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Abstract 

For modern gasoline direct injection (GDI) engines, injector deposit is a concern 

because it can cause changes to the spray characteristics and lead to deterioration in 

fuel economy and exhaust emissions. In this study, in order to examine the link 

between spray variation and engine emissions deterioration due to injector deposit 

accumulation, 8 new injectors were installed on a GDI engine and run through a 

deposit accumulation process which included 6 cold starts and a 30-hour steady state 

engine test at a speed of 2000 rpm and load of 5 bar break mean effective pressure 

(BMEP). One representative injector was examined before and after the deposit 

accumulation tests in order to understand the impact of deposit on the spray. Results 

showed that, at the end of the deposit accumulation test, the pulse width of the 

injectors stabilised at a level which was about 1.5 % higher than at the start and the 

fuel consumption remained almost identical. High magnification and borescope 

imaging indicated that a significant amount of deposit had formed on the outer surface 

of the injector tip. However, Scan Electronic Microscope (SEM) imaging of the 

injector hole showed that, at this level of fouling, some deposit was present on the 

counterbore, while the nozzle hole was nearly completely unaffected. The deposit on 
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the counterbore caused a 2.21% drop of the injector fuel flow rate at 150 bar injection 

pressure. Penetration lengths and mean droplet sizes of all jets increased significantly. 

As for the impacts of the varied spray characteristics on the engine emissions, unburnt 

hydrocarbons (HC) and particulate matter (PM) emissions significantly increased 

while other gaseous emissions (e.g. CO, NOx, CO2) only changed slightly.   

Keywords: Deposits, Particulate matter, Gasoline direct injection, Spray 

characteristics. 

 

1. Introduction 

The adoption of the gasoline direct injection (GDI) concept has become increasingly 

widespread since the late 1990s [1-4]. There are several advantages of the GDI system 

over port fuel injection (PFI) systems. In GDI engines, fuel is injected and vaporized 

directly inside the engine cylinder rather than intake manifold as in case of PFI and 

the cooling effect of the fuel spray therefore increases the volumetric efficiency of the 

engine. Moreover, because the fuel is injected at moderately high injection pressure in 

GDI systems, the dramatically improved atomization results in better response during 

cold start and load change. In recent years, the use of GDI in turbocharged engines, 

especially those associated with a downsizing strategy has become a trend for the 

automotive industry due to its ability to reduce CO2 emissions significantly. 

Despite these advantages, the GDI system has its own challenges. Compared with its 

predecessor, the PFI system, GDI injectors operate in a much harsher environment 

because their mounting location is in the high pressure, high temperature combustion 
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chamber rather than in the intake manifold. The injector can therefore suffer from the 

accumulation of deposits on the injector tip and in the nozzle holes [5]. A relatively 

small amount of deposit can change the carefully designed injector fuel flow rate 

[6-10], spray pattern [11-13], atomization characteristics [12-13] and the interaction 

with the in-cylinder flow [12]. And the changes of the spray may result in worsened 

emissions [14-17, 21], increased fuel consumption [6, 18, 19, 21] and misfire of the 

engine [1, 18, 19]. Thus, the GDI injector deposit formation problem attracts notable 

attention among automotive researchers.   

The deposit formation mechanism is relatively complicated and unsettled. Kinoshita 

et al.[7] proposed a deposit formation mechanism which highlighted the importance 

of deposit precursors. They suggested that the 90% distillation temperature (known as 

the T90) of the fuel was an important parameter affecting the status of deposit 

precursors. When the injector temperature is lower than T90, the deposit precursors 

were in the liquid state and could be easily washed away by the fuel flow. When the 

injector temperature was higher than T90, the deposit precursors adhered strongly to 

the injector wall and therefore the tendency of injector deposit formation was 

increased. This mechanism developed by Kinoshita et al. provided guidelines for 

controlling injector deposit formation. However, some disputes remained since some 

other researchers reported that increasing nozzle temperature above T90 did not 

always promote injector deposit formation [8, 20].  

The effect of injector tip deposit on spray characteristics, engine performance and 

engine emissions were extensively addressed in literature [11-14, 21]. Lindgren et al. 
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[11] compared sprays of a clean injector and a fouled injector under simulated engine 

conditions in a chamber using spray visualization. They found that, in general, the 

spray of the fouled injectors tended to have longer spray penetration length and larger 

mean droplet diameter. Wang et al. [12] conducted experimental tests on a clean 

injector and a fouled injector to measure the effects of deposit on spray characteristics 

in the open air. The data collect was also used to calibrate a single cylinder engine 

Computational Fluid Dynamics (CFD) model. The effect of injector deposits on 

in-cylinder air/fuel mixture development was then estimated using the model. They 

concluded that the fouled injector had a longer penetration length and a deformed 

spray pattern in the open air. From the engine simulation results, they suggested that 

injector deposit led to more fuel impingement on the piston and cylinder walls as well 

as lower overall equivalence ratio during late injection events. The distorted spray 

pattern led to higher fuel stratification levels of the coked injector compared to those 

of the clean injector. The causes for the spray characteristics change brought by 

deposits were explored by Wang et al. [13] using a detailed 3-D injector flow 

simulations. These 3-D coked nozzle models were created using high resolution X-ray 

microtomography data. They concluded that the deposits inside the counterbore 

restricted air recirculation and entrainment. This led to the lower exiting turbulent 

kinetic energy of the spray from a coked injector and contributed to the higher mean 

droplet size. Due to the higher exit velocity and smaller spray cone angle, longer 

spray penetration length was observed. It was also not surprising that engine 

performance and emissions would deteriorate due to the change of spray 
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characteristics after formation of injector deposits. Joedicke et al. [21] performed an 

accelerated deposit accumulation test at 19 bar BMEP and 1500 rpm engine speed on 

a side mounted GDI injection system equipped engine. It was concluded that after the 

55-hour deposit accumulation test the fuel injectors had lost 23.5% of their nominal 

flow rate, the fuel consumption rate increased by 2.45% and HC and CO emissions 

increased by 20% and 93%, respectively. Wang et al. [17] conducted PM and PN 

emissions measurement on two coked injectors and a new injector in a single cylinder 

DISI spray guided engine. The impact of engine operating condition, fuel (gasoline 

and ethanol) and injection system (different injectors) on emissions were examined in 

this study. The authors found that, regardless of the operating conditions (load 

from3.5 to 8.5 bar), coked injectors consistently produced higher PN emissions 

compared to clean injectors. The maximum difference was found at an engine load of 

8.5 bar, where the PN emissions of the two coked injectors were 53% and 58% higher 

than the clean injector. It was also reported that, the PM emissions from ethanol 

combustion were less affected by the injection system than in the case of gasoline. In 

a review, Xu el al. [14] summarized recent developments in research of injector tip 

deposit. They suggested that the mechanism and effects of injector tip deposit 

accumulation were still not fully appreciated. More work had to be carried out to gain 

understanding on the subject and in order to mitigate the impact of injector deposit 

formation. It was also recommended that optical diagnostics, including high speed 

imaging and PDPA, were useful in providing knowledge of spray formation quality.  

The mitigation methods for GDI injector tip deposit have been widely explored in 
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literature [7-10, 22-25]. There were mainly three ways to mitigate injector deposits: 

detergents, injector designs and engine designs. Detergents could disperse deposit 

precursors and clean metal surfaces. Studies showed that some of the detergents could 

efficiently remove injector tip deposit [9, 10, 22]. Injector tip deposit formation could 

be mitigated by reducing injector tip temperature since the deposit formation is 

closely related to injector tip temperature [7, 8, 18,22, 23]. Thus by adding insulating 

material on the injector to reduce heat transfer from engine cylinder [24] or using 

coating to conduct heat away [25], the temperature of the injector could be reduced. 

Some engine design features had impacts on injector deposit formation. Bacho et al. 

[23] studied the impacts of GDI injector mounting location on injector performance. It 

was observed that centrally mounted injectors tended to experience larger flow rate 

loss (7.2% versus 2%) compared to side mounted injectors. They also pointed out that 

increasing injection pressure was an efficient way of reducing deposit formation.  

In conclusion, extensive studies have been carried out on the topic of injector tip 

deposit accumulation due to its importance to advanced GDI engines. These studies 

cover a wide range of areas, including the mechanism of deposit formation, the 

impact of fuel on deposit formation, the effect of deposit formation on the spray, the 

mitigation methods of deposit formation and the effect of deposit formation on the 

engine performance and emissions. However, to the best of the authors’ knowledge, 

few publications have revealed the link between the change of spray characteristics 

and the change of engine emissions potentially brought about by injector deposit 

accumulation. In this work, a set of fouling tests which consisted of 6 cold starts 
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followed by a 30-hour steady state operation were conducted on a V8 GDI engine. 

During the fouling tests, engine operation and emissions data were recorded. The 

spray characteristics of one representative injector were studied before and after the 

fouling tests in order to understand the impact of deposits on the fuel spray. The 

combination of changes to the fuel spray and engine emissions then allowed the 

authors to gain deeper understanding of the following aspects: i) where the injector 

deposits were formed at this early stage of fouling, ii) how formed deposits would 

affect the spray characteristics (microscopic and macroscopic), iii) the effects on 

engine performance and emissions caused by the deposits and iv) in which operating 

conditions (e.g. injection pressure) those effects are most relevant. The understandings 

gained in this study can be used to guide the design of new GDI injection systems 

which have resistance towards deposit formation.  

 

2. Methodology and Experimental setup 

2.1 Methodology 

In this study, the experimentation was divided into two main parts: the engine deposit 

accumulation experiments and the spray characterization experiments. The aim of the 

engine deposit accumulation test was to create deposits on the injector while engine 

performance and emissions were measured. The formation and effects of the injector 

deposit were evaluated through the observation of engine performance, fuel injector 

pulse width and emissions measurements at three different fuel injection pressures (50, 

100 and 150 bar). In addition injector flow rates, penetration lengths and droplet sizes 
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of the representative injector spray were measured off-site before and after the deposit 

accumulation tests. 

The condition of the injector prior to installation in the engine was called the “clean 

injector” state. The “clean injector” was installed on the spray rig to measure its flow 

rate and spray penetration lengths of all jets. This created the reference for the spray 

characterization tests. The deposit accumulation tests were carried out on a 

dynamometer mounted test engine (see engine specifications in Table 1). Eight “clean 

injectors” were marked and installed on the engine. The deposit accumulation tests 

consisted of 6 cold starts (at approximately 20 ̊C) followed by steady state engine 

operation for 30 hours. The ECU controlled cold start running process was shown in 

Figure 1. The whole process lasted for approximated 60 seconds. In the first 9 seconds, 

the engine speed overshot and stabilized at 1400 rpm for 20 seconds. After that, the 

engine speed reduced to 800 rpm in 10 seconds. The speed then stayed at 800 rpm 

(idle mode) until the engine shut down at the end of the 60-second running. The 

30-hour steady state running was conducted at an engine speed of 2000 rpm, a load of 

5 bar BMEP and at 150bar fuel injection pressure. These operation conditions were 

chosen because Xu et al. [14] summarized in their review that most researchers used 

low engine speeds (1500-2000 rpm) and medium engine loads (maximum load for 

engine used in this study was 10 bar) in order to form deposit quickly on the injector 

tip. During the 30 hours of running, the lambda of the engine was kept at 1 and the 

fully warmed up coolant temperature was 95̊C. The injection pulse width was 

monitored (engine speed and load were maintained) for the whole running process. It 
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increased and then stabilized at the end of the 30 hours test. After stabilization, it was 

considered that the injectors had reached a run-in condition where deposit formation 

and removal rates were in equilibrium, according to the injector plugging kinetic 

model proposed by Aradi et al. [22]. The injection duration increased while 

maintaining a constant fuel injection quantity due to a reduction in effective flow rate 

through the fuel injectors. A representative injector was then taken out of the engine 

and the flow rate and the spray penetration length measurement were carried out on 

the same injector after the engine operation (considered as a “fouled injector” state). 

Comparisons between the “clean injector” and the “fouled injector” were made and 

the effects of the injector deposit were analysed.   

 

Figure 1: Engine speed versus time for cold start running 

2.2 High speed imaging and laser optical techniques for spray characterization 

In order to estimate the effects of the injector deposit on the spray characteristics, high 

speed imaging and Phase Doppler Particle analysis (PDPA) tests were carried out at 

atmospheric conditions of 1 bar using a single component gasoline-surrogate 
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reference fuel (isooctane). It was injected under an injection pressure of 150 bar and 

at three pulse widths of 0.38 ms, 1.5 ms and 1.65 ms.  

The injector and the nomenclature of the spray jets 

The injector used in this study is a 6-hole GDI injector. The layout of the spray jets is 

shown in Figure 2. It had 3 sets of symmetric jets named jet 1 to jet 6. The symmetric 

jets had the same spray inclination angle relative to the injector axis. 

Figure 2: Nomenclature of the spray jets. 

High speed imaging for spray penetration length 

The spray penetration length was the essential parameter describing the macroscopic 

characteristics of the spray. In order to measure the spray penetration length, 

MATLAB code was created to process the images recorded by the high speed camera. 

Figure 3 a and b show the original image and the MATLAB processed image used for 

analysis. The MATLAB code drew reference lines along the spray axes and measured 

penetration lengths of the 6 jets. Thus, the visual penetration length was measured by 

identifying the grayscale change along this reference line. The actual penetration 

length could then be calculated according to the inclination angle of the spray, as 

shown in Figure 3 c. The pixel/length ratio was measured and calculated before the 
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test so that the penetration length could be transferred from pixel to physical length. 

In order to avoid shot-to-shot variation, 10 groups of images were recorded for 10 

injections at each test point. The averaged penetration length was used in further 

analysis. 

 

(a)                      (b) 

 

(c) 

Figure 3: High speed imaging data processing (a) original image (b) processed image 

(c) transformation from visual length from real length. 

Laser optical techniques (PDPA) for droplet size measurement 

The droplet sizes of different spray jets were measured using a PDPA system. The 

schematic of the PDPA system used in this work is shown in Figure 4. The entire 

PDPA system, including the transmitting optics and the detectors, were fixed on a 3D 
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traverse system allowing the measuring point to moved 3 dimensionally within an 

accuracy of 0.01 mm. The droplet sizes of the ‘clean injector’ and the ‘fouled injector’ 

were compared and the effects were analysed.  

 
Figure 4: PDPA system in this test. 

2.3 Fuel and emissions measurement 

The fuel used in the deposit accumulation test was standard EN228 gasoline (see 

Table 2 for fuel specifications). The exhaust gas was sampled via a heated line at 190 

o
C to avoid the condensation of gaseous emissions by a Horiba Mexa-7100 DEGR gas 

analyser. CO and CO2 emissions were measured by the method of non-dispersive 

infrared (NDIR), HC by a flame ionization detector (FID) and NOx were quantified 

by a chemiluminescence detector (CLD). PM emissions were recorded by a real time 

aerosol electrical mobility spectrometer (Cambustion DMS 500). A heated sampling 

line and primary dilution ratio at the point of sampling were used to avoid 

condensation and a secondary variable dilution ratio to assure optimal particulate 
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concentration levels according to the specifications of the equipment. The samples 

were taken from the tailpipe of the engine upstream the three way catalytic (TWC) 

converter in order to avoid any influence of the catalyst in the exhaust emissions.  

Table 1. Engine specifications 

Engine Jaguar Non-production 

variant 

Displacement volume (l) 5 

Bore/stroke (mm) 92.5/93 

Compression ratio 11.5:1 

Peak power (kW) 276 @ 6500rpm 

Peak torque (Nm) 495 @ 3500rpm 

 

Table 2. Gasoline properties 

Fuel properties 
Standard gasoline 

(PR4915) ULG95/E5 

Liquid density (kg/m
3
) 752.6 

T90 (°C) 156.5 

RON/MON 95.4/85.3 

Paraffins (% vol) 46.2 

Olefins+dienes (% vol) 3.3 

Aromatics (% vol) 34.8 

Oxygenates (% vol) 8 

C/H/O ratio 84.7/13.1/2.2 

Sulphur (ppm) <10 

 

3. Results and discussion 

3.1 Deposit formation 

Figure 5 a-d shows images of the external part of the injector after being removed 

from the engine at different stages of the deposit accumulation. A boroscope was used 

to visualize the ‘in-situ’ external status of the injector (i.e. in the combustion chamber) 

after the deposit accumulation test (Figure 5 e). In the case of the clean injector 

(Figure 5 a), the tip is clean and the injector holes are fully visible. After 2 cold starts 

some black deposits were formed on the injector tip, while after 6 cold starts a 
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noticeably larger area of the injector tip surface was covered by deposits, showing the 

effect of the cold start in the creation of external deposits. Figure 5 d and Figure 5 e 

show the injector after the 6 cold starts and 30 hours of deposit accumulation test. The 

injector tip was totally covered by deposits created mainly during the steady-state 

engine operation. Visually the sizes of the holes were much smaller compared to its 

clean status, as shown in Figure 5 a.  

In order to gain a deeper understanding of the deposit accumulation, this injector was 

split and magnified scan electron microscope (SEM) images (Figure 6) were taken to 

identify the location of the deposit accumulation inside the nozzle. It can be seen that 

on the internal parts, the needle seat and the injector hole, very little deposit could be 

seen. However, on the external counterbore, large quantities of deposit were present. 

Combining the observation derived from ‘in-situ’ and ‘off-site’ deposit visualization 

techniques, it could be concluded that at this stage of the injector fouling, the deposit 

mainly accumulated on the counterbore and in the outer parts of the injector holes 

(injector tip). In the other work conducted by the authors’ group [5], detailed 

Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy 

(SEM-EDS) was conducted in order to understand the components of injector 

deposits. The EDS analysis showed that the deposits in different locations of the 

injector consist of different levels of typical fuel and lubricant elements, such as C, O, 

Na, Mg, Si, P, S, K, Ca, Mg and Zn. Four dominating elements (C, S, Ca and O) were 

identified for the injector. 
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(a)                   (b) 

 

  

(c)                  (d) 

 

(e)                

Figure 5: Deposit formation process on the injector tip (a) clean injector, (b) injector 

after 2 cold starts, (c) injector after 6 cold starts, (d) injector after 30 hours deposit 

accumulation tests, (e) ‘in-situ’ injector status  
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Figure 6: SEM image for deposit formation in the injector nozzle 

3.2 Effect of deposits on the injector pulse width and flow rate 

Figure 7 a shows the measured injection pulse width for cylinder 1 of the engine 

during the deposit accumulation steady state operation (2000 rpm, 5 bar BMEP and 

150 bar injection pressure). It can be seen that the injection duration slowly increased 

on each day of the test (over a total of 7 days for the 30 hour test). This increase could 

be due to either a loss in fuel efficiency (a higher quantity of fuel therefore being 

needed to maintain the same engine performance) or a reduction of the injector flow 

rate because of the accumulation of deposits which would require compensating with 

a longer injection duration to deliver the same quantity of fuel, or the combination of 

both effects. In the last 4 hours of this 30-hour test (day 7), the pulse width stabilized 

at around 1.60 ms. It is considered that the injectors had reached a run-in condition 

where deposit formation and removal rates were in equilibrium. Figure 7 b presents 
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the percentage of pulse width increase in all 8 cylinders. The pulse widths of the 

injectors in all 8 cylinders increased by a similar amount, between 1.4% and 1.5%, 

meaning that they all had a similar level of fouling. Thus, it is reasonable to analyse 

only one representative injector. In later parts of this paper, optical diagnostics, 

including flow rate measurement, high speed spray imaging and PDPA measurement, 

were conducted on the injector from engine cylinder 1.  

In order to confirm that the increase of injection duration (shown in Figure 7) was 

caused by a reduction of the injector flow rate, the “off-site” (i.e. an injector flow test 

rig) injector (cylinder 1 injector) flow rate under different injection pressures and 

pulse widths for a constant number of injection (500) were measured using isooctane. 

Figure 8 shows the injected mass for the clean status (before deposit accumulation 

tests) and the fouled status (after deposit accumulation test) of this injector for 500 

pulses at a pulse width of 1.5 ms. Reduction of the flow rate was observed at three 

injection pressures because of the presence of deposits on the chosen injector created 

during the deposit accumulation process. When the injection pressure is low (i.e. 50 

bar) or injection pulse width is short (i.e. 0.38 ms), the flow rate loss becomes more 

obvious (see Table 3).  Overall, the flow rate for the injector is reduced after the 

deposit accumulation test by 2-8% depending on pulse width setting and injection 

pressure.  
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     (a)      (b) 

Figure 7: Pulse width changes (a) Pulse width of injector placed in cylinder 1 over 

30-hour test (b) Percentage of pulse width increase in 8 cylinders after 30-hour test.  

 

 

 

 

Figure 8: Flow rate for the injector tested on the spray rig under different injection 

pressures (1.5 ms pulse width, 500 injections)  

 

Table 3. Flow rate loss of the injector at different injection pressures and different 

pulse widths for constant number of injections  

Injection pressure (bar) Pulse width (ms) Flow rate loss (%) 

150 

0.38 8.4 

1.5 2.04 

1.65 2.21 

100 1.5 2.5 

50 1.5 7.4 
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3.3 Spray morphology: Spray cone angle and penetration length 

Spray morphology, typically quantified by spray angle and penetration length, is one 

of the most relevant features which controls local in-cylinder mixture and emissions 

formation being especially influential in the regions near the cylinder wall (wall 

wetting region). It is hypothesised that the accumulation of deposits in the injector 

differ depending on the injector hole, thus the deposit induced differences in spray 

morphology should be studied for all injector jets. This means that even though the 

differences between the injector pulse width and injector flow rate for ‘clean’ and 

‘fouled’ injector were small, the spray morphology parameters for the different jets 

could be very different and therefore produce large differences in local in-cylinder 

mixture conditions and subsequently, emission formation. 

Figure 9 shows the chronological images of the spray from 0.39 ms after the start of 

injection (ASOI) to 1.94 ms ASOI for the 6 jets of the injector previously analysed. 

On the first images, there is no spray due to the injection delay, although, with the 

evolution of the jets, some clear differences in the spray pattern could be observed 

between the ‘clean’ and the ‘fouled’ injectors. In comparison to the ‘clean’ injector, 

the spray cone angle of the ‘fouled’ injector is smaller due to deposit accumulation on 

the injector tip. This phenomenon affects the in-cylinder mixture formation and will 

eventually affect the gaseous emissions and PM emissions. 

Another visual difference observed for the ‘fouled’ injector was the presence of jets 

with divergent tips (i.e. for the symmetric jets one of the tips is much longer than the 

other in the late stage of the injection duration). In order to quantify the change of the 
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penetration length from jet to jet for the ‘clean’ and ‘fouled’ injectors, statistical 

analysis of the spray penetration length before and after the deposit accumulation tests 

have been carried out (see Figure 7 for 150 bar injection pressure and 1.5ms injection 

duration). For the ‘clean’ injector, its symmetric jets had nearly the same penetration 

lengths as shown in Figure 10 a. However, for the ‘fouled’ injector some of the 

symmetric jets, for example jet 6, has a penetration length longer than jet 1 at the later 

stage of the injection (Figure 10 b). This comparison also reveals that the penetration 

lengths of all the jets increased after the deposit accumulation tests. Detailed 

comparison of the percentage of the penetration length increase of the 6 jets at 

different injector status and injection pulse widths is given in Table 4. Generally, the 

increment of the penetration length after the deposit accumulation test is around 

10-15%, but the magnitude (10-20%) and jet to jet variability increased for the 

shortest injection pulse width. Overall the penetration length percentage increase of 

jet 6 was the largest, while the percentage increase of jets 1 and 4 were the shortest. 

This confirmed a variation of the injector tip deposit build-up on different nozzle 

holes.  
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Time ASOI 

(ms) 

‘Clean’ injector ‘Fouled’ injector 

 

 

0.39 

  
 

 

0.61 

  
 

 

0.83 

  
 

 

1.06 

  
 

 

1.28 

  
 

 

1.50 

  
 

 

1.72 

  
 

 

1.94 

  
Figure 9: Chronological images of the spray at injection pressure of 150 bar and 

injection pulse width of 1.5 ms. 

End of 

Injection 

pulse 
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(a)                              (b) 

Figure 10: Penetration lengths of 6 jets at an injection duration of 1.5ms (a) Clean 

injector (b) Fouled injector. 

Table 4: Percentage of penetration length increased after deposit accumulation test 

Percentage of length increased (%) Jet1 Jet2 Jet3 Jet4 Jet5 Jet6 

1.65 ms 7.99 13.11 12.58 11.28 14.93 14.99 

1.5 ms 6.11 16.51 10.35 7.93 16.38 16.59 

0.38 ms 13.82 13.90 19.97 10.07 13.81 19.74 

3.5 Effect of injector tip deposit on the droplet size 

From Figure 10, it can be seen that when the injector is clean the symmetric jets had 

the same penetration length. However, after the injector was fouled, jet 6 had a much 

longer penetration length than jet 1, while the differences for the other two sets of 

symmetric jets were smaller. Therefore, jet 1 and jet 6 were chosen for further droplet 

sizes analysis after deposit accumulation tests and were compared with respect the 

droplet sizes corresponding to the clean injector. For the other two pairs of symmetric 

jets, only one jet in each pair (jet 2 and jet 3) was chosen for further analysis. 

In order to understand the impacts of deposits on microscopic characteristics of the 

spray, PDPA measurements were conducted for the chosen jets at a distance of 60 mm 

from the injector tip, at an injection pressure of 150 bar and injection pulse width of 

1.5 ms under atmospheric conditions. Since the experiments were carried out at such a 

End of 
Injection 

pulse 

End of 
Injection 

pulse 
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long distance towards the injector tip, the spray was suitably sparse for PDPA 

measurements to be made with very high validation rates, between 85% and 92% for 

all the test points in this paper.  Histograms of the clean and fouled status of jet 1 and 

6 sprays are compared in Figure 11. It can be seen that the droplet size distribution 

behaves similarly to a log-normal distribution which indicate that a statistically 

significantly number of droplets had been analysed. This figure gives insights into the 

effects of accumulated deposits on the probability distribution of droplets diameters. 

For both jet 1 (Figure 11 a) and jet 6 (Figure11 b), it could be seen that the numbers of 

large droplets (larger than 12 µm) significantly increased after the fouling tests. The 

average droplet size (Sauter mean diameter, SMD) at different spatial distances to the 

nozzle tip was calculated from the droplet size distributions. For the ‘clean’ injector 

(Figure 12 a), the average droplet sizes of all the jets were quite similar. However, 

after the deposit accumulation tests, the droplet sizes of the jet 1 and 6 were 

significantly different and larger than in the case of the clean injector. Table 5 

summarizes the percentage of SMD value increased after the deposit accumulation 

test for jets 1 and 6 at three different injection pulses. Jet 6 has the largest droplet size 

variation (around 30%) in accordance with the largest variation in penetration length 

which suggests either a larger deposit built-up in the hole number 6 or a higher effect 

of the presence of deposits in the hole number 6 on spray morphology. 
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   (a)                                   (b) 

Figure 11: Histogram of the droplets at 60 mm distance to the nozzle for clean injector 

and fouled injector (a) Clean injector Jet 1,6 compared to Jet 1 (b) Clean injector Jet 

1,6 compared to Jet 6  
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   (a)                                   (b) 

Figure 12: SMD value of the clean and fouled status (a) Clean injector (b) Fouled 

injector 

 

Table 5: Change of the droplet sizes after deposit accumulation tests 

Percentage of droplet size increase (%) Jet1 Jet2 Jet3 Jet4 Jet5 Jet6 

1.65 ms 16.12 8.80 -1.03   35.66 

1.5 ms 17.79 6.89 5.75   33.61 

0.38 ms 21.51 5.76 3.24   28.23 

3.6 Effect of injector deposits on fuel consumption and emissions 

The engine out (upstream three way catalyst) gaseous and particulate matter 

emissions were measured during the deposit accumulation process (2000 rpm, 5 bar 

BMEP and 150 injection pressure). Furthermore, in order to evaluate the effect of the 

same deposit built-up at different injector pressures, gaseous and particulate matter 

emissions were measured before and after the deposit accumulation test under 3 



25 
 

injection pressures: 50, 100 and 150 bar. 

The engine break specific fuel consumption (BSFC) is presented in Figure 13. 

Irrespective of the injector fuel flow rate loss observed from Figure 7, Figure 8 and 

Table 3, the engine fuel consumption was not significantly changed during the 

30-hour running. Figure 14 shows the rate of variation of engine output gaseous 

emissions during the steady state deposit (after cold starts) accumulation experimental 

test, while Figure 15 compares the evaluation of the engine out gaseous emissions 

with the clean and fouled injectors at different injection pressures. It can be seen that 

the variation rate of CO2 and CO emissions was almost negligible (around 1-1.5% 

increase with respect to the start of the test). These variations, while potentially being 

considered statistically negligible, were also observed in Figure 15 a and Figure 15 b. 

Interestingly, the NOx emissions seemed to slightly decrease with the steady state 

engine operation (especially from 8 to 25 hours of operation, Figure 14). Figure 15 d 

also confirms a slight decrease in NOx emissions at injection pressure of 50 and 100 

bar (around 2%). 

The most statistically significant effect of the deposit formation on engine output 

gaseous emissions occurs for unburnt HC. It can be clearly seen that HC emissions 

increase with the steady state engine operation and this is also confirmed when the 

deposit effect is evaluated at different injection pressures. Figure 15 c also shows that 

the decrease of the injection pressure leads to an increase of the HC emissions. It is 

believed that this increase is due to a worse atomization of the spray at lower injection 

pressures being especially noticeable for the ‘fouled’ injectors. The large influence of 
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injector pressure in injector flow rate and unburnt hydrocarbons for the fouled 

injectors suggests the major contribution of injector hole deposits to the increase in 

unburnt hydrocarbon emissions was in-cylinder mixture deterioration rather than the 

presence of injector tip deposits which should not be largely influenced by the injector 

pressure. Therefore, it is concluded that the increase of the unburnt hydrocarbon 

emissions was due to i) deposits in the injector hole and ii) injector tip deposits (in 

direct contact with the combustion chamber and outer of the injector hole). 

 

Figure 13: Engine break specific fuel consumption (BSFC) over 30-hour running 

 

 
Figure 14: Variation rate of gaseous emissions during the deposit accumulation test 

(after cold starts) 
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(a) (b) 

  

I (d) 

Figure 15: Gaseous emissions of the engine before and after the deposit accumulation 

test (a) CO2 (b) CO (c) HC (d) NOx 

The engine-out particulate size distributions in the 30 hours of deposit accumulation 

tests are shown in Figure 16 a. It can be seen as bimodal (nucleation and accumulation) 

particulate size distributions were obtained. Nucleation mode is mainly composed of 

droplets of hydrocarbons, while the accumulation mode is composed by both soot and 

adsorbed/condensed hydrocarbons on the soot agglomerates [16]. During testing, the 

total particle number increased, as shown in Figure 16 b. At the end of the deposit 

accumulation tests, the ‘fouled’ injectors produce PM emissions around 4-5 times 

higher than for the ‘clean’ injectors for the standard ECU settings injection pressure. 
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The increase in particulate emissions occurred both for the nucleation mode 

(according to the increase in the unburnt hydrocarbon emissions) and more 

dramatically for the accumulation mode. The high concentration of particulate 

emissions in the accumulation mode for coked injector indicated high soot formation, 

which was a result of diffusive combustion. Diffusive combustion could occur in the 

cylinder if (1) there is spray-wall impingement (caused by longer penetration length); 

(2) there is residual fuel absorbed by deposits formed outside the injector tip (as 

shown in Figure 5 e) after injection (3) there are very rich areas or big fuel drops in 

the cylinder after injection. Fouled injectors could potentially deteriorate PN 

emissions from all three aspects thus higher level of particulate emissions was seen in 

the accumulation mode.  

Figure 17 shows the impact of different injection pressures on PM emissions. The 

effect of injection pressure on particulate size distributions was small when the 

injectors were ‘clean’ (no statistically significant effect on accumulation mode but an 

increase in nucleation mode according to the increase in unburnt hydrocarbon 

emissions), as shown in Figure 17 a b and c. However, in the case of the ‘fouled’ 

injectors, a decrease in the injection pressure increased the nucleation mode and 

dramatically increased the accumulation mode. As in the case of unburnt hydrocarbon 

emissions, the effect of injection pressure on particulate matter formation for the 

‘fouled’ injectors identified the large contribution of counterbore deposits to 

particulate matter through the modification of the spray in addition to the contribution 

of injector tip deposits which promote diffusive combustion and the formation of 
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particulate matter (mainly in the accumulation mode). The partial contributions of i) 

internal deposits and ii) tip deposits will vary depending on the engine operating 

conditions. There were some cases (defined by injection timing, injection pressure, 

fuel quantity, etc.) in which the modification of fuel spray characteristics due to the 

accumulation of internal deposits would not be critical for in-cylinder mixture and 

emissions formation and the effect of injector tip deposits would be more important 

on particulate formation (e.g. diffusive combustion of the fuel attached on the injector 

tip deposit).  

 .  

(a) (b) 

Figure 16: PM emissions of the engine during the deposit accumulation test (a) 

particulate size distribution (b) total PN increase. 
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(a) (b) 

  

(c) (d) 

Figure 17: PM emissions of the engine before and after the deposit accumulation test 

for different injection pressure (a) 50bar (b) 100 bar (c) 150 bar (d) total PN 

 

4. Conclusions 

This work has presented an experimental investigation on the effects of injector 

deposits on the spray characteristics, engine performance and exhaust emissions. A set 

of deposit accumulation tests, which included 6 cold starts and a 30-hour steady state 

running, were carried out in a GDI engine on multiple injectors. After formation of 

deposits, a representative injector was taken out and examined by SEM in order to 

understand the amount and location of the deposit. Spray characteristics of this fouled 

injector were compared to its clean status. Combined with the analysis on the change 

of engine emissions, this paper highlighted the interaction between the deposit, the 
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spray and the emissions at an early stage of injector fouling. The following 

conclusions were drawn from this work:  

1. The deposit accumulation process created deposits not only on the injector tip but 

also inside the injector nozzle. Significant amount of deposits were observed on the 

counterbore while barely no deposit was observed on the deeper part of the nozzle (i.e. 

nozzle hole). 

2. After the deposit accumulation tests, the in-cylinder pulse width data indicated that 

comparable deposits were formed on all the injectors. Overall, the injector fuel flow 

rate reduced by 2% and the fuel consumption of the engine was not affected.  

3. The impacts of deposits on spray characteristics varied from hole to hole on a given 

injector. After deposit accumulation tests, penetration lengths of the 6 jet increased in 

the range of 6% to 20%.  For average droplet sizes, the maximum increase was about 

36%.  

4. At this early stage of injector fouling, unburnt hydrocarbon emissions increases 

about 30% during the steady state engine operation while other gaseous emissions 

(e.g. CO, NOx, CO2) only changed slightly.  

5.The most significant consequence of injector fouling during engine operation was 

found to be the increase in particulate matter (maximum 5 times increase of PN), 

particularly in the soot carbonaceous accumulation mode. Compared to an injection 

pressure of 50 bar and 100 bar, the PN emissions of the fouled injector at injection 

pressure of 150 bar were significantly lower.  
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Furthermore, from this research, it could be deduced that the counterbore design and 

lower pressure injection are undesirable features for the GDI engine injection system. 

The former led to deposit accumulation and the latter led to higher PN emissions. 

Thus, in order to mitigate the impacts of injector deposits, the injection system of a 

GDI engine should have the following features: straight injector nozzle hole rather 

than stepped hole (to avoid deposit build-up on the counterbore), temperature control 

at the injector tip (to avoid the temperature reaching T90) and high pressure injection 

(providing better atomization and ability to flush deposits away). More investigation 

is needed to confirm the capability of these features.  
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