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aSchool of Metallurgy and Materials, University of Birmingham, Edgbaston, UK, B15 

2TT 

bDepartment of Materials, Loughborough University, UK, LE11 3TU 

cDstl, Porton Down, Salisbury, UK, SP4 0JQ 

Abstract 

Room and high temperature flexural strength and CTE of Cf-HfB2 ultra-high temperature 

ceramic (UHTC) composites is determined along with UHT oxidation behaviour. Both 

room and high temperature strength of the composites were found to be broadly 

comparable to those of other thermal protection system materials currently being 

investigated. The CTE of the composites was measured both along and perpendicular 

to the fibre direction up to 1700°C and the values were found to depend on fibre 

orientation by approximately a factor of 3. Arc-jet testing of the UHTC composites 

highlighted the excellent ultra-high temperature oxidation performance of these 

materials. 

                                            
1
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Introduction 

Ultra-high temperature ceramics (UHTCs) are candidate materials for use as leading 

edges, control surfaces, engine inlets and exits and engine hot flow path components in 

hypersonic vehicles. In recent years, these materials have been extensively 

investigated as innovative thermal protection systems (TPS)1-3 and sharp leading edge 

components4-6 for aerospace vehicles as well as for other applications where oxidation 

and/or erosion resistance at temperatures up to and exceeding 2000°C are required. 

The main materials that are being researched as UHTCs are the borides and carbides 

of transition metals, e.g. HfB2, ZrB2, HfC, and ZrC. They are refractory in nature and 

have melting temperatures above 3000°C.7-9 The suitability of single phase ceramics is 

significantly limited, however, due to their poor thermal shock and oxidation 

resistance.10 Even with the addition of a second or third ceramic phase, such as SiC or 

LaB6, these materials do not possess the high temperature resistance, thermal shock 

resistance or fracture toughness required.11This clearly highlights the need to adopt a 

fibre reinforced composite approach. Carbon fibre (Cf) and silicon carbide fibre (SiCf) 

are two obvious choices, provided they can be protected at the application 

temperatures.  

There are a number of reports in the literature about the preparation of continuous fibre 

reinforced UHTC composites using SiC4, 12, 13 and C fibres.14-30 Processing 

methodologies adopted for the preparation of UHTC composites include precursor 

infiltration and pyrolysis,18-21 chemical vapour deposition,22-24 reactive melt infiltration,25, 

26 slurry infiltration and pyrolysis14-17 or a combination of processes.27-29 A number of 
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groups dedicated their efforts to prepare short fibre reinforced composites,30-35 the 

advantage being the ability to apply the processing techniques developed for monolithic 

UHTC materials. The improvement in mechanical properties, especially toughness, 

achieved with the latter class of materials was not significant, however. 

Previous studies conducted by the present authors16 compared the high temperature 

oxidation performance of a variety of Cf-based UHTC composites viz., Cf-ZrB2, Cf-ZrB2-

20 vol%SiC, Cf-ZrB2-20 vol%SiC-10 vol% LaB6, Cf-HfB2 and Cf-HfC, using an 

oxyacetylene flame and reported that the best performance was observed for Cf-HfB2. 

The main focus of the present study was to determine the room and high temperature 

flexural strength of these UHTC composites together with the coefficient of thermal 

expansion (CTE) along and across the fibre direction. Ultra-high temperature oxidation 

tests were carried out using an arc-jet facility, which is considered as the best ground 

based testing technique for evaluating high temperature oxidation performance. Arc-jets 

provide conditions that are similar to the aero-thermal environment experienced during 

flight and hence the results are used to understand the thermal performance of 

materials and systems under controlled aero-thermal heating conditions. The results 

have been used to validate the numerical models of materials and systems that are 

used as design tools.5 Nevertheless, there are a number of differences between arc-jet 

and flight environments that must be accounted for when interpreting the data. For 

example, surface catalycity can play a more significant role during arc-jet testing than in 

re-entry, because a higher proportion of the air molecules are dissociated in the former 

environment.36  Detailed microstructural characterisation was carried out on the post 
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test samples and conclusions drawn about the advantages of incorporating UHTC 

particles on high temperature performance. 

Experimental 

Preparation of UHTC composites  

The UHTC composites used in the current study were prepared utilizing a slurry 

composed of HfB2 (325 mesh, HC Starck, Karlsruhe, Germany), acetone and phenolic 

resin (Cellobond J2027L, Hexion Specialty Chemicals, B. V., Rotterdam, The 

Netherlands). The ingredients were mixed in the required ratio, a typical formulation 

contained 40 g HfB2, 20 g phenolic resin and 12.5 g acetone, and ball milled for 48 h to 

achieve a slurry with the required consistency (~10 mPa s at 100 s-1 shear rate). 2.5 D 

Cf preforms were obtained from Surface Transforms (Surface Transforms plc., 

Cheshire, UK). 180 x 30 x 15 mm Cf preforms were used for preparing UHTC 

composites for flexural strength and CTE measurements. 52 mm diameter by ~20 mm 

thick preforms was used for arc-jet samples. Impregnation of the preforms was carried 

out using a vacuum assisted technique where the preform was fully submerged in the 

UHTC slurry contained in a vacuum chamber. The chamber was then evacuated with a 

vacuum pump to facilitate the impregnation of the slurry. Further details on the 

composite processing can be found elsewhere.16 Final densification was achieved using 

5 cycles of chemical vapour infiltration (CVI) of carbon at Surface Transforms plc., 

Cheshire, UK. After CVI densification, flexural strength (140 x 25 x 10 mm) and CTE (10 

x 5 x 5 mm) specimens were machined out from the larger composites. CTE specimens 
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were machined such that measurements could be made both along and perpendicular 

to the fibre direction. Arc-jet specimens were machined down to final dimensions of 30 

mm diameter x 5 mm thickness so that they could be mounted in a carbon-carbon (CC) 

composite sample holder. CC composites for comparative measurements were 

prepared by CVI densification of 2.5D carbon fibre preforms at Surface Transforms, 

without any powder impregnation. The bulk density of Cf-HfB2 and CC composites were 

2.2 ± 0.14 and 1.8 ± 0.04 g cm-3 respectively. The final porosity of all the composites 

was around 10%. 

Flexural strength and CTE measurements 

Room temperature (RT) and high-temperature (HT) 4-point flexural strength 

measurements were carried out at CERAM 2  (Stoke-on-Trent, Staffordshire, UK) 

according to CERAM R102, method 2. RT strength measurements were conducted in 

air whereas HT strength measurements were carried out under a flowing argon 

atmosphere. The strength of the composites was determined using large, 140 x 25 x 10 

mm, samples; this was essential to give a true representation of the UHTC composite 

because of its graded structure. As per the specification, prior to HT testing, the 

composites were coated with a commercial product known as Tipp-Ex (a slurry of TiO2 

in an organic medium intended for use as a paper correction fluid) all over the surface, 

except where it came in contact with the loading and support rollers, to minimise any 

oxidation due to the presence of residual oxygen. A 5N preload was applied to ensure 

proper contact between the sample and the rollers. The test rig used for HT testing, 

                                            
2
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along with a Tipp-Ex coated test bar, is shown in Figure 1. The HT test parameters are 

summarised in Table 1. RT test parameters were similar except the fact that there was 

no heating or gas flow.  

The argon flow rate employed was sufficient, in theory, to replace the atmosphere within 

the box furnace approximately 4 times every minute; this involved a flow rate of 15 L 

min-1. Presence of residual oxygen is expected as the furnace employed is not a sealed 

system. The hold duration at 1400°C was limited to 5 min to minimise any oxidation at 

high temperature due to the presence of residual oxygen. 

The CTE was measured at Imperial College London, UK, using a Netzsch 402C 

dilatometer (Netzsch-Geratebau GmbH, Selb, Germany) with a graphite sample holder 

and push rod. Samples were heated at 10°C min-1 from room temperature to 1700°C 

under helium atmosphere whilst recording the displacement of the pushrod. By 

calibrating the expansion of the set-up with a graphite sample of known thermal 

expansion, the displacement of the push-rod was converted in actual thermal expansion 

data for the sample. Since the pushrod exerted a force of ~1.5 N on the sample to 

ensure that good contact was maintained, data collected at the highest temperatures 

should be treated with caution as compressive creep might have counter-acted the 

thermal expansion of the sample.Specimens were prepared so that the CTE values 

could be measured both along and across the fibre directions   

 

It is customary to describe the thermal expansion using eqn 1. 
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( ) ( )

( )
T

TL

TLTL
avg

ref

ref
∆⋅=

−
α  (1) 

Where 

 αavg -  Average coefficient of thermal expansion from Tref to T 

L(T) – Length of sample at temperature T 

 L(Tref) – Length of sample at reference temperature Tref 

 ∆T = T- Tref 

Arc-jet testing 

Arc-jet tests of the samples were carried out at the German Aerospace Centre 

(Deutsches Zentrum fur Lüft- und Raumfahrt, DLR, Cologne, Germany). One UHTC 

sample (AJ5-20) was tested at a heat flux of 5 MW m-2 for ~20 s whereas a second 

sample (AJ10-10) was tested at 10 MW m-2 for ~10 s. The test parameters are 

summarised in Table 2. . The front face temperature during testing was measured using 

a two colour pyrometer (Dr. Maurer QKTR1485, Dr. Georg Maurer GmbH – 

Optoelektronik, Germany) calibrated from 900-3000°C and a spectral pyrometer (Dr. 

Maurer KTR1485-Z, Dr. Georg Maurer GmbH – Optoelektronik, Germany), sensitive at 

1 micron and calibrated between 900-3000°C. 

The surface and cross sectional microstructures and chemical compositions of the arc-

jet samples were studied using field emission gun scanning electron microscopy 
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(FEGSEM, Leo 1530VP, LEO, Elektronenskopie GmbH, Oberkochen, Germany) and 

energy dispersive spectroscopy (EDS, EDAX Inc., NJ, USA). 

Results and Discussion 

Flexural Strength Measurement 

The stress-strain curves for the CC and UHTC composites after RT and HT testing are 

given in Figure 2 and Table 3 summarises the flexural strength data.The alumina rollers 

failed on at least three occasions during the HT testing, resulting in step changes in the 

stress-strain curves. This can be identified from the stress-strain plots of UHTC-HT5, 

CC-HT1 and CC-HT2. One of these samples (CC-HT1) was retested and it yielded a 

much lower strength of 85.01 MPa. All other composites deformed and did not show 

any sign of obvious failure. The Tipp-Ex applied on the surface formed a pale yellow 

substance, which was identified to be mainly TiO2. A white layer on the surface of the 

UHTC composite after HT strength testing was characterised using EDS (data not 

shown) and found to be HfO2. The oxidation of the Tipp-Ex and HfB2 confirmed the 

presence of residual oxygen at the test temperature. 

The CC composites displayed a higher deformation at room temperature compared to 

the UHTC composites. No brittle failure was observed at RT or HT, but rather a small 

amount of deformation was observed. CC composites were also coated with Tipp-EX 

prior to testing, but it fell off completely during the test, possibly due to the degradation 

of the surface carbon fibres. There was negligible mass change for the UHTC 
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composites after HT testing, but the CC composites had ~12% mass loss indicating 

oxidation of the test bars at elevated temperatures. 

The average RT strength of UHTC composites was 111 ± 20 MPa and that of CC 

composites 132 ± 28 MPa. The average HT strength of UHTC composites was 103 ± 25 

MPa and that of CC composites 126 ± 10 MPa. The RT strength values reported in the 

literature for UHTC composites include 107 MPa19 or 150-170 MPa12 for Cf-ZrC; 237 

MPa for Cf/ZrB2-SiC;28 25 MPa for Cf-HfC22 and ~100 or 162 MPa for a functionally 

graded Cf/HfB2-SiC composite37 the latter values depending on whether the SiC or HfB2 

side was in tension. It is not accurate to make direct comparisons as the properties of a 

composite depends on the fibre volume fraction, fibre surface treatment, fibre 

orientation, amount of porosity, type of carbon deposit, processing temperature and the 

type and amount of fillers. 

Considering the error bars, it is reasonable to conclude that there was no decrease in 

the average strength of the UHTC and CC composites at 1400°C, though it is difficult to 

make any statistical conclusions because of the failure of the rollers in some instances 

and the partial oxidation of the composites. CC composites showed a slightly higher 

strength compared to UHTC composites at both room and high temperature. This is not 

that surprising as the addition of UHTC powder was expected to reduce the overall 

strength of the composites by forcing apart the tows slightly as the UHTC powder 

penetrated. 
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The difficulties associated with the failure of the support rollers at high temperature 

along with a need for improved atmosphere control needs to be addressed in the future 

to improve the accuracy of measurements. 

CTE Measurements 

The change in length of the samples with temperature for the UHTC and CC 

composites from the initial heating is shown in Figure 3 a. All samples showed a 

largeexpansion around 1000°C, followed by shrinkage around 1250°C. In one case, the 

shrinkage was so strong that after cooling, a permanent shrinkage of about 50 µm on a 

10 mm sample was recorded. As this variation was also observed for the CC samples it 

is assumed that the carbon fibres were allowing the CVI deposited carbon and/or HfB2 

powder to undergo some rearrangement at this temperature. It has been reported that 

for carbon materials, the thermal expansion in any direction is equal to the sum of 

crystallite expansions resolved in that direction but a proportion of that is 

accommodated by internal adjustments. The degree of accommodation is primarily 

dependent on the preferred orientation of the crystallites with a secondary dependence 

on the apparent density of carbon. The presence of sub-microscopic porosity is 

responsible for this secondary dependence; 37 the CC and UHTC composites in the 

present study had a porosity of around 10%. It is also worth noting that the rapid change 

in dimensions was observed above the temperature employed for CVI of carbon, the 

highest seen by the sample during processing, prior to CTE measurements. This also 

suggested that the processing temperature may not have been sufficient to produce 

materials that were stable at high temperatures. As a result of these variations, a 
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second round of measurements was also carried out for the same samples and the 

results are shown in Figure 3 b. This run produced rather smooth curves without much 

change in slope and the average CTE values from these measurements are 

summarised in Table 4. 

The average CTE values of the UHTC composites were found to be 1.63 ± 0.13 x 10-6 

°C-1 and 4.67 ± 0.21 x 10-6 °C-1 respectively along and across the ply. The 

corresponding values for the CC composites were 2.83 ± 0.09 x 10-6 °C-1 and 4.24 ± 

0.49 x 10-6 °C-1 respectively. Type of fiber, type of matrix, bonding between the fiber and 

matrix, volume fraction of the fiber and inter-ply angle are all factors that could influence 

the CTE values. The CTE of Cf along the axis is reported to be negligible (~0 x 10-6 °C-

1) compared to the value in the radial direction (~8 x 10-6 °C-1).38 Polymer derived 

carbon has a CTE of 2 - 4 x 10-6 °C-1 and pyrolytic carbon, which is isotropic, has a CTE 

value in the range 4 - 6 x 10-6 °C-1.39 The CTE of HfB2 is reported to be 6.3 - 7.6 x 10-6 

°C-1.36 So it can be assumed that the lower CTE of CC and UHTC composites along the 

ply are mainly due to the lower CTE of Cf along the axial direction. The contribution of 

each constituent phase to the final CTE can be estimated provided the mass fraction of 

each of the constituents, i.e. Cf, polymer derived carbon (from the phenolic resin), 

pyrolytic carbon (from CVI), HfB2 and submicroscopic porosity are known along with the 

integrity of the bond between the fiber and matrix. 

The variation in CTE values along and across the fiber direction needs careful 

consideration while designing TPS components using UHTC composites. This variation 
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can also be used as a design tool to fabricate UHTC composites with tailored CTE 

values. 

Arc Jet testing of UHTC Composites 

Figure 4 shows one of the Cf-HfB2 samples being tested, whilst the time-temperature 

profiles during testing are given in Figure 5. Figure 6 compares the images of the 

composites before and after the test. AJ5-20 has seen a peak temperature of ~2500°C 

whereas the sample tested at the higher heat flux , AJ10-10 reached around 2700°C.  

Melting of the UHTC phase was not observed at 5 MW m-2, whereas melting was 

observed at 10 MW m-2 indicating that the actual temperature experienced by the 

sample may have been higher than the measured value (melting point of HfO2 

~2900°C).40 The oxide layer formed on AJ5-20 was uniform whereas the higher velocity 

jet removed some of the molten materials from the surface of AJ10-10 during the test. 

Both samples survived the rapid heating and maintained their integrity indicating their 

ability to withstand ultra-high temperatures and thermal shocks. Combining this with 

their lower density, UHTC composites have an advantage over UHTC monoliths for 

UHT applications. 

Figure 7 shows the surface microstructure of AJ5-20 after testing. The surface of the 

sample indicated the presence of defects, Figure 7 a. Necking of the particles was 

observed, as shown in Figure 7 b. Figure 7 c shows an area near the edge of the 

sample, where the surface layer became delaminated during the test. This delamination 

may have been caused by defects generated during the machining of the composite to 

the required dimensions, causing the fibres underneath the surface layer to be exposed 
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to the jet. The carbon fibres underwent severe degradation and the UHTC particles 

showed partial oxidation; they were not exposed to the jet for long enough to undergo 

complete oxidation, Figure 7 d. Similar partial oxidation behaviour was reported for TaC 

during high temperature testing.41, 42 

AJ10-10 sample experienced a higher temperature and heat flux compared to AJ5-20, 

but the test duration was shorter. The oxide particles were melted and, on solidification, 

formed a dense layer as shown in Figure 8 a. Cracks were observed in this layer. The 

particles also formed a protective layer for the carbon fibres, Figure 8 b. An interesting 

observation made on the sample was the degradation and severe pitting of the carbon 

fibres near the edge of the composite, Figure 8 c. This type of damage is believed to be 

due to the chemical attack on the fibres by the highly reactive gaseous species in the 

jet, including monoatomic oxygen. A cross section of the sample revealed the thickness 

of the surface layer, which was found to be ~45 µm, Figure 8 d. The surface cracks 

observed in Figure 8 a were not propagated to the bulk of the composite, offering 

protection for the underlying carbon fibers.  

Conclusions 

The room and high temperature flexural strength and coefficient of thermal expansion of 

Cf-HfB2 UHTC composites have been determined and compared with those of carbon-

carbon composites. The CC composites showed a slightly higher strength than the 

UHTC composites at both room and high temperature, but the reduction in strength at 

1400°C was relatively small, <10 MPa, for both groups. There are hardly any reports in 

the literature on the high temperature flexural strength of UHTC composites, but it can 
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be concluded that the high temperature flexural strength of the UHTC composites from 

the present study is comparable to those of current generation TPS materials at this 

temperature. 

CTE measurements for the UHTC composites revealed a large variation along and 

across the ply. The CTE along the fibre direction is controlled by the CTE of the carbon 

fibre in the axial direction; whilst that perpendicular is controlled by the CTE of the 

polymer-derived carbon, pyrolytic carbon and UHTC particles. 

The arc-jet test is the first of its kind reported for slurry impregnated UHTC composites. 

Although the test durations were short, the samples retained their shape and the 

surface erosion was minimal. The UHTC particles formed a protective layer at high 

temperature which was beneficial for the performance of the composite. 

A combination of low density, good mechanical properties, defect and thermal shock 

resistance and high temperature oxidation resistance displayed by the Cf-HfB2 UHTC 

composites from this study clearly highlighted their potential for hypersonic applications. 

It is necessary to carry out high temperature strength measurements under a 

completely inert atmosphere and at even higher temperatures (1700°C or higher) to 

develop a better understanding of these materials at their application temperature. It is 

also essential to conduct arc-jet testing for longer durations. 
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Figure Captions 

Figure 1 4-point bend test rig at CERAM. A test bar coated with Tipp-Ex® can also be 

seen. 

Figure 2 Stress-strain curves after flexural strength testing. (a) CC at RT, (b) CC at HT, 

(c) UHTC at RT and (d) UHTC at HT. 

Figure 3 Change in length with temperature for CC and UHTC composites. (a) Initial run 

and (b) repeated run. 

Figure 4 A picture of one of the samples being arc jet tested, showing the demanding 

nature of the test. 

Figure 5 Time-temperature profile during the arc-jet testing of UHTC composites. (a) 

AJ5-20 and (b) AJ10-10. 

Figure 6 UHTC composites before and after arc-jet testing. (a) AJ5-20 before test, (b) 

AJ5-20 after test, (c) AJ10-10 before test and (d) AJ10-10 after test. 

Figure 7 Surface microstructure of AJ5-20 after arc-jet testing. (a) Surface of the 

sample, (b) higher magnification image showing necking of oxide particles, (c) 

is an area where the fibres were exposed to the jet and (d) is a higher 

magnification image of the highlighted area showing partial oxidation of UHTC 

particles. 
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Figure 8 Microstructure of AJ10-10 after arc-jet testing. (a) Microstructure formed by the 

melting of UHTC particles, (b) carbon fibre protected by the UHTC phase, (c) 

severe pitting of fibres near the edge of the composite and (d) a cross-section 

revealing the thickness of the surface layer. 
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List of Tables 

Table 1 HT 4-point bend test parameters used at CERAM. 

Parameter Value 

Test temperature / °C 1400 

Heating rate / °C min-1 50 

Hold duration at 1400°C / min 5 

Argon flow rate / L min-1 15 

Initial load / N 5 

Cross head speed / mm min-1 0.5 

Support span / mm 80 

Loading span / mm 40 
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Table 2 Arc-jet test parameters 

Parameter Value 

Sample AJ5-20 AJ10-10 

Test Duration / s 20.1 10.6 

Heat flux / MW m-2 5.1 10.1 

Distance from the nozzle exit / mm 160 100 

Peak measured temperature / °C 2400 2650 

Specific  gas enthalpy / MJ kg-1 15.9 

Nozzle configuration 50 mm exit diameter 

Test gas or atmosphere Air 
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Table 3 RT and HT strength of UHTC  and CC composites. 

UHTC Composites CC Composites 

RT HT RT 
HT 

Sample Max. Str 

/ MPa 

Sample Max. Str 

/ MPa 

Sample Max. Str 

/ MPa 

Sample Max. Str 

/ MPa 

UHTC-

RT1 
139.69 

UHTC-

HT1 
124.96 CC-RT1 142.70 CC-HT1 130.97* 

UHTC-

RT2 
116.98 

UHTC-

HT2 
124.10 CC-RT2 175.59 CC-HT2 108.64* 

UHTC-

RT3 
111.84 

UHTC-

HT3 
119.32 CC-RT3 86.97 CC-HT3 120.88 

UHTC-

RT4 
75.23 

UHTC-

HT4 
85.51 CC-RT4 126.41 CC-HT4 131.26 

UHTC-

RT5 
113.54 

UHTC-

HT5 
62.67* CC-RT5 129.15 CC-HT5 139.45 

(* Indicates the failure of the alumina rollers during testing) 
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Table 4 CTE values of CC and UHTC composites. 

Material αavg x 106 °C-1 

(25 – 1700°C) 

Cf-HfB2 along the ply 1.63 ± 0.13 

Cf-HfB2 across the ply 4.67 ± 0.21 

CC along the ply 2.83 ± 0.09 

CC across the ply 4.24 ± 0.49 
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Fig 1 4-point bend test rig at CERAM. A test bar coated with Tipp-Ex® can also be seen  

260x139mm (300 x 300 DPI)  
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Fig 2 Stress-strain curves after flexural strength testing. (a) CC at RT, (b) CC at HT, (c) UHTC at RT and (d) 
UHTC at HT  

511x386mm (300 x 300 DPI)  
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Fig 3 Change in length with temperature for CC and UHTC composites. (a) Initial run and (b) repeated run  
373x136mm (300 x 300 DPI)  
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Fig 4 A picture of one of the samples being arc jet tested, showing the demanding nature of the test  
82x46mm (300 x 300 DPI)  
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Fig 5 Time-temperature profile during the arc-jet testing of UHTC composites. (a) AJ5-20 and (b) AJ10-10  
229x311mm (300 x 300 DPI)  
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Fig 6 UHTC composites before and after arc-jet testing. (a) AJ5-20 before test, (b) AJ5-20 after test, (c) 
AJ10-10 before test and (d) AJ10-10 after test  

164x123mm (300 x 300 DPI)  
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Fig 7 Surface microstructure of AJ5-20 after arc-jet testing. (a) Surface of the sample, (b) higher 
magnification image showing necking of oxide particles, (c) is an area where the fibres were exposed to the 

jet and (d) is a higher magnification image of the highlighted area showing partial oxidation of UHTC 
particles  

199x136mm (300 x 300 DPI)  
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Fig 8 Microstructure of AJ10-10 after arc-jet testing. (a) Microstructure formed by the melting of UHTC 
particles, (b) carbon fibre protected by the UHTC phase, (c) severe pitting of fibres near the edge of the 

composite and (d) a cross-section revealing the thickness of the surface layer  
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