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Terminate and make a loop: regulation
of transcriptional directionality
Pawel Grzechnik, Sue Mei Tan-Wong, and Nick J. Proudfoot

Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK

Review
Bidirectional promoters are a common feature of many
eukaryotic organisms from yeast to humans. RNA Poly-
merase II that is recruited to this type of promoter can
start transcribing in either direction using alternative
DNA strands as the template. Such promiscuous tran-
scription can lead to the synthesis of unwanted tran-
scripts that may have negative effects on gene
expression. Recent studies have identified transcription
termination and gene looping as critical players in the
enforcement of promoter directionality. Interestingly,
both mechanisms share key components. Here, we focus
on recent findings relating to the transcriptional output
of bidirectional promoters.

Transcription from bidirectional promoters
Many promoters for RNA polymerase II (Pol II) are bidi-
rectional, as found in a wide range of organisms including
humans, mice, Arabidopsis thaliana, and Saccharomyces
cerevisiae [1–8]. Pol II recruited to such promoters is
directionally unbiased and can transcribe DNA in both
directions. Divergent transcription can produce either two
mRNA (head-to-head genes) or a single mRNA and a
corresponding upstream noncoding RNA (ncRNA) [4–8].
The presence of head-to-head genes increases with de-
creasing genome length. Thus, for the compressed S. cer-
evisiae genome, half of mRNA coding genes are divergent,
whereas in humans, only 11% of genes are so organized [9].
The vast majority of bidirectional promoters produce only
one mRNA together with a divergent, usually nonfunction-
al, ncRNA (Box 1).

The reason transcription initiates in both directions from
a promoter region appears to be dictated by the chromatin
structure. In general, Pol II promoters are nucleosome-free
regions (NFRs) [10–14]. The lack of DNA packaging facil-
itates recruitment of transcriptional machinery, unwinding
of DNA strands, and as a consequence, initiation of tran-
scription. NFRs are partially determined by intrinsic pro-
moter sequences, which disfavor nucleosome assembly and
permit access to transcription factors (TFs) [15]. In yeast,
this role is played by poly(A-T) tracts frequently occurring in
promoter sequences [16–18]. In higher eukaryotes, CpG
islands, which are present in more than half of human
0968-0004/
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and mouse promoters, are involved in regulation of nucleo-
some assembly [15]. Although CpG islands support nucleo-
some formation in vitro [19], they appear nucleosome
depleted in vivo [20]. It has been suggested that CpG islands
are resistant to higher-order chromatin compaction by link-
er histones such as H1, which is known to have a binding
preference for A-T-rich DNA [15,21].

It appears that more complex mechanisms are respon-
sible for keeping promoters in a nucleosome-free state. For
instance, several groups have reported that NFRs over
promoters result from competition for DNA binding be-
tween TFs and nucleosomes [22–25]. In particular, TFs
bound to promoters introduce a barrier for chromatin
organization. Promoters with paused Pol II have also been
shown to restrict nucleosome formation [26]. A proposed
model describes stretches of poly(A-T) tracts or CpG
islands that act to maintain chromatin in a state that
allows transient TF access. The consequent recruitment
of TFs and then Pol II results in the expansion of accessible
regions and thus maintenance of NFRs [15].

Although such chromatin organization of promoters may
aid gene expression, its tendency to be bidirectional intro-
duces the potential danger of deleterious transcript synthe-
sis. Biased recruitment of the transcriptional machinery can
be determined by the orientation specific binding of TATA-
binding protein (TBP) to the TATA box [4,27]. Indeed, in
Drosophila melanogaster, Pol II-transcribed promoters are
normally unidirectional with the protein coding strand
defined by prominent TATA box sequences [28]. In the
absence of a TATA element, TBP is still delivered to pro-
moters by the multi-subunit TFIID complex that lacks
sequence specificity [27]. Consequently, Pol II occupation
at the initiation sites of bidirectional promoters is evident in
the coding and noncoding directions [7,8] (Figure 1). High-
resolution chromatin immunoprecipitation preceded by exo-
nucleolytic digestion (ChIP-exo analysis) of the preinitiation
complex (PIC) in S. cerevisiae has revealed that bidirectional
promoters expressing ncRNA–mRNA contain two indepen-
dent PICs in inverted orientation, similar to bidirectional
promoters controlling head-to-head protein coding genes
[29]. However, despite the presence of separate PICs, tran-
scription in one direction is dependent on the other. For
example, the repression of mRNA synthesis by a TATA box
mutation leads to an increase in transcription of antisense
divergent RNA [4]. Furthermore, divergent promoters often
share the same transcriptional activators, as indicated by
the co-regulation of ncRNA–mRNA as well as head-to-head
mRNA pairs [1,4,5,9].
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Box 1. Promoter associated ncRNA species

In animals, promoter-associated ncRNA (upstream antisense RNA,

uasRNA) are classified by their length. Short ncRNAs (<100 nt) are

referred to as transcription start site-associated RNA (TSSa-RNA)

[7]. TSSa-RNA are the products of 50!30 degradation of the nascent

transcript protected by paused Pol II [93]. ncRNA >100–200 nt are

termed lncRNA and are produced divergently from the coding

sequence by Pol II that has escaped from pausing [94]. A prominent

group of this type is called PROMPTs. PROMPTs are 50 capped and 30

adenylated, but in contrast to mRNA, undergo quick degradation by

the nuclear exosome [6,48]. lncRNA considerably longer than

PROMPTs derived from enhancers are named enhancer RNA (eRNA)

(Box 2) [32–34,94]. Other lncRNA that are transcribed from

intergenic regions (devoid of protein-coding genes) and are called

long intergenic ncRNA (lincRNA) [95,96].

In yeast, promoter-associated ncRNA are more extensively

characterized. Similar to animals, the vast majority of ncRNA are

detectable only in RNA-degradation-deficient mutants as they

undergo rapid degradation in wild type cells. Cryptic unstable

transcripts (CUTs) include ncRNA accumulating in 30!50 exonucleo-

lytic mutants of Rrp6 and exosome [4,5,97]. Their number varies

from 925 when only RRP6 is deleted, to �1600 when both exosome

and its cofactor Rrp6 are inactive. Stable unannotated transcripts

(SUTs; 847 detected), are longer (median length is 761 nt compared

to 440 nt for CUTs) and more resistant to exonucleolytic digestion

[5]. CUTs and SUTs are transcribed mostly from divergent

promoters, followed by terminators and least frequently from

intragenic regions. Both classes are predominantly terminated by

the NRD complex (68% of CUTs and 58% of SUTs) and have been

proposed to be organized into a holo-class called Nrd1-dependent

unterminated transcripts (NUTs) [40]. A total of 1526 NUTs were

identified by deep sequencing after Nrd1 depletion. However, only

213 are novel ncRNA and these do not overlap with any specific

genomic features. Another major class of ncRNA includes 605

Ssu72-restricted transcripts (SRTs) [73]. SRTs accumulate indepen-

dently of the exonucleolytic machinery in an ssu72-2 mutant which

has lost gene looping, and are directly associated with promoter

directionality. The most abundant group of ncRNA (1658 detected)

accumulate in a Xrn1 50!30 exonuclease mutant, and are called

Xrn1-dependent unstable transcripts (XUTs) [98]. Most XUTs are

expressed from terminators, as 66% are antisense to their ORFs. The

lines of distinction between these different ncRNA classes are

blurred, for example, elongated CUTs, (eCUTs), which have escaped

their primary transcription termination pathway, are terminated at

the nearest PAS and may become stable SUTs [51]. Moreover, 20%

of CUTs and 75% of SUTs have been classified as XUTs [98].
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NFRs present elsewhere across the genome can also be
used for transcription initiation. For example, NFRs over
terminators of protein coding genes appear to be formed
similarly to those in promoter regions. Their sequences
may impede nucleosome formation [17,18,30], but tran-
scription-dependent mechanisms may again play a role
in NFR maintenance [31]. ncRNA classes initiated from
terminators are identical to those expressed from the
promoters [118]. However, terminator-derived tran-
scripts may be selectively fired in the direction of the
mRNA promoter, so that the ncRNA is complementary to
the corresponding mRNA and may have regulatory func-
tion. Inter- or intragenically located NFRs may be also
used for transcription initiation. However, a likely future
focus of research will be NFRs located over enhancers
which are the source of enhancer RNA (eRNA) [32–34]
(Box 2). Although terminator or enhancer-associated
NFRs are Pol II promoters, they appear to produce only
ncRNA. In many cases it is not clear whether it is RNA
synthesis or just the process of transcription itself that
is relevant. Pol II initiation in these regions may also
320
be effectively random and merely represent byproducts
of NFRs. In this review we focus only on promoters
engaged in protein-coding gene expression and the mech-
anisms that direct Pol II into the productive synthesis of
mRNA.

Divergent transcription from bidirectional promoters
can be deleterious to cells. Transcription of noncoding
regions may result in the downregulation of coexpressed
mRNA and can also lead to accumulation of ncRNA.
This may be harmful for the cell because such ncRNA
could be translated into a toxic product or compete with
mRNA for RNA-binding proteins and their regulatory
factors [35]. In spite of this and for the reasons that are
discussed in this review, divergent transcription is a
common feature in many eukaryotes. Therefore, mecha-
nisms have evolved to direct Pol II into the coding region
and limit transcription of divergent ncRNA as described
later.

Transcriptional directionality is controlled by
termination
The simplest approach to block unwanted transcription is
the immediate termination and degradation of newly syn-
thesized ncRNA [36–40]. In this situation, Pol II transcrib-
ing ncRNA encounters intrinsic sequences that trigger
transcription termination and subsequent degradation.
Therefore, despite efficient transcription initiation in both
directions, only Pol II transcribing the protein coding
sequence successfully enters into a full elongation phase.

Multiple mechanisms can promote transcription termi-
nation of Pol II in eukaryotic organisms [41,42]. For pro-
tein-coding genes, the major transcription termination
mechanism uses a poly(A) site (PAS) comprising a central
AAUAAA sequence in humans and less conserved, degen-
erate Py(A)n sequence in S. cerevisiae. PAS also include 50

positioned U-rich and 30 positioned GU/U-rich sequences.
PAS-dependent termination (Box 3) is mediated by mac-
romolecular complexes generally referred to as the cleav-
age and polyadenylation complex (CPAC), which is
remarkably conserved during evolution [43]. CPAC recog-
nizes the PAS and cleaves the nascent RNA. Following
release of the mRNA, Pol II transcribes further down-
stream, up to 200 nucleotides (nt) in yeast and 1500 nt
in mammals, before being dismantled from the DNA tem-
plate. A subset of human mRNA coding genes uses a
variation of PAS-dependent termination for which a distal
AU-rich region acts to mediate cotranscriptional cleavage
(CoTC) with rapid 50!30 degradation of nascent RNA
leading to Pol II release [44,45].

Recently, a balance between PAS recognition and PAS
blockage by U1 small nuclear RNA (snRNA) was predicted
to regulate transcription termination and thus define the
directionality of Pol II transcription in mammals [38,39].
Deep sequencing of polyadenylated RNA 30 ends from
mouse embryonic cells identified cleavage sites associated
with the PAS hexamer AAUAAA or close variants, proxi-
mal to Pol II transcription start sites (TSS) and at least
5 kb away from known transcription termination sites.
Upstream antisense regions contain twofold more cleavage
sites, peaking at 700 bp from a TSS, compared to the
protein-coding sense sequences. Consistent with this,
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Figure 1. Promoter-associated noncoding RNA. (A) Major classes of promoter-

associated ncRNA in animals. (B) ncRNA transcribed from divergent promoters in

Saccharomyces cerevisiae. NFR acts as a Pol II promoter for both the protein-coding

sequence (marked as a red line) and antisense noncoding sequence (black line). The

open and unbiased nature of NFR allows for formation of two independent PICs,

which share TFs. Such promoter structure allows Pol II to transcribe in both

directions. In mammals the upstream regions are transcribed into PROMPTs and

longer ncRNA generally referred to as lncRNA. TSSa-RNA, related to Pol II pausing,

are synthesized in both directions. S. cerevisiae bidirectional promoters for protein-

coding genes are similarly used to initiate transcription of upstream noncoding

regions. Transcribed ncRNA are classified as SUTs, CUTs, or XUTs by their

susceptibility to different degrading enzymes (Box 1). SRTs are synthesized when

interactions between the promoter and the sense open reading frame terminator is

disrupted. All ncRNA initiated from Pol II promoters, except for SRTs, may undergo

NRD dependent termination and so are classified as NUTs (marked by dotted line).

The most common classes of promoter-associated ncRNA are SUTs and CUTs,

whereas occurrence of SRTs and XUTs is similar. Due to the lack of Pol II promoter

pausing TSSa-RNA are not present in S. cerevisiae. Abbreviations: CUT, cryptic

unstable transcript; lncRNA, long noncoding RNA; ncRNA, noncoding RNA; NFR,

nucleosome-free region; NRD, NRD complex; NUT, Nrd1-dependent unterminated

transcript; PIC, preinitiation complex; Pol II, RNA polymerase II; PROMPT, promoter

upstream transcript; SRT, Ssu72-restricted transcript; SUT, stable unannotated

transcript; TF, transcription factor; TSSa-RNA, transcription start site-associated

RNA; XUT, Xrn1-depednent transcript.
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48% of divergent promoters produce ncRNA susceptible to
PAS-dependent antisense cleavage events in proximity to
the TSS. Moreover, antisense divergent PAS are bound by
cleavage and polyadenylation factors in a similar manner
to mRNA PAS. This suggests that mammalian promoter-
associated ncRNA (in particular promoter upstream tran-
scripts, PROMPTs; Box 1) are generally prematurely ter-
minated by early PAS selection. However, the frequency of
candidate PAS sequences in TSS proximal sense regions
(up to 6 kb) is only reduced by 33% as compared to anti-
sense regions. Such a sequence bias does not adequately
account for the discrepancy in cleavage distribution. Con-
sequently, additional elements were searched for to ex-
plain better the asymmetric pattern of cleavage events for
sense and antisense transcripts. This led to finding that 50

splice site related sequences (50SS; U1 sites), which are
recognized by U1 snRNA are more enriched in the coding
sequence direction as compared to antisense divergent
sequence. This provides a possible explanation for the
biased PAS-mediated cleavage pattern, because the U1
small nuclear ribonucleoprotein (snRNP) complex is
known to suppress cleavage and polyadenylation within
a 1-kb vicinity of 50SS, by inhibiting cleavage and poly-
adenylation specificity factor (CPSF) [46,47]. Indeed,
downregulation of U1 increases cleavage events over cod-
ing regions, but has little impact on antisense regions [38].

Parallel studies characterizing PROMPT 30 end forma-
tion in HeLa cells [39] have validated some of the above
mechanisms. This genome-wide analysis shows that these
ncRNA contain functional PAS with AWUAAA, GU/U and
U-rich motifs in positions resembling mRNA 30 ends.
PROMPT PAS cloned into reporter genes generate unsta-
ble polyadenylated RNA. Mutation of the GU/U PAS motif
causes significant read-through transcription of the
PROMPT PAS, whereas mutation of AWUAAA hexamer
completely abolishes 30 end formation [39]. Overall, the
involvement of a PAS-dependent pathway in directing
expression from bidirectional promoters in mammalian
cells appears unequivocal. However, a few questions re-
main unanswered. In contrast to protein-coding genes,
PAS in a PROMPT context yield unstable RNA that is
subjected to degradation [6,48]. It is therefore speculated
that PAS-dependent termination close to promoters occurs
in suboptimal conditions, which somehow facilitates tran-
script degradation. This is achieved by the recruitment of
the multimeric degradation complex called exosome via
interaction of the cap binding complex (CBP) with the
nuclear exosome targeting complex (NEXT) [39,49]. None-
theless, the mechanism whereby the PAS-associated deg-
radation pathway differentiates ncRNA from mRNA
remains unclear.

In S. cerevisiae, apart from PAS-dependent termination,
Pol II also uses a separate NRD-dependent pathway (Box
3) for termination of short transcripts [42]. The NRD
complex consists of three polypeptides (Nrd1, Nab3, and
Sen1) and is recruited at early stages of transcription.
Furthermore, it responds to specific short sequences in
the nascent RNA (NRD binding sites, NBS) and acts to
promote transcription termination in the downstream re-
gion. NRD complex interacts with CBP and recruits the
exosome together with the associated exonuclease Rrp6
[50]. In contrast to mRNA, NRD-terminated transcripts
are subjected to rapid 30!50 exonucleolytic digestion. This
connection between a termination complex and RNA-
degrading enzymes allows the NRD pathway to maintain
proper transcriptional directionality from bidirectional
promoters. Unwanted transcription is effectively restricted
close to the transcription start site and its product, ncRNA,
is immediately degraded.

Recent extensive genome-wide studies [40] on the func-
tion of NRD have confirmed and broadened previous find-
ings [36,37,51,52] by demonstrating that �50% of known
ncRNA in S. cerevisiae are controlled by NRD. Following
nuclear depletion of Nrd1, RNA-seq analysis of newly
synthesized RNA showed termination defects for many
ncRNA, with 55% of them arising from bidirectional
promoters. Lack of NRD caused a twofold increase in
divergent transcription. Furthermore, photoactivable ribo-
nucleoside enhanced crosslinking (PAR-CLIP), a method
used for analysis of protein–RNA binding, has revealed
321



Box 2. eRNA

Enhancers are described as DNA elements that activate promoters

from a variable distance. The �55 000 enhancers identified in the

human genome play regulatory roles in development, differentia-

tion, and tissue-specific gene expression [99,100]. Like promoters,

enhancers comprise accessible chromatin structure bound by TFs

and Pol II [32,33,101]. However, in contrast to promoters, only 5% of

enhancer sequences consist of CpG islands, and enhancers have

significantly lower levels of H3K4me3 marks, which are responsible

for PIC assembly stimulation [84,99,102]. Instead, enhancers are

generally more defined by H3K4me1 and H3K327 acetylation marks.

Analysis of ncRNA in human embryonic stem cells, murine

embryonic stem cells, and human endodermal cells has revealed

that RNA initiated from enhancers (eRNA) comprises, respectively,

19%, 27%, and 23% of all lncRNA [34]. However, if only lincRNA are

taken into account, eRNA comprise the vast majority.

Enhancer regions promoting transcription (referred as e-promo-

ters) can be either uni- or bidirectional [32,33,103]. Genome-wide

studies in mouse cells have revealed that eRNA transcribed from

bidirectional e-promoters are relatively short (0.5–2 kb) and non-

polyadenylated [103]. By contrast, unidirectional e-promoters gen-

erate longer transcripts (often >4 kb) and are normally

polyadenylated. Although features of Pol II transcribing long eRNA

appear similar to protein-coding genes, its C-terminal domain (CTD)

phosphorylation pattern differs: CTD Ser2 levels are low along the

enhancer-derived transcription unit. Also, the transcribed region

lacks H3K36me3 elongation marks [103]. A poly(A) tail indicates the

presence of a PAS at the 30 end of long eRNA and implies

termination by CPAC. This may control directionality of transcription

initiated in enhancers by the mechanisms as described in this

review. Studies on the murine a-globin locus in mouse erythrocytes

have shed significant light on long eRNA [104]. Transcription from

intragenic a-globin enhancers results in short nonpolyadenylated

eRNA in both directions. However, because these enhancers are

located in the intron of a separate host gene Nprl3, they can also act

as alternative promoters for Nprl3. This results in directional

transcription of lncRNA referred to as multiexonic RNA (meRNA),

which are spliced and polyadenylated as mRNA. Such meRNA are

prevalent in the human genome [104]. This observation raises the

intriguing question: how can bidirectional intergenic e-promoters

convert to unidirectionality? Does such a mechanism act to enforce

transcriptional directionality in a similar manner to that of protein-

coding genes? Taking into account the exceptionally important role

of enhancers in the regulation of basic biological processes, the

better understanding of enhancer-associated transcription may

significantly broaden our knowledge of how protein-coding genes

are activated or silenced.
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relatively higher NRD binding affinity for divergent
ncRNA than for other Pol II transcripts, and has identified
several RNA-binding motifs including those already
known (Box 3). As with human PAS distribution [38,39],
NBS are rarer in protein-coding sequences than in anti-
sense ncRNA. However, the mechanism that antagonizes
NRD termination in mRNA sequences, mimicking the
mammalian PAS–U1 axis, has not yet been established.
Another PAR-CLIP study has revealed that a quarter of
protein-coding genes in yeast are bound by NRD [53], but
only 302 genes show significant concentration of cross-
linked NRD at the 50 end, suggesting the location of
functional terminators. Nevertheless, even a single NBS
is sufficient to trigger transcription termination [54], there-
fore, many genes theoretically may be susceptible to the
NRD termination pathway. However, given that only 44
mRNA coding genes have been shown to be prematurely
terminated by NRD [40,52,55,56], a mechanism that nega-
tively affects NRD-dependent termination over the protein-
coding sequences may exist. Possibly, suppression of NRD
322
termination relies on phosphorylation of Pol II C-terminal
domain (CTD) Tyr-1, which may impair Nrd1–CTD inter-
action and so encourage elongation [57]. Other mechanisms
that control promoter directionality at the transcription
termination level in yeast have yet to be characterized.

In higher eukaryotes no homologs of the NRD complex
have been identified. However, surprisingly, yeast NRD
termination also requires CPAC factors. Although the func-
tional links between CPAC and NRD are still under inves-
tigation, it appears that many CPAC components (e.g.,
Pcf11, Ssu72, Glc7) are crucial for NRD termination [58–
64]. We speculate that in the course of evolution, NRD has
been lost and entirely replaced with CPAC to terminate
ncRNA in higher organisms. Alternatively, yeast might be
considered to have evolved NRD to facilitate the recruitment
of CPAC close to the transcription start site.

Regardless of the organism, ncRNA are enriched in
termination signals. These act to trigger recruitment of
termination factors resulting in premature transcription
termination and subsequent transcript degradation, thus
maintaining transcriptional directionality. Remarkably,
termination factors are also essential for another mecha-
nism that acts to enforce promoter directionality: gene
loops.

Gene loops enhance promoter directionality
As described above, early transcription termination and
subsequent RNA degradation act to remove unwanted
divergent transcription. However, it is now apparent that
a specific gene looping mechanism may further select
productive gene transcription by encouraging Pol II to
transcribe into the sense coding sequence. The fact that
functional and physical interaction between initiation
and termination factors leads to the juxtaposition of
promoter and terminator regions has been known for a
decade [65,66]. Thus ChIP analysis in S. cerevisiae of the
general transcription factor TFIIB, which functions in
promoter regions, also detected it over the 30 ends of
mRNA coding genes [67]. Conversely, some CPAC com-
ponents crosslinked to the 50 ends of genes [66,68,69].
Among them, were the Pol II CTD phosphatase Ssu72,
which interacts genetically with TFIIB [70] and the whole
CPAC subcomplex called cleavage factor IA (CF IA)
[66,68]. Formation of gene loops was also independently
confirmed by chromosome conformation capture analysis
(3C) and shown to be dependent on active transcription
[65,66].

Although gene loop formation is transcription depen-
dent, mRNA synthesis is not strongly affected when the
loop is disrupted. However, gene loops were shown to
contribute to transcriptional memory in yeast. Thus, al-
though transcriptional reactivation of inducible GAL10
and HXK1 genes was faster than the first round of activa-
tion, this effect was lost following gene loop disruption
[71,72]. Physical proximity of the promoter and termina-
tion regions may facilitate reinitiation of RNA polymerase
and therefore improve gene expression [66]. However, it
has not been directly proven that the same Pol II molecule
released at the 30 end of the gene is immediately trans-
ferred to the promoter. Such evidence can only be obtained
from single molecule experiments.



Box 3. PAS- and NRD-dependent transcription termination

PAS-dependent transcription termination is tightly coupled with 30

end processing. Despite the lack of PAS sequence conservation

between mammals and yeast, most of mammalian termination and

processing factors have homologs in S. cerevisiae. Throughout this

review we generally refer to these factors as components of the

CPAC. In higher eukaryotes, CPAC consists of four multi-subunit

complexes: CPSF, CstF, and two cleavage factors (CF Im and CF IIm).

In yeast, homologous proteins are organized into subcomplexes;

CPF and CF IA and CF IB [42,105]. The eukaryotic termination and

processing machinery also contains poly(A) polymerase (PAP) and

poly(A) binding proteins (PABP). CPAC recognizes and binds the

PAS. The CPAC component CPSF-73 (Brr5 in yeast) cleaves the

nascent RNA releasing pre-mRNA [106,107], which is subsequently

polyadenylated. The downstream RNA generated by the cleavage is

digested by 50!30 exoribonuclease Xrn2 (Rat1 in yeast). This is

accompanied by an RNA:DNA helicase called Senataxin which

unwinds potential R-loops formed with the DNA template [108].

Xrn2 degrades RNA and together with the other CPAC components,

displaces Pol II from DNA [109,110].

Recruitment of CPAC also depends on the Pol II CTD. Pcf11, a

component of CF IIm in humans and CF IA in yeast, is crucial for

transcription termination [111]. This protein contains a CTD inter-

acting domain (CID) and is recruited to Ser-2 phosphorylated CTD

[112], characteristic of late stages of transcription. The presence of

termination factors on Pol II approaching the end of the gene

enhances the termination process.

In S. cerevisiae Pol II can be also terminated by the NRD complex

consisting of Nrd1, Nab3, and RNA:DNA helicase Sen1 [50,113].

Similarly to CPAC, NRD recognizes specific sequences in the

nascent RNA [the strongest motifs are UGUA/GUAG and UCUU/

CUUG for the RNA recognition motifs (RRMs) of Nrd1 and Nab3,

respectively] and interacts with CTD via the Nrd1 CID [52,114,115].

However, in contrast to Pcf11, Nrd1 has a stronger affinity to Ser-5

phosphorylated CTD and is therefore recruited at an earlier stage of

transcription [114]. Remarkably, Ser2-P marks are also present over

NRD terminators [59,116] and most CPAC mutants, including Pcf11

but excluding Brr5, display a termination defect for NRD-dependent

genes [58–64]. However, NRD–CPAC interplay remains poorly

understood. The current model, backed by in vitro data, assumes

that Sen1, delivered to the nascent RNA by NRD, translocates in a

50!30 direction and somehow displaces Pol II [117].
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Recently, intragenic gene loops have also been shown to
enhance transcriptional directionality from bidirectional
promoters in S. cerevisiae [73]. Mutations of Ssu72 affects
loop formation, which in turn results in Pol II relocation on
the promoter towards the production of divergent ncRNA
and their consequent accumulation. ssu72-2 mutant cells
show the appearance of 605 novel ncRNA called Ssu72
restricted transcripts (SRTs); the majority of which are
associated with bidirectional promoters. Mutation of the
TFIIB component Sua7 and other CPAC factors involved in
gene looping, Pta1, Rna14 and RNA15, also causes an
increase in promoter-associated ncRNA. Furthermore, re-
placement of the PAS with an Rnt1 cleavage signal (RCS)
results in a similar phenotype. RCS can act as an alterna-
tive terminator for Pol-II-transcribed genes [74,75]. How-
ever, the lack of PAS disrupts the association of CPAC and
consequently prevents gene loop formation. This results in
threefold higher transcription of the noncoding divergent
region compared to the gene possessing a normal PAS.
Overall, gene loop formation favors transcription in the
direction that forms a looped structure. It must be men-
tioned that Ssu72 is also essential for the NRD pathway.
By controlling both processes of early transcription termi-
nation and gene looping, this protein appears to be the
determinant factor for promoter directionality. The CPAC
subcomplex CF IA has consistently been shown to be
involved in gene loop formation, where it promotes Pol
II reinitiation and transcription of the coding region [69].
Intrinsic DNA sequences can also modulate transcription-
al directionality through physical properties that facilitate
looping. Genes where TFIIB was detected at the 30 end are
likely to form loops [76,77]. Interestingly, their gene
sequences display higher flexibility in the middle of the
open reading frame (ORF) than in nonlooped genes [77].

In higher organisms the process of gene looping has not
been investigated in depth. However there are strong
indications that the same mechanism exists in animals
and plants. Human TFIIB recruits both CPSF and CstF to
the promoter at an early transcriptional stage, before Pol II
enters into the elongation phase [78]. TFIIB is also neces-
sary for CstF recruitment to the terminator region and
interacts directly with human Ssu72 and CstF-64 [68,78].
Similarly, in D. melanogaster TFIIB is required for termi-
nation of the polo gene. In this case, 3C analysis shows the
existence of a TFIIB-dependent gene loop between promot-
er and terminator region [79]. Looping of the mammalian
genes CD68 and BRCA1 as well as the plant gene FLC has
also been reported [80–82]. Finally, a gene loop was
detected across integrated HIV-1 provirus following tran-
scriptional activation [83].

Gene loops provide an additional mechanism to enforce
promoter directionality. In contrast to transcription termi-
nation, which aborts transcription of noncoding upstream
regions, gene loops direct Pol II into the protein-coding
sequences. However, their genome-wide prevalence is yet
to be estimated.

Chromatin marks reinforce promoter directionality
On leaving the promoter and transcribing into the gene
body, Pol II encounters nucleosomes; chromatin structural
elements that consist of histones. Modified histones act as
modulators of transcription, including regulation of tran-
scription from bidirectional promoters. Divergent PICs on
the promoters are in general compositionally equivalent
[29]. Consequently, in human cells, histone H3 lysine 4 is
trimethylated (H3K4me3) on both sides of the promoter
and acts to stimulate PIC formation [7,84]. By contrast, the
marker of active transcription, H3 lysine 79 dimethylation
(H3K79me2) is found only over the coding region [7].

In yeast, the ssu72-2 mutation results in H4 acetylation
in the upstream noncoding region of the bidirectional
promoters [73]. This suggests that H4 deacetylation nor-
mally acts to reinforce transcriptional directionality estab-
lished by Ssu72-dependent gene loops. Deacetylated
histones are thought to form more compact chromatin than
when acetylated. This restricts access to transcription
factors and so affects transcription [85].

Why is divergent transcription needed?
Promoter bidirectionality as a general feature of eukary-
otic genes could facilitate genome evolution by providing a
pool of noncoding transcripts that may potentially cause a
gain of function. It has been suggested that some long
ncRNA (lncRNA) might be evolutionary precursors of
mRNA-coding genes [38]. Indeed, the distribution of
323
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PAS and U1 sites over mRNA–PROMPT, mRNA–lncRNA,
and head to head mRNA–mRNA genes, reveals that
mRNA–lncRNA have an intermediate pattern. Consistent
with this, evolutionary analysis of mouse genes has uncov-
ered that the gain of U1 sites and loss of PAS at gene 50

ends is correlated with the age of the gene [38]. This
reinforces promoter directionality towards the coding se-
quence and promotes the stability and inheritance of the
gene. The role of divergent transcription in genome evo-
lution has been recently reviewed [86].

Bidirectional promoters offer an additional possibility to
control gene expression. The negative impact on expres-
sion of protein-coding genes by competition for TFs be-
tween sense and antisense PICs [4] was mentioned above.
However, divergent transcription can also positively affect
gene expression. PICs formed in a noncoding direction may
help to maintain NFRs and locally provide a pool of avail-
able TFs, which may then be used to enhance transcription
of the coding region, if so needed. Negative supercoils
generated behind actively transcribing Pol II may create
tension that helps unwind the DNA duplex in promoters
and so increases the efficiency of transcription initiation in
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either direction [87]. Finally, head-to-head protein-coding
genes often encode proteins involved in the same biological
process. This arrangement appears to enhance their co-
regulation and gives an advantage in rapid response to
different stimuli [88]. The best examples are genes encod-
ing DNA repair enzymes, where bidirectional promoters,
both expressing proteins respond to DNA damage, are five
times more represented than unidirectional [1].

Concluding remarks
Transcriptional initiation de novo appears to be direction-
ally unbiased. Pol II starts transcribing in both directions
making either mRNA or ncRNA. Uncontrolled transcrip-
tion of noncoding regions may lead to downregulation of
divergent mRNA and potentially toxic accumulation of
ncRNA. However conditions that facilitate transcription
initiation of ncRNA also promote mRNA synthesis.
Finally, divergent transcription provides the opportunity
for the evolution of new genes. Therefore eukaryotes
have retained mechanisms that allow for the existence
of bidirectional ncRNA–mRNA promoters, by restricting
the synthesis of unwanted ncRNA (Figure 2).
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The first line of defense against pervasive transcription
is early transcription termination of ncRNA. This is medi-
ated by PAS- and NRD-dependent pathways in mammals
and yeast, respectively. In both cases termination signals
are unequally positioned in each direction. Protein-coding
sequences are depleted of PAS in human or NBS in yeast,
whereas divergent noncoding regions are enriched in these
sequences. Conversely, in mammals there is an opposite
distribution of U1 sites that inhibit premature PAS recog-
nition in protein-coding sequences. In addition, the first
round of transcription of the coding sequence assists in
establishing chromatin marks that promote efficient elon-
gation. Finally, when transcribing Pol II approaches the 30

end of the coding sequence, CPAC is recruited. This estab-
lishes interactions with TFIIB on the promoter and so
creates a gene loop, which in turn strengthens transcrip-
tional directionality. Taken together, bidirectional promo-
ters are controlled at two stages. First, Pol II elongation
directionality is regulated by transcriptional termination,
and second, gene loops selectively enhance Pol II transcrip-
tion on coding sequences.

Many questions concerning transcriptional direction-
ality remain unanswered. How is it regulated in the
case of head-to-head protein-coding genes when both
divergent genes form loops? Can the promoter and
PAS of ncRNA juxtapose? How widely distributed are
gene loops in yeast and higher eukaryotes? Although the
mammalian CoTC-type termination mechanism is as yet
poorly understood, it will be interesting to investigate
whether this type of PAS-dependent transcription termi-
nation is also involved in promoter-dependent antisense
termination.

Transcriptional directionality can also potentially be
regulated by RNA editing. Adenosine deaminase acting
on RNA (ADAR) proteins can convert adenosine to ino-
sine (reviewed in [89]). Inosine is then recognized as
guanosine by the splicing and translation machineries.
ADAR has been shown to introduce alternative 50 (U1
site) and 30 splicing sites [90,91]. Similarly, recently
described R-loop-related editing of nascent transcripts
frequently introduces U/A-to-G changes [92], which could
also preferentially alter RNA sequence. It is therefore
tempting to speculate that such RNA editing contributes
to transcriptional directionality by creating U1 sites or
by destroying PAS sequences, thus selectively enhancing
mRNA synthesis.

Directing Pol II towards the coding region and restrict-
ing transcription of noncoding regions ensures proper gene
expression. Moreover, bidirectional promoters offer an
opportunity to create additional layers of either positive
or negative regulation on protein-coding genes. Immediate
transcription termination in the noncoding regions and
subsequent degradation of unwanted RNA reduces the
potential selective pressure to convert bidirectional into
unidirectional promoters. This may in turn facilitate the
origin of new genes and thus evolutionary progress.
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