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ABTRACT 

 

Purpose: KRAS mutation is a common canonical mutation in CRC, found at differing 

frequencies in all Consensus Molecular Subtypes (CMS). The independent 

immunobiological impacts of RAS mutation and CMS are unknown. Thus, we 

explored the immunobiological effects of KRAS mutation across the CMS spectrum. 

Experimental Design: Transcriptional analysis of immune genes/signatures was 

performed with RNA-seq using The Cancer Genome Atlas (TCGA) and the 

KFSYSCC data set. Multivariate analysis included KRAS status, CMS, tumour 

location, MSI status, and neoantigen load. Protein expression of STAT1, HLA-Class 

II, and CXCL10 was analysed by digital immunohistochemistry.   

Results: The Th1-centric co-ordinated immune response cluster (CIRC) was 

significantly, albeit modestly, reduced in KRAS mutant CRC in both data sets.  

Cytotoxic T cells, neutrophils and the interferon gamma pathway were suppressed in 

KRAS mutant samples.  The expression of STAT1 and CXCL10, were reduced at 

the mRNA and protein levels. In multivariate analysis KRAS mutation, CMS2 and 

CMS3 were independently predictive of reduced CIRC expression. Immune 

response was heterogeneous across KRAS mutant CRC: CMS2 KRAS mutant 

samples have the lowest CIRC expression, reduced expression of the interferon 

gamma pathway, STAT1 and CXCL10 and reduced infiltration of cytotoxic cells and 

neutrophils relative to CMS1 and CMS4 and to CMS2 KRAS wild type samples in the 

TCGA.  These trends held in the KFSYSCC data set.  

Conclusions: KRAS mutation is associated with suppressed Th1/cytotoxic immunity 

in CRC, the extent of the effect being modulated by CMS subtype. These results add 

a novel immunobiological dimension to the biological heterogeneity of CRC. 
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TRANSLATIONAL RELEVANCE 

 

Understanding how mutational and transcriptional differences mould the immune 

contexture in cancer is key to accurate immunobiological stratification. We analyse 

how KRAS mutation shapes the immune microenvironment of colorectal cancer 

(CRC) in the context of the Consensus Molecular Subtypes (CMS). We show that 

KRAS mutation is associated with modest suppression of Th1 cell and cytotoxic cell 

immunity independently of mismatch repair status, tumour location, neoantigen load 

and transcriptional subtype, but also show that the cumulative effect is dependent 

upon the CMS in which the mutation is found. Immunity in KRAS mutant CMS2 is 

more suppressed than CMS1 and CMS4 as well as in comparison with KRAS wild 

type CMS2. Our findings refine stratification factors for immunotherapy trial entry in 

CRC and suggest potential immunotherapeutic strategies to test in KRAS mutant 

patients. Variation in the immune status of RAS mutant CRC according to its 

transcriptional context might underlie part of the heterogeneity of response to 

molecularly stratified medicines. 
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INTRODUCTION 

 

Galon and colleagues first demonstrated the positive prognostic impact of tumour 

infiltrating lymphocytes (TILs) in colorectal cancer (CRC) (1). The strength of T 

helper type 1 (Th1) adaptive immunity was shown to be a strong prognostic factor.   

Th1 cells have an essential role in initiating and maintaining an effective CD8+ 

cytotoxic T cell response (2-4), in the recruitment of CD8+ cells to the tumour bed (5) 

and in directly mediating immunological tumour cell death (6).  Th1 cells recognize 

antigen in association with major histocompatibility complex class II (MHC-II) 

molecules.  They secrete the inflammatory cytokine interferon (IFN)-γ, which 

provokes class II up-regulation on tumour cells.  The majority of immunogenic neo-

epitopes are class II restricted (7).  Tumour cells evade cytotoxic immune responses 

by expressing the programmed death-ligand 1 (PD-L1) that activates the PD-1 

negative feedback pathway (8).  This checkpoint may be inhibited using an anti-PD-1 

antibody that blocks interactions between the PD-1 receptor and its ligand PD-L1.  

However, the strategy has only been efficacious in MSI-high CRC (9), i.e., those 

having a high neo-antigen burden that can stimulate immune infiltration (10).  Class 

II expression on cancer cells is clearly important in the efficacy of checkpoint 

blockage.  Indeed, cancer-cell MHC-II-negative melanoma patients have lower 

response rates, PFS and OS when treated with PD-1/PD-L1 blockade relative to 

class II-positive patients (11). Further, in vitro PD-L1 blockade enhances Th1-

mediated cytotoxicity only against cells that express high class II (12).  Hence, an 

effective immune response is critically dependent on neo-antigen presentation by 

MHC-II molecules.  
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The up-regulation of MHC-II molecules via the IFNγ pathway is dependent on the 

STAT1 and CIITA proteins: extracellular IFNγ induces and activates STAT1, which is 

the key transcriptional activator of CIITA.  CIITA is, in turn, the master transcriptional 

activator of MHC-II molecules.  STAT1-deficient cells show no induction of CIITA 

mRNA despite IFNγ stimulation (13) and STAT1-deficient cancer cells progress 

rapidly due to the evasion of adaptive immunity (14).  Class I-positive but class II-

negative mammary adenocarcinoma cells grew rapidly in immunocompetent mice, 

but were rejected when these cells were transfected with CIITA.  Rejection 

correlated with induction of class II expression and was mediated by both CD4+ and 

CD8+ cells. STAT1 deficiency also severely impairs the induction of CXCL10, 

another STAT1 target gene.  CXCL10 maintains the Th1 phenotype (15) and the 

decreased accumulation of Th1 cells in STAT1-deficient mice is related to reduced 

levels of CXCL10 (16).  

 

KRAS mutation is the commonest canonical gain of function mutation in CRC and 

earlier functional studies clearly demonstrated that mutant RAS reduces both STAT1 

and class II expression. Using three distinct cell line models (including Hct116, 

clones with deleted mutant KRAS, and intestinal epithelial cells with inducible mutant 

RAS), Klampfer and colleagues demonstrated that mutant RAS down-regulates both 

constitutive and IFNγ-inducible STAT1 mRNA and protein and reduces STAT1 

transcriptional activity and the expression of many IFNγ target genes including class 

II (17,18). Maudsley and co-workers showed that mutant KRAS resulted in loss of 

class II inducibility upon IFNγ treatment (without inhibiting class I expression), 

significantly reduced the ability of these cells to stimulate allogeneic T cells and 
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reduced the IFNγ secretion of the co-stimulated cells (19). They suggested that this 

RAS-mediated class II down-regulation interrupted an amplification loop whereby 

Th1 cells are stimulated to produce IFNγ that would otherwise stimulate further 

cancer cell class II expression. 

 

These isolated cell line experiments suggest a role for STAT1 and its target genes in 

RAS mutant CRC, but fail to replicate the complexities of the intact tumoural 

microenvironment.  Hence, guided by these pre-clinical studies, we asked whether 

RAS mutant CRC was associated with reduced expression of STAT1, CIITA, and 

CXCL10, as well as that of a number of associated signatures of immune reactivity, 

in human CRC tumour tissues. We have previously demonstrated using 

transcriptional analysis of bulk tumours that RAS mutant CRC is associated with 

lower expression of a Th1-centric immune metagene that we termed the Co-ordinate 

Immune Response Cluster (CIRC (20)). This metagene includes STAT1, CXCL10, 

nine separate class II genes, and the Th1 transcription factor T-bet (TBX21). We 

have also previously described a second immunological stratifier—the CRC 

“Consensus Molecular Subtypes” (CMS) (21). These subtypes include a 

“mesenchymal” group (CMS4) that is enriched for MSS tumours and yet is 

characterized by appreciable immune infiltration, intermediate between that of the 

MSI-enriched subtype (CMS1) and of the “canonical” (CMS2) and “metabolic” 

(CMS3) subtypes. RAS mutations occur in all of these CMS subtypes (albeit with 

differing proportions) and thus RAS mutations in CRC occur in different 

transcriptional contexts with heterogeneous biology. In particular, RAS mutations are 

present in both mismatch repair deficient and proficient cancers.  To determine 

whether these two stratifiers are independent, we dissected the various innate and 
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adaptive immune components of the CIRC in the context of CMS and KRAS 

mutation status using transcriptional analysis of two large independent datasets and 

digital immunohistochemistry analysis of compartment-specific protein expression. 

 

We demonstrate that CMS is more strongly associated with reduced anti-cancer 

immunity in CRC than RAS mutation, with both CMS2 and CMS3 being immune 

suppressed relative to CMS1 and CMS4. Nevertheless, we find that the modest RAS 

mutation association is significant and independent of expression subtype. The 

cumulative effect on immunity is dependent upon the CMS context of RAS mutation, 

with RAS mutant CMS2 being particularly immune suppressed.   
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MATERIALS AND METHODS 

 

Consensus Molecular Subtype (CMS) analysis 

Statistical analyses of TCGA and KFSYSCC expression data were performed in R 

(http://www-r.project.org).  To summarize the expression of a gene set [i.e., CIRC, 

immune subpopulations (22), and Hallmark gene sets (23)], we condensed the 

expression of the multiple genes in the set into a single gene set enrichment value 

using Gene Set Variation Analysis (GSVA) (24). Two-tailed non-parametric Wilcoxon 

rank sum tests, two-tailed t tests, two-tailed Fisher’s tests, and one-tailed F tests 

were applied, as indicated.  Relative enrichments or expression between two 

populations is summarized by the Hodges-Lehmann estimator of the difference 

between those populations—e.g., the median of all pairwise differences between 

CIRC enrichment in a KRAS MT sample and a KRAS WT sample. 95% confidence 

intervals in this estimator were calculated using the method of Bauer (25).  

Multivariate analyses were performed using the forestmodel R package, with 

linear model CIRC ~ KRAS + CMS + site + status + neoantigens and 

where CIRC is the gene set enrichment for the immune signature, site indicates 

tumour location as left, right, or rectum, KRAS indicates mutation status WT or 

MT, CMS indicates subtype, status indicates MSI or MSS, and neoantigens is a 

continuous value indicating the (log-transformed) number of neoantigens. To assess 

potential synergy between the main effects corresponding to CMS subtype (CMS) 

and KRAS mutation status (KRAS), we used ANOVA to compare linear models with 

and without the interaction effect (CMS:KRAS), i.e., CIRC ~ CMS + KRAS versus 

CIRC ~ CMS + KRAS + CMS:KRAS. Samples that did not correspond to one of the 

four CMS groups (i.e., “unlabelled”) were excluded from any analysis that include 
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CMS. Expression data sets, as well as clinical annotations, CMS labels, neoantigen 

predictions (obtained from The Cancer Immune Atlas (26)), and gene set definitions, 

are available on the Synapse data commons platform [(27) and 

https://www.synapse.org] under Synapse ID syn8533552.  Source code to perform 

all genomic analyses and to generate the respective figures is available at 

https://github.com/Sage-Bionetworks/crc-cms-kras.  Additional detail is provided in 

Supplemental Methods. 

 

Immunohistochemical analysis 

Samples for IHC from patients undergoing resection of primary CRC were obtained 

from the completed CRUK Stratified Medicine Programme One pilot study and CRC 

patients from the Queen Elizabeth Hospital, Birmingham.  Samples were collected 

under ethical approval HBRC 14-205 (Sponsor: University of Birmingham). All 

patients had provided informed written consent for the use of their tissue, and 

studies were conducted in accordance with the Declaration of Helsinki.  The cohort 

comprised 28 RAS G12D/G13D mutants (24.3%), 38 RAS non-G12D/G13D mutants 

(33.0%), and 49 RAS wild types (42.65) for a total of 115.   Suitable formalin-fixed, 

paraffin-embedded (FFPE) blocks were retrieved and processed at the HBRC 

biobank, University of Birmingham. Microsatellite status was assessed by extracting 

total DNA from FFPE tumour scrolls by fragment analysis (Supplemental Methods).  

7 tumours (6.09%) were MSI-H, of which 3 were RAS mutant.    

IHC was performed using a Leica Bondmax autostainer.  For STAT1 an antibody 

that had undergone robust validation was selected (Cell Signalling Technology 

(CST) clone D1K9Y). For Class II HLA (Abcam clone CR3/43) and CXCL10 (Novus 
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Biologicals clone 6D4), in-house validation was performed as described in 

Supplemental Methods. 

 

Staining conditions and concentrations were iteratively optimised in conjunction with 

a histopathologist (PT):  STAT1: 1:500, 20 minute incubation, Class II HLA: 1:100, 

20 minutes, CXCL10: 1:50, 20 minutes. Slides were scanned at 40x magnification 

using a Leica SCN400 slide scanner and digitally analysed using Definiens Tissue 

Studio software.  Analysis algorithms were created and optimised for each marker.  

Regions of interest (ROIs) were created in the tumour regions of each slide.  All 

tumours were digitally segmented into tumour epithelium and stroma regions using 

trained segmentation algorithms (Supp Figs 1 A and B).  Depending on the marker, 

staining was quantified on a per cell basis or on an area basis (Supp Fig 1 C and 

D).  Percentages of cells or pixels with high, medium, low or no immunoreactivity 

were quantified in each region.  This produced either histological scores for cell-

based scoring, or percental scores for pixel-based scoring, which are functions of the 

number and intensity of immunoreactive cells or pixels in the scanned specimens 

respectively (1 × (% cells/pixels with low staining) + 2 × (% cells/pixels with medium 

staining) + 3 × (% cells/pixels with high staining) = score out of 300).  Thresholds for 

negative/low, low/medium and medium/high were set for each antibody in 

conjunction with a pathologist to maximise the dynamic range of results between 

samples and to reduce false positive results. Haematoxylin thresholds (the staining 

intensities at which haematoxylin was recognised) were set individually and differed 

for each antibody due to differences in DAB staining.  Haematoxylin thresholds were 

set to ensure accurate identification of individual cells. After analysis, segmentation 

was manually validated for each slide.   
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IHC results were analysed using Excel (Microsoft Corp) and Minitab (Minitab Inc).  

The normality of the distribution of Histological scores in each group (RAS mutant or 

RAS wildtype) was determined by performing the Anderson-Darling test.  All data 

were non-parametrically distributed.  Therefore, for one by one comparisons, Mann 

Whitney U tests were performed for significance testing.  In addition, for STAT1 and 

CXCL10, staining for each case was grouped into low and high using H-score 

thresholds of both 100 and 200.  For Class II HLA, cases were grouped into negative 

(0-5% staining), low (5-50% staining) and high (>50% staining) as described by 

Lovig et al (28) (Supp Fig 2 F-H).  Chi-squared tests were performed to investigate 

significance between the RAS mutant and wild type groups. A p-value <0.05 was 

considered significant. 

 

  



12 
 

RESULTS 

 

Immune subpopulations are suppressed in KRAS MT CRC 

In our previous work we demonstrated that RAS mutant CRC had lower expression 

of the CIRC, a metagene that integrates 28 genes involved in innate and adaptive 

immunity (20). The CIRC was defined using 195 microarray CRC samples, of which 

190 have also been subjected to RNA sequencing as part of an extended TCGA 

study.  We analyzed this full data set (n=344) to validate our original findings on the 

orthogonal RNA-seq platform: consistent with those previous results, the analysis 

showed a significant reduction in the expression of the CIRC metagene in KRAS MT 

relative to WT (Supp Fig 3A; two-tailed Wilcoxon rank sum p = 2.4 x 10-3).  We 

additionally validated these results in the independent KFSYSCC (29) data set 

(n=290) of fresh-frozen CRC samples (Supp Fig 3B; two-tailed Wilcoxon rank sum p 

= 4.4 x 10-3).   

 

The CIRC signature was previously defined by performing an unsupervised 

hierarchical clustering of TCGA patients based on 61 highly-curated, immune 

response-related genes.  The genes comprising the signature were selected based 

on their strong coordinated regulation across patient subgroups (20). The CIRC is 

enriched for Th1-associated genes, as well as genes encoding chemokines, 

adhesion molecules, MHC class II molecules, and immune checkpoints.  Therefore, 

to dissect the specific immune subpopulations differentially recruited to KRAS MT 

tumours, we examined the effect of KRAS mutation on expression of each of seven 

immune cell types [neutrophils, and immature dendritic (iDC), B, T, Th1, Th2, and 

cytotoxic cells (22)]. Despite having few genes in common (Supp Fig 4), all immune 
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subpopulations except Th2 cells were highly correlated with the CIRC in both data 

sets (Pearson correlation r ≥ 0.42; p ≤ 6.4 x 10-14; Supp Fig 5).  Cytotoxic (r ≥ 0.85; p 

≤ 4.3 x 10-82), T (r ≥ 0.73; p ≤ 2.7 x 10-50), and, as expected, Th1 (r ≥ 0.71; p ≤ 3.2 x 

10-45) cells were most highly correlated with the CIRC in both data sets. KRAS 

mutation is associated with reduced cytotoxic cell (Fig 1A; TCGA: two-tailed 

Wilcoxon rank sum p = 0.04; KFSYSCC: p = 0.02) and neutrophil (TCGA: p = 9.7 x 

10-3; KFSYSCC: p = 5.3 x 10-3) infiltration. Th1 cells themselves consistently trend 

towards reduced infiltration in KRAS MT CRC (TCGA: p = 0.09; KFSYSCC: p = 

0.13). To further characterize biological differences between KRAS MT and WT CRC 

we compared the differences in expression of all 50 Hallmark gene sets (23).  This 

revealed down-regulation of multiple immune-related pathways within KRAS MT 

tumours across both data sets (Fig 1B).  In particular, we observed suppression of 

the IFNγ pathway in KRAS MT CRC in both data sets.  

 

STAT1 and CXCL10 are downregulated in KRAS MT CRC 

Given the disruption of the IFNγ pathway in KRAS MT CRC, we hypothesized that 

downstream genes would also be affected in these tumours.  To test this, we 

examined the expression of the key IFNγ response gene, STAT1, at the mRNA level 

and at the protein level using digital immunohistochemistry (IHC; Supp Figs 2 A-E).  

We found that STAT1 mRNA expression was down-regulated in KRAS MT CRC in 

both data sets (Supp Fig 6). By performing IHC and then digitally segmenting 

tumours into epithelium, stromal, and background regions (Supp Figs 1 A and B), 

we found that the STAT1 protein was also down-regulated in the epithelial 

compartment across a series of whole mount sections taken from 115 patients with 

primary CRC samples (RAS G12D/G13D MT n = 28, RAS non-G12D/G13D MT n = 
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38, RAS WT n = 49): STAT1 expression was reduced by RAS mutation whether 

samples were analysed by H-scores (p = 0.016) or according to percentage of 

positive staining for STAT1 (χ2 p = 0.033; Table 1).  

 

We next asked whether STAT1 target molecules, CXCL10 and CIITA, were also 

dysregulated in KRAS MT tumours.  We found that CXCL10 was strongly down-

regulated in both data sets (Supp Fig 6). This down-regulation was confirmed at the 

protein level, with significantly more MT samples having H-scores <100 (χ2 p = 0.04) 

and significantly more WT samples having H-scores >200 (χ2 p = 0.03; Table 1).  

We also found that CIITA was down-regulated in KRAS MT samples in the TCGA 

data set (Supp Fig 6). Though there was no such evidence for dysregulation of the 

mRNA in the KFSYSCC data set (Supp Fig 6), CIITA expression was generally low 

in this data set (median CIITA expression below the fifth percentile). At the protein 

level, around 50% of both RAS MT and RAS WT CRC samples were completely 

negative for class II expression by IHC and only 6.4% RAS MT tumours had >50% 

class II positive cells (Supp Figs 1 C-D and 2 F-H; Table 1). When class II protein 

expression was analysed in the cancer samples that had detectable expression of 

class II [i.e., excluding the class II negative cases in which transcriptional silencing of 

CIITA would prevent IFNγ inducibility via STAT1 (30,31)], we found that RAS 

mutation was associated with reduced class II expression on the cancer cells (RAS 

MT class II expressing CRC median epithelial class II H-score = 136.14, RAS WT 

median = 168.33, Mann-Whitney U p = 0.01) with no differences in stromal class II 

expression (RAS MT CRC stromal median = 146.96, RAS WT median = 141.56, 

Mann-Whitney U p = 0.16).  
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Reduced immune infiltration is independently associated with KRAS mutation 

and CMS subtype  

Immune response in CRC has been reported to be suppressed in CMS2 (21).  

Hence, we hypothesized that the CIRC and other measures of immunity would be 

lowest in KRAS MT CMS2 tumours. We first confirmed that the CIRC was strongly 

suppressed in CMS2 relative to CMS1 and CMS4 in both the TCGA (Supp Fig 7A; 

CMS2 versus CMS1: two-tailed Wilcoxon rank sum p = 1.2 x 10-18; CMS2 versus 

CMS4: p = 5.5 x 10-15) and KFSYSCC (Supp Fig 7B; CMS2 versus CMS1: p = 1.1 x 

10-4; CMS2 versus CMS4: p = 9.0 x 10-8) data sets.  As expected, CMS2 KRAS MT 

samples had the lowest CIRC expression amongst all CMS subtype x genotype 

combinations in the TCGA data set (Fig 2A).  These results were independently 

validated in the KFSYSCC data set (Fig 2B), though the consistent trends in relation 

to CMS3 did not always reach significance.  To determine whether KRAS mutation 

status and CMS classification are significantly and independently associated with 

immune infiltration, we performed a multivariate analysis of CIRC expression that 

included as parameters KRAS mutation status, CMS classification, primary tumour 

location, and, in the TCGA data set where they were available, MSI status and 

neoantigen load.  The analysis showed that KRAS MT and CMS2 (relative to CMS1 

and CMS4) were independently predictive of reduced CIRC expression in the TCGA 

(Fig 3A) and KFSYSCC (Fig 3B) data sets.  We next assessed whether KRAS 

mutation might have a CMS subtype-dependent effect. However, there was no 

evidence for a KRAS x CMS interaction in either data set (TCGA: F test p = 0.15; 

KFSYSCC: p = 0.67).  Finally, to delineate potential differential infiltration of specific 

subpopulations associated with KRAS MT CMS2 tumours, we examined the immune 

subpopulations most strongly associated with KRAS status (Fig 1A) in the additional 
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context of molecular subtype.  We found that KRAS MT CMS2 tumours had reduced 

infiltration of cytotoxic cells relative to all other patient groups in the TCGA data set 

(Fig 4A), with a similar trend in the KFSYSCC data set (Fig 4B).  KRAS MT CMS2 

tumours also showed reduced infiltration of neutrophils and Th1 cells in both data 

sets relative to CMS1 and CMS4 patients, but not necessarily to CMS2 WT or CMS3 

(MT or WT) patients. 

 

Taken together, our results indicate that there is considerable heterogeneity within 

CMS subtypes, even when controlling for MSI status, and that this may be further 

dissected using KRAS mutation status.  Though the data could not unambiguously 

resolve whether KRAS mutation has an effect specific to CMS2, the two factors are 

independently significant, i.e., the level of immune infiltration and its characterization 

across immune cell subpopulations cannot be inferred without knowledge of both 

factors.  The cumulative effect is such that CMS2 KRAS MT samples have reduced 

immune infiltration (of cytotoxic cells, neutrophils, and Th1 cells, as well as 

measured by the CIRC) relative to CMS1 or CMS4 samples harboring either MT or 

WT KRAS. 

 

IFNγ pathway suppression is associated with both KRAS mutation and CMS 

subtype 

To determine whether immune pathways down-regulated in KRAS MT tumours (Fig 

1B) were additionally suppressed in CMS2 CRC, we evaluated the expression of 

these signatures in the context of KRAS mutation status and molecular classification.  

In the TCGA data set, we found that KRAS MT CMS2 tumours exhibited reduced 

expression of all examined immune signatures (IFNγ, inflammatory response, 
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IL6/JAK/STAT3 signaling, complement, and IFNα) relative to all patient groups 

(though the trend did not reach significance in relation to KRAS WT CMS2 when 

examining the IFNα pathway; Fig 4C).  These trends held in the KFSYSCC data set 

(Fig 4D).  In particular, KRAS MT CMS2 tumours showed significantly reduced 

expression of the IFNγ pathway relative to all other patient groups in both data sets, 

except relative to KRAS WT CMS2 in the KFSYSCC data set, which nevertheless 

exhibited the same trend (p = 0.05). 

 

Finally, we examined the downstream target of the IFNγ pathway, STAT1, as well as 

its downstream targets, CXCL10 and CIITA, to determine whether the previously-

observed association between the reduced expression of these three genes and 

KRAS mutation was independent of molecular subtype. First, we observed that, 

within CMS2, KRAS MT samples had lower expression of each of the genes relative 

to WT samples in both the TCGA (p < 0.02) and KFSYSCC (p < 5.8 x 10-3) data 

sets, with the exception of CIITA in the KFSYSCC data set, as expected from its low 

expression in this data set (Supp Fig 8).   Second, we performed multivariate 

analyses for all three genes in both data sets, excluding CIITA in the KFSYSCC data 

set, which generally indicated that both KRAS mutation and CMS2 (relative to CMS1 

and CMS4) were significantly and independently associated with reduced expression 

of the three genes.  Specifically, KRAS mutation was significantly (p < 1.1 x 10-2) or 

marginally (p = 0.05 for STAT1 in the TCGA data set) associated with reduced gene 

expression, while CMS2 was associated with reduced gene expression relative to 

CMS1 (p < 3.1 x 10-3) and to CMS4 (p < 1.2 x 10-3, except for STAT1 in the 

KFSYSCC data set, where p = 0.17).  
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DISCUSSION 
 

We have previously shown that KRAS mutation is associated with reduced 

expression of the CIRC metagene, which summarizes 28 genes associated with 

innate and adaptive immunity.  Here, we extend those earlier findings to: (1) explicitly 

characterize the nature of the suppressed immune infiltration, showing that KRAS 

MT tumours have reduced infiltration of cytotoxic cells and neutrophils (Fig 1A); (2) 

demonstrate that the IFNγ pathway is suppressed in KRAS MT tumours (Fig 1B); (3) 

demonstrate that KRAS mutation is associated with down-regulation of  STAT1 and 

CXCL10 at the mRNA (Supp Fig 6) and protein (Table 1) levels; (4) show that 

KRAS MT-associated immunosuppression is independent of CMS classification (Fig 

3 and Supp Fig 8); and (5) show that KRAS MT CMS2 CRC is significantly 

immunosuppressed relative to (KRAS MT or WT) CMS1 and CMS4 cancers and, 

based on several signatures in at least one of the two data sets, relative to KRAS 

WT CMS2 CRC as well (Figs 2 and 4).   

 

The KRAS MT-associated down-regulation of the IFNγ pathway and reduced 

infiltration of cytotoxic T cells (i.e., those with properties common to CD8+ T, Tγδ, 

and natural killer cells) and neutrophils indicate that the immunosuppressive impact 

of KRAS mutation that we previously observed is robust, if modest.  Recent data 

demonstrate the interconnectedness of CD8+ T cells and neutrophils with the 

IFNγ pathway (32):  addition of neutrophils to CD8+ T cells (activated via sub-optimal 

concentrations of anti-CD3 and anti-CD28 antibodies) led to increased IFNγ release 

and T cell proliferation. In turn, activated CD8+ cells enhanced neutrophil viability. 



19 
 

Furthermore, activated neutrophils co-localize with immature DCs, leading to their 

maturation (33).  The resulting DCs drive T cell proliferation and Th1 skewing.  

 

Pre-clinically RAS mutation has been shown to reduce the levels of STAT1 (17,18). 

Consistent with these findings, we demonstrated that RAS MT cancers are 

associated with significantly lower STAT1 within the context of the tumour 

microenvironment.  The pre-clinical data also showed that RAS mutation reduced 

STAT1-dependent transcriptional activity (17); indeed, we detected reduced 

expression of the STAT1 target CXCL10 at the RNA and protein levels in KRAS MT 

relative to WT samples.   KRAS mutation may additionally down-regulate CXCL10 

via its activation of MEK-ERK signalling, which we observed in both data sets using 

a previously published (34) five-gene MEK signature (data not shown). We observed 

that KRAS MT reduced expression of a second STAT1 target, CIITA, in the TCGA 

data set.  No such trend was detected in the KFSYSCC data set.  However, CIITA 

expression was suppressed in this data set, which would likely mask any KRAS MT-

mediated STAT1 impact. Transcriptional repression of CIITA is seen in a proportion 

of CRC samples (30) as is the complete failure of IFNγ to induce class II expression 

in half of primary CRC cells (31). Both of these effects are RAS-independent. To 

control for CIITA silencing (and thus lack of class II inducibilty), we analysed the 50% 

of CRC samples that detectably expressed class II molecules (and in which CIITA 

must be transcribed and hence under the influence of STAT1).  In these samples, we 

demonstrated that RAS MT cancers had significantly lower expression of class II 

surface makers compared with RAS WT cases. Significantly, we demonstrated that 

both CMS classification and KRAS mutation status are independently and 

significantly associated with dysregulation of STAT1, CXCL10, and CIITA.  The 
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CMS-associated effect presumably reflects previously-reported reduced IFNγ 

signalling in CMS2 tumours (21), which leads to correspondingly reduced 

transcription of STAT1 target genes (17).  Our findings and the cited literature are 

consistent with a cell autonomous role for KRAS in modulating STAT1 and its 

downstream targets CXCL10 and CIITA.  Nevertheless, we cannot formally exclude 

the possibility that this KRAS effect is attributable, in whole or in part, to the reduced 

immune infiltration of CMS2 CRC with corresponding reduced environmental IFNγ. 

However these two factors are clearly intimately related. 

 

Suppression of the CIRC was greatest in KRAS MT CMS2 samples. There may be a 

straightforward explanation for this phenomenon. CMS2 is the most Th1 immune 

suppressed of the molecular sub-types with the lowest level of IFNγ signalling and 

thus lower levels of STAT1 and STAT1 target gene transcription.  KRAS mutation 

shifts the IFNg/STAT1 dose response curve (17), such that for any level of IFNγ 

there is less STAT1 transcription in a KRAS mutated context. This effect is likely to 

be most biologically relevant where IFNγ levels are already limiting. The cumulative 

impact of low IFNγ (CMS2) and blunting of the IFNγ response (via mutant KRAS) 

may result in a level of STAT1-dependent promoter transcription that is insufficient to 

support robust and consistent expression of the critical downstream molecules. We 

considered the alternative explanation - that the effect of KRAS mutation in CMS2 

was due to it impacting the particular biology of CMS2. This subtype is characterised 

by high levels of Wnt and Myc signalling (21). Activation of WNT/β-catenin signalling 

in melanoma reduces CD8+ T and IFNγ-producing CD4+ cells, findings which have 

been generalized across other cancer types including CRC (35), while MYC up-

regulation has been associated with reduced CD4+ T cell tumoural accumulation 
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(36). In vitro, mutant RAS significantly enhances WNT/β-catenin signalling in a 

mutant APC background and enhances downstream MYC transcription (37).  Thus 

we investigated whether KRAS mutation was deepening the Wnt and Myc drive in 

CMS2, and thus deepening immunosuppression via this mechanism. We found no 

robust, consistent evidence that KRAS mutation dysregulated the expression of the 

WNT or MYC signatures within the context of CMS2 (p > 0.07 for comparisons of 

KRAS MT CMS2 vs KRAS WT CMS2 for WNT/β-catenin and MYC target gene sets).  

 

 

As is the case for the majority of transcriptional and immunohistochemical analyses 

in CRC, our analysis was performed using primary resection samples. It is important 

to stress that the strength of Th1 immunity and class II expression in primary tissue 

are highly prognostic factors and are predictive of the presence of both synchronous 

metastatic disease and the development of subsequent metastases (38). Thus, 

understanding the independent impacts on the strength of Th1 immunity in primary 

tissue is of value in its own right.  These results pose important questions for the 

larger body of immunotherapy trials that are instead directed at established 

metastatic or, in an adjuvant context, micrometastatic disease. Longitudinal 

expression studies following the evolution of disease progression should be 

undertaken to ascertain the concordance of CMS classification between primary and 

metastatic disease.  However, existing data already suggest that immune cell 

densities (CD8+, dendritic, and NK cells) are highly correlated between primary and 

metastatic CRC and between separate metastatic sites (39). Though it has been 

suggested that there is significant intra-tumoural heterogeneity of CMS, this analysis 

used separately macro-dissected tissue from the center of the tumour and from the 
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invasive front rather than bulk tumour (40). As was pointed out in the accompanying 

editorial, biopsy from the invasive margin will result in a large admixture of stromal 

cells not found in the center of the tumour thus giving a CMS4-like signature and 

artificially introducing heterogeneity through selective sampling (41). Regardless of 

whether CMS or some other molecular subtypes prove to be pertinent to metastatic 

CRC, our results suggest that KRAS mutation is likely to modulate immune response 

within these subtypes:  these data provide proof of principle that the immune status 

of RAS mutant CRC is not homogenous across all CRC and that RAS mutation 

influences the immunobiology of molecularly-defined CRC subtypes.  

 

In summary, our results add a novel immunological dimension to the growing 

appreciation of the biological heterogeneity of tumours harbouring canonical 

mutations in CRC. The immunobiological status of RAS mutant CRC varies 

according to transcriptional context and the immunobiological status of CMS2 is 

dependent on RAS status. KRAS MT CMS2 appears to be a particularly immune-

neglected group that will need therapy to initially activate a microenvironmental 

immune response if checkpoint blockade is considered in a combinatorial approach. 

RAS mutation itself may be a useful immunological target in this group. Adoptive T 

cell transfer of RAS MT-specific T cells has recently been shown to have therapeutic 

efficacy in CRC (42) and the use of T cells transduced with T-cell receptors 

recognising RAS MT epitopes is also a potential therapy option (43).  Our 

demonstration that a canonical mutation can be associated with widely differing 

expression of immune-related genes based on its transcriptional subtype may 

underlie some of the heterogeneity of responses seen with targeted therapies, 

although it is important to qualify this by acknowledging that our understanding of the 
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transcriptional biology of metastatic disease is limited. In animal models, the activity 

of BRAF inhibitors is dependent on Th1 cell-mediated provision of CD40L and IFNγ 

(44). Similarly, the therapeutic effect of inactivation of oncogenic MYC is dependent 

upon CD4+ cells (45). This suggests that the use of individual mutations as 

predictive biomarkers in CRC may be insufficient to predict the efficacy of targeted 

therapies without knowledge of the associated CMS subtype and its immune 

contexture.  This hypothesis should be readily testable in the clinic. 
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TABLES 

Table 1 

 

Epithelium Stroma 

RAS MT RAS WT p value RAS MT RAS WT p value 

STAT1 
Median H Score 180 238 0.016 88 122 0.086 
% H score <100 32.2 10.5 0.014 54.2 47.4 0.508 
% H score >200 40.7 60.5 0.056 13.6 23.7 0.200 

CXCL10 
Median H Score 93.5 108 0.080 24 24 0.858 
% H score <100 58.1 38.3 0.041 85.5 85.1 0.956 
% H score >200 8 23.4 0.025 4.8 2.1 0.558 

Class II HLA 

Median Percental 
Score 125.2 136.8 0.260 143.9 135.8 0.051 

% Negative (0-5%) 50.8 51.2 
0.590 

11.3 20.9 
0.300 % Positive (5-50%) 42.9 37.2 87.1 79.1 

% Strong (>50%) 6.4 11.6 1.6 0 
  

Table 1: Immunohistochemistry analysis.  Median Histological scores or 

Percental scores in epithelial and stromal regions.  STAT1 and PD-L1 reactivity are 

represented by histological scores.  Class II HLA reactivity is represented by 

percental scores.  For median H and percental scores, p-values are derived with 

Mann Whitney U test.  For all other comparisons, p-values are derived with χ2 test. 
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FIGURE LEGENDS 

 

Fig 1:  KRAS mutation is associated with reduced immune infiltration and 

downregulation of immune pathways.  (A) Volcano plot showing enrichment (x 

axis) of immune cell subpopulations in KRAS MT relative to KRAS WT tumours, with 

associated p-values (y axis) across TCGA (red) and KFSYSCC (blue) data sets.  

Relative enrichment is the Hodges-Lehmann estimator of the difference between the 

KRAS MT and KRAS WT populations—i.e., the median of all pairwise differences 

between CIRC enrichment in a KRAS MT sample and a KRAS WT sample. (B) 

Volcano plot as in (A), but showing effect of KRAS mutation on Hallmark gene sets.  

The subset of the full set of 50 Hallmark gene sets with p < 0.1 are labeled.   

Fig 2: CIRC expression is reduced in CMS2 KRAS mutant tumours.  Expression 

of CIRC versus CMS subtype and KRAS mutation status in (A) TCGA (n=316) or (B) 

KFSYSCC (n=258) data sets.  n.s.: not significant; *: p < 0.05; **: p < 0.01; ***: p < 

0.001; ****: p < 0.0001; MT: mutation; WT: wild type. 

Fig 3: CMS subtype and KRAS mutation are independently predictive of CIRC 

expression. Multivariate analysis performed across (A) TCGA (n=310) or (B) 

KFSYSCC (n=258) data sets.   

Fig 4:  KRAS MT CMS2 tumours are associated with reduced immune 

infiltration and downregulation of immune pathways.  Enrichment score (y axis) 

of immune populations (x axis) of indicated KRAS x CMS subgroup relative to KRAS 

MT CM2 subgroup in (A) TCGA and (B) KFSYSCC data sets.  Relative enrichment is 

the Hodges-Lehmann estimator of the difference the indicated subgroup and KRAS 

WT CMS2 subgroups.  Error bars represent 95% confidence intervals in estimator 
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calculated using the method of Bauer (25).  Enrichment relative to KRAS MT CMS2 

subgroup of Hallmark immune pathways in (C) TCGA and (D) KFSYSCC data sets.   
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