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Abstract: Some in vitro studies have indicated a possible link between respiratory syncytial virus
(RSV) infection and exposure to Nitric Oxide (NO). However, these studies used much higher NO
concentrations than normally found in the ambient environment. This preliminary study explored
whether an association was present with short-term exposure to NO in the environment. RSV-related
admission data between November 2011 and February 2012 were obtained from Sheffield Children’s
Hospital. The dates of admission were linked to contemporaneous ambient NO derived from sentinel
air monitors. The case-crossover design was used to study the relationship between daily RSV
admissions and NO, controlling for temperature and relative humidity. We found little evidence
of association between daily RSV admission rates and exposure to ambient NO at different lags or
average exposure across several lags. The findings should, however, be viewed with caution due to
the low number of events observed during the time frame. It is possible that the apparent lack of
association may be accounted for by the timing of the seasonal RSV epidemic in relation to peaks
in NO concentrations. A larger study incorporating a wider range of RSV and NO peaks would
determine whether said peaks enhanced the number of RSV hospitalizations in children.

Keywords: respiratory syncytial virus; bronchiolitis; air pollution; nitrogen oxide

1. Introduction

Acute lower respiratory tract infections are the leading cause of child morbidity and mortality
globally. Of the viral pathogens responsible, respiratory syncytial virus (RSV) is deemed one of the
most significant [1,2]. The human respiratory syncytial virus is a paramyxovirus closely related to
bovine and ovine RSV. It is believed to be transmitted via inhalation of droplets generated by coughing
or self-inoculation into eyes and nose from contaminated hands. The virus only remains viable outside
the human host for a short period [2,3]. Though the exact contribution of RSV is uncertain, it has been
estimated that annually it is responsible for up to 200,000 deaths [4]. Figures from the UK indicate that
RSV is the commonest cause of severe respiratory illness in young children aged under 2 years; it is
also the most frequent cause of hospital admissions due to acute respiratory illness in young children,
with over 8900 positive tests recorded by the Health Protection Agency (HPA) from October to March
during 2012/2013 [5].
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In temperate regions, annual epidemics of RSV-related infections typically follow a seasonal
trend peaking during winter, while in tropical regions the epidemics are generally associated with
the rainy season. A number of demographic factors have been associated with increased risk of
RSV-related diseases including sex, age, birth during RSV season, siblings/crowding and previous
RSV infection [6–9]. Due to the highly seasonal pattern of annual epidemics, meteorological factors
such as temperature, hours of sunlight and humidity have been considered as potentially being related
to RSV, but findings have been inconsistent, suggesting that such factors may not be affecting the
incidence or severity of disease directly. Increased incidence of hospitalization has also been reported
among infants living in industrialised areas compared to urban and rural areas [10,11] giving rise to the
suggestion that there may be a link between certain air pollutants and severity of illness. Again, results
from studies addressing this possibility have not been consistent [12–15].

One pollutant that has been little explored is nitric oxide (NO), which is known to be elevated
during the winter compared to the summer season. These elevated levels of NO in winter may be due
to reduced mixing of the lower air boundary during the winter months, and are further enhanced by
reduced photochemical activity and behavioural changes due to the reduction in temperature [16].
A previous publication indicated that there may be a correlation between environmental levels of
NO and admissions to hospital but this utilised aggregated data that were not subject to detailed
analysis [17].

NO is of interest in the context of RSV infection for a number of reasons. In vitro work has
shown that RSV infects macrophages and dendritic cells [18–20], two cells pivotal in orchestrating
the immune response within the lungs and airways. Moreover, it has been shown that RSV may
remain within the dendritic cell population in a latent form for prolonged periods. Reactivation of
replication can be induced by exposing dendritic cells to NO at 600 ppb for two hours or by adding
the NO donor S-nitroso-N-acetylpenicillamine (SNAP) [19,21]. RSV has been shown to up-regulate
iNOS and nitrite production in a cell line affecting ion channel function and aspects of inflammation
including up-regulating NF-kB [22]. In a rodent model of RSV infection in infants, administering an
iNOS inhibitor to the young mice resulted in increased viral titres in bronchoalveolar lavage (BAL)
samples though inflammation was reduced [23]. NO has also been shown to play important roles in
host responses to the virus, affecting immune responses and apoptosis of host cells [24,25]. The present
epidemiological study exploring the relationship between RSV and short-term exposure to ambient
NO pollution was undertaken with the aim of exploring the possibility that environmental nitric oxide
influences the severity of the clinical illness experienced by infants with RSV infection and hence the
rates of hospitalization.

2. Materials and Methods

2.1. Health Data

Data on daily admission of infants due to RSV infection were obtained from Sheffield Children’s
Hospital (Sheffield Children’s NHS Foundation Trust) over a four month period (November 2011 to
February 2012). Infection status was determined based on a positive test for RSV using a polymerase
chain reaction (PCR) on nasopharyngeal aspirates. Few if any children with a simple upper respiratory
tract infection are admitted to hospital and the study only addressed those admitted with a significant
lower respiratory tract infection. All such children had a nasal sample taken for virus identification.
In addition, date of birth, gender and date of admission (date of sampling) were provided for each
child admitted to the hospital. Parents provided informed consent to participate in the study and
ethical approval was obtained from Yorkshire and the Humber-Sheffield research ethics committee,
National Research Ethics Service (NRES REC: 10/H1307/114).
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2.2. NO Concentration Data

Corresponding data on ambient NO concentrations were drawn from three sentinel monitors
managed and maintained by the Department for the Environment, Food and Rural Affairs (DEFRA)
which provide hourly concentrations of NO for each 24 h period. Details on techniques of analysis,
methods of sampling, precision and accuracy of measurements can be found from the DEFRA
website [26]. One of the stations, Sheffield Centre, was an urban monitor located in the centre
of Sheffield city. The second station, Sheffield Tinsley, was in a relatively industrial site about three
miles north west of the city centre, while the third station, Ladybower, was located in a rural site some
ten miles to the east of Sheffield city centre. Thus oxides of nitrogen sources in Sheffield are mainly
from road traffic and industrial emissions. We presented descriptive statistics for all three sites but
our statistical models were based on the daily average NO concentrations from the three monitors
in Sheffield.

2.3. Climate Data

Data on daily minimum and maximum temperature for Sheffield were obtained from the Met
office British Atmospheric Data Centre (BADC) [27]. The average daily temperature for the study was
then calculated by taking the average of the minimum and maximum temperatures. In addition, data
on daily levels of relative humidity were also obtained from the Met office.

2.4. Statistical Analysis

The case-crossover design was used to investigate the association between short-term exposure
to NO and the occurrence of RSV admissions controlling for average daily temperature and relative
humidity. This design, introduced by Maclure [28], has been widely applied in air pollution studies
and is particularly useful for estimating the risk of a rare acute outcome associated with short-term
exposure [29–32]. In case-crossover design, each case acts as their own control and like case-control
studies [33] the distribution of exposure is compared between “cases” and “controls”. That is, exposure
at the time just prior to the event (“case” or “index” time) is compared with a set of “control” times
that represent the expected distribution of exposure for non-event follow-up times. The design helps
primarily to control for confounding by subject-specific factors which do not change over time such as
ethnicity and gender.

We applied the time stratified case-crossover approach where the strata are matching days based
on the same day of the week, calendar month and year. That is, control days were selected from the
same day of the week, within the same calendar month and year as the event day. Usually, analyses
based on this design are carried out using a conditional logistic regression model. However, we
applied a conditional Poisson regression model which has been shown to give estimates equivalent
to the conditional logistic model [34]; the conditional Poisson model has the advantage of easily
allowing for overdispersion and autocorrelation. All our models assume a linear effect of NO on RSV
admissions while the effects of temperature and relative humidity are likely to be non-linear [35,36]
and were modelled using natural cubic splines with three degrees of freedom. We explored various
lag structures including single lags 0, 1, 2, . . . , 6 and corresponding average of lags 0–1, 0–2, 0–3, . . . ,
0–6 for NO exposure. Additional sensitivity analysis was conducted using NO data from Sheffield
Central monitoring station to compliment the primary analysis which was based on the average NO
levels from the three stations. All analyses were performed using the R statistical package [37].

3. Results

The average number of admissions per day was 1.7 and occurred in only 79 days of the study
period, which spaned four months (Table 1). The mean age of a child admitted to the hospital was a
little over 4 months (133 days) and all children were under the age of one year except one child who
was a year and half old. Of the total admitted children, 99 (46.7%) were females and 109 (52.4%) were
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males. The peak admission counts were observed at the end of November and beginning of December
as shown in Figure 1 (grey solid line) and did not seem to coincide with those peaks for the average
NO concentrations which were observed in January and February.
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Figure 1. Average NO concentrations and RSV related admissions at Sheffield Children’s Hospital.

Table 1. Summary for daily admission counts and NO concentration by monitoring station.

Variable Mean Median (IQR b) Minimum Maximum Number of Days

Age (days) 132.7 (101) 111 (43–189) 7 573 121
Admission count 1.7 (1.9) 1 (0–2) 0 9 121
Temperature (˝C) 6.3 (3.6) 6.7 (3.6–9.1) ´2.3 13.3 121

Relative humidity (%) 80.3 (11.4) 81.8 (72–88.5) 41.8 98 101
NO (µg/m3)

Sheffield Centre 26.4 (31.7) 16.6 (5.1–36.8) 1 173.2 120
Sheffield Tinsley 25.8 (35.1) 15.7 (6.9–28.4) 1.3 267.9 121

Ladybower 3.2 (2.1) 2.5 (1.6–4.2) 0.6 12.9 115
Average 18.6 (20.7) 11.8 (7.2–21.1) 1.3 141.8 114

Sex (N, %) a

Female 99 (47.6)
a Number, percent; b Interquartile range.

Most children admitted to Sheffield Children’s Hospital due to RSV infection were from locations
surrounding central Sheffield, where the hospital itself as well as the central monitoring station are
located (Figure 2).

As expected, NO concentrations were much lower at the rural Ladybower station while the urban
Sheffield Centre and Sheffield Tinsley had more or less similar concentrations over the study period.
For all the three stations, NO levels tend to show peaks in February (Figure 3). NO concentration data
were missing for six days in Ladybower and one day for Sheffield Central stations. Relative humidity
data were also missing for twenty days.
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Overall, we did not find evidence of association between daily RSV admission rates and ambient
NO concentrations in Sheffield; for example, the odds ratio (OR) (95% confidence interval (CI))
associated with a 10 µg/m3 increase in previous day (lag 1) NO concentration was 0.93 (0.82, 1.05) after
controlling for non-linear effects of temperature and relative humidity. Results were similar across the
various single lags and corresponding average of lags considered (Figure 4).
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Sheffield. (A) Single lags; (B) Average of lags.

The results presented above were based on average NO exposure data from three stations, namely
Sheffield Centre (urban site), Sheffield Tinsley (industrial site) and Ladybower (rural site) which had six
missing observations. A sensitivity analysis using NO data from Sheffield Central monitoring station,
which had only one missing observation, provided qualitatively similar results with no evidence of
association and did not affect the overall conclusions (Table 2).

Table 2. Association between NO and RSV admissions using data from a central monitoring station vs.
average NO concentration from three monitoring stations.

Metric
Sheffield Centre Average *

OR (95% CI) p-Value OR (95% CI) p-Value

Lag 0 0.94 (0.85, 1.04) 0.23 0.97 (0.84, 1.11) 0.62
Lag 1 0.98 (0.91, 1.05) 0.57 0.93 (0.82, 1.05) 0.23
Lag 2 0.99 (0.92, 1.05) 0.69 0.98 (0.89, 1.07) 0.59
Lag 3 1.01 (0.95, 1.07) 0.80 0.97 (0.87, 1.09) 0.62
Lag 4 0.99 (0.93, 1.06) 0.80 0.99 (0.9, 1.09) 0.85
Lag 5 1.0 (0.93, 1.08) 0.97 0.96 (0.86, 1.08) 0.51
Lag 6 0.96 (0.88, 1.04) 0.27 0.91 (0.8, 1.04) 0.16

Lag 0–1 0.94 (0.85, 1.04) 0.27 0.93 (0.79, 1.08) 0.33
Lag 0–2 0.95 (0.87, 1.05) 0.34 0.95 (0.82, 1.09) 0.45
Lag 0–3 0.96 (0.87, 1.06) 0.40 0.93 (0.81, 1.08) 0.36
Lag 0–4 0.96 (0.86, 1.06) 0.39 0.94 (0.81, 1.09) 0.39
Lag 0–5 0.96 (0.85, 1.07) 0.43 0.92 (0.79, 1.09) 0.34
Lag 0–6 0.93 (0.82, 1.05) 0.24 0.9 (0.76, 1.07) 0.24

* The stations are Sheffield Centre (urban), Sheffield Tinsley (industrial) and Ladybower (rural).

A further sensitivity analysis without adjusting for relative humidity was conducted in order to
check whether the relatively higher missing rate (about 17%) in the humidity data affected the results.
However, odds ratio estimates from this analysis were more or less similar to those based on models
adjusting for relative humidity (Figure 5).
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4. Discussion

The data generated in this study do not support the suggestion that environmental NO levels
may influence the severity of RSV bronchiolitis, and hence hospitalizations rates, amongst infants
infected during the annual epidemics. Our findings showed little association between ambient NO
and RSV admissions. This was true for the various lags representing short-term exposure as well as
analyses both with and without controlling for relative humidity. The latter analyses were conducted
because while some studies showed significant association with RSV [7,8], others did not report such a
relationship [12]. However, the results should be interpreted with caution due to limitations related to
the data.

The daily number of events (RSV admissions) was very low in this data set—the reliability of our
results could improve with more data in terms of both time and location. It is generally recommended
to have a data set with an average of at least 10 event counts per day and large numbers of days in
order to have reasonable power and precision for such environmental exposure studies [38]. Using a
simulation-based approach we found the power could range from 62% to 92%, depending on the
specific lag investigated, to detect a β coefficient (log odds) = 0.01. For example, in the case of the UK,
one option would be to use the UK’s Royal College of General Practitioners weekly returns data for
a national picture with a greater range of exposures and admissions rates. The case-crossover study
design applied here to analyse the small data set is a reasonable method to deal with subject-specific
confounding and has been successfully used in other epidemiological studies of rare disease outcomes.
We found a negative result at the relatively lower NO concentrations that infants in this study were
exposed to in comparison to the concentrations in the in vitro studies [19,21]. These studies used NO
concentrations of 600 ppb, which is much higher than typical ambient levels [39].

The combustion of tobacco produces a range of chemicals including NO, and previous studies
reported that both antenatal and postnatal exposure to tobacco within the home increases the incidence
of hospitalization with RSV [40–44]. However, we believe such exposure to smoking is unlikely to be a
confounder in our case-cross over study design, as little temporal variability is expected with respect
to smoking status. That is, on average, the smoking behavior of households would not vary much
with time.

There may, however, be another contributing factor to the apparent lack of an association observed
here; the relative timing of the RSV epidemic and the peak in NO levels. It may be that NO cannot
have an effect on RSV pathogenesis unless the two co-exist within a certain time period, say two or
three days. If the RSV peak in a given year/area is not associated with particularly high NO then we
might not see an effect. If the higher NO levels correspond with the RSV epidemic, this might then be
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associated with a greater number of cases; i.e., NO acts as a potentiator of severity, as reflected in an
increased number of attendances for medical help.

5. Conclusions

In summary, while we did not find an association between short-term exposure to ambient NO and
RSV admissions, this preliminary study either did not have sufficient power to establish a potentially
causal association or the lack of co-incidence of NO and RSV peaks meant that a potentiation of RSV
infections was not able to be shown in this dataset.
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