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Abstract Staphylococcus aureisa pathogenic bacterium that utilises quorum sens-
ing (QS), a cell-to-cell signalling mechanism, to enhanseability to cause disease.
QS allows the bacteria to monitor their surroundings andibe of their population,
andS. aureusnakes use of this to regulate the production of virulenceofacHere
we describe a mathematical model of this QS system and petdiodetailed time-
dependent asymptotic analysis in order to clarify the rofdake distinct interactions
that make up the QS process, demonstrating which reactamgdte the behaviour
of the system at various timepoints. We couple this analygls numerical simula-
tions and are thus able to gain insight into how a large pdiomaf S. aureushifts
from a relatively harmless state to a highly virulent onepufgsing on the need for the
three distinct phases which form the feedback loop of thitqdar QS system.
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1 Introduction
1.1 Staphylococcus aureus

Staphylococcus aureus an opportunistic and invasive pathogen capable of promot
ing disease in almost any tissue of the human body [24]. Whiigrins part of the
natural flora in a large number of people without causing aaymhS. aureuscan
cause a broad spectrum of infections, ranging from minaneilts such as super-
ficial infections, boils and subcutaneous abscesses, th mace serious ones, for
example pneumonia, endocarditis (inflammation of the hedlvtes), osteomyelitis
(inflammation of bone and bone marrow), sepsis (infectiatheblood stream), sep-
tic arthritis and toxic shock syndrome [5,17,24,37].

One increasingly important factor motivating the study huétpathogenic bac-
terium is its ability to develop resistance to antibiotiesypously used successfully
in the treatment of staphylococcal infections. Methinitesistans. aureu§MRSA)
strains are multi-antibiotic resistant and are a leadingeaf hospital-acquired in-
fections. They have become increasingly difficult to treapecially as certain strains
have also developed resistance to vancomycin, one of ththkrspeutic resorts for
fighting S. aureusnfection [13,29]. In contrast to hospital-acquired MRS#ass,
community-acquired (CA-MRSA) strains are much more vintilend can cause dis-
ease in healthy individuals [8]. Consequerfly aureusinfections are the cause of
much morbidity and mortality and are becoming extremelfyalift to treat using con-
ventional antibiotic therapy. New targets for the develeptrof anti-staphylococcal
agents are urgently required. In this context, attenudhiagpathogenicity (the ability
of one organism to cause disease in anothe8.@ureusy inhibiting the ability of
the bacterium to produce virulence factors (i.e. produ@sspecifically allow bacte-
ria to cause disease) offers such a target. In particilaureugmploys a cell-to-cell
communication system termed ‘quorum sensing’ (QS) to cbrirulence gene ex-
pression. By inhibiting QS, it should be possible to prevefdction.

1.2 Gene expression and quorum sensing

In both eukaryotic and prokaryotic cells, most genes areemptessed (i.e. tran-
scribed into MRNA and then translated into proteins) ctumsiely but are tightly
regulated. For example, genes which code for the produofieitulence factors are
expressed only under particular environmental conditButh as those encountered
within host tissues. The transcription of individual gemeswitched ‘on’ or ‘off’
by gene regulatory proteins which bind to specific DNA segesr(namely the pro-
moter/operator region(s) found upstream of the gene) ah@reactivate or inhibit
transcription.

S. aureugemploys QS to regulate the expression of specific genes. @&hds on
the synthesis of small molecules (often referred to as phenes or autoinducers)
that are both produced and detected by the bacterial cedltheéd\bacterial population
density increases, so does the concentration of QS sigatmies (indeed, if the QS
system has positive feedback the synthesis of these mekeshbuld also increase).
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This is often viewed as being associated with a criticalgshoéd concentration of
bacterial cells being reached, thus activating a targetmeor response regulator,
so facilitating the expression of QS-dependent genes. Henvthe interpretation of
such behaviour for our model will be somewhat different giteat the population
size is assumed to be already at or above this threshold lagttad, we will see that
the process can be understood as the density of the QS sigietute becoming
sufficiently high, rather than the population itself. Thautd be pertinent when, for
example, a population of cells enters a new environmentatdlie concentration of
the QS signal molecule is influenced by diffusivity withirattenvironment, in addi-
tion to the size of the population. This is more closely lidke the more recent view
that QS can in fact be a mechanism for bacteria to recogrésestinroundings rather
than simply detect their population size [30] (and couldstinstead be referred to as
‘diffusion sensing’), i.e. the concentration of signal ealle will depend upon the
medium in which the bacteria reside as much as the numbectéi@producing the
molecule (for a mathematical discussion of this see [25]inére appropriate term
for this cell-signalling system is perhaps ‘efficiency segs[12] which encapsulates
both of these ideas.

It is evident therefore that QS can be used for multiple psegoFor example,
S. aureuemploys QS to regulate the production of virulence factds 37]. In the
context of infection, it has been suggested that, onceérthielbodyS. aureugoordi-
nates the deployment of virulence factors with bacterilllm#pulation size through
QS so as to delay alerting the immune system until there dfieisnt numbers of
bacteria present which are capable of overwhelming the defsinces [32], corre-
sponding to the conventional interpretation of QS. On theohandS. aureusises
QS in endosome escape whereby a single bacterium can beotarmalised within
a host cell. QS signal molecule accumulation will occur,stag production of the
virulence factors allowing for endosome escape, so that ther signalling system
is really being used for ‘diffusion sensing’. Other uses & Qy diverse bacterial
species include DNA uptake or exchange (transformatiorcangligation), biolumi-
nescence, secondary metabolite (e.g. antibiotic) praslucwimming and swarming
motility and biofilm (accumulation of bacteria on a surfadeane the micro-organism
is enmeshed in a ‘slime’ matrix) development [3,4].

1.3 Theagr operon

In S. aureusQS is performed by thagr operon (see, for example, [10] or [26]) which
consists of two transcription units (termadrBDCAand RNAIII respectively) that
are driven by regulatory proteins which bind to promotersidd P2 and P3, per-
mitting RNA polymerase to transcribe the DNA into mRNA, prto translation of
thisagr mRNA into proteins. The P2 transcript consists of four gemeieh are tran-
scribed and translated to give four proteins (AgrB, AgrDr@gnd AgrA), see Figure
1. AgrB is a transmembrane protein which processes the Agoi2in to generate a
QS signal molecule which, in the case of the staphylocos@,small modified pep-
tide called an AIP (atoinducing geptide). The AIP is secreted into the external envi-
ronment where it is detected by a receptor protein (AgrC3gmeon the bacterial cell
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Outside the cell

AgrB ‘ ‘ AgrC ‘ }Cell membrane

AgrD /4 /
Inside the cell
—> AgrA

Virulence -
- —_— —_—
agrBDCA P2 P3—= RNAIl factors Infection

b

Fig. 1 A schematic representation of tagr feedback loop. The arrows with a filled head illustrate the
positive feedback loop. This loop is unusual in that evepplasmic (as well as the extracellular) com-
ponent of the loop is up-regulated, rather than simply theajgvhich is in principle all that is required.
The dotted box encloses the elements of the TCS. In Figure 2aeide a generic TCS.

Outside the cell

v

Receptor }Cell membrane

v

Inside the cell
Response
regulator

Fig. 2 A schematic representation of a generic TCS. The recepttéeiproan detect the presence of a
specific signal and activate the response regulator wheshiithin the cell. For thagr operon AIP is the
signal, AgrC the receptor and AgrA the response regulator.

surface. AIP binding to AgrC induces a phosphorylationfaegphorylation cascade
which results in the activation of AgrA, a DNA-binding protevhich interacts with
both the P2 and P3 promoters. AgrA and AgrC are, respectitredyresponse regula-
tor and sensor kinase of a two-component system (TCS). {fipésdf signal recogni-
tion mechanism is common throughout the bacterial kingdsaa Figure 2. Although
the precise details of the AgrC and AgrA phosphorylatiopfdesphorylation reac-
tions occurring following AIP binding to AgrC are not knowin,most classical TCSs
the detection of the cognate signal by the sensor kinasks@sautophosphorylation
followed by transfer of the phosphate to the response ragupaiotein. The phos-
phorylated response regulator usually has a higher affioitthe DNA binding site
than the unphosphorylated form and is therefore able to @tpilation of the target
gene(s) [35]. This also seems to be the case for AgrA: see {®¥re the purified
phosphorylated AgrA protein is shown to bind to both the P@ #me P3 promoter
with a higher affinity than the unphosphorylated form. Irsthaper we therefore as-
sume that AgrA and AgrC form a classical TCS but in [15] we explthe possibility
that a less conventional phosphorylation cascade may whlereby either AgrA or
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AgrC can be constitutively phosphorylated (it is sugge$tej@6] that this may be
possible).

On binding to the P2 promoter, AgrA upregulates the trapsion of theagr
MRNA which will be translated into each of the four Agr protei Thus theagr
system is subject to positive feedback in that AIPs are ggedwhich in turn drive
the production of further AIP synthesis. This is usual in QStems as it allows a
cell to switch quickly between two states. It is noteworthgywever, that all the other
components of the feedback system are also subject to Uptieguand our model
allows us to shed some light onto why this may be the case.

The agr-P3 transcript gives rise to an un-translated regulatonARSrmed
RNAIII and also to a protein toxiny-haemolysin. RNAIII is the intracellular effec-
tor of theagr system which acts by upregulating transcription of manyaedilular
protein genes while downregulating the cell wall coloriafactor genes. Thus the
cell can use the AIP concentration to coordinate virulerergegexpression with cell
density. This means that it should be possible to preSemtureusnfections by in-
hibiting AIP-dependent QS by blocking either AIP synthemisAIP action or by
destroying the AIP as it accumulates extracellularly ($24,[28]). Interestingly, the
study ofagr systems in differen®. aureusstrains has already highlighted the poten-
tial for QS inhibition through blockade of AgrC activatioB. aureusstrains can be
divided into four groups (I to 1V) depending on the structofehe AIP produced;
group | strains are activated by the group | AIP but are irthibby the AIPs made
by S. aureusstrains belonging to groups Il, lll or IV [22]. Indeed, [22¢chonstrates
that, in mice,S. aureusskin abscess infections caused by a strain producing AlP-I|
can be prevented by coadministering a group Il AIP. SinceAlis are amenable
to laboratory synthesis it is possible to design inhibitoeised on the AIP structure
which bind to AgrC and can inhibit aB. aureus aggroups [23]. Such peptides need
to be able to bind to the AIP-binding site on AgrC without eating the kinase and
so block binding of the native (and hence activating) AIHsMwould ensure that the
bacterial cell remains in the QS down-regulated state.

1.4 Mathematical models of QS

Most QS models produced so far have been mathematical motighe slightly
simpler Gram-negativlix-system (here the signal molecule is produced within the
cell and is freely diffusible across the cell membrane, sd timly two elements are
required to complete the system: a signal synthase and al siggeptor) or its ho-
mologues, see for example [2,6,7,16,34]. To our knowledgh;, two focus on QS
in S. aureugwhich is Gram-positive): Koerbeat al. [20] model endosome escape,
as described if1.2, at the cellular level, while Gustafssebhal.[11] investigate the
TCS of theagr operon (which is taken to be of a classical form) and the inftee
of the regulatory protein SarA on the basal transcriptiorthef operon. The latter
is more akin to the current paper as the modelling is perfdratethe sub-cellular
level. However in [11] the TCS is treated in isolation in tlemse that the AIP con-
centration is taken to be a parameter of the model, so thduthfeedback circuit
contained within the QS loop is not considered; by contrastinclude the complete
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circuit shown in Figure 1, calculating the AIP level as pdrthe solution. By in-
corporating the full circuit, we aim to shed light in partiauon the implications of
the agr operon leading to multiple network elements being up-ragpal. Alongside
numerical simulations we will perform an asymptotic anedys the time-dependent
model in order to characterise its behaviour. This analygidoth demonstrate how

a population ofS. aureusshifts from a relatively harmless state to a highly virulent
one and provide simpler models which can be used to extesdtilndly. For inhibitor
therapy to have a future in combatting staphylococcal tides, it is crucial that we
gain a full understanding of how tregr operon works and this model is well suited
to studying the effects of inhibitors; this generalisatwiti be addressed elsewhere.

2 Formulation
2.1 Dimensional model

We follow [14] in using a modelling approach similar to that@oyed by Dockery
and Keener [6] in their model of virulence-related QFiraeruginosawhereby we
shall formulate a system of ordinary differential equasioapresenting the intracel-
lular components of the fullgr operon. A key variable in our model B(t), which
represents the proportion of cells with a bowsat promoter. Roughly speaking, this
will be equivalent to the proportion @fgr up-regulated cells and we will henceforth
refer toP in this way, making the proportion of down-regulated cellsR(t).

In order to build the model we adopt the following assumpion

— The bacteria are in a well-mixed environment, so spatiakddpncies can be
ignored, and the population size is constant (i.e. birte ratches death and/or
removal rate) and large enough to make a continuum modebppate. These
are conditions which are most similar to those of a chemostas making it
plausible that, to an extent, our results could be testedraxpntally for possible
validation and calculation of parameter values.

— agr mRNA is produced at some basal rate in a down-regulated ptipaland its
average rate of transcription increases linearly with therage level of upregu-
lation in the populationP(t).

— Since each molecule of this MRNA contains all the informratiequired for the
translation of all four Agr proteins, the same numbers oheaitthese are pro-
duced, i.e. we assume that on each pass a ribosome traribiatestire strand
of mMRNA. We also assume there to be a plentiful supply of Kinoss within
the cells since they are required for translation of all @irtg, not only those in-
volved in QS. We do not therefore need to track the conceotraif ribosomes
and can take the rates of translation of each of the proteibhg the same, and
proportional to the concentration agr mRNA.

— The levels of proteins and mMRNA inside the cells are limitgchhtural degra-
dation and through dilution, proteins having a relatively Irate of degradation.
Bacterial cells grow until they undergo binary fission toguwoe two daughter
cells of equal size. Each daughter receives a copy of therasome and suffi-
cient numbers of all the different chemicals required fowsal. We assume that
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) )

/N 4\

Fig. 3 Bacterial cells reproduce through binary fission, prodgdwo daughter cells. The contents of the

parent cell are divided between the daughter cells. Herthaate matches birth rate, as in our model, so
the original contents of the cells (showed schematicallyliesi ftircles) are reduced through dilution.

all the contents of the parent cell are divided equally betwihe two daughter
cells. Through this dilution process the number of protémnsach cell would,

in the absence of protein production, be reduced as time @oésee Figure 3).
We assume that the contents of a dead cell are degraded amchdaffect on
the remaining cells. The dilution ratg, can be calculated d82/ty wherety is
the time it takes for on8. aureugieneration to undergo binary fission. We define
Ox = Ax +r (see Table 1) for all intracellular concentratiotis

— Housekeeping phosphatases are able to dephosphorylaieafgrratey.

— After membrane-anchored AgrD has been (post-transldiydnmodified into
AIP (by AgrB) we can ignore what remains of the AgrD proteinitabas no
further effect on the QS loop and will eventually be lost tigh dilution or
metabolism.

— Receptor-bound AIP can unbind spontaneously, atyate

— When an AIP binds to a receptor, i.e. to AgrC, the latter autsphorylates. To
simplify the system we will assume that this process is deffity fast that it in
effect happens as soon as the AIP binds to the receptor. Wheadhptor trans-
fers its phosphate to the AgrA protein (at a rgét is free to autophosphorylate
again, and the phosphorylated AgrA is able to bind to the ptemsite of the
DNA and increase mRNA production.

— There is a plentiful supply of SarA proteins so that, unlik¢lil], we do not take
into consideration their specific effect upon AgrA bindighe promoter sites.

The resulting equations are, for conciseness, shown onfijigare 4; see Tables 1
and 2 for definitions of the parameters and variables. Ndtie¢ taking the equa-
tion governingP(t) to be quasi-steady would give us Michaelis-Menten kindtics
MRNA transcription, as is often done in modelling of thiskitdowever, we shall
see thafP(t) is among the slower evolving variables and we accordindigimethe
full dynamic balance.

We take the initial conditions of the system to be the steaate svhich would
arise were no AIP producedk & 0), i.e. a totally down-regulated state, so QS has
no effect on the cells and all protein levels are controllgdranslation, transcrip-
tion, degradation and dilution. This could be reproducibla chemostat experiment
through manipulation of AIP synthesis, i.e. by bringing tgr operon under the
control of an inducible promoter. As a reflection of bacténianature it might be
interpreted as a large population of cells in whichalyesystem is suppressed by an-
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Table 1 Definitions of the parameters.

Parameter  Rate constant for Units

m basal production of mMRNA molecules cellss?
v mRNA transcription molecules cell§ s1
K protein translation s

aT,ar AgrB and AgrC taken up into cellmembrane s

as AgrD anchors to cell membrane -5

Ax natural degradation of variab¥(t) st

r dilution through cell division st

Ox degradation and dilutiordg = Ax +r) st

k AIP production from AgrD, mediated by AgrB molecutéscm® s1
B binding of AIP to AgrC molecules' cm® s71
y separation of AIP from AgrC 3

) activation of AgrA by AlP-bound AgrC molecule$ cm?® st
u dephosphorylation of AgrA by phosphatases ~1s

b binding of the promoter site moleculescells st
u unbinding of the promoter site -3

N total number of bacteria per unit volume cellschn

Table 2 Definitions of the variables.

Variable Concentration of Units

M mRNA molecules cm?3

AB,C,D cytoplasmic AgrA, AgrB, AgrC, AgrD  molecules cri

T,R transmembrane AgrB, AgrC molecules tin
S anchored AgrD molecules crA

a free AIP molecules cn?

R* AlIP-bound receptor molecules cth
Ap phosphorylated AgrA molecules c

P proportion of cells that is up-regulated -

other of the many gene regulation networks involved in ¢atltegulation, before this
latter mechanism is switched off, through some environalesrtmetabolic change,
to allowagr upregulation to begin. Using such initial conditions altous to monitor
how a large population of bacteria can shift into an up-ratua state as AIP levels
increase. Hence we take the following initial condition$igh are the steady states
of the equations in Figure 4 with= 0)

a(0) =R'(0) = Ap(0) = P(0) =0,

Nm NKkm Nkm
MO~ MO Z5e PO R
_ Nkm ~ Nkm _ Narkm 1)
CO=5anra PO anast o) O Fudiiar o)’
R(0) Narkm . S0) = Naskm

~ duor(ar+oc) 3 ds(as+0p)”
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Outside the cell

{%‘:kTs—gRaerR*—Aaa }\
A

\ Cell membrane

ds drR dR .
{dtfasD dsS—KTS [a:aTB—&T}[W:BRa (y+ o+ )R }[E:GRC—BRaerR — &R }

7

Inside
the cell ( gt = AR — (1 Oap )A }
[E—KM (ar +38)B } \ 08— KM AR+ o — 5o }

P
d—fprl P) —uP

[Z—?:KM—(%#—%)D } dt N J/ } [Z—?:KM (ar+&)C }

d—M = Nm+NvP— M }

dt

Fig. 4 A schematic representation of the complete model foratecircuit with a classical TCS. See
Tables 1 and 2 for definitions of parameters and variables.dlinensionless version of this model is
shown in Figure 5.

2.2 Nondimensional model

We nondimensionalise the relevantriables using (1), i.e. we set

M = @M A = 6""5AA’ X':MX, Y/:MY
Nm Nkm NKkm Naykm

)

for X =B,C,D andY =T, R, Srespectively. The remaining scalings are

o — B gbNark?m? . @bkm

b
= R* = — = omt 3
5|v|55A5R(GR+6c) ) &\435A ) AP AP7 T 6’\/] y ( )

Now

P already being dimensionless. Time is thus scaled djththe rate of mMRNA degra-
dation while the others are chosen to simplify the corredpanequations as much as
possible, i.e. they are chosen to set the coefficients of bd®BIA transcription, AlP-
receptor binding, AgrA activation and phosphorylated AgpiAding to the promoter
site in certain equations to unity. The following dimensibparameters emerge:

/\;(:% for X=AT,RSR"Ap, )
oy =222 for ()= BT).CROND.S), (5)

1 Namely mRNA and all unphosphorylated proteins, since thesddawe the only non-zero variables
in a totally down-regulated cell.
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Outside the cell

[ %‘:é@Tsf%BRH%ﬁVW*Aaa
Cell membrane
{ ngS:A(Dfs)—kTS }[Z—I:/\(B—T)M %—T:Ra—()\er)R* H ‘;—T:/\(C—R)—e%RaH”—gR* }
i
Intsrigecell { %:AR_(A+Eﬂ>Ap } dA

\{\E =A(M—A)—nAR +efinAp }

{ 3—'::Ap(l—P)fuP }

Fig. 5 A schematic representation of the nondimensional model o&gnecircuit. The parameters are
scaled according to (9) and (10), and as discussed at thefey&d3owe have sedx;<_Y =a for (X,Y) =
(B,T),(C,R) and(D,S).

and .
, Aa v B Nwm y
)\:7\/:— /:7 = — = —
a 6|\~/I7 m7 B 5 , N béay 53 (6)
k’—kT g Yoo H (p,_(pS
_5a _57H_57 _5’

whereX is the initial condition ofX given by (1), forX =A T,R,S.
We assume that protein degradation rafesjn (4), are negligible relative to
so, and sincdy = Ax +r, we set all the parameters in (4) to be equal. Thus we take

A=A for X=ATRSR Ap. )

Dropping”’s we get the nondimensional model represented by Figuréé.dl-
mensionless initial conditions are simply

2.3 Parameter sizes

While the appropriate data required to determine many of #rameter values are
not yet available, we do have information about how fastademeactions take place
in relation to others, and this suffices for the qualitatiweeistigations and asymptotic
studies on which we focus. The parameter values adoptedaséstent in magnitude
with the estimates in [11] and this will be discussed furthighe end of this section.
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Our nondimensionalisations result in the rate of basal mRigAscription being
O(1):
dM

—— =14VP-M.
dr +

This basal production exists in order for the QS system taabei its own activation.
The QS-induced rate of transcription must be far greaterderfor QS to exhibit
switch-like behaviour, with a population of cells becomiagidly up-regulated. Sim-
ilarly, we expect the rate at which AlPs bind to the receptord the rate of AgrA
phosphorylation by AgrC to be fast, as we anticipate thattieas involved in sig-
nal transduction will be fast compared to processes suctasal franscription and
degradation or translation of proteins. For these reasendefine

this being the ratio of basal MRNA transcription to QS-inellicranscription (this
definition is consistent with many other previously pubdidhmodels of QS, see for
example [1,6] or [7] where QS-induced production rates dreaken to be consid-
erably greater than the corresponding basal rates; indeedhoices << 1 can be
viewed as a mathematical representation of the QS coneeqpt)scale

o g2l ool
\/:EVa B _gﬁa (d_e(pv (9)

with € << 1 being our small parameter and hatted parameters l@ihg Choosing
these parameters to be of the same order with respecetmbles the appropriate
signal transduction reactions to occur on the same (eamygstales, as would be an-
ticipated biologically. Notice that this will make the ratEAIP productionO(1/&?),
with .

G LW0rs Lina L ha
This will ensure that at all times and regardless of how adtie cells are initially,
enough AIP will be produced to upregulate the cells if it isameed within their
environment. Notice that the scaling of this productiomeliffers considerably in
the equation fo(t); the implication of this is that AgrD is rapidly turned overthe
production of AIPs, reflecting the efficiency of the signadlisystem.

Since we are interested in seeing how the cells become wpated, we have the
AIP loss rate Ay, asO(1), i.e. much smaller than the AIP production rate. However,
if we wanted to model a situation where the cells did not bexantive, say because
AIP degradation was too high or the cells were in an open enmient where the AIP
was lost too quickly into the external environment, then veaila alter the parameter
choice to account for this by makimg, much larger tha©(1); we will discuss this
further ing§3.

Taking all other rates of degradation, uptake into the mamércomplex separa-
tion and DNA binding to b&®(1), we choose only one of the nondimensional param-
eters to beO(¢), i.e. smaller than the nondimensional basal transcriptiamely

p'=ef, (10)
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the rate of housekeeping dephosphorylation of AgrA. Thuasgeime that the bacte-
ria can eliminate unwanted phosphorylated AgrA via degiadand dilution suffi-
ciently efficiently to make little of this housekeeping pess required (in fact we will
see that it does not affect the leading-order behavioureo$yistem on any timescale).
For an asymptotic analysis of an alternative parameteresefl$], where we, in ad-
dition, chose&k = O(¢), i.e. AgrD loss as a result of AIP production was assumed to
be relatively slow. However, the choice for this pages=(0O(1)) results in two fewer
timescales with no significant changes to our conclusions.

Thus our overall parameter choice is motivated by a desiasare that the math-
ematical analysis be revealing as well as biologically pilale. For example, choos-
ing B’ and¢’ to beO(1/¢) implies that the TCS reactions occur on the timescale on
which AIPs are first produced in significant numbers, so thatsignal transduction
process begins immediately (as is desirable), with thegebtransduction reactions
and AIP production being the only reactions that occur aditeaorder here, thus
enabling us to examine them effectively in isolation. Nuitcedrinvestigations (not
shown) indicate that the rapid switch-like upregulationichhwe know occursn
vitro (see for example, [17]) is dependent upon this parametdécehbor instance,
sufficiently small values of (even in the case wheg = 0) result in the cells re-
maining in a down-regulated state (this will be addressethén at the end of the
asymptotic analysis), while reducin®f and ¢’ slows down the switch between the
inactive and active states.

As mentioned earlier, our parameter choice follows a sintiie to that used for
simulations in [11] by Gustafssaat al, wherein reactions involved in the activation
of the TCS were assumed to take place faster than, say, bassdtiption and degra-
dation, their choice being based as far as possible uponekeérimental evidence.
The two models differ in a number of ways: specifically, [1@hsiders the influence
of SarA on transcription of the operon and takes the AIP cotmaton to be a param-
eter of the model, rather than a variable (as discusse@&gadaturation kinetics are
described explicitly in [11], while we use the equation esganting?, the proportion
of up-regulated cells, to incorporate this implicitly. Henthere is a certain amount
of overlap between the two parameter sets but each modalegjaoes distinct addi-
tional parameters. Of those in [11] which are equivalentumspactivation rates are
five times the size of degradation rates, one hundred tingesizke of the spontaneous
separation (between AIP and receptors) rates and ten tifrtee a&maining param-
eters (in ours they ai®(1/¢) larger), so that the nondimensional parameters directly
involved in activation of the QS system are assumed to beattges$t parameters in
both our model and in [11].

Unless otherwise stated, all dimensionless parametensrinwmerical solutions
(excepte) will be taken to be unity, witle = 102, For simplicity we henceforth write
a;w =a for (X,Y)=(B,T),(C,R) and(D, S) (which is equivalent to assuming that
AgrB and AgrC are taken into the membrane at equal rates anégrD is anchored
at this same rate) and drop all primes. The associated detduks of the unhatted
dimensionless parameters are displayed in Table 3 (afidhgtiantities are unity).
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Table 3 The default parameter set.

Nondimensional parameter  Default value

u 103
av)\r/\avn7yak>u l
v,B,¢ 10°
£ 1073
(0] (if) (iii) (iv)
100 1 100 100
= = = =
S 500 <05 @ 500 O 500
0 OK 0 0
0 5 10 0 5 10 0 5 10 0 5 10
) (vi) (vii) (viii)
100 10 100 10219
= = = ©
Q 500 o 5 L F 500 ® 5
0 0 0 0
0 5 10 0 5 10 0 5 10 0 5 10
(i) <16 ® (xi) (i)
10 10 100 1
= o = =
X 5/ x5 &£ 500 a 05
0 0 0 0
0 5 10 0 5 10 0 5 10 0 5 10

Fig. 6 Numerical solutions to the nondimensional model using théainibnditions (8) and parameter
scalings given by (9)-(10) with the default parameter setbld@ 3. The shift from an inactive to an active
state, reflecting the increased AIP levels in (viii), is @ntlasP approaches unity in (xii).

3 Numerical simulation

Figure 6 illustrates a numerical solution to the nondimemai model using the initial
conditions (8) and the default parameter set given in Tabkrd@m (viii) and (x) (or
see Figure 8 for a clearer picture of the initial behavioug)sge that AIP production
begins immediately and the AlIPs then bind to any availaleptors, resulting in a
loss of free transmembrane AgrC, illustrated in (ix). Theib receptors phospho-
rylate AgrA within the cell, leading to increased levels ofigated AgrA, (xi), and a
corresponding rapid decrease in the amount of inactive AGipAThis is enough to
kick-start the QS-controlled mRNA transcription (trangtion initially being only
at the basal level) - see the increase in (i) - and this forcemall increase in the
level both of inactive AgrA, (i), and of free receptors, XiXoue to increased mRNA
levels, we also see increased levels of all the other prateépresented in (iii)-(vii)
(although the increase in transmembrane AgrD in (vi) is lived as it is turned
over in the production of AIP), which enable the continueodurction of AIPs, pro-
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Fig. 7 The steady-state solution fBragainst logA,) (calculated in XPPAUT 5.91), illustrating the three
regimes (solid lines represent stable steady states, witheddlines being unstable). Here we have used
£ = 1072, The system is bistable within an intermediate rangéofmeaning that the population can
switch quickly (but hysteretically) between down- and egulated states (for sufficiently smal the
system will always reach an up-regulated state and for geitiy largeA, the agr operon will be unable

to activate itself). Our default choice fag is Az = 1.

ducing a clear transition to an up-regulated state, Ritlecoming close to unity, see
(xii). In consequence, the increaseArandR only lasts a short while and is quickly
replaced by a sharp drop in their concentration levels as @ahe consumed in the
activation process. We will see in the asymptotic analysid the drop inA occurs
on the same timescale as that for the cells to reach an upatedistate (those d&®
andSoccur on a longer timescale).

This numerical solution demonstrates how a large populatf&. aureusvould,
after a time lag, shift from a down-regulated, and relayivelrmless, state to a highly
virulent one if sufficient AIP is retained in the environmeifithe cells. For compar-
ison, in Figure 7 we have displayed the solution curvé othe proportion ofagr-
active cells, for varying\, the AIP degradation rate (this can also be interpreted as
the rate at which AIP is lost in the external environment). & that the model dis-
plays the bi-stable behaviour which is often viewed as Blp€ QS systems, see [6]
or [7] for example, enabling the QS system to switch rapidtneen down- and up-
regulated states depending on the environment of the ¢el[45] we demonstrate
that an alternative way to ensure that the cells either doesath an active state, or
at least that the time at which this occurs is delayed, isufindnhibition of theagr
operon via competitive binding at the receptor sites, asudised ir§1.3.

4 Asymptotic analysis fore — 0

We now perform a time-dependent asymptotic analysis on tigkeivin order to clar-
ify its behaviour, the full model being too involved to allawgreat deal of insight.
Moreover, it is valuable when adding extra processes toytstes (while keeping its
complexity under control) to have in place systematicdkyived sub-models of the
type we obtain below. For an overview of asymptotic metheas[48], for example.

We first note that, since their initial conditions are equad ave have assumed
their depletion rates are also equal, we have

B(1) =C(1) =D(1) (11)

for all 7, so henceforth we eliminat@ andD in favour of B.
The asymptotic structure is complicated, there being digigscales in all, the
first to arise reading = 1/¢. Initially only the fastest reactions feature, namely thos
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involved in signal transduction, for example AIP bindingthwthe slower reactions,
such as dilution, contributing on the longer timescales 3talings required for all
the variables on each timescale are given in Table 4. In easé the scalings are
given relative to the dimensionless variables defined im@)(3). On each timescale
we manipulate the long-term or near-blow-up behaviour efdistem to determine
the appropriate scalings for the following timescale. Fatance, if the long-term
behaviour of a particular variablg is X ~ T as1T — o, thenX will be scaled in
the same way as to move to the subsequent timescale. Each timescale brawgs n
reactions into the leading-order behaviour. Mathemdsictllese can only occur in
a specific sequence and it is this which dictates the scalorgson each timescale.
Additionally, on each timescale the small-time behaviowstrmatch the long-time
behaviour on the preceding timescale.

In the interests of brevity, we do not provide details of &k timescales; in-
stead we choose those which demonstrate the most interesjiects of the system,
namely those describing signal transduction, the cellstnétg agr active and their
approach to steady state. We believe that the timescalesilols in detail in the
main text are both biologically and mathematically intéiress providing insight into
the dynamics of thegr system, while illustrating the techniques used in such an
asymptotic analysis. The remaining timescales are desthbefly in the Appendix
(and, for clarity, Table 4 contains the scalings for all tdoales). In all comparisons
between the numerical solutions and the asymptotic apprations we use = 103
and variables are always plotted again# its unscaled form. The numerical solu-
tions to the full model are represented by solid lines, wiiike asymptotic approxi-
mations are given by dashed ones.

4.1 Initial timescale: signal production and the two-comgat system
We find that on the first four timescales
B=R=S=T=1 (12)

hold to leading order ig because translation occurs at a negligible rate in comgraris
with the TCS reactions and transcription, which already eamo balance during the
early stages of the QS process. This gives the simplifieggyst

v 1 dR*
qr = P-M+L (13) G =a- (A YR, (16)
dA N
gt = AM—A)—nAR +elinAe, ddATP AR — (A +ef)Ap,  (17)

(14) dP

— =Ap(1-P)—uP (18)

da 1kB(p 1~ dr
ar - ?T—*B + = BVR —Aad,

(15)

Equations (14)-(17) could be viewed in their own right as aggie model of a
positive feedback loop containing a TCS in which a plentfupply of receptors is
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Table 4 Summary of the scalings required for the asymptotic approxanatfor the variables on each of the timescales. A variablefidlank on a specific timescale if

it does not require rescaling on that timescale. The scabgghemselves provide some insight into which variables dotaitiee behaviour at each stage; for example, the
AIP concentration is large on the early timescales becaussstas the catalyst of the QS-related signal transdudfferhave introduced the time shifts ~ ((In(1/¢) —

In In(l/e))/k(f))% andtg ~ £8 (r)/)\\"/)% In(1/€)/3+ 13. Notice from these time shifts that we will see two time lags,shcond being larger. A derivationnf(in particular
why the InIn(1/¢) term is required) is provided i§4.3.

VARIABLE
TIMESCALE 1 M A B s T a R R Ap P
1 ef - - - - - e 1la - - eAp £2p
T T T
2 e2¢t - - - - - e~ 1at - e 2Rt - e2pf
T T 1 T 1 1 T 1 T T 1
3 e213+e2In 2 (1)t In(1/e)MF £2InZ (1/e)At - - - e lat - £ 22 1/e)R - £2In2 (1/¢)P*
T T 1 T 1 T
4 £213+€2In2 (1/e)tt In(1/e)M* £2In2 (1/e)At - - - e lat - £ 2In2(1/e)R*T - £2In2 (1/e)pt
1 1 1 1 Z. I
5 £213+€31 £ 3M e3A - - - e la - ¢ 3R - e3P
T 7 . T —7 - T
6 e215+e3 7 & 3M I 1(1/e)A & 3B - - e 1la - £ 3In(1/e)R* e 3Ap
T T 3 T T T ) T 5 T
7 e21g+ed 7 e 4am e2N e 28 g 4g e 41/ e 44 e 4R g 4R e 2ap
I - — — n - ~
8 e21+T e Im eA e 18 - e 1T e 2a - e 2R e 1lap
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available, and where the feedback affects the responsétegalone (as would be
relevant to many loops of this kind in other bacteria), thuekimg their asymptotic
analysis open to more general application. As mentionedqusly, the additional
upregulation feeding into the signal precursors and recsof theagr operon makes
it a more involved feedback loop than most and this will bedésed further i§5.

The above equations involve the signal molecale jound receptori*), moni-
toring the signal level, the response regulator (in bothdtsze and inactive form#p
andA respectively), the proportion of active celR)(@nd, finally, mMRNA (1) whose
production rate is dependent upBrand which determines the production rate of the
response regulator, thus completing the feedback looprdgwaled equations on the
first timescale (see Table 4) become

dMi 2,\'\ dA A

gt ~ &P EMe (19) T = AR —e(A+el)he,  (22)
dA

dA M A) R,

ar ~ FAM A —EnAR S =a-sA YR, (29)

+einhe 20 P _3 (1-€2P)—euP, (24)

N A A —==Ap(l—-¢& — EUF,
gzl(ﬂp—ﬁéﬂﬁm*—a\a& ar

(21)

so disregarding th®(&) or smaller terms gives a linear leading-order system which
can be solved sequentially (in the order shown), to give

B = Ppa_ KO o ko, ]
6n 28n B2 B3n

The increasing sequence of powerstdfvith the exception of))'is associated with
each of the relevant quantities being downstream of thequewne (see Figure 1).
We see from Figure 8 that these approximations are accur#he initial stages.
As we had anticipated, itis the TCS reactions which occut fitete thak represents
the rate of AIP productiorﬁ) the rate of AgrA phosphorylatior§ the rate of AgrC-
AIP binding and ¥n the rate at which AgrA binds to DNA. At this stage these four
parameters control the behaviour of the system: AIP is hamicbduced and binds
to the free receptors, resulting in the commencement oftibsghorylation cascade;
this gives an increased level of activatég, in the cells.R*(f), Ap(f) and P(f)
display unbounded growth as— +w because all the reactions involved in their
leading-order behaviour are ‘production’ terms: we seecased levels dR* due to
AIP binding to receptors, which activate AgrA to foris, andP in turn increases as
a direct result of this AgrA activation. The unbounded grtovet associated with the
absence of reactions that involve sink terms for these diemtfor example the loss
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Fig. 8 A comparison of the asymptotic and numerical solutions on thialitimescale. The solutions of
the full model are represented by the full lines and the asyticpgpproximations on the initial timescale
by the dashed lines. Notice that, in order to be able to seeanthe asymptotic approximations begin to
fail in each case, certain variables are plotted over a Iotigeescale than otherg.= 1 corresponds to

T =10"3. We recall that the variables are plotted againistits unscaled form; the same applies in all the
figures which follow.

of AgrA through its activation which, as we now show, entensie next timescale
(dilution is negligible until the final timescale).

4.2 Second timescale: transcription

The next stage is for significant mMRNA transcription to begine rescaled equations
are

daM 1 1 t
gt — VP —eMez, (29) —‘ﬁ —al—e2(A+yRT,  (28)
dA 1 t
arf = E2AM=A)—nAR %:Awtsm +ef)Ap, (29)
3

+ &2l , (26 I
kGG Hnfe,  (26) %:Ap(l—s%PT)—s%uPT. (30)
1 ~ 1A

—ehaa', (27)
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Taking the leading-order terms of (25)-(30) gives a lingatam which can again
be solved sequentially and, matching to the previous tialeswe have

o't =2 RN = 0t At e

n n

1 ko _+2 (31)
po(th) = 2 (1 F7),

1 Vv 42
Pith ~ =1, Mt~ =17 as 17— +w.
(th n () 21

Thus on this timescale, like the previous and many of the eyent ones (indeed
only timescales 6 and 7 are not susceptible to exact leaatider solutions), simple
explicit leading-order solutions are available, desgie ¢complexity of the full sys-
tem. This is in striking contrast to the full system of eqaa$i which can be solved
only numerically.

The (fast) TCS reaction is in quasi-equilibrium here (ak~ kc]JTS/n R) and
will remain so until the final timescale. On this second tioads, the free AIP con-
centration thus levels off as a balance is attained betwsgraduction and its loss
due to binding to the receptors but, importantly, the lewdlsion-phosphorylated
AgrA become exponentially small (see (31)) as more and may\As activated
via the TCS, while, to leading order, no more is being tramsldo replace this loss
(as mentioned i33). We again see unbounded growthRiF, PT and now alsd,
asagr mRNA is transcribed at leading order, while tAg level saturates due to the
exponential decrease Af(so that little furthe®p can be generated by its activation).
Figure 9 illustrates those variables whose approximatdifisr from those on the
initial timescale.

4.3 Third timescale: AgrA translation

With the approximation (31)A(t") degrades to zero due to the absence at leading
order of AgrA translation - the scalings for this third tincate bring the latter into
prominence. We now provide the justification for the somevgudtler scaling noted
in Table 4 (the remaining scalings therein follow as a direstilt of ther scaling).

In order to bring the AgrA translation term, i.2M, into the leading-order be-
haviour of (26), we need to choose our scalings such that

1
gzM

gt =0, (32)
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Fig. 9 A comparison of the asymptotic and numerical solutions on tlersktimescale. In contrast to
the first timescale we now see the transcription of mMRNA and dueadse in the level of inactive AgrA
which occurs as a result of its phosphorylation. We also nibairea constant level of AIP following its

initial production, the AIP remaining close to this level iitgrB and AgrD become transmembrane in
significant amounts on timescale®.= 1 corresponds to ~ 0.0316.

However, we know that (roughly speaking) the matching ciioris

o
M~t? A~ce 2T RToTT as 17— 4o,
pertain from the previous timescale, so that (32) is eqaiviaio

1 ko _+2
girt e 21,

This balance implies the rather delicate scalings thatapperlable 4: our choice of
0 _+2
¥ implies thate 31" ande~ 7" are each oD(e? In? (1/¢)) for ¥ = O(1), so that

(32) does indeed hold. With all the new scalings, equatiab$(30) become

dm*

o = I H(1/E)0PF — 21 2 (1/e)MF +e2In 2 (1), (33)
3—'?; = AM¥— £2Im 2 (1/e)AA* — nAYR™F + el L(1/e)inAp,  (34)
s%ln%<1/e>g§ = k’ﬁ,"’ — Bat+£2In2(1/6) ByR™* — eraa, (35)
O('Ef —InY(1/e)a —e2In 2(1/€)(A + y)R'F, (36)
z% — £2In3(1/e)ART —£3In 2 (1/) (A + £[1)Ap, 37)
% —ImY(1/e)Ap — £2IM 2 (1/€)ApPF — g2l 2 (1/e)uP.  (38)

Hence we see that, on this short transition timescale, allviriables maintain a
constant level at leading order irfth(1/¢), except forA* which now decays expo-
nentially to a strictly positive constant (rather than toajei.e. we have (on matching
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Fig. 10 On the second timescale, AgrA is lost primarily due to its phasplation. Here we illustrate the
asymptotic approximation on the (i) third and (ii) fourth timekes, showing how its level builds back up
somewhat. The limit behaviour @ ast* — o (on the third timescale) represents the first turning point
of A(T). % = 1 corresponds to ~ 0.0826. On the fourth timescale we see clearly the increase iA Ag
concentration as a result of its translation (details avergin the Appendix). This increase continues
until the population becomes up-regulated, at which pomgittivation of AgrA dominates its translation.
1 =1 corresponds to ~ 0.1536.

to the previous timescale) the leading-order solutions ¢trrection terms being only
logarithmically smaller ire):

M*:LA, at kp R = L ko o1/t
2nke n n n n\ ke

and, finally and most importantly here,

Figure 10(i) demonstrates thag relates to the first turning point iy(t), at which the
initial decrease in AgrA concentration turns around faidpidly to produce a small
rise associated with its translation becoming evidentaatitey ordet. Physically this
constant is dictated by the balance between AgrA translaial its activation. The
subsequent rise in AgrA occurs on the fourth timescale, stetails of which can
be found (together with those of the fifth and seventh) in tip@dndix, with a plot
given in Figure 10(ii).

4.4 Sixth timescale: proteins move into the cell membransiog the feedback
loop to be fully established

We now skip to the sixth timescale, where following AgrA tséation on the fourth
timescale and AgrB, C and D translation on the fifth (see thpefglix), we expect
a proportion of AgrB and AgrC to enter the cell membrane andDAp become

2 A}, for the default parameter values, correspondite: €2Inz (1/€)Ar = 0.0416.
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anchored to the membrane ((12) no longer applies). Thelezsequations are

d—Mz\?P—s%MnL&
dt
1 1 dA ~ 2.1 - v v 4, v
€3ln (1/£)E:AM—53In (1/e)AA—nAR"+€3[inAp,
d—‘?zal\ﬁ—e%aé,
dr
ds <1
—_—= — &3 — &3
g7 = AB-£31S-£3kTS
a1 aB—ehaT,
dr
s%g - @TS-[?RM £3In(1/€)ByR’ — At
d—'?:AB—s%/\R—e%QRé—i—s%In(l/e)n—)/li*,
dr [0) 1)
ddF; Y1) RE— e3 (A + )R,
dAp X 1
5 = AR —eS(A+el)he,
dp
I _ _£3
57 = Ap(1-P)—£3uP
The leading-order terms give,
) <. AM .. koTs
R = — AlT) = — at) = —
e =15 (H="Tg"

and the nonlinear coupled system

aMm daP . dAs A .
Finally, we also have
dB . dS dT drR .
ag — M ai af ar B

(39)
(40)
(41)
(42)

(43)

(44)
(45)
(46)
(47)

(48)

(49)

(50)

which can be solved sequentially once (49) has been @viftowing in parallel with

anAp/A). Matching to the fifth timescale requires

Mo Deof po L gor

327 3wn 3n 3\

. L1 . .
asT — —oo, wherew = (AV/n)3. The slower processes which control protein be-

D Ao~ Lot BBt STRA1 (51)

haviour are now operating alongside quicker signal tract$olu reactions (which
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Fig. 11 Asymptotic approximation (dashed line) and numerical sofufswlid line) for inactive AgrA and
for the proportion of up-regulated cells on the sixth timésoaith the initial conditions for the asymptotic
approximation given by (512 nearing unity ag — o corresponds to (almost) the whole population of
cells becoming up-regulated. We see a decrease in AgrA a®skeof this protein via activation again
takes dominance over its translation.

have reached quasi-equilibrium - see (40) and (44)). Wereb$eom the numerical
solution to (49) thaP quickly levels off to unity, see Figure 11, implying that as
T — oo,

P—1, M ~ Vi, B~ —12,
arv ., KPaAY .,  x 39 , (52)
R’S’TNTT 5 aNTT 5 APNET .
ExpandingR* in (46) in terms of ¥In(1/¢) we see that
dR* 1 ko

— = 7T

dt  In(1/e) n S

to all log orders, wher&@ andSdecouple and are given for largeby (52). In other

words, R R

& ko L1 kpa?A2?
3nw In(l/e) 252n

Thus, in order to avoid detailing the intermediate timeseehere very little changes

(only the leading-order representation of (46) needs muaditin) we skip straight to

thet > In7 (1/¢) behaviour foiR*, and thereford also, namely:

o2 20

& koA v2f7) Ao 252” .

252 kpa2A Vi
Once AgrB, C and D enter the cell membrane, more AIP can beupestiand more
receptors become available to which these AlPs can biralyizly the feedback con-
tained within the QS loop fully to take effect, pushing théto an up-regulated
and virulent stateP ~ 1; the system (49) provides a concise representation of the
processes that govern the feedback on this timescale, thears of AgrB and trans-
membrane AgrB, C and D in effect being under the control oftiNA levels (see
(50)) rather than themselves during the feedback processordingly, levels of in-
active AgrA again decrease as a result of its activation amdee the appearance of
the second turning point i corresponding to this onset of QS (see Figure 11). The
timeshift tg (required for the scaling af on this timescale, see Table 4) can thus be
regarded as the lag time before the autocatalytic reactiams accumulated enough
AIP to drive upregulation; it depends upon the rates of tapson, AIP production,
AIP binding, AgrA activation and protein dilution, the fumchental processes behind
Qs.

as T — 4.
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4.5 Eighth timescale: approach to steady state via protelmzRNA dilution

The seventh timescale is relegated to the Appendix. On thé (nghth) timescale
the rescaled equations are

= -i-Me, (53) 9 _KBOrs praypyR
T dr  n
szg—r_:/\l\ﬁ—szx\,&—ngﬁ‘ — €Aa8, (55)
+efinAe,  (54)
eIR B eAr- Tra

_ dr )

dB S nys

—_— = J— TR*

== a(M-B), (56) + =R, (59)
ds . - — =

8> N (B_eS — drR*__ -
edl——MB eS)—kTS  (57) G =Ra-(A+yR, (60)
dT [ A

aT_ B dAp = L=

g =AB=T), (58) G =AR —(A+ehe. (6)

At leading order, (57) givekT S= AB, implying that the leading-order terms of
(55) and (59) are equivalent, each yielding (68), i.e. thet'freactions result in trans-
membrane AgrCR) and transmembrane Agr[3)(being created and destroyed at the
same rates, with a portion of this AgrD being converted intB f&). Thus to give a
system of independent leading-order equations we takearlcombination of (55),
(57) and (59) to eliminate the dominant terms and obtain atitiadal expression
which provides an independent equation on taking the lmit

dRos- Mgy xs 2R

dt Bo~  Bo
The following leading-order expressions then govern thebmur of the population
in this final stage

dL:v—M, (62)
B_aM-8, (63
ar ’

dT -
CT_T——)\(B—T)’ (64)
dR* QA= =

&= g B AR, (69
dAp A - =
F*EM*/\APa (66)
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da B¢ drR ds
dflff T(dff+/\Rf di'lTi)\S)
_Aaaa (67)
R— M7 (68)
na
AB
S= @ (69)
— AM
A= TR (70)
P=1, (71)

(67)-(69) can be combined to give the leading-order difitied equations for,S
or Rin terms ofM,B, T andR* but we shall not illustrate this here. The following
matching conditions hold,

M(0) = B(0) = T(0) = R*(0) = Ap(0) = a(0) = 0. (72)

Notice that (71) follows from the seventh timescale, thepprtion of up-regulated
cells at leading order being given from then onwards as uB@yations (62)-(71) can
be regarded as a minimal model for the QS system of a popnlatinch is already
in an active state. Moreover, if (62) and (71) were replaced b

aMm — daP -

ar =vP—-M and OIT__Ap(l P)—uP (73)
then this reduced system would be an excellent simplifiediaerof the full model
given that it contains the vast majority of reactions whiomtcol theagr operon at
leading order on each timescale. In fact, solving (63)-&#@) (73) numerically, using
the original initial conditions for the full model (8) anddarporating the time lags,
really only fails to capture adequately the early dynamicthe TCS because some
of the signal transduction reactions are missing.

The system (62)-(70) can be solved sequentially (in thergigten), but it is more
instructive to illustrate its behaviour numerically - sdgufe 12. For each variable
we see the asymptotic solution approaching the steady tdle full model. The
steady states of the reduced system are thus good appradiséd the full steady
states. This is particularly useful given that the exa@dyestates cannot be expressed
explicitly; the leading-order terms however give the steathte K for each variable
X) asymptotics in the form

1  NM-B-f-v &2 &9 F_-Y x_2
. ko N (0]
. —A2BO+ (AB2@P +4A LKA QXA +y))2
2Aank

N2Bp+ (ARG + AN BREA GRU(A + )2

R= ~—
2A Bk
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Fig. 12 The solid lines illustrate the numerical solution to the fajistem for each variable, while the
dashed lines represent the corresponding asymptotic apmtan on the eighth (final) timescale, on
which degradation and dilution lead to the population r@agits up-regulated steady state.

We note that at steady state, the concentration of mMRNA (ansl &lso the re-
maining variables) is, to leading order, fully under thetcohof the QS loop, basal
transcription being negligible. Since the QS loop takesaf§o early on, basal tran-
scription does not in fact come into the leading-order b&hawon any timescale (we
are assuming the cells begin in the down-regulated statealvh@ small level of pro-
teins have been translated but any AIP has been washed awlahisis sufficient to
trigger the start of the QS loop, i.e. basal mMRNA transasiptias already occurred
in order to obtain our initial conditions). In order for bag@nscription to occur at
leading order we would need much less AIP in the environméttieocells so that
the population does not become up-regulated so quicklyexample as in Figure
7. Similarly, housekeeping dephosphorylation of AgrA aiidtibn of free receptors
and inactive AgrA, i.e. the-AR and —A A terms, also never enter at leading order
and as such could be neglected from the model altogethsrigtibecause their loss
through the activation process dominates). It must be reveesd, however, that if
the model is extended to include inhibition of the QS loop, ésee [15]), it is impor-
tant to retain all those reactions which may play a non-géugé role in suppressed
cells.

It is clear from (74) that a key parametenistfie ratio of QS-controlled to basal
transcription, which affects almost all of the steady séggproximations. Notice that

A = Vq)“—>1 as v— 4o,
A+Ap  An+Vo




Mathematical modelling of thagr operon inStaphylococcus aureus

27

@

(i)

0.1 7
/.
1 | 4
| e T T T T 0.08 v
0.8j!
! );
= | =~ 0.06 /
b—_’o.ﬁ : b—_/ //
—1/¢2
ol v=1/¢g 0.04 ,
B v=1/¢ /
I 1 /
0.210 - - - -v=1/es 0.02 /y
| v=1 4
0 0
0 5 10 0 0.05 0.1 0.15 0.2

Fig. 13 (i) Numerical solution foiP(1) from the full model using all parameter values from Table 3 (so
thate = 10-3), except forv, the ratio of the rate of QS-controlled to basal transaiptiwhich is varied
here. While altering this ratio ought to affect other paramsefsince this ratio is i) we here take all
other parameters to be fixed. Decreasirigwers the proportion of up-regulated cells and the timerake
for that proportion to reach an active state is longer, i.8.#@comes less effective. In (ii) we illustrate
these solutions on a shorter timescale in order to demonstrateag time before the QS system is fully
induced.

and

R 2AKB Q20

= ~— ~— = = T —— —1
RER A2nBo+n(A4B2¢2 + 4A.BKA Q2U(A +y)) 2 + 2AKB Q20

asv— +oo, i.e. the AgrA is all active and the receptors are all bounAl®s in the
limit of large V. Additionally, computing the relevant correction term, fired that

Pwl—e% as €¢—0.
Thus QS-controlled transcription occurring at a much faste than basal transcrip-
tion (i.e. in terms of dimensional parameters-> m) is crucial in ensuring that the
QS circuit can function to its full potential. Figure 13 defgithe numerical solution
to P(7) of the full system for a selection of values of the unscaleddimensional.
We see that the proportion of active cells decreases signfficwith v. If the model
is extended to include inhibitor therapy, this correctiemt is also dependent upon
the rate at which inhibitor molecules are introduced to tlés@nd this is examined
further in [15].

Additionally, on considering the time lagg for the QS activity to take effect:

1
3In(l/e
T6Nf‘%<;o> We)

it is evident that the time taken to reach upregulation isiced as/ increases. There
is a similar, but less sensitive, dependence upon the AlBygtmn rate and rate of
AgrA phosphorylation stemming from the time lag(see Table 4); increasing either
of these will accelerate the cells’ process of becomingleiru
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Fig. 14 Here we use the leading-order behaviour on various timescal@resent an overview of the
stages required for upregulation resulting from a positdedback loop containing a TCS in which all
components of the loop are transcribed from one operon. 8pBg represent leading-order reactions,
with dotted lines otherwise. Firstly, (1) the signal is deesl by the receptor of the TCS, which then
activates the response regulator. This TCS activationdesltmRNA transcription, (Il). Distinct phases of
feedback are then exhibited. Firstly more response regukatianslated so that more can be activated
via the TCS, (lll). This is followed by increased creationre€eptors, which allow more effective signal
detection, (IV) and, finally, additional signal precurseproduced, giving more signal and completing the
full feedback loop, (V). We have decomposed the responsétiete stages on the basis of the asymptotic
analysis of our system (roughly speaking (I) correspondisrtescale 1, (Il) to 2, (lll) to 3,4 and 5, (IV) to

6 and 7 and (V) to 8), but they could also be applicable to atbeh positive feedback loops.

5 Discussion

With the discovery ofgr-like systems in more and more bacteria (see, for example,
[9,21,31,33)), it is becoming increasingly important tiiasis QS system (as illus-
trated in Figure 1), and why it has evolved to its current fobm understood. We
believe that the above asymptotic analysis provides wdrillewnsight into the op-
eration of this QS network of which we now highlight a partauaspect. In Figure
14, we demonstrate which of the principal reactions aregmteat leading order in
the various stages of upregulation of the overall feedbaok.I[27] provides a dis-
cussion as to why a feedback loop might be in place for suclst@isy However, we
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Fig. 15 The numerical solution t&(t) from the nondimensional model of Figure 5 with various section
of the feedback loop removed. In (a) we have removed the fekdhiacsignal production by giving AgrB
and AgrD basal production levels at a rate= 0.1 in their respective equations. Similarly, in (b) we have
let a = 0.1 for AgrC and for AgrA in (c). We see that the only feedback ethnoticeably affects the
proportion of up-regulated cells is the removal of the respaegulator sub-loop.

focus our attention on the fact that the feedback loop iglditiinto three sub-loops,
making theagr system a rather unusual type of signal amplifier. Such a fesgdb
loop could function by inducing production of a particulangponent of the system
only; however, in theagr system each component of the loop - the signal (AIP), re-
ceptor (AgrC) and response regulator (AgrA) - is amplifiede Bisymptotic analysis

in effect allows us to separate out each sub-loop and exagaidle step individually.

Numerical investigations, see Figure 15, indicate thaégplation of AgrA pro-
duction is the limiting factor in ensuring that the cellsakean up-regulated state
(removal of the response regulator feedback sub-loop ire@)lts in a significantly
lower proportion of up-regulated cells, whereas removatitfer of the other two
sub-loops in (a) and (b) has a negligible effect upon this lmemnand this corre-
sponds neatly to our asymptotic analysis: increased Agoilytion is present at
leading order on an earlier timescale than that of the otheejms. Previous studies
assume that the three sub-loops are in place to ensure fiishdike behaviour in
upregulation (see, for example, [17]). However, while isisndeed a plausible ar-
gument and has been demonstrated to be the case in matremadiels of other
QS systems (see, for example, [2]), the model of [11] prosihgsteretic (and hence
switch-like) behaviour without the inclusion of all threktbese sub-loops. Our anal-
ysis suggests that each sub-loop may be in place for distasons: the cells may
produce sufficient amounts of AgrA to ensure enough is dviglfor self-activation
(it having been demonstrated that it is sufficient to knoak4te agr system only
in the initial stages of infection to prevent staphylocdadeulence [36], this early
use of the AgrA sub-loop is consistent with the idea that thueial period ofagr
upregulation is this early stage), production of extra Agnén appearing at leading
order for efficient detection of their immediate environméallowed by translation
of the additional AgrB and AgrD, which will create AIP, notlgrior self-activation,
but also for activation of other cells in the population. §hecomes particularly rele-
vant in the context of a spatially inhomogeneous populatibareby some cells will
upregulate earlier than others (spatially inhomogenemuets of theagr QS system
are studied in detail in [15]).
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6 Summary

We have presented what we believe to be the first model of théedback loop
of theagr operon inS. aureugprevious models of QS in this bacterium have either
focused on the TCS alone or not taken into account the irtudeeprocesses). As
noted in§1, suppressing thegr operon is being examined as a method to treat staphy-
lococcal infection and as such it is important that QSSiraureuse understood as
fully as possible. Our analysis demonstrates the step py@tacesses involved in
upregulating the production of secreted virulence factiasthe QS loop irS. au-
reus We see how, if the QS signal molecules are contained witlénenhvironment
of the bacteria, the feedback loop kicks in rapidly, pustitmgcells into an actively
virulent state. We have, of course, considered the QS loggolation and there are
other aspects which could affect the cells’ ability to beeorinulent, e.g. temperature
or nutrient supply. A comprehensive representation of thadyia, in nature or the
laboratory, is, given the number and diversity of such fesstnot within the scope of
the type of model analysed here: the current model has tlitirgoal of describing
key aspects of the behaviour of a populatiorsofiureusn a chemostat. This should
increase the possibility that parameterisation of the rhfsden experimental work
will in due course be possible and many additional factarshsas those mentioned
above, are inputs which could be controlled experimentdale model should also
readily be adaptable to describe a growing population décby the addition of a
growth term, and other aspects could similarly be incongateghence there are many
avenues for further investigation and analysis based oautrent approach..

This paper derives simpler sub-models which could be usewéstigate thegr
operon further, for example see the first, sixth and final $ivaées which represent
the TCS reactions, the achievement of upregulation andistetate behaviour re-
spectively. Future publications will examine the effecsappressing thagr operon
via a number of methods including using both synthetic iitbilp molecules which
compete with AIPs for binding to receptor sites and crossstnhibition (strains
of S. aureushaving the ability to naturally interfere with the QS loogfsopposing
strains), building on the above analysis in order to gainemiesight into the advan-
tages and disadvantages of exploiting the staphylococ8agy@tem for therapeutic
gain. The model provides a framework in which to test the itigitg of various
phosphorylation cascades to inhibition and indicate thar@ approaches to ma-
nipulating theagr operon for therapeutic gain.

In addition to its shedding light on the QS process, we beligne asymptotic
analysis we have pursued to be worth presenting in somd tetause it provides
a mathematical tool of rather general applicability in reidg the complexity of the
types of gene and signalling network models that are so faetvn biological ap-
plications (in particular when dimensional parameter @alare unknown) and are
exemplified by the current application to QS. For instangeiaéions (63)-(70) and
(73) provide an excellent simple substitute for the full rbdescribed in Figure 5.
The separation of timescales that underpins the succebsdafgproach is similarly
widespread but not always exploited. As we show in [15], sieciniques extend
rather readily to even more complex related systems.
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A The remaining timescales of the time-dependent asymptatianalysis

We here summarise the timescales which were omitted from the.pape

A.1 Fourth timescale: AgrA translation is balanced by itSvation

The rescaled variables on this timescale satisfy

dmM+

o —OP" —£3InZ(1/e)M* +e2In 2 (1/g), (75)
1 dA* g3 + Tt —1 -

In (1/£)F:)\M —€2lm2(1/e)AA" —nATR* " + ¢l (1/e)AnAp, (76)

u Bp - N
33 (1/5)3% - % ~Bat +edini(1/e)ByRT —erqa, @7)

+

ddi —a"—eini(1/e) A+ YR, (78)
S%Af —£3In3 (1/e)ATR™T —£2In (1/e)(A +£f1)Ap, (79)
% :Apfe%ln%(l/e)ApP+ fs%ln%(l/s)uP*‘ (80)

Thus to leading order we have

. 2
Ap— L. p+:£<r++ i>7 M+:L<,++ i) 7
n n ke 2n ke (81)
=T R**:k—(p<r++ i), A*:A—VA<T++ i)
n n ke 2nke ke

The increasing sequence (frofg to P and thenM) of powers oft™ enables us to see what drives each
reaction: namely, activatoAg) increases the proportion of up-regulated cafswhich, in turn, induces
mRNA (M) transcription (this sequence of events begins on the setiorescale). Similarly, free AIP
concentration &") generates increased levels of AlIP-bound receg®r ). The combination of AIP-
bound receptor and mRNA controls inactive AgrA leveéd$, thus completing this section of the feedback
loop (remembering that the full loop contains receptor andaigroduction and these will appear on later
timescales). The equations of (81) could be viewed as the-@mge behaviour of a TCS forming a positive
feedback loop which has an abundance of receptors and gigralrsors.

On this timescale, active AgrA is in balance, with Figure d0{ustrating the increase in levels of
inactive AgrA (whose translation is now, and is on all theseduent timescales, balanced by its activation,

i.e. A= AM/nR¥); as we shall now see, this growth of inactive AgrA is subserly moderated by the
translation of all the remaining proteins which results ia #ttivation of more AgrA.

A.2 Fifth timescale: AgrB, C and D translation

While translation of AgrA has already appeared at leadingionde require translation of the remaining
proteins, remembering that we have tak&(m),D(1) = B(1). Now (12) no longer applies tB and the
equations read
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s 12 dR_ 1 oy AN
ar =VP—e3M+¢€3, (82) df_sﬁ)\(B R) 53¢Ra
e%d—f\:/\Mfeéx\AanR* ves Wy (88)
dt [0}
4 . o
+ESHNAe, ®3) R R eI A4k, (89)
dB PR dt
- =aM—¢3aB, (84) dAe s« 1
gfs G —AR —es(Arelde,  (90)
E:g%A(B_s)—s%kTs (85)
dTt 1 dpP 1. 1.
qF —£3AB-T), (86) g =Ae(1-£3P) —£3uP. (91)
2dd KBQ_ A 1a o
£3E_TTSfﬁRa+£B‘ByR
—€Aqd, (87)

Taking leading-order terms and matching to the fourth timesgakes

aM . dP dAr  AM
dar ~ " aF = e it~ (92)
the remaining equations
A= /\—M, 4B _ o
kot T

decouple. The system (92) can be reduced to

d3F AV«
f—fP: y
di3 n o

with solution

S % 7 % 3 . < .
P(T) = c;e" +cge*%rsm<§wr> +cge*%rcos<7wr

1 . . . . .

wherew = (AV/n)3. Since matching to the previous timescale (in fact, the smist(81) on the fourth
timescale simply correspond to the smalimit of the current ones, but including them separately makes
the analysis more transparent) requires

P~vZf P~ I5”~/\—v2f2 as ¥—0.
2n

1
n b

S|

Hencec; = 1/3wn, ¢ = v/3/3wn andcz = —1/3wn, so that

B(¥) = ﬁ ( of | \@e*%fsin(éwf) —e*%fcos<§wf)>;
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similarly
M(f) = % <e‘*’f —V3e %fsin<?aﬁ> fe‘%fcos<§wf>>,
A(¥) = 3::;)? <e‘”f7 3e*%fsin<?wf> —e %icos ?w?)),
B(T) = 3%( ’*’f+2e*%fcos<§wf> —3) +1,
Ap(T) = % (e’*’f +2e*%Tcos(§wT)).

The chain of processes in thgr operon continue as translation of all the proteins beconaebrig order.
On the sixth timescale, once AgrB and AgrD move into the membréatiecells, the QS loop continues
through increased production of AIP. The rai@f exponential increase is governedbyv andn. These
aspects are all crucial to the success of QS and the expahblativ-up is indicative of the onset of an
autoinductive circuit. Thus this fifth timescale represeéhésonset of QS.

A.3 Seventh timescale: free receptor loss due to AIP binding

This timescale describes how levels of free receptors deeraa more become bound by AIPs. The
rescaled equations are

dm’ dT’

W _gp—eiw e, 93 qu =B et ©8)
s%:/\Mug%,\A/—nA'R*/ s%:@T’S—ﬁWa’H%ﬁW’
+e3nAp, (94) —gd)ad, (99)
‘;Tsf —aM —¢haB, (95) ddfj’ —Rd - el (A +pR”, (100)
%5 :/\B'_e%m_%wa' ddA:j’ AR e (A teiad,  (101)
+s%%VR*', (96) et & a(1-P)—cbup (102)
g% ~AB —eiAS kTS,  (97)

The leading-order solutions are

P=1 M =1, B/:ﬂr’z, T’:a—)wr/3, a’:Mr’3, Ap’:ﬂr’z,
2 6 6n 2n

along with the long-term behaviour,

S,lei/, R ~ (Pa)\VT,3’ AINALZ,
kT 6n eat’

ast’ — oo,

Now that the cells have reached an up-regulated state, thiedpScontinues, but the level of free
receptors and transmembrane AgrD begins to decrease as mepredecome bound by AIP, continuing
to activate the cells and more AlPs are produced. This dezieasident in the numerical solutions shown
in Figure 6 and corresponds with the sharp decrease foltptfie maximum values dR(T) (receptor
proteins) and3(1) (transmembrane AgrD). Notice that, despite being governecbbydifferent terms at
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leading order, these two variables behave identicallyl thig timescale (we will see on the final timescale
that their steady state behaviour will differ). This is dodhie fact that the numbers of receptors and AIP
are in balance with the two proteins required to produceitireas (AgrB and AgrD) each being ultimately
determined by mRNA levels.
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