
 
 

University of Birmingham

Genomic responses of mouse synovial fibroblasts
during TNF-driven arthritogenesis greatly mimic
those of human rheumatoid arthritis
Ntougkos, Evangelos;  Chouvardas , Panagiotis ; Roumelioti, Fani; Ospelt, Caroline; Frank-
Bertoncelj, Mojka; Filer, Andrew; Buckley, Christopher; Gay, Steffen; Nikolaou, Christoforos;
Kollias, George
DOI:
10.1002/art.40128

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ntougkos, E, Chouvardas , P, Roumelioti, F, Ospelt, C, Frank-Bertoncelj, M, Filer, A, Buckley, C, Gay, S,
Nikolaou, C & Kollias, G 2017, 'Genomic responses of mouse synovial fibroblasts during TNF-driven
arthritogenesis greatly mimic those of human rheumatoid arthritis', Arthritis & Rheumatology (Hoboken), vol. 69,
no. 8, pp. 1588-1600. https://doi.org/10.1002/art.40128

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is the peer reviewed version of the following article: Ntougkos, E., Chouvardas, P., Roumelioti, F., Ospelt, C., Frank-Bertoncelj, M.,
Filer, A., Buckley, C. D., Gay, S., Nikolaou, C. and Kollias, G. (2017), Genomic responses of mouse synovial fibroblasts during TNF-driven
arthritogenesis greatly mimic those of human rheumatoid arthritis. Arthritis & Rheumatology. Accepted Author Manuscript.
doi:10.1002/art.40128, which has been published in final form at 10.1002/art.40128. This article may be used for non-commercial purposes
in accordance with Wiley Terms and Conditions for Self-Archiving.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. Mar. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/267297925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1002/art.40128
https://doi.org/10.1002/art.40128
https://research.birmingham.ac.uk/portal/en/publications/genomic-responses-of-mouse-synovial-fibroblasts-during-tnfdriven-arthritogenesis-greatly-mimic-those-of-human-rheumatoid-arthritis(7b5e2fbe-9d89-49f8-b1dc-5d70a2cf1745).html


 

 

RUNNING HEAD: Genomic alignments of mouse and human arthritogenic synovial 

fibroblasts. 

 

TITLE: Genomic responses of mouse synovial fibroblasts during TNF-driven 

arthritogenesis greatly mimic those of human rheumatoid arthritis. 

 

AUTHORS: Evangelos Ntougkos PhD1,2, Panagiotis Chouvardas MSc 1,2,7, Fani 

Roumelioti MSc1,3, Caroline Ospelt PhD4, Mojka Frank-Bertoncelj PhD4, Andrew Filer 

PhD5, Christopher D. Buckley PhD5, Steffen Gay PhD4, Christoforos Nikolaou PhD1,6, 

George Kollias PhD1,7. 

 

Financial support: This work has been funded by the IMI project BTCure (Grant 

Agreement no. 115142-2) to GK and SG, including a Research grant from Janssen 

Biologics B.V.; the Greek GSRT project INNATE FIBROBLAST (ERC06, co-financed by 

the ESF and NSRF 2007–2013) to GK; the FP7 Advanced ERC grant MCs-inTEST (Grant 

Agreement no. 340217) to GK; and Research Projects for Excellence IKY/SIEMENS 

(Grant Agreement no. 3288) to GK. 

                                                            
1
 BSRC Alexander Fleming, Vari, Greece. 

2
 Authors contributed equally to this work. 

3
 Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 

Athens, Greece. 
4
 Centre of Experimental Rheumatology, University Hospital of Zurich, Zurich, Switzerland. 

5
 University of Birmingham, Birmingham, United Kingdom. 

6
 Computational Genomics Group, Department of Biology, University of Crete, Heraklion, Greece. 

7
 Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 

Athens, Greece. 

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as an
‘Accepted Article’, doi: 10.1002/art.40128
© 2017 American College of Rheumatology
Received: Dec 21, 2016; Revised: Mar 15, 2017; Accepted: Apr 11, 2017

Full Length Arthritis & Rheumatology
DOI 10.1002/art.40128

This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.



Genomic alignments of mouse and human arthritogenic synovial fibroblasts. 

2 
 

Correspondence to: George Kollias, BSRC Alexander Fleming, Vari, 16672, Greece, 

g.kollias@fleming.gr, tel.: +302109656507.  

This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.



Genomic alignments of mouse and human arthritogenic synovial fibroblasts. 

3 
 

ABSTRACT 

Objective. Aberrant activation of synovial fibroblasts (SFs) is a key determinant in 

the pathogenesis of rheumatoid arthritis (RA). We aimed to produce a map of gene 

expression and epigenetic changes occurring in this cell type during disease 

progression in the human TNF-transgenic model of arthritis, and identify 

commonalities with human SFs. 

Methods. We used deep sequencing to probe the transcriptome, the methylome 

and the chromatin landscape of cultured mouse arthritogenic SFs at three stages of 

disease, as well as SFs stimulated with human TNF. We performed bioinformatics 

analyses at the gene, pathway and network levels, compared mouse and human 

data, and validated selected genes in both species.  

Results. We report that SF arthritogenicity is reflected on distinct dynamic patterns 

of transcriptional deregulation, enriched in pathways of the innate immune 

response and mesenchymal differentiation. A functionally-representative subset of 

these changes is associated with methylation, mostly in gene bodies. The 

arthritogenic state involves highly active promoters, marked by H3K4 

trimethylation. There is significant overlap between mouse and human data, at the 

level of deregulated genes and to an even higher extent at the level of pathways. 

Conclusion. This work presents the first systematic examination of the pathogenic 

changes that occur in mouse synovial fibroblasts in progressive TNF-driven 

arthritogenesis. Significant correlations with respective human RA SF data further 

validate the human TNF-transgenic mouse as a reliable model of the human 

disease. The resource of data generated here may serve as a framework for the 

discovery of novel pathogenic mechanisms and disease biomarkers.  
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Rheumatoid arthritis (RA) is a chronic, inflammatory, disease, characterised by 

extensive damage to diarthroidal joints. Our understanding of RA has largely relied 

on the use of mouse models, such as collagen-induced arthritis, collagen antibody-

induced arthritis and the TNF-transgenic models; work on the latter established the 

proof of principle for the pivotal role of TNF in disease pathogenesis and its 

therapeutic targeting by anti-TNF biologics (1). The same models established the 

synovial fibroblast (SF) as a key cellular player and target of TNF in RA (2). Whilst 

under physiological conditions SFs provide nourishment and protection to the joint, 

upon chronic innate immune activation, they undergo a complex process described 

as arthritogenic “transformation”: they proliferate aberrantly and acquire resistance 

to death, thus becoming hyperplastic; and they express pro-inflammatory cytokines, 

matrix degrading enzymes and cell adhesion molecules, thus contributing to an 

inflammatory and tissue-damaging microenvironment  (3–5). Moreover, SFs can 

migrate to distant sites via the vasculature, maintaining and transferring their newly-

acquired destructive properties, both in human and in mouse models (6,7).  

Epigenetic changes underlie the activated and aggressive phenotype of RA SFs (8). 

Most of the relevant studies have examined the contribution of the methylome, 

reporting global genomic hypo-methylation in the arthritogenic human synovial 

fibroblast (9–12). In addition, micro RNA deregulations are known to accompany 

disease both in human and mouse (13).  

In order to assess the gene expression and epigenetic changes that occur in synovial 

fibroblasts during the arthritogenic process, we have initiated a multi-level omics 

analysis of human TNF-transgenic (Tg197) SFs using next generation sequencing 

(NGS) approaches. Here, we report the molecular profile of the activated synovial 
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fibroblast at the level of the transcriptome, the methylome and active chromatin as 

evidenced by H3K4 trimethylation. This profile entails distinct deregulations 

associated with functional pathways, notably related to the innate immune response 

and mesenchymal differentiation; methylation changes correlated with expression in 

specific genes; and an activated chromatin profile. In the context of this key 

pathogenic cell type, at the level of genes and even more at the level of pathways, 

the human TNF-transgenic model aligned significantly with human data. 

 

MATERIALS AND METHODS 

 

Mouse and human synovial fibroblasts 

Mouse synovial fibroblasts were isolated from CBAxC57BL/6 human TNF-transgenic 

(TghuTNF; Tg197) mice (1) and wild-type littermates housed under specific 

pathogen-free conditions at three disease stages: early (3 weeks), established (8 

weeks) and late (11 weeks), as previously described (14). Three biological replicates 

were isolated per condition; for each, a pool of three mixed-gender mice was used.  

Purity of all isolations was assessed by FACS, with acceptance criteria being: more 

than 85% positive for CD90.2 and less than 2.5% positive for CD45. 

Human samples used for RNA sequencing were isolated from the knees of three RA 

patients, as well as of three healthy individuals (as defined below), as detailed 

elsewhere (15). Human RA synovial fibroblasts used for validations were isolated 

from synovial tissues obtained from patients undergoing joint replacement surgery 

at the Schulthess Clinic, Zurich, Switzerland. All patients fulfilled the 2010 

ACR/EULAR criteria for the classification of RA. Samples described as healthy synovial 
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fibroblasts were grown from synovial biopsies from arthralgia patients without 

clinical or histological signs of inflammation or cartilage destruction, at the Queen 

Elizabeth Hospital, Birmingham, UK. Details regarding these human samples can be 

found in Supplementary Table 1. Human studies were approved by the local ethics 

committees of the University Hospital Zurich, Switzerland and the University of 

Birmingham, UK. Informed consents were obtained from all patients. 

 

Extraction of RNA and DNA  

RNA was extracted from mouse SFs using the Absolutely RNA Miniprep Kit (Agilent 

Technologies) and from human SFs using the miRNeasy Mini kit (Qiagen). DNA was 

extracted from mouse SFs using the PureLink Genomic DNA Mini Kit (Invitrogen).  

 

Enrichment for MethylCap and H3K4me3 

In order to enrich for methylated DNA, the MethylMiner DNA Enrichment Kit from 

Invitrogen was used as per the manufacturer’s instructions. DNA was firstly 

fragmented by sonication to an average size of 250 bp using a Covaris S220 focused-

ultrasonicator. Then enrichment was performed with a double elution (high and low 

salt) in order to capture both sparsely- and densely-methylated DNA; fractions were 

combined in the end. To enrich for H3K4me3, DNA was processed using the iDeal 

ChIP-seq Kit (Diagenode) in combination with a ChIP-grade H3K4me3 antibody 

(Diagenode), as per the manufacturer’s instructions. Chromatin was firstly sheared 

by sonication using a Bioruptor (Diagenode) and then subjected to the H3K4me3 

enrichment protocol with a minor modification: after performing an RNase I 

digestion for 30 min at 37oC, the de-crosslinked DNA was eluted using the QIAquick 

This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.



Genomic alignments of mouse and human arthritogenic synovial fibroblasts. 

7 
 

PCR Purification Kit (Qiagen). Enrichment (in comparison to a non-enriched input 

control) was confirmed by quantitative PCR.  

 

Preparation of libraries and next generation sequencing 

All library preparations, next generation sequencing and quality control steps were 

performed by the McGill University and Genome Quebec Innovation Centre. More 

specifically, for RNA-seq, TruSeq RNA libraries were prepared and samples were run 

in an Illumina HiSeq2000 platform using a 100 bp paired-end setup. For MethylCap-

seq, TruSeq genomic DNA libraries were prepared and samples were run in an 

Illumina HiSeq platform using a 100 bp paired-end setup. For ChIP-seq, TruSeq 

genomic DNA libraries were prepared and samples were run in an Illumina HiSeq 

platform using a 100 bp paired-end setup. For human samples, preparation of 

libraries and next generation sequencing was performed as detailed elsewhere (15)  

 

Bioinformatic analyses 

General: Quality of sequencing was accessed using FastQC software (16), which also 

calculates the average quality of reads. The number of mapped reads was calculated 

with the use of the samtools tool (-flagstat) (17). Conversion of alignment files (bam) 

to bed format was done with bedtools (bamtobed) (18). Bam files were also 

converted to bedgraph with bedtools (genomecov -bga) and bedgraph files were 

converted to bigwig using the UCSC bedGraphToBigWig utility. Volcano plots were 

created in R with an in-house developed script, which is based on the ggplot 

package. Heat maps were also generated in R with the heatmap.2 function of the 

gplots package. Functional analyses were performed with the online tool Enrichr 
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(19). For all statistical comparisons the cut-off for significance was set to 0.05. With 

the exception of KEGG pathway enrichment and human RNA-seq analyses, in all 

other comparisons p values were adjusted for multiple comparisons. Human-mouse 

overlap was tested using an online tool based on a normal approximation to the 

exact hypergeometric probability  (20).  

RNA-seq: Mouse RNA-seq samples were analysed with the tophat-cufflinks pipeline 

(21–23). Reads were mapped to the mm9 genome with tophat2. Transcripts were 

assembled using cufflinks. Final transcriptome assembly was performed with 

cuffmerge and differential expression was identified with cuffdiff. Venn diagrams 

were created with InteractiVenn (24) or the online tool Venny (25). Clustering of 

genes was performed with k means based on both the fold change and the q value of 

all time points. The number of clusters was selected with the use of the elbow rule. 

The average cluster profile was plotted in R using the fold changes and the q values 

of the clusters' centroids. RNEA was performed as previously described  (26). 

Networks were visualised in Cytoscape (27) and the characteristics of nodes (colour 

and size) were based on betweenness centrality and outdegree. The compilation of 

differentially-expressed gene lists from human RNA sequencing data has been 

described elsewhere (15). 

 

MethylCap-seq/H3K4me3-seq: MethylCap- and H3K4me3-seq reads were mapped 

using the BWA tool (28). Visualisations of general profiles were created with seqplots 

(29). Methylation plots were generated with the use of a pseudo-length of 10 kb, to 

which the genes were extended or shrunk using linear approximation (“anchored 

features”). Differential analysis was performed with diffReps (30) using the default 
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normalisation procedure and windows of 500 bases for MethylCap-seq and 1000 

bases for H3K4me3-seq.  

 

Quantitative RT-PCR 

For validation of deregulated genes identified by RNA-seq in the mouse, an 

independent set of mouse SF RNA was used, comprising triplicate biological samples 

for each condition. All primers were QuantiTect Primer Assays (Qiagen) and were 

used in conjunction with QuantiFast SYBR Green RT-PCR Kit (Qiagen), according to 

the manufacturer’s instructions. Thermal cycling was performed in a Bio-rad CFX96 

Touch Real-Time PCR Detection System. Expression was quantified relative to B2m. 

For validations in human SFs, reverse-transcribed total RNA was measured in a 7500 

Real-Time PCR System (Applied Biosystems) using self-designed primers (Suppl. 

Table 2) in combination with SYBR green dye. No template control samples, 

dissociation curves and samples containing the non-transcribed RNA were run as 

controls. For normalisation, expression of HPRT1 was used (target – HPRT1 

expression = ΔCT). 
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RESULTS 

 

Arthritogenic synovial fibroblasts from the Tg197 mouse exhibit distinct patterns of 

transcriptional deregulation during disease progression. 

In order to explore cell-specific transcriptional changes accompanying disease 

progression in the Tg197 mouse model of rheumatoid arthritis, synovial fibroblasts 

were isolated from diseased and healthy animals at three stages of disease: 3 weeks, 

representing an early stage of not overtly manifested pathology; 8 weeks, which is a 

stage of established disease; and 11 weeks, a late stage of severe pathology (Suppl. 

Figs. 1 and 2A). RNA samples were processed for NGS, confirming the quality of 

sequencing as shown in Supplementary Figures 2B and C. As can be seen in Figure 

1A, more than one thousand significant differentially-expressed genes (DEGs) were 

identified. The early stage of disease is characterised by the least, equally 

represented by up- and down-regulation, whereas the most were identified in the 

established stage, where up-regulation predominates; this is also true for the late 

stage of disease. A considerable number of DEGs are persistent throughout disease 

(177 up-regulated; 114 down-regulated), while there are also stage-specific ones 

(Fig. 1B). Interestingly, the vast majority of early DEGs are met throughout the 

disease, indicating genes that play a central role in disease development.  

In an effort to explore further the patterns of deregulation identified, we classified 

DEGs in six clusters, according to their occurrence in disease progression (Fig. 1C). 

Three clusters were associated with up-regulated genes and three with down-

regulated genes. These clusters were then subjected to functional enrichment 

analysis, so as to examine whether they are associated with distinct functional 
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categories. Regarding up-regulation clusters, immune response was identified as the 

most prominent functional category, being significant throughout disease 

progression. Stage-specific up-regulation encompasses functions of cell signalling, 

cell adhesion, cytokine response, cell motility and the extracellular matrix. Notably, 

genes down-regulated in all disease stages are functionally related to differentiation. 

This becomes more pronounced in the cluster of genes down-regulated at the late 

stage, where we observed a deficit in the culmination of differentiation processes 

(termed morphogenesis). Additional functions of down-regulation across disease are 

related to the extracellular matrix and negative regulation of proliferation (hence an 

overall positive proliferative potential). Stage-specific down-regulation clusters 

include functions of cell division and regulation of WNT signalling. In the context of 

all these clusters, late is the most distant hierarchically, indicating the farthest, 

functionally evolved, stage of disease. 

In a complementary functional approach, the deregulation of each disease stage was 

subjected to functional enrichment and clustering was performed according to the 

top 25 terms of the early stage (Fig. 1D). Functions enriched in the up-regulated 

genes mostly correspond to the immune response and their enrichment becomes 

more pronounced with disease progression. The majority of the top immune 

response-related ontology terms enriched in the three stages are related to the 

innate immune response and TLR signalling. Functions enriched in the down-

regulated genes are mostly linked to differentiation and the extracellular matrix; the 

tendency across disease applies here too, albeit to a lesser extent. As in the first 

functional analysis, the late stage of disease is the most distant one. 
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In addition, we sought to identify transcriptional regulators that underlie the 

identified deregulation profiles. To this end, an in-house developed tool, RNEA, was 

used, which performs enrichment analysis using transcriptomic data in combination 

with transcriptional network assignment algorithms (26). Having observed that 

despite the high complexity of networks derived for each disease stage the top 

significant central players were consistent (Suppl. Fig. 3), we focused on the common 

transcriptional network that applies throughout disease. As can be seen in Figure 1E, 

this transcriptional network was found to have three central regulators: NFKB1, 

PPARG and CEBPA. These transcription factors are highlighted to have both a central 

and strong impact, placing the NF-κΒ and mesenchymal differentiation pathways in 

the core of our transcriptome profiles and thus Tg197 pathogenesis.  

 

Global DNA methylation changes associate with the activated Tg197 SF profile. 

We next examined the methylome of the arthritogenic synovial fibroblast. 

MethylCap sequencing was performed using the same biological sample set; quality 

control metrics can be seen in Supplementary Figures 2B and C. Approaching 

differential methylation using a promoter/gene body dichotomy in our analyses, we 

observed that in the early and late stage promoters, differentially-methylated 

regions (DMRs) show similar levels of enrichment (hyper-) and depletion (hypo-

methylation; Fig. 2A). In the established stage, there is a tendency for more hyper-

methylation. As regards gene body methylation, there is pronounced hypo-

methylation associated with the established stage of disease. Looking into the 

distribution of these DNA methylation changes, as disease progresses the signal 

tends to spread away from the transcription start site (Fig 2B). There is a higher 
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enrichment in gene body methylation, most of which being exonic, while most 

overall differential methylation is found in CpG islands.  

As to the relationship between DNA methylation and expression, we firstly noted 

that if we stratify our expression data in quantiles then methylation appears to be an 

indicator of the level of expression, positively downstream of the transcription start 

site, mostly negatively upstream of it (Fig. 2C). Trying to correlate the deregulations 

identified at the RNA level with changes in DNA methylation, we observed that 

approximately one quarter of our DEGs at any disease stage are accompanied by a 

change in methylation (Fig. 2D). Out of these, half follow the “canonical” correlation 

between methylation and expression (inverse for the promoter, positive for the gene 

body), the vast majority of which corresponding to gene body DMRs. Approximately 

one fifth of the latter, i.e. of genes whose deregulation at the RNA level is positively 

correlated with gene body methylation,  are associated with exonic DMRs. 

We then narrowed down our analysis to the genes that are both differentially-

expressed and methylated in the expected manner and performed functional 

enrichment. This approach returned functions most significantly related, at all 

stages, to the extracellular matrix and, at the established and late stages, to cytokine 

signalling, proliferation, adhesion, migration, differentiation, and cell death. These 

enrichments constitute a representative subset of the above-described functional 

profile based on the RNA-seq data.  

These results suggest that DNA methylation accompanies a subset of functionally-

important, disease-associated deregulation in the Tg197 mouse.  

 

Activation of the synovial fibroblast is marked by open chromatin. 
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To assess transcriptionally-active genes, we probed for H3K4 trimethylation, a 

histone mark associated with active promoters. Quality control metrics of the 

sequencing can be found in Supplementary Figure 2. Most differentially-marked 

regions were identified in the early time-point, where H3K4me3 depletion 

predominates, whereas in the other two time-points there are approximately equal 

numbers of enriched and depleted regions (Fig. 3A). Inspecting the distribution of 

changes, we observed that in all three time-points there is enrichment in the 

promoter, as expected for this histone mark, without any clear differences in 

distance to the transcription start site (TSS; Fig. 3B). Focusing therefore around the 

TSS, we noted that H3K4me3 signal mirrors the level of expression, both of the 

Tg197 and the wild-type (Fig. 3C). Interestingly, the activated state of the arthritic SF 

is evident in this marker of open chromatin both at the early and the established 

stage, as Tg197 H3K4 trimethylation levels are higher overall. Significant H3K4 

trimethylation in the synovial fibroblast was hence found to be a good predictor of 

differential expression: the correlation between H3K4me3 and RNA expression is 

high for all disease stages (rs = 0.69 for the early, 0.61 for the established and 0.72 

for the late time-point; Fig. 3D). Due to this high correlation, the output of functional 

enrichment analysis of differentially H3K4-marked and expressed genes mirrors that 

of the general profile (data not shown).  

Based on the above, pathogenic activation of the synovial fibroblast is engraved on 

its chromatin, with H3K4 trimethylation being a good marker for this activation. 

 

Assessment of the impact of exogenously-administered TNF on the identified 

signatures. 

This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.



Genomic alignments of mouse and human arthritogenic synovial fibroblasts. 

15 
 

TNF plays a pivotal role in both Tg197 and human disease, where it is a major 

pathogenic cytokine in the inflammatory milieu of the arthritic joint (1). We aimed to 

assess the ex vivo impact of TNF at the level of the transcriptome, methylome and 

active chromatin, so as to build on our understanding of the interplay of TNF and 

synovial fibroblast biology, also given that TNF stimulation is widely used in human 

RA SF studies. To this end, in parallel to our above efforts, wild-type SFs were treated 

with human TNF for 24 hours and analysed as the rest of the samples (see Suppl. Fig. 

1 for sequencing metrics). Figure 4A summarises our findings of genes up- or down-

regulated at the level of RNA, hyper- or hypo-methylated, and enriched or depleted 

in H3K4me3, following stimulation with human TNF. 

At the level of differentially-expressed genes or differentially-marked regions, a 

considerable number of deregulations forming part of the Tg197 signature are 

shared with the TNF-induced profiles in all three time-points: approximately 85% for 

RNA and DNA methylation and 70% for H3K4 trimethylation (Fig. 4B). At the level of 

pathways, the overlap becomes more pronounced, where we observed that sixteen 

out of twenty KEGG pathways enriched following TNF stimulation were also found in 

the Tg197 signatures. Nonetheless, a high number of significant DEGs (100 for the 

early, 718 for the established and 554 for the late stage) and enriched pathways (1, 

18 and 18, respectively), were only identified in the Tg197 profiles. 

It follows from the above that, ex vivo as in vivo, TNF sensed by the synovial 

fibroblast contributes to the creation of a pro-inflammatory and pathogenic 

environment that is reflected, at the level of both genes and pathways, on 

pathogenic changes to the transcriptome, the methylome and chromatin.  
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Validations and comparisons with human data. 

In a technical validation of our sequencing results, a panel of 20 genes selected 

among the top deregulated ones identified by RNA-seq were validated by 

quantitative RT-PCR (qRT-PCR), using an independent sample set. As can be seen in 

Figure 5A, there was a very high correlation between RNA-seq and qRT-PCR data, 

establishing experimental reliability (rs = 0.96 for the early, 0.90 for the established 

and 0.90 for the late time-point).  

To assess whether our findings in the mouse can be verified in the context of human 

disease, we made use of an RNA-seq data set comparing human RA SFs to healthy 

SFs. The broad picture of the identified human deregulations can be seen in Figure 

5B. At the level of genes, approximately a tenth of mouse SF deregulations were also 

identified in the same direction in the human, a very significant  overlap (p < 0.001), 

despite differences in isolation and culturing conditions, inter-species variability and 

the high inter-patient variability in humans (Fig. 5C). At the level of pathways, this 

significant overlap  becomes higher, with approximately one third of the pathways 

enriched in mouse SFs being also enriched in human SFs (p < 0.001); key pathways 

identified above, such as innate immune and differentiation pathways, were found 

to be shared. 

Eight genes that were validated in mouse SFs and represent key pathways, such as 

immune response and differentiation, shared by mouse and human, were also 

examined by qRT-PCR in human SFs (Fig. 5D). Five out of them were significantly 

deregulated in these samples, namely MMP3 (up-regulated), and LECT1, WNT16, 

PPARG and SP7 (down-regulated). NOD2 (an up-regulated DEG) was also found to 

This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.



Genomic alignments of mouse and human arthritogenic synovial fibroblasts. 

17 
 

differ significantly upon TNF stimulation, as its baseline levels are very low in the 

human (data not shown).  

For a comparison between mouse and human at the level of the methylome, we 

exploited two studies reporting human SF data (9,31). We compared the intersection 

of changes reported by these studies with our mouse methylation data (Fig. 5E). As 

can be seen, approximately half of the genes identified in the human are also found 

in the mouse, a highly significant overlap (p < 0.001).   

Our findings contribute towards a systems-level validation of the human TNF-

transgenic mouse as a model of the human disease, highlighting cell type-specific 

commonalities in key genes and pathways. 

 

 

DISCUSSION 

In light of recent controversies on whether animal models accurately reflect human 

disease  (32,33), we re-approached one of the key mouse models of rheumatoid 

arthritis, the human TNF-transgenic mouse, so as to achieve a high-resolution profile 

of the activated synovial fibroblast and compare it to human disease. In this disease-

driving cell type, arthritogenicity is mirrored on distinct expression profiles 

characterised by early-onset and persistent changes, indicating that, even before the 

joint has been extensively damaged, pathogenic molecular processes are already at 

work.  

Functionally, continuous up-regulation of gene expression was connected with the 

innate immune response, highlighting the role of the synovial fibroblast as an innate 

immune sensor (34–36). Down-regulation was linked to functions related to cell 
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differentiation, with two out of the three identified central transcriptional 

regulators, namely CEBPA and PPARG, being involved in mesenchymal differentiation 

(37,38); the latter was also validated here in human RA SFs by quantitative RT-PCR. 

Given the unclear relationship between mesenchymal stem cells and RA SFs and the 

importance of differentiation processes in disease pathogenesis (39,40), the aspect 

of synovial fibroblast ontogeny in physiology and pathology merits further 

exploration and presents a good case of how omics data can be the starting point for 

more focused studies.  

To date, the most studied epigenetic change in RA has been DNA methylation. The 

examination of our data from the perspective of the gene body, which represents 

the majority of genic space, reveals a hypo-methylated profile, in agreement with 

previous publications in human RA SFs (12). Genome-wide correlations between 

DNA methylation and gene expression are hampered by the complexity of the 

former as an epigenetic phenomenon. Nevertheless, we have been able to link 

differential methylation, most abundantly at the gene body, with approximately a 

quarter of our identified expression changes. In concert with the above-described 

functional highlights, among the functions enriched in differentially-methylated and 

expressed genes, we also find highly significant examples of mesenchymal 

differentiation processes and the innate immune response. Sox10, through 

methylation-dependent transcription is implicated to suppress stemness by binding 

to beta catenin, and is also expressed by a novel rat synovial stem cell population 

capable to give rise to mesenchymal lineages (41,42).  Moreover, this is the first 

report of methylation-modulated expression of TLR2, a known innate immune 

sensing receptor in SFs, as observed in other inflammatory conditions (34,43).  It is 
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also the first time that increased expression of podoplanin (Pdpn), which is well-

documented in human arthritic synovium, is linked with changes in promoter 

methylation, similar to other cells of mesenchymal origin (44–46). 

Furthermore, this work represents the first attempt to explore H3K4 trimethylation 

in SFs. Their arthritogenicity was shown to be defined by activated chromatin, 

making the promoters of pathogenic genes highly active and ready to drive disease-

promoting transcription. Interestingly, in another innate immune cell type, the 

macrophage, it is known that TLR signalling induces H3K4 trimethylation so as to 

facilitate rapid transcription of target genes (47). This histone mark has also been 

reported to play a role in mesenchymal differentiation (48). Even if genome-wide 

experiments cannot resolve the causal link between histone modifications and gene 

expression changes, time-dependent approaches as the one presented here could 

provide the basis for more sophisticated models addressing this issue. 

Bioinformatic probing of the present Tg197 mouse RNA-seq data by functional 

enrichment analysis against the human-specific dbGaP database (49) revealed that 

the most significant term returned in all three disease stages is “rheumatoid 

arthritis”, a finding that, when combined with the overall high similarity between 

mouse and human data presented here, reinforces the value of this model. Despite 

its TNF dependency and the observed overlap between the Tg197 profiles and those 

identified upon human TNF treatment, the latter failed to include many gene 

deregulations, especially of the established and late stages of disease. More 

importantly, the mouse pathways that collectively account for the resemblance to 

human disease are significantly enriched only in the Tg197 profiles highlighting the 

importance of analyses deriving from in vivo contexts.  
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To our knowledge this is the first cell type-specific multi-level characterisation of a 

mouse model of RA in alignment with human disease. With our current findings, we 

posit that, rather than comparing mixed and often secondarily-activated material 

from animal models and humans, careful validation of primarily disease-associated 

cell types, such as SFs in RA, should be ensured before concluding that an animal 

model mimics or not the human disease and to what extent. The present 

compendium of data can serve as the foundation for a range of future studies: from 

the basic mechanistic investigation of disease pathogenesis to the translational 

examination of novel biomarkers and the preclinical testing of therapeutics through 

the comparative alignment of readouts against reference profiles presented in this 

work.  
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FIGURE LEGENDS 

 

Figure 1 Arthritogenic synovial fibroblasts are deregulated at the level of the 

transcriptome across disease stages in the Tg197 mouse model of RA. RNA-seq 

profile of Tg197 SFs as compared to wild-type (WT) controls at three different 

disease stages (early: 3 weeks; established: 8 weeks; and late: 11 weeks). FC = fold 

change; PV = corrected p value. (A) Volcano plots depicting differentially-expressed 

genes (DEGs) at the three stages of disease. (B) Venn diagrams showing overlap of 

significant DEGs among disease stages. (C) Heat map showing clustering of significant 

DEGs across disease stages. Genes were divided in six clusters, each showing a 

distinct pattern of deregulation as shown in the right hand-side graph. Functional 

analysis was performed for these clusters; shown (left) are descriptors summarising 

the top 10 gene ontology (biological process; GO-BP) terms (ranked by q value). (D) 

Heat map showing clustering of the top 25 (as ranked by q value) significant GO-BP 

terms associated with each disease stage. (E) The common transcriptional network 

of the three disease stages, as identified by RNEA. Colour bar indicates node 

centrality; circle size indicates number of edges from the node, i.e. number of 

targets. 

 

Figure 2 Global DNA methylation changes constitute part of the arthritogenic 

profile of the Tg197 synovial fibroblast. MethylCap-seq profile of Tg197 SFs as 

compared to WT controls at the three different disease stages. FC = fold change; PV 

= corrected p value. (A) Volcano plots depicting differentially-methylated regions 

(DMRs) at the three stages of disease in either promoters or gene bodies. (B) 
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Distribution of significant DMRs in promoters and gene regions, as well as in relation 

to CpG islands, across disease stages. y axes represent relative enrichment; CGI: CpG 

island. (C) Expression data of the three disease stages displayed in four quantiles 

against DNA methylation signal around the transcription start site (TSS) up to the 

transcription stop site (TES).  (D) Pie charts showing percentages of significant DEGs 

that are also significantly differentially-methylated (DM) in each disease stage.  

Expected DM = expression correlated positively with gene body or inversely with 

promoter methylation. 

 

Figure 3 Activated synovial fibroblasts are characterised by the presence of 

open chromatin. H3K4me3-seq profile of Tg197 SFs as compared to WT controls at 

the three different disease stages. FC = fold change; PV = corrected p value. (A) 

Volcano plots depicting differentially H3K4-trimethylated regions in promoters at the 

three stages of disease. (B) Distribution of significant differentially H3K4-

trimethylated regions in promoters, across disease stages. (C) Expression data 

displayed in four quantiles against H3K4me3 signal around the transcription start site 

(TSS).  (D) Scatter plots showing correlation between significant H3K4 trimethylation 

(y axis) and expression (x axis).  

 

Figure 4 TNF has a pronounced contribution in the identified signatures of the 

Tg197 synovial fibroblast. RNA-seq, MethylCap-seq and H3K4me3-seq were 

performed in WT SFs treated with 10 ng/ml human TNF for 24 h and compared to 

the untreated controls. FC = fold change; PV = corrected p value. (A) Volcano plots 

depicting changes induced by TNF at the levels of transcriptome, methylome and 
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active chromatin. (B) Venn diagrams showing overlap of significant deregulations 

either at the level of genes (RNA) / regions (DNA methylation and H3K4 

trimethylation) or at the level of KEGG pathways (RNA), among the three different 

stages of Tg197 disease and treatment with human TNF.  

 

Figure 5 Validation of selected deregulations and comparisons between mouse 

and human data. FC = fold change; PV = corrected p value. (A) Scatter plots showing 

correlation between mouse RNA-seq and qRT-PCR data. (B) Volcano plot depicting 

significantly deregulated genes in human RA SFs in comparison to healthy SFs as 

identified by RNA-seq. (C) Venn diagrams showing overlap between significantly up- 

or down-regulated genes or their respective KEGG pathways in mouse and human 

RNA signatures. Mouse data represent the union of deregulated genes across Tg197 

disease stages. (D) qRT-PCR validations in a panel of genes in human SFs. y axis 

shows ΔCt(gene of interest – HPRT1). * p < 0.05; ** p < 0.01; *** p < 0.001. (E) Venn 

diagrams showing overlap in differentially methylated genes between mouse SFs 

(our data) and the intersection of human SF deregulations reported by two studies 

(9,10).  

 

Supplementary Figure 1 Pathology of Tg197 disease stages. Representative 

photomicrographs of ankle joint sections of wild-type (at 8 weeks; A,B) and arthritic 

mice at three stages of disease: 3 weeks (early; C,D); 8 weeks (established; E,F); and 

11 weeks (late; G,H). Haematoxylin-eosin (left) and toluidine blue (right) staining. 

Error bars = 200 μm. Note that in the early stage there is near absence of pathology; 

in the established stage we observe the histological hallmarks of disease (pannus 
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formation with synovial hyperplasia, inflammatory infiltration and erosions to the 

bone and cartilage); finally, in the late stage, there is total distortion of tissue 

architecture, with extensive bone loss and cartilage destruction and high immune 

cell infiltration. 

 

Supplementary Figure 2 Experimental scheme and sequencing statistics. (A) 

Drawing illustrating experimental set-up of this project. (B) Quality scores attained in 

(1) RNA, (2) MethylCap and (3) H3K4me3 sequencing. (C) Table summarising 

sequencing depth statistics for each biological replicate and sequencing effort.  

 

Supplementary Figure 3 The transcriptional networks of the three disease 

stages, as identified by RNEA. (A) Early; (B) established; (C) late. Colour bar indicates 

node centrality; circle size indicates number of edges from the node, i.e. number of 

targets. The top five genes as ranked by node centrality are named in each network. 
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Sample 

type Diagnosis Sex 

Age 

(years) 

CRP 

(mg/l) 

Disease 

duration 

(years) 

Treatment 

 

RA RA F 71 17 51 2 cDMARDs, corticosteroid 

RA RA F 54 47 16 1 cDMARD, 1 bDMARD, corticosteroid 

RA RA F 64 <8 7 1 cDMARD, 1 bDMARD 

RA RA F 52 <8 20 2 cDMARDs, corticosteroid 

RA RA M 61 <8 9 1 cDMARD, 1 bDMARD, corticosteroid 

RA RA F 70 26 <1 - 

RA RA M 46 <8 3 - 

Healthy Arthralgia M 23 NA 

Healthy Arthralgia M 44 NA 

Healthy Arthralgia F 49 NA 

Healthy Arthralgia M 42 NA 

Healthy Arthralgia F 38 NA 

Healthy Arthralgia F 46 NA 

Healthy Arthralgia M 34 NA   

 

 

CRP = C-reactive protein; RA = rheumatoid arthritis; F = female, M= male; NA = not 
assessed; cDMARD = conventional disease modifying anti-rheumatic drug, bDMARD = 
biological DMARD. 
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Gene Forward primer Reverse primer 

NOD2 TTCTCCGGGTTGTGAAATGT CTCCTCTGTGCCTGAAAAGC 

MMP3 GGGCTATCAGAGGAAATGAG CACGGTTGGAGGGAAACCTA 

TNFAIP3 AAGGACAGTGGGCCTGAAATC TTCCCCGGTCTCTGTTAACAAG 

LECT1 CCTTATCATCAGGAAGGGGAAAG GTGATCCAGTCTAGGGTCGAA 

WNT16 TCACAGGGGCTTCTCAAAAGA AGGAGGCAATGCCCAACC 

PPARG CGAGAGTCAGCCTTTAACGAAAT ATGGCATCTCTGTGTCAACCA 

SP7 CCCAGCAGCCCCGGA CCCGCCGCCTCAGAAG 

DLK1 CACCTATGGGGCTGAATGCT AGAATCCATTTTGGGGGTTGC 

 

Page 39 of 39

John Wiley & Sons

Arthritis & Rheumatology

This article is protected by copyright. All rights reserved.


