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Abstract 
An advanced surface engineering process combining micro-texture with plasma carburising process was 

produced on CoCrMo femoral head, and their tribological properties were evaluated by the cutting-edge 

pendulum hip joint simulator coupled with thin film colorimetric interferometry. FESEM and GDOES 

showed that precipitation-free C S-phase with uniform case depth of 10 μm was formed across the 

micro-textures after duplex treatment. Hip simulator tests showed that the friction coefficient was reduced 

by 20 % for micro-meter sized texture, and the long-term tribological property of micro texture was 

enhanced by the C-supersaturated crystalline microstructure formed on the surface of duplex treated 

CoCrMo, and thus was significantly enhanced biotribological durability. In-situ colorimetric 

interferometry confirmed that the maximum film thickness around texture area was 530 nm, indicating 

that the additional lubricant during sliding motion might provide exceptional bearing life. 

Highlights:  

· An innovative duplex surface treatment (micro-texturing and S-phase) was developed. 

· In-situ visualization of lubricating films on real geometry head and cup. 

· Lubricating film thickness was increased by surface texturing on CoCrMo head. 

· Testing time-dependant performance of dimpled surface and its longevity. 
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· Study of frictional behaviour of MoP joints with different texture geometries. 

Keywords: plasma carburising, surface texturing, wear, biotribology, colorimetric interferometry, friction 

1  Introduction 

Hip arthroplasty surgery is considered a successful intervention to restore hip functionality and relief pain 

to patients with severe joint disease or trauma. Surface engineering of materials used within prosthesis is 

presented as possible measure to prevent aseptic loosening and surgical site infections due to the shedding 

of prosthesis materials from fretting and tribocorrosion. Volumetric wear determined by the hip simulator 

test showed that UHMWPE MoP hip prostheses exhibited great wear rate of 40-80mm
3
/million-cycles, 

and cross-linked MoP exhibited 5-40 mm
3
/million-cycles. For other types of hip prostheses, the wear rate 

was in the range of 0.01-1.2 mm
3
/million-cycles [1-4].

 
The dissemination of wear particles to liver, spleen 

or lymph nodes after hip arthroplasty is a common feature regardless of what type of bearings used [3]. 

This showed that even for MoP bearings a certain amount of metallic debris particles can be disseminated 

in the body. Metal particles with size of 10-100 nm are highly mobile. It may be internalised by cells even 

though a small mass fraction is released. Clinical evidence showed that the metal iron produced around 

MoP bearings prosthesis may cause metal hypersensitivity or even pathologically cytotoxicity to 

macrophages. Chromosomal changes in bone marrow cells have been observed clinically with the 

presence of metal concentration on MoP metal implants [4]. 

A research by Ito et al. in 1990s concaved patterns on prosthesis hip replacement CoCr femoral head by 

electrical discharge etching method [5]. They observed remarkable 69 % less amount of wear on 

UHMWPE by introducing 0.1 mm deep dimples all around CoCr femoral head. Indeed, surface 

texturing (ST) is effective in control the amount of lubricant on the boundary lubricated bearing surfaces. 

Surface texturing has been introducing to general mechanics such as cylinder liner of internal combustion 

engines and planar thrust bearings [6]. Optimised texture patterns applied in cylinder liner can save up to 
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10 % mechanical losses and subsequently save 1.2-2.5 % fuel and energy. A few attempts to improve the 

biotribology of artificial joints by using surface texturing were reported [7-10]. Sawano et al. [8] tested 

four groups of CoCr heads with different dimpled depths rotation against UHMWPE and pointed out for 

the first time that dimples can indeed improve live of artificial joints. Choudhury et al. [11] observed the 

reduced third-body wear by creating CNC micro-drilling Ta-C DLC coating on femoral head. In the USA, 

Raeymaekers et al. [7] used laser patterned microtexture to increase the load-carrying capacity and reduce 

friction of the CoCr femoral head for MoP joints. Zhang and Wang et al. [10, 12] in China used metal-on-

polymer disc wear tester to compare the friction coefficient of textured and untextured UHMWPE under 

various sliding speed and load. They found that optimum parameters cut friction coefficient by as much 

as 66.7–85.7 % and average reduction of wear is 35 %. Recently, Krupa et al. observed the effects of 

surface topography on lubrication film formation [13, 14]. It has been shown that the surface topography 

plays an important role during transient operational conditions and properly designed surface topography 

could help to increase the lubrication efficiency. It is worth noting that the friction coefficient is variable 

with the textured materials and the range of sliding speed, and geometric parameters. Among them, 

analysis on the effect of geometric parameters of dimples is considered high priority to mitigated the risk 

of no benefit or even adverse effect to the wear of MoP bearings [8].  

Nevertheless, Hsu et al. [15] noticed texture can reduce the friction initially but soon it becomes a little 

rough even at lowest pressure. Hsu suggested that chemistry modification or coatings to protect the 

textures need to be developed. Krupka and Vrbka et al. [13, 16-19] also reported that the degradation of 

indentation found after fatigue test indicated that the failure of component was possibly attributed to the 

wear of the textured surface. Therefore, improvement measures can be focused on to increase the surface 

durability of indentation served under high pressure conditions, which might assure adequate fatigue 

strength of patterned surface. 

Plasma carburising (PC) process has been used to improve the wear and fatigue properties of many 

artificial joints materials and it offers many advantages over other coating and hardening processes, in 
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particular, better diffusion efficiency, low cost, reduced energy consumption, and the removal of 

significant environmental hazards [20, 21]. Recently, advanced plasma thermochemical treatment 

conducted at low temperature, i.e. LTPC, is being developed for CoCrMo alloys [22, 23] and for stainless 

steels [24]. Because the process is conducted at low temperature, mobility of substitutional elements is 

low thus precipitation can be prevented even at exceeded solubility. As a result, a layer of microstructure 

that is supersaturated with nitrogen namely ’S-phase’ (short from Supersaturated Phase) or ’expanded 

austenite’ was produced. S-phase is a very hard (800-1000 Hv) and wear resistant diffusion case thus high 

durability under load-bearing condition is experienced. Furthermore, S-phase layer has been extensively 

studied as a substrate for long-lasting hip prosthesis surfaces. Dong et al. [24-26] carried out systematic 

research work on low temperature plasma engineering of several types of biomaterial alloy, and found 

that the wear resistance could be increased by two orders of magnitude under dry sliding conditions. 

To this date, there is little research on the time-dependant performance of dimpled surface and how the 

durability of dimpled material affects the biotribology of surfaces. This work aims to investigate the 

longevity of low friction properties by adding PC hardened case to the microtexture. The feasibility of 

using this method to achieve long-lasting low friction material surface for orthopaedic applications is also 

discussed.  

2 Materials and methods 

2.1 Material preparation and experiment procedures 

Figure 1 shows the experimental flow chart and the illustrated cross-sectional treated surface at each stage 

of process. Branded total hip replacement joint CoCrMo Ø28/0 ‘M’ Taper 12/14 femoral head (ISO 5832-

12) and electron irradiated highly cross-linked UHMWPE cup (ISO 5834-1) were used for texturing and 

plasma carburising treatments. The femoral heads were textured with well-defined micro-dimples using 

two mechanical indenter machines, i.e. Rockwell roller indenter for fabricating texture on circumference 

of sample and Rockwell auto indenter for the tip of sample. A vertical movement and rotation of the roller 
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indenter were operated by step motors and a strain gauge was used to check the load. The LTPC process 

was conducted in a standard DC plasma furnace (Klöckner 40 kW, Germany) as described in [23], with 

gas mixture of 98.5 % H2 and 1.5 % CH4 and pressure of 4 mbar at 450 ºC for 10 hours. Process 

parameters have been optimized by our previous studies [33]. Table 1 summarises the experiment 

parameters of the ST, the LTPC and the PC samples, as comparison to the untreated CoCrMo (UT). Three 

sizes of dimples controlled by indentation depth, i.e. h=1.5 µm, 2.4 µm and 9.5 µm, were created on 

femoral head with round shape (for 1.5 µm and 2.4 µm) or pyramid shape (for 9.5 µm), and two texture 

patterns with different line shift (s) was create for 2.4 µm sized samples. As shown in figure 2 by 3D 

optical profilometer, pattern ST2 and pattern ST3 was created with s= 40 µm and s=20 µm, respectively. 

The density of dimple’s area is calculated in the last column of texture parameters. 

2.2 Surface Characterisation 

The treated CoCrMo heads were cross-sectioned, polished and electro-etched with DC source and 15 % 

HNO3 solution. A field emission scanning electron microscope (FESEM, Oxford JEOL 7000) was used to 

examine the top surface morphology of texturing, and microstructure of cross-sectional PC treated 

samples. Elemental composition-depth profiling of the PC treated samples (Ø4 mm detecting area) were 

measured using LECO GDS-750 QDP glow-discharge optical emission spectroscopy (GDOES). 

Minimum of three random locations on the treated surface were selected for analysis. The surface 

topography and roughness were measured at 3 random 0.314×0.235 mm areas using non-contact 3D 

optical profilometer (Bruker Contour GT-X8). Surface roughness was given as centre line average (Ra). 

The phase constituents of alloyed surface were analysed using the SmartLab XRD (Rigaku, Japan) 

instrument with Cu Kα (λ=0.145 nm) radiation and fine focus lamp. X’Pert High Score software with the 

PCPDFWIN database was used to identify the presence of crystalline phases in the material surface. 

Mechanical properties of the treated surface were measured on CSM nano-indentation tester with load of 

20 mN. 
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2.3 Friction coefficient tests 

2.3.1 Pendulum simulation 

Damping curve and friction coefficient of surfaces was obtained on the pendulum machine according to 

[27]. All femoral heads were finally polished with diamond paste as a standard procedure after the 

treatment. The contact pair of femoral head and acetabular cup was arranged in an inverted position with 

respect to anatomical position (figure 3). The metal head was fixed to the pendulum and the movement is 

controlled by pendulum arms carrying loads of an average human weight. A new UHMWPE taper liner 

was cemented in a sample pot of base frame using resin. The pendulum was rotated to place the femoral 

head at an initial offset angle of 16° with the cup, released, and allowed to oscillate freely in the flexion-

extension plane with a frequency of 0.49 Hz.  

In order to calculate a friction coefficient between contact components, a pendulum rotation was tracked 

using angular velocity sensor fixed to the pendulum and the oscillation data was then processed using 

MATLAB
®
 software. The calculation of friction coefficient was based on linear decay of the pendulum 

rotation with time and cycle number according to Crisco et al. [27]. 

Lubricant used in this study was the BS solution (Sigma-Aldrich B9433, protein concentration 89.7 

mg/ml) diluted with still water to a concentration of 25 % and a total protein content of 22.4 mg/ml; The 

lubricant was immediately stored in a 12 ml container and frozen at -20 °C after preparation. All 

components, which were in the contact with BS were cleaned in 1 %w/w sodium dodecyl sulphate, rinsed 

in distilled water, and then washed in isopropyl alcohol (C3H8O) before assembly. It was defrosted one 

hour before measurements, and then was supplied to the acetabular cup prior to test. A vicinity of the 

contact pair was fully bathed during test, and the temperature of setup was maintained by the in-situ 

heating cartridges to the body temperature of 37 °C.  

A newly developed optical tester was used as a valuable experimental tool to evaluate the lubrication 

mechanism in the artificial joints [28]. A Cr-coated semi reflective glass cup was used to replace the 
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UHMWPE cup because the contact bodies must be optically transparent. This test method is modified 

from the conventional non-conformal chromatic interferograms but it is different in the way that this film 

thickness measurement was performed at the simulated plane-contact pressure of human joint (i.e. 

conformal contact). The chromatic interferograms were recorded with a high-speed complementary 

metal-oxide semiconductor (CMOS) digital camera and evaluated with thin film colorimetric 

interferometry. The sample showing lowest friction coefficient from pendulum CoF test were selected for 

the film thickness test and it was compared with the reference sample (UT). Interferograms at the start, 

the middle and the end of the test from each performed measurement were selected for future processing. 

Film thickness (u) with relation to the damping time (T) and the sliding speed (v) were analysed. 

Approximately 80 interferometry images in total were measured for each sample. 

2.3.2 Reciprocating friction coefficient test 

A pin-on-disc linear reciprocating tribometer (TE79, Phoenix-tribology, UK) was used to evaluate the 

dynamic friction coefficient of MoP bearing surface. Samples were subjected to the same processing (the 

same texture and carburising parameters) as above. A 3×3 mm UHMWPE pin was moving back and forth 

on flat CoCrMo surface under the pressure of 2.2 MPa. A self-aligning system was used to ensure full 

contact between pin and disc. The sliding stroke length of pin was 3 mm and the frequency was 1.12 Hz. 

The testing sample was bathed in diluted BS solution during test and 10-20 strokes was carried out to 

obtain the real-time changes of CoF between the textured CoCrMo and UHMWPE. 

2.3.3 Long-term wear simulation 

To further investigate the long-time friction properties of MoP hip joint, the untreated and duplex treated 

samples were subject to ball-in-cup sliding wear which was modified according to international standard 

ASTM G99 wear testing with pin-on-disc apparatus [29]. A UHMWPE acetabular liner (Ø28 mm) was 

rotating against the CoCrMo Ø28/0 femoral head at 66 rpm (0.031 m/s) which was fixed on a ball holder 

and loaded with 50 N. The treated femoral head was cleaned in isopropyl alcohol and assembled carefully 
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into the liners. Lubrication as described above was added to the cup prior to each test and the amount was 

monitored visually during test. After 16,560 cycles, femoral heads were retrieved from ball-in-cup 

machine. Friction coefficient was tested before and after wear on pendulum machine as illustrated in 

2.3.1. This method was designed to measure the effect of wear to the CoF of joints after simulated long-

term use of artificial joints. The mean friction coefficient was calculated from 6 times of repetitive tests 

for each sample.  

3 Results 

3.1 Material characterisation 

3.1.1 Metallography and chemical composition 

Both visual and SEM observations revealed that the top surface of CoCrMo femoral head was smooth 

after texturing (figure 4a). The centre line average roughness of Ra was 10 nm on the areas between 

textures. After the second step of low-temperature carburising treatments, a deposition layer composed by 

nano-particles was produced covering the surface and leading to increased roughness of 620 nm 

(figure 4b). The cross-section SEM reviewed that the duplex treated surfaces appeared three multi-layer 

structure: a top ultra-thin deposition layer (500 nm in thickness), and a 10 µm thick C S-phase featured 

modification case (figure 4c), followed by a 5 µm diffusion layer without clear interface with substrate. 

The modification case had likeness of the C S-phase morphology produced by DC plasma carburising on 

stainless steels [30], and it is worth noting that metallography of C S-phase showed high density of 

dislocations, slip lines, and deformation twins in the C S-phase layer as shown in figure 4c. 

The elemental depth profiles of carbon after duplex treatment are illustrated in figure 4d. This profile 

showed a plateau type shape with a steep leading edge on the surface. It peaked at the outmost surface 

(6.5 wt%) and then decreased from the surface to the bulk. The depth profile of carbon by GDOES is in 

good agreement with the cross-sectional microstructure in figure 4c, suggested the total thickness of C S-
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phase case including diffusion layer is around 15 µm. This ultra-high level of carbon concentration on the 

surface is the evidence of the para-equilibrium super-saturated atomic carbon associated with interstitial 

diffusion mechanism [22]. 

3.1.2 Crystallographic phases 

The phase constitutions of treated and untreated CoCrMo heads are shown in figure 5. It can be seen that 

the untreated material is predominantly consisted of α-FCC and ε-HCP evidenced by intensities of α (111) 

and ε (101) peaks near 43.6º and 46.6º, respectively. This is similar to the microstructure of medical use 

dual phase CoCrMo alloy in the international standard ISO5832-12. Comparison of the phase 

compositions within group of STn, n=1,2,3,4 showed that the surface texturing had no significant effect to 

the phase constitution, whereas comparison between group ST and group PCST showed that it was 

significantly changed by the following LTPC process. Two strong peaks near 40º and 47º on the PCST 

samples can be indexed to S-phase S (111) and S-phase S (200). These two peaks were in position similar 

to α (111) and α (200) on UT samples but shift to the smaller angles. Quantitative calculation revealed 

that the d-spacing of S (111) on PC sample near 43º increased from 2.071 nm to 2.238 nm — sign of the 

super-saturation of atomic carbon in CoCrMo α-FCC phase.  

3.2 Mechanical and tribological properties  

3.2.1 Pendulum CoF and film thickness 

The friction coefficients calculated from the pendulum simulator are displayed in figure 6. It can be seen 

that the surface covered with S-phase (PC) showed moderately higher friction coefficient (CoFPC=0.20-

0.21) compared to untreated CoCrMo heads (CoFUT=0.19). This is probably a negative effect of the high 

carbon content in the surface to the friction coefficient, which has been reported previously by Luo et al. 

[22]. It also can be seen that the duplex treated metal femoral heads has lower friction than PC 

(CoFPCST=0.18-0.19), indicating the effectiveness of texturing in reducing friction between bearings. 

Although the coefficient value for PCST samples showed inconsistency between variable types of 
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textures, the remarkable reduction can be found for samples textured with 9.5 µm sized dimples 

(CoFPCST4=0.15 in average).  

The hip joint simulator, employed in the present study, allowed investigating lubrication processes during 

swing motion in a range of -16° to 16°. Figure 7 compares the damping transient sinusoidal motion of 

tested femoral head when they wore against UHWMPE. At the marked test points, the film thickness 

were measured and interferometry image at the start, the middle and the end of damping are shown in 

figure 8, 9, and 10, respectively. At the start of motion, the film thickness of the UT sample was mostly 

restricted by the sliding speed, where the film thickness at equilibrium (vD=6 mm/s, uD=150 nm) was 

much higher than that of amplitudes (vA=0 mm/s, uA=40 nm). In comparison, the textured surface showed 

better lubrication status at the beginning of test (i.e. vD’=6 mm/s, uD’=532 nm), although it also followed 

the rule of film thickness being influenced by the relative sliding speed of bearings (i.e. vA’=0 mm/s, 

uA’=25 nm). At the middle of damping, the film thickness of UT was increased by a combination effect of 

the sliding speed and absorbed protein molecules. It is perhaps hard to predict which effect was 

predominant but the combination of both effects led to the relative thick film at both equilibrium and 

amplitude positions (i.e. vB=0 mm/s, uB=100 nm; vE=3.7 mm/s, uE=100 nm). As for the ST4 sample, the 

interferometry image at amplitude was very interesting, where the film thickness of the textured area on 

the left side (vB’=0 mm/s, uB’=450 nm) was higher than that of the non-textured area on the right side. 

Towards the end of damping, film thickness kept at 80 nm, regardless of the sliding speed being almost 

zero, indicating the establishment of aggregated protein film towards the end of test.  

3.2.2 Dynamic friction coefficient 

It is possible to determine the kinetic friction coefficient during cyclic start-and-stop sliding condition 

with the reciprocating tester. The typical friction coefficient of the untreated CoCrMo (UT) and surface 

textured CoCrMo (ST) under normal force is summarised in figure 11. It can be seen that the untreated 

CoCrMo surface exhibited a relatively unstable and fluctuating friction during stroke. At the beginning of 
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movement, the friction coefficient was high (CoFStart=0.32) when the pin started to move from velocity 

zero, but it quickly decreased to around 0.25 as the motion started. As for the dimpled surface, the friction 

coefficient line was flat throughout stroke of textured samples. As show in figure 11, average friction 

coefficients of different patterns were compared as follows: 

CoFST4 < CoFST1 < CoFST2, ST3< CoFUT 

It is clear to see that the 9.5 µm sized dimples showed the lowest friction among all texted samples. The 

friction coefficient of all samples showed incremental increase after each stroke (figure 11b), e.g. from 

0.15 to 0.16 and from 0.18 to 0.29 for PCST4 and UT, respectively. 

3.2.3 Post-wear friction coefficient 

There was a little abrasive wear found on metal untreated femoral head after wearing against UHMWPE, 

and long scratches with length of up to 6 mm can be visually seen over the contact area. In contrast, the 

PCST samples were very smooth with microscopic scale fine scratches. No severe damage of UHMWPE 

surface was observed after the wear test. It was difficult to obtain quantitative volume of the mild wear on 

MoP bearings. Therefore, after retrieved from ball-in-cup sliding wear, the friction coefficient of all 

samples was repeated on pendulum simulator. Results were shown as before and after wear test in 

figure 12. It can be seen that all samples showed increased friction coefficient after ball-in-cup wear. 

Friction coefficients in the beginning were 0.19 for UT, 0.18-0.19 for PCST1 & PCST2 & PCST3, and 

0.15 for PCST4, and it increased to 0.3 for UT, 0.21 for PCST1,2 and 0.17 for PCST4 after ball-in-cup. 

The profilometer confirmed that the surface roughness Ra of CoCrMo surface increased from 0.15 µm to 

around 0.25 µm for UT (figure 12). Nano-hardness tests confirmed that the surface hardness was 

increased from 5 GPa for untreated surface to 16 GPa for LTPC treated surfaces. 
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4 Discussion:  

Wear of the prosthesis bearing surface under high load is an unavoidable process for artificial joint. 

Abrasive wear occurs when the bearing components enter in contact with the areas where the thickness of 

fluid lubricant film becomes very similar to the roughness of the articulating surfaces. In a study of wear 

investigation on revised metal-on-UHMWPE hip prosthesis, the average penetration depth is 

0.20 mm/year and the wear volume rates is 55 mm
3
/year [31]. It is known that the dominant reason of 

revision was acetabular loosening, leading to revision rate of 25 % at only 20 years of service [32]. 

Surface with minimum material lose has been developed from different approaches in terms of MoP hip 

replacement materials, such as lowering the friction coefficient or increasing hardness of polymer liner. 

Polishing surface to its minimum surface roughness is one primary and useful way to lower the friction 

coefficient. However, it is very difficult, if not impossible, to maintain clean roughness at level of 0.01 at 

long-term conditions. It was reported that surface roughness of the implant metal head can increase from 

0.01-0.02 µm to 0.06-0.19 µm after service [31, 33].  

Surface texture has been reported can offers improvement on the lubrication properties by generating 

additional lubricant stored in cavities during sliding movement [18, 19]. Other benefits of surface texture 

in terms of decreasing adhesion and wear of components is related to its mechanisms of controlling flow 

of wear debris and decreasing contact area to reduce further wear, in particular, it sustains the fluid film 

by reducing third body abrasion [34]. However, the surface texture design for hip prosthesis is 

complicated, particularly for such conditions with low speed and high load as in mix to boundary 

lubrication. The previous mathematical models established to evaluate the hydrodynamic effect of 

dimples under ball-on-flat conditions might not be suitable for the analysing of hip prosthesis bearings. 

The pendulum testing of friction coefficient used in this study allows comparison between various 

modified materials surface and the untreated MoP hip prosthesis [35, 36]. This method has been improved 

by integrating the viscous damping to acquire higher accuracy of prediction of friction [27]. Our study 
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using this method to predict friction showed that the friction coefficient was reduced on ST4, and ST4 

which were treated with micro-size dimples (figure 6). This result is in line with other studies where 

micro-sized texture with higher texture area density is possibly more beneficial for fluid flow control [34]. 

Although the lubricating mechanism existing within real replacement bearings is difficult to be measured, 

the technique used in this study is able to give some detailed information about the lubricant film 

distribution within the contact, and it is the only method one can provide up-to-date, proves that the film 

thickness increasing around textured area of prosthesis contact surface (figure 9). Our study also showed 

that the bovine serum solution as a tribologically tested lubricant has an impact to alter the friction 

coefficient during film thickness test and reciprocating CoF test in a short time (figure 11). This 

phenomenon of increasing in friction coefficient has been reported by Scholes et al. [37]. It was suggested 

that proteins present between the sliding surfaces might have effect to the friction coefficient. Sliding with 

BS solution creates a time-dependant film thickness characteristics due to the formation of a thin adherent 

film, which is believed formed by aggregation of absorbed protein molecules on the surface. 

Dimple density, dimple width and depth, texture array and dimple shapes/orientation are major 

parameters for designing of texture patterns. For many research concerning the effect of those parameters, 

the results are inconclusive [38-41]. Studies showed that dimple density plays a vital role and it was 

suggested that 20 %-40 % of density can generate maximised hydrodynamic pressure. The depth-over-

width ratio of dimples is another important parameter and it is preferred to be in the range of 0.01-0.05. 

The width of dimples also limits the number of dimples existing in the area of Hertz contact. The optimal 

values of parameters obtained in this study, however, do not entirely agree with the theoretical values. 

The best tribological performance is found on the PCST4, with 58% dimple density and 0.5 depth-over-

width ratio. The shapes and array of dimples demonstrate no significant effect to the CoF of bearings. 

This is evidenced by comparing the CoF of ST2 and ST3 and their pattern parameters — two different 

arrays having similar CoF results. This is an indication of the importance of lubrication retaining effect of 

texture under conformal high speed low load conditions, rather than the hydrodynamic effect with 
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sensitivity to shallow and small shapes. Additionally, the higher film thickness of ST4 at the start of 

motion (u=532 nm, figure 8) and smaller friction coefficient found at the start of movement for all 

dimpled samples (figure 11b) indicated that the texture might decrease the initial static friction between 

bearings and probably prevent the stiction at low speed.  

Since texture with the micrometre sizes are preferable to achieve effective level of friction reduction [42], 

the protection of such small texture from severe wear seems needed for long-tem application. This study 

showed that for untreated femoral heads, constant low friction coefficient cannot be obtained under high-

load wearing conditions (figure 12). This can be evidenced by the scratches on the CoCrMo femoral head, 

increase in friction coefficient after 16,560 wear cycles, and subsequent increasing of roughness 

(figure 12). In comparison, the friction coefficient found for PCST4 is significantly lower than the others. 

This improvement was probably attributed to the durability of relative large size dimples and the 

hardening thereof from LTPC process. The hardness of the duplex treatment on femoral head increasing 

from 5 GPa in the substrate to 16 GPa on the carburised surface plays an important role in reducing the 

abrasion damage of dimples during sliding wear [26, 43].  

Unlike coatings, diffusion methods modify the chemical composition of the surface with atomic 

interstitial carbon, thus it can harden the substrate of component to a certain depth. Low temperature 

plasma carburising can eliminate the risk of delamination or surface cracking of thin film and coatings, 

which are the major concern of using coatings for orthopaedics. To sum up, the thermal chemical 

treatment is superior to coatings in the way that it doesn’t cause third body wear due to the debonded 

particles. The duplex surface engineered system has combined benefit from both texturing and surface 

hardening. It lowers the friction between MoP parings, reduce wear for both metal and polymer surfaces, 

and improves service life of UHWPE. Another advantage is that hardened surface reduces the release of 

metal particles and metal irons thus it reduces the risk of metal hypersensitivity. Although results from the 

ball-in-cup wear machine provide little reference for the quantitative measure of wear on the surface of 

hip joint, our comparative results shows that surface texture and low-temperature plasma carburising 
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duplex treatment on CoCrMo head could be a cost-effective approach to achieve practically durable low 

friction MoP bearing surface. However, the current preliminary study has been limited to the creation of 

texture on the metal surface. The effect of texture created on the polymer counterpart in the same 

measurement conditions, and whether the positive effect would be compromised by the wear of soft 

polymer material are worthy of investigation. 

5 Conclusion 

A low-cost surface engineering process that combines surface texturing and plasma surface engineering is 

developed to create a prototype surface for CoCrMo ISO 5832-12 on UHMWPE hip replacement. Surface 

texture with various geometric parameters is created on the femoral head and its wear property was tested 

against UHMWPE. Pendulum friction coefficient test showed that texture with micro-meter size can 

reduce the friction coefficient between head and cup for MoP hip joint. The roughening of metal surface 

and increasing in friction coefficient were significant on textured samples after long cycle ball-in-cup 

wear; however, this can be mitigated with subsequent plasma carburising process. Overall, the duplex 

surface shows significant improvement of both friction and durability, and thus it is closer to meet the 

integrity requirements of materials to be used in the MoP hip replacement bearings.  

Acknowledgments  

This work is an output of cooperation between Czech Science Foundation under project no.: 13-30879P 

and MEYS under the National Sustainability Programme I (Project LO1202), the project 

CZ.1.07/2.3.00/30.0005 – “Support for the creation of excellent interdisciplinary research teams at Brno 

University of Technology” and the project CEITEC-Central European Institute of Technology 

CZ.1.05/1.1.00/02.0068 financed by European Regional Development Fund. 



16 

References 

[1] J. L. Tipper, P. J. Firkins, A. A. Besong, P. S. M. Barbour, J. Nevelos, M. H. Stone, et al., 

"Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and 

alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint 

simulator," Wear, vol. 250, pp. 120-128, 10/ 2001. 

[2] P. J. Firkins, J. L. Tipper, E. Ingham, M. H. Stone, R. Farrar, and J. Fisher, "A novel low wearing 

differential hardness, ceramic-on-metal hip joint prosthesis," J Biomech, vol. 34, p. 8, 10/ 2001. 

[3] U. Holzwarth and G. Cotogno. (2012). Total hip arthroplasty : State of the art, prospects and 

challenges. Available: http://publications.jrc.ec.europa.eu/repository/handle/JRC72428 

[4] C. P. Case, "Chromosomal changes after surgery for joint replacement," J Bone Joint Surg Br, 

vol. 83, p. 3, 11/ 2001. 

[5] H. Ito, K. Kaneda, T. Yuhta, I. Nishimura, K. Yasuda, and T. Matsuno, "Reduction of 

polyethylene wear by concave dimples on the frictional surface in artificial hip joints," J 

Arthroplasty, vol. 15, pp. 332-338, 2000. 

[6] Metrology and properties of engineering surfaces: Springer Science & Business Media, 2001. 

[7] A. Chyr, M. Qiu, J. W. Speltz, R. L. Jacobsen, A. P. Sanders, and B. Raeymaekers, "A patterned 

microtexture to reduce friction and increase longevity of prosthetic hip joints," Wear, vol. 315, 

pp. 51-57, 7/ 2014. 

[8] H. Sawano, S. Warisawa, and S. Ishihara, "Study on long life of artificial joints by investigating 

optimal sliding surface geometry for improvement in wear resistance," Precis Eng, vol. 33, pp. 

492-498, 2009. 

[9] L. Gao, P. Yang, I. Dymond, J. Fisher, and Z. Jin, "Effect of surface texturing on the 

elastohydrodynamic lubrication analysis of metal-on-metal hip implants," Tribol Int, vol. 43, pp. 

1851-1860, 10/ 2010. 

[10] B. Zhang, W. Huang, J. Wang, and X. Wang, "Comparison of the effects of surface texture on the 

surfaces of steel and UHMWPE," Tribol Int, vol. 65, pp. 138-145, 2013. 

[11] D. Choudhury, F. Urban, M. Vrbka, M. Hartl, and I. Krupka, "A novel tribological study on 

DLC-coated micro-dimpled orthopedics implant interface," J Mech Behav Biomed Mater, vol. 

45, pp. 121-131, 5/ 2015. 

[12] H. Yu, X. Wang, and F. Zhou, "Geometric shape effects of surface texture on the generation of 

hydrodynamic pressure between conformal contacting surfaces," Tribol Lett, vol. 37, pp. 123-

130, 2010. 

[13] I. Krupka, P. Svoboda, and M. Hartl, "Effect of surface topography on mixed lubrication film 

formation during start up under rolling/sliding conditions," Tribol Int, vol. 43, pp. 1035-1042, 5/ 

2010. 

[14] I. Krupka, M. Hartl, and P. Svoboda, "Effects of surface topography on lubrication film formation 

within elastohydrodynamic and mixed lubricated non-conformal contacts," Proc Inst Mech Eng J, 

vol. 224, pp. 713-722, 8/ 2010. 

[15] S. M. Hsu. (2006). Surface texturing: principles and design. Available: 

http://www.zdrax.de/en/assets/pdf/Surface_Texturing_Principles_and_Design.pdf 

[16] M. Vrbka, O. Šamánek, P. Šperka, T. Návrat, I. Křupka, and M. Hartl, "Effect of surface 
texturing on rolling contact fatigue within mixed lubricated non-conformal rolling/sliding 

contacts," Tribol Int, vol. 43, pp. 1457-1465, 8/ 2010. 

[17] M. Vrbka, I. Křupka, O. Šamánek, P. Svoboda, M. Vaverka, and M. Hartl, "Effect of surface 

texturing on lubrication film formation and rolling contact fatigue within mixed lubricated non-

conformal contacts," Meccanica, vol. 46, pp. 491-498, 6/ 2011. 



17 

[18] I. Křupka, R. Poliščuk, M. Vaverka, M. Hartl, M. Vrbka, and O. Šamánek, "Effect of surface 
texturing on lubrication film formation within non-conformal contacts," in Advan Tribol, J. Luo, 

Y. Meng, T. Shao, and Q. Zhao, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 84-85. 

[19] I. Křupka and M. Hartl, "The effect of surface texturing on thin EHD lubrication films," Tribol 

Int, vol. 40, pp. 1100-1110, 7/ 2007. 

[20] T. Bell and Y. Sun, "Low-temperature plasma nitriding and carburising of austenitic stainless 

steels," Heat Treat of Met, vol. 29, pp. 57-64, 2002. 

[21] T. Bell and C. X. Li, "Stainless steel - Low temperature nitriding and carburizing," Adv Mater 

Process, vol. 160, pp. 49-51, 2002. 

[22] X. Luo and X. Li, "Design and characterisation of a new duplex surface system based on S-phase 

hardening and carbon-based coating for ASTM F1537 Co–Cr–Mo alloy," Appl Surf Sci, vol. 292, 

pp. 336-344, 2/ 2014. 

[23] X. Y. Li, N. Habibi, T. Bell, and H. Dong, "Microstructural characterisation of a plasma 

carburised low carbon CoCr alloy," Surf Eng, vol. 23, pp. 45-51, 2007. 

[24] H. Dong, "S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys," Int Mater Rev, vol. 55, 

pp. 65-98. 

[25] Y. Dong, X. Li, L. Tian, T. Bell, R. L. Sammons, and H. Dong, "Towards long-lasting 

antibacterial stainless steel surfaces by combining double glow plasma silvering with active 

screen plasma nitriding," Acta Biomater, vol. 7, pp. 447-57, 2011. 

[26] Y. Dong, X. Li, R. Sammons, and H. Dong, "The generation of wear-resistant antimicrobial 

stainless steel surfaces by active screen plasma alloying with N and nanocrystalline Ag," J 

Biomed Mater Res B Appl Biomater, vol. 93B, pp. 185-193, 2010. 

[27] J. J. Crisco, J. Blume, E. Teeple, B. C. Fleming, and G. D. Jay, "Assuming exponential decay by 

incorporating viscous damping improves the prediction of the coefficient of friction in pendulum 

tests of whole articular joints," Proc Inst Mech Eng H, vol. 221, pp. 325-33, 4/ 2007. 

[28] M. Vrbka, D. Nečas, M. Hartl, I. Křupka, F. Urban, and J. Gallo, "Visualization of lubricating 
films between artificial head and cup with respect to real geometry," Biotribol, vol. 1–2, pp. 61-

65, 3/ 2015. 

[29] S. Corujeira Gallo, "Active screen plasma surface engineering of austenitic stainless steel for 

enhanced tribological and corrosion properties," Doctor of Philosophy, Department of Metallurgy 

and Materials, University of Birmingham, Birmingham, 2008. 

[30] J. Buhagiar and H. Dong, "S-Phase in stainless steels: An Overview," presented at the Surface 

modification technologies XXI, Ohio, 2007. 

[31] R. M. Hall, A. Unsworth, P. Siney, and B. M. Wroblewski, "Wear in retrieved charnley 

acetabular sockets," Proc Inst Mech Eng H, vol. 210, pp. 197-207, 9/ 1996. 

[32] H. Malchau, P. Herberts, T. Eisler, G. Garellick, and P. Soderman, "The Swedish Total Hip 

Replacement Register," J Bone Joint Surg Am, vol. 84-A Suppl 2, pp. 2-20, 2002. 

[33] A. W. Eberhardt, R. T. McKee, J. M. Cuckler, D. W. Peterson, P. R. Beck, and J. E. Lemons, 

"Surface Roughness of CoCr and ZrO2 Femoral Heads with Metal Transfer: A Retrieval and 

Wear Simulator Study," Int J Biomat, vol. 2009, p. 1, 2009. 

[34] X. Wang, J. Wang, B. Zhang, and W. Huang, "Design principles for the area density of dimple 

patterns," Proc Inst Mech Eng J, 5/ 2014. 

[35] C. Brockett, S. Williams, Z. Jin, G. Isaac, and J. Fisher, "Friction of total hip replacements with 

different bearings and loading conditions," J Biomed Mater Res B Appl Biomater, vol. 81B, pp. 

508-515, 2007. 

[36] M. P. Gispert, A. P. Serro, R. Colaço, and B. Saramago, "Friction and wear mechanisms in hip 

prosthesis: Comparison of joint materials behaviour in several lubricants," Wear, vol. 260, pp. 

149-158, 1/ 2006. 

[37] S. C. Scholes and A. Unsworth, "The effects of proteins on the friction and lubrication of 

artificial joints," Proc Inst Mech Eng H, vol. 220, pp. 687-93, 2006. 



18 

[38] G. C. Buscaglia, I. Ciuperca, and M. Jai, "On the optimization of surface textures for lubricated 

contacts," J. Math. Anal. Appl., vol. 335, pp. 1309-1327, 11/ 2007. 

[39] X. Zhou, A. L. Galvin, Z. Jin, X. Yan, and J. Fisher, "The influence of concave dimples on the 

metallic counterface on the wear of ultra-high molecular weight polyethylene," Proc Inst Mech 

Eng J, vol. 226, pp. 455-462, 2012. 

[40] Y. Qiu and M. M. Khonsari, "Experimental investigation of tribological performance of laser 

textured stainless steel rings," Tribol Int, vol. 44, pp. 635-644, 5/ 2011. 

[41] J. Larsen-Basse, L. Ives, and S. M. Hsu, "Boundary lubricated friction experiments with coarse 

surface texture," presented at the ASME/STLE 2007 International Joint Tribology Conference, 

San Diego, California, USA, 2007. 

[42] H. Yu, W. Huang, and X. Wang, "Dimple patterns design for different circumstances," 

Lubrication Science, vol. 25, pp. 67-78, 2013. 

[43] T. Bell, "Surface engineering of steel to combat wear," Metallurgica, vol. 49, pp. 103-108, 1982. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Experiment process flow chat (top), treatments photo (top-middle) and the illustrated hip replacement 

surface after the corresponding treatment (bottom) 



19 

 

Figure 2 The pattern configurations (a) and 3-D optical profiles of two surface textured patterns with two line shifts 
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Figure 3 The hip replacement pendulum apparatus used for friction coefficient measurement and observation of 

lubricant film using optical test device  
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Figure 4 SEM images of (a) ST surface, (b) PCST surface (c) cross-sectional metallography, and (d) GDOES profile 

of PCST 
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Figure 5 The XRD crystallography and the phase analysis 
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Figure 6 The friction coefficients of untreated and treated samples

 

Figure 7 The damping curve measured by pendulum hip joint simulator and the selected points of interferometry 

images 
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Figure 8 Chromatic interferograms of UT (imgA and imgD) and PCST4 (imgA’ and imgD’) at the beginning of 

pendulum oscillation, showing the lubricant film thickness (u, nm) in relation to time (T, s) and relative speed (v, 

mm/s) and the line profiles of film thickness at selected points 
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Figure 9 Chromatic interferograms of UT (imgB and imgE) and PCST4 (imgB’ and imgE’) at the middle of 

pendulum oscillation, showing the lubricant film thickness (u, nm) in relation to time (T, s) and relative speed (v, 

mm/s) and the line profiles of film thickness at selected points 
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Figure 10 Chromatic interferograms of UT (imgC and imgF) and PCST4 (imgC’ and imgF’) at the end of pendulum 

oscillation, showing the lubricant film thickness (u, nm) in relation to time (T, s) and relative speed (v, mm/s) and 

the line profiles of film thickness at selected points 
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Figure 11 Reciprocating CoF profiles of (a) UT, and (b) PCST1, PCST2, PCST3 and PCST4 

 

Figure 12 Friction coefficients and surface roughness of UT and PCST measured before and after wear  

 

 

 

Table 1 The experimental parameters and the corresponding sample codes 

Sample codes Surface texturing 

Sample codes 

after plasma 

carburising 
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Depth 

h, µm 

Width 

w, µm 

Shape 

s/a 

x100% 

Distance 

a, µm 

Dimple 

density 

% 

 

UT - - - - - - PC 

ST1 1.5 55 

o  
50% 80 37 PCST1 

ST2 2.4 65 

o  
50% 80 

52 

PCST2 

ST3 2.4 65 

o  
25% 80 PCST3 

ST4 9.5 190 ◊ 0 500 58 PCST4 

 

 

 

 

 

Highlights:  

· An innovative duplex surface treatment (micro-texturing and S-phase) was developed. 

· In-situ visualization of lubricating films on real geometry head and cup. 

· Lubricating film thickness was increased by surface texturing on CoCrMo head. 

· Testing time-dependant performance of dimpled surface and its longevity. 

· Study of frictional behaviour of MoP joints with different texture geometries. 






