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Highlights 

 The role of SLFN14 during viral infection is currently unknown.  

 Influenza A infection led to the induction of SLFN14 expression  

 SLFN14 enhances RIG-I-mediated signaling and inhibits influenza replication  

 SLFN14 also restricts Varicella Zoster Virus (DNA virus) antigen expression   

Abstract 

Schlafen (SLFN) proteins have been suggested to play important functions in cell 

proliferation and immune cell development. In this study, we determined the antiviral 

activities of putative RNA-helicase domain-containing SLFN14. Murine SLFN14 expression 

was specifically induced by TLR3-mediated pathways and type I interferon (IFN) in 

RAW264.7 mouse macrophages. To examine the role of SLFN during viral infection, cells 

were infected with either wild-type PR8 or delNS1/PR8 virus. SLFN14 expression was 

specifically induced following influenza virus infection. Overexpression of SLFN14 in A549 

cells reduced viral replication, whereas knockdown of SLFN14 in RAW264.7 cells enhanced 

viral titers. Furthermore, SLFN14 promoted the delay in viral NP translocation from 

cytoplasm to nucleus and enhanced RIG-I-mediated IFN-signaling. In addition, SLFN14 

overexpression promoted antiviral activity against varicella zoster virus (VZV), a DNA virus. 

In conclusion, our data suggest that SLFN14 is a novel antiviral factor for both DNA and 

RNA viruses.  

Keywords: SLFN14; influenza; VZV; interferon; anti-viral 

1. Introduction 

Schlafen (SLFN) family genes were first described as having an important regulatory 

function affecting thymocyte maturation in mice (Schwarz, et al., 1998). SLFN family genes 

are differentially regulated and expressed in a cell type-specific pattern (Mavrommatis, et al., 

2013, Neumann, et al., 2008). In mice, ten SLFNs have been identified, whereas there are six 

human SLFN isoforms (SLFN5, SLFN11, SLFN12, SLFN12L, SLFN13, and SLFN14). All 
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of these human SLFNs, except SLFN12 and 12L, possess a putative ATPases-Associated 

with various cellular activities (AAA) domain and a putative RNA helicase motif, which is 

similar to the DNA/RNA helicase domains of nucleic acid sensors such as retinoic acid 

inducible gene-I (RIG-I) and melanoma differentiation associate gene 5 (MDA5) (de la Casa-

Esperon, 2011). Recent reports suggested that SLFNs are involved in important cellular 

functions, such as immune cell development (Berger, et al., 2010, Ahmadi and Veinotte, 

2011) and regulation of tumorigenesis (Companioni Napoles, et al., 2016, Mavrommatis, et 

al., 2013). Additionally, SLFN11 has been suggested to be an essential restriction factor for 

the replication of retroviruses such as human immunodeficiency virus and equine infectious 

anemia virus (Li, et al., 2012, Lin, et al., 2016). However, the antiviral activities of other 

SLFN members are currently unknown.  

Influenza virus is an important human respiratory pathogen that can cause severe 

morbidity and high mortality rates, resulting in 250,000–500,000 deaths annually worldwide. 

The induction of type I and III interferons (IFNs) and IFN-stimulated genes (ISGs) by 

activation of antiviral immune responses represent an early and immediate defense in the 

battle against influenza infection (Hale, et al., 2010, Pulendran and Maddur, 2015). RIG-I is a 

well-characterized influenza virus sensor that is responsible for the induction of IFN antiviral 

signaling in response to the recognition of a 5′ triphosphorylated RNA virus structure 

(Pichlmair, et al., 2006, Yoneyama, et al., 2004). The RIG-I helicase domain binds viral 

dsRNA, and the c-terminal domain (CTD) binds the 5′-triphosphate end. RNA binding 

through the helicase and CTD domains releases the caspase activation and recruitment 

domains (CARD), which then recruit and activate the signaling adaptor mitochondrial 

antivirus signaling protein (MAVS). Upon activation, RIG-I-mediated signaling leads to the 

phosphorylation and activation of transcription factors such as IFN regulatory factor 3 
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(IRF3), IRF7, and NF-B. In addition to RIG-I, MDA5 has been identified as an antiviral 

effector that suppresses influenza A virus replication (Kato, et al., 2006). Additionally, 

several other helicases have been identified as sensors of influenza A virus (Fullam and 

Schroder, 2013). These sensors/receptors then trigger the expression of IFN and ISGs, which 

are important for the control of viral replication (Schneider, et al., 2014). The potential role of 

SLFNs as viral sensors during influenza virus infection has not been examined.  

Given that some members of SLFNs have a putative RNA helicase motif that could 

serve as a virus sensor, we examined the expression of SLFNs in response to Toll-like 

receptor (TLR)/Rig I-like receptor (RLR) agonists and RNA or DNA viruses. We show that 

SLFN14 is specifically induced by TLR3 or IFN- stimulation and influenza virus infection 

in mouse macrophages. Overexpression of SLFN14 led to the suppression of viral replication 

of both influenza A virus and varicella zoster virus (VZV), suggesting that it has antiviral 

activities against a broad array of viruses. These data provide new insights into a novel 

function of SLFNs in viral infections and suggest that SLFNs could be targets for antiviral 

therapies. 
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2. Materials and methods  

2.1. Cell culture and reagents  

Human lung adenocarcinoma cells (A549), human immortalized keratinocytes 

(HaCaTs), mouse macrophage RAW 264.7 cells and Madin-Darby canine kidney (MDCK) 

cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA, 

USA). A549 cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin. MDCK and mouse macrophage RAW 264.7 

cells were grown in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin. 

Normal human dermal fibroblasts (HDFs) were purchased from Lonza, Basel, Switzerland, 

and grown in fibroblast basal medium (FBM) supplemented with FGM SingleQuots (Lonza). 

THP-1 human leukemia monocytes were cultured in RPMI 1640 medium supplemented with 

10% FBS and 1% penicillin/streptomycin and differentiated into macrophages in the presence 

of 50 ng/mL PMA (Sigma-Aldrich, St. Louis, MS, USA).  

Recombinant human IFN-and  were purchased from R&D Systems 

(Minneapolis, MI, USA), and IFN- protein was obtained from PBL Assay Science 

(Piscataway, NJ, USA). Human IFN neutralizing monoclonal antibody and murine 

recombinant IFN-protein were obtained from R&D Systems. 

2.2. Virus infection and plaque assay 

Human influenza virus A/Puerto-Rico/8/34 (H1N1) PR8 and influenza virus lacking 

the NS1 open reading frame (delNS1), generated by reverse genetics from PR8 as previously 

described, was provided by Dr. Adolfo Garcia-Sastre (Icahn School of Medicine at Mount 

Sinai, NY, USA) (Garcia-Sastre, et al., 1998). Seasonal A/H3N2, B/Yamagata, B/Victoria 

clinical strains were obtained from Korea Bank for Pathogenic Viruses (KBPV) and influenza 

B/Malaysia/2506/04 (B/Victoria) strains were used. Virus titers were determined by standard 

plaque assay in MDCK cells with few modifications (Kim, et al., 2016, Seong, et al., 2016). 
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Briefly, viral supernatants diluted in DMEM were added to MDCK cells in 6-well plates. 

After 2 h of attachment, viral supernatants were removed, and cells were overlaid with 

Eagle’s minimum essential medium (EMEM) (without phenol red and with L-glutamine) 

(Lonza), 1.5% LE agarose (Lonza), and 2 μg/mL (TPCK)-trypsin (Sigma) and then incubated 

for another 3 days. After incubation, the infected cells were fixed with 4% formaldehyde in 

phosphate-buffered saline (PBS) and stained with 0.5% crystal violet (JUNSEI, Japan) 

solution. Plaque forming units (PFUs) were counted.  

VZV strain YC01 (GenBank Accession No. KJ808816) has been described 

previously, and plaque assays were performed with modifications as described (Choi EJ 

2015, Kim, et al., 2015). Cells were infected with cell-associated VZV at an MOI of 0.01. 

After 1 h of absorption, the medium was removed, washed, and replaced with new medium. 

At the indicated times, cells were harvested, diluted 2 fold, and inoculated into confluent 

monolayer of human fetal fibroblasts (HFFs). After 7 days, cells were fixed with 4% 

formaldehyde and stained with 0.03% crystal violet. Plaques were counted under a phase-

contrast microscope. 

2.3. Immunofluorescence assay for influenza NP staining 

Recombinant adenovirus expressing pAd-PL (empty vector) or hSLFN14 (pAd-

hSLFN14-mStrawberry) was generated by Sirion Biotech (Germany). Cells were infected 

with Ad-hSLFN14-mStrawberry at an MOI of 1000 and incubated for a few days. A549 cells 

were infected with PR8 virus at an MOI of 3. At the indicated times, cells were fixed with 4% 

paraformaldehyde for 20 min and permeablized with 0.1% Triton X-100. Cells were then 

stained with rabbit polyclonal anti-NP antibodies (1:500 dilution), followed by anti-rabbit 

FITC conjugated antibody. Coverslips were mounted on glass slides using mounting media 

containing 4,6-diamidino-2-phenylindole (DAPI) and were examined by confocal 

microscopy (LSM700; Carl Zeiss). 
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2.4. Western blot analysis 

Protein lysates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) on 10–15% acrylamide gels and transferred to polyvinyldifluoride (PVDF) 

membranes. The membranes were then incubated in a blocking buffer comprised of 5% (w/v) 

bovine serum albumin (BSA), 0.2 M Tris base, 1.36 M NaCl, and 0.1% Tween 20 (TBS/T) 

for 1 h at 25 °C and washed three times (5 min each) with 5 mL of TBS/T. Membranes were 

incubated overnight with primary antibodies against SLFN14 (SC-248648, Santa Cruz 

Biotechnology for murine SLFN14; ab106406, Abcam for human SLFN14), SLFN13 (SC-

137776, Santa Cruz Biotechnology), RIG-I, MDA5, MAVS (8348, Cell Signaling), phospho-

MAPK/total MAPK (9910, 9926, Cell Signaling), phospho-STAT1/total STAT1 (9914, 

9939, Cell Signaling), -actin (AM1021B, Abgent), VZV gE (ab52549, Abcam), VZV IE62 

(SC-17525, Santa Cruz Biotechnology), SOCS (8343, Cell Signaling), and anti-myc (2278, 

Cell Signaling) at 4 °C. For influenza A virus protein expression, anti-NS1 (SC-130568, 

Santa Cruz Biotechnology), and anti-NP (11675, Sino Biological Inc., Beijing, China) 

antibodies were used, and for influenza B NP expression, monoclonal antibody (M148, 

Takara) was used. VZV gE (ab52549) and VZV IE62 (SC-17525) were used to measure 

VZV protein levels. After washing three times with TBS/T, membranes were incubated with 

HRP-conjugated anti-rabbit or mouse IgG secondary antibody (Cell Signaling Technology) 

for 1 h at 25 °C. After washing three times with TBS/T, membranes were incubated with 

Western Lumi Pico solution (ECL solution kit) (DoGen, Korea). Signals were determined 

using a Fusion Solo Imaging System (Vilber Lourmat, France). Band intensities were 

quantified by Fusion-Capt analysis software. A representative image of two to three 

independent experiments is shown. 

2.5. Plasmids, SLFN siRNA, and transfection 
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The SLFN14-myc plasmid was previously described (Fletcher, et al., 2015). For 

overexpression experiments, plasmids were transfected using Lipofectamine 2000 

(Invitrogen) or, for HDF cells, HDF Avalanche transfection reagent (EZ Biosystems, College 

Park, MD, USA) according to the manufacturers’ instructions. 

Cells were seeded in 6-well plates and allowed to grow to over 70% confluency over 

24 h. Transient transfections with either scrambled control, human SLFN13, RIG-I, or MDA5 

siRNA (Bioneer, Daejeon, Korea), or murine SLFN14 siRNA (Thermo Scientific) were 

performed with Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol.  

2.6. Luciferase reporter assays  

HEK293T cells were obtained from ATCC and were seeded into 96-well plates. Cells were 

transiently transfected with the IFN- luciferase reporter plasmid (Promega, Madison, WI, 

USA), together with various expression plasmids. pCMV-NS1-Flag plasmid was purchased 

from Sino Biological, and pEF-RIG-I-Flag plasmid was a kind gift from Dr. Takashi Fujita 

(Kyoto University, Japan). As an internal control, 10 ng of pRL-TK plasmid was transfected 

simultaneously with the other plasmids. A dual-Glo luciferase reporter assay system 

(Promega) was used to measure IFN- luciferase activity according to the manufacturer’s 

instructions.  

2.7. qRT-PCR 

Total cellular RNA was prepared using Trizol reagent (Invitrogen). First-strand 

synthesis of cDNA from 1 μg of total RNA was performed using ImProm-IIT (Promega) 

according to the manufacturer’s instructions. Changes in mRNA expression levels were 

calculated using the comparative Ct method as described previously. Data were normalized to 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression. Primer sequences are 

listed in Supplementary Table I. Quantification of cDNA was performed by qRT-PCR using 
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SYBR Green PCR mix (Applied Biosystems, Foster City, CA, USA). Cycling parameters 

were 95 °C for 10 min, followed by 40 cycles of 95 °C for 30 s and 60 °C for 1 min. The 

specificity of each reaction was validated by melt curve analysis and agarose gel 

electrophoresis of PCR products. Expression was normalized using the Ct method, in which 

the amount of target, normalized to an endogenous reference and relative to a calibrator, is 

calculated as 2-Ct, where Ct is the cycle number of the detection threshold. 

2.8. Statistical analysis 

All experiments were repeated independently at least three times. Paired comparisons 

were performed with Student's t-test. Differences were considered statistically significant at p 

< 0.05. All analyses were carried out using Prism software (GraphPad Software, Inc., La 

Jolla, CA, USA). 

3. Results 

3.1. SLFN expression induced by TLR agonists and IFN in mouse macrophages  

In the SLFN family, a C-terminal extension, characterized by a motif that is 

homologous to the RNA helicase superfamily, exists only in group III SLFNs. For mice, 

group III includes SLFN5, SLFN8, SLFN9, SLFN10, and SLFN14, whereas for humans, 

SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14 belong to group III (Mavrommatis, et al., 

2013).  

First, we wanted to measure the expression of SLFNs in mouse macrophage RAW 

264.7 cells in response to TLR agonists such as lipopolysaccharides (LPS) and polyinosinic-

polycytidylic acid (poly[I:C]). Activation of the LPS-mediated TLR4 and poly I:C-stimulated 

TLR3 pathways resulted in increased transcript levels of both type I and III IFNs (IFN- and 

IFN-) and proinflammatory cytokine IL-6. In addition, LPS-mediated SLFN14 expression 

was upregulated more than 4 fold, whereas poly I:C-mediated SLFN14 expression was 

upregulated more than 5.5 fold (Fig. 1A). Western blot results also confirmed TLR-induced 
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upregulation of SLFN14 protein expression induced by LPS and poly I:C stimulation (Fig. 

1B).  

5′ triphosphate double-stranded RNA (5′ ppp-dsRNA) is a synthetic ligand for 

retinoic acid-inducible protein I (RIG-I), whereas poly I:C is a synthetic analog of double 

stranded RNA (dsRNA). We next examined whether poly I:C and 5′ ppp-dsRNA stimulation 

could modulate the expression of SLFN14. Increasing concentrations of poly I:C and 5′ ppp-

dsRNA positively correlated with the fold induction levels of SLFN14 mRNA by real-time 

qRT-PCR, whereas the induction level of SLFN5 expression was only slightly, and not 

significantly, increased (Fig. 1C).  

In addition to TLR activation, we wanted to determine whether type I IFN 

pretreatment could modulate SLFN14 expression. Various doses of recombinant mouse IFN-

 protein were added to RAW 264.7 cells. Realtime qRT-PCR and western blot results 

indicated dose-dependent elevation of SLFN14 mRNA and protein expression levels, 

respectively (Fig. 1D and E). Furthermore, SLFN14 expression was increased at early time 

points, but decreased slightly at 2 h post IFN- treatment, indicating the early induction of 

SLFN14 expression following IFN signaling (Fig. 1F). To determine whether SLFN14 

expression was dependent on the IFN- pathway, we treated A549 cells with IFN- blocking 

antibody and performed realtime qRT-PCR to measure the relative expression levels of 

SLFN14 and IRF1. As shown in Fig. 1G, there was significant suppression of SLFN14 and 

IRF1 mRNA expression following IFN--blocking antibody treatment.  

3.2. Cell type-specific expression patterns of SLFN family members in human cells  

To determine whether SLFN14 expression is induced by type I and III IFN 

stimulation, various types of cells were exposed to recombinant IFN proteins, and qRT-PCR 

was performed. Recombinant human IFNs α and β were used as representative type I IFNs, 

and IFNs λ1 (IL-29) and λ2 (IL-28A) were used as representative type III IFNs. Interestingly, 
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SLFN11, 13, and 14 expression levels in human dermal fibroblasts (HDFs) and immortalized 

HaCaT keratinocytes were similar, even in the presence of the IFNs. However, in human lung 

adenocarcinoma A549 and differentiated macrophage THP-1 cells, all four IFN treatments 

resulted in increased expression of SLFN13 and SLFN14 (Fig. 2A–D).  

3.3. Influenza infection results in the upregulation of Schlafen family 

Next, we determined the effect of influenza infection on SLFN gene expression. 

A549 cells were infected with wildtype PR8 or delNS1/PR8 influenza A (H1N1) virus, and 

total RNA was isolated at 0, 2, 4, 8, and 24 h post infection (hpi). PR8 infection of A549 cells 

resulted in significant induction of SLFN13 and SLFN14 gene expression at 2 hpi, and then a 

gradual reduction in expression levels in the late phases of infection (4–24 hpi) (Fig. 3A and 

3B). On the other hand, persistently elevated mRNA levels of both SLFN13 and SLFN14 

were observed in A549 cells infected with delNS1/PR8 virus.  

In RAW 264.7 cells, SLFN14 protein expression was upregulated at 2 h after 

delNS1/PR8 virus infection, whereas the level of SLFN14 protein expression remained 

similar after PR8 infection (Fig. 3C). We also examined whether various clinical strains of 

influenza could modulate SLFN expression. Infection with each clinical virus strain 

(A/H3N2, B/Victoria, and B/Yamagata) resulted in increased SLFN14 mRNA expression 

(Fig. 3D). These results suggest that expression kinetics of SLFN14 may differ depending on 

cell type, and that NS1 may suppress the induction of SLFN genes at later time points in 

infection. 

3.4. SLFN14 overexpression moderates viral replication 

Next, we investigated whether SLFN14 overexpression affects viral replication 

efficiency and the anti-viral immune response. Realtime qRT-PCR was performed to measure 

the mRNA fold induction levels of SLFN14, IFN-, and myxovirus resistance protein A 

(MxA) in response to mock control, PR8, and delNS1/PR8 infection. The SLFN14 expression 
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level was more significantly induced in response to delNS1/PR8 than PR8 virus (Fig. 4A). 

SLFN14 overexpression did not increase MxA expression; however, PR8 or delNS1/PR8-

induced IFN- expression was increased by more than 4–6 folds in SLFN14-overexpressing 

cells, compared with that in control vector-transfected cells. To test whether SLFN14 

overexpression modulates viral protein expression, a western blot was performed. Influenza 

A NP expression was significantly reduced in SLFN14-overexpressing cells (Fig. 4B). 

Consistent with this result, plaque assays confirmed that SLFN14 overexpression 

significantly suppressed the PR8/delNS1 virus titer by approximately 43.6% (Fig. 4C).  

To further confirm the results of transient SLFN14 overexpression, a recombinant 

plasmid adenovirus (pAd) expressing human SLFN14 and mStrawberry (red) tag (pAd-

SLFN14-mStrawberry) was generated. A549 cells were infected with control adenovirus 

containing empty vector (pAd-control) or pAd-SLFN14-mStrawberry virus at a multiplicity 

of infection (MOI) of 1000 plaque-forming units (pfu)/cell. After 72 h, cells were infected 

with PR8 at an MOI of 3, and viral NP protein was stained to visualize virus entry into 

nucleus. Starting at 15 min post infection (mpi), we detected green fluorescence inside the 

nucleus of control adenovirus-treated cells. However, pAd-SLFN14-mStrawberry-expressing 

cells showed delayed accumulation (beginning at 90 mpi) of NP staining in the nucleus, 

suggesting that SLFN14 overexpression delayed translocation of viral NP into the nucleus 

(Fig. 4D). Additionally, we examined the effect of IFN blocking on SLFN14-mediated 

signaling and found that IFN blocking reduces the expression levels of Mx2 and IP-10 in 

SLFN14-overexpressing cells (Fig. 4E).  

3.5. SLFN14 enhances RIG-I-mediated signaling pathways 

To further evaluate the effects of SLFN on viral replication efficiency, we used 

mouse SLFN14 siRNA to transfect RAW 264.7 cells. SLFN knockdown efficiency was 

determined by measuring SLFN14 mRNA levels, and qRT-PCR results revealed 
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downregulation of SLFN14 expression following siRNA treatment (Fig. 5A). To characterize 

the effects of SLFN14 knockdown on the expression of IFN and ISGs, we measured IFN- 

and IFN-g inducible protein 10 (IP-10) by qRT-PCR. SLFN14 knockdown significantly 

decreased SLFN14 mRNA levels and reduced expression levels of both IFN- and IP-10, 

although differences in IFN- mRNA expression levels were not significant (Fig. 5B). In 

addition, there was a significant increase in the numbers of viral plaques detected in 

supernatants from SLFN14 siRNA-transfected PR8-infected cells, suggesting that viral yield 

was affected by SLFN14 expression (Fig. 5C). As a positive control, recombinant murine 

IFN--treated samples were used; IFN- pre-treatment in RAW264.7 cells led to suppression 

of plaque formation. In addition, SLFN14 knockdown in delNS1/PR8-infected cells also 

enhanced virus titers. These results revealed that SLFN14 is involved in the control of viral 

replication in mouse macrophages. 

Next, we wanted to test whether SLFN14 enhances RIG-I-mediated signaling. 

HEK293T cells were transiently transfected with an IFN- promoter reporter gene along with 

RIG-I or SLFN14. RIG-I-mediated IFN- promoter activation was enhanced by SLFN14 

expression (Fig. 6A). The interaction of influenza NS1 gene with RIG-I has been well 

characterized, and NS1 is known to inhibit RIG-I-mediated activation of the IFN- promoter 

(Ruckle, et al., 2012). We also tested whether SLFN14-promoted RIG-I signaling is 

dependent on NS1. Co-transfection of the influenza NS1 gene in RIG-I- and SLFN14-

transfected cells led to a significant decrease in IFN- luciferase activity (Fig. 6B). Next, to 

determine whether SLFN expression is dependent on viral RNA sensor RIG-I, A549 cells 

were transfected with siRNAs targeting RIG-I prior to infection with PR8/delNS1 virus. 

Knockdown of RIG-I led to suppression of the expression of RIG-I and downstream 

molecules such as MxA, IP-10, ISG15, and IFN-, but there was only a minimal change in 
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SLFN14 expression, suggesting that SLFN14 expression is not dependent on RIG-I 

expression (Fig. 6C). 

. 

3.6. SLFN13 knockdown results in enhanced viral replication of influenza B virus 

Although both influenza A and B viruses cause flu epidemics and show strong 

structural similarities, recent studies suggest that host immune responses to these viruses are 

different (Osterlund, et al., 2012). Thus, we investigated the role of SLFN in influenza B 

virus infections, using B/Victoria lineage virus. A549 cells were infected with B/Victoria 

virus, and expression levels of MDA5, RIG-I, MAVS, and phospho-IRF3 were measured by 

western blotting. Increased expression of MDA5, RIG-I, MAVS, and phospho-IRF3 was 

observed following B/Victoria infection at the indicated time points (Fig 7A). We also 

examined whether IFN treatment of B/Victoria-infected cells inhibited viral replication. 

Similar to A/H1N1-infected cells, B/Victoria-infected cells showed lower levels of viral NP 

expression after IFN treatment (Fig. 7B). Both type I and III IFN pre-treatments led to a 

significant reduction in influenza A and B virus plaques, compared to the number in control-

treated cells (Fig. 7C). Interestingly, IFN-α and -β treatments caused greater reductions in 

plaque formation that that of IFN- λ1 or λ2 treatment in influenza-infected cells. Moreover, 

we examined the effect of MDA5 (M) or RIG-I (R) knockdown on influenza B virus NP 

expression. Attenuation of RIG-I or MDA5 in response to siRNA treatment led to a 

significant increase in influenza B NP protein expression (Fig. 7D). We also tested the effect 

of SLFN13 knockdown on B/Victoria infection. Although there was no significant change in 

influenza B NP and matrix gene expression, SLFN13 knockdown led to higher numbers of 

plaque-forming units (Fig. 7E and F). These data suggest that SLFN13 mediates antiviral 

responses to both influenza A and B virus infections.  

3.7. SLFN14 overexpression affects DNA virus antigen expression  
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To evaluate whether SLFN also plays an important role in DNA virus-mediated 

antiviral signaling pathways, the effects of SLFN on varicella zoster virus (VZV), an 

alphaherpesvirus that causes skin rashes in the form of shingles, were examined. SLFN 

expression was measured following VZV infection in primary human dermal fibroblasts 

(HDFs). Interestingly, VZV infection in HDFs resulted in the increased expression of both 

SLFN13 and SLFN14, although SLFN14 expression levels appeared low compared with 

SLFN13 (Fig. 8A). Similar to the results with influenza viruses, overexpression of SLFN14 

in VZV-infected HDFs resulted in decreased expression of two major VZV proteins, 

glycoprotein E (gE) and immediate early protein 62 (IE62), required for viral replication (Fig 

8B). These data suggest that SLFN family members can also play an important role in DNA 

virus sensing and pathogenesis.  

4. Discussion 

Although emerging evidence suggests that SLFN family members have important 

functions in the control of cell proliferation and immune cell development, the effects of 

SLFNs on viruses are just beginning to be examined. Here, we report that SLFN13 and 

SLFN14 are novel antiviral factors in influenza virus infections. Furthermore, we show that 

knockdown of SLFN14 reduces the expression of IP-10, one of the major ISGs, after 

influenza infection, and that co-expression of RIG-I with SLFN14 enhances RIG-I-mediated 

IFN signaling.  

Given that SLFN family members have motifs homologous to those in the 

superfamily of RNA helicases, we postulated that these SLFN helicase domains may bind to 

viral RNA and DNA. Recent studies have highlighted an important function of other viral 

RNA helicases such as DDX3, DDX21, and DDX60 in virus sensing (Fullam and Schroder, 

2013, Miyashita, et al., 2011, Thulasi Raman, et al., 2016). DDX3 was shown to interact with 

influenza NS1 and NP proteins and to act as an antiviral protein by regulating stress granule 
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formation, whereas DDX21 was shown to inhibit viral RNA and protein synthesis during 

infection through sequential interactions with PB1 and NS1 (Chen, et al., 2014). In addition, 

the DDX60 helicase domain binds to viral RNA and DNA, and knockdown of DDX60 was 

shown to reduce type I IFN and ISGs after viral infection. Similar to these studies, which 

showed DDX60 regulation of IFN- and ISGs in response to TLR ligands or various virus 

infections, we also observed that SLFN14 overexpression led to significantly increased IFN- 

expression in response to infection with viruses.  

SLFNs are divided into three groups based on size and structure. SLFNs with small 

molecular masses, ranging from 37 to 42 kDa, belong to Group I, 58–68 kDa proteins belong 

to group II, and 100–104 kDa belong to group III. C-terminal extensions are present only in 

group III SLFNs and are characterized by a motif that is homologous to those in the 

superfamily of RNA helicases (Geserick, et al., 2004). Furthermore, these extensions were 

shown to each have a nuclear localization signal, which suggests that group III SLFNs may 

affect nuclear mechanisms (Neumann, et al., 2008). In support of this, we observed SLFN14 

expression mainly in the nucleus during influenza virus infection and restricts influenza NP 

expression, suggesting the possible interaction of SLFN14 with nuclear proteins.    

Previous reports suggest diverse and redundant functions of SLFN family members, 

including the regulation of cellular proliferation, immune response induction, and viral 

replication control. For example, knockdown of SLFN5 in human cells resulted in the 

increased invasion of malignant melanoma cells, suggesting its anti-melanoma effect 

(Sassano, et al., 2015), whereas mouse SLFN1 and 2 were shown to negatively regulate 

cellular replication by suppressing cyclin D1 expression (Katsoulidis, et al., 2009, Zhao, et 

al., 2008). Furthermore, SLFN2, 3, and 4 were shown to play an essential role in regulating T 

cell activation and differentiation (Berger, et al., 2010, Ahmadi and Veinotte, 2011, Geserick, 
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et al., 2004). SLFN11, specifically, was shown to suppress retroviral replication by inhibiting 

human immunodeficiency virus (HIV) protein synthesis in humans, and overexpression of 

equine SLFN11 was shown to inhibit equine infectious anemia virus (EIAV) replication (Li, 

et al., 2012, Lin, et al., 2016). These studies indicate that SLFNs most likely restrict the 

synthesis of viral proteins. Consistent with this, we observed that knockdown of SLFN13 in 

A549 cells did not significantly affect influenza NP or matrix gene expression, although it 

resulted in enhanced viral titers. Moreover, our results showed that overexpression of 

SLFN14 reduced influenza virus protein NP expression and virus replication, whereas 

knockdown of SLFN13 or SLFN14 increased viral replication, raising the possibility that 

SLFN’s antiviral activity mainly depends on the inhibition of viral protein expression. 

Further studies are required to identify the mechanisms by which SLFN14 counteract viral 

proteins and functions as a viral DNA/RNA sensor to activate innate signaling. 

As reported by Puck et al, the expression of SLFN family members differs depending 

on cell type. For example, SLFN5, SLFN12L, and SLFN13 expression is highest in T cells, 

whereas SLFN11 expression was more prominent in monocytes and human monocyte-

derived dendritic cells (moDCs) (Puck, et al., 2015). Basal levels of SLFN12L and SLFN13 

expression were relatively low in monocytes, but were upregulated following differentiation 

into moDCs. We also investigated the expression of SLFN proteins in different cell types. 

SLFN14 mRNA levels were easily determined by RT-PCR. However, basal levels of 

SLFN14 protein were very low in A549, THP-1, HDF, and HaCaT cells, but in mouse 

macrophages, we were able to detect a sufficient basal level of mouse SLFN14 protein. In 

addition, SLFN14 was significantly upregulated, both at the mRNA and protein levels, in 

response to influenza virus infection in mouse macrophages.  

Well-known viral sensors such as DDX60 and RIG-I have been shown to bind to 

dsDNA in vitro and are required for type I IFN expression during infection with DNA viruses 
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such as herpesvirus (Miyashita, et al., 2011, Gack, 2014). We investigated whether SLFN 

overexpression would response similarly to a DNA virus, characterizing VZV protein 

expression following SLFN14 overexpression in HDFs. Protein expression of VZV IE62 

(ORF62) and gE (ORF68), two major antigens of VZV, was attenuated in response to 

SLFN14 overexpression in HDFs, as shown by western blotting. It is possible that SLFN14 

overexpression would enhance IFN-induced signaling, thereby, restricting VZV replication.  

Our current studies demonstrated that STING-mediated antiviral signaling is important in the 

restriction of VZV replication (Manuscript currently in review). Further studies are required 

to reveal the molecular mechanisms by which SLFN14 affects signaling induced by VZV and 

whether SLFN14 interacts with STING pathway.  

Once inside the cell, the influenza virus genome enters the nucleus for transcription 

and replication of viral genes. Primary transcription of the viral genome is triggered by 

virion-associated polymerase complexes, which leads to the translation of early viral proteins 

in the cell cytoplasm. Newly synthesized polymerase, NP, and NS1 proteins are transported 

to the nucleus, where they initiate and regulate the replication and synthesis of cRNA and 

viral RNA (vRNA) complexes (Hutchinson and Fodor, 2013). To determine whether 

SLFN14 regulates viral NP transportation, we used an immunofluorescence-based assay to 

monitor viral NP translocalization from the cytoplasm to nucleus in pAd-SLFN14-

mStrawberry-expressing cells. NP was still localized in the cytoplasm at 90 mpi in pAd-

SLFN14-mStrawberry-expressing cells, whereas NP localization in the nucleus was observed 

at 15 mpi in pAd control-expressing cells, suggesting that SLFN14 overexpression causes a 

delayed translocation of viral NP into the nucleus (Fig. 4D). Given that SLFN14 expression 

was mainly observed in the nucleus, it will be interesting to test the potential interaction of 

SLFN14 with IFN- inducible protein 16 (IFI16), which is an essential nuclear sensor for the 
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induction of IRF3 signaling during herpesvirus infection (Orzalli, et al., 2012, Johnson, et al., 

2014) 

A recent report suggested that SLFN14 mutations could be the cause for an inherited 

thrombocytopenia with excessive bleeding, highlighting an important novel function of 

SLFN14 in platelet formation and maintenance (Fletcher, et al., 2015). Considering that 

patients with SLFN14 mutations show a phenotype of thrombocytopenia with enlarged 

platelets and decreased ATP secretion, it will be interesting to investigate the susceptibility of 

these patients to infectious diseases associated with symptoms of thrombocytopenia, with the 

recognition of SLFN14’s antiviral role.  

Considering that SLFN can be induced by viral infection and potentially affect the 

host immune response, further studies using SLFN knockout or transgenic mice to determine 

the role of SLFN in the regulation of susceptibility to viral infections may shed light on the 

function of SLFN in ameliorating viral infection-associated symptoms. In conclusion, our 

data indicate that SLFN family members can contribute to the control of viral replication. A 

better understanding of the role of SLFN family members in viral infection will greatly 

improve our knowledge of influenza and VZV pathogenesis and provide insight into potential 

therapies for influenza and VZV infections.  
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Figure legends 

Figure 1. SLFN expression patterns in response to TLR ligand and IFN stimulation. (A) 

Mouse macrophage RAW 264.7 cells were stimulated with TLR3 ligand poly I:C (5 g/mL) 

or TLR4 ligand lipopolysaccharide (LPS) (100 ng/mL) for 4 h. Total cellular RNA was 

isolated and murine SLFN5, SLFN14, IFN-, IFN-, and IL-6 mRNA expression was 



23 

 

measured using realtime qRT-PCR. The results are shown as the fold induction compared to 

expression levels in the mock control and are representative of three independent 

experiments. (B) SLFN14 and phospho-STAT1 protein levels were measured by western 

blot. Results are representative of three independent experiments. (C) Various concentrations 

of poly I:C and 5′ triphosphate double-stranded RNA (5′ ppp-dsRNA) were incubated with 

RAW 264.7 cells for 4 h, and realtime qRT-PCR was performed to determine the fold 

induction mRNA levels of SLFN5 and SLFN14. (D, E) recombinant murine IFN- protein 

were added to cells at different doses, and SLFN14 mRNA and protein expression was 

measured. (F) Recombinant murine IFN- protein was added to cells for 0.5, 1, 2, 4, 8, and 

24 h and analyzed by western blotting with antibodies specific for SLFN14, phospho-STAT1, 

and total STAT1 using total cell lysates. Levels of cellular actin are shown as loading 

controls. Results are representative of three independent experiments. (G) Expression of the 

SLFN14 gene was quantified by real-time qRT-PCR in A549 cells following treatment with 

an IFN- neutralizing monoclonal antibody (nAb). The expression levels of SLFN14 and 

interferon regulatory factor 1 (IRF1) were normalized to that of GAPDH. The expression 

level in the control IgG-treated group was arbitrarily set to 100%, and relative expression is 

shown in the graph. Statistical analysis: *p < 0.05 vs. the control IgG-treated group. 

Figure 2. IFN-induced SLFN expression patterns in human cells. (A) Recombinant 

human IFN- (10 ng/mL), IFN- (10 ng/mL), IFN-1 (10 ng/mL), and IFN-2 (10 ng/mL) 

were added to the following cells: A549 human lung adenocarcinoma (A549) (A), HDFs 

(human dermal fibroblasts) (B), HaCaTs (human immortalized keratinocytes) (C), and THP-1 

(human monocytes differentiated by PMA treatment) (D). RT-PCR results indicated the 

expression levels of SLFN11, SLFN13, SLFN14, IFN- inducible protein 10 (IP-10), 

myxovirus resistance gene (MxA), 2′5 ′ oligoadenylate synthetase 1 (OAS1), and -actin. 
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Quantitative densitometric analysis of RT-PCR is presented, with normalized densitometric 

units plotted against treatment (shown as numbers). 

Figure 3. Induction of SLFN13 and SLFN14 following influenza virus infection. A549 

cells were infected with the human influenza virus strain PR8 or PR8/delNS1 (multiplicity of 

infection = 1) for the indicated lengths of time. Host mRNA expression was measured by 

real-time qRT-PCR for SLFN13 (A) and SLFN14 (B). The expression of target genes was 

normalized to that of GAPDH. Expression in the mock-infected control was set to 1, and 

other samples were normalized to this value. Data are shown as the mean ± SEM of three 

independent experiments. Statistical analysis: *p < 0.05 compared with mock-infected cells at 

each timepoint. (C) SLFN14 protein levels were measured in influenza A virus-infected 

mouse macrophages RAW 264.7 cells. The images shown are representative of three 

independent experiments. (D) A549 cells were infected with clinical influenza virus strains, 

including seasonal A/H3N2, B/Victoria, and B/Yamagata, at a multiplicity of infection of 0.1 

for 24 h, and RT-PCR was performed.  

Figure 4. Effect of SLFN14 overexpression on influenza virus replication. (A) A549 cells 

were transiently transfected with either empty vector (EV) or the SLFN14-myc expression 

plasmid for 24 h. The next day, cells were infected with mock control, PR8, or delNS1/PR8 

virus at a multiplicity of infection (MOI) of 1.0. Changes in the transcriptional expression of 

MxA, IFN- and SLFN14 were measured using real-time qRT-PCR. Transcript expression 

levels were calculated in relation to the expression level of GAPDH and expressed as a fold-

change in comparison with the expression level in EV-transfected control cells. *p < 0.05 vs. 

mock-infected control cells. (B) Western blotting was performed with antibodies specific for 

influenza NP. The transfection efficiency of SLFN14 was confirmed by measuring myc tag 

expression levels. Levels of cellular actin are shown as loading controls. Results are 
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representative of three independent experiments. (C) Plaque assays were performed. Data are 

presented as the percentage (%) decrease in the number of plaque-forming units with respect 

to that of the control-treated cells, which was normalized to 100%. The average of all three 

experiments is shown. *p < 0.05 vs. EV-transfected cells. (D) A549 cells were pAd control 

(empty vector)-infected or infected with pAd-hSLFN14-mStrawberry (red) at a multiplicity 

of infection (MOI) of 1000 and subsequently infected with PR8 viruses at an MOI of 3 for 

the indicated times. Anti-influenza NP antibodies were used to detect influenza A virus NP 

protein (green) by confocal microscopy. Data shown are representative of results from three 

independent experiments; minutes post influenza virus infection (mpi); scale bar = 20 M (E) 

Expression of the SLFN14, Mx2 and IP-10 gene was quantified by real-time qRT-PCR in 

A549 cells following treatment with an IFN- neutralizing monoclonal antibody (nAb). *p < 

0.05 vs. EV-transfected cells. 

Figure 5. Effect of SLFN14 knockdown on antiviral responses (A) RAW 264.7 cells were 

treated with either control siRNA or SLFN14 siRNA. After 24 h transfection, cells were 

mock infected or infected with A/PR8 or PR8/delNS1 at a multiplicity of infection of 1. The 

knockdown efficiency of SLFN14 siRNA was determined by measuring the expression levels 

of SLFN14 mRNA. (B) The effect of SLFN14 knockdown on IP-10 and IFN- gene 

expression was also measured by realtime qRT-PCR. (C) Cells were pre-treated with 

recombinant IFN- or transfected with either control siRNA or SLFN14 siRNA. Progeny 

viral titers were calculated and expressed as plaque-forming units (PFU)/mL. Data are shown 

as means ± SEM of three different experiments and are presented as the percentage relative to 

the control siRNA sample. Statistical analysis: *p < 0.05 compared to control siRNA-

transfected cells. 
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Figure 6. SLFN14 promotes RIG-I-mediated signaling (A) HEK293T cells were 

transiently transfected with empty vector (EV), SLFN14, RIG-I, or SLFN14/RIG-I, along 

with reporter plasmids and a Renilla luciferase plasmid (internal control). Cells were 

stimulated with either DMSO control or poly I:C (5 g/mL) Relative IFN- luciferase 

activity is shown as fold induction over DMSO control. A representative of three independent 

experiments is presented. (B) Plasmids expressing RIG-I, SLFN14 (SL14) and influenza NS1 

were transfected into HEK293T cells, together with the IFN- reporter plasmids and Renilla 

luciferase plasmid (internal control). After 24 h, luciferase activity was measured. (C) 

Knockdown of RIG-I was performed with siRNA transfection. mRNA expression of 

SLFN14, RIG-I, MxA, IP-10, ISG15, and IFN- was measured by RT-PCR.  

Figure 7. SLFN13 knockdown results in increased viral replication in response to 

influenza B virus infection (A) A549 cells were infected with human influenza B/Victoria 

virus (MOI = 0.1) for 24 h. Protein levels of RIG-I, MDA5, MAVS, phospho-IRF3, and viral 

NP were analyzed by western blotting. The images shown are representative of three 

independent experiments. (B, C) Recombinant human IFN- (10 ng/mL), IFN- (10 ng/mL), 

IFN-1 (10 ng/mL), and IFN-2 (10 ng/mL) were added to cells. The next day, cells were 

infected with A/H1N1 or B/Victoria virus, and viral NP expression and viral titers were 

measured. Progeny viral titers were calculated and expressed as plaque-forming units 

(PFU)/mL. Control-treated cells were normalized to 100%, and data are presented as the 

percentage relative to the control treated samples. Data are shown as means ± SEM of two 

independent experiments. (D) A549 cells were transfected with control or RIG-I (R) or 

MDA5 (M)-specific siRNA, and the knockdown efficiency was measured by western blotting. 

Levels of viral NP proteins were measured, and anti-actin monoclonal antibody was used as a 

loading control. The images shown are representative of three independent experiments. (E) 
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Knockdown of SLFN13 was performed with SLFN13-specific siRNA transfection. mRNA 

expression of SLFN13, MxA, IP-10, influenza B NP, and influenza B matrix genes was 

measured by RT-PCR. (F) Progeny viral titers were calculated and expressed as plaque-

forming units (PFU)/mL. Data are shown as means ± SEM of three different experiments and 

are presented as the percentage relative to the control siRNA sample. Statistical analysis: *p 

< 0.05 compared with control siRNA-transfected cells. 

Figure 8. Antiviral effect of SLFN14 against varicella zoster virus (VZV). (A) Human 

dermal fibroblasts (HDFs) were mock-infected or infected with VZV (multiplicity of 

infection = 0.01) for the indicated times. Protein levels of SLFN13, SLFN14, SOCS1, 

SOCS3, phospho-p38 MAPK, and p-ERK were analyzed by western blotting. Anti-actin 

monoclonal antibody was used as a loading control. The blot shown is representative of three 

independent experiments. (B) Empty Vector (EV) and SLFN14-myc plasmids were 

overexpressed in HDFs, followed by VZV infection (multiplicity of infection = 0.01). 

Overexpression of SLFN14 was confirmed by myc tag expression levels. VZV immediate 

early 62 (IE62) and glycoprotein E (gE) expression were measured by western blotting. The 

blot shown is representative of three independent experiments. 
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