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“Take home” message 
Patients at high risk of undiagnosed symptomatic COPD can be identified using 

electronic primary care health records.  
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Abstract 

Background 

COPD is greatly underdiagnosed worldwide and more efficient methods of case-finding are 

required. We developed and externally validated a risk score to identify undiagnosed COPD 

using primary care records. 

Methods  

Retrospective cohort analysis of a pragmatic cluster case finding RCT in the West Midlands, 

UK. Participants aged 40-79 years with no prior diagnosis of COPD received a postal or 

opportunistic screening questionnaire. Those reporting chronic respiratory symptoms were 

assessed with spirometry. COPD was defined as presence of relevant symptoms with a 

post-bronchodilator FEV1/FVC below the lower limit of normal. A risk score was developed 

using logistic regression with variables available from electronic health records (EHRs) for 

2398 participants who returned a postal questionnaire. This was externally validated among 

1097 participants who returned an opportunistic questionnaire to derive the c-statistic, and 

sensitivity and specificity of cut-points. 

Results 

A risk score containing age, smoking status, dyspnoea, prescriptions of salbutamol, and 

prescriptions of antibiotics discriminated between patients with and without undiagnosed 

COPD (c-statistic 0.74 [95% CI 0.68 to 0.80]). A cut-point of ≥7.5% predicted risk had a 

sensitivity of 68.8% (95% CI 57.3 to 78.9%) and a specificity of 68.8% (95% CI 65.8.1 to 

71.6%).  

Conclusions 

A novel risk score using routine data from primary care EHRs can identify patients at high 

risk for undiagnosed symptomatic COPD. This score could be integrated with clinical 

information systems to help primary care clinicians target patients for case finding.  
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Introduction 

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality 

worldwide[1] but 50-90% of the disease burden remains undiagnosed. Patients with 

undiagnosed COPD have been shown to have significant morbidity and burden to health 

services from exacerbations many years prior to their diagnosis, therefore contributing to a 

large drive worldwide to improve early diagnosis.[2, 3] While mass screening with spirometry 

among asymptomatic individuals is not recommended,[4] earlier identification of patients with 

clinically significant but unreported symptoms (case-finding) could improve access to care 

and prevent disease progression.[5]  

A systematic approach to case finding using an initial screening questionnaire mailed to ever 

smokers (current and former smokers), followed by invitation to spirometry amongst those 

reporting relevant symptoms was recently evaluated in primary care. [6, 7] This proved to be 

twice as effective and was more cost-effective than opportunistic case finding, and identified 

a substantial proportion of patients with potential to benefit from effective interventions. 

However, this method targeted a broad population (all ever-smokers aged 40-79 years) and 

was also reliant on patient response.[8] A more efficient approach is therefore needed. 

A number of risk scores have been proposed, including one developed by our team, to help 

identify patients at high risk of undiagnosed COPD using routine clinical records.[9-11] 

However, their case definition included patients with a new record of COPD diagnosed 

through usual care. Estimates in England suggest approximately two thirds of COPD cases 

are undiagnosed.[12-14] Given this extent, the characteristics of patients diagnosed through 

routine clinical care may differ from those detected through active case finding. Risk scores 

should therefore ideally be derived using case-found populations. 

We report the development and validation of a new clinical score for identifying patients at 

high risk of undiagnosed COPD in primary care using data from TargetCOPD, a large cluster 

randomised controlled case finding trial.[6, 7]  
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Methods 
This report has been written in accordance with the TRIPOD statement.[15] 

Study design 

This is a retrospective cohort analysis of the intervention (case-finding) arm of the 

TargetCOPD cluster RCT,[6] to develop and validate a risk score for identifying undiagnosed 

COPD. General practices in the TargetCOPD trial were randomised to either targeted case 

finding or routine care. Eligible participants were recruited from August 2012 to June 2014. 

Those in practices that were allocated to the case finding arm were individually randomised 

to either receive a screening questionnaire only when attending routine clinical appointments 

or to additionally receive a screening questionnaire by post. Participants reporting relevant 

respiratory symptoms (chronic cough or phlegm for three or more months of the year for two 

or more years, wheeze in the previous 12 months or dyspnoea of MRC grade 2 or higher) 

were offered a diagnostic assessment with post-bronchodilator spirometry. We used data 

from their primary care electronic health records (EHRs) and spirometry assessment to 

develop and validate a risk score for undiagnosed COPD.  

Population 

Participants were aged 40 to 79 years with no prior diagnosis of COPD (Table S1 provides 

clinical codes used for exclusion). Subjects were further excluded at the discretion of their 

GP, (e.g. terminal illness, recent bereavement, learning difficulties, or pregnancy). This 

analysis is restricted to a subset of participants from 13 of the participating 27 practices 

allocated to the case finding arm for whom data from their EHR were available.  

Setting 

The TargetCOPD trial was based in primary care practices in the West Midlands, UK.[6] 

Participating practices broadly reflected the diversity of the population in terms of age, 

ethnicity, socioeconomic status, and practice characteristics.  
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Outcome 

COPD was defined as the presence of at least one chronic respiratory symptom (as 

described above) together with airflow limitation measured by post-bronchodilator 

spirometry. Spirometry was performed to ATS/ERS standards [16] by trained research 

assistants using EasyOne spirometers (ndd Medical Technologies, Zurich) 20 minutes after 

the inhalation of 400mcg of salbutamol delivered through a metered dose inhaler and 

Volumatic spacer. Spirometers were calibrated on a daily basis and all research assistants 

underwent supervised training over a period of 3-6 months. All spirometry traces were 

reviewed by a lung function specialist. For this analysis airflow limitation was defined as a 

forced expiratory volume in one second to forced vital capacity ratio (FEV1/FVC) less than 

the lower limit of normal (<5th percentile) adjusted for age, sex, height, and ethnic group 

using the Global Lung Initiative 2012 equations which provide the most recent and most 

representative global estimates.[17] This conservative definition of airflow limitation is less 

likely to over-diagnose COPD in older patients compared to using a fixed ratio definition.[18] 

Data extraction 

Data (clinical codes) (Table S2) were extracted from EHRs based on predictors identified as 

potentially important in our previous analysis,[10] including demographic characteristics, 

smoking status, respiratory symptoms, comorbidities, lower respiratory tract infections 

(LRTIs), respiratory medication prescriptions, and selected antibiotic use indicated for the 

treatment of LRTIs. Data from residential postcodes were used to estimate socioeconomic 

status using the Index of Multiple Deprivation (IMD).[19] All data were stored on an 

encrypted database. 

Sample size 

Subjects with missing outcome (COPD) status (predominantly those invited but did not 

attend a spirometry assessment) were excluded from the analysis (n=755). Data from 2398 

subjects who returned a postal questionnaire were used for model development 
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(development sample) and from 1097 subjects from the same set of practices who returned 

an opportunistic questionnaire for external validation (external validation sample) (Figure 1). 

This non-random splitting of the data ensured the developed risk score could be validated in 

new data from a different part of the intended population.[20] 7.9% of all subjects were newly 

diagnosed with COPD through the trial (198 in the development and 77 in the external 

validation samples). At least 10 outcome events are recommended per candidate predictor 

considered for inclusion in a logistic regression model.[21] There was therefore sufficient 

power to consider up to 19 candidate predictors in the developed model.   

Model development 

The model was developed using multivariable logistic regression considering the following 

candidate predictors for inclusion: age, sex, most recent smoking status, history of asthma, 

and LRTIs, complaints of cough, dyspnoea, wheeze, and sputum, and prescriptions of 

salbutamol, prednisolone, and antibiotics, within the previous three years. Since there were 

very little (<1%) missing data for these candidate predictors, a complete-case analysis was 

performed.[22] We tested for interactions with a particular focus on age, sex, and smoking 

status. The best-fitting terms for continuous variables were determined using fractional 

polynomial regression.[23] Predictors not statistically significant at the p<0.05 level were 

removed from the model (although age and smoking status were forced in because of their 

known clinical importance). The fit of the reduced model was then compared to the full 

model using a likelihood ratio test. 

To improve the calibration of the model predictions and adjust for over-fitting, the model’s 

calibration slope coefficient was estimated in 1000 bootstrap samples to determine the 

shrinkage factor (the average calibration slope). This was multiplied against predictor 

coefficients in the developed model to produce the final model equation.[24]  
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Internal validation performance 

The sensitivity and specificity of the predicted probabilities from the final risk score were 

plotted on a receiver operator characteristic (ROC) curve to examine the discrimination 

performance. The risk score was internally validated using bootstrap resampling (with 1000 

replications) to estimate the c-statistic (area under the ROC curve) corrected for over-

fitting.[25] Calibration was assessed by grouping subjects into deciles of predicted risk and 

comparing the observed with the expected number diagnosed with COPD.  

External validation performance 

The c-statistic and calibration of the final risk score were then assessed in the external 

validation sample. As a comparator, we also assessed the discrimination performance of our 

previously developed clinical score [10] in the external validation sample. This model 

included smoking status, history of asthma, lower respiratory tract infections and 

prescriptions of salbutamol as predictors of undiagnosed COPD.  

Sensitivity analysis 

The final risk score was additionally validated in the external validation sample using a case 

definition that also included the presence of at least one chronic respiratory symptom but 

required an alternative definition of airflow obstruction commonly used in clinical practice (an 

FEV1/FVC below 0.7).[26] 

Preparing the risk score for clinical practice 

To prepare the risk score for use as a screening tool, we evaluated cut-points for 

dichotomising the predicted probabilities into low and high risk. The sensitivity and specificity 

were calculated in the external validation sample across a range of cut-points, alongside the 

positive and negative predictive values, likelihood ratios, and number of diagnostic 

assessments needed to identify one individual with undiagnosed COPD. All analyses were 

performed using Stata version 13.1 (StataCorp, Texas). 
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Ethical approval 

Ethical approval for the TargetCOPD trial was received from the Solihull Ethics Committee 

(IRAS, reference 11/WM/0403). 

  



9 
 

Results 

Practice characteristics 

Practice size varied with the majority having a list size below 10,000 (Table S3). Most 

practices served populations in socioeconomically deprived areas with a diverse range of 

ethnicities. The mean prevalence of diagnosed COPD prior to the trial was 1.3% (range 0.8 

to 2.9%). 

Development sample: population characteristics 

The development sample included 2,398 individuals, of whom 198 (8.3%) were diagnosed 

with COPD during the study (Figure 1). The mean age was 59.6 years, 51.6% were male 

and the majority (85.0%) were of white ethnicity. The majority (77.7%) of newly diagnosed 

COPD was mild (FEV1 ≥80% predicted), with 21.1% moderate (FEV1 50-79%), 1.0% severe 

(FEV1 30-49%), and 0.2% very severe (FEV1 <30%).  

Based on data extracted from EHRs (Table 1), current smoking was significantly more 

common among participants with COPD than those without (32.8% versus 14.1%, 

respectively). There was also a higher prevalence of asthma and a slightly higher prevalence 

of anxiety and depression among those with COPD. However the prevalence of other 

chronic conditions was similar in both groups. Documented cough, dyspnoea, sputum 

production, LRTIs, and respiratory prescriptions were all also more common among 

individuals with COPD.  

Individuals with unknown COPD-status (predominantly those who did not attend an 

assessment) differed from those in the development sample across a number of 

demographic characteristics (Table S4) - they were generally younger (mean age 55.8 years 

versus 59.6, respectively), and a higher proportion were female (52.5% versus 48.4%) and 

current smokers (33.5% versus 15.8%).  
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Model results 

Complete data for candidate predictors were available for 2380 patients (99.2%) in the 

development sample (Table 2). The final model of EHR-recorded factors included smoking 

status, age, dyspnoea, prescriptions of salbutamol, and prescriptions of antibiotics (Table 3). 

Age was included as two fractional polynomial terms since it was not linear in the logit scale. 

The final model fitted as well as the full model (likelihood ratio test p=0.185) and no 

significant interactions were found. The final model equation was:  

Predicted probability of undiagnosed COPD= ex/(1+ex)  

Where x= (1.43 x 10-4 x age3) – (3.18 x 10-5 x ln[age]) + (0.51 x ex-smoker [Y/N]) + (1.60 x 

current smoker [Y/N]) + (0.72 x dyspnoea [Y/N]) + (0.045 x no. of salbutamol prescriptions) + 

(0.99 x salbutamol prescriptions [Y/N]) + (0.47 x antibiotic prescriptions [Y/N]) - 6.16  

Y=Yes (value=1), N=No (value=0) 

Internal validation 

When applied to the development sample the apparent c-statistic was 0.76 (95% CI 0.73 to 

0.80), and was 0.76 (95% 0.72 to 0.79) after correcting for over-fitting using bootstrapping. 

Although smoking status and age were the most important predictors in the risk score, 

restricting it to just these variables reduced the c-statistic to 0.65 (95% CI 0.60 to 0.69).  

External validation sample: population characteristics 

Among 1097 subjects in the external validation population, 77 (7.0%) were newly diagnosed 

with COPD (Table S5). The mean age was 60.1 years and 51.6% were male, similar to the 

development sample. Again, a significantly greater proportion of subjects with COPD were 

current smokers (31.2% versus 17.1%, respectively). However, participants in the external 

validation sample had a slightly higher socioeconomic status. 1083 subjects (98.7%) had 

complete data on all candidate predictors and were included in the external validation. 

External validation: risk score performance  

The developed risk score demonstrated similar discrimination characteristics when applied 

to the external validation sample (c-statistic 0.74 [95% CI 0.68 to 0.80]; Figure 2) and 
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performed better than our previously developed clinical score [10] (c statistic 0.70 [95% CI 

0.64 to 0.76] in the external validation sample). The final risk score showed excellent 

calibration of observed to predicted COPD risk up to 10%, but slightly over-estimated the 

predicted risk from 10% to 30%, beyond which comparisons were unreliable due to small 

sample sizes (Table 4). When using the fixed ratio definition of airflow limitation 

(FEV1/FVC<0.7) the c-statistic for the final risk score remained at 0.74 (95% CI 0.70 to 0.78). 

Implementation in clinical practice 

Increasing the cut-point to define high risk reduces the number of assessments needed for 

each new diagnosis of COPD, although accompanied by a reduction in sensitivity (Table 5). 

The optimum cut-point should balance both sensitivity and specificity, taking into 

consideration costs and resource availability. At a cut-point of 7.5% (i.e. classing subjects 

with a predicted risk ≥7.5% as high risk), which would represent 33.9% of the target 

population, the risk score is estimated in the external validation sample to have a sensitivity 

of 68.8% (95% CI 57.3 to 78.9%), specificity of 68.8% (95% CI 65.8 to 71.6%), and would 

require seven patients (95% CI 6 to 10) to undergo a diagnostic assessment to identify one 

with COPD.  
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Discussion 

Principal findings 

We have developed and externally validated the TargetCOPD score from a large case 

finding trial in primary care [6, 7] to predict the risk of undiagnosed COPD using routine data 

from EHRs. The risk score incorporates five factors commonly recorded in health records- 

age, smoking status, presence of dyspnoea, prescriptions of salbutamol and antibiotics 

commonly prescribed for LRTIs. When externally validated, the risk score discriminated 

between patients with and without COPD and performed better than our previously 

developed score,[10] which relied on incident COPD from routine records rather than 

actively case-found patients. The risk score also performed similarly when using the fixed 

ratio definition of airflow limitation. In our newly developed risk score, a cut-point of ≥7.5% 

would expect to identify about 70% of patients with undiagnosed COPD, needing seven 

diagnostic assessments for each new diagnosis. Use of higher cut-points could reduce this 

number at the expense of reducing sensitivity 

Comparison with existing literature 

Several other risk scores have previously been developed for undiagnosed COPD although 

the TargetCOPD score is the only one to use case-found COPD patients (Table 6). As with 

other scores, our own previous risk score used newly diagnosed COPD patients, identified 

through routine care.[10] Its final predictors differed from the TargetCOPD score, including 

LRTIs and history of asthma but not history of dyspnoea or prescriptions of antibiotics as 

predictors. Furthermore, the TargetCOPD score overcomes an important limitation of our 

previous risk score, where we could not include the effect of age as it was a matching factor 

(although it is well established that risk of COPD rises with age).[27] A history of asthma and 

LRTIs did not remain statistically significant in the full multivariable model in the current 

analysis. However, prescriptions of salbutamol and antibiotics are closely associated with 
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asthma and LRTIs, respectively, and are possibly better documented in EHRs; therefore 

they may be reflecting similar clinical features. 

Kotz and colleagues also recently developed and internally validated a prediction model for 

COPD using routine longitudinal data from general practices in Scotland.[9] Their model 

included age, smoking status, history of asthma and also socioeconomic deprivation but only 

considered a limited range of risk factors and was not externally validated. Their model, like 

our previous clinical score, was developed on incident cases of COPD diagnosed through 

routine care, the disease status of which may have been misclassified because of 

underdiagnosis [2] and misdiagnosis.[28] Other risk scores have also been developed for 

COPD using routine primary and secondary healthcare data [29-31] but are unlikely to be 

applicable in primary care due to the predictors included, many of which are not routinely 

recorded solely in primary care records (Table 6).  

A number of other case finding tools have also been developed and evaluated including 

screening questionnaires and handheld flow meters.[32-34] However, these require 

additional resources and patient interactions, and are likely to be less efficient than the use 

of automated risk prediction scores.  

Strengths 

We investigated a range of risk factors and developed and validated our risk score on a 

population with no prior diagnosis of COPD that were actively case-found in a wide range of 

general practices. We employed a robust case definition which is likely to be representative 

of clinically significant, undiagnosed COPD, and confirmed with quality assured spirometry. 

The developed risk score was externally validated, increasing the likelihood of its validity in 

other primary care populations, although further external validation is needed on populations 

from a different location. The final risk score incorporates a small number of commonly 

recorded factors from electronic health records which should ensure its applicability in 

routine primary care in the UK and similar health systems. However it would be more 
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challenging to implement in health systems that use paper-based health records or where 

electronic records are less detailed. 

Limitations 

We used a smaller sample size than several other studies reporting the development of 

COPD risk scores from routine healthcare data.[9, 10, 29] Although the study was 

adequately powered for the number of risk factors considered for the model selection, a 

larger sample size would have enabled estimation of the parameters with greater precision. 

Ideally a larger sample size would have been used for external validation (simulation-based 

estimates suggest at least 100 outcome events are required [35]) and would have improved 

our ability to evaluate the score calibration.  

The case definition of COPD used in this study was the presence of relevant self-reported 

symptoms in addition to airflow limitation and patients who did not report symptoms were not 

assessed with spirometry. However patients may underreport symptoms and compensate 

for them by limiting their activities. This could have introduced misclassification bias. 

Furthermore only 25.7% of all eligible patients responded to the screening questionnaire, 

which could have introduced response bias, and may limit the generalisability of the score. 

However this response rate is similar to the average response rate to questionnaires seen in 

other case finding studies,[33] and because of the pragmatic nature of the trial is likely to 

represent patients who might respond to screening invitations in real clinical practice. 

Finally, the validity of our risk score among all potential subjects could not be determined 

because we were not able to include those with unknown COPD status, and their 

characteristics differed from those included in our analysis across a number of demographic 

characteristics. However, our risk score is applicable to populations of individuals that are 

likely to respond to questionnaire surveys and are willing to attend subsequent clinical 

assessment. 
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Implications for clinicians, policymakers and research 

The TargetCOPD score has been developed to help primary care services stratify patients 

according to their risk of undiagnosed COPD for targeted systematic case finding (Figure 

S1). The US Preventive Services Task Force recently recommended against screening for 

asymptomatic COPD on the basis that there was no evidence that it improves health-related 

quality of life, morbidity or mortality.[4] By contrast the TargetCOPD score has been 

developed from patients with symptomatic and spirometry-verified disease who are more 

likely to benefit from treatment.  

The score’s ability to estimate the probability of undiagnosed COPD could be used to risk 

stratify patients and could be used to help prioritise referral for diagnostic assessment, 

including spirometry, or for further screening (e.g. using handheld flow meters). GPs could 

decide on a cut-point which reflects the resources available to them for conducting high 

quality spirometry, balancing sensitivity and specificity. Since it relies entirely on routinely 

recorded data from EHRs, it could be integrated with clinical information systems by 

programming the model into these digital platforms. This would be applicable in countries 

with primary care clinical information systems similar to the UK such as in a number of 

Western European countries, Israel, US, New Zealand, Australia, and Canada.[36, 37] 

Finally, the TargetCOPD score should be externally validated in other primary care 

populations to better assess its generalizability, and its effectiveness in practice evaluated in 

RCTs, where the impact of using the risk score on patient outcomes can be evaluated as 

well as the associated costs.[38] This could include a cluster RCT comparing clinical 

outcomes (such as quality of life, hospitalisation, and mortality) in practices that use the risk 

score to actively case find patients with undiagnosed COPD, against practices that continue 

with alternative approaches to case finding and usual care. 

Conclusion 
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We have developed and externally validated the TargetCOPD score for assessing the risk of 

undiagnosed COPD among patients in primary care using routine data from electronic health 

records. This is the first risk score for COPD that has been derived from patients identified 

through systematic case finding and uses routine healthcare data readily available in many 

primary care settings. It could be used to help identify patients at high risk of COPD to 

provide appropriate clinical care, including earlier testing and treatment. The risk score 

should be externally validated in further populations and its impact on clinical care and 

outcomes evaluated in RCTs. 
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Table 1 Characteristics extracted from electronic health records (development sample) 

  COPD 
(n=198 [8.3%]) 

Non-COPD 
(n=2200 [91.7%]) 

Missing data 

  n (%) n (%) n (%) 

Age (years) Mean (SD) 60.8 (9.6) 59.5 (10.7) 7 (0.3) 

 40-49 30 (15.2) 528 (24.0)   

 50-59 54 (27.3) 621 (28.2)   

 60-69 74 (37.4) 595 (27.0)   

 70-79 40 (20.2) 456 (20.7)   

Sex Male 107 (54.0) 1,128 (51.3) 4 (0.2) 

Smoking status Never 37 (18.7) 744 (33.8) 11 (0.5) 

 Former 95 (48.0) 1,135 (51.6)   

 Current 65 (32.8) 311 (14.1)   

IMD score Median (IQR) 37.4 (19.8-41.3) 23.3 (19.8-41.3) 0 
(0.0) 

Comorbidities Asthma 10 (5.1) 29 (1.3) Unknown** 

 Ischaemic heart disease 11 (5.6) 146 (6.6)   

 Heart failure 3 (1.5) 20 (0.9)   

 Diabetes 17 (8.6) 192 (8.7)   

 Stroke 2 (1.0) 18 (0.8)   

 Tuberculosis 3 (1.5) 11 (0.5)   

 Osteoporosis 4 (2.0) 37 (1.7)   

 Depression/anxiety* 36 (18.2) 335 (15.2)   

 LRTIs* 41 (20.7) 233 (10.6)   

Symptoms* Cough 61 (30.8) 385 (17.5) Unknown** 

 Dyspnoea 23 (11.6) 78 (3.5)   

 Wheeze 30 (15.2) 362 (16.5)   

 Sputum 11 (5.6) 43 (2.0)   

 Unintended weight loss 2 (1.0) 9 (0.4)   

Prescriptions* Salbutamol 74 (37.4) 251 (11.4) Unknown** 

 Prednisolone 40 (20.2) 138 (6.3)   

 Antibiotics ǂ 116 (58.6) 783 (35.6)   

 IMD=Index of Multiple Deprivation (a measure of socioeconomic status based on participants’ 

residential postcodes- higher scores indicate higher levels of socioeconomic deprivation), 

IQR=interquartile range, LRTI=lower respiratory tract infection, SD=standard deviation 

*Recorded within previous three years of commencing case finding at the registered practice 
**It was unknown whether absence of a record of comorbidities, symptoms and prescriptions in 
electronic health records was due to true absence of those factors or due to under-recording. 
ǂ Antibiotics=amoxicillin, clarithromycin, co-amoxiclav, erythromycin, doxycycline, and cefalexin 
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Table 2 Candidate predictors evaluated in the multivariable logistic regression model 

  Unadjusted Adjusted 

  OR (95% CI) p OR (95% CI) p 

Age (years) 40-49 Reference category Reference category 

 50-59 1.53 (0.97, 2.43) 0.070 1.66 (1.02, 2.70) 0.043* 

 60-69 2.19 (1.41, 3.40) <0.001* 2.63 (1.64, 4.23) <0.001* 

 70-79 1.54 (0.95, 2.52) 0.082 1.72 (1.01, 2.93) 0.044* 

Sex Male 1.11 (0.83, 1.49) 0.471 1.04 (0.76, 1.43) 0.800 

Smoking status Never smoked Reference category Reference category 

 Ex-smoker 1.68 (1.14, 2.49) 0.009* 1.71 (1.13, 2.59) 0.012* 

 Current smoker 4.20 (2.75, 6.43) <0.001* 5.58 (3.50, 8.89) <0.001* 

Asthma (ever)  3.98 (1.91, 8.30) <0.001* 1.44 (0.62, 3.37) 0.400 

LRTIs** 2.20 (1.52, 3.19) <0.001* 1.00 (0.84, 1.19) 0.977 

Symptoms** Cough 2.10 (1.52, 2.89) <0.001* 1.00 (0.68, 1.47) 0.986 

 Dyspnoea 3.58 (2.19, 5.84) <0.001* 2.19 (1.27, 3.76) 0.005* 

 Wheeze 0.91 (0.61, 1.36) 0.635 1.14 (0.73, 1.76) 0.564 

 Sputum 2.95 (1.50, 5.82) 0.002* 1.55 (0.71, 3.37) 0.270 

Prescriptions** Salbutamol 4.63 (3.38, 6.36) <0.001* 3.05 (2.01, 4.62) <0.001* 

 Prednisolone 3.78 (2.57, 5.57) <0.001* 1.76 (1.09, 2.84) 0.020* 

 Antibiotics ǂ 2.56 (1.90, 3.44) <0.001* 1.52 (1.06, 2.18) 0.023* 

Based on data extracted from electronic health records for 2380 subjects in the development sample. 
Candidate predictors are presented as binary variables unless specified otherwise. 
LRTI=lower respiratory tract infection, OR=odds ratio 
*Statistically significant at the p<0.05 level 
**Recorded within previous 3 years 
ǂ Antibiotics=amoxicillin, clarithromycin, co-amoxiclav, erythromycin, doxycycline, and cefalexin 
 

Table 3 Final risk score 

Predictor β* (95% CI) p 

Age
3
 1.43 x 10

-4 
(6.11 x 10

-5
, 2.26 x 10

-4
) 0.001 

Age
3
 x ln[age] -3.18 x 10

-5 
(-5.02 x 10

-5
, -1.34 x 10

-5
) 0.001 

Ex-smoker 0.51 (0.10, 0.91) 0.015 

Current smoker 1.60 (1.14, 2.05) <0.001 

Dyspnoea** 0.72 (0.18, 1.26) 0.010 

Number of salbutamol prescriptions** 0.045 (0.015, 0.075) 0.003 

≥1 salbutamol prescription** 0.99 (0.56, 1.42) <0.001 

≥1 antibiotic prescription** 0.47 (0.13, 0.80) 0.007 

Constant -6.16 (-7.63, -4.70) <0.001 

*Regression coefficient 
**Recorded within the previous three years 
Predicted probability of undiagnosed COPD= e

x
/(1+e

x
)  

Where x= (1.43 x 10
-4

 x age
3
) – (3.18 x 10

-5
 x ln[age]) + (0.51 x ex-smoker [Y/N]) + (1.60 x current 

smoker [Y/N]) + (0.72 x dyspnoea [Y/N]) + (0.045 x no. of salbutamol prescriptions) + (0.99 x 
salbutamol prescriptions [Y/N]) + (0.47 x antibiotic prescriptions [Y/N]) -6.16  
(NB. The shrinkage factor was 1, which indicates that there was no evidence of over-fitting in the final 
model.) 
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Table 4 Model calibration 

 Development sample 
(n=2380) 

External validation sample 
(n=1083) 

Predicted 
Risk (%) 

COPD Non- 
COPD 

Observed risk  
(%, 95% CI) 

COPD Non- 
COPD 

Observed risk  
(%, 95% CI) 

0-9 84 1,781 4.5 (3.6, 5.5) 35 780 4.3 (3.0, 5.9) 

10-19 53 271 16.4 (12.5, 20.8) 20 158 11.2 (7.0, 16.8) 

20-29 33 89 27.0 (19.4, 35.8) 11 51 17.7 (9.2, 29.5) 

30-39 11 17 39.3 (21.5, 59.4) 6 9 40.0 (16.3, 67.7) 

40-49 8 15 34.8 (34.9, 90.1) 3 4 42.9 (9.9, 81.6) 

50-59 4 6 40.0 (12.2, 73.8) 0 2 0 (0, 84.2) 

60-69 1 3 25.0 (0.6, 80.6) 0 0 0 - 

70-79 2 0 100 (15.8, 100) 1 2 33.3 (0.8, 90.6) 

80-89 1 0 100 (2.5, 100) 0 0 0 - 

90-100 0 1 0.0 (0, 97.5) 1 0 100.0 (2.5, 100) 

Total 197 2183 8.3 (7.2, 9.5) 77 1006 7.1 (5.7, 8.8) 
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Table 5 Diagnostic accuracy of the model in the external validation sample (n=1083) 

Cut-point 
(%) 

% patients  
at/above  

cut-point* 

Sensitivity  
(95% CI) 

Specificity 
(95% CI) 

Correctly  
Classified (%) 

LR+ 
(95% CI) 

LR- 
(95% CI) 

PPV 
(95% CI) 

NPV 
(95% CI) 

NND 
(95% CI) 

≥2.5 88.2 97.4  
(90.9, 99.7) 

12.5  
(10.5, 14.7) 

18.6 1.11 
(1.07, 1.16) 

0.21 
(0.05, 0.82) 

7.9 
(6.2, 9.8) 

98.4 
(94.5, 99.8) 

13 
(11, 17) 

≥5.0 53.7 80.5  
(69.9, 88.7) 

48.4  
(45.3, 51.5) ) 

50.7 1.56 
(1.38, 1.77) 

0.40 
(0.25, 0.64) 

10.7 
(8.3, 13.5) 

97.0 
(95.1, 98.3) 

10 
(8, 13) 

≥7.5 33.9 68.8  
(57.3, 78.9) 

68.8  
(65.8, 71.6) 

68.8 2.21 
(1.85, 2.63) 

0.45 
(0.32, 0.63) 

14.4 
(11.0, 18.5) 

96.6 
(95.1, 97.8) 

7 
(6, 10) 

≥10.0 24.8 54.5  
(42.8, 65.9) 

77.5  
(74.8, 80.1) 

75.9 2.43 
(1.92, 3.07) 

0.59 
(0.46, 0.75) 

15.7 
(11.5, 20.6) 

95.7 
(94.1, 97.0) 

7 
(5, 9) 

≥12.5 19.8 46.8  
(35.3, 58.5) 

82.3  
(79.8, 84.6) 

79.8 2.64 
(2.01, 3.47) 

0.65 
(0.52, 0.80) 

16.8 
(12.1, 22.5) 

95.3 
(93.7, 96.6) 

6 
(5, 9) 

≥15.0 15.0 41.6  
(30.4, 53.4) 

87.0  
(84.7, 89.0) 

83.8 3.19 
(2.34, 4.35) 

0.67 
(0.56, 0.81) 

19.6 
(13.8, 26.6) 

95.1 
(93.5, 96.4) 

6 
(4, 8) 

≥17.5 9.9 33.8  
(23.4, 45.4) 

91.9  
(90.0, 93.5) 

87.7 4.14 
(2.85, 6.03) 

0.72 
(0.61, 0.85) 

24.1 
(16.4, 33.3) 

94.8 
(93.2, 96.1) 

5 
(3, 7) 

≥20.0 8.3 28.6  
(18.8, 40.0) 

93.2  
(91.5, 94.7) 

88.6 4.23 
(2.77, 6.44) 

0.77 
(0.66, 0.88) 

24.4 
(16.0, 34.6) 

94.5 
(92.9, 95.8) 

5 
(3, 6) 

≥22.5 5.9 20.8  
(12.4, 31.5) 

95.2  
(93.7, 96.5) 

89.9 4.36 
(2.60, 7.30) 

0.83 
(0.74, 0.93) 

25.0 
(15.0, 37.4) 

94.0 
(92.4, 95.4) 

4 
(3, 7) 

≥25.0 3.7 14.3  
(7.4, 24.1) 

97.1  
(95.9, 98.1) 

91.2 4.96 
(2.58, 9.53) 

0.88 
(0.81, 0.97) 

27.5 
(14.6, 43.9) 

93.7 
(92.0, 95.1) 

4 
(3, 7) 

≥30.0 2.6 14.3  
(7.4, 24.1) 

98.3  
(97.3, 99.0) 

92.3 8.45 
(4.11, 17.4) 

0.87 
(0.80, 0.96) 

39.3 
(21.5, 59.4) 

93.7 
(92.1, 95.1) 

3 
(2, 5) 

≥35.0 1.9 10.4  
(4.6, 19.4) 

98.8  
(97.9, 99.4) 

92.5 8.71 
(3.67, 20.7) 

0.91 
(0.84, 0.98) 

40.0 
(19.1, 63.9) 

93.5 
(91.9, 94.9) 

3 
(2, 6) 

≥40.0 1.2 6.5  
(2.1, 14.5) 

99.2 
 (98.4, 99.7) 

92.6 8.17 
(2.74, 24.4) 

0.94 
(0.89, 1.00) 

38.5 
(13.9, 68.4) 

93.3 
(91.6, 94.7) 

3 
(2, 8) 

≥45.0 0.8 2.6  
(0.3, 9.1) 

99.3  
(98.6, 99.7) 

92.4 3.73 
(0.79, 17.7) 

0.98 
(0.95, 1.02) 

22.2 
(2.8, 60.0) 

93.0 
(91.3, 94.5) 

5 
(2, 36) 

≥50.0 0.6 2.6  
(0.3, 9.1) 

99.6  
(99.0, 99.9) 

92.7 6.53 
(1.22, 35.1) 

0.98 
(0.94, 1.01) 

33.3 
(4.3, 77.7) 

93.0 
(91.3, 94.5) 

3 
(2, 23) 

LR=likelihood ratio, PPV=positive predictive value, NPV=negative predictive value, NND=number of diagnostic assessments needed per case detected 
*% of subjects with a predicted risk score at or above the cut-point. 
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Table 6 Comparison of existing risk prediction models for COPD 

Model/clinical 
score 

Development Validation Predictors c-statistic 
(95% CI) 

Strengths Limitations 

TargetCOPD* Retrospective cohort analysis 
of a case finding cluster RCT 
& routine data from 13 general 
practices 

Internal and external 
validation using data 
from subjects who 
completed a screening 
questionnaire and 
performed spirometry 

Age 
Smoking 
Dyspnoea 
Salbutamol 
Antibiotics 

External 
0.74 
(0.68-0.80) 

Developed and validated on subjects 
with previously undiagnosed COPD 
confirmed by quality controlled 
spirometry. 

Can be integrated with clinical 
information systems.  

Good discrimination performance. 

Dependent on quality of clinical coding  

Haroon 
2014[10]* 

Case control study using 
routine data from 360 general 
practices. 

Internal and external 
validation using routine 
data 

Smoking 
Salbutamol 
Asthma 
LRTIs 

External 
0.85  
(0.83-0.86) in 
original study 

0.70 
(0.64-0.76) in 
current study 

Developed on large sample size. 

Can be integrated with clinical 
information systems.  

High discrimination performance. 

Considered wide range of risk factors. 

Predicts physician-diagnosed COPD.ǂ 

Excluded age and sex as predictors. 

Dependent on quality of clinical coding  

Kotz 2014[9]* Retrospective cohort study 
using routine data from 239 
general practices. 

Internal validation using 
routine data 

Age 
Smoking 
SES 
Asthma 

Internal 
0.85  
(0.84-0.85)  
in males 

0.83  
(0.83-0.84)  
in females 

Developed on large sample size. 

Can be integrated with clinical 
information systems.  

High discrimination performance. 

Estimates 10 year risk of incident 
COPD. 

Predicts physician-diagnosed COPD. ǂ 

Limited range of risk factors explored. 

Includes a UK-specific index of 
socioeconomic deprivation (limiting 
applicability to other health systems). 

Dependent on quality of clinical coding 

Smidth 
2012[31] 

Cross-sectional analysis of 
routine data from seven 
general practices, secondary 
care registers and an RCT. 

Internal and external 
validation using routine 
data and data from an 
RCT 

Chronic lung 
disease 
Respiratory 
medication 
Previous 
spirometry 

Not reported High positive predictive value. Predicts physician-diagnosed COPD. ǂ 

Requires prior diagnosis of chronic lung 
disease. 

Requires data linkage between primary 
and secondary care. 

Difficult to administer. 

Mapel 
2010[30] 

Case control study using 
routine data from four 
hospitals and 18 general 
practices. 

Internal and external 
validation using routine 
data 

Antibiotics 
Respiratory & 
cardiovascular 
medications 

Not reported Only used data on medication 
prescriptions, which are likely to be 
well recorded. 

Developed on large sample size. 

Predicts physician-diagnosed COPD. ǂ 

 

Mapel 
2006[29] 

Case control study using 
routine data from secondary 
care 

Internal and external 
validation using routine 
data 

19 healthcare 
utilization 
characteristics 
including cor 
pulmonale 
and asthma 

Not reported Developed on large sample size. 

Can be integrated with clinical 
information systems. 

 

Predicts physician-diagnosed COPD. ǂ 

Model includes large number of 
predictors. 

Includes predictors unlikely to be routinely 
recorded in primary care. 

Excluded smoking status as a predictor. 

* Likely to be readily applicable in primary care. ǂ Potential misclassification of disease (COPD) status during model development and validation.   

LRTI= lower respiratory tract infection, SES= socioeconomic status 
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Figure 1 Participant selection 

 

Figure 2 Receiver operator characteristic curve for the TargetCOPD score in the external 
validation sample (c-statistic 0.74 [95% CI 0.68 to 0.80]) 
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