protective, it is 

becoming increasingly evident that elevated CO2 levels have significant physiological 

effects that may in fact be deleterious.  This review will outline both the physiological and 

clinical sequelae of permissive hypercapnia in ARDS.   

 

2. Effects of hypercapnic acidosis in animal models 
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2.1 Cytokine Response 

 

Normal CO2 arterial tension is generally within the range of 35– 45 mmHg. 

Classification of hypercapnia is variably defined but will be referred to in this review as 

mild, moderate and severe according to ranges of 46-50 mmHg, 50-75 mmHg and 

greater than 75 mmHg, respectively6.  At the molecular level, hypercapnic acidosis 

inhibits production of pro-inflammatory cytokines and has been shown to attenuate 

inflammation related to ventilator induced lung injury (VILI) by inhibition of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), and interleukin 8 (IL-8) 7,8. 

Hypercapnic acidosis reduces oxidative reactions in the endotoxin-injured rat lung model 

9. Hypercapnic acidosis has also been associated with less severe VILI in isolated 

perfused rabbit lungs ex vivo 10 and in vivo 11. It has been suggested by several groups 

that therapeutic hypercapnia might provide benefit in ARDS 12-14 and while decreasing 

host oxidative injury via hypercapnic acidosis would be of benefit in many cases, it may 

be deleterious when the etiology of ARDS is pulmonary infection and free radicals 

generated may play a role in facilitating bacterial injury and death 15.  

 

At the cellular level, hypercapnia alone lowers release of IL-8 from 

lipopolysaccharide-stimulated neutrophils 16 while hypercapnic acidemia attenuates lung 

neutrophil recruitment and function. This leads to a reduced host inflammatory response, 

but at the cost of impaired immune-mediated bactericidal activity in the lung 14. The latter 

is also supported by a study showing that mice with Pseudomonas aeruginosa 

pneumonia exposed to hypercapnia develop impaired neutrophil function and have 

higher mortality as compared to air-exposed counterparts 17. 
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Additional studies using neutrophil-depletion and E. coli mediated lung injury 

have found hypercapnic acidosis to be beneficial for oxygenation and lung compliance; 

however, there is no change in either lung inflammation or histological damage between 

hypercapnia and normocapnia 18. Hypercapnia alone significantly enhances 

inflammatory reactions mediated by nitric oxide and secondary nitrating species in fetal 

rat lung epithelial cells exposed to lipopolysaccharide and inflammatory cytokines 19. The 

duration of hypercapnic acidosis may influence its effects as attenuation of both 

histologic and physiologic indices of disease severity is observed with hypercapnic 

acidosis of short duration (< 6 hours) 20 and in models of acute lung injury (ALI) related 

to systemic sepsis 21. Conversely, models using pulmonary sepsis-mediated ALI 

demonstrate no difference in physiologic or histologic indices of lung injury with 

hypercapnic acidosis 22 or worsened histologic indices and higher pulmonary bacterial 

loads in the setting of prolonged hypercapnic acidosis (>48 hrs duration) without 

appropriate anti-microbial therapy 23.  

 

2.2 Inhibition of lung epithelial cell repair and function 

 

Hypercapnic acidemia impairs pulmonary epithelial wound healing through two 

mechanisms 24,25. Firstly, it slows epithelial repair of stretch-induced cell membrane 

injury 24. Secondly, it inhibits repair of ventilator-induced pulmonary epithelial cell injury 

likely via inhibition of the NF-κB pathway by reducing cell migration and altering matrix 

metalloproteinase activity 25. Recent clinical work lends support to these findings as 

pleural hypercarbia correlates with persistent alveolar-pleural fistulae post-lung 

resection26.  Finally, short-term hypercapnia, independent of pH has been shown to 

impair alveolar epithelial cell function resulting in decreased alveolar fluid resorption 27.   
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2.3 Renal effects   

 

Acute hypercapnic acidosis has been shown to have several direct effects on 

renal vasculature in vivo. In conscious dogs, it reduces renal plasma flow 28-30, increases 

renal vascular resistance 30, stimulates robust activation of the renin-angiotensin-

aldosterone system 30,31, contributes to non-osmotic release of vasopressin 29 and 

diminishes renal free water excretion 29. Ischemia-induced apoptosis of rat renal tubular 

cells in vitro is observed when hypercapnia and hypoxemia are simultaneously 

present32. In humans, hypoxemia and severe hypercapnia have been associated with 

reduced renal function 33, whereas higher plasma norepinephrine levels are correlated 

with hypercapnia 34. There is also a potential association with increased requirement for 

hemodialysis in patients using volume and pressure limited ventilation with hypercapnia 

35. 

 

2.4 Diaphragmatic and skeletal muscle effects 

  

 Hypercapnic acidosis has been shown to modulate rat diaphragm myogenic 

response via endothelium-mediated alterations to diaphragmatic arteriolar tone. 

Hypercapnic acidosis with CO2 values < 80 mmHg elicits enhancement of myogenic 

tone. Conversely, hypercapnic acidosis with CO2 of >80 mmHg inhibits myogenic tone 

through endothelium-dependent inhibitory mechanisms. CO2 values around 100 mm Hg 

appear to inhibit myogenic tone by both endothelium-dependent inhibitory mechanisms 

and direct effects of CO2 on arteriolar smooth muscle tone 36.  In addition, skeletal 

muscle atrophy is associated with elevated CO2 both in vitro and in vivo 37.  This may 

have relevance to the subset of ARDS patients with underlying chronic pulmonary 

disease in which muscle atrophy correlates with worse clinical outcomes. 
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2.5 Pulmonary circulation 

 

 Hypercapnic acidosis enhances pulmonary vasoconstriction in animals 38,39.  In 

particular, it correlates with significant elevation in mean pulmonary arterial pressures 

(mPAP) , and pulmonary vascular resistance (PVR) in non-ARDS 39 and ARDS porcine 

models38, respectively. 

 

2.6 Buffered hypercapnic acidosis 

 

Pre-clinical studies have investigated whether hypercapnia or the associated 

respiratory acidemia exerts the physiological effects in models of ALI. Data from a rodent 

model using E.coli or endotoxin induced lung injury exhibited worse lung injury, and 

reduced wound healing in renal-buffered hypercapnic acidosis in comparison to 

normocapnic controls following 6 hours of lung protective ventilation 40. Similarly, sepsis-

induced ALI in rodents demonstrated similar degrees of physiologic and histologic injury 

in both bicarbonate-buffered hypercapnic acidosis and non-buffered normocapnic 

controls 41.  

 

While evidence from pre-clinical animal studies provides little to support the 

notion that hypercapnic acidosis is directly beneficial in ALI, it does highlight the need for 

further studies. In addition, a strategy using prolonged hypercapnia with untreated 

pulmonary infection demonstrates evidence of harm without appropriate antimicrobial 

therapy 23.  

 

3.Clinical studies of permissive hypercapnia with ARDS 
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3.1 Cardio-pulmonary effects of hypercapnia  

 

Hypercapnia induces physiological changes in pulmonary and systemic 

circulation (figure 1).  In healthy subjects, hypercapnic acidosis induces a rightward shift 

of the oxygen-hemogloblin dissociation curve 42 and lowers systemic vascular resistance 

(SVR) 43. In post cardiopulmonary bypass surgery patients, hypercapnia results in 

globally reduced myocardial contractility; however, sympathetically driven tachycardia 

serves to maintain cardiac output when compensatory reserve exists 44. Right ventricular 

function is particularly affected in the setting of post-operative hypercapnia such that 

there is increased right ventricular end-diastolic volume, decreased right ventricular 

ejection fraction (RVEF), and a significant increase in right ventricular stroke work index 

(RVSWI). These observations are in part due to increased pulmonary vascular 

resistance (PVR) owing to the direct vasoconstrictive effects of hypercapnic acidosis on 

pulmonary vasculature and to the accompanying rise in mPAP 45-47. In non-ARDS 

patients with chronic pulmonary disease, Enson et al. demonstrated that respiratory 

acidosis but not hypercapnia alone causes elevation in PVR and mPAP 48 . In addition, 

their study showed that increases in mPAP may be more sensitive to hypoxia at lower 

pH values.  Uncertainty remains as to the relative contribution of hypercapnia and 

respiratory acidosis to increases in PVR and mPAP in patients with ARDS.  

 

Additional insight into alteration of pulmonary hemodynamics in ARDS can be 

obtained by studies examining coupling between the RV and pulmonary arterial 

circulation. The pulmonary vasculature is characterized by the arterial elastance of the 

pulmonary artery system synonymous with RV afterload (Ea) whereas the RV system is 

characterized by the RV elastance (Ees) 49.  Ees:Ea is the ratio of RV to pulmonary 
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artery (PA) elastance  and reflects the mechano-energetic aspects of RV/PA coupling 

which determines RV stroke volume. When Ees:Ea is greater than 1 (normal range 1.5 

to 2), the system is coupled providing adequate RV cardiac output at minimal energy 

cost 50. In the context of hypercapnia, pulmonary vasoconstriction and elevated RV 

afterload may lead to an increase in Ea, uncoupling of the RV/PA system and 

subsequent RV dysfunction 50.  

 

3.2 Cardio-pulmonary effects of mechanical ventilation in ARDS  

 

Studies of mechanical ventilation in patients with ARDS some 40 years ago first 

identified pulmonary capillary lesions leading to pulmonary hypertension, marked RV 

dysfunction with elevation of right ventricular stroke-work index and upwards of threefold 

increase in PVR 51-54. Acute cor pulmonale represents the most severe form of RV 

dysfunction and has been the subject of numerous investigations in the ARDS patient 

population. It is variably defined using right heart catheterization, pulmonary artery 

catheterization and echocardiography.   

 

Prior to the advent of LPV, acute cor pulmonale (defined as septal dyskinesia 

associated with a right ventricular to left ventricular end diastolic area ratio 

[RVEDA/LVEDA] greater than 0.6) was very common and could be observed in more 

than half of patients examined 55.  Not surprisingly, it is positively correlated with 

increases in plateau pressure (Pplat) during mechanical ventilation 56. In a large pooled 

analysis using echocardiographic studies of patients with ARDS, the presence of acute 

cor pulmonale was 13%, 32% and 56% when Pplat values ranged between 18-26 

cmH2O, 27-35 cmH2O and > 35 cmH2O, respectively. The highest mortality was 

observed in the two groups with highest Pplat values and in which acute cor pulmonale 
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was most prevalent 56. However, similar studies using lung protective ventilation have 

described significantly lower rates 57. For example, Osman et al. noted that right 

ventricular failure (defined as the presence of: mPAP > 25mmHg, central venous 

pressure (CVP) > pulmonary artery occlusion pressure (Ppao) and stroke volume index 

< 30ml/m2) was present in approximately 10% of ARDS patients 58, whereas Boissier et 

al and Lheritier et al noted prevalence of acute cor pulmonale of 22% 59 and 22.5%, 

respectively 60. Driving pressure (defined as the difference between Pplat and total 

PEEP) is a surrogate of lung stress that has been associated with survival and risk of cor 

pulmonale in ARDS patients which may suggest that a ‘low pressure’ ventilatory strategy 

could be RV-protective 61. Lower overall rates of acute cor pulmonale in more recent 

studies likely relates to a combination of RV-protective ventilation strategies, 

heterogeneity in the definition itself, and to therapeutic ventilator adjustments based on 

its earlier recognition. 

 

3.3 Cardiopulmonary effects of permissive hypercapnia in ARDS 

 

In spite of these improvements, RV dysfunction remains prevalent and is linked 

to worsened outcomes in ARDS. For example, severe RV dysfunction is shown to be 

more prevalent in non-survivors of ARDS 62. RV dysfunction in early ARDS as defined by 

a higher ratio of right atrial pressure to pulmonary artery occlusive pressure (PRA/Ppao) 

was independently associated with higher mortality 63. The higher mortality exhibited in 

this study may in part be explained by the effects of mechanical ventilation in the era 

prior to adoption of LPV; however, studies of ARDS patients in the era following adoption 

of LPV also show a correlation between RV dysfunction and mortality. Boissier et al 

found significantly higher 28-day mortality in ARDS patients with severe RV dysfunction 

59 and Osman et al found that elevated mPAP or CVP > Ppao respectively, to be 
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independently associated with 90-day mortality 58.  In addition, secondary analysis of 

ARDS patients from the Fluid and Catheter Treatment Trial (FACTT) demonstrated that 

elevation of transpulmonary gradient (mPAP - Ppao) or elevated pulmonary vascular 

resistance index, conferred a higher risk for 60-day mortality 64.    

 

Notwithstanding LPV, permissive hypercapnia coupled with moderate to severe 

ARDS may exert a synergistic effect that can lead to acute cor pulmonale. Widespread 

use of modern 2D echocardiography has not only improved our understanding of the 

effects of mechanical ventilation on RV function but has facilitated a better 

understanding of the relationship between mechanical ventilation, permissive 

hypercapnia and the development of acute cor pulmonale (table 1). Mekontso-Dessap et 

al utilized transesophageal echocardiography (TEE) in patients with severe ARDS to 

demonstrate that induction of hypercapnic acidosis with low tidal volume ventilation and 

increasing PEEP at constant plateau pressure, directly impaired RV function 

independent of the effects of PEEP 65.  Vieillard-Baron et al performed multivariate 

analysis of 75 patients with ARDS studied using transesophageal echocardiography 

(TEE). They found that elevated PaCO2 was the sole individual predictor of acute cor 

pulmonale 57. While the latter had no influence on mortality, the authors correctly 

identified acute cor pulmonale early in the study and introduced prone ventilation on day 

3 in those patients that had PaO2/FiO2 < 100 mmHg. Such adaptions may have 

mitigated the mortality associated with acute cor pulmonale 66. Lheritier et al utilized a 

combination of TTE and TEE to study 200 patients with moderate to severe ARDS < 48 

hrs from admission. Elevated PaCO2 was significantly associated with acute cor 

pulmonale and PaCO2 ≥ 60 mmHg was the only independent factor associated with 

acute cor pulmonale 60.  The study also found that the systolic pressure gradient 

between the right ventricle and right atrium (∆Pmax), an indirect measurement of 
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pulmonary vascular tone, correlated with PaCO2 and was significantly higher in those 

patients with PaCO2 ≥ 60 mmHg 60.  Despite the study findings, there was no association 

between acute cor pulmonale at < 48 hrs from admission and 28-day mortality 60.  In a 

recent large prospective observational study (n=752) Mekontso-Dessap et al identified 

hypercapnia (PaCO2 > 48 mmHg) as a respiratory variable with statistically significant 

correlation with cor pulmonale (assessed by TEE) in ARDS patients receiving LPV. 

Acute cor pulmonale was found in 22% of the cohort and severe acute cor pulmonale 

(defined as RVEDA/LVEDA >1) was found in 7.2 % of patients and was an independent 

predictor of mortality 67. 

 

Secondary analysis of the ARDS Network Study published by Kregenow and 

colleagues found that the presence of hypercapnic acidosis at randomization to be 

associated with lower 28-day mortality in the group randomized to tidal volume of 

12ml/kg (but no mortality difference in patients randomized to 6 ml/kg) 68 (table 2).  This 

study had several limitations including being a retrospective secondary analysis, defining 

hypercapnic acidosis based upon a day 1 blood gas rather than sustained hypercapnic 

acidosis over time, as well as having very few patients in the hypercapnic acidosis 

group. As this was a secondary analysis there was no causality proven, but only an 

association inferred.   

 

 In contrast to the Kregenow et al study, two recent studies looking at 

mechanically ventilated patients within the ICU have called into question the safety of 

hypercapnic acidosis.  The first study was retrospective and included 252,812 patients 

admitted to ICU with respiratory failure requiring mechanical ventilation during the first 

24hr of their ICU admission. It found that hypercapnic acidosis in the first 24 hours of 

ICU admission was associated with higher in-hospital mortality compared with 
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compensated hypercapnia or normocapnia 69 (table 2). Interestingly both patients with 

compensated hypercapnia, and hypercapnic acidosis had higher mortality rates.  This 

effect was consistent across all types of ICU admissions.  This study’s strength were the 

large number of patients included and the longitudinal nature of the data collection (data 

over a 14 year period from 171 ICUs).  This study classified patients based upon a day 1 

ABG and did not account for adjunctive treatments such as bicarbonate infusions and 

extracorporeal life support (ECLS).  

 

The second study was a secondary analysis of 1899 patients from three 

prospective non-interventional cohort studies on ARDS patients. It demonstrated that 

severe hypercapnia, as defined by a PaCO2 ≥ 50 mmHg, was associated with higher ICU 

mortality in a population with moderate to severe ARDS 70 (table 2). The authors used 

propensity matching to conduct a sensitivity analysis to demonstrate that hypercapnia 

independent of acidosis was associated with increased mortality while both had 

independent additive effects at increasing mortality.  This study included patients from 

927 ICUs in 40 countries.  The investigators used the worst ABG in the first 48 hours of 

mechanical ventilation to stratify patients.  Some of the weaknesses of this study 

included a high number of patients being excluded due to missing ABG data (11.5%) 

and no data collection on the use of adjunctive therapies such as bicarbonate infusions 

and ECLS.  

 

3.3 Hypercapnia and organ dysfunction 

 

Not surprisingly, the harmful effects of severe hypercapnia extend beyond the 

cardiopulmonary system.  In the study by Nin et al, hypercapnic acidosis was associated 

with higher ventilator-associated complication rates (such as barotrauma) and more 
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organ failures including renal and cardiovascular dysfunction 70.  Further studies will be 

required to externally validate and elucidate the pathophysiologic basis for these findings 

and whether they share similarities to those described in animal models.   

 

4. Strategies of LPV when severe hypercapnia is present 

 

4.1 LPV, dead space and hypercapnia  

 

 Hypercapnia in ARDS patients can be an unintended consequence of LPV but 

may also be the result of higher dead space associated with increasing disease severity. 

This is important to identify early in the disease process as higher dead space fraction in 

early ARDS is independently associated with higher mortality 71. Strategies aimed at 

reducing alveolar dead space along with the severity of hypercapnia can be employed 

but carry risk. Firstly, adequate lung recruitment to facilitate ventilation in ARDS often 

necessitates finding optimal PEEP but care must be used to avoid alveolar 

overdistention which can negatively affect pulmonary hemodynamics and RV function 67.  

Secondly, titrating PEEP and driving pressure to achieve a desired tidal volume and 

PaCO2 threshold during LPV is a complex process. For instance, Amato et al 

demonstrated in observational post hoc analysis of nine randomized controlled trials of 

patients with ARDS, that decreases in tidal volume or increases in PEEP are beneficial 

only when associated with decreased driving pressure 61. Lastly, higher respiratory rates 

to correct hypercapnia are not tolerated in some patients with ARDS due to the 

development of dynamic hyperinflation and significant RV dysfunction 72. In summary, 

strategies to lower PaCO2 can be associated with significant harm and their use must be 

weighed against the risks associated with permissive hypercapnia.  
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4.2 Prone Positioning 

 

 Placing patients with severe ARDS in prone position has been demonstrated to 

improve oxygenation, compliance and early institution improves mortality 73. Some 

studies, however, have suggested that it is the decrease in PaCO2 associated with a 

reduction in alveolar dead space rather than increased PaO2 that might best reflect the 

degree of functional lung recruited with prone positioning 74,75.  Unfortunately, the only 

prospective randomized controlled trial to demonstrate mortality benefit with prone 

positioning (PROSEVA) did not directly evaluate alveolar recruitment with prone 

positioning 73.  In addition, a retrospective analysis of PROSEVA by Albert et al, 

demonstrated that increased survival with proning was not predicted by improvement in 

gas exchange as determined by blood gas analysis.76   Nonetheless, prone positioning 

can lower PaCO2 and unload the RV in selected groups of ICU patients and is an 

important tool to improve patient outcomes in severe ARDS.77       

 

4.3 Extracorporeal veno-venous CO2 removal (ECCO2R)  

 

 Debate continues over the role of extracorporeal devices in the management of 

ARDS. Specifically, there has been renewed interest in extracorporeal veno-venous CO2 

removal (ECCO2R) which offers efficient CO2 removal with relatively low blood flow 

rates.  A recent experimental porcine model by Morimont et al sought to determine 

whether using ECCO2R during LPV could improve pulmonary hemodynamics and RV 

function in early ARDS 38.  Institution of ECCO2R effectively corrected acidosis and 

hypercapnia during LPV. In addition, PVR and mPAP were significantly reduced and RV-

pulmonary arterial (Ees:Ea) coupling was improved. Changes in both pH and PaCO2 

were highly correlated with changes in mPAP. Whether findings from this study are 
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translatable into human patients with ARDS is unknown. At minimum, it provides 

rationale to initiate prospective studies in patients with moderate to severe ARDS using 

early institution of ECCO2R to normalize pH and CO2 in conjunction with current 

standards of LPV.   

 

4.4 Ultralow tidal volume ventilation and maintenance of normocapnia 

 

Several recent trials have examined ultra-low tidal volume ventilation (3-4 ml/kg) 

in combination with ECCO2R to determine its feasibility and whether additional benefit 

beyond current lung protective ventilation exists 78-80. In theory, ultra-low tidal volume 

ventilation lowers the risk of alveolar over-distension that can still occur despite our 

current use of LPV 81. It prevents the hemodynamic changes (acute cor pulmonale 

and/or RV failure) and it facilitates a ‘least damaging’ ventilatory approach (substantially 

lower Pplat and driving pressure values) that some have speculated would confer 

survival benefit 82.  While the study by Bein et al did not show an overall difference in 28 

or 60-day ventilator free days between groups, a post-hoc analysis demonstrated that 

patients with severe hypoxemia at randomization (PaO2/FiO2 < 150 mmHg) had a 

significantly shorter ventilation period as assessed by higher 60-day ventilator free days 

78. Additional studies on this front are underway (SUPERNOVA and REST). Yet despite 

these trials, it remains unclear whether the ‘least damaging’ ventilation approach with 

ultralow tidal volume ventilation and maintenance of normocapnia should be applied to 

patients with moderate ARDS or severe ARDS and whether it confers benefit over 

current standards of LPV with maintenance of normocapnia in either of these respective 

groups.  

 

4.5 The role of buffers in management of ARDS 
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There is substantial uncertainty over the role of buffers in the management 

respiratory acidosis associated with LPV. While the ARMA trial permitted sodium 

bicarbonate infusions in the low tidal volume protocol when pH fell below 7.15 1, their 

use warrants caution. A reasonable approach would be to utilize a strategy similar to the 

protocol used in the low tidal volume ventilation group of the ARMA trial 1. 

 

5. Summary 

 

Pre-clinical studies of ARDS have provided insight into the physiologic effects of 

hypercapnic acidosis; however, the relative contribution of hypercapnia on mortality in 

animal models remains uncertain except in the context of active untreated pulmonary 

infection where it is associated with worsened outcomes. 

 

Clinical studies in patients with ARDS have shown an association between 

severe hypercapnia, acute cor pulmonale and mortality.  Severe hypercapnia has also 

been associated with higher rates of non-cardiovascular organ dysfunction and ICU 

mortality in patients with moderate to severe ARDS.  

 

Ultra lung protective ventilation with maintenance of normocapnia using 

extracorporeal CO2 removal offers potential advantages over current standards of lung 

protective ventilation. It remains uncertain, however, whether this strategy should be 

applied to patients with moderate ARDS, severe ARDS, or both. Furthermore, it remains 

to be determined whether this strategy offers additional benefit in either of these patient 

groups as compared to LPV with maintenance of normocapnia. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 20  

6. Final Thoughts 

 

Severe hypercapnia has deleterious consequences in patients with moderate to 

severe ‘Berlin Criteria’ ARDS. For clinicians managing such patients, we suggest 

controlling severe hypercapnia such that PaCO2 be kept below 50mmHg in line with 

current evidence 83. In addition to examining ultra low tidal volume ventilation with 

ECCO2R, it is time to reassess current LPV strategies in patients with moderate to 

severe ARDS. A larger, adequately powered randomized study using LPV comparing 

maintenance of normocapnia with ECCO2R versus permissive hypercapnia is warranted. 
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Tables 
 
 

Citation Study Design Results Comments 
 
Vieillard-Baron et al 57 
(2001) 

 
Prospective 
single center, 
open design  
n = 75 

 
Multivariate regression analysis: 
PaCO2 independently associated 
with ACP. OR 1.15, 95% CI 1.05–
1.25, p < .0001 
 

Mortality not influenced by 
presence of ACP 
 

 
ACP defined as ratio of 
RVEDA/LVEDA > 0.6 by TEE  
 
MV: Pplat limited to ≤ 30 cm H2O, 
tidal volume of 6 –9 mL/kg (PBW), 
PEEP range 3–15 cm H2O 
 

Lheritier et al 60 
(2013) 

Prospective 
multi-center 
n = 200 

Multivariate regression analysis: 
PaCO2 > 60 mmHg strongly 
associated with ACP. OR 3.70, 
95% CI 1.32–10.38, p = 0.01 
 
ACP not independently associated 
with mortality 
 

ACP defined as ratio 
RVEDA/LVEDA > 0.6 by TEE 
 
MV: Pplat ≤ 30 cm H2O, tidal 
volume and PEEP according to 
expert recommendations from the 
Societe de Reanimation de 
Langue Francaise 
 

Mekontso-Dessap et al 67  
(2016) 

Prospective 
multi-center 
n = 752 

Multivariate regression analysis: 
Severe ACP independently 
associated with in hospital 
mortality. OR 2.00, 95% CI 1.03–
3.88, p= 0.04 
 
PaCO2 > 48 mmHg associated 
with ACP. OR 2.39, CI 1.62–3.52, 
p<0.01 
 

ACP and severe ACP defined as 
ratio of RVEDA/LVEDA > 0.6 and 
> 1.0 respectively with presence 
of septal dyskinesia by TEE  
 
MV: Pplat ≤ 30 cm H2O, tidal 
volume of 6–8 ml/kg (PBW), 
PEEP 8 ± 4 cm H2O 
 

 
 
Table 1 - Summary of clinical studies showing correlation between hypercapnia, severe RV 
dysfunction/acute cor pulmonale and mortality in mechanically ventilated patients with 
ARDS.  ACP = Acute cor pulmonale, CI = Confidence interval, MV = Mechanical ventilation, OR = 
Odds ratio, PaCO2 = Partial pressure of arterial carbon dioxide, Pplat = plateau pressure, PEEP = 
Positive end expiratory pressure, PBW = Predicted body weight, RVEDA/LVEDA = Ratio of right 
ventricular end diastolic area to left ventricular end diastolic area, TEE = Trans esophageal 
echocardiography 
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Citation Study Design Results Comments 
 
Kregenow et al 68 
(2006) 

 
Retrospective 
secondary analysis of 
ARMA trial (ARDS 
Network) multi-center 
RCT (2000) 
n = 861 
 
 

 
Multivariate regression analysis:  
 
Lower 28 day mortality associated with 
hypercapnic acidosis in 12 ml/kg 
(PBW). Adjusted odds ratio 0.14, 95% 
CI 0.03–0.70, p = .016 
 
No reduction in 28 day mortality 
associated with hypercapnic acidosis 
in low tidal volume ventilation group 
(6ml/kg PBW) 
 
 

 
HA based on day 1 ABG 
measurement only.  Too few 
patients with sustained HA to 
analyze 
 
Significant number of patients 
missing day 1 ABG 
 
No data collected on intravenous 
bicarbonate infusion usage 

Tiruvoipati et al 69 
(2017) 
 
 

Retrospective multi-
center international 
study 
n = 252,812  
 
 

Multivariate regression analysis: 
 
Higher hospital mortality for patients 
with hypercapnic acidosis, and 
compensated hypercapnia, adjusted 
(for severity of illness) OR 1.74, 95% 
CI, 1.62–1.88 and 1.18; 95% CI, 1.10–
1.26 respectively, as compared to 
normocapnia with normal pH, p < 
0.001 
 
 

Strength of this study was the high 
number of patients included  
 
Used only day 1 ABG data to 
classify 
 
No data collected on use of 
intravenous bicarbonate infusion or 
extracorporeal life support 

Nin et al 70 
(2017) 

Secondary analysis of 
three prospective non‐
interventional cohort 
studies (multi-center  
\international)  
n = 1899 
 

Multivariate regression analysis:  
Significantly higher ICU mortality in 
patients with maximum PaCO2 of ≥ 50 
mmHg (severe hypercapnia) during 
the first 48 h of MV, OR 1.93, 95% CI 
1.32–2.81, p =  0.001 
 
Additional binomial logistic model 
omitting acidosis: PaCO2 of ≥ 50 
mmHg independently associated with 
a higher risk of ICU mortality, OR 2.40, 
95% CI 1.67–3.46, p < 0.001  
 
Higher rates of organ failure and 
complications with PaCO2 of ≥ 50 vs < 
50 mmHg: Cardiovascular failure (p = 
.001), renal failure (p = 0.013), 
barotrauma (p = .001) 
 

Strength is a secondary analysis of 
multinational, multicenter cohort 
from ICUs in 40 countries 
 
Used worst PaCO2 from ABGs 
within 48 hours of initiation of MV 
 
11.5% of patients excluded due to 
missing ABG data 
 
No data collected on use of 
intravenous bicarbonate infusion or 
extracorporeal life support 

    

Table 2: Summary of clinical studies showing effects of hypercapnia and hypercapnic 
acidosis on mortality in mechanically ventilated patients with ARDS.  ABG = arterial blood 
gas, CI = Confidence interval, HA = Hypercapnic acidosis, MV = Mechanical ventilation, OR = 
Odds ratio, PaCO2 = Partial pressure of arterial carbon dioxide, PBW = predicted body weight  
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Figure Legends 
 
Figure 1 - Systemic effects of hypercapnia.  HR = heart rate, mPAP = mean pulmonary 
artery pressure, PVR = pulmonary vascular resistance, RVEF = right ventricular ejection 
fraction, RVSWI = right ventricular stroke work index, SVR = systemic vascular 
resistance 
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