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Abstract. Ultra high strength concrete has been adopted recently in construction industry. 

Prestressed concrete sleepers (or railroad ties) are designed usually using high strength con-

crete (around 50-80 MPa) in order to carry and transfer the wheel loads from the rails to the 

ground and to maintain rail guage for safe train travels. The sleepers are installed as the 

crosstie beam support in railway track systems. They are subjected to impact loading condi-

tions that are resulted from train operations over wheel or rail abnormalities, such as flat 

wheels, dipped rails, crossing transfers, rail squats, corrugation, etc. The magnitude of the 

shock load relies on various factors such as axle load, types of wheel/rail imperfections, 

speeds of vehicle, track stiffness, etc. This paper demonstrates the development of finite ele-

ment modelling to investigate the dynamic responses of prestressed concrete sleepers using 

ultra high strength materials (over 100 MPa), particularly under a variety of impact loads. 

The 3D finite element model of prestressed concrete sleeper has been developed using a finite 

element package, LS-Dyna. It has been verified by the experiments carried out using the high 

capacity drop-weight impact machine at the University of Wollongong, Australia. The exper-

imental results provide very good correlation with numerical simulations. In this paper, the 

numerical studies are extended to evaluate the dynamic behaviors of high strength steel wires 

and ultra high strength concrete; as well as their nonlinear responses under different pa-

rameters. The outcome of this study can potentially lead to the utilization and design guide-

line of ultra high strength concrete for prestressed concrete sleepers. 
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1 INTRODUCTION 

In ballasted railway tracks, railway sleeper is a major structural component to transfer train 

axle loads from the rails to the underlying ballast and supporting system. Typical ballasted 

railway track and its components can be seen in Figure 1 [1]. Reportedly, it is chronically be-

lieved based on the industry practice that railway concrete sleepers possess reserved strength 

that are untapped. Accordingly, it is essential to evaluate the spectrum and amplitudes of forc-

es applied to the railway track, in order to understand more clearly the behaviors in which 

track components respond to those forces, and to identify the processes whereby concrete 

sleepers in particular carry those force actions. Recent findings show that the nature of the 

majority of loading conditions on track structures is of dynamic impact [2].  Those loads are 

normally of short duration but of very high magnitude. They are ascribed to the wheel/rail in-

teractions associated with irregularities, i.e. wheel burns, wheel flats, corrugations, non-

uniform track modulus, and any other out-of-round wheel defects. Structural performance 

monitoring is an effective way to establish better understanding into the impact behaviors of 

prestressed concrete sleepers. 

In addition, cracks in concrete sleepers have been visually observed by many railway or-

ganizations. As described in the review [3], the principal cause of cracking is the infrequent 

but high-magnitude wheel loads produced by a small percentage of “bad” wheels or railhead 

surface defects. For instance, the typical loading duration produced by wheel flats is about 1-

10 msec, while the force magnitude can be over 400 kN per rail seat.  Existing structural de-

sign concept for prestressed concrete sleepers in Australia is based on permissible stress prin-

ciple taking into account only the static and quasi-static loads, which are unrealistic to the 

actual dynamic loads on tracks. However, it is inevitable to avoid those criteria in any consid-

eration of rail track designs since even the standard quality ride of rail vehicles still involves 

with the low-velocity impact forces. In order to devise a new limit states design concept 

whereas the extreme loading conditions can be taken into account, the research efforts are re-

quired to perform comprehensive studies of the loading conditions, the static behaviour, the 

dynamic response, and the impact resistance of the prestressed concrete sleepers [4]. A col-

laborative research task between the University of Birmingham and University of Wollon-

gong is to evaluate the dynamic responses of concrete sleepers under static and impact loads. 

There have been only a few studies related to the modelling of prestressed concrete sleepers. 

Most of them predicted the rail seat flexural behaviour of the concrete sleepers [5-6] using 

high strength concrete of 50-60 MPa. In contrast, the use of ultra high strength concrete for 

manufacturing railway sleepers has not been thoroughly evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Typical ballasted railway track and its components [1] 
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This study has established a finite element model that can simulate and predict the re-

sponses of reinforced and prestressed concrete members. A three-dimensional non-linear fi-

nite element model of a railway prestressed concrete sleeper for static analysis was developed 

using the general-purpose finite element analysis package, ANSYS [7]. The concrete section 

was modelled using SOLID65 solid element where the compressive crushing of concrete and 

the concrete cracking in tension zone can be accommodated. In the current practice, the rail-

way concrete sleeper is designed to resist prestressing force fully throughout the whole cross 

section as the force/moment redistribution can be seen in Figure 2. This makes the smeared 

crack analogy unsuitable for the replacement of prestressing tendons in the fully prestressed 

concrete sleeper. The use of a truss element, LINK8, for discrete reinforcement modelling, is 

then more practicable. An initial strain real-constant feature in ANSYS appropriately substi-

tuted the pre-tensioning forces in the tendon elements. However, it was assumed that perfect 

bonding between concrete and pre-stressing wires. The static full-scale experiment was con-

ducted to validate this FE model [7]. The experimental details were based on the associated 

Australian Standards [8, 9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Moment distribution for standard gauge sleepers [8] 

 

The calibrated finite element model has been extended to include ballast support and in situ 

boundary conditions. The extended model was linked to LS-Dyna [10] for impact analysis 

and validation against the drop impact tests. This paper investigates the impact responses of 

prestressed concrete sleepers using ultra high strength concrete (with compressive strength 

over 100 MPa). The highlights in this paper are the better understandings into the influence of 

concrete material on the impact behavior of railway prestressed concrete sleepers. 

 

2 MODELLING OF IN SITU SLEEPER 

In this investigation, the concrete part of the sleeper was modelled using a three-

dimensional solid element, which has the material model to predict the failure of brittle mate-

rials [7]. This element is defined with eight nodes – each with three degrees of freedom: trans-

lations in nodal x, y, and z directions. To simulate the behaviour of prestressing wires, a truss 

element, were used to withstand the initial strain attributed to prestressing forces, by assuming 

ballast pressure 

- - 

- bending moment  
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perfect bond between these elements and concrete. Note that this truss element cannot resist 

neither bending moments nor shear forces. Non-linear elastic behaviour of concrete can alter-

natively be defined by the multi-linear stress-strain relationships. The modulus of elasticity of 

concrete ( cE ) is esmiated based on AS3600 [11] using the compressive strengths (100, 200, 

and 1000 MPa). 

For prestressing wires, the bi-linear elasto-plastic material models can be used as well as 

the multi-linear isotropic model from the manufacturer’s data.  The 0.2% proof stress is 1,700 

MPa and the ultimate stress is 1,930 MPa. The static and dynamic elasticity of moduli of pre-

stressing wire are 190,000 MPa. 

The multi-linear isotropic dynamic stress-strain curve for the concrete and prestressing 

wires can be calculated based on the consideration of the effect of strain rate. Based on the 

assumption of perfect bond between prestressing wires and concrete, the dynamic material 

properties of concrete and prestressing wires can be determined as follows [12]. 

 

Concrete: 

 

 

(1) 

  

 

 

(2) 

 

 

 

(3) 

 

 

where  is the dynamic stress, f’c,dyn is the dynamic compressive strength, f’c,st is the static 

compressive strength of concrete,  is the dynamic strain, stc ,0  is the static ultimate strain, 

and   is the strain rate in concrete fibre.  

 

Prestressing wires: 

 

 

(4) 

 

 

where fy,dyn is the dynamic upper yield point stress, f’c,st is the static upper yield point stress of 

prestressing wires (about 0.84 times proof stress), and   is the strain rate in tendon. 

 

A three-dimensional model of a typical railway prestressed concrete sleeper was developed 

initially in ANSYS [7] as illustrated in Figure 3. The dedicated solid bricks represent the con-

crete and the embedded three-dimensional spar elements are used as the prestressing wires. 

The pre-tensioning was modelled using an initial strain in the tendons corresponding to the 

prestressing forces at final stage (sustained prestressing force after all losses). For impact 

simulations, a FE model was extended to include rails, rail pads, ballast bed, and falling mass, 

as shown is Figure 4. The extended finite element model was calibrated using vibration data 
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[13-16]. The updated finite element model was then transferred to LS-Dyna. The simulation 

results were achieved by assigning the initial velocity to the drop mass to generate an impact 

event, similarly to the actual drop tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A three-dimensional model of full-scale railway sleeper [4] 

 

 
 

Figure 4: Extended finite element model of full-scale railway sleeper [4] 

 

3 CALIBRATION OF FE MODEL 

The prestressed concrete sleepers used in this study were kindly supplied by an Australian 

manufacturer, under a collaborative research framework funded by European Commission 

(H2020-RISE Project RISEN). A series of static tests on the concrete sleepers was performed 

at the University of Wollongong in accordance with the Australian Standards (which are simi-

lar to European Standards). The details of static responses, rotational capacity, post-failure 

mechanism, and residual load-carrying capacity of the prestressed concrete sleeper can be 

found in refs: [17-22]. 

Nose/Rail Contact     
(impact forces) 

 

Ballast/Sleeper Contact     
(impact forces) 
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a) sketch of impact machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) impact test setup 

 

Figure 5: Experimental overview 
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The high-capacity drop-weight impact-testing machine has been developed at the Univer-

sity of Wollongong, as depicted in Figure 5a. The drop mass assembled is 5.81 kN with the 

varied height from 0 to 6m in total, which provide the maximum capacity of 10m/s drop ve-

locities. Experimental setup and impact tests were arranged in accordance with the Australian 

Standards, as shown in Figure 5b. The accelerometers have been used to measure the dynamic 

responses at mid-span and railseat. The contact impact force between impactor and rail was 

recorded using the dynamic load cell connected to the data acquisition system. For the verifi-

cation purpose, the drop height used was 0.1m since there was the measurement limitation for 

the accelerometers employed. The in-situ conditions of railway concrete sleeper were repli-

cated. Attempts to simulate impact loading actually occurred in tracks were succeeded exper-

imentally and numerically. Comparison between numerical and experimental results can be 

found in Figure 6. It is found that the finite element model is fairly sufficient for use in pre-

dicting impact responses of the prestressed concrete sleepers. The trends of peak acceleration 

responses are quite close to each other, although there is certain phase difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 a) contact shock load            b) at railseat (top); at mid-span (bottom) 
 

 
c) an example of prestressing force (at impact velocity 3 m/s) 

Figure 6: Comparison of numerical and experimental results 
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4 EFFECT OF ULTRA HIGH STRENGTH OF CONCRETE 

The relationship between compressive strength and elastic modulus of concrete is a com-

plex topic. As shown in Figure 7, the modulus of concrete can vary from 50GPa to 100GPa 

(depending on the type of concrete mixes). In this analysis, the modulus of 50 GPa, 80GPa, 

and 100 GPa are considered for benchmarking analysis. In the finite element model, the drop 

velocity is also varied to evaluate the effect of drop heights on the impact force occurring on 

railway track structures. On the other hand, this analysis provides the insight into the effect of 

railway track environments on the contact impact forces due to the identical causes and the 

responses of concrete sleepers to such loading. For example, a wheel, with 10mm wheel flat 

on a specific vehicle and running at 300 km/h, generates different contact impact forces on 

tracks with different environments. However, this study focuses only on concrete parameters 

as they play key role on the interface impact force characteristics and flexural responses of 

sleepers under a low-velocity impact [20] as illustrated in Figure 8. 

 

 
Figure 7: Compressive strength vs modulus of elasticity [22-25] 

 

 
 

Figure 8: Impact von-misses stress in concrete sleeper (both railseats are firstly damaged) 
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Figure 9: Effects of ultra-high-strength concrete on impact responses of railway sleepers 

 

  
 

Figure 10: Influential analysis of ultra-high-strength concrete 
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 Figures 9 and 10 demonstrate the dynamic effects of ultra-high-strength concrete on the 

impact responses of a railway sleeper. Using a normal high-strength concrete (50 MPa) as a 

baseline, it is clear that concrete strength plays an influential role in the maximum displace-

ment, maximum acceleration and von-mises stress of the sleeper at both railseat and midspan 

zones. Especially at mid span, the von-mises stress can increase significantly due to the use of 

higher strength concrete. From Figure 10, it is clear that, in most cases, higher strength of 

concrete has more influence on the sleeper responses (except for the maximum displacement 

at mid span).  

 

5 CONCLUSIONS  

Ultra high strength concrete has recently been introduced in construction industry. Its ap-

plication to railway environment has not been fully investigated. In this study, its use to man-

ufacturing railway sleepers has been evaluated. The study is based on the experimental and 

numerical simulations of prestressed concrete sleepers subjected to impact loading. The three-

dimensional finite element model have been established for investigate both static and dynam-

ic behaviors of the railway sleepers. It has then been appended the track components to mimic 

in-situ conditions often found in actual tracks. A commercial finite element package, LS-

Dyna, has been employed to extend the model for impact analysis and it has been validated 

against experimental drop impact tests. Nonlinear material properties under high strain rate 

effects were used. The emphasis of this study is placed on the effects of ultra-high-strength 

concrete on the dynamic responses of railway sleeper. This result illustrates dominant influ-

ences of concrete elastic moduli on the impact behavior of the sleeper. It is found that the ul-

tra-high-strength concrete will increase stiffness of sleepers, then increase contact forces and 

dynamic responses of the sleepers.  
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