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Abstract 1 

Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance 2 

and are fundamental to the physiology of Gram-negative bacteria. The Resistance-3 

Nodulation-Division (RND) family of efflux pumps are the most clinically significant as 4 

they are associated with multi-drug resistance. Expression of efflux systems is 5 

subject to multiple levels of regulation, involving local and global transcriptional 6 

regulation as well as post-transcriptional and post-translational regulation. The best-7 

characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. 8 

This review describes the current knowledge and new data about the regulation of 9 

the acrAB and tolC genes in Escherichia coli and Salmonella enterica.  10 

 11 

 12 

 13 

 14 

Keywords:  AcrAB-TolC, Transcription, Induction, Multidrug resistance, Salmonella, 15 

Escherichia coli,  16 



3 
 

3 
 

Introduction  1 

 Bacterial multidrug efflux systems are a major and common mechanism of 2 

intrinsic antimicrobial resistance employed by bacteria. Efflux systems are able to 3 

extrude a variety of structurally diverse antimicrobials and some metabolites [10]. 4 

Many efflux pumps are fundamental to the physiology of some species of Gram-5 

negative bacteria, and are required for virulence and formation of biofilms [10]. The 6 

most clinically significant efflux pumps in Gram-negative bacteria are members of the 7 

Resistance-Nodulation-Division (RND) family as they recognise a broad range of 8 

substrates and are associated with multi-drug resistance (MDR) [10]. These pumps 9 

exist as a tripartite system, spanning both the inner and outer membrane [10, 5] . 10 

The best characterised RND system is AcrAB-TolC, and is present in 11 

Enterobacteriaceae including Escherichia coli, Salmonella species and Klebsiella 12 

pneumoniae. Pumps homologous to AcrAB-TolC exist in other species of Gram-13 

negative bacteria, such as MexAB-OprM, MexCD-OprJ and MexXY-OprM in 14 

Pseudomonas spp., CmeABC in Campylobacter spp., MtrCDE in Neisseria spp. and 15 

AdeABC in Acinetobacter baumannii [19, 25, 26, 28, 30, 36, 48, 27].  16 

 Expression of efflux systems is subject to multiple levels of regulation, 17 

involving local and global transcriptional regulation as well as post-transcriptional 18 

and post-translational regulation. As RND MDR efflux systems show high levels of 19 

homology at the gene and protein level, AcrAB-TolC has been studied most 20 

extensively as the prototype of this class of pumps [27] . In E. coli, expression of the 21 

acrAB and tolC genes is primarily controlled by MarA, whereas in Salmonella 22 

enterica these genes are controlled by RamA. This review will focus on the current 23 

state of knowledge of the regulation of the acrAB and tolC genes in E. coli and S. 24 
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enterica, respectively. We also describe other factors that have been recently 1 

discovered. 2 

Local transcription regulation 3 

 The mechanism of RND MDR efflux pump regulation is broadly similar in 4 

different species; there is local repression of pump genes as well as global 5 

transcription factor regulation. In E coli, Salmonella spp. and Klebsiella spp., the 6 

local repressor AcrR acts as a modulator to prevent the over-expression of acrAB 7 

[29, 47, 72].  AcrR has been extensively studied in E. coli. It is part of the TetR family 8 

of transcriptional repressors and when induced it represses acrAB [64]. acrR is 9 

located upstream of the acrAB operon, is transcribed divergently and can repress its' 10 

own synthesis(Fig.1) [29]. Clinical and veterinary isolates of E. coli and Salmonella 11 

have been identified with mutations in acrR that lead to loss of repression and 12 

subsequent over expression of AcrAB-TolC and MDR [47, 72]. Transcription of acrR 13 

is increased under general stress conditions, including 4% ethanol, 0.5M NaCl and 14 

the onset of stationary phase in Luria-Bertani (LB) medium [29]. In the absence of 15 

functional AcrR, these stress conditions were shown to induce acrAB, indicating that 16 

AcrR does not act in isolation [29, 72].  17 

 Other proteins that locally regulate acrAB and tolC include AcrS/EnvR, the 18 

histone-like nucleoid structuring protein (H-NS), and Suppressor of Division Inhibition 19 

(Sdi)A [27]. AcrS/EnvR is a repressor of the acrEF efflux pump genes; it can also 20 

repress acrAB in E. coli [21]. AcrS/EnvR may repress acrAB in response to 21 

increased activity in acrEF, allowing cross-regulation of RND efflux pumps [21]. In S. 22 

enterica and E. coli, H-NS regulates expression of genes by responding to 23 

environmental signals such as pH, osmolarity and temperature; it also down 24 

regulates expression of acrEF but not acrAB [14, 43, 44]. SdiA, a LuxR protein 25 
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present in E. coli and S. enterica, can positively regulate acrAB [42, 49]. These 1 

regulators are thought to play a minor role in regulation of acrAB and tolC as deletion 2 

of these genes results in little effect in efflux via AcrAB [27]. 3 

Mar regulation of acrAB-tolC in E. coli 4 

 The multiple antibiotic resistance operon, Mar, in E. coli was discovered by a 5 

transposon insertion in marA. It is expressed as two separate transcriptional units 6 

controlled by a common region of DNA, marO [13]. marR, marA and marB genes are 7 

involved in multiple antibiotic resistance, however, the marC gene, a putative 8 

transmembrane protein, is not [37]. 9 

 MarR is a protein that blocks its own transcription in the absence of any 10 

environmental signal [4]. The MarR family of proteins have a unique ability to sense 11 

phenolic compounds. MarR recognises and binds palindromic DNA sequences as 12 

dimers and the DNA binding domain contains a helix-turn-helix (HTH) motif that 13 

favours this activity [3, 62, 65]. Under normal conditions, MarR represses the 14 

marRAB operon by binding to two palindromic sequences within the operator DNA 15 

sequence marO that contains its promoter [33]. Transcription of marRAB will only 16 

occur when repression by MarR is disrupted. This can be due to the presence of 17 

certain ligands (e.g. phenolic compounds such as sodium salicylate), antibiotics, 18 

oxidative stress or mutation of marR, marO or the MarR binding site [12].  19 

 De-repression of the Mar operon leads to expression of marA that encodes a 20 

global transcriptional activator, MarA, a member of the AraC/XylS family of proteins. 21 

This family has a unique feature: a 100 amino acid sequence that forms a domain 22 

that contains two helix-turn-helix (HTH) motifs that bind DNA [35]. MarR always 23 

represses marA. MarA undergoes positive feedback as it binds to a DNA sequence 24 
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upstream of the repression site of MarR known as the marbox. This represses marR 1 

allowing marA to be activated (Fig. 1). The marbox is usually 20 bp in length, highly 2 

degenerate and asymmetric [32]. There are approximately 10,000 copies of the 3 

marbox in the E. coli chromosome but most are inactive [32]. Structural studies show 4 

that MarA utilises the two HTH motifs containing the recognition helices 3 and 6 that 5 

bind two major grooves on the DNA as a monomer and bends the DNA by 35° (Fig. 6 

2) [16, 50]. Expression of MarA leads to activation of many genes in its regulon 7 

including acrAB and tolC giving increased drug efflux and multiple drug 8 

resistance[46]. In the absence of any environment signal or mutation, MarR binds 9 

the operator sites and repression of the Mar operon resumes (Fig. 1).  10 

 MarB is transcribed as a part of the second transcription unit of the mar locus. 11 

marB is located downstream of marA and has its own ribosome binding site [13]. 12 

MarB increases the level of MarA by an unknown mechanism, however, its' predicted 13 

periplasmic signal sequence suggests that MarB can act post-transcriptionally [68].  14 

 The complete mar regulon (also known as mar/sox/rob regulon) is poorly 15 

defined. This is partly because the MarA homologues, SoxS and Rob, which also 16 

belong to the AraC family, recognise the same DNA sequence as MarA and regulate 17 

transcription similarly [14, 35]. Transcription of marRAB and acrAB-tolC can also be 18 

driven by factors other than MarR and MarA. The MarA homologues SoxS and Rob 19 

also bind the same DNA sequence as MarA and are known to activate transcription 20 

of marRAB and acrAB-tolC [39, 40]. The activation of marRAB increases when 21 

another factor known as Factor for Inversion Stimulation (FIS) binds upstream of the 22 

marbox. This activation was only seen in the presence of MarA, RobandSoxS [34]. 23 

The expression of MarA, SoxS and Rob is influenced by specific environmental 24 
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stimuli, but together ensure appropriate efflux pump regulation via a variety of stress 1 

signals.  2 

 Like MarA, SoxS is a small protein, of 107 amino acids, formed of a single 3 

domain containing two HTH motifs connected by a 27 Å rigid helix [31, 32]. SoxS 4 

proteins share 41% and 67% identity and similarity with MarA respectively[35]. 5 

Unlike most AraC family proteins, MarA and SoxS have no ligand sensing or 6 

dimerisation domain. In the absence of any stress signals the repressor SoxR binds 7 

to the soxS promoter and represses the transcription of SoxS [20]. Oxidative stress 8 

activates soxS and SoxS can repress its own expression. MarA and Rob have also 9 

been shown to repress the level of SoxS [11, 45].  10 

 Rob is a 289 amino acid protein [35]. It is formed of two domains, of which the 11 

N-terminal domain shares 51% and 71% identity and similarity with MarA [2, 35]. The 12 

N- terminal domain has been shown to have two HTH motifs similar to MarA. Both 13 

MarA HTH motifs interact with the DNA major groove, but Rob interacts with DNA 14 

major groove utilizing only one HTH motif [23].  The other motif is responsible for 15 

binding to the DNA backbone and so the DNA remains unbent [23]. Rob differs from 16 

MarA and SoxS by virtue of its second domain; a C-terminal domain that may be 17 

involved in ligand binding [23]. Similar to MarA and SoxS, Rob is constitutively 18 

expressed and is abundant. Rob binds with higher affinity than MarA or SoxS to the 19 

marbox, however, most of the Rob proteins are inactive due to post-transcriptional 20 

sequestration [17]. This prevents activation and in turn prevents activation of other 21 

promoters regulated by Rob [17]. Sequestrated Rob clumps are not formed when 22 

compounds such as 2,2′-dipyridyl activate Rob [60]. When activated, Rob regulates 23 

many promoters by binding to the marbox in response to antibiotics and organic 24 

solvents [22]. MarA, SoxS and Rob can repress the transcription of Rob [11, 38, 61].       25 
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Over-expression of these transcription factors has been found in antibiotic 1 

resistant veterinary and human isolates of E. coli. Antibiotic resistance in these 2 

isolates is often multi-factorial with resistant isolates harbouring multiple mutations, 3 

however, the most resistant isolates typically show increased efflux [15].  This is not 4 

caused by consistent over-expression of a single transcription regulator, but rather a 5 

combination where some isolates show over-expression of MarA and/or SoxS [71]. 6 

This correlates with laboratory mutants (Table 1) and re-enforces the evidence that 7 

in E. coli several global regulators control production of AcrAB-TolC.  8 

 Until recently, it was thought that mar mutations caused MDR solely by over-9 

expressing the AcrAB-TolC efflux pump, however, the mar system regulates other 10 

genes as well as acrAB and some are involved in resistance to certain classes of 11 

drugs. By carrying out ChIP-Seq experiments in ETEC H10407 (which carries a 12 

MarR mutation), Sharma et al., [63], identified 33 target genes that are regulated by 13 

MarA. In addition to the acrAB andtolC genes, MarA targets genes that play a role in 14 

transport, DNA damage repair, and transcription regulation. These include xseA 15 

which when deleted conferred increased susceptibility to ciprofloxacin, and 16 

mlaFEDCB which when deleted conferred increased susceptibility to tetracycline 17 

[63]. The authors inferred that with AcrAB-TolC, MarA mediates drug resistance. 18 

Ram regulation in Salmonella 19 

 RamA is an AraC/XylS transcription activator that is a homologue of MarA and 20 

regulates expression of the genes encoding the AcrAB-TolC MDR efflux pump [1]. It 21 

has a similar structure to MarA and binds to DNA via a similar mechanism [53]. Like 22 

MarA in E. coli, RamA regulates expression of acrAB and tolC in S. enterica [55] and 23 

other Enterobacteriaceae, including Klebsiella pneumoniae, Enterobacter aerogenes 24 
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and Enterobacter cloacae [55]. MarA, SoxS and Rob are also found in these species 1 

and they too play a role in expression of acrAB. However, RamA functions as the 2 

primary regulator [42]. RamA is not found in E. coli or Shigella species [55]. 3 

 Like MarA, RamA activates acrAB and tolC by directly binding to a 4 

degenerate nucleotide sequence upstream of the acrAB and tolC loci known as the 5 

rambox [42]. When RamA is constitutively expressed at high levels bacteria are 6 

MDR [56]. When ramA is highly expressed, there is a concomitant over-expression 7 

of acrAB, and when ramA is inactivated the expression of acrAB is reduced [6]. 8 

Overproduction of AcrB and increased expression of the AcrAB-TolC efflux pump 9 

confers MDR [6]. When acrB is inactivated, there is a fourfold increase in levels of 10 

ramA suggesting a feedback mechanism [6]. In the absence of ramA it is also 11 

difficult to select MDR mutants suggesting that ramA is required for MDR [57].  12 

 The ramR gene is located upstream of ramA; RamR is a repressor of ramA 13 

transcription (Fig. 1). Point mutations and insertions in ramR and the region between 14 

ramA and ramR have been identified in MDR clinical and veterinary isolates of S. 15 

Typhimurium and other S. enterica serovars[1, 55]. These mutations and insertions 16 

prevent RamR from binding to the ramA promoter causing increased expression of 17 

RamA and subsequent increase in expression of AcrAB-TolC and MDR [1, 54, 55, 18 

75]. The RamR binding site is 28 bp in length and covers the essential features of 19 

the promoter region of ramA, including the -10 conserved region, the transcriptional 20 

start site of ramA and two 7 bp inverted repeats[8]. By determining the crystal 21 

structure of RamR Yamasaki et al., identified substrates of the RamR protein which 22 

include crystal violet, ethidium bromide and rhodamine 6G [74]. All the compounds 23 
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tested were found to interact with various amino acid residues of RamR, reduce 1 

DNA-binding affinity, and induce over-expression of ramA [74]. 2 

 Expression of ramA is under multilevel control, with several factors stimulating 3 

expression of this transcription factor. RamA is synthesized de novo in response to 4 

inducers [1]. Various environmental stimuli have been shown to influence efflux by 5 

AcrAB by increasing expression of ramA. Baucheron et al demonstrated that bile 6 

activates acrAB through de-repression of ramA [9]. Nikaido et al demonstrated 7 

increased expression of ramA in response to the bacterial metabolite indole as it 8 

enhanced the promotor activity of ramA [42]. Bailey et al demonstrated that 9 

phenothiazides and serotonin-uptake inhibitors such as amitriptyline, induced ramA 10 

expression and were associated with a phenotype of efflux inhibition [6]. 11 

Chlorpromazine induced the expression of ramA in wild-type Salmonella and there 12 

was a concomitant decrease in the level of acrB transcript [6]. Lawler et al further 13 

demonstrated that exposure of Salmonella to several biocides, and certain antibiotics 14 

such as chloramphenicol, ciprofloxacin, rifampicin, cloxacillin and cefamandole also 15 

increased ramA expression [24].  16 

 Interestingly, not all antibiotics which are exported via the AcrAB-TolC efflux 17 

pump directly increase ramA expression, and over-expression of ramA is greatest 18 

when part of the AcrAB-TolC pump is inactivated leading to lack of the tripartite 19 

pump [24]. Seventeen antibiotics known to be exported via the AcrAB-TolC efflux 20 

pump were tested by Lawler et al, and only five significantly increased expression of 21 

ramA [24]. This may suggest, that ramA expression is not always triggered by direct 22 

action of specific chemical compounds to RamR, but also that the up-regulation of 23 

ramA may occur in response to other stimuli [24].  24 
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Environmental factors involved in regulation of acrAB-tolC 1 

The induction of acrAB-tolC in the presence of environmental factors such as 2 

bile, fatty acids or cationic peptides, is clinically relevant due to Enterobacteraciae 3 

encountering these compounds inside the gastro intestinal tract of the host. In E. coli 4 

binding of bile, fatty acids and cationic peptides to Rob produces conformational 5 

changes and so it induces acrAB [58, 70]. In Salmonella spp. induction of acrAB by 6 

bile is dependent on RamA; this occurs by bile inhibiting the binding of RamR to the 7 

promoter region of ramA [9]. Induction of acrAB, in both E. coli and Salmonella spp., 8 

can also occur in situations where the cell is under oxidative stress. This is SoxRS 9 

dependent and requires the oxidation of the iron–sulphur clusters in SoxR, which in 10 

turn induces production of SoxS resulting in the induction of acrAB [73]. Induction of 11 

acrAB can also be triggered by salicylate, a phenolic phytohormone implicated in 12 

plant defence against bacterial pathogens. Salicylate binds to MarR, causing 13 

conformational changes which leads to disassociation of MarR from the marRAB 14 

promoter. As a result, expression of marA is de-repressed, which induces expression 15 

of acrAB [65].  16 

Other factors involved in regulation of acrAB-tolC (post-transcription and post-17 

translation) 18 

 The Lon protease is an ATP-dependent protease belonging to the AAA 19 

(ATPases associated with a variety of cellular activities) super-family and can be 20 

found in both Salmonella and E. coli [41, 52]. In E. coli, Lon has been shown to play 21 

a role in regulation of MarA and SoxS at a post-translational level by proteolytic 22 

degradation (Fig. 1) [18]. Levy et al, demonstrated that mutations in Lon leads to 23 
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increased AcrAB efflux and MDR as MarA is not degraded [41]. The impact upon 1 

MDR was greatest when combined with a marR mutation [41].  2 

 Lon performs similar functions within Salmonella as E. coli, with additional 3 

roles in Salmonella Pathogenicity Island (SPI)-1 gene expression and heme 4 

biosynthesis [66, 69]. The Lon protease also proteolytically degrades RamA (Fig. 1) 5 

[52]. Lon recognises the N-terminal region of RamA, and by binding to this site can 6 

degrade the protein [52]. In this way levels of RamA can be re-set to basal levels 7 

when the protein is no longer required or there is no longer an inducing stimulus.  8 

 Ricci et al., [51]  recently showed that the global regulator Carbon Storage 9 

Regulator A (CsrA) is involved in the regulation of AcrAB (Fig. 1). CsrA is an RNA 10 

binding protein that acts as a global regulator of diverse genes. CsrA binds directly to 11 

the 5' end of the acrAB transcript. This in turn alters RNA secondary structure 12 

preventing the formation of a repressive RNA structure that impedes binding of the 13 

ribosome, thus allowing for more efficient translation of the AcrAB proteins [51].  14 

There are subtle differences between regulation of AcrAB-TolC in different 15 

species of Enterobacteriaceae  16 

 A range of local and global regulators with complex interactions tightly 17 

regulates the AcrAB-TolC pump. In E. coli, MarA, Sox and Rob have such a tightly 18 

woven mechanism of interaction that their target site is termed the mar/sox/rob 19 

regulon. Each regulator responds to environmental signals as well as each other 20 

allowing precise control of the AcrAB-TolC efflux pump and other target genes. 21 

 In Salmonella, RamA is the predominant regulator, but MarA, SoxS and Rob 22 

also influence AcrAB-TolC and cause over-expression and MDR. Mutations causing 23 
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over expression of SoxS lead to increased resistance to fluoroquinolones, 1 

chloramphenicol and tetracycline, but confers less MDR when compared to 2 

mutations in ramA or ramR (Table 1) [75]. Mutations in rob induces mgtA 3 

transcription which is involved in Mg2+ transport; this can confer tolerance to 4 

cyclohexane [7].   5 

 In addition to Mar, Sox, Rob, there are other factors in some other 6 

Enterobacteriaceae species not found in E. coli or Salmonella. For instance, in 7 

Klebsiella pneumoniae there is romA and rarA, which are further regulators of the 8 

AcrAB pump. RomA is a second transcription factor that can act independently of 9 

RamA. It is in the romA-ramA locus regulated by RamR [59]. A further factor in K. 10 

pneumoniae, RarA, can also be induced independently of the other regulators and 11 

when over-expressed can also cause increased expression of acrAB and MDR [67].   12 

Concluding remarks 13 

 RND MDR efflux pumps such as AcrAB-TolC play a vital role in Gram-14 

negative bacteria, and consequently are under complex regulation. This allows for 15 

temporary activation of pumps under certain conditions and a rapid return to basal 16 

states. This implies that over-expression is not beneficial to the bacterium; possibly 17 

because of high-energy requirements. Constitutive de-repression conferring MDR to 18 

clinically useful drugs is due to evolutionary pressure of drug exposure. In order to 19 

fully understand the mechanisms involved it is essential that the full repertoire of 20 

regulatory factors, including those that are species specific, are identified. This 21 

knowledge will help identify those factors that could be targets for drug discovery and 22 

which could be inhibited as a mechanism to down-regulate MDR efflux and sensitise 23 

bacteria to antibiotics susceptible to efflux.   24 
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Legend to Figures 1 

Figure 1.Transcriptional regulation of the acrAB (red and blue) and tolC (yellow) 2 

regulon by E. coli marRAB (green) and S. enterica ramRA (purple) genes. Post 3 

transcriptional regulation of acrAB by CsrA (grey) and post translational regulation of 4 

RamA by Lon protease (orange). 5 

Figure 2: Structure and binding site of MarA: A) MarA (purple) binds the major 6 

grooves of DNA (black) by its DNA binding domain (generated via Rasmol by using 7 

PDB 1B10). B) The 20 bp consensus sequence bound by MarA, which is highly 8 

degenerate and asymmetric. Adapted from Rhee et al.,1998[24]. Similar binding may 9 

be observed in the case where RamA binds DNA. 10 
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