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CONSTRAINT INTERFACE PRECONDITIONING FOR THE
INCOMPRESSIBLE STOKES EQUATIONS∗

DANIEL LOGHIN†

Abstract. We introduce a novel substructuring approach for solving the incompressible Stokes
equations for the case of enclosed flows. We employ a simple distribution of the global pressure
constraint to subdomains which allows for a natural decomposition into Stokes subdomain problems
with Dirichlet data which are well-posed and inf-sup stable. This approach yields a saddle-point
problem on the interface Γ involving an operator which is continuous and coercive on H1/2(Γ) and
which is restricted to the interface trace space of functions satisfying the incompressibility constraint.
We derive the form of the constraints explicitly, both for the continuous and for the discrete case. This
allows us to design directly a class of interface preconditioners of constraint type, thus avoiding the
need to formulate a coarse level problem. Our analysis indicates that the resulting solution method
has performance independent of the mesh-size, while numerical results point to a mild dependence
on the number of subdomains. We illustrate the technique on some standard test problems and for
a range of domains, meshes, and decompositions.

Key words. domain decomposition, incompressible Stokes flow, iterative substructuring, inter-
face preconditioners, constraint preconditioners, discrete fractional Sobolev norms

AMS subject classifications. 65F10, 65N55, 65F08, 65F30

DOI. 10.1137/16M1085437

1. Introduction. Domain decomposition methods (DDMs) form an established
methodology for the parallel solution of large systems of equations arising from the
discretization of PDE problems. In the case of incompressible flow models, however,
DDMs face a number of challenges inherent in their saddle-point formulation such as
indefiniteness, coarse grid problem definition (including inf-sup stability), and well-
posedness of subdomain problems.

Over the past decade, it has become evident that for constrained problems a
black-box approach is generally not possible and that special treatment is required
in order to achieve optimality with respect to the geometric and physical parameters
involved. In particular, generalizations to the saddle-point case of existing successful
methods for scalar elliptic problems require additional effort as well as analysis. A
notable example for the case of nonoverlapping DDMs is the extension of the popular
BDDC and FETI-DP methods to the indefinite case [26], [25] (see also the recent
modified approaches in [22], [19], [20], [38], [21], [42], [43]). Another example is
the reformulation of the Stokes problem in [24] where the pressure is eliminated in
order to bring the problem into positive-definite form. This strategy is applied to
hp discretizations of the Stokes problem. For this type of discretization, see also
the approach in [1]. Spectral methods are considered in a DDM context in [31], [9].
Overlapping approaches have also been considered for Stokes [23] and Navier-Stokes
problems [12], [8], [15], [16], [19].

In general, iterative substructuring approaches target the Schur complement (or
the discrete Steklov–Poincaré operator) associated with the interface generated by a
decomposition of the computational domain. Typically, this yields a problem involving
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INTERFACE PRECONDITIONING FOR STOKES EQUATIONS 2287

the unknowns corresponding to the interface degrees of freedom. For the Stokes
problem, these may include both velocity and pressure unknowns (as is the case for
Taylor–Hood elements), or only velocity unknowns (as is the case for discontinuous
approximations of the pressure). In the former situation, a substructuring approach
will arise from subdomain problems where Dirichlet pressure boundary conditions
are imposed on subdomains. Moreover, the corresponding Steklov–Poincaré operator
will involve both velocity and pressure variables. On the other hand, the latter case
may be seen to represent a more natural approach in the sense that only velocity
boundary conditions are needed on subdomains and only velocity variables occur in
the interface problem (for details, see [33, Chap. 5]). This also motivates our approach
in this paper.

In this work we introduce a novel substructuring approach for the incompressible
Stokes problem with Dirichlet boundary conditions. Specifically, we choose a formu-
lation which distributes the pressure constraint to subdomains, so that the resulting
nonoverlapping DDM yields well-posed Dirichlet subdomain problems. For the case of
discontinuous pressure approximations, the resulting coupling is an interface problem,
which involves a constrained velocity H1/2(Γ)-equivalent operator, with no pressure
variables present. This is related in some sense to formulations involving the trace
space of functions satisfying the incompressibility constraint introduced in [7], [32];
see also [33, Chap. 5, p. 183]. Moreover, our modified formulation allows for the ex-
plicit derivation of the interface constraints. This allows us to avoid the need for a
coarse level problem and instead directly design interface preconditioners of constraint
type which can be implemented via sparse Krylov methods. The indefiniteness of the
problem is thus catered for, both at the subdomain and at the interface level. We
provide an analysis which indicates that performance is independent of the mesh size.
Numerical experiments on structured and unstructured meshes and decompositions
indicate that there is only a mild dependence on the number of subdomains.

The paper is organized as follows. In the next section we introduce the Stokes
problem together with auxiliary results. We also present the problem reformulation
which allows for an explicit description of the interface problem (or Schur comple-
ment). In section 3 we discuss the domain decomposition approach and derive the
constrained interface operator. The matrix representations of our substructuring ap-
proach are included in section 4, while section 5 discusses constraint preconditioners
and the optimal choices available for the Stokes problem; Krylov approximations of
constraint preconditioners are also described and analyzed. Finally, in section 6 we
present numerical results on a range of decompositions and meshes and for different
types of domains.

2. Problem formulation. Let Ω be an open bounded domain in Rd with Lip-
schitz continuous boundary ∂Ω. We consider the following Stokes problem

−∆u+ grad p = f in Ω,(2.1a)
divu = 0 in Ω,(2.1b)

u = g on ∂Ω,(2.1c)

together with the constraint

(2.2)
∫

Ω
p = µ,

D
ow

nl
oa

de
d 

10
/0

2/
17

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2288 DANIEL LOGHIN

which ensures the uniqueness of the solution (u, p). We also assume that the following
compatibility condition holds,

(2.3)
∫
∂Ω
n · g = 0.

In the following, we will consider solving (2.1) for the case of zero pressure mean,
i.e., µ = 0 in (2.2). However, the nonzero case will also arise naturally as a result of
our domain decomposition approach. Moreover, for simplicity of exposition, we take
g = 0, although our experiments will consider nonzero Dirichlet data.

Let V := [H1
0 (Ω)]d, Q := L2(Ω). We will also work with the subspace Qµ =:

L2
µ(Ω) := {q ∈ Q : (q, 1) = µ}, where (·, ·) denotes the L2(Ω)-inner product. We as-

sociate with problem (2.1) subject to the constraint (2.2) the Lagrangian L1(v, q, ρ) :
V ×Q× R given by

L1(v, q, ρ) = L0(v, q) + ρ [(q, 1)− µ] ,

where

(2.4) L0(v, q) =
1
2

(∇v,∇v)− (div v, q)− (f, v) .

A critical point (u, p, λ) of L1 satisfies the variational problem corresponding to the
Stokes equations (2.1) subject to the constraint (2.2):

(∇u,∇v)− (div v, p) = (f, v) ,(2.5a)
− (divu, q) + λ (q, 1) = 0,(2.5b)

ρ (p, 1) = ρµ(2.5c)

for all (v, q, ρ) ∈ V ×Q×R. The pair (u, p) is also a critical point of L0(v, q) : V ×Qµ
with corresponding variational formulation

(∇u,∇v)− (div v, p) = (f, v) ,(2.6a)
− (divu, q) = 0(2.6b)

for all (v, q) ∈ V ×Qµ. In this sense, formulations (2.5), (2.6) are said to be equivalent.
Moreover, they are both known to be LBB stable [6].

Consider a nonoverlapping partition of Ω into open bounded subdomains Ωi sat-
isfying

Ω̄ =
N⋃
i=1

Ω̄i, Ωi ∩ Ωj ≡ ∅ (i 6= j).

We also let Γ ⊂ Rd−1 denote the set of internal boundaries associated with the above
partition of Ω,

Γ =
N⋃
i=1

Γi, Γi := ∂Ωi \ ∂Ω.

One of the issues with formulating problem (2.1) on subdomains is the global con-
straint (2.2). Recall that we are interested in the zero pressure mean case (µ = 0):
however, this relation cannot be distributed in a natural way to each subdomain as a
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INTERFACE PRECONDITIONING FOR STOKES EQUATIONS 2289

global zero pressure mean condition does not imply zero local pressure means. A suit-
able way to “decompose” the constraint (2.2) is provided by the following equivalent
formulation

(2.7)
N∑
i=1

(∫
Ωi

p− ci
)

= 0 subject to
N∑
i=1

ci = 0.

While the global constraint (2.2) is replaced with another global constraint on the
coefficients ci, the above reformulation allows for a natural decomposition of the
Stokes problem into subdomain problems, which are locally constrained by pressure
integrals over Ωi. The corresponding Lagrangian is

(2.8) L2(v, q, ρ, d, ω) = L0(v, q) +
N∑
i=1

ρi((q, 1)− di) + ω

N∑
i=1

di,

where L0 is defined in (2.4). The critical points (u, p, λ, c, τ) of L satisfy the following
variational formulation

(WF) :



N∑
i=1

[(∇ui,∇vi)− (div vi, pi)] =
N∑
i=1

(fi, vi),

N∑
i=1

[−(divui, qi) + λi (qi, 1)] = 0,

ρi ((pi, 1)− ci) = 0 (i = 1, . . . , N),

di(τ − λi) = 0 (i = 1, . . . , N),

ω

N∑
i=1

ci = 0

for all (v, q, ρ, d, ω) ∈ X := V × Q × RN × RN × R. The above formulation is more
suitable than (2.5) for domain decomposition formulations; in particular, we note that
the first three equations yield a decoupled set of well-posed subdomain problems of
the form (2.5) with modified data

(∇ui,∇vi)− (div vi, pi) = (fi, vi),

−(divui, qi) + λi (qi, 1) = 0,

ρi (pi, 1) = ρici

(i = 1, . . . , N).

This approach yields linear systems that can be parallelized directly, without introduc-
ing an awkward or nonphysical treatment of the global constraint (2.2). We consider
the full formulation in section 3.

2.1. Notation and standard results. Throughout the paper we will use the
following notation and standard results. Given an open simply connected domain U
in Rd, its boundary will be denoted by ∂U . We denote by Hm(U) the Sobolev space
of order m equipped with norm ‖ · ‖m,U and seminorm |·|m,U with the convention
H0(U) = L2(U). The Sobolev spaces of real index 0 ≤ s ≤ m are defined as interpo-
lation spaces of index θ = 1 − s/m for the pair (Hm(U), L2(U)); we denote this by
the following stencil

Hs(Ω) := [Hm(U), L2(U)]θ, θ = 1− s/m.
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2290 DANIEL LOGHIN

For any s, the space Hs
0(U) denotes the completion of C∞0 (U) in Hs(U) (see, e.g., [27,

p. 60]). In particular, we shall be interested in the interpolation space

H1/2(U) =
[
H1(U), L2(U)

]
1/2

for which there holds H1/2
0 (U) ≡ H1/2(U). Another space of interest is H1/2

00 (U)
which is a subspace of H1/2

0 (U) and is defined as the interpolation space of index 1/2
for the pair [H1

0 (U), L2(U)],

H
1/2
00 (U) =

[
H1

0 (U), H0(U)
]
1/2 .

Norms on H1/2(U), H1/2
00 (U) will be denoted by the same notation |·|1/2,U or ‖ · ‖1/2,U

with the assumption that it is evident from the context which space is under con-
sideration. The dual of H1/2

00 (U) is denoted by (H1/2
00 (U))′ ⊂ H−1/2(U), where

H−1/2(U) := (H1/2(U))′ ≡ (H1/2
0 (U))′.

Finally, we will make use of the trace operator γ0 : H1(U)→ H1/2(∂U) which is
known to be surjective and continuous, i.e., there exists a constant cγ(U) such that

‖γ0v‖1/2,∂U ≤ cγ(U)‖v‖1,U ∀v ∈ H1(U).

A similar inequality holds if we take γ0 : H1
0 (U)→ H

1/2
00 (∂U):

‖γ0v‖1/2,∂U ≤ cγ(U)‖v‖1,U ∀v ∈ H1
0 (U).

We will also assume that the following Poincaré inequality holds,

(2.9) ‖v‖0,U ≤ CP (U) |v|1,U .

Finally, in order to simplify notation, we introduce the generic notation

(2.10) Λ := Λ(∂U) :=
[
H1/2(∂U)

]d
or Λ :=

[
H

1/2
00 (∂U)

]d
,

with the choice of product interpolation space and that of ∂U obvious from the con-
text. We write the above trace inequalities for the vector case in the generic form

(2.11) ‖γ0v‖Λ ≤ cγ(U)‖v‖1,U ∀v ∈
[
H1
∗ (U)

]d
.

2.2. Stokes extensions. The concept of extensions arises naturally in the for-
mulation of nonoverlapping domain decomposition problems [33]. This is also the
case for our formulation. Let U ⊂ Rd and let (ξ, µ) ∈ [H1/2(∂U)]d × R be given.
Let F : [H1/2(∂U)]d → [H1(U)]d denote any extension operator from [H1/2(∂U)]d to
[H1(U)]d. Consider the problem of finding (w, r, ν) ∈ [H1

0 (U)]d×L2(U)×R such that
for all (v, q, ρ) ∈ [H1

0 (U)]d × L2(U)× R

(∇w,∇v)− (div v, r) = − (∇Fξ,∇v) ,(2.12a)
− (divw, q) + ν (q, 1) = (divFξ, q),(2.12b)

ρ (r, 1) = ρµ.(2.12c)

The Stokes extension of the data (ξ, µ) is denoted by Eµξ and is defined to be

Eµξ := w + Fξ,
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where w,Fξ are given in (2.12). Equivalently, the Stokes extension satisfies

(∇Eµξ,∇v)− (div v, r) = 0,(2.13a)
− (divEµξ, q) + ν (q, 1) = 0,(2.13b)

ρ (r, 1) = ρµ,(2.13c)

where Eµξ|∂U = ξ. We will not include the compatibility condition (2.3) in our
definition of Stokes extensions, thus allowing for divEµξ to be nonzero in a weak
sense. This is perfectly justified, since ultimately we are interested in devising a
solver for problem (2.1), rather than an alternative physical model.

The following result provides identities satisfied by Stokes extensions, which will
be useful for our later derivation and analysis.

Lemma 2.1. Let q ∈ L2(U) and let (Eµξ, r, ν) satisfy (2.13). Then

(divEµξ, q) =
(q, 1)
|U |

(n · ξ, 1)L2(∂U),(2.14)

(divEµξ, r) =
µ

|U |
(n · ξ, 1)L2(∂U),(2.15)

ν =
1
|U |

(n · ξ, 1)L2(∂U).(2.16)

Proof. Let q̄ = 1
|U | (q, 1) denote the average of q over the domain U . Then q− q̄ ∈

L2
0(U) and, by the equivalence between (2.5), (2.6), we have

(divEµξ, q − q̄) = 0,

so that
(divEµξ, q) = (divEµξ, q − q̄) + (divEµξ, q̄) = q̄

∫
∂U

n · ξ,

which is (2.14). Using this result, the remaining relations follow from (2.13b) and
(2.13c), respectively.

We end this section with the following regularity result which can be found in
[39, Prop. 2.3].

Proposition 2.2. Let Ω be an open set in Rd with boundary ∂Ω of class C2. Then
there exist a unique function u ∈ V and a function p ∈ Q unique up to a constant
which are solutions of (2.1) and which satisfy

(2.17) ‖u‖V + ‖p‖Q/R ≤ C(Ω) (‖f‖V ′ + ‖g‖Λ) .

We remark here that the solution of (2.5) also satisfies the above regularity result
with p measured in the full space Q.

3. Domain decomposition formulation. Let Vi := H1(Ωi), V 0
i = H1

0 (Ωi)
and define Qµ,i := L2

µ(Ωi). In order to derive a domain decomposition formulation,
we let

ui = u
{1}
i + u

{2}
i , pi = p

{1}
i + p

{2}
i , λi = λ

{1}
i + λ

{2}
i ,

where u{1}i ∈ V 0
i , p

{1}
i ∈ Q0,i, and p

{2}
i ∈ Qci,i. We also let vi = v0

i + Eiwi, where
v0
i ∈ V 0

i , wi = vi|Γi
∈ Vi, and Eiwi := Eci

wi is the discrete Stokes extension of data
(wi, ci) to subdomain Ωi (cf. (2.13)). Finally, we define

z := u |Γ∈ Λ, zi = ui |Γi
= u

{2}
i |Γi

∈ Λi.
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Replacing these expressions for ui, pi, λi in (WF), we obtain

N∑
i=1

[
(∇u{1}i ,∇v0

i )+(∇u{2}i ,∇v0
i )− (div v0

i , p
{1}
i )− (div v0

i , p
{2}
i )

]
=

N∑
i=1

[(fi, v0
i )+Ri],

N∑
i=1

[
−(divu{1}i , qi)− (divu{2}i , qi) + λ

{1}
i (qi, 1) + λ

{2}
i (qi, 1)

]
= 0,

di(τ − λ{1}i − λ{2}i ) = 0 (i = 1, . . . , N),

ρi

[(
p
{1}
i , 1

)
+
(
p
{2}
i , 1

)
− ci

]
= 0 (i = 1, . . . , N),

ω

N∑
i=1

ci = 0,

where

Ri =
N∑
i=1

(fi, Eiwi)−
(
∇u{1}i ,∇Eiwi

)
−
(
∇u{2}i ,∇Eiwi

)
+
(

divEiwi, p
{1}
i

)
+
(

divEiwih, p
{2}
i

)
.

Using (2.14), (2.15), and the zero-mean assumption on p
{1}
i , we simplify the last two

terms in Ri as follows:(
divEiwi, p

{1}
i

)
=

(p{1}i , 1)
|Ωi|

(ni ·wi, 1)∂Ωi = 0,
(

divEiwi, p
{2}
i

)
=

ci
|Ωi|

(ni ·wi, 1)∂Ωi .

Let the bilinear form s(·, ·) : Λ× Λ be defined via

(3.1) s(z, w) :=
N∑
i=1

(∇Eizi,∇Eiwi).

The weak formulation (WF) decouples into the following three sets of problems:

I


(∇u{1}i ,∇v0

i )− (div v0
i , p
{1}
i ) = (fi, v0

i ),

−(divu{1}i , qi) + λ
{1}
i (qi, 1) = 0,

ρi

(
p
{1}
i , 1

)
= 0

(i = 1, . . . , N),

II



s(z, w)−
N∑
i=1

ci
|Ωi|

(ni · wi, 1)Γi =
N∑
i=1

[
(fi, Eiwi)− (∇u{1}i ,∇Eiwi)

]
,

di

[
τ − 1
|Ωi|

(ni · zi, 1)Γi

]
= 0 (i = 1, . . . , N),

ω

N∑
i=1

ci = 0,

III


(∇u{2}i ,∇v0

i )− (div v0
i , p
{2}
i ) = 0,

−(divu{2}i , qi) + λ
{2}
i (qi, 1) = 0,

ρi

(
p
{2}
i , 1

)
= ρici

(i = 1, . . . , N),
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where we used the fact that, by (2.16),

λ
{1}
i = 0, λ

{2}
i =

1
|Ωi|

(ni · zi, 1)Γi
.

Definition 3.1. We will refer to the above decoupled form of the Stokes problem
as the three-step formulation. We will refer to s(·, ·) defined in (3.1) as the bilinear
form induced by the three-step formulation of the Stokes problem.

We remark here that problems I and III are Dirichlet subdomain problems of the
form (2.5) and as such they are LBB stable and have a unique solution.

The above formulation does not enforce pressure continuity over the domain Ω.
Thus, the subsequent derivation will only be valid for the case of discontinuous finite
element spaces for the pressure approximation. We will therefore consider only this
choice below. However, we note here that a similar approach is possible if the pressure
is required to be continuous. In particular, the resulting subdomain problems will
involve Stokes problems with both velocity and pressure essential boundary conditions
for which well-posedness will have to be considered specifically. This approach is
generally acknowledged to be more technical (cf. [33, Chap. 5], [40, Chap. 9]) and will
not be considered here.

Let Th denote a conforming subdivision of Ω into disjoint shape-regular simplices
T (see, e.g., [10, p. 124]) of diameter at most h. Let Pk(U) denote the space of
polynomials of degree k ≥ 0 defined on a set U ⊂ Rd. Let

Vh = Vdh, Vh =
{
νh ∈ H1

0 (Ω) ∩ C0(Ω) : νh|T ∈ P2(T ),∀T ∈ Th
}
,

Qh =
{
qh ∈ L2(Ω) : qh|T ∈ P0(T ),∀T ∈ Th

}
.

We will denote by Vhi, Qhi the corresponding subspaces of functions defined on sub-
domains Ωi.

Let {φj}1≤j≤n , {ψk}1≤k≤m denote sets of finite element bases for Vh, Qh, respec-
tively, so that

uh =
n∑
j=1

ujφj , ph =
m∑
k=1

pkψk.

Define the interface spaces

Λhi := Λhi(Γi) := span {χj := γ0(Γi)φj : suppφj ∩ Γi 6= ∅} ,

Λh := Λh(Γ) :=
N⋃
i=1

Λhi(Γi).

Note Λh(Γ) is a product piecewise polynomial space of degree 2 defined on Γ. More-
over, Λh(Γ) = γ0(Γ)Vh ⊂ Λ(Γ).

Let Xh = Vh×Qh×RN ×RN ×R and consider the following discrete variational
formulation: find (uh, ph, λ, c, τ) ∈ Xh such that for all (vh, qh, ρ, d, ω) ∈ Xh the
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following relations hold:

(WF)h :



N∑
i=1

[(∇uhi,∇vhi)− (div vhi, phi)] =
N∑
i=1

(fi, vhi),

N∑
i=1

[−(divuhi, qhi) + λi (qhi, 1)] = 0,

ρi ((phi, 1)− ci) = 0 (i = 1, . . . , N),

di(τ − λi) = 0 (i = 1, . . . , N),

ω

N∑
i=1

ci = 0.

We note here the slight abuse of notation for the purpose of simplicity: the variables
λ, c, τ, ρ, d, ω also occur in the continuous variational formulation introduced in the
previous section. Henceforth, we will work only with the formulation (WF)h.

A similar three-step formulation can be derived for the discrete case as in the
previous section; we include it below:

Ih


(∇u{1}hi ,∇v

0
hi)− (div v0

hi, p
{1}
hi ) = (fi, v0

hi),

−(divu{1}hi , qhi) + λ
{1}
i (qhi, 1) = 0,

ρi

(
p
{1}
hi , 1

)
= 0

(i = 1, . . . , N),

IIh



s(zh, wh)−
N∑
i=1

ci
|Ωi|

(ni · whi, 1)Γi
=

N∑
i=1

[
(fi, Eiwhi)− (∇u{1}hi ,∇Eiwhi)

]
,

di

[
τ − 1
|Ωi|

(ni · zhi, 1)Γi

]
= 0 (i = 1, . . . , N),

ω

N∑
i=1

ci = 0,

IIIh


(∇u{2}hi ,∇v

0
hi)− (div v0

hi, p
{2}
hi ) = 0,

−(divu{2}hi , qhi) + λ
{2}
i (qhi, 1) = 0,

ρi

(
p
{2}
hi , 1

)
= ρici

(i = 1, . . . , N),

where we recall here that s(·, ·) is the bilinear form induced by the three-step formu-
lation of the discrete weak formulation of the Stokes problem

s(zh, wh) :=
N∑
i=1

(∇Eizhi,∇Eiwhi)

with
zh := uh |Γ∈ Λh, zhi = uhi |Γi= u

{2}
hi |Γi∈ Λhi.

Thus, problems (WF), (WF)h decouple into a set of independent standard Stokes
problems with zero data (problems I, Ih), a set of independent standard Stokes prob-
lems with nonzero data (problems III, IIIh) and an interface problem which is a
globally constrained saddle-point problem (problems II, IIh). This three-step proce-
dure has a matrix representation which can be shown to be equivalent to a Schur
complement method, as is the case with other substructuring approaches.
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4. Matrix representations. The matrix representation of (WF)h is

Kx :=


A BT O O 0
B O R O 0
O RT O −I 0
O O −I O 1
0T 0T 0T 1T 0




u
p
λλλ
c
τ

 =


f
0
0
0
0

 =: b,

where
Aij = (∇φj ,∇φi), Bjk = −(divφj , ψk), Rk` = (ψk, 1)Ω`

for the index ranges 1 ≤ i, j ≤ n, 1 ≤ k ≤ m, 1 ≤ ` ≤ N , and with I ∈ RN×N . We
also define ri := RJii.

Let now Ii denote the index set for the velocity basis functions with support
contained in Ωi; with a standard abuse of notation, let also Γ denote the index set for
the velocity basis functions with support intersecting Γ. Similarly, let Ji denote the
index set for the pressure basis functions with support contained in Ωi; we note here
that supψk ∩ Γ = ∅, given the choice of Qh. Thus, we have

n = nI + nΓ, nI :=
N∑
i=1

nIi , nIi := |Ii| , m =
N∑
i=1

mi, mi := |Ji| .

Using the numbering given by the index set{
{Ii, n+ Ji, n+m+N + i}1≤i≤N ,Γ, {n+m+ i}1≤i≤N , n+m+ 2N + 1

}
,

the above system is permuted to

(4.1)
(
K11 K12
KT

12 K22

)(
x1
x2

)
=
(
b1
b2

)
,

where

K11 =
N⊕
i=1

 AIiIi BTJiIi
0Ii

BJiIi OJiJi ri

0TIi
rTi 0

 , K22 =

 AΓΓ OTNΓ 0Γ

ONΓ ONN 1N
0TΓ 1TN 0

 ,

K12 =
N

Col
i=1

 AIiΓ OIiN 0Ii

BJiΓ OJiN 0Ji

0TΓ −eTi 0

 =:
N

Col
i=1

K12,i,

where Col indicates column concatenation of matrices over the indicated range. Cor-
respondingly, we have

x1 =
N

Col
i=1

 uIi

pJi

λi

 , x2 =

 uΓ
c
τ

 , b1 =
N

Col
i=1

 fIi

0Ji

0

 , b2 =

 fΓ
0N
0

 .

With this notation in place, a Schur complement method computes a solution x to
(4.1) via the following sequence of problems

I. K11x
{1}
1 = b1, II. Σx2 = f2−KT

12x
{1}
1 , III. K11x

{2}
1 = −K12x2, x1 := x{1}1 +x{2}1 ,

where Σ = K22 −KT
12K

−1
11 K12 is the Schur complement of K11 in K.

D
ow

nl
oa

de
d 

10
/0

2/
17

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2296 DANIEL LOGHIN

4.1. The Schur complement. The Schur complement Σ associated with the
splitting indicated above will be referred to as the interface Schur complement. For
this problem formulation, this matrix has an explicit expression given by the following
result.

Proposition 4.1. The Schur complement Σ has the following explicit structure

(4.2) Σ =

 S −BTΓmR̄mN 0Γ
−(BTΓmR̄mN )T ONN 1N

0TΓ 1TN 0

 ,

where S is an nΓ × nΓ matrix and where R̄Jii = r̄i := ri

‖ri‖2 .

Proof. We have
Σ = K22 −KT

12K
−1
11 K12,

where the second term has the form

N∑
i=1

 AIiΓ OIiN 0Ii

BJiΓ OJiN 0Ji

0TΓ −eTi 0

T  AIiIi BTJiIi
0Ii

BJiIi OJiJi ri
0TIi

rTi 0

−1 AIiΓ OIiN 0Ii

BJiΓ OJiN 0Ji

0TΓ −eTi 0

 .

The result follows by direct calculation of the summand, and the expression for the
inverse given in Lemma 4.2 below with q = ri.

Lemma 4.2. Let A ∈ Rn×n be a symmetric and positive definite matrix and let
B ∈ Rm×n,q ∈ Rn \ {0} with kerBT = span {q} . Let

K =

 A BT 0
B O q
0 qT 0

 .

Then

K−1 =

 M NT 0
N P z
0T zT 0

 ,

where

z =
q
‖q‖2

, P = −S−1
q

[
I − qqT

‖q‖2

]
, NT = −A−1BTP,

M = A−1 [A−BTSqB]A−1, Sq = qqT +BA−1BT .

Proof. See the appendix for the proof.

Remark 4.1. The expression for S is also available explicitly, although it is not
included here as our convergence analysis in section 5 does not require it. However,
we point out that S is the matrix representation of the bilinear form s(·, ·) : Λh × Λh
induced by our three-step formulation (cf. Definition 3.1).

Remark 4.2. The saddle-point form of the Schur complement Σ is explicit in the
constraints. This property does not hold for other domain decomposition formula-
tions for the Stokes problem (e.g., [25], [22]), but only for the reformulation given in
(WF). This will represent an important advantage when designing a substructuring
preconditioner.
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One can show that the decomposition of problem (WF)h introduced in section 3,
corresponds to the Schur complement method described above. More specifically, the
three sets of problems in the previous section become three sets of algebraic systems:

I.


 AIiIi

BTJiIi
0Ii

BJiIi
OJiJi

ri
0TIi

rTi 0


 u{1}Ii

p{1}Ji

λ
{1}
i

 =

 fIi

0Ji

0

 (i = 1, . . . , N) ,

II.


 S −BTΓmR̄mN 0Γ
−(BTΓmR̄mN )T ONN 1N

0TΓ 1TN 0

uΓ
c
τ

 =

 fΓ
0N
0

− N∑
i=1

KT
12,i

 u{1}Ii

p{1}Ji

λ
{1}
i

 ,

III.


 AIiIi

BTJiIi
0Ii

BJiIi
OJiJi

ri
0TIi

rTi 0


 u{2}Ii

p{2}Ji

λ
{2}
i

 = −K12,i

uΓ
c
τ

 (i = 1, . . . , N) .

Remark 4.3. The above formulation is the generalization of substructuring tech-
niques for scalar elliptic problems to the case of the Stokes system. In particular,
the reformulation (WF) allows one, at the discrete level, to identify the subdomain
problems as nonsingular diagonal subblocks of the system matrix K. In this sense,
this approach is more natural, without requiring the more involved reformulations
implicit in BDDC or FETI methods (e.g., [26]).

5. Constraint interface preconditioners. Given the explicit form of the in-
terface Schur complement derived in the previous section, we aim to design explicitly
a class of preconditioners with similar block structure. This will avoid the issue of
formulating a coarse level problem, which for the case of the Stokes problem is not a
straightforward task (see, for example, [26], [22], [19]).

We start by defining the following generic block matrix, as a permuted version of
the interface matrix in system II. above:

Σ±(P ) =

 P 0Γ −BTΓmR̄mN
0TΓ 0 1TN

∓(BTΓmR̄mN )T ±1N ONN

 =
(
P0 CT

±C ONN

)
,

where P is assumed to be symmetric and nonsingular and P0 denotes the matrix P
bordered on the right and bottom by zero and C ∈ RN×(nΓ+1) is a constraint matrix
with structure given below:

P0 =
(
P 0Γ
0TΓ 0

)
, C =

(
−
(
BTΓmR̄mN

)T
1N
)
.

The structure of the above matrix is an example of a so-called constraint precondi-
tioner. The concept of constraint preconditioners has been employed and analyzed
widely (see [5] and the references therein). The following two results describe the
eigenvalue distribution of a generic constraint preconditioned system.

Lemma 5.1. Let

K =
(
K BT

B O

)
, G± =

(
G BT

±B O

)
,

and let ZB ∈ Rn×(n−m) be a matrix whose columns form an orthogonal basis for the
null space of B. Assume the following properties hold:
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1. K,G ∈ Rn×n are symmetric with rank[K G] = n− k (0 < k < n);
2. B ∈ Rm×n has full rank and kerK ∩ kerB = kerG ∩ kerB = {0};
3. Kx 6= ±Gx for any x /∈ kerK ∩ kerG.

Then the preconditioned matrix P± := G−1
± K has the following eigenvalue distribution:

i. λ = 1 with multiplicity m;
ii. λ = ±1 with multiplicity m;

iii. λ = σj (j = 1, . . . , n − m), where σj are the eigenvalues of the pencil
[ZTBKZB , Z

T
BGZB ].

Moreover, P+ is defective, P− is diagonalizable, and both have minimal polynomials
of degree n−m+ 2.

Proof. See [28] for the proof.

We will refer to the eigenvalues σj as the nonunit eigenvalues of P±.

Lemma 5.2. Let the assumptions of Lemma 5.1 hold with kerG = {0}. Assume
further that G−1K has n distinct eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then the nonunit
eigenvalues of P± satisfy the following interlacing property

λk ≤ σk ≤ λk+m, k = 1, . . . , n−m.

Proof. For a proof, see [18].

A direct application of Lemma 5.1 yields the following result.

Proposition 5.3. The pencil [Σ+(S),Σ−(P )] is diagonalizable with eigenvalues
σ given below.

i. σ = 1 with multiplicity N .
ii. σ = −1 with multiplicity N .

iii. The remaining nΓ + 1−N eigenvalues satisfy

ZTCS0ZCv = σZTCP0ZCv,

where the columns of ZC ∈ R(nΓ+1)×(nΓ+1−N) form an orthogonal basis for
the null space of C.

Remark 5.1. The extra N eigenvalues arising due to the larger reformulated prob-
lem are relocated to ±1 through the above choice of constraint preconditioner.

Since S0, P0 are singular, it is not possible to obtain an interlacing result for
the pencil [Σ+(S),Σ−(P )] as provided by Lemma 5.2. However, this issue can be
circumvented using a certain reformulation and we obtain the following interlacing
result involving the eigenvalues of the pencil [S, P ], where we recall that P is a generic
symmetric nonsingular matrix.

Proposition 5.4. Let {σk, k = 1, . . . , nΓ + 1−N} denote the nonunit eigenval-
ues of the pencil [Σ+(S),Σ−(P )]. Then the σk interlace the eigenvalues λj of the
pencil [S, P ]:

λk ≤ σk ≤ λk+N−1, k = 1, . . . , nΓ + 1−N.

Proof. The nonunit eigenvalues of the pencil [Σ+(S),Σ−(P )] are also the non-unit
eigenvalues of the pencil S −BTΓmR̄mN 0Γ

−(BTΓmR̄mN )T ONN 1N
0TΓ 1TN 0

 ,

 P −BTΓmR̄mN 0Γ
−(BTΓmR̄mN )T ONN 1N

0TΓ 1TN 0

 .D
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Letting B =
(
0TΓ 1TN

)
in Lemma 5.1, the corresponding ZB can be taken to have the

form

ZB =
(

IΓ OΓN−1
ON,Γ Z1N

)
.

Using Lemma 5.1, with m = 1, we conclude that there are 2 eigenvalues at 1, with
the remaining nΓ +N given by the eigenvalues of the above matrix pencil projected
on the null space spanned by ZB , which we write taking into account the structure
of ZB as [(

S B̃T

B̃ ON−1,N−1

)
,

(
P B̃T

B̃ ON−1,N−1

)]
.

By Lemma 5.1, the above pencil has 2N − 2 eigenvalues at 1, with the remaining
nΓ −N + 1 nonunit eigenvalues satisfying by Lemma 5.2 the interlacing property

λk ≤ σk ≤ λk+N−1, k = 1, . . . , nΓ + 1−N.

Remark 5.2. The above results focus on the eigenvalue distribution of the precon-
ditioned system. The classic convergence bound for GMRES [37, p. 216], [14, p. 54],
however, requires both the eigenvalues and the condition number of the eigenvector
matrix of the preconditioned system (for the nondefective case) be bounded indepen-
dently of the parameters of interest in the problem. Similarly, a bound that covers
also the defective case requires that the contour length of the pseudospectrum of the
preconditioned system remains bounded, in addition to the bound on the eigenvalues
(see [41], [14, p. 57]).

In light of the above remark, we assume that the convergence of GMRES is gov-
erned by the distribution of eigenvalues alone, with the other quantities in various
convergence bounds assumed to be benign. In particular, we will say that a pre-
conditioner is optimal if the eigenvalues of the preconditioned system are bounded
independently of the size of the problem. Thus, we expect the performance of a
Krylov method coupled with an optimal preconditioner to be independent of problem
size. The numerical experiments in section 6 confirm that this is a reasonable as-
sumption. If P is an optimal preconditioner for S, then the eigenvalues of the pencil
[Σ+(S),Σ±(P )] will also be bounded independently of size, i.e., Σ±(P ) is an optimal
preconditioner for Σ+(S). The choice of P is considered next.

5.1. Optimal interface preconditioners. We now turn our attention to suit-
able candidates P for approximating the matrix S. First, recall that S is the matrix
representation of the bilinear form s(·, ·) in the basis {χj} of Λh, where χj repre-
sents the restriction to Γ of the velocity basis element φj , whenever this restriction is
nonzero (cf. Remark 4.1). Consider again

s(zh, wh) =
N∑
i=1

(∇Eizhi,∇Eiwhi).

In the following we will employ the notation (2.10) introduced in section 1 and will
also refer to Definition 3.1.

Lemma 5.5. Let Ω ⊂ Rd be an open set with boundary ∂Ω of class C2. Let
s(·, ·) : Λ × Λ be the bilinear form induced by a three-step formulation of the Stokes
problem. Then there exist constants c1, c2 such that for all η, ν ∈ Λ,

c2‖η‖2Λ ≤ s(η, η) ≤ c1‖η‖2Λ.
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Proof. Note first that

s(η, η) =
N∑
i=1

(∇Eiηi,∇Eiηi) =
N∑
i=1

|Eiηi|21,Ωi
.

Using the regularity result (2.17), we get

s(η, η) ≤
N∑
i=1

Ci(Ωi)‖ηi‖2Λ(Γi) ≤ c1‖η‖
2
Λ

with c1 = maxi Ci(Ωi). Using the trace inequality (2.11) we get

|Eiηi|21,Ωi
≥ ci(Γi)‖ηi‖2Λ(Γi)

and the lower bound follows.

As a corollary, we note that if ηh ∈ Λh ⊂ Λ, then

(5.1) c2‖ηh‖2Λ ≤ s(ηh, ηh) ≤ c1‖ηh‖2Λ.

Remark 5.3. The constants Ci(Ωi) and ci(Γi) arising in the above proof may
reflect a dependence of c1, c2 on the geometry of the subdivision. In turn, this may
translate into a dependence on the number of subdomains, which could affect the
scalability of our preconditioners. This issue requires further analysis.

We now turn to the question of defining a norm ‖·‖Λh
which is equivalent to ‖·‖Λ

on Λh. This will allow us to derive a suitable preconditioner for S. For simplicity of
exposition, we assume that Γ is a planar (d− 1)-dimensional surface (so that N = 2).
For the general case, see [3]. As before, let ψi = γ0(Γ)φi, where φi denotes a basis
element with support intersecting Γ. Define

(5.2) Mij = (ψi, ψj)L2(Γ) , Lij = (γ0(Γ)∇Γφi, γ0(Γ)∇Γψj)L2(Γ) ,

where ∇Γv denotes the tangential gradient of v with respect to Γ. Let

(5.3) H1/2 := M(M−1L)1/2.

Then for any ηh =
∑nΓ
i=1 ηiψi ∈ Λh there exist constants κ1, κ2 such that [2]

(5.4) κ2‖ηh‖Λh
≤ ‖η‖H1/2 ≤ κ1‖ηh‖Λh

.

We note here that the above result relies on the shape regularity of the subdivision of
Γ (in our case inherited from the shape regularity of the subdivision of Ω) and a con-
tinuous piecewise polynomial basis set {ψi}. However, there is no explicit restriction
with regard to the number of subdomains, or their shape regularity.

The following result follows immediately.

Proposition 5.6. Let s(·, ·) : Λh × Λh be the bilinear form induced by a three-
step formulation of the Stokes problem. Let η,ν denote the coefficients of ηh, νh with
respect to the basis {ψi, i = 1, . . . , nΓ} of Λh. Let S denote the matrix representation
of s(·, ·) with respect to the same basis. Then there exist constants c̃1, c̃2 such that

c̃2‖η‖2H1/2
≤ ηTSη ≤ c̃1‖η‖2H1/2

for all η ∈ RnΓ .
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Proof. The results follow from (5.1) and equivalence (5.4).

The above spectral equivalence makes Σ±(H1/2) an optimal preconditioner for
Σ+(S).

Proposition 5.7. The eigenvalues σ of the matrix pencil [Σ+(S),Σ±(H1/2)] sat-
isfy either |σ| = 1 or

c̃2 ≤ σ ≤ c̃1,
where c̃1, c̃2 are the constants in Proposition 5.6.

Proof. The spectral equivalence in Proposition 5.6 implies

c̃2 ≤ λk(H−1
1/2S) ≤ c̃1, k = 1, . . . , nΓ.

The result then follows from Lemma 5.1 and the interlacing result of Lemma 5.2.

Remark 5.4. The matrix H1/2 is also spectrally equivalent to S∆, the Schur com-
plement arising from a DDM applied to a vector Laplacian problem [3]. This means
that Σ±(S∆) is another optimal preconditioner for Σ+(S). We will verify this fact in
the numerical section.

The preconditioner Σ(H1/2) is not a practical choice for large values of nΓ. The
matrix H1/2 is typically full, and the action of the inverse of Σ(H1/2) will be expensive,
in general. We consider next alternatives that allow a sparse approximation of the
action of this preconditioner.

5.2. Krylov approximations of constraint preconditioners. Given the
structure of our interface preconditioners, we aim to approximate their action on
a given vector via a Krylov subspace approach. In the following, we will refer to the
Krylov subspace

K`(A, r) :=
{
r, Ar, . . . , A`−1r

}
for generic nonsingular square matrix A and vector r. This approach is commonly
used to define a sparse approximation of f(A)z for a range of functions f ; e.g., see
[35], [13] for f(t) = exp(t), [44] for f(t) = tm for integer m, or [11] for f(t) = t1/2.
More specifically, the method relies on constructing an orthonormal basis {v1, . . . ,v`}
for K`(A, r), so that the approximation can be taken to be

(5.5) f(A)z ≈ V`f(H`)e1‖z‖,

where V` = [v1, . . . ,v`], e1 ∈ R`×`, and V T` AV` = H` is an upper Hessenberg matrix;
if A is symmetric, H` is tridiagonal symmetric. It is assumed that ` is small, so that
the evaluation f(H`) is inexpensive. We consider below modified approximations cor-
responding to f(t) = t1/2 and for the case where both Arnoldi and Lanczos procedures
are employed to generate V`.

Remark 5.5. It is shown in [35] that one can view approximation (5.5) as a poly-
nomial approximation p(A)z to f(A)z, where p is the Hermite interpolant of degree
at most `− 1 of f at the eigenvalues of H`. Exactness is achieved when ` equals the
degree of the minimal polynomial of z with respect to A. For smaller values of `, the
following error bound applies [4]:

‖f(A)z− V`f(H`)e1‖z‖‖ ≤ C‖z‖ min
p∈P`−1

max
ζ∈R
|f(ζ)− p(ζ)| ,

where R is a region in the complex plane containing the field of values of A. We note
that the bound is small if f can be well-approximated by polynomials of low degree,
which is the case for f(t) = t1/2.
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Consider approximating a typical preconditioning step in a Krylov method:

z = Σ−1
+ (H1/2)r =

 H1/2 0Γ −BTΓmR̄mN
0TΓ 0 1TN

−(BTΓmR̄mN )T 1N ONN

−1

r.

In order to derive a sparse approximation of the above step, we introduce the equiv-
alent problems

z = Σ−1
− (L)

(
Σ−(L)Σ−1

+ (H1/2)
)
r,(5.6)

z = Σ−1
+ (L)

(
Σ+(L)Σ−1

+ (H1/2)
)
r.(5.7)

Our aim is to replace the action of the matrices Σ−(L)Σ−1
+ (H1/2) and Σ+(L)Σ−1

+ (H1/2)
by sparse Krylov approximations. While the first matrix is diagonalizable, the second
is not, although they both share the same nonunit eigenvalues. This fact will have an
impact on the type of approximation we propose below. The following result describes
the relationship between the spectra of Σ±(L)Σ−1

+ (H1/2) and Σ±(L)Σ−1
+ (M).

Proposition 5.8. Let λk, σ
2
k denote the nonunit eigenvalues of the pencils

[Σ±(L),Σ+(H1/2)], [Σ±(L),Σ+(M)], respectively. Let αj denote an eigenvalue of
H1/2. Then

αk ≤ λk, σk ≤ αk+N−1, k = 1 : nΓ + 1−N.
Proof. First, we note that since the matrices M,L are symmetric and positive

definite, there exists a matrix Q such that

L = QTDQ, M = QTQ,

so that
H1/2 = QTD1/2Q,

where D is a diagonal matrix containing the square roots of the eigenvalues of the
pencil [L,M ]. By Lemma 5.2, the nonunit eigenvalues λk of the pencil

[Σ±(L),Σ+(H1/2)] =
[
Σ±(QTDQ),Σ+(QTD1/2Q)

]
interlace the eigenvalues of(

QTD1/2Q
)−1

QTDQ = Q−1D1/2Q = H1/2.

By the same corollary, the nonunit eigenvalues σ2
k of the pencil [Σ±(L),Σ+(M)] inter-

lace the eigenvalues of (QTQ)−1QTDQ = Q−1DQ = H2
1//2, so that σk also interlace

the eigenvalues of H1/2.

The above result motivates the following definition of a partial square root matrix.
Let Σ−(L)Σ−1

+ (M) = VDV−1. Define

[
D{1/2}

]
ii

=

 Dii if Dii < 0,
√
Dii otherwise.

Then the nonunit eigenvalues of(
Σ−(L)Σ−1

+ (M)
){1/2}

:= VD{1/2}V−1

are the values σk in Proposition 5.8.

D
ow

nl
oa

de
d 

10
/0

2/
17

 to
 1

47
.1

88
.1

08
.1

68
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERFACE PRECONDITIONING FOR STOKES EQUATIONS 2303

The above matrix provides an alternative to the impractical choice of precon-
ditioner Σ+(H1/2). The action of Σ−(L)Σ−1

+ (H1/2) on r can be replaced with an
approximation to the partial square root of Σ−(L)Σ−1

+ (M) obtained using a Krylov
method. We examine below two possibilities.

5.2.1. An Arnoldi approximation. The Arnoldi method is an iterative pro-
cedure which, after k iterations, generates the following factorization

(5.8) V Tk Σ−(L)Σ−1
+ (M)Vk = Hk,

where Hk ∈ Rk×k is an upper Hessenberg matrix and Vk is a matrix with orthonormal
columns. Since Σ−(L)Σ−1

+ (M) is diagonalizable, Hk is also diagonalizable, so that
the partial square root matrix H

{1/2}
k exists and therefore we can define the Krylov

approximation (
Σ−(L)Σ−1

+ (M)
){1/2}

r ≈ VkH{1/2}k e1‖r‖.

This yields the following procedure for constructing an approximation z̃ to z:
1. Construct Vk, Hk corresponding to Arnoldi factorization (5.8).
2. Compute

z̃k = VkH
{1/2}
k e1‖r‖.

3. Solve for z̃ the sparse linear system

Σ−(L)z̃ = z̃k.

Remark 5.6. The first step in the above procedure constructs the projection Hk

of Σ−(L)Σ−1
+ (M) onto the Krylov space Kk(Σ−(L)Σ−1

+ (M), r). The Arnoldi iteration
used for this aim requires multiplication by the matrix Σ−(L)Σ−1

+ (M), which involves
at each step one sparse solve with the matrix Σ+(M) and a sparse matrix-vector mul-
tiplication with the matrix Σ−(L). Thus, the overall procedure 1–3 can be achieved
using sparse operations only. This is crucial for the overall complexity of the resulting
algorithm.

5.2.2. A Lanczos approximation. By Proposition 5.8, the roots of the eigen-
values of the pencil [Σ+(L),Σ+(M)] satisfy the same interlacing property as the eigen-
values of the pencil [Σ+(L),Σ+(H1/2). However, both pencils are defective, and the
notion of a partial square root matrix cannot be defined in this case. On the other
hand, [Σ+(L),Σ+(M)] is a symmetric pencil, so we can consider the factorization
arising from a simplified Lanczos procedure such as that introduced in [30] and re-
lated to the bi-Lanczos method [34]. The method is a generalization of the standard
Lanczos algorithm but in the indefinite inner product induced by Σ−1

+ (M). As in the
case of the Arnoldi method, after k steps, the following factorization is produced:

(5.9) Tk = V Tk Σ−1
+ (M)Σ+(L)Σ−1

+ (M)Vk, V Tk Σ−1
+ (M)Vk = Ek,

where Ek is a diagonal matrix and Tk is a symmetric tridiagonal matrix. The aim
usually associated with such a procedure is to use the pencil [Tk, Ek] to approximate
the eigenvalues of the pencil [Σ−1

+ (M)Σ+(L)Σ−1
+ (M),Σ−1

+ (M)], which are also the
eigenvalues of the pencil [Σ+(L),Σ+(M)]. In our case, we propose to use the above
factorizations to approximate the action of Σ+(L)Σ+(H1/2) on a vector r via

(5.10) Σ+(L)Σ−1
+ (H1/2)r ≈ Vk

(
E−1
k Tk

){1/2}
e1‖r‖
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under the assumption that E−1
k Tk is diagonalizable. Our implementation follows that

of [45] which uses a normalized version of Ek, i.e., the diagonal entries of Ek are either
+1 or −1.

Remark 5.7. By Lemma 5.1, the degree of the minimal polynomial of the matrix
Σ+(L)Σ−1

+ (M) is nΓ −N + 3, which is the maximum computable number of linearly
independent columns in Vk in exact arithmetic. However, in practice, the value of
k is much smaller than this maximum admissible value; moreover, computations in
the next section indicate that Ek has only positive entries for small values of k (i.e.,
Ek = Ik), so that (E−1

k Tk){1/2} = T
1/2
k and the approximation simplifies to

Σ+(L)Σ−1
+ (H1/2)r ≈ VkT 1/2

k e1‖r‖.

Summary. The preconditioners Σ±(H1/2) have been shown to yield precondi-
tioned spectra independent of the mesh size h for any fixed number of subdomains
N . This is in contrast to most DDMs where dependence on h exists for fixed N . On
the other hand, in view of Remark 5.3, a dependence on the number of subdomains
may exist for Σ±(H1/2), although further analysis is needed to clarify this issue.

6. Numerical experiments. The three-step procedure employed and analyzed
in the previous sections is aimed at deriving and analyzing the interface Schur com-
plement associated with our domain decomposition formulation. However, our imple-
mentation will use this information in order to construct a global (not just interface)
preconditioner for the discretization of the incompressible Stokes equations. We il-
lustrate this on two-dimensional test problems; however, three-dimensional problems
afford the same treatment. Finally, we note that parallelism is not investigated, al-
though we expect to be able to report on the scalability of our solver, as well as its
three-dimensional performance in a future paper. For examples of implementations
of discrete fractional Sobolev norms in three dimensions, we refer the reader to [2].

6.1. Implementation. We used a P2 − P0 discretization of the modified weak
formulation (WF) introduced in section 2, which resulted in the linear system (4.1):(

K11 K12
KT

12 K22

)(
x1
x2

)
=
(
b1
b2

)
,

where

K11 =
N⊕
i=1

 AIiIi BTJiIi
0Ii

BJiIi OJiJi ri

0TIi
rTi 0

 , K12 =
N

Col
i=1

 AIiΓ OIiN 0Ii

BJiΓ OJiN 0Ji

0TΓ −IiN 0

 .

The inverse of the proposed preconditioner is a block-triangular matrix of the form(
K11 K12
O Σ±(P )

)−1

=
(
K−1

11 O
O I

)(
I −K12
O I

)(
I O
O Σ−1

± (P )

)
,

which will be used with a GMRES solver. This is motivated by the fact that the
resulting preconditioned system has the form(

K11 K12
KT

12 K22

)(
K11 K12
O Σ±(P )

)−1

=
(

I O
KT

12K
−1
11 Σ+(S)Σ±(P )−1

)
,
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which is known to yield GMRES convergence in 2 iterations if Σ+(P ) = Σ+(S)
[17], [29]. It is evident from the above factorization that at each GMRES step the
implementation requires solution of linear systems with K11 and Σ±(P ), with the
former achieved by solving in parallel N subdomain Dirichlet Stokes problems using
a sparse direct solver. The choices of P are motivated by our previous discussion. We
constructed the constraint matrices BTΓmR̄mN in Σ±(P ) (cf. (4.2)) via a finite element
assembly, given their explicit form, although we note that this construction can also
be achieved cheaply algebraically.

We employed the following choices for P :
1. P = S∆—the Schur complement arising from a vector Laplacian problem (see

Remark 5.4);
2. P = H1/2 = M(M−1L)1/2—a discrete vector fractional Sobolev norm;
3. P = PArn implicitly defined by the Arnoldi factorization (5.8) and the subse-

quent three-step procedure indicated;
4. P = PLan implicitly defined by the Lanczos factorization (5.9) and the ap-

proximation (5.10).
We remark here that the first two choices are expensive in practice, as they involve
the inversion of a matrix with a dense (1,1)-block of size nΓ. On the other hand, the
other two are Krylov approximations which involve sparse approximations—indeed,
these are the main practical options that we propose.

6.2. Krylov solvers. We employed flexible GMRES (FGMRES) [36] with a
standard stopping criterion

‖rk‖ ≤ 10−6‖r‖,
where rk = b−Kxk denotes the residual at the kth iteration. The choice of method
is due to the changing nature of the preconditioner for the case where PArn, PLan are
employed. The starting guess x0 was computed as the solution of the linear system(

K11 K12
O Σ±(P )

)
x0 = b.

This choice ensures that the initial residual has the block form

r0 =
(

0
r0

2,

)
so that the Arnoldi basis generated by GMRES has the same zero pattern. This
leads to important savings, as the orthogonal basis generated is nonzero only on the
constraint interface space. This was taken into account in our implementation of
FGMRES, so that only the nonzero part of the Arnoldi basis was stored. We note
that this is mathematically equivalent to using FGMRES on the Schur complement
problem, but employing a global stopping criterion.

The implementation of PArn, PLan used standard Arnoldi and Lanczos algorithms
with full reorthogonalization. In all our experiments we worked with bases of size
` = 10.

6.3. Experiments. We employed the above interface preconditioners to solve
the Stokes problem (2.1) corresponding to the following domains and boundary con-
ditions.

Problem 1: Regularized lid-driven cavity flow in Ω = [0, 1]2 with boundary
data

g(x, y) =
{

(16(x− x2)2, 0), x ∈ [0, 1], y = 1,
(0, 0) otherwise.
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(a) Problem 1 (b) Problem 3

Fig. 1. Partitions for test Problems 1 and 3.

Problem 2: Poiseuille type flow in Ω = [0, 8]× [0, 1] with boundary data

g(x, y) =
{

(4(y − y2), 0), x ∈ {1, 8} , y ∈ [0, 1],
(0, 0), otherwise.

Problem 3: Taylor–Couette-type flow in Ω = B0,3\B̄0,1, where Bc,r denotes
the open disk centered at c with radius r and with boundary data

g(x, y) =
{
t(x, y), x2 + y2 = (1/2)2,
(0, 0) otherwise,

where t(x, y) denotes the unit tangent vector to ∂Ω at (x, y).
We chose to experiment with various isotropic partitions for several levels of isotropic
mesh refinement with degrees of freedom in the range O(104 − 105). In particular,
we chose partitions into subdomains of diameter Hi and meshes with shape regular
simplices such that

(6.1) cH ≤ Hi ≤ CH

for all i and such that CH/cH = O(1). We experimented with straight interfaces,
corresponding to the case where the domain is first subdivided and then refined. We
did not use uniform meshes as we wanted to avoid any superconvergence effects. Some
examples of the meshes and partitions used are included in Figure 1.

Remark 6.1. The regularity requirement (6.1) was not needed in our analysis, but
is seen as standard in the domain decomposition literature. However, we found that
employing subdomains with large aspect ratio was detrimental to performance. This
feature requires further investigation.

We stress here that we did not employ a coarse level in our preconditioning
procedure, thus avoiding the complications that arise in defining coarse level operators
for constrained problems.

Finally, we remark that the potential for parallelism of the substructuring method
proposed in this paper relies on the low complexity of the interface preconditioning
procedure. Given the sparse approximation procedure employed, the complexity of
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Table 1
GMRES iterations for Problem 1: ideal preconditioners S∆, H1/2.

P = S∆ H1/2
N = 4 16 64 256 4 16 64 256

n + m = 10,498 13 13 12 13 16 20 22 29
41,474 13 14 13 13 17 20 23 31

164,866 13 14 14 13 16 20 24 32

Table 2
GMRES iterations for Problem 1: Arnoldi and Lanczos approximations.

P = PArn PLan
N = 4 16 64 256 4 16 64 256

n + m = 10,498 14 17 24 31 14 17 23 30
41,474 16 17 21 30 14 17 23 32

164,866 17 18 18 25 15 17 21 32

Table 3
GMRES iterations for Problem 2: ideal preconditioners S∆, H1/2.

P = S∆ H1/2
Nx × Ny = 16 × 2 32 × 4 64 × 8 16 × 2 32 × 4 64 × 8

n + m = 17,890 13 12 10 18 19 20
70,978 14 13 11 19 20 21

282,754 14 13 11 21 21 21

the iterface problem is of order O(`nB). This means that the method should scale
well for interface problems of size nB = O(nIi

). This poses balancing constraints on
the geometric parameters employed, which is a standard restriction in DDMs.

6.4. Numerical results. We include below the results corresponding to the
three test problems and the set of preconditioners indicated.

6.4.1. Problem 1. Table 1 displays the number of iterations corresponding to
the ideal choices P = S∆ and P = H1/2. These results represent the benchmark for the
approximations PArn, PLan, shown in Table 2. The approximations were constructed
using a Krylov space of dimension ` = 10. First, we note that all the preconditioners
exhibit mesh independence. The ideal (and less practical) preconditioner S∆ appears
also to exhibit independence of the number of subdomains, while the other theoretical
candidate, H1/2 exhibits a mild dependence on N , not dissimilar to the dependence
noticed in the scalar case when preconditioning Poisson problems [2]. The two sparse
approximations employed also appear to yield performance independent of the refine-
ment level, while inheriting from the exact preconditioner H1/2 the dependence on N .

6.4.2. Problem 2. Given the shape of the domain, we chose to work with a
subdivision into subdomains that satisfied the isotropy property (6.1). More precisely,
we used Nx, Ny subdomains in the x and y directions, respectively, so that each Ωi
was a square. The corresponding results are included in Tables 3 and 4. Unlike
the previous example, the dependence on N = Nx × Ny is insignificant, while the
independence of the refinement level is maintained as indicated by the theoretical
results from the previous section. Remarkably, this appears to be the case for all
the preconditioners employed. We also note that the performance of the Arnoldi and
Lanczos approximations appears to be slightly better than that of the exact choice of
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Table 4
GMRES iterations for Problem 2: Arnoldi and Lanczos approximations.

P = PArn PLan
Nx × Ny = 16 × 2 32 × 4 64 × 8 16 × 2 32 × 4 64 × 8

n + m = 17,890 15 16 16 16 16 18
70,978 17 15 16 17 16 18

282,754 19 16 16 17 17 16

Table 5
GMRES iterations for Problem 3: ideal preconditioners S∆, H1/2.

P = S∆ H1/2

Nθ × Nr = 4 × 1 8 × 2 12 × 3 4 × 1 8 × 2 12 × 3

n + m = 10,256 9 12 12 12 16 17

40,512 9 12 13 12 17 17

161,024 9 13 12 11 17 18

Table 6
GMRES iterations for Problem 3: Arnoldi and Lanczos approximations.

P = PArn PLan

Nθ × Nr = 4 × 1 8 × 2 12 × 3 4 × 1 8 × 2 12 × 3

n + m = 10,256 18 26 28 16 22 23

40,512 18 26 27 15 22 23

161,024 18 27 27 17 22 22

preconditioner that they are designed to approximate. This was also the case for test
Problem 1, but is more pronounced for this problem.

6.4.3. Problem 3. Finally, for the case of an annular domain, we chose to work
with a subdivision into Nr, Nθ subdomains in the radial and tangential directions,
respectively. A typical subdivision and mesh refinement is shown in Figure 1(b). The
preconditioned FGMRES performance is included in Tables 5 and 6. We observe that
the same behavior is present, with both mesh independence and mild dependence on
N clearly displayed. We remark also that the performance of the Lanczos approxi-
mation is somewhat better that that of the Arnoldi option, unlike in the other two
experiments.

7. Summary. We presented a novel substructuring approach for the parallel
solution of the incompressible Stokes equations with Dirichlet boundary conditions.
The method involves a simple reformulation of the problem which allows for a natural
decomposition into well-posed Stokes subdomain problems, coupled by an interface
problem with explicit constraints. In turn, this allows for the design of optimal inter-
face preconditioners which exhibit no mesh dependence and only a mild dependence
on the number of subdomains.

Some generalizations are possible and will be investigated in future work. First, we
note that while the method was analyzed for the case of discontinuous approximations
of the pressure variable, a similar, albeit more technical, approach is possible for the
case of continuous pressure approximations. Second, we expect our formulation to
arise naturally in a substructuring approach for problems with outflow boundary
conditions, for decompositions which involve subdomains with Dirichlet boundary
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conditions, as well as for subdomains with mixed (outflow and Dirichlet) boundary
conditions. Finally, our approach can be extended directly to the Navier–Stokes
equations as well as to the case of generalized Newtonian flow for various standard
constitutive laws.

8. Appendix.

Proof of Lemma 4.2. The last column of K−1 is the solution of the following
linear system:  A BT 0

B 0 q
0 qT 0

 u
p
λ

 =

 0
0
1

 .

We find u = −A−1BTp and hence

Bu + λq = −BA−1BTp + λq = 0.

Since BTq = 0, multiplying the above equation by qT from the right we obtain

0 = −qTBA−1BTp + λqTq = λqTq

and hence λ = 0. Therefore, Bu = 0 and BA−1BTp = 0. Since A is symmetric and
positive definite, we must have p ∈ kerBT or p = aq for some a ∈ R. But qTp = 1
and we find a = 1/‖q‖2. Finally, 0 = Au+BTp = Au, so that u = 0.

To find the second column of K−1 we consider the linear system A BT 0
B 0 q
0 qT 0

 ui
pi
λi

 =

 0
ei
0

 ,

where ei ∈ Rm is the ith column of the identity matrix Im. As before,

ui = −A−1BTpi.

We find

Bui + λiq = −BA−1BTpi + λiq = ei ⇔ λi‖q‖2 = qTei = qi ⇔ λi =
qi
‖q‖2

.

Hence, using the last equation qTpi = 0,

−BA−1BTpi +
qqi
‖q‖2

= ei ⇔
[
qqT +BA−1BT

]
pi = −

[
ei −

qqi
‖q‖2

]
.

Since
Sq = qqT +BA−1BT

is symmetric and positive definite, we find the matrix P to be as given. The expression
for NT follows immediately. Finally,

AM +BTN = In ⇔M = A−1[A−BTN ]A

and the expression for M follows.
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