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4. CONCLUSION

In this article, two novel microstrip band-stop filters using the

gradually variational stepped impedance hairpin resonator with

DGS or not are presented. By using the gradually variational

stepped impedance hairpin resonator, the filters have remarkable

advantages, such as compact size, simple structure, and high

selectivity. Two band-stop filters are designed, fabricated, and

measured. The measurement results show good agreement with

the simulation ones.
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ABSTRACT: This article addresses the physical realization of cross-
coupled waveguide filters based on electromagnetic (EM) simulations.

For this design procedure, the filter structure is simulated by succes-
sively adding one resonator at a time. The desired filter response is
achieved without the need of a global optimisation on all the mechanical

dimensions within an EM simulator. This reduces the design time
required for a crosscoupled waveguide filter and allows the possibility

of building high-order waveguide filters with complex crosscouplings.

Figure 6 Simulation and measurement performance of the proposed band-stop filters, the solid line is the measurement results, and the dotted line is

the simulation results. (a) Band-stop filter using the novel gradually variational stepped impedance hairpin resonator; (b) band-stop filter using the novel

gradually variational stepped impedance hairpin resonator with E-shape DGS
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A sixth order X-band dual-band filter with a center frequency of 10 GHz
and a fractional bandwidth of 1% is designed using this procedure and

presented here as an example. Excellent agreement between simulation
results and theoretical results from coupling matrix verifies the proposed
approach. VC 2014 The Authors. Microwave and Optical Technology

Letters Published by Wiley Periodicals, Inc. Microwave Opt Technol

Lett 56:3–8, 2014; View this article online at wileyonlinelibrary.com.

DOI 10.1002/mop.27989

Key words: filter; waveguide; crosscoupling; coupling matrix; dual-
band filter

1. INTRODUCTION

A microwave filter is a two-port network used to transmit and

attenuate signals in specified frequency bands. Microwave filters

have found wide applications in modern communication systems,

radar systems, and laboratory measurement equipments [1]. Filters

based on crosscoupled resonators, with real or complex transmis-

sion zeros (TZs), have been extensively used to (i) improve the

close-to-band selectivity; (ii) achieve in-band group delay linear-

ity; (iii) divide the single-band into multiple passbands. However,

compared with the conventional in-line resonator coupled filter,

the crosscoupled filter is more difficult to be physically imple-

mented, due to the interactions introduced by the crosscouplings.

Traditionally, the design methods for direct coupled filters

have been applied to extract the dimensions for crosscoupled fil-

ters. This design process usually involves the following four

main steps: (i) identify the filter order and filter functions

according to specification requirements; (ii) synthesis or opti-

mise the coupling coefficients (Mi,j) and external quality factors

(Qe) that can realize the desired filter function; (iii) choose the

filter type (waveguide, microstrip, etc), and obtain dimensions

which can achieve desired specified Qe and Mi,j from electro-

magnetic (EM) simulations on one resonator and two weakly

coupled resonators; (iv) construct the filter in the simulator to

get its initial responses [1, 2]. For crosscoupled filters, this

approach ignores the influences from crosscouplings, and there-

fore normally requires a global optimization on all the physical

dimensions. This global optimization is time-consuming, and in

some special scenario, where the filter consists of a large num-

ber of resonators and/or complex crosscouplings, the final opti-

mization may fail to converge to an acceptable solution, due to

the large amount of control parameters. In [3], a design proce-

dure, which eliminates the need of global optimization, has been

presented for a crosscoupled folded waveguide filter. A fourth

order and a sixth order crosscoupled single-band waveguide fil-

ters have been successfully demonstrated using this design

approach. However, this design approach is limited to wave-

guide filters with folded topologies.

In this article, we present an EM-based design approach for

determining the physical dimensions of a crosscoupled wave-

guide filter with any type of topology. This design procedure

enables us to account for the attributions of crosscouplings, and

provides precise desired dimensions without the need of a final

global optimization. This approach may find useful application

in the design of resonator based crosscoupled waveguide filters

or multiplexers [4].

2. DESIGN STEPS

The design approach is demonstrated by a sixth order X-band

dual-band waveguide filter. Figure 1 illustrates the topology and

the structure of this filter. This filter is designed to have the fol-

lowing specifications: the center frequency is 9.965 GHz for the

first passband and 10.035 GHz for the second passband, both

passbands have a desired return loss of 20 dB and the same

bandwidth of 30 MHz, the attenuation level for the middle stop-

band is better than 26 dB. The N 3 N coupling matrix of this

dual-band filter, as depicted below, is generated by a synthesis

technique described in [5]. Their corresponding S-parameter

responses can be found in Figure 2. A pair of symmetrical TZs

positioned at 9.995 and 10.005 GHz occur at the in-band to split

it into two symmetrical passbands. These two TZs are attributed

to the crosscoupling between resonators 2 and 5. As all the cou-

pling coefficients are positive, thereby all inductive irises have

be utilized by this filter.

M5

0 0:00852 0 0 0 0

0:00852 0 0:00372 0 0:00388 0

0 0:00372 0 0:00384 0 0

0 0 0:00384 0 0:00372 0

0 0:00388 0 0:00372 0 0:00852

0 0 0 0 0:00852 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Qe1 5 Qe6 5 145:77:

The design can be divided into six substeps, as shown in Fig-

ure 3. At work step, rather than optimizing dimensions for the

entire structure, only the dimensions of one cavity and its con-

necting irises are significantly tuned toward the desired

responses. This reduces the number of dimensions to be adjusted

during the design, which in return yields faster and more reli-

able convergence. Especially for large scale filter structure, in

which case it is virtually impossible to optimize all the mechani-

cal dimensions at the same time. The calculation of the physical

dimensions for the sixth order dual-band filter shown in Figure

1 comprises the following steps.

1. Calculate the approximate initial dimensions for all the reso-

nators and irises using the equivalent circuit models based on

the coupling matrix as described in [1, 6, 7].

Figure 1 Illustration of a sixth order X-band dual-band waveguide fil-

ter and its topology. There is a cross coupling between resonators 2 and

5. These six resonators are operating at TE101 mode and they are

coupled together through inductive irises. All the irises have the same

thickness t of 2 mm, a 5 22.86 mm, b 5 10.16 mm, di 5 5.19 mm.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]
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2. Using the coupling matrix values calculated for the entire fil-

ter, obtain just the responses for the first resonator [see Fig.

3(a)]. Use the full-wave simulator (in our case, lwave wizard

[8]) to evaluate resonator 1 together with its two adjacent

irises, and optimize this simulated response toward the

desired one from coupling matrix, by changing the resonator

length (l1) and iris dimensions (de1 and d12).

3. Use the EM simulator for both resonators 1 and 2 and their

connecting irises [see Fig. 3(b)]. Adjust the length of resona-

tor 2 (l2) and iris dimensions (d23 and d25) to match the

responses with the target ones derived from the coupling

matrix. The dimensions associated with resonator 1 obtained

in Step 2 should be slightly adjusted to account for the influ-

ence of resonator 2. This can be done with optimizations and

has a fast convergence due to the final result being close to

the optimum.

4. Progress through the filter structure by adding only one reso-

nator into the simulated structure at each time, as illustrated

Figure 2 The X-band dual-band filter results from coupling matrix (red solid lines), lwave wizard simulations (dashed blue lines) and CST simula-

tions (dotted green lines). Dimensions obtained at Step 6 shown in Tables 1 and 2 have been used in these simulations. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com]

Figure 3 The dual-band filter structure shown in Figure 1 is constructed successively by adding one resonator at a time. The six steps of this design

procedure are shown in (a)–(f) in sequence
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in Figure 3. Optimize the dimensions of the subsequent reso-

nator toward the desired S-parameter responses calculated

from coupling matrix. A slight readjustment of the dimen-

sions of the preceding resonators may be required to factor in

the influence from the new added resonator. Normally, this

small adjustment in dimensions is only required for adjacent

resonators. For instance, at the last step [see Fig. 3 (f)], the

dimensions of resonator 1 will remain the same as the ones

obtained in Step 5, since resonator 6 has a negligible impact

on resonator 1.

Figure 4 S-parameters of the dual-band filter as successive resonators are added and tuned. Their corresponding topologies can be found in Figure 3.

Note that, S11 responses are included and represented using black lines in all six graphs. The dashed lines represent the desired responses which are

plotted from coupling matrix, whereas the solid lines correspond to the responses from simulations using the optimized dimensions given in Tables 2

and 2. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]
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For this design approach, the middle stage S-parameter

responses are calculated from their corresponding coupling coeffi-

cients, and act as the objective responses for the tuning. To plot

the desired responses at each stage, the inner coupling coefficient

needs to be converted into external quality factor. For instance, at

Step 1, Qe2 should be calculated from M12. After expressing both

the external quality factor (Qe) and internal coupling coefficients

(Mij) using inverter value K [1], the relationship between Mij and

Qe can be found as:

M2
ij � Qe5

1

p
2
� kg

k

� �2
(1)

where kg is guided wavelength and k is the free-space wave-

length. For an X-band waveguide filter operating at a center fre-

quency of 10 GHz, Mij
2 3 Qe is calculated to be 0.3625.

Consequently, Mij can be converted to its corresponding Qe. It

is interesting to note that, the value of Mij
2 3 Qe does not

depend on the fractional bandwidth (FBW) of the filter.

In additional, it may be observed from Figure 3 that, for

work steps 2 to 5, there are three external ports. However, both

equations of N 3 N [2] and (N 1 2) 3 (N 1 2) [1] matrix are

derived for a two-port network circuit. In the following, the

equations for (N 1 3) 3 (N 1 3) matrix, which can be applied to

calculate S-parameter responses of a three-port filter network,

will be derived and given.

Ref. 4 reports equations for computing three-port filter network

S-parameter responses. However, these equations are derived fol-

lowing the similar approach to a N 3 N coupling matrix [2], and

therefore has a restriction that the resonators number should be

larger than the number of external ports. In the work presented

here, there exists a case that the resonator number is less than the

number of ports [see Fig. 3(b)], thereby a similar approach to the

(N 1 2) 3 (N 1 2) matrix synthesis is applied in this work to derive

the equations. Here, the relationship between the S-parameters and

the coupling matrix is extracted by analyzing the node voltage and

current of the three-port network’s equivalent circuits, as described

in detail in [1, 2, 4]. The matrix m for a general three-port network

consists of N coupled resonators, one input port (S) and two output

ports (L1, L2) can be written in the following form:

The above matrix is symmetrical about the principal diagonal

and it includes the couplings between external ports and the

internal resonators. Additionally, it is also possible to accommo-

date the direct couplings between external ports, such as mS,L1,

mS,L2, and mL1,L2. The dual-band filter presented here does not

include any direct coupling between ports, as shown in Figure 3,

therefore mS,L1, mS,L2. and mL1,L2 are assigned to zero here. The

highlighted part (using grey colour) represents the core N 3 N
matrix, whose entries are normalized coupling coefficients

(mij 5 Mij/FBW). The coupling coefficients between external

ports and inner resonators can be calculated by

mS;15
1ffiffiffiffiffiffi
qe1
p ; mN1;L15

1ffiffiffiffiffiffi
qe2
p ; mN2;L25

1ffiffiffiffiffiffi
qe3
p (3)

where qei is the normalized external quality factors of the exter-

nal port i (qei 5 Qei 3 FBW), N1 and N2 refer to the resonator

number connecting to the output ports (L1 and L2). For instance,

at Step 3 as shown in Figure 3(c), N1 5 2, N2 5 3. The general

matrix A can be expressed as below

A½ �5 R½ �1p U½ �2j m½ � (4)

where U is similar to a (N 1 3) 3 (N 1 3) unit matrix, except

that U(1,1) 5 U(N 1 2, N 1 2) 5 U(N 1 3, N 1 3) 5 0, R is a

(N 1 3) 3 (N 1 3) matrix whose only nonzero entries are

R(1,1) 5 R(N 1 2, N 1 2) 5 R(N 1 3, N 1 3) 5 1, p is the low-

pass frequency variable, which can be written in terms of FBW

and the filter center frequency (x0) as

p 5 j
1

FBW

x
x0

2
x0

x

� �
: (5)

Then the S-parameter responses of a three-port filter network

can be expressed as:

S115122 A½ �21
1;1

S2152 A½ �21
N12;1

S3152 A½ �21
N13;1

(6)

For the case where there are more than three external ports,

similar equations can be derived accordingly by adding extra

rows at the bottom and extra columns at the right, to the cou-

pling matrix shown in Eq. (2).

3. RESULTS

The six substep responses for the structures shown in Figure 3

are depicted in Figure 3. In Figure 4, the dashed lines refer to the

theoretical responses plotted using the equations described in sec-

tion 2, and these responses are served as goals of the dimensional

tuning. The lwave wizard [8] based on mode-matching technique

is used in the simulations. The simulated responses using the

optimized dimensions are denoted as solid lines in Figure 4.

At each substep, initially only one resonator’s dimensions

(three or less parameters) are tuned in the simulations. There-

fore, a desired set of dimensions, whose corresponding

responses match the objective ones, can be obtained within a

short time. The dimensions from the previous stages may also

be slightly altered to tune the responses toward the desired ones,

as shown in Tables 1 and 2. It can be observed that, only very

small adjustments are required on the dimensions achieved in

the foregoing stages, to account for the influence from the sub-

sequent resonators.

The final dimensions of the dual-band filter are shown in

Tables 1 and 2 (Step 6), and their corresponding simulation

results can be found in Figure 2. It can be observed that, with-

out any global optimization, the final acquired dimensions have

extremely close responses with the theory ones from coupling

matrix. It should be pointed out that, both lwave wizard and
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CST microwave studio [9] have been used to simulate the dual-

band filter. These two EM simulators produce very close results,

as shown in Figure 2.

4. CONCLUSION

A mechanical dimensions calculation method for crosscoupled

waveguide filters has been described. During this design proce-

dure, the filter structure is constructed step by step by adding one

resonator to the simulated structure at a time. Dimensions of this

resonator are tuned toward the desired target middle stage

responses. Equations have been derived and provided in this arti-

cle to plot the middle stage responses from coupling matrix. A

sixth order dual-band X-band filter with a pair of symmetrical

TZs has been successfully demonstrated using this approach. This

approach eliminates the need of a global EM-based dimensional

optimization, and therefore leads to a reduction in the time

required. Moreover, it also opens the possibility of building high-

order waveguide filters with complex crosscouplings.
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ABSTRACT: A novel and fast prototype-based approach is presented to
design LTCC band pass filters (BPFs) using two reflection zeros for 2.4
GHz WLAN / 2.3 GHz worldwide interoperability for microwave access
dual-mode applications. The proposed approach derives quite compact
formulas for synthesizing a filter prototype to meet the specification
requirements in the passband insertion loss and stopband attenuation.
From real-time prototype simulation prediction, one can efficiently mini-
mize the filter size under various electrical specifications. VC 2014 Wiley

Periodicals, Inc. Microwave Opt Technol Lett 56:8–11, 2014; View this

article online at wileyonlinelibrary.com. DOI 10.1002/mop.27986

Key words: LTCC filter; filter prototype; wireless communications serv-
ice; reflection zeros; worldwide interoperability for microwave access

1. INTRODUCTION

The most key band pass filters (BPFs), which are microwave devices

that are used in wireless communication systems, have a small size,

low insertion loss, superior stopband rejection, and high roll-off rate.

Therefore, much of the relevant literature is concerned with designs

in which high roll-off rate and wide stopband rejection with excel-

lence. Most of the conventional microstrip filters developed to date

are based mainly on transmission-line structures [1, 2]. These filters

require too much area because each resonator needs quarter- or half-

wavelength to get resonance. Some of the novel structures proposed

for reducing filter size include stepped impedance resonator [3] and

defected ground structure [4]. However, the proposed designs are still

not size-competitive with LTCC filters. To maximize device minia-

turization, many filters are designed on an LTCC substrate.

LTCC BPFs play an important role because they can provide

satisfactory electrical performance with a compact size. How-

ever, the unstoppable trend toward smaller mobile terminals

continuously demands for smaller LTCC BPFs. The size evolu-

tion of LTCC BPFs for 2.4-GHz instruments, scientific, and

measurements band applications in the electronic market of

mass production is from the early 3225 (3.2 3 2.5 mm2), then

to 2520 and 2012, and now toward 1608. Every new generation

of product reduces the area almost in half when compared to the

prior product. Therefore, miniaturization for LTCC BPFs

becomes a more and more challenging work.

The previous researches on the miniaturization of LTCC BPFs

for wireless communication applications mainly include the second-

TABLE 2 Dual-Band Filter Resonators Length at Each Step

Step

Length of resonators (mm)

l1 l2 l3 l4 l5 l6

1 18.2 – – – – –

2 18.06 19.01 – – – –

3 18.07 18.99 19.39 – – –

4 18.06 18.99 19.39 19.41 – –

5 18.06 18.99 19.39 19.40 18.99 –

6 18.06 18.99 19.39 19.40 18.98 18.05

TABLE 1 Dual-Band Filter Iris Dimensions at Each Step

Step

Dimensions of iris (mm)

de1 d12 d23 d25 d34 d45 d56 de2

1 8.42 5.06 – – – – – –

2 8.71 5.17 4.41 4.14 – – – –

3 8.70 5.18 4.65 4.13 4.13 – – –

4 8.73 5.15 4.67 4.13 4.14 4.38 – –

5 8.70 5.17 4.63 4.12 4.13 4.62 5.17 –

6 8.70 5.17 4.63 4.12 4.13 4.62 5.17 8.76

8 MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 56, No. 1, January 2014 DOI 10.1002/mop


