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Frequency Dependent Viscoelastic Properties of Porcine
Bladder
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Abstract

The aim of this study was to measure the viscoelastic properties of bladder tissue. Porcine
bladders were dissected into rectangular strips and loops. Dynamic Mechanical Analysis was used to
measure the viscoelastic properties of the bladder tissue (storage and loss stiffness) tested in a
frequency range of up to 10 Hz. Storage stiffness was found to be consistently higher than loss
stiffness. Average storage stiffness was found to be 1.89 N/mm and 0.74 N/mm for looped and
rectangular samples, respectively. Average loss stiffness was found to be 0.24 N/mm and 0.11 N/mm
for looped and rectangular samples, respectively. The results of this study are important for
computational modelling of the bladder and for ensuring that tissue engineered bladder tissues have
physiological viscoelastic properties.
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1. Introduction

The human urinary bladder is an organ which stores urine. It has two inlets and one outlet in
the form of the ureters and the urethra, respectively. The bladder usually holds around 400 ml of
urine before giving a sensation of fullness (Guyton and Hall, 2011); however, this is dependent on
many factors including the size of the person. The bladder wall is comprised of several layers; these
are, from the luminal surface outwards: the mucosa (which includes the transitional epithelium), the
submucosa (lamina propria), the detrusor muscle (muscularis propria), and the adventitia (Stevens
and Lowe, 1997).

In the UK there are approximately 10,200 new cases and 5,000 deaths attributed to bladder
cancer per year (Bladder cancer key facts, 2014), and for the USA and EU these figures have been
estimated at 72,570/15,210 and 123,135/40,252 (Burger et al., 2013), respectively. At presentation
over 75-85% will be non-muscle-invasive tumours (NMIBC, stages Ta/T1/Tis), with the remainder
being muscle-invasive (MIBC, stages T2-4) (Lorusso et al., 2005; van Rhijn et al., 2009; Wallace et al.,
2002; Kaufman et al., 2009). Many of those affected with MIBC undergo surgery to remove the
bladder, radical cystectomy (Kaufman et al., 2009; Witjes et al., 2013), and in some of these cases
the bladder is replaced with a substitute, such as part of the small or large intestine (Witjes et al.,
2013). However, patients undergoing bladder substitution need to be carefully selected (Nagele et
al., 2012), and there are complications associated with such procedures including electrolyte
imbalance and excess mucus production (Pokrywczynska et al., 2014). The existence of more
suitable materials for bladder repair/replacement could reduce the need for these complex
procedures and their associated complications. Such materials could take the form of synthetic
materials or regenerative medicine, but would need similar mechanical properties to the natural
bladder.

The aim of this study is to use Dynamic Mechanical Analysis (DMA) to measure the
viscoelastic properties of porcine bladder tissue. Bladder tissue is a viscoelastic material but the
exact bladder tissue stiffness response to a frequency sweep is unknown. Viscoelastic structures can
be defined by storage (k’) and loss stiffness (k’’). Storage stiffness characterises the structure’s ability
to elastically store energy and loss stiffness characterises the structure’s ability to dissipate energy
that is lost due to the viscous processes occurring in the structure. Previous studies on the bladder
have investigated stress relaxation (van Mastrigt et al., 1981), elastic modulus (Dahms et al., 1998)
and also the cyclic stress-strain properties (Zanetti et al., 2012). However, none have measured the
viscoelastic properties over a frequency range. A detailed understanding of bladder viscoelasticty is
vital for developing accurate computational models of the bladder and also for the development of
replacement materials.

2. Materials and Methods

Ex vivo whole porcine bladders were supplied by Fresh Tissue Supplies (East Sussex, UK). The
bladders were of mixed sex from pigs all under a year old. Once received they were wrapped in
tissue paper, soaked in Ringer’s solution (Oxoid Ltd, Basingstoke, UK), placed in heat sealed plastic
bags and stored in a freezer at -40°C. Previous studies have shown that freezing and thawing does
not affect the mechanical properties of biological tissues such as: vocal tissue (Chan & Titze, 2003),



ligaments (Woo et al., 1986) and articular cartilage (Szarko et al., 2010). When specimens were
required for testing, bladders were defrosted at room temperature, soaked in Ringer’s solution for
around three hours and then dissected.

Two methods of tensile DMA were used in this study; the first made use of looped bladder
samples and the second rectangular samples. The samples were initially prepared by dissecting the
bladders using three cuts (Figure 1), made using surgical scissors (Fischer Scientific, UK). The
dissection resulted in four areas of bladder: two looped central areas of the bladder, the dome
region and the trigone region with ureters and urethra attached.

Figure 1 - Initial dissection lines of bladder samples. Dome region (a), two central regions (b & c)
and the trigone region (d). Lines indicate where cuts were made.

Experimental samples were obtained from the two central regions of the bladder (areas b
and c in Figure 1). For testing of the rectangular samples the central looped regions were dissected
again with two more cuts, to create two strips from one looped sample. These cuts were always in
the same anatomical location, laterally aligned to the ureters. The length, width and thickness of
each specimen were then measured with Vernier callipers (Fischer Scientific, UK) by taking three
measurements. Table 1 shows the mean and standard deviation of the dimensions of the prepared
samples.

Table 1 - Dimensions (mean and standard deviation) of the looped and rectangular samples. 10
looped and 18 rectangular samples were tested.

Loop Rectangular
Length (mm) Width (mm) Thickness (mm) Length (mm) Width (mm) Thickness (mm)
Mean 54.5 24.0 4.7 59.3 25.6 5.0
Std Deviation 4.8 2.8 1.1 9.9 3.9 11

The viscoelastic properties of the bladder samples were determined from DMA using a Bose
Electroforce 3200 testing machine coupled with WinTest DMA software (Bose Corporation,
Electroforce Systems Group, Minnesota, USA). Patel et al. (2008) have given full details of the Bose
testing machine. Bose testing machines have been previously used to test a variety of biological



materials including cartilage, heart chordae, lumbar discs and bladder (Fulcher et al., 2009; Millard
et al., 2011; Gadd & Shepherd, 2011; Zanetti et al., 2012).

Custom-designed fixtures were manufactured to enable the testing of both looped and
rectangular samples. Each fixture consisted of two identical but separate parts to fasten the bladder
samples to the base and actuator of the testing machine (Figure 2). The fixtures for the looped
samples consisted of two horizontal cylinders that the loops were secured around. The rectangular
fixtures consisted of two horizontal grips that were supplemented with fine sandpaper. The grips
were fastened to the sample by turning two horizontal screws, creating a compressive force on the
top and bottom of the sample. Tensile preloads of roughly 10 N and 20 N were applied to the
rectangular and looped samples, respectively. These preloads were necessary to ensure that
samples remained on the fixtures during testing. The specimens were then allowed to relax for 2
minutes. The preloaded samples of bladder were covered with tissue paper soaked in Ringer’s
solution so that the specimen did not dehydrate during testing. This is consistent with procedures
previously described by Ohman et al. (2009) and Wilcox et al. (2014) for testing tendons and heart
chordae. Preliminary results showed that this did not affect the results of the testing.

Figure 2 - Fixtures for testing the samples of bladder (a) looped samples; (b) rectangular samples.

A sinusoidally varying displacement was applied to the specimens between 2.5 mm and 5.5
mm. Both types of samples were tested in 11 steps with increasing frequencies: between 0.01 and
10 Hz (looped samples) and between 0.01 and 5 Hz (rectangular samples), as shown in Table 2.
Maximum frequencies were chosen for both sample types as vibration of the bladder tissue
adversely affected results at higher frequencies. Preliminary testing showed that the results were
similar whether the frequency started at 0.01 Hz and was increased, or started at 5 or 10 Hz and
decreased. Both the rectangular and looped samples were also subjected to 120 seconds of
precycling at 5 and 10 Hz, respectively. During preliminary tests preconditioning loading cycles were
found to be necessary to ensure that results from the initial frequency tested were comparable to



those obtained at subsequent frequencies. Therefore samples were preconditioned before testing.
This is consistent with testing of other soft tissues (Ohman et al., 2009; Wilcox et al., 2014).

Table 2 - Testing frequencies for looped and rectangular bladder samples.

Testing Order Looped Samples (Hz) Rectangular Samples (Hz)
1 0.01 0.01
2 0.05 0.05
3 0.1 0.1
4 0.25 0.25
5 0.5 0.5
6 0.75 0.75
7 1 1
8 2.5 2
9 5 3
10 7.5 4
11 10 5

The WinTest software uses readings of force and displacement from the load cell and
displacement transducer and from this dynamic stiffness (k*) and the phase angle (8) are calculated.
Dynamic stiffness is found using Fourier analysis to determine the ratio of peak load to peak
displacement. The phase angle is also found using Fourier analysis to determine the phase difference
between the load and displacement. Storage (k) and loss stiffness (k”’) were then calculated from:

k’=k*cos & (1)
k”’=k*sin & (2)

All statistical analysis of the data was undertaken using Minitab (Version 15.1.20.0, Minitab
Inc., Pennsylvania, USA). The significance of the curve fits generated for storage and loss stiffness
were tested using regression analysis to generate p-values. If the p-value was less than 0.05 the
curve fit of the relationship was significant.

3. Results

Figures 3 and 4 show three sample results from the looped and rectangular tests,
respectively. All the storage stiffness results follow the same trend, with initially increasing storage
stiffness with frequency and then a decrease at higher frequencies. The loss stiffness results follow
the same gently linear increase with increasing frequency.

Figures 5 and 6 show the average results for looped and rectangular samples, respectively.
In figure 5 (loop) the storage stiffness increased up to a stiffness of around 2 N/mm and then
decreased at higher frequencies. The loss stiffness increased from 0.25 to 0.30 N/mm over the
frequency range. In figure 6 (rectangular) the storage stiffness increased up to a stiffness of around
0.80 N/mm and then decreased at higher frequencies. The loss stiffness increases from 0.10 to 0.13
N/mm over the frequency range. The loss stiffness was lower than storage stiffness for all
frequencies tested.



The trends for storage stiffness were described by two curve fits: a logarithmic fit (equation
3) from 0.01 to 1 Hz and a second order polynomial fit (equation 4) for the remainder of the
frequency sweep. The values for coefficients A, B, C, D and E can be found in table 3. These curve fits
showed a strong correlation with R? values of 0.77 and above (most between 0.9 and 1) and all had
p-values of less than 0.05 showing that they were significant.

k’=Aln(f)+B for 0.01< f <1
3)

K=C(f)+D(f)+E for f21 (4)
where k’ is the storage stiffness and f is the frequency.

The average storage stiffness curve fits for the looped samples were:

k> =0.0455In( f)+1.951 for 0.01< f <1 (5)

k' ==0.0073(f%)+0.0529( f)+1.9207 for 1< f <10 (6)

The average storage stiffness curve fits for the rectangular samples were:

k> =0.0202/n( f)+0.7912 for 0.01< f <1 (7)

K =-0.0129(/?)+0.0293( f)+0.7733 for 1< <5 (8)

Both types of sample also exhibited the same trends for loss stiffness, which has been
described by a linear fit (equation 9). The coefficients F and G can be found in table 3. These linear
fits showed strong correlation with R® values of 0.63 and above (most between 0.85 and 0.93) and all
had p < 0.05 showing that they were significant.

k"=F(f)+G (9)
where k' is the loss stiffness and f is the frequency.

The average loss stiffness curve fits for the looped (equation 10) and rectangular samples (equation
11) were:

k' =0.009( )+0.226 for 0.01< f <10 (10)

k' =0.0093(f)+0.0984 for 0.01< f <5 (11)

Storage (E’) and loss moduli (E”’) can also be used to describe materials and they are
calculated by dividing the relevant stiffness by the shape factor (Fulcher et al., 2009). The shape
factor for rectangular samples was calculated from:

S=wd/h (12)
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where, w is width, d is depth and / is height (Menard, 2008).

For example, the storage stiffness of sample 13 at 0.01 Hz is 0.44 N/mm and the equivalent
storage modulus (E’) is 0.21 MPa. However stiffness is used to compare the results in this study as
the looped samples are essentially structures and therefore modulus would be inappropriate.

—_

0 1 2 3 4 5 6 7

Frequency (Hz)

10

O Sample 1k'1
& Sample 1 k'2
Sample 1 k"
X Sample 3 k'l
X Sample 3 k'2
Sample 3 k"
Sample 10 k'1
Sample 10 k'2
Sample 10 k"

Figure 3 - Storage (k’) and loss stiffness (k’’) against frequency (f) for three individual looped
samples. k’1 refers to the data points subjected to the first curve fit of storage stiffness up to 1 Hz
(characterised by equation 3) and k’2 refers to the data points subjected to the second curve fit of
storage stiffness up to the end testing frequency (characterised by equation 4). The loss stiffness

(k”’) curve fit is characterised by equation 9.
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Figure 4 - Storage (k’) and loss stiffness (k’’) against frequency (f) for three individual rectangular
samples. k’1 refers to the data points subjected to the first curve fit of storage stiffness up to 1 Hz
(characterised by equation 3) and k’2 refers to the data points subjected to the second curve fit of
storage stiffness up to the end testing frequency (characterised by equation 4). The loss stiffness
(k”’) curve fit is characterised by equation 9.
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Figure 5 - Storage (k’) and loss stiffness (k’’) against frequency (f) for looped samples. Data points
represent the average values, with one standard deviation error bars. k’1 refers to the data points
subjected to the first curve fit of storage stiffness up to 1 Hz (described by equation 5) and k’2
refers to the data points subjected to the second curve fit of storage stiffness up to the end testing
frequency (described by equation 6). The loss stiffness (k’’) curve fit is described by equation 10.
1 -
0.9 -+
0.8 1 » HHPEE_\-E}\E
07 4 H\E
0.6 - 1 1 1 i H\E]
0.5 + Ok'l
0.4 - Ok'2
kll
0.3 +
0.2 -
T T T T T T
0.1 ‘:TF { o + + J:. T + I
o T T T T T T T T T 1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency (Hz)

Figure 6 -Storage (k’) and loss stiffness (k’’) against frequency (f) for rectangular samples. Data
points represent the average values, with one standard deviation error bars. k’1 refers to the data
points subjected to the first curve fit of storage stiffness up to 1 Hz (described by equation 7) and
k’2 refers to the data points subjected to the second curve fit of storage stiffness up to the end
testing frequency (described by equation 8). The loss stiffness (k’’) curve fit is described by
equation 11.
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4. Discussion

The objective of this study was to investigate the viscoelastic properties of bladder tissue.
Bladder tissue was found to be viscoelastic throughout the frequency range tested. Both the looped
and rectangular bladder samples showed very consistent trends for storage and loss stiffness, where
the same curve fits were used for both types of sample. Similar curve fits have been used in many
other studies to describe viscoelastic properties; these include cartilage (Fulcher et al., 2009) and
heart chordae (Wilcox et al., 2014). In this study the loss stiffness (k’’) exhibited similar results
throughout the frequency sweep with a near constant value over the frequency range; a similar
tendency has been seen in other viscoelastic tissues such as articular cartilage (Fulcher et al., 2009)
and chordae tendineae from the heart (Wilcox et al., 2014). Storage stiffness (k') however showed
an initially increasing trend at low frequencies and then a decreasing trend at higher frequencies.
Furthermore, the storage stiffness of the tissue did not change greatly throughout the test; the
average minimum value was 82% of the maximum value. The findings for storage stiffness are in
contrast to the same findings for cartilage (Fulcher et al., 2009) and heart chordae (Wilcox et al.,
2014) where an increasing trend was found.

The range of frequencies tested varied from very low (0.01 Hz) to high (5 or 10 Hz) and this
was intended to show the bladder response at physiological and traumatic conditions, respectively.
The results indicate that the stiffness values at these frequencies were similar, with average storage
stiffness values of 1.78 N/mm (low frequency), 1.74 N/mm (high frequency) and 0.71 N/mm (low
frequency), 0.61 N/mm (high frequency) for looped and rectangular samples, respectively. It was
expected that the results would be quite similar for the two different types of sample. This was
because the looped samples, which had two load bearing structures, received a preload of 20 N and
the rectangular samples, which had one load bearing structure, received a preload of 10 N. However,
this was not the case as the storage stiffness results for the looped samples are more than two and a
half times that of the rectangular samples.

The majority of previous mechanical testing of bladder studies have used rectangular
samples to test a variety of bladder muscle uniaxially (Finkbeiner et al., 1990; van Mastrigt et al.,
1978; Griffiths et al., 1979; Alexander, 1971). However, testing of looped samples has been
described in relation to bladder tissue by Alexander (1976) whilst testing series elasticity of rat
bladders. Looped uniaxial testing was incorporated into this study to attempt to more closely imitate
the function of the bladder but also to serve as a comparison for the rectangular uniaxial testing. It
was shown that comparatively higher stiffness values were recorded in the looped samples and
therefore multidirectional tension of bladder tissue stresses the tissue in a manner that makes it
become stiffer and able to elastically store more energy. No other studies have compared the
properties of bladder using the two methods described in this study.

Previous studies have found mechanical properties for rectangular transverse lateral
sections of the bladder. Zanetti et al. (2012) found the secant modulus to be 0.1 - 0.45 MPa, Korossis
et al. (2009) found the elastin phase slope to be 0.04 MPa and Dahms et al. (1998) found the elastic
modulus as 0.26 MPa. All of these studies used static stress strain experiments. The average dynamic
modulus for the rectangular samples for this investigation was 0.36 N/mm?” which is comparable to
the range found by Zanetti et al (2012). However, there are difficulties when comparing our results
with material properties reported in the literature because viscoelastic properties are by definition
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rate dependant. Therefore, comparisons made for the results obtained at different frequencies and
strain rates can be misleading.

A study by Gilbert et al. (2008) states that collagen fibres, which are responsible for the
mechanical response of the tissue, are predominantly aligned in the longitudinal direction. This may
justify the low stiffness as the looped and rectangular samples were tested in the transverse
direction. Furthermore bladder tissue has little elastin in any region of the bladder (Korossis et al.,
2009). Elastin stores the elastic energy of the material (Silver et al., 2001) and the lack of elastin may
also account for the low stiffness of the tissue.

If a similar study is performed on human bladder tissue the results of this study can be used
to determine whether porcine bladders are a good comparison model. This has been done before
with corneas and arteries (Zeng et al., 2001; van Andel et al., 2003). If the results from this study are
validated by a human study then new urological procedures can be confidently tested on porcine
bladders before being trialled in humans.

Any tissue engineered bladder tissue can also be compared to the values found in this study
to determine if they have suitable viscoelastic properties. So far there has been clinical experience in
implantation of tissue engineered bladders, albeit limited (Li et al., 2014; Atla 2011). Some partial
cystectomy procedures involve the use of autologous material as a replacement material for the
bladder (Pokrywczynska et al., 2014). The mechanical appropriateness of the small intestine and
other autologous replacement tissues can now be tested. It is hoped that a material better suited to
the role of replacement bladder for urine storage can be found without the associated adverse
effects, such as excess mucus production and electrolyte imbalance (Pokrywczynska et al., 2014).

Viscoelastic properties are also important for computer simulations of bladders such as
Finite Element Analysis (FEA) or Computational Fluid Dynamics (CFD) studies which include bladder
deformation. The correct viscoelastic properties need to be used for meaningful models. Previous
CFD studies of the bladder have assumed the bladder wall to be rigid (Jin et al., 2010) or have
simulated the contracting detrusor muscle as fluid pressure (Pel et al., 2007). For example, an
application of this study into a CFD model could involve the investigation of tumour cell re-
implantation during transurethral bladder tumour resection (Bryan et al., 2010). Other simulations
such as FEA modelling would be able to validate this study, if the results are comparable then FEA
would be used to model the traumatic deformation of the bladder during a road traffic accident or
find the allowable probing force during transurethral resection of bladder tumour surgery (TURBT).

One possible limitation of this study was the freezing of samples prior to testing. It is
generally accepted that freezing does not influence the mechanical properties of biological
materials. The majority of previous studies including tests on vocal tissue (Chan & Titze, 2003),
ligaments (Woo et al., 1986) and articular cartilage (Szarko et al., 2010), state that there is no effect.
However, other studies disagree with such findings, for example Venkatasubramanian et al. (2006)
concluded that the freezing of porcine femoral arteries does affect its mechanical properties.
Freezing technique is also important, Pelker et al. (1983) describe that freeze drying reduces the
torsional strength of long rat bones when compared to freezing alone. As all samples tested in our
current study underwent the same storage procedures, we would not expect the trends found to be
affected by freezing.
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5. Conclusions
The conclusions of this paper are as follows:

e Bladder tissue is viscoelastic through the range of frequencies tested, 0.01 to 5 or 10 Hz.

e The viscoelastic relationship changed with respect to frequency, where the average stiffness
values were: 1.89 N/mm (storage) and 0.24 N/mm (loss) for the looped samples and 0.74
N/mm (storage) and 0.11 N/mm (loss) for the rectangular samples.

e Potential applications of these study findings include: enabling the use of porcine bladder as
a comparable model to human bladder; comparisons to any tissue engineered or autologous
bladder material; Finite Element Analysis and Computational Fluid Dynamic modelling of the
bladder.
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