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The mucormycete-host interface

Abstract

Mucormycosis is a fungal infection with fulminant angioinvasion leading to high 
morbidity and mortality in susceptible individuals. The major predisposing 
conditions are uncontrolled diabetes, neutropenia, malignancies, receipt of a 
transplant and traumatic injury [1]. Over the past decade, mucormycosis has 
become an emerging fungal infection due to the increase in patient groups 
presenting with these pre-disposing conditions and our medical advances in 
diagnosing the infection [2-4]. Yet, we currently lack clinical interventions to 
treat mucormycosis effectively.  This in turn is due to a lack of understanding of 
mucormycosis pathogenesis.

Here, we discuss our current understanding of selected aspects of interactions at 
the mucormycete-host interface. We will highlight open questions that might 
guide future research directions for investigations into the pathogenesis of 
mucormycosis and potential innovative therapeutic approaches. 

Innate immune responses during mucormycosis 

Once a pathogen has overcome our non-specific barriers (e.g. skin and mucosal 
layers), innate immune effectors such as macrophages and neutrophils are our 
first cellular response against the foreign attack. Many fungal pathogens (e.g. 
Cryptococcus, Candida, Coccidioides species and Histoplasma capsulatum) have 
been recognized as intracellular pathogens of phagocytes (reviewed in [5]). 
Similarly, there is growing evidence that pathogenic Mucorales species can adapt 
an intracellular life style within these innate immune effectors. 



The infectious particles for mucormycosis are asexual sporangiospores found 
ubiquitously within the environment. These resting spores can swell and 
germinate to produce fast-growing hyphae during their natural life cycle (Figure 
1) [6]. Germination and filamentous growth within a host causes angioinvasion, 
vessel thrombosis and necrosis [7-9]. 

Monocytes, macrophages and natural killer (NK) cells can recognize and damage, 
but are unable to kill, hyphae. Conversely, filamentous forms are effectively 
killed by human polymorphonuclear leukocytes (PMNs) in vitro [10-13]. 
Invasive fungal growth activates pro-inflammatory signaling. Hyphae interact 
with TLR-2 on the surface of human PMNs inducing transcription of the 
proinflammatory cytokines TNF-α and IL-1β [14]. Human monocyte derived 
dendritic cells recognize β-glucan exclusively expressed on the hyphal surface 
through the pattern recognition receptor dectin-1 to induce IL-23, IL-1 and TNF-
α [15]. Damage and killing is mediated by oxidative means after monocyte or 
neutrophil attachment to fungal filaments [16-18], through degranulation, and 
release of cationic peptides or perforin by rabbit and human neutrophils or NK 
cells, respectively [12,18-20]. Hydrocortisone treatment inhibits neutrophil or 
macrophage induced hyphal damage [18,21] and macrophages from diabetic 
mouse have reduced ability to adhere to hyphae [17]. Even in healthy hosts, the 
extent of hyphal damage depends on the extent of fungal biomass [12,22].

Mucormycetes are extremely fast-growing fungi and thus are likely to 
outcompete our immune response when it is in state of suppression. Hyphal 
growth is essential for virulence in yeast-locked mutants of Mucor circinelloides. 
Inhibition of the calcineurin pathway that regulates hyphal growth chemically 
through the calcineurin inhibitor FK506 or by mutation of the calcineurin 
regulatory subunit cnbR significantly reduced virulence of M. circinelloides in 
wax moth larvae [23]. Mucorales species with fast germination rates (e.g. 
Cunninghamella bertholletiae) are significantly more virulent than species with 
slower germination rates (e.g. Rhizopus oryzae, R. microspores, M. 
circinelloides) in a neutropenic rabbit model of pulmonary mucormycosis. The 
increased virulence is characterized by higher lung burden, amplified 
angioinvasion and lower survival [24]. Likewise, M. circinelloides isolates with 
larger spores germinate faster and are more virulent in the wax moth larva and a 
murine intraperitoneal infection model [25]. Thus, a protective immune 
response might require spore clearance before onset of filamentous growth.

After infection with mucormycete spores, phagocytes are recruited rapidly to the 
site of infection to internalize and form tight clusters around spores in rabbit 
[26,27], mouse [9,28,29] and zebrafish larval models of disease [30]. A lack or 
delay of this early inflammatory response renders diabetic hosts susceptible to 
infection leading to disease dissemination [17,27,30]. Yet, phagocytes are not 
able to kill resting spores in vitro or in vivo in vertebrate [9,29,30] and non-



vertebrate model systems [31]. To establish within the phagocytic niche, 
mucormycete spores must either withstand the harsh environment or subvert 
phagocyte anti-microbial mechanisms. It has been demonstrated that Rhizopus 
oryzae downregulates the transcription of host defense genes (e.g. immune-
inducible peptides) in infected fruit flies [31]. Resting spores are not able to elicit 
a pro-inflammatory cytokine response in dendritic cells [15] whilst hyphae also 
inhibit IFN-γ expression by IL-2 stimulated human natural killer cells [12,13]. 
The human macrophage-like cell line THP-1 failed to express proinflammatory 
cytokines in response to M. circinelloides or R. oryzae compared to A. fumigatus 
or C. albicans [32].  The oxidative burst elicited from PMNs by mucormycete 
spores is strain dependent and reflects the virulence potential. For example, 
intermediate virulent strains belonging to the Rhizopus genus induce a smaller 
reactive burst than the low virulence strain Lichtheimia corymbifera [33,34]. 
Resting spores are resistant to cationic peptides released from neutrophils in 
vitro [19]. Although phagocytes fail to kill spores, they effectively prevent spore 
germination in healthy murine hosts [17,35,36]. Rat alveolar macrophages, but 
not the human macrophage cell line THP-1, inhibit spore germination through 
nitric oxide [37]. In susceptible mice with induced diabetes or treated with 
corticosteroids, inhibition of spore germination by bronchoalveolar 
macrophages fails allowing for filamentous growth [17,36]. 

Interestingly, disease can be reactivated from granulomatous clusters during 
acute diabetic acidosis in rabbits [26]. This opens the possibility of latent 
infections with Mucorales and disease reactivation in previously healthy hosts 
after acquired immunosuppression. Yet, we have little knowledge on the 
virulence factors that enable Mucorales spores to reside insight phagocytes and 
granulomas. At the same time, the unique enhanced susceptibility of 
uncontrolled diabetics and DKA patients indicates that immune responses to 
Mucorales are distinct from other fungal pathogens and/or Mucorales possess 
virulence traits that enable them to thrive in such hosts (Table 1). Thus, we need 
a better understanding of the mechanisms employed to establish intracellular 
survival within phagocytes and the phagocytic defects induced by predisposing 
conditions that allow spore germination. 

Platelets are known to play a role in antimicrobial host defense against several 
pathogens by secretion of platelet microbicidal proteins [38]. Platelets were 
shown to adhere to Mucorales, induce time dependent damage to fungal hyphae 
and suppress hyphal elongation through a granule dependent mechanism [39].   

Taken together, protection from mucormycosis by the innate immune system 
relies on the control of spores residing in phagocytes and granulomatous 
clusters to inhibit spore germination. In susceptible individuals, this control is 
lost leading to filamentous fungal growth. Increasing evidence, supporting 
Mucorales as intracellular pathogens within granulomas, poses the possibility of 



latent infections. This might offer new therapeutic strategies targeting resting 
spores before onset of fulminant hyphal growth in prophylactic approaches. 

Adaptive immunity during mucormycosis 

There is limited evidence for a major role of the adaptive immune system in 
combating mucormycosis. HIV alone is not a predisposing condition for disease, 
though cases have been reported in this patient population in association with 
intravenous drug or corticosteroid use and neutropenia [40]. Similarly, T-
lymphocyte depletion in mice does not increase susceptibility to mucormycosis 
[41]. 

As with the innate immune response, CD4+ and CD8+ T-cell are only produced in 
response to hyphae [42] and during invasive mucormycosis [43]. However, these 
T-cells are lost soon after resolution of infection [43]. Both sets of T-cells 
produce a range of cytokines including IL-4, IFN-γ, IL-10 and IL-17 [43]. CD4+ 
cells are predominant and show cross-reactivity with a range of other fungal 
pathogens (Aspergillus fumigatus, Penicillum chrysogenum and C. albicans) in 
healthy individuals [42]. Although spores can persist in hosts, clearance of R. 
pusillus from lungs of infected mice has been reported after approximately 30 
days [35]. This indicates some relevance of an adaptive immune response that 
warrants further investigation and might be relevant for future development of 
immunotherapeutic approaches against the disease. 

The mucormycete-epithelial and mucormycete-endothelial interface 

There has not been much work conducted on studying the interactions of 
mucormycetes and epithelial cells, despite these interactions representing some 
of the earliest events during infection. A study linked outbreak of food poisoning 
due to intake of yogurt to contamination with Mucor circinelloides [32].  This 
study demonstrated that Mucorales produce secondary metabolites that are toxic to 
the gastrointestinal mucosa. Similarly, dead Mucorales can cause considerable host 
cell damage in vitro supporting the presence of toxins [44]. It is possible that these 
toxic substances are responsible for the clinical feature of extensive tissue 
necrosis. It is also known that Rhizopus spores can adhere to extracellular matrix 
proteins such as laminin and type IV collagen [45] that embeds epithelial or 
endothelial cells.  

Unlike epithelial cells, considerable work has been conducted on interactions of 
Mucorales and endothelial cells because of the angioinvasive nature of the 



disease.  It was found that Mucorales adhere to, and invade human umbilical vein 
endothelial cells through specific and unique binding capacity to the heat shock 
glucose-regulated protein 78 (GRP78) [46]. This interaction occurs via the 
unique cell surface CotH invasins (Figure 2) [47] and results in a substantial 
injury to the endothelium in vitro [46]. CotH proteins are universally present in 
Mucorales and absent from other pathogens [48]. Interestingly, elevated glucose, 
iron, and β-Hydroxy butyrate (BHB) concentrations (relevant to levels seen in 
diabetic ketoacidosis patients) induces endothelial cell invasion and damage by 
Rhizopus and promotes virulence in mice due to surface overexpression of both 
GRP78 and CotH proteins [46,47,49]. It appears that during these interactions 
acquisition of host iron via several mechanisms (e.g. high affinity iron permease, 
and ferrioxamine receptors) is critical in determining the fate of infection [50-
52]. Importantly, antibodies targeting GRP78/CotH interactions reduce 
Mucorales-induced invasion and injury of endothelial cells and protect mice from 
mucormycosis [46,49]. These results provide insights into why patients with 
diabetic ketoacidosis are uniquely predisposed to mucormycosis infections and 
point to potentially novel immunotherapeutic interventions.

Clinical relevance and application 

Much of the focus in understanding the immune responses to mucormycosis is 
focused on invasive disease. While this knowledge is critical in our 
understanding on how mucormycosis progressively develops into a 
disseminated infection and ultimately will help in designing adjunctive therapies 
to improve outcome, understanding early events in the course of infection is 
likely to add therapeutic strategies that act synergistically with strategies 
targeting angioinvasion. Further, understanding early infection events can 
develop preventative measures in targeted populations.  For example, this 
review highlights the inability of innate immune effectors in susceptible hosts to 
inhibit the transition to filamentous growth and the quick growing nature of 
Mucorales hyphae as the main contributors to the high mortality during 
mucormycosis. Together with the possibility of latent infections of this emerging 
intracellular pathogen, development of new treatments can focus on either 
inhibiting the fungal ability to undergo germination or enable protective 
immunity targeting spores before onset of invasive disease. 

Although we know a range of environmental factors that initiate spore 
germination (e.g. pH, nutrient availability, hydrophobicity), we currently lack an 
understanding of the genetic regulation of this developmental process. Likewise, 
we have little information on the virulence determinants enabling spores to 
survive within phagocytes. Whilst research has been hindered by lack of genetic 
tractability of Mucorales, a range of tools has become available in recent years. 



Whole genome projects and comparative genomics have revealed a genome wide 
duplication and gene family expansions for ergosterol synthesis pathway (e.g. 
lanosterol 14α-demethylase), GTPases, secreted proteases and cell wall 
synthesis enzymes that could support resistance to antifungals and adaptation to 
changing environments [48,53]. In addition, targeted gene attenuation in 
Rhizopus can reliably be achieved using RNAi techniques [47,51,52]. Finally, the 
community will benefit from a recently published RNAi-based knock out library 
of M. circinelloides enabling screens for genes involved in germination and 
virulence [54].

Protective immunity could be achieved by correcting immune deficiencies in 
susceptible patients or inhibition of virulence strategies employed by Mucorales 
(e.g. neutralization of CotH with antibodies [47]). In the context of mucormycosis, 
adjuvant cytokine treatments have proven some efficacy. GM-CSF and GM-CSF in 
combination with IFN-γ increase antifungal activity of PMNs by increasing the 
oxidative burst in vitro [33,34], whilst GM-CSF in combination with liposomal 
amphotericin B improved the survival of mice with systemic mucormycosis [55]. 
Recovery of normal blood pH in mice with β-Hydroxy butyrate (BHB) induced 
acidosis through bicarbonate treatment significantly increased survival of 
mucormycosis in prophylaxis or therapeutic mouse models [49]. Lastly, isolation 
and proliferation of T-cells increased phagocytic capacity and reactive oxygen 
burst in response to mucormycetes in vitro and might offer the possibility of 
adoptive immune cell transfer in the future [42,56]. The timing of any clinical 
intervention and immunomodulation should be considered carefully in the 
context of mucormycosis. 

Conclusion and Future Research Directions 

The rise of the number of susceptible individuals together with current lack of 
effective treatment requires further research into the host-pathogen interactions 
during mucormycosis and will enable us to devise new and more effective 
treatments for this debilitating disease. 
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Table 1. Proven virulence traits of Mucorales. 

Virulence trait Function References

High affinity iron 
permease (Ftr1p)

Acquisition of host iron [51,57]

Ferrioxamine receptors
(Fob1 and Fob2)

Acquisition of iron from 
ferrioxamine 

[52]

Fungal Spore coating 
protein (CotH)

Invasion of the 
endothelium

[47]

Host Glucose regulated 
protein 78 (GRP78)

Invasion of the 
endothelium

[46,49]

Host Platelet-derived 
growth factor receptor 
(PDGFR)

Invasion of host cells [48]

Spore size Faster germination [25]
calcineurin pathway Regulation of hyphal 

growth
[23,58]

Uncharacterized toxins Host cell damage and 
possible induction of 
inflammatory response

[32,44]

Figure legends: 

Figure 1: Spore germination and filamentous growth of Rhizopus microsporus. 
Resting spores start to swell shortly after incubation in rich media. First germ 
tubes are produced after approximately 7 hours incubation with a hyphal 
network established at 13 hours incubation. Scale bar 50 μm. 

Figure 2: Colocalization of host cell GRP78 and R. delemar CotH during invasion 
of human umbilical vein endothelial cells. GRP78 (green) is labeled with Alexa 
Fluor 488, CotH (red) is labeled with Alexa Fluor 658. Merged image show 
colocolization (yellow) of endocytosed fungal swollen spores ~60 min after 
incubation. Scale bar 10 µm.  








