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Abstract Staphylococcus aureusis a pathogenic bacterium that utilises quorum sens-
ing (QS), a cell-to-cell signalling mechanism, to enhance its ability to cause disease.
QS allows the bacteria to monitor their surroundings and thesize of their population,
andS. aureusmakes use of this to regulate the production of virulence factors. Here
we describe a mathematical model of this QS system and perform a detailed time-
dependent asymptotic analysis in order to clarify the rolesof the distinct interactions
that make up the QS process, demonstrating which reactions dominate the behaviour
of the system at various timepoints. We couple this analysiswith numerical simula-
tions and are thus able to gain insight into how a large population of S. aureusshifts
from a relatively harmless state to a highly virulent one, focussing on the need for the
three distinct phases which form the feedback loop of this particular QS system.
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1 Introduction

1.1 Staphylococcus aureus

Staphylococcus aureusis an opportunistic and invasive pathogen capable of promot-
ing disease in almost any tissue of the human body [24]. While it forms part of the
natural flora in a large number of people without causing any harm, S. aureuscan
cause a broad spectrum of infections, ranging from minor ailments such as super-
ficial infections, boils and subcutaneous abscesses, to much more serious ones, for
example pneumonia, endocarditis (inflammation of the heartvalves), osteomyelitis
(inflammation of bone and bone marrow), sepsis (infection ofthe blood stream), sep-
tic arthritis and toxic shock syndrome [5,17,24,37].

One increasingly important factor motivating the study of this pathogenic bac-
terium is its ability to develop resistance to antibiotics previously used successfully
in the treatment of staphylococcal infections. Methicillin-resistantS. aureus(MRSA)
strains are multi-antibiotic resistant and are a leading cause of hospital-acquired in-
fections. They have become increasingly difficult to treat,especially as certain strains
have also developed resistance to vancomycin, one of the last therapeutic resorts for
fighting S. aureusinfection [13,29]. In contrast to hospital-acquired MRSA strains,
community-acquired (CA-MRSA) strains are much more virulent and can cause dis-
ease in healthy individuals [8]. ConsequentlyS. aureusinfections are the cause of
much morbidity and mortality and are becoming extremely difficult to treat using con-
ventional antibiotic therapy. New targets for the development of anti-staphylococcal
agents are urgently required. In this context, attenuatingthe pathogenicity (the ability
of one organism to cause disease in another) ofS. aureusby inhibiting the ability of
the bacterium to produce virulence factors (i.e. products that specifically allow bacte-
ria to cause disease) offers such a target. In particular,S. aureusemploys a cell-to-cell
communication system termed ‘quorum sensing’ (QS) to control virulence gene ex-
pression. By inhibiting QS, it should be possible to preventinfection.

1.2 Gene expression and quorum sensing

In both eukaryotic and prokaryotic cells, most genes are notexpressed (i.e. tran-
scribed into mRNA and then translated into proteins) constitutively but are tightly
regulated. For example, genes which code for the productionof virulence factors are
expressed only under particular environmental conditionssuch as those encountered
within host tissues. The transcription of individual genesis switched ‘on’ or ‘off’
by gene regulatory proteins which bind to specific DNA sequences (namely the pro-
moter/operator region(s) found upstream of the gene) and either activate or inhibit
transcription.

S. aureusemploys QS to regulate the expression of specific genes. QS depends on
the synthesis of small molecules (often referred to as pheromones or autoinducers)
that are both produced and detected by the bacterial cells. As the bacterial population
density increases, so does the concentration of QS signal molecules (indeed, if the QS
system has positive feedback the synthesis of these molecules should also increase).
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This is often viewed as being associated with a critical threshold concentration of
bacterial cells being reached, thus activating a target sensor or response regulator,
so facilitating the expression of QS-dependent genes. However, the interpretation of
such behaviour for our model will be somewhat different given that the population
size is assumed to be already at or above this threshold level. Instead, we will see that
the process can be understood as the density of the QS signal molecule becoming
sufficiently high, rather than the population itself. This could be pertinent when, for
example, a population of cells enters a new environment so that the concentration of
the QS signal molecule is influenced by diffusivity within that environment, in addi-
tion to the size of the population. This is more closely linked to the more recent view
that QS can in fact be a mechanism for bacteria to recognise their surroundings rather
than simply detect their population size [30] (and could thus instead be referred to as
‘diffusion sensing’), i.e. the concentration of signal molecule will depend upon the
medium in which the bacteria reside as much as the number of bacteria producing the
molecule (for a mathematical discussion of this see [25]). Amore appropriate term
for this cell-signalling system is perhaps ‘efficiency sensing’ [12] which encapsulates
both of these ideas.

It is evident therefore that QS can be used for multiple purposes. For example,
S. aureusemploys QS to regulate the production of virulence factors [17,37]. In the
context of infection, it has been suggested that, once inside the body,S. aureuscoordi-
nates the deployment of virulence factors with bacterial cell population size through
QS so as to delay alerting the immune system until there are sufficient numbers of
bacteria present which are capable of overwhelming the hostdefences [32], corre-
sponding to the conventional interpretation of QS. On the other hand,S. aureususes
QS in endosome escape whereby a single bacterium can become internalised within
a host cell. QS signal molecule accumulation will occur, causing production of the
virulence factors allowing for endosome escape, so that here the signalling system
is really being used for ‘diffusion sensing’. Other uses of QS by diverse bacterial
species include DNA uptake or exchange (transformation andconjugation), biolumi-
nescence, secondary metabolite (e.g. antibiotic) production, swimming and swarming
motility and biofilm (accumulation of bacteria on a surface where the micro-organism
is enmeshed in a ‘slime’ matrix) development [3,4].

1.3 Theagr operon

In S. aureus, QS is performed by theagr operon (see, for example, [10] or [26]) which
consists of two transcription units (termedagrBDCAand RNAIII respectively) that
are driven by regulatory proteins which bind to promoters termed P2 and P3, per-
mitting RNA polymerase to transcribe the DNA into mRNA, prior to translation of
thisagr mRNA into proteins. The P2 transcript consists of four geneswhich are tran-
scribed and translated to give four proteins (AgrB, AgrD, AgrC and AgrA), see Figure
1. AgrB is a transmembrane protein which processes the AgrD protein to generate a
QS signal molecule which, in the case of the staphylococci, is a small modified pep-
tide called an AIP (autoinducing peptide). The AIP is secreted into the external envi-
ronment where it is detected by a receptor protein (AgrC) present on the bacterial cell
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Fig. 1 A schematic representation of theagr feedback loop. The arrows with a filled head illustrate the
positive feedback loop. This loop is unusual in that every cytoplasmic (as well as the extracellular) com-
ponent of the loop is up-regulated, rather than simply the signal, which is in principle all that is required.
The dotted box encloses the elements of the TCS. In Figure 2 we describe a generic TCS.

}

Cell membrane

Inside the cell

Outside the cell

Response
regulator

Signal
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Fig. 2 A schematic representation of a generic TCS. The receptor protein can detect the presence of a
specific signal and activate the response regulator which lies within the cell. For theagr operon AIP is the
signal, AgrC the receptor and AgrA the response regulator.

surface. AIP binding to AgrC induces a phosphorylation/dephosphorylation cascade
which results in the activation of AgrA, a DNA-binding protein which interacts with
both the P2 and P3 promoters. AgrA and AgrC are, respectively, the response regula-
tor and sensor kinase of a two-component system (TCS). This type of signal recogni-
tion mechanism is common throughout the bacterial kingdom,see Figure 2. Although
the precise details of the AgrC and AgrA phosphorylation/dephosphorylation reac-
tions occurring following AIP binding to AgrC are not known,in most classical TCSs
the detection of the cognate signal by the sensor kinase results in autophosphorylation
followed by transfer of the phosphate to the response regulator protein. The phos-
phorylated response regulator usually has a higher affinityfor the DNA binding site
than the unphosphorylated form and is therefore able to alter regulation of the target
gene(s) [35]. This also seems to be the case for AgrA: see [19], where the purified
phosphorylated AgrA protein is shown to bind to both the P2 and the P3 promoter
with a higher affinity than the unphosphorylated form. In this paper we therefore as-
sume that AgrA and AgrC form a classical TCS but in [15] we explore the possibility
that a less conventional phosphorylation cascade may hold,whereby either AgrA or
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AgrC can be constitutively phosphorylated (it is suggestedin [26] that this may be
possible).

On binding to the P2 promoter, AgrA upregulates the transcription of theagr
mRNA which will be translated into each of the four Agr proteins. Thus theagr
system is subject to positive feedback in that AIPs are generated which in turn drive
the production of further AIP synthesis. This is usual in QS systems as it allows a
cell to switch quickly between two states. It is noteworthy,however, that all the other
components of the feedback system are also subject to upregulation and our model
allows us to shed some light onto why this may be the case.

The agr-P3 transcript gives rise to an un-translated regulatory RNA termed
RNAIII and also to a protein toxin,δ -haemolysin. RNAIII is the intracellular effec-
tor of theagr system which acts by upregulating transcription of many extracellular
protein genes while downregulating the cell wall colonisation factor genes. Thus the
cell can use the AIP concentration to coordinate virulence gene expression with cell
density. This means that it should be possible to preventS. aureusinfections by in-
hibiting AIP-dependent QS by blocking either AIP synthesisor AIP action or by
destroying the AIP as it accumulates extracellularly (see [3,4,28]). Interestingly, the
study ofagr systems in differentS. aureusstrains has already highlighted the poten-
tial for QS inhibition through blockade of AgrC activation.S. aureusstrains can be
divided into four groups (I to IV) depending on the structureof the AIP produced;
group I strains are activated by the group I AIP but are inhibited by the AIPs made
by S. aureusstrains belonging to groups II, III or IV [22]. Indeed, [22] demonstrates
that, in mice,S. aureusskin abscess infections caused by a strain producing AIP-I
can be prevented by coadministering a group II AIP. Since theAIPs are amenable
to laboratory synthesis it is possible to design inhibitorsbased on the AIP structure
which bind to AgrC and can inhibit allS. aureus agrgroups [23]. Such peptides need
to be able to bind to the AIP-binding site on AgrC without activating the kinase and
so block binding of the native (and hence activating) AIP. This would ensure that the
bacterial cell remains in the QS down-regulated state.

1.4 Mathematical models of QS

Most QS models produced so far have been mathematical modelsof the slightly
simpler Gram-negativelux-system (here the signal molecule is produced within the
cell and is freely diffusible across the cell membrane, so that only two elements are
required to complete the system: a signal synthase and a signal receptor) or its ho-
mologues, see for example [2,6,7,16,34]. To our knowledge,only two focus on QS
in S. aureus(which is Gram-positive): Koerberet al. [20] model endosome escape,
as described in§1.2, at the cellular level, while Gustafssonet al. [11] investigate the
TCS of theagr operon (which is taken to be of a classical form) and the influence
of the regulatory protein SarA on the basal transcription ofthe operon. The latter
is more akin to the current paper as the modelling is performed at the sub-cellular
level. However in [11] the TCS is treated in isolation in the sense that the AIP con-
centration is taken to be a parameter of the model, so that thefull feedback circuit
contained within the QS loop is not considered; by contrast,we include the complete
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circuit shown in Figure 1, calculating the AIP level as part of the solution. By in-
corporating the full circuit, we aim to shed light in particular on the implications of
theagr operon leading to multiple network elements being up-regulated. Alongside
numerical simulations we will perform an asymptotic analysis of the time-dependent
model in order to characterise its behaviour. This analysiswill both demonstrate how
a population ofS. aureusshifts from a relatively harmless state to a highly virulent
one and provide simpler models which can be used to extend this study. For inhibitor
therapy to have a future in combatting staphylococcal infections, it is crucial that we
gain a full understanding of how theagr operon works and this model is well suited
to studying the effects of inhibitors; this generalisationwill be addressed elsewhere.

2 Formulation

2.1 Dimensional model

We follow [14] in using a modelling approach similar to that employed by Dockery
and Keener [6] in their model of virulence-related QS inP. aeruginosa, whereby we
shall formulate a system of ordinary differential equations representing the intracel-
lular components of the fullagr operon. A key variable in our model isP(t), which
represents the proportion of cells with a boundagr promoter. Roughly speaking, this
will be equivalent to the proportion ofagr up-regulated cells and we will henceforth
refer toP in this way, making the proportion of down-regulated cells 1−P(t).

In order to build the model we adopt the following assumptions.

– The bacteria are in a well-mixed environment, so spatial dependencies can be
ignored, and the population size is constant (i.e. birth rate matches death and/or
removal rate) and large enough to make a continuum model appropriate. These
are conditions which are most similar to those of a chemostat, thus making it
plausible that, to an extent, our results could be tested experimentally for possible
validation and calculation of parameter values.

– agr mRNA is produced at some basal rate in a down-regulated population and its
average rate of transcription increases linearly with the average level of upregu-
lation in the population,P(t).

– Since each molecule of this mRNA contains all the information required for the
translation of all four Agr proteins, the same numbers of each of these are pro-
duced, i.e. we assume that on each pass a ribosome translatesthe entire strand
of mRNA. We also assume there to be a plentiful supply of ribosomes within
the cells since they are required for translation of all proteins, not only those in-
volved in QS. We do not therefore need to track the concentration of ribosomes
and can take the rates of translation of each of the proteins to be the same, and
proportional to the concentration ofagr mRNA.

– The levels of proteins and mRNA inside the cells are limited by natural degra-
dation and through dilution, proteins having a relatively low rate of degradation.
Bacterial cells grow until they undergo binary fission to produce two daughter
cells of equal size. Each daughter receives a copy of the chromosome and suffi-
cient numbers of all the different chemicals required for survival. We assume that
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Fig. 3 Bacterial cells reproduce through binary fission, producing two daughter cells. The contents of the
parent cell are divided between the daughter cells. Here death rate matches birth rate, as in our model, so
the original contents of the cells (showed schematically as filled circles) are reduced through dilution.

all the contents of the parent cell are divided equally between the two daughter
cells. Through this dilution process the number of proteinsin each cell would,
in the absence of protein production, be reduced as time goeson (see Figure 3).
We assume that the contents of a dead cell are degraded and have no effect on
the remaining cells. The dilution rate,r, can be calculated asln2/td wheretd is
the time it takes for oneS. aureusgeneration to undergo binary fission. We define
δX = λX + r (see Table 1) for all intracellular concentrationsX.

– Housekeeping phosphatases are able to dephosphorylate AgrA at a rateµ .
– After membrane-anchored AgrD has been (post-translationally) modified into

AIP (by AgrB) we can ignore what remains of the AgrD protein asit has no
further effect on the QS loop and will eventually be lost through dilution or
metabolism.

– Receptor-bound AIP can unbind spontaneously, at rateγ.
– When an AIP binds to a receptor, i.e. to AgrC, the latter autophosphorylates. To

simplify the system we will assume that this process is sufficiently fast that it in
effect happens as soon as the AIP binds to the receptor. When the receptor trans-
fers its phosphate to the AgrA protein (at a rateφ ) it is free to autophosphorylate
again, and the phosphorylated AgrA is able to bind to the promoter site of the
DNA and increase mRNA production.

– There is a plentiful supply of SarA proteins so that, unlike in [11], we do not take
into consideration their specific effect upon AgrA binding to the promoter sites.

The resulting equations are, for conciseness, shown only inFigure 4; see Tables 1
and 2 for definitions of the parameters and variables. Noticethat taking the equa-
tion governingP(t) to be quasi-steady would give us Michaelis-Menten kineticsfor
mRNA transcription, as is often done in modelling of this kind. However, we shall
see thatP(t) is among the slower evolving variables and we accordingly retain the
full dynamic balance.

We take the initial conditions of the system to be the steady state which would
arise were no AIP produced (k = 0), i.e. a totally down-regulated state, so QS has
no effect on the cells and all protein levels are controlled by translation, transcrip-
tion, degradation and dilution. This could be reproduciblein a chemostat experiment
through manipulation of AIP synthesis, i.e. by bringing theagr operon under the
control of an inducible promoter. As a reflection of bacteriain nature it might be
interpreted as a large population of cells in which theagr system is suppressed by an-
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Table 1 Definitions of the parameters.

Parameter Rate constant for Units

m basal production of mRNA molecules cells−1 s−1

v mRNA transcription molecules cells−1 s−1

κ protein translation s−1

αT ,αR AgrB and AgrC taken up into cell membrane s−1

αS AgrD anchors to cell membrane s−1

λX natural degradation of variableX(t) s−1

r dilution through cell division s−1

δX degradation and dilution (δX = λX + r) s−1

k AIP production from AgrD, mediated by AgrB molecules−1 cm3 s−1

β binding of AIP to AgrC molecules−1 cm3 s−1

γ separation of AIP from AgrC s−1

φ activation of AgrA by AIP-bound AgrC molecules−1 cm3 s−1

µ dephosphorylation of AgrA by phosphatases s−1

b binding of the promoter site molecules−1 cells s−1

u unbinding of the promoter site s−1

N total number of bacteria per unit volume cells cm−3

Table 2 Definitions of the variables.

Variable Concentration of Units

M mRNA molecules cm−3

A,B,C,D cytoplasmic AgrA, AgrB, AgrC, AgrD molecules cm−3

T,R transmembrane AgrB, AgrC molecules cm−3

S anchored AgrD molecules cm−3

a free AIP molecules cm−3

R∗ AIP-bound receptor molecules cm−3

AP phosphorylated AgrA molecules cm−3

P proportion of cells that is up-regulated -

other of the many gene regulation networks involved in cellular regulation, before this
latter mechanism is switched off, through some environmental or metabolic change,
to allowagr upregulation to begin. Using such initial conditions allows us to monitor
how a large population of bacteria can shift into an up-regulated state as AIP levels
increase. Hence we take the following initial conditions (which are the steady states
of the equations in Figure 4 withk= 0)

a(0) = R∗(0) = AP(0) = P(0) = 0,

M(0) =
Nm
δM

, A(0) =
Nκm
δMδA

, B(0) =
Nκm

δM(αT +δB)
,

C(0) =
Nκm

δM(αR+δC)
, D(0) =

Nκm
δM(αS+δD)

, T(0) =
NαTκm

δMδT(αT +δB)
,

R(0) =
NαRκm

δMδR(αR+δC)
, S(0) =

NαSκm
δMδS(αS+δD)

.

(1)



Mathematical modelling of theagr operon inStaphylococcus aureus 9

dM
dt

= Nm+NvP−δMM

dA
dt

= κM−φAR∗ + µAP −δAAdB
dt

= κM− (αT +δB)B

dC
dt

= κM− (αR+δC)C
dD

dt
= κM− (αS+δD)D

dS

dt
= αSD−δSS−kTS

dT
dt

= αTB−δTT

da
dt

= kTS−βRa+ γR∗
−λaa

dR
dt

= αRC−βRa+ γR∗
−δRR

dR∗

dt
= βRa− (γ +δR∗ )R∗

dAP

dt
= φAR∗

− (µ +δAP)AP

dP
dt

=
b
N

AP(1−P)−uP

Outside the cell

Inside

Cell membrane

the cell

Fig. 4 A schematic representation of the complete model for theagr circuit with a classical TCS. See
Tables 1 and 2 for definitions of parameters and variables. Thedimensionless version of this model is
shown in Figure 5.

2.2 Nondimensional model

We nondimensionalise the relevant1 variables using (1), i.e. we set

M′ =
δM

Nm
M, A′ =

δMδA

Nκm
A, X′ =

δM(αY +δX)

Nκm
X, Y′ =

δMδY(αY +δX)

NαYκm
Y,

(2)

for X = B,C,D andY = T,R,Srespectively. The remaining scalings are

a′ =
βφbNαRκ2m2

δM
5δAδR(αR+δC)

a, R∗′ =
φbκm

δM
3δA

R∗, AP
′ =

b
NδM

AP, τ = δMt, (3)

P already being dimensionless. Time is thus scaled withδM, the rate of mRNA degra-
dation while the others are chosen to simplify the corresponding equations as much as
possible, i.e. they are chosen to set the coefficients of basal mRNA transcription, AIP-
receptor binding, AgrA activation and phosphorylated AgrAbinding to the promoter
site in certain equations to unity. The following dimensional parameters emerge:

λ
′
X =

δX

δM
for X = A,T,R,S,R∗,AP, (4)

α
′
X,Y =

αY +δX

δM
for (X,Y) = (B,T),(C,R) or (D,S), (5)

1 Namely mRNA and all unphosphorylated proteins, since these would be the only non-zero variables
in a totally down-regulated cell.
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dM
dτ

= 1+
1
ε

v̂P−M

dA
dτ

= λ (M−A)−ηAR∗ + ε µ̂ηAPdB
dτ

= α(M−B)

dC
dτ

= α(M−C)
dD
dτ

= α(M−D)

dS
dτ

= λ (D−S)−kTS
dT
dτ

= λ (B−T)

da
dτ

=
1
ε2

kβ̂ φ̂
η

TS−
1
ε

β̂Ra+
1
ε

β̂ γR∗
−λaa

dR
dτ

= λ (C−R)− ε
η
φ̂

Ra+ ε
ηγ
φ̂

R∗
dR∗

dτ
= Ra− (λ + γ)R∗

dAP

dτ
= AR∗

− (λ + ε µ̂)AP

dP
dτ

= AP(1−P)−uP

Outside the cell

Inside

Cell membrane

the cell

Fig. 5 A schematic representation of the nondimensional model of theagr circuit. The parameters are
scaled according to (9) and (10), and as discussed at the end of §2.3 we have setα ′

X,Y = α for (X,Y) =
(B,T),(C,R) and(D,S).

and

λ ′
a =

λa

δM
, v′ =

v
m
, β ′ =

β R̃
δM

, η =
NδM

bÃ
, γ ′ =

γ
δM

,

k′ =
kT̃
δM

, u′ =
u

δM
, µ ′ =

µ
δM

, φ ′ =
φ S̃
δM

,

(6)

whereX̃ is the initial condition ofX given by (1), forX = A,T,R,S.
We assume that protein degradation rates,λX in (4), are negligible relative tor

so, and sinceδX = λX + r, we set all the parameters in (4) to be equal. Thus we take

λ
′
X = λ for X = A,T,R,S,R∗,AP. (7)

Dropping′’s we get the nondimensional model represented by Figure 5. The di-
mensionless initial conditions are simply

M(0) = A(0) = B(0) =C(0) = D(0) = S(0) = T(0) = R(0) = 1,

a(0) = R∗(0) = AP(0) = P(0) = 0.
(8)

2.3 Parameter sizes

While the appropriate data required to determine many of the parameter values are
not yet available, we do have information about how fast certain reactions take place
in relation to others, and this suffices for the qualitative investigations and asymptotic
studies on which we focus. The parameter values adopted are consistent in magnitude
with the estimates in [11] and this will be discussed furtherat the end of this section.
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Our nondimensionalisations result in the rate of basal mRNAtranscription being
O(1):

dM
dτ

= 1+v′P−M.

This basal production exists in order for the QS system to initiate its own activation.
The QS-induced rate of transcription must be far greater in order for QS to exhibit
switch-like behaviour, with a population of cells becomingrapidly up-regulated. Sim-
ilarly, we expect the rate at which AIPs bind to the receptorsand the rate of AgrA
phosphorylation by AgrC to be fast, as we anticipate that reactions involved in sig-
nal transduction will be fast compared to processes such as basal transcription and
degradation or translation of proteins. For these reasons we define

ε ≡ m
v
,

this being the ratio of basal mRNA transcription to QS-induced transcription (this
definition is consistent with many other previously published models of QS, see for
example [1,6] or [7] where QS-induced production rates are all taken to be consid-
erably greater than the corresponding basal rates; indeed,the choiceε << 1 can be
viewed as a mathematical representation of the QS concept),and scale

v′ =
1
ε

v̂, β ′ =
1
ε

β̂ , φ ′ =
1
ε

φ̂ , (9)

with ε << 1 being our small parameter and hatted parameters beingO(1). Choosing
these parameters to be of the same order with respect toε enables the appropriate
signal transduction reactions to occur on the same (early) timescales, as would be an-
ticipated biologically. Notice that this will make the rateof AIP productionO(1/ε2),
with

da
dτ

=
1
ε2

kβ̂ φ̂
η

TS− 1
ε

β̂Ra+
1
ε

β̂ γR∗−λaa.

This will ensure that at all times and regardless of how active the cells are initially,
enough AIP will be produced to upregulate the cells if it is retained within their
environment. Notice that the scaling of this production term differs considerably in
the equation forS(t); the implication of this is that AgrD is rapidly turned over in the
production of AIPs, reflecting the efficiency of the signalling system.

Since we are interested in seeing how the cells become up-regulated, we have the
AIP loss rate,λa, asO(1), i.e. much smaller than the AIP production rate. However,
if we wanted to model a situation where the cells did not become active, say because
AIP degradation was too high or the cells were in an open environment where the AIP
was lost too quickly into the external environment, then we would alter the parameter
choice to account for this by makingλa much larger thanO(1); we will discuss this
further in§3.

Taking all other rates of degradation, uptake into the membrane, complex separa-
tion and DNA binding to beO(1), we choose only one of the nondimensional param-
eters to beO(ε), i.e. smaller than the nondimensional basal transcription, namely

µ ′ = εµ̂, (10)
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the rate of housekeeping dephosphorylation of AgrA. Thus weassume that the bacte-
ria can eliminate unwanted phosphorylated AgrA via degradation and dilution suffi-
ciently efficiently to make little of this housekeeping process required (in fact we will
see that it does not affect the leading-order behaviour of the system on any timescale).
For an asymptotic analysis of an alternative parameter set see [15], where we, in ad-
dition, chosek = O(ε), i.e. AgrD loss as a result of AIP production was assumed to
be relatively slow. However, the choice for this paper (k= O(1)) results in two fewer
timescales with no significant changes to our conclusions.

Thus our overall parameter choice is motivated by a desire toensure that the math-
ematical analysis be revealing as well as biologically plausible. For example, choos-
ing β ′ andφ ′ to beO(1/ε) implies that the TCS reactions occur on the timescale on
which AIPs are first produced in significant numbers, so that the signal transduction
process begins immediately (as is desirable), with these signal transduction reactions
and AIP production being the only reactions that occur at leading order here, thus
enabling us to examine them effectively in isolation. Numerical investigations (not
shown) indicate that the rapid switch-like upregulation which we know occursin
vitro (see for example, [17]) is dependent upon this parameter choice. For instance,
sufficiently small values ofv′ (even in the case whereλa = 0) result in the cells re-
maining in a down-regulated state (this will be addressed further at the end of the
asymptotic analysis), while reducingβ ′ andφ ′ slows down the switch between the
inactive and active states.

As mentioned earlier, our parameter choice follows a similar line to that used for
simulations in [11] by Gustafssonet al., wherein reactions involved in the activation
of the TCS were assumed to take place faster than, say, basal transcription and degra-
dation, their choice being based as far as possible upon their experimental evidence.
The two models differ in a number of ways: specifically, [11] considers the influence
of SarA on transcription of the operon and takes the AIP concentration to be a param-
eter of the model, rather than a variable (as discussed earlier); saturation kinetics are
described explicitly in [11], while we use the equation representingP, the proportion
of up-regulated cells, to incorporate this implicitly. Hence there is a certain amount
of overlap between the two parameter sets but each model alsorequires distinct addi-
tional parameters. Of those in [11] which are equivalent to ours, activation rates are
five times the size of degradation rates, one hundred times the size of the spontaneous
separation (between AIP and receptors) rates and ten times all the remaining param-
eters (in ours they areO(1/ε) larger), so that the nondimensional parameters directly
involved in activation of the QS system are assumed to be the largest parameters in
both our model and in [11].

Unless otherwise stated, all dimensionless parameters in our numerical solutions
(exceptε) will be taken to be unity, withε = 10−3. For simplicity we henceforth write
α ′

X,Y = α for (X,Y) = (B,T),(C,R) and(D,S) (which is equivalent to assuming that
AgrB and AgrC are taken into the membrane at equal rates and that AgrD is anchored
at this same rate) and drop all primes. The associated default values of the unhatted
dimensionless parameters are displayed in Table 3 (all hatted quantities are unity).
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Table 3 The default parameter set.

Nondimensional parameter Default value

µ 10−3

α,λ ,λa,η ,γ,k,u 1
v,β ,φ 103

ε 10−3

0 5 10
0

500

1000

0 5 10
0

0.5

1

0 5 10
0

500

1000

0 5 10
0

500

1000

0 5 10
0

500

1000

0 5 10
0

5

10

0 5 10
0

500

1000

0 5 10
0

5

10
x 10

5

0 5 10
0

5

10

0 5 10
0

5

10
x 10

5

0 5 10
0

500

1000

0 5 10
0

0.5

1
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Fig. 6 Numerical solutions to the nondimensional model using the initial conditions (8) and parameter
scalings given by (9)-(10) with the default parameter set in Table 3. The shift from an inactive to an active
state, reflecting the increased AIP levels in (viii), is evident asP approaches unity in (xii).

3 Numerical simulation

Figure 6 illustrates a numerical solution to the nondimensional model using the initial
conditions (8) and the default parameter set given in Table 3. From (viii) and (x) (or
see Figure 8 for a clearer picture of the initial behaviour) we see that AIP production
begins immediately and the AIPs then bind to any available receptors, resulting in a
loss of free transmembrane AgrC, illustrated in (ix). The bound receptors phospho-
rylate AgrA within the cell, leading to increased levels of activated AgrA, (xi), and a
corresponding rapid decrease in the amount of inactive AgrA, (ii). This is enough to
kick-start the QS-controlled mRNA transcription (transcription initially being only
at the basal level) - see the increase in (i) - and this forces asmall increase in the
level both of inactive AgrA, (ii), and of free receptors, (ix). Due to increased mRNA
levels, we also see increased levels of all the other proteins, represented in (iii)-(vii)
(although the increase in transmembrane AgrD in (vi) is short-lived as it is turned
over in the production of AIP), which enable the continued production of AIPs, pro-
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Fig. 7 The steady-state solution forP against log(λa) (calculated in XPPAUT 5.91), illustrating the three
regimes (solid lines represent stable steady states, with dashed lines being unstable). Here we have used
ε = 10−2. The system is bistable within an intermediate range ofλa, meaning that the population can
switch quickly (but hysteretically) between down- and up-regulated states (for sufficiently smallλa the
system will always reach an up-regulated state and for sufficiently largeλa theagr operon will be unable
to activate itself). Our default choice forλa is λa = 1.

ducing a clear transition to an up-regulated state, withP becoming close to unity, see
(xii). In consequence, the increase inA andR only lasts a short while and is quickly
replaced by a sharp drop in their concentration levels as they are consumed in the
activation process. We will see in the asymptotic analysis that the drop inA occurs
on the same timescale as that for the cells to reach an up-regulated state (those ofR
andSoccur on a longer timescale).

This numerical solution demonstrates how a large population of S. aureuswould,
after a time lag, shift from a down-regulated, and relatively harmless, state to a highly
virulent one if sufficient AIP is retained in the environmentof the cells. For compar-
ison, in Figure 7 we have displayed the solution curve ofP, the proportion ofagr-
active cells, for varyingλa, the AIP degradation rate (this can also be interpreted as
the rate at which AIP is lost in the external environment). Wesee that the model dis-
plays the bi-stable behaviour which is often viewed as typical of QS systems, see [6]
or [7] for example, enabling the QS system to switch rapidly between down- and up-
regulated states depending on the environment of the cells.In [15] we demonstrate
that an alternative way to ensure that the cells either do notreach an active state, or
at least that the time at which this occurs is delayed, is through inhibition of theagr
operon via competitive binding at the receptor sites, as discussed in§1.3.

4 Asymptotic analysis forε → 0

We now perform a time-dependent asymptotic analysis on the model in order to clar-
ify its behaviour, the full model being too involved to allowa great deal of insight.
Moreover, it is valuable when adding extra processes to the system (while keeping its
complexity under control) to have in place systematically-derived sub-models of the
type we obtain below. For an overview of asymptotic methods see [18], for example.

We first note that, since their initial conditions are equal and we have assumed
their depletion rates are also equal, we have

B(τ)≡C(τ)≡ D(τ) (11)

for all τ, so henceforth we eliminateC andD in favour ofB.
The asymptotic structure is complicated, there being eighttimescales in all, the

first to arise readinĝτ = τ/ε. Initially only the fastest reactions feature, namely those
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involved in signal transduction, for example AIP binding, with the slower reactions,
such as dilution, contributing on the longer timescales. The scalings required for all
the variables on each timescale are given in Table 4. In each case the scalings are
given relative to the dimensionless variables defined in (2)and (3). On each timescale
we manipulate the long-term or near-blow-up behaviour of the system to determine
the appropriate scalings for the following timescale. For instance, if the long-term
behaviour of a particular variableX is X ∼ τ as τ → ∞, thenX will be scaled in
the same way asτ to move to the subsequent timescale. Each timescale brings new
reactions into the leading-order behaviour. Mathematically, these can only occur in
a specific sequence and it is this which dictates the scalingsfor τ on each timescale.
Additionally, on each timescale the small-time behaviour must match the long-time
behaviour on the preceding timescale.

In the interests of brevity, we do not provide details of all the timescales; in-
stead we choose those which demonstrate the most interesting aspects of the system,
namely those describing signal transduction, the cells becomingagr active and their
approach to steady state. We believe that the timescales described in detail in the
main text are both biologically and mathematically interesting, providing insight into
the dynamics of theagr system, while illustrating the techniques used in such an
asymptotic analysis. The remaining timescales are described briefly in the Appendix
(and, for clarity, Table 4 contains the scalings for all timescales). In all comparisons
between the numerical solutions and the asymptotic approximations we useε = 10−3

and variables are always plotted againstτ in its unscaled form. The numerical solu-
tions to the full model are represented by solid lines, whilethe asymptotic approxi-
mations are given by dashed ones.

4.1 Initial timescale: signal production and the two-component system

We find that on the first four timescales

B= R= S= T = 1 (12)

hold to leading order inε because translation occurs at a negligible rate in comparison
with the TCS reactions and transcription, which already come into balance during the
early stages of the QS process. This gives the simplified system

dM
dτ

=
1
ε

v̂P−M+1, (13)

dA
dτ

= λ (M−A)−ηAR∗+ εµ̂ηAP,

(14)

da
dτ

=
1
ε2

kβ̂ φ̂
η

− 1
ε

β̂a+
1
ε

β̂ γR∗−λaa,

(15)

dR∗

dτ
= a− (λ + γ)R∗, (16)

dAP

dτ
= AR∗− (λ + εµ̂)AP, (17)

dP
dτ

= AP(1−P)−uP. (18)

Equations (14)-(17) could be viewed in their own right as a generic model of a
positive feedback loop containing a TCS in which a plentifulsupply of receptors is
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Table 4 Summary of the scalings required for the asymptotic approximations for the variables on each of the timescales. A variable is left blank on a specific timescale if
it does not require rescaling on that timescale. The scalingsby themselves provide some insight into which variables dominate the behaviour at each stage; for example, the
AIP concentration is large on the early timescales because itacts as the catalyst of the QS-related signal transduction.We have introduced the time shiftsτ3 ∼ ((ln(1/ε)−
ln ln(1/ε))/kφ̂)

1
2 andτ6 ∼ ε−

1
6 (η/λ v̂)

1
3 ln(1/ε)/3+τ3. Notice from these time shifts that we will see two time lags, the second being larger. A derivation ofτ3 (in particular

why the ln ln(1/ε) term is required) is provided in§4.3.

VARIABLE

TIMESCALE τ M A B S T a R R∗ AP P

1 ετ̂ - - - - - ε−1â - - εÂP ε2P̂

2 ε
1
2 τ† - - - - - ε−1a† - ε−

1
2 R∗† - ε

1
2 P†

3 ε
1
2 τ3+ ε

1
2 ln

− 1
2 (1/ε)τ‡ ln(1/ε)M‡ ε

1
2 ln

1
2 (1/ε)A‡ - - - ε−1a‡ - ε−

1
2 ln

1
2 (1/ε)R∗‡ - ε

1
2 ln

1
2 (1/ε)P‡

4 ε
1
2 τ3+ ε

1
2 ln

1
2 (1/ε)τ+ ln(1/ε)M+ ε

1
2 ln

1
2 (1/ε)A+ - - - ε−1a+ - ε−

1
2 ln

1
2 (1/ε)R∗+ - ε

1
2 ln

1
2 (1/ε)P+

5 ε
1
2 τ3+ ε

1
3 τ̆ ε−

1
3 M̆ ε

1
3 Ă - - - ε−1ă - ε−

2
3 R̆∗ - ε

1
3 P̆

6 ε
1
2 τ6+ ε

1
3 τ̌ ε−

2
3 M̌ ln−1(1/ε)Ǎ ε−

1
3 B̌ - - ε−1ǎ - ε−

2
3 ln(1/ε)Ř∗ ε−

1
3 ǍP -

7 ε
1
2 τ6+ ε

1
4 τ ′ ε−

3
4 M′ ε

1
2 A′ ε−

1
2 B′ ε−

1
4 S′ ε−

1
4 T′ ε−

5
4 a′ ε−

1
4 R′ ε−

5
4 R∗′ ε−

1
2 AP

′ -

8 ε
1
2 τ6+ τ̄ ε−1M̄ εĀ ε−1B̄ - ε−1T̄ ε−2ā - ε−2R̄∗ ε−1ĀP -
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available, and where the feedback affects the response regulator alone (as would be
relevant to many loops of this kind in other bacteria), thus making their asymptotic
analysis open to more general application. As mentioned previously, the additional
upregulation feeding into the signal precursors and receptors of theagr operon makes
it a more involved feedback loop than most and this will be discussed further in§5.

The above equations involve the signal molecule (a), bound receptor (R∗), moni-
toring the signal level, the response regulator (in both itsactive and inactive forms,AP

andA respectively), the proportion of active cells (P) and, finally, mRNA (M) whose
production rate is dependent uponP and which determines the production rate of the
response regulator, thus completing the feedback loop. Therescaled equations on the
first timescale (see Table 4) become

dM
dτ̂

= ε2v̂P̂− εM+ ε , (19)

dA
dτ̂

= ελ (M−A)− εηAR∗

+ ε3µ̂ηÂP, (20)

dâ
dτ̂

=
kβ̂ φ̂

η
− β̂ â+ εβ̂ γR∗− ελaâ,

(21)

dÂP

dτ̂
= AR∗− ε(λ + εµ̂)ÂP, (22)

dR∗

dτ̂
= â− ε(λ + γ)R∗, (23)

dP̂
dτ̂

= ÂP(1− ε2P̂)− εuP̂, (24)

so disregarding theO(ε) or smaller terms gives a linear leading-order system which
can be solved sequentially (in the order shown), to give

M(τ̂) = A(τ̂) = 1, â(τ̂) =
kφ̂
η

(1−e−β̂ τ̂), R∗(τ̂) =
kφ̂
η

τ̂ − kφ̂
β̂η

(1−e−β̂ τ̂),

ÂP(τ̂) =
kφ̂
2η

τ̂2− kφ̂
β̂η

τ̂ +
kφ̂

β̂ 2η
(1−e−β̂ τ̂),

P̂(τ̂) =
kφ̂
6η

τ̂3− kφ̂
2β̂η

τ̂2+
kφ̂

β̂ 2η
τ̂ − kφ̂

β̂ 3η
(1−e−β̂ τ̂).

The increasing sequence of powers ofτ̂ (with the exception of ˆa) is associated with
each of the relevant quantities being downstream of the previous one (see Figure 1).

We see from Figure 8 that these approximations are accurate in the initial stages.
As we had anticipated, it is the TCS reactions which occur first. Note thatk represents
the rate of AIP production,̂φ the rate of AgrA phosphorylation,̂β the rate of AgrC-
AIP binding and 1/η the rate at which AgrA binds to DNA. At this stage these four
parameters control the behaviour of the system: AIP is rapidly produced and binds
to the free receptors, resulting in the commencement of the phosphorylation cascade;
this gives an increased level of activator,AP, in the cells.R∗(τ̂), ÂP(τ̂) and P̂(τ̂)
display unbounded growth aŝτ → +∞ because all the reactions involved in their
leading-order behaviour are ‘production’ terms: we see increased levels ofR∗ due to
AIP binding to receptors, which activate AgrA to form̂AP, andP̂ in turn increases as
a direct result of this AgrA activation. The unbounded growth is associated with the
absence of reactions that involve sink terms for these quantities, for example the loss
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Fig. 8 A comparison of the asymptotic and numerical solutions on the initial timescale. The solutions of
the full model are represented by the full lines and the asymptotic approximations on the initial timescale
by the dashed lines. Notice that, in order to be able to see where the asymptotic approximations begin to
fail in each case, certain variables are plotted over a longer timescale than others.̂τ = 1 corresponds to
τ = 10−3. We recall that the variables are plotted againstτ in its unscaled form; the same applies in all the
figures which follow.

of AgrA through its activation which, as we now show, enters on the next timescale
(dilution is negligible until the final timescale).

4.2 Second timescale: transcription

The next stage is for significant mRNA transcription to begin. The rescaled equations
are

dM
dτ† = v̂P†− ε

1
2 M+ ε

1
2 , (25)

dA
dτ† = ε

1
2 λ (M−A)−ηAR∗†

+ ε
3
2 µ̂ηAP, (26)

ε
1
2

da†

dτ† =
kβ̂ φ̂

η
− β̂a†+ ε

1
2 β̂ γR∗†

− ελaa†, (27)

dR∗†

dτ† = a†− ε
1
2 (λ + γ)R∗†, (28)

dAP

dτ† = AR∗†− ε
1
2 (λ + εµ̂)AP, (29)

dP†

dτ† = AP(1− ε
1
2 P†)− ε

1
2 uP†. (30)
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Taking the leading-order terms of (25)-(30) gives a linear system which can again
be solved sequentially and, matching to the previous timescale, we have

a†(τ†) =
kφ̂
η

, R∗†(τ†) =
kφ̂
η

τ†, A(τ†) = e−
kφ̂
2 τ†2

,

AP(τ†) =
1
η
(1−e−

kφ̂
2 τ†2

),

(31)

together with

P†(τ†) =
1
η

(

τ†− 1
2

√

2π
kφ̂

erf

(

1
2

√

2kφ̂ τ†
))

,

M(τ†) =
v̂
η

(

τ†2

2
− 1

2

√

2π
kφ̂

τ†erf

(

1
2

√

2kφ̂ τ†
)

− 1

kφ̂
e−

kφ̂
2 τ†2

+
1

kφ̂
+

η
v̂

)

,

so that

P†(τ†)∼ 1
η

τ†, M(τ†)∼ v̂
2η

τ†2
as τ† →+∞.

Thus on this timescale, like the previous and many of the subsequent ones (indeed
only timescales 6 and 7 are not susceptible to exact leading-order solutions), simple
explicit leading-order solutions are available, despite the complexity of the full sys-
tem. This is in striking contrast to the full system of equations which can be solved
only numerically.

The (fast) TCS reaction is in quasi-equilibrium here (i.e.a† ∼ kφ̂TS/ηR) and
will remain so until the final timescale. On this second timescale, the free AIP con-
centration thus levels off as a balance is attained between its production and its loss
due to binding to the receptors but, importantly, the levelsof non-phosphorylated
AgrA become exponentially small (see (31)) as more and more AgrA is activated
via the TCS, while, to leading order, no more is being translated to replace this loss
(as mentioned in§3). We again see unbounded growth ofR∗†, P† and now alsoM,
asagr mRNA is transcribed at leading order, while theAP level saturates due to the
exponential decrease ofA (so that little furtherAP can be generated by its activation).
Figure 9 illustrates those variables whose approximationsdiffer from those on the
initial timescale.

4.3 Third timescale: AgrA translation

With the approximation (31),A(τ†) degrades to zero due to the absence at leading
order of AgrA translation - the scalings for this third timescale bring the latter into
prominence. We now provide the justification for the somewhat-subtleτ scaling noted
in Table 4 (the remaining scalings therein follow as a directresult of theτ scaling).

In order to bring the AgrA translation term, i.e.λM, into the leading-order be-
haviour of (26), we need to choose our scalings such that

ε 1
2 M

AR∗† = O(1). (32)
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Fig. 9 A comparison of the asymptotic and numerical solutions on the second timescale. In contrast to
the first timescale we now see the transcription of mRNA and the decrease in the level of inactive AgrA
which occurs as a result of its phosphorylation. We also now attain a constant level of AIP following its
initial production, the AIP remaining close to this level until AgrB and AgrD become transmembrane in
significant amounts on timescale 6.τ† = 1 corresponds toτ ≈ 0.0316.

However, we know that (roughly speaking) the matching conditions

M ∼ τ†2
, A∼ e−

kφ̂
2 τ†2

, R∗† ∼ τ† as τ† →+∞,

pertain from the previous timescale, so that (32) is equivalent to

ε
1
2 τ† ∼ e−

kφ̂
2 τ†2

.

This balance implies the rather delicate scalings that appear in Table 4: our choice of

τ‡ implies thatε 1
2 τ† ande−

kφ̂
2 τ†2

are each ofO(ε 1
2 ln

1
2 (1/ε)) for τ‡ = O(1), so that

(32) does indeed hold. With all the new scalings, equations (25)-(30) become

dM‡

dτ‡ = ln−1(1/ε)v̂P‡− ε
1
2 ln−

1
2 (1/ε)M‡+ ε

1
2 ln−

3
2 (1/ε), (33)

dA‡

dτ‡ = λM‡− ε
1
2 ln−

1
2 (1/ε)λA‡−ηA‡R∗‡+ ε ln−1(1/ε)µ̂ηAP, (34)

ε
1
2 ln

1
2 (1/ε)

da‡

dτ‡ =
kβ̂ φ̂

η
− β̂a‡+ ε

1
2 ln

1
2 (1/ε)β̂ γR∗‡− ελaa‡, (35)

dR∗‡

dτ‡ = ln−1(1/ε)a‡− ε
1
2 ln−

1
2 (1/ε)(λ + γ)R∗‡, (36)

dAP

dτ‡ = ε
1
2 ln

1
2 (1/ε)A‡R∗‡− ε

1
2 ln−

1
2 (1/ε)(λ + εµ̂)AP, (37)

dP‡

dτ‡ = ln−1(1/ε)AP− ε
1
2 ln−

1
2 (1/ε)APP‡− ε

1
2 ln−

1
2 (1/ε)uP‡. (38)

Hence we see that, on this short transition timescale, all the variables maintain a
constant level at leading order in 1/ ln(1/ε), except forA‡ which now decays expo-
nentially to a strictly positive constant (rather than to zero), i.e. we have (on matching
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Fig. 10 On the second timescale, AgrA is lost primarily due to its phosphorylation. Here we illustrate the
asymptotic approximation on the (i) third and (ii) fourth timescales, showing how its level builds back up
somewhat. The limit behaviour ofA asτ‡ → ∞ (on the third timescale) represents the first turning point
of A(τ). τ‡ = 1 corresponds toτ ≈ 0.0826. On the fourth timescale we see clearly the increase in AgrA
concentration as a result of its translation (details are given in the Appendix). This increase continues
until the population becomes up-regulated, at which point the activation of AgrA dominates its translation.
τ+ = 1 corresponds toτ ≈ 0.1536.

to the previous timescale) the leading-order solutions (the correction terms being only
logarithmically smaller inε):

M‡ =
v̂

2ηkφ̂
, a‡ =

kφ̂
η

, R∗‡ =
1
η

√

kφ̂ , AP =
1
η
, P‡ =

1
η

√

1

kφ̂
,

and, finally and most importantly here,

A‡ = A‡
c +e−

√
kφ̂ τ‡

, A‡
c ≡

λ v̂
√

kφ̂

2ηk2φ̂2
.

Figure 10(i) demonstrates thatA‡
c relates to the first turning point inA(τ), at which the

initial decrease in AgrA concentration turns around fairlyrapidly to produce a small
rise associated with its translation becoming evident at leading order2. Physically this
constant is dictated by the balance between AgrA translation and its activation. The
subsequent rise in AgrA occurs on the fourth timescale, somedetails of which can
be found (together with those of the fifth and seventh) in the Appendix, with a plot
given in Figure 10(ii).

4.4 Sixth timescale: proteins move into the cell membrane causing the feedback
loop to be fully established

We now skip to the sixth timescale, where following AgrA translation on the fourth
timescale and AgrB, C and D translation on the fifth (see the Appendix), we expect
a proportion of AgrB and AgrC to enter the cell membrane and AgrD to become

2 A‡
c, for the default parameter values, corresponds toAc = ε

1
2 ln

1
2 (1/ε)A‡

c = 0.0416.



22 S. Jabbari et al.

anchored to the membrane ((12) no longer applies). The rescaled equations are

dM̌
dτ̌

= v̂P− ε
1
3 M̌+ ε , (39)

ε
1
3 ln−1(1/ε)

dǍ
dτ̌

= λM̌− ε
2
3 ln−1(1/ε)λ Ǎ−ηǍŘ∗+ ε

4
3 µ̂ηǍP, (40)

dB̌
dτ̌

= αM̌− ε
1
3 αB̌, (41)

dS
dτ̌

= λ B̌− ε
1
3 λS− ε

1
3 kTS, (42)

dT
dτ̌

= λ B̌− ε
1
3 λT, (43)

ε
2
3

dǎ
dτ̌

=
kβ̂ φ̂

η
TS− β̂Rǎ+ ε

1
3 ln(1/ε)β̂ γŘ∗− ελaǎ, (44)

dR
dτ̌

= λ B̌− ε
1
3 λR− ε

1
3

η
φ̂

Rǎ+ ε
2
3 ln(1/ε)

ηγ
φ̂

Ř∗, (45)

dŘ∗

dτ̌
= ln−1(1/ε)Rǎ− ε

1
3 (λ + γ)Ř∗, (46)

dǍP

dτ̌
= ǍŘ∗− ε

1
3 (λ + εµ̂)ǍP, (47)

dP
dτ̌

= ǍP(1−P)− ε
1
3 uP. (48)

The leading-order terms give,

Ř∗ =
kφ̂

3ηω
, Ǎ(τ̌) =

λM̌

ηŘ∗ , ǎ(τ̌) =
kφ̂TS
ηR

,

and the nonlinear coupled system

dM̌
dτ̌

= v̂P,
dP
dτ̌

= ǍP(1−P),
dǍP

dτ̌
=

λ
η

M̌. (49)

Finally, we also have

dB̌
dτ̌

= αM̌,
dS
dτ̌

=
dT
dτ̌

=
dR
dτ̌

= λ B̌, (50)

which can be solved sequentially once (49) has been (withB̌ growing in parallel with
αηǍP/λ ). Matching to the fifth timescale requires

M̌ ∼ ω
3λ

eωτ̌ , P̌∼ 1
3ωη

eωτ̌ , ǍP ∼ 1
3η

eωτ̌ , B̌∼ α
3λ

eωτ̌ , S,T,R∼ 1 (51)

as τ̌ → −∞, whereω = (λ v̂/η)
1
3 . The slower processes which control protein be-

haviour are now operating alongside quicker signal transduction reactions (which
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Fig. 11 Asymptotic approximation (dashed line) and numerical solution (solid line) for inactive AgrA and
for the proportion of up-regulated cells on the sixth timescale, with the initial conditions for the asymptotic
approximation given by (51).P nearing unity ašτ → ∞ corresponds to (almost) the whole population of
cells becoming up-regulated. We see a decrease in AgrA as the loss of this protein via activation again
takes dominance over its translation.

have reached quasi-equilibrium - see (40) and (44)). We observe from the numerical
solution to (49) thatP quickly levels off to unity, see Figure 11, implying that as
τ̌ →+∞,

P→ 1, M̌ ∼ v̂τ̌ , B̌∼ α v̂
2

τ̌2,

R,S,T ∼ αλ v̂
6

τ̌3, ǎ∼ kφ̂αλ v̂
6η

τ̌3, ǍP ∼ λ v̂
2η

τ̌2.
(52)

ExpandingR∗ in (46) in terms of 1/ ln(1/ε) we see that

dŘ∗

dτ̌
∼ 1

ln(1/ε)
kφ̂
η

TS,

to all log orders, whereT andSdecouple and are given for largeτ̌ by (52). In other
words,

Ř∗ ∼ kφ̂
3ηω

+
1

ln(1/ε)
kφ̂α2λ 2v̂2

252η
τ̌7 as τ̌ →+∞.

Thus, in order to avoid detailing the intermediate timescale where very little changes
(only the leading-order representation of (46) needs modification) we skip straight to

the τ̌ ≫ ln
1
7 (1/ε) behaviour forŘ∗, and thereforěA also, namely:

Ř∗ ∼ kφ̂α2λ 2v̂2

252η
τ̌7, Ǎ∼ 252

kφ̂α2λ v̂τ̌6
.

Once AgrB, C and D enter the cell membrane, more AIP can be produced and more
receptors become available to which these AIPs can bind, allowing the feedback con-
tained within the QS loop fully to take effect, pushing the cells into an up-regulated
and virulent state,P ∼ 1; the system (49) provides a concise representation of the
processes that govern the feedback on this timescale, the numbers of AgrB and trans-
membrane AgrB, C and D in effect being under the control of themRNA levels (see
(50)) rather than themselves during the feedback process. Accordingly, levels of in-
active AgrA again decrease as a result of its activation and we see the appearance of
the second turning point inA corresponding to this onset of QS (see Figure 11). The
timeshiftτ6 (required for the scaling ofτ on this timescale, see Table 4) can thus be
regarded as the lag time before the autocatalytic reactionshave accumulated enough
AIP to drive upregulation; it depends upon the rates of transcription, AIP production,
AIP binding, AgrA activation and protein dilution, the fundamental processes behind
QS.
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4.5 Eighth timescale: approach to steady state via protein and mRNA dilution

The seventh timescale is relegated to the Appendix. On the final (eighth) timescale
the rescaled equations are

dM̄
dτ̄

= v̂− M̄+ ε , (53)

ε2 dĀ
dτ̄

= λM̄− ε2λ Ā−ηĀR̄∗

+ εµ̂ηĀP, (54)

ε
dā
dτ̄

=
kβ̂ φ̂

η
T̄S− β̂Rā+ β̂ γR̄∗

− ελaā, (55)

dB̄
dτ̄

= α(M̄− B̄), (56)

ε
dS
dτ̄

= λ (B̄− εS)−kT̄S, (57)

dT̄
dτ̄

= λ (B̄− T̄), (58)

ε
dR
dτ̄

= λ B̄− ελR− η
φ̂

Rā

+
ηγ
φ̂

R̄∗, (59)

dR̄∗

dτ̄
= Rā− (λ + γ)R̄∗, (60)

dĀP

dτ̄
= ĀR̄∗− (λ + εµ̂)ĀP. (61)

At leading order, (57) giveskT̄S= λ B̄, implying that the leading-order terms of
(55) and (59) are equivalent, each yielding (68), i.e. the ‘fast’ reactions result in trans-
membrane AgrC (R) and transmembrane AgrD (S) being created and destroyed at the
same rates, with a portion of this AgrD being converted into AIP (a). Thus to give a
system of independent leading-order equations we take a linear combination of (55),
(57) and (59) to eliminate the dominant terms and obtain an additional expression
which provides an independent equation on taking the limitε:

d
dt
(R−S− η

β̂ φ̂
a) =

ηλa

β̂ φ̂
a+λS−λR.

The following leading-order expressions then govern the behaviour of the population
in this final stage

dM̄
dτ̄

= v̂− M̄, (62)

dB̄
dτ̄

= α(M̄− B̄), (63)

dT̄
dτ̄

= λ (B̄− T̄), (64)

dR̄∗

dτ̄
=

φ̂λ
η

B̄−λ R̄∗, (65)

dĀP

dτ̄
=

λ
η

M̄−λ ĀP, (66)
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dā
dτ̄

=
β̂ φ̂
η

(
dR
dτ̄

+λR− dS
dτ̄

−λS)

−λaa, (67)

R=
λ φ̂ B̄+ηγR̄∗

η ā
, (68)

S=
λ B̄
kT̄

, (69)

Ā=
λM̄
ηR̄∗ , (70)

P= 1, (71)

(67)-(69) can be combined to give the leading-order differential equations for ¯a,S
or R in terms ofM̄, B̄, T̄ andR̄∗ but we shall not illustrate this here. The following
matching conditions hold,

M̄(0) = B̄(0) = T̄(0) = R̄∗(0) = ĀP(0) = ā(0) = 0. (72)

Notice that (71) follows from the seventh timescale, the proportion of up-regulated
cells at leading order being given from then onwards as unity. Equations (62)-(71) can
be regarded as a minimal model for the QS system of a population which is already
in an active state. Moreover, if (62) and (71) were replaced by

dM̄
dτ̄

= v̂P− M̄ and
dP
dτ̄

= ĀP(1−P)−uP (73)

then this reduced system would be an excellent simplified version of the full model
given that it contains the vast majority of reactions which control theagr operon at
leading order on each timescale. In fact, solving (63)-(70)and (73) numerically, using
the original initial conditions for the full model (8) and incorporating the time lagτ6,
really only fails to capture adequately the early dynamics of the TCS because some
of the signal transduction reactions are missing.

The system (62)-(70) can be solved sequentially (in the order given), but it is more
instructive to illustrate its behaviour numerically - see Figure 12. For each variable
we see the asymptotic solution approaching the steady stateof the full model. The
steady states of the reduced system are thus good approximations to the full steady
states. This is particularly useful given that the exact steady states cannot be expressed
explicitly; the leading-order terms however give the steady-state (̃X for each variable
X) asymptotics in the form

P̃= 1, M̃ = B̃= T̃ = v̂, S̃=
λ
k
, R̃∗ =

φ̂ v̂
η

, ÃP =
v̂
η
, Ã=

λ
φ̂
.

ã=
−λ 2β̂ φ̂ +(λ 4β̂ 2φ̂2+4λaβ̂k2λ φ̂2v̂(λ + γ)) 1

2

2λaηk
,

R̃=
λ 2β̂ φ̂ +(λ 4β̂ 2φ̂2+4λaβ̂k2λ φ̂2v̂(λ + γ)) 1

2

2λβ̂ φ̂k
.

(74)
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Fig. 12 The solid lines illustrate the numerical solution to the fullsystem for each variable, while the
dashed lines represent the corresponding asymptotic approximation on the eighth (final) timescale, on
which degradation and dilution lead to the population reaching its up-regulated steady state.

We note that at steady state, the concentration of mRNA (and thus also the re-
maining variables) is, to leading order, fully under the control of the QS loop, basal
transcription being negligible. Since the QS loop takes effect so early on, basal tran-
scription does not in fact come into the leading-order behaviour on any timescale (we
are assuming the cells begin in the down-regulated state whereby a small level of pro-
teins have been translated but any AIP has been washed away, and this is sufficient to
trigger the start of the QS loop, i.e. basal mRNA transcription has already occurred
in order to obtain our initial conditions). In order for basal transcription to occur at
leading order we would need much less AIP in the environment of the cells so that
the population does not become up-regulated so quickly, forexample as in Figure
7. Similarly, housekeeping dephosphorylation of AgrA and dilution of free receptors
and inactive AgrA, i.e. the−λR and−λA terms, also never enter at leading order
and as such could be neglected from the model altogether (this is because their loss
through the activation process dominates). It must be remembered, however, that if
the model is extended to include inhibition of the QS loop, say, (see [15]), it is impor-
tant to retain all those reactions which may play a non-negligible role in suppressed
cells.

It is clear from (74) that a key parameter is ˆv, the ratio of QS-controlled to basal
transcription, which affects almost all of the steady stateapproximations. Notice that

ĀP

Ā+ ĀP
=

v̂φ̂
λη + v̂φ̂

→ 1 as v̂→+∞,
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Fig. 13 (i) Numerical solution forP(τ) from the full model using all parameter values from Table 3 (so
thatε = 10−3), except forv, the ratio of the rate of QS-controlled to basal transcription, which is varied
here. While altering this ratio ought to affect other parameters (since this ratio is 1/ε) we here take all
other parameters to be fixed. Decreasingv lowers the proportion of up-regulated cells and the time taken
for that proportion to reach an active state is longer, i.e. QS becomes less effective. In (ii) we illustrate
these solutions on a shorter timescale in order to demonstratethe lag time before the QS system is fully
induced.

and

R̄∗

R̄+ R̄∗ =
2λkβ̂ φ̂2v̂

λ 2ηβ̂ φ̂ +η(λ 4β̂ 2φ̂2+4λaβ̂k2λ φ̂2v̂(λ + γ)) 1
2 +2λkβ̂ φ̂2v̂

→ 1

asv̂→ +∞, i.e. the AgrA is all active and the receptors are all bound toAIPs in the
limit of large v̂. Additionally, computing the relevant correction term, wefind that

P̄∼ 1− ε
uη
v̂

as ε → 0.

Thus QS-controlled transcription occurring at a much faster rate than basal transcrip-
tion (i.e. in terms of dimensional parametersv>> m) is crucial in ensuring that the
QS circuit can function to its full potential. Figure 13 depicts the numerical solution
to P(τ) of the full system for a selection of values of the unscaled nondimensionalv.
We see that the proportion of active cells decreases significantly with v. If the model
is extended to include inhibitor therapy, this correction term is also dependent upon
the rate at which inhibitor molecules are introduced to the cells and this is examined
further in [15].

Additionally, on considering the time lagτ6 for the QS activity to take effect:

τ6 ∼ ε−
1
6

(

η
λ v̂

)
1
3 ln(1/ε)

3
,

it is evident that the time taken to reach upregulation is reduced as ˆv increases. There
is a similar, but less sensitive, dependence upon the AIP production rate and rate of
AgrA phosphorylation stemming from the time lagτ3 (see Table 4); increasing either
of these will accelerate the cells’ process of becoming virulent.
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Fig. 14 Here we use the leading-order behaviour on various timescales to present an overview of the
stages required for upregulation resulting from a positivefeedback loop containing a TCS in which all
components of the loop are transcribed from one operon. Solidlines represent leading-order reactions,
with dotted lines otherwise. Firstly, (I) the signal is detected by the receptor of the TCS, which then
activates the response regulator. This TCS activation induces mRNA transcription, (II). Distinct phases of
feedback are then exhibited. Firstly more response regulator is translated so that more can be activated
via the TCS, (III). This is followed by increased creation ofreceptors, which allow more effective signal
detection, (IV) and, finally, additional signal precursor is produced, giving more signal and completing the
full feedback loop, (V). We have decomposed the response intothese stages on the basis of the asymptotic
analysis of our system (roughly speaking (I) corresponds totimescale 1, (II) to 2, (III) to 3,4 and 5, (IV) to
6 and 7 and (V) to 8), but they could also be applicable to othersuch positive feedback loops.

5 Discussion

With the discovery ofagr-like systems in more and more bacteria (see, for example,
[9,21,31,33]), it is becoming increasingly important thatthis QS system (as illus-
trated in Figure 1), and why it has evolved to its current form, be understood. We
believe that the above asymptotic analysis provides worthwhile insight into the op-
eration of this QS network of which we now highlight a particular aspect. In Figure
14, we demonstrate which of the principal reactions are present at leading order in
the various stages of upregulation of the overall feedback loop. [27] provides a dis-
cussion as to why a feedback loop might be in place for such a system. However, we
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Fig. 15 The numerical solution toP(t) from the nondimensional model of Figure 5 with various sections
of the feedback loop removed. In (a) we have removed the feedback into signal production by giving AgrB
and AgrD basal production levels at a rateα = 0.1 in their respective equations. Similarly, in (b) we have
let α = 0.1 for AgrC and for AgrA in (c). We see that the only feedback which noticeably affects the
proportion of up-regulated cells is the removal of the response regulator sub-loop.

focus our attention on the fact that the feedback loop is divided into three sub-loops,
making theagr system a rather unusual type of signal amplifier. Such a feedback
loop could function by inducing production of a particular component of the system
only; however, in theagr system each component of the loop - the signal (AIP), re-
ceptor (AgrC) and response regulator (AgrA) - is amplified. The asymptotic analysis
in effect allows us to separate out each sub-loop and examineeach step individually.

Numerical investigations, see Figure 15, indicate that upregulation of AgrA pro-
duction is the limiting factor in ensuring that the cells reach an up-regulated state
(removal of the response regulator feedback sub-loop in (c)results in a significantly
lower proportion of up-regulated cells, whereas removal ofeither of the other two
sub-loops in (a) and (b) has a negligible effect upon this number) and this corre-
sponds neatly to our asymptotic analysis: increased AgrA production is present at
leading order on an earlier timescale than that of the other proteins. Previous studies
assume that the three sub-loops are in place to ensure fast switch-like behaviour in
upregulation (see, for example, [17]). However, while thisis indeed a plausible ar-
gument and has been demonstrated to be the case in mathematical models of other
QS systems (see, for example, [2]), the model of [11] produces hysteretic (and hence
switch-like) behaviour without the inclusion of all three of these sub-loops. Our anal-
ysis suggests that each sub-loop may be in place for distinctreasons: the cells may
produce sufficient amounts of AgrA to ensure enough is available for self-activation
(it having been demonstrated that it is sufficient to knock-out theagr system only
in the initial stages of infection to prevent staphylococcal virulence [36], this early
use of the AgrA sub-loop is consistent with the idea that the crucial period ofagr
upregulation is this early stage), production of extra AgrCthen appearing at leading
order for efficient detection of their immediate environment, followed by translation
of the additional AgrB and AgrD, which will create AIP, not only for self-activation,
but also for activation of other cells in the population. This becomes particularly rele-
vant in the context of a spatially inhomogeneous populationwhereby some cells will
upregulate earlier than others (spatially inhomogeneous models of theagr QS system
are studied in detail in [15]).
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6 Summary

We have presented what we believe to be the first model of the full feedback loop
of theagr operon inS. aureus(previous models of QS in this bacterium have either
focused on the TCS alone or not taken into account the intracellular processes). As
noted in§1, suppressing theagr operon is being examined as a method to treat staphy-
lococcal infection and as such it is important that QS inS. aureusbe understood as
fully as possible. Our analysis demonstrates the step by step processes involved in
upregulating the production of secreted virulence factorsvia the QS loop inS. au-
reus. We see how, if the QS signal molecules are contained within the environment
of the bacteria, the feedback loop kicks in rapidly, pushingthe cells into an actively
virulent state. We have, of course, considered the QS loop inisolation and there are
other aspects which could affect the cells’ ability to become virulent, e.g. temperature
or nutrient supply. A comprehensive representation of the bacteria, in nature or the
laboratory, is, given the number and diversity of such features, not within the scope of
the type of model analysed here: the current model has the limited goal of describing
key aspects of the behaviour of a population ofS. aureusin a chemostat. This should
increase the possibility that parameterisation of the model from experimental work
will in due course be possible and many additional factors, such as those mentioned
above, are inputs which could be controlled experimentally. The model should also
readily be adaptable to describe a growing population of cells, by the addition of a
growth term, and other aspects could similarly be incorporated; hence there are many
avenues for further investigation and analysis based on thecurrent approach..

This paper derives simpler sub-models which could be used toinvestigate theagr
operon further, for example see the first, sixth and final timescales which represent
the TCS reactions, the achievement of upregulation and steady-state behaviour re-
spectively. Future publications will examine the effect ofsuppressing theagr operon
via a number of methods including using both synthetic inhibitory molecules which
compete with AIPs for binding to receptor sites and cross-strain inhibition (strains
of S. aureushaving the ability to naturally interfere with the QS loops of opposing
strains), building on the above analysis in order to gain more insight into the advan-
tages and disadvantages of exploiting the staphylococcal QS system for therapeutic
gain. The model provides a framework in which to test the sensitivity of various
phosphorylation cascades to inhibition and indicate the optimal approaches to ma-
nipulating theagr operon for therapeutic gain.

In addition to its shedding light on the QS process, we believe the asymptotic
analysis we have pursued to be worth presenting in some detail because it provides
a mathematical tool of rather general applicability in reducing the complexity of the
types of gene and signalling network models that are so prevalent in biological ap-
plications (in particular when dimensional parameter values are unknown) and are
exemplified by the current application to QS. For instance, equations (63)-(70) and
(73) provide an excellent simple substitute for the full model described in Figure 5.
The separation of timescales that underpins the success of this approach is similarly
widespread but not always exploited. As we show in [15], suchtechniques extend
rather readily to even more complex related systems.
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A The remaining timescales of the time-dependent asymptotic analysis

We here summarise the timescales which were omitted from the paper.

A.1 Fourth timescale: AgrA translation is balanced by its activation

The rescaled variables on this timescale satisfy

dM+

dτ+
= v̂P+− ε

1
2 ln

1
2 (1/ε)M++ ε

1
2 ln−

1
2 (1/ε), (75)

ln−1(1/ε)
dA+

dτ+
= λM+− ε

1
2 ln−

1
2 (1/ε)λA+−ηA+R∗++ ε ln−1(1/ε)µ̂ηAP, (76)

ε
1
2 ln−

1
2 (1/ε)

da+

dτ+
=

kβ̂ φ̂
η

− β̂a++ ε
1
2 ln

1
2 (1/ε)β̂ γR∗+− ελaa+, (77)

dR∗+

dτ+
= a+− ε

1
2 ln

1
2 (1/ε)(λ + γ)R∗+, (78)

dAP

dτ+
= ε

1
2 ln

3
2 (1/ε)A+R∗+− ε

1
2 ln

1
2 (1/ε)(λ + εµ̂)AP, (79)

dP+

dτ+
= AP− ε

1
2 ln

1
2 (1/ε)APP+− ε

1
2 ln

1
2 (1/ε)uP+. (80)

Thus to leading order we have

AP =
1
η
, P+ =

1
η

(

τ++

√

1

kφ̂

)

, M+ =
v̂

2η

(

τ++

√

1

kφ̂

)2

,

a+ =
kφ̂
η

, R∗+ =
kφ̂
η

(

τ++

√

1

kφ̂

)

, A+ =
λ v̂

2ηkφ̂

(

τ++

√

1

kφ̂

)

.

(81)

The increasing sequence (fromAP to P and thenM) of powers ofτ+ enables us to see what drives each
reaction: namely, activator (AP) increases the proportion of up-regulated cells (P) which, in turn, induces
mRNA (M) transcription (this sequence of events begins on the second timescale). Similarly, free AIP
concentration (a+) generates increased levels of AIP-bound receptor (R∗+). The combination of AIP-
bound receptor and mRNA controls inactive AgrA levels (A), thus completing this section of the feedback
loop (remembering that the full loop contains receptor and signal production and these will appear on later
timescales). The equations of (81) could be viewed as the large-time behaviour of a TCS forming a positive
feedback loop which has an abundance of receptors and signalprecursors.

On this timescale, active AgrA is in balance, with Figure 10(ii) illustrating the increase in levels of
inactive AgrA (whose translation is now, and is on all the subsequent timescales, balanced by its activation,
i.e. A= λM/ηR∗); as we shall now see, this growth of inactive AgrA is subsequently moderated by the
translation of all the remaining proteins which results in the activation of more AgrA.

A.2 Fifth timescale: AgrB, C and D translation

While translation of AgrA has already appeared at leading order, we require translation of the remaining
proteins, remembering that we have takenC(τ),D(τ) ≡ B(τ). Now (12) no longer applies toB and the
equations read
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dM̆
dτ̆

= v̂P̆− ε
1
3 M̆+ ε

2
3 , (82)

ε
1
3

dĂ
dτ̆

= λM̆− ε
2
3 λ Ă−ηĂR̆∗

+ ε
4
3 µ̂ηAP, (83)

dB
dτ̆

= αM̆− ε
1
3 αB, (84)

dS
dτ̆

= ε
1
3 λ (B−S)− ε

1
3 kTS, (85)

dT
dτ̆

= ε
1
3 λ (B−T), (86)

ε
2
3

dă
dτ̆

=
kβ̂ φ̂

η
TS− β̂Ră+ ε

1
3 β̂ γR̆∗

− ελaă, (87)

dR
dτ̆

= ε
1
3 λ (B−R)− ε

1
3

η
φ̂

Ră

+ ε
2
3

ηγ
φ̂

R̆∗, (88)

dR̆∗

dτ̆
= Ră− ε

1
3 (λ + γ)R̆∗, (89)

dAP

dτ̆
= ĂR̆∗− ε

1
3 (λ + εµ̂)AP, (90)

dP̆
dτ̆

= AP(1− ε
1
3 P̆)− ε

1
3 uP̆. (91)

Taking leading-order terms and matching to the fourth timescale gives

R(τ̆) = S(τ̆) = T(τ̆) = 1, ă(τ̆) =
kφ̂
η

, R̆∗ =
kφ̂
η

τ̆,

together with the linear system

dM̆
dτ̆

= v̂P̆,
dP̆
dτ̆

= AP,
dAP

dτ̆
=

λM̆
η

; (92)

the remaining equations

Ă=
λM̆

kφ̂ τ̆
,

dB
dτ̆

= αM̆

decouple. The system (92) can be reduced to

d3P̆
dτ̆3 − λ v̂

η
P̆= 0,

with solution

P̆(τ̆) = c1eωτ̆ +c2e−
ω
2 τ̆ sin

(
√

3
2

ωτ̆
)

+c3e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
)

,

whereω = (λ v̂/η)
1
3 . Since matching to the previous timescale (in fact, the solutions (81) on the fourth

timescale simply correspond to the smallτ̆ limit of the current ones, but including them separately makes
the analysis more transparent) requires

P̆∼ 1
η

τ̆, P̆′ ∼ 1
η
, P̆′′ ∼ λ v̂

2η2 τ̆2 as τ̆→0.

Hencec1 = 1/3ωη , c2 =
√

3/3ωη andc3 =−1/3ωη , so that

P̆(τ̆) =
1

3ωη

(

eωτ̆ +
√

3e−
ω
2 τ̆ sin

(
√

3
2

ωτ̆
)

−e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
))

;
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similarly

M̆(τ̆) =
ω
3λ

(

eωτ̆ −
√

3e−
ω
2 τ̆ sin

(
√

3
2

ωτ̆
)

−e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
))

,

Ă(τ̆) =
ω

3kφ̂ τ̆

(

eωτ̆ −
√

3e−
ω
2 τ̆ sin

(
√

3
2

ωτ̆
)

−e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
))

,

B(τ̆) =
α
3λ

(eωτ̆ +2e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
)

−3

)

+1,

AP(τ̆) =
1

3η

(

eωτ̆ +2e−
ω
2 τ̆ cos

(
√

3
2

ωτ̆
))

.

The chain of processes in theagr operon continue as translation of all the proteins becomes leading order.
On the sixth timescale, once AgrB and AgrD move into the membrane of the cells, the QS loop continues
through increased production of AIP. The rateω of exponential increase is governed byλ , v̂ andη . These
aspects are all crucial to the success of QS and the exponential blow-up is indicative of the onset of an
autoinductive circuit. Thus this fifth timescale representsthe onset of QS.

A.3 Seventh timescale: free receptor loss due to AIP binding

This timescale describes how levels of free receptors decrease as more become bound by AIPs. The
rescaled equations are

dM′

dτ ′
= v̂P− ε

1
4 M′+ ε, (93)

ε
dA′

dτ ′
= λM′− ε

5
4 λA′−ηA′R∗′

+ ε
5
4 µ̂ηAP

′, (94)

dB′

dτ ′
= αM′− ε

1
4 αB′, (95)

dR′

dτ ′
= λB′− ε

1
4 λR′− η

φ̂
R′a′

+ ε
1
4

ηγ
φ̂

R∗′, (96)

dS′

dτ ′
= λB′− ε

1
4 λS′−kT′S′, (97)

dT′

dτ ′
= λB′− ε

1
4 λT ′, (98)

ε
da′

dτ ′
=

kβ̂ φ̂
η

T ′S′− β̂R′a′+ ε
1
4 β̂ γR∗′

− ε
5
4 λaa′, (99)

dR∗′

dτ ′
= R′a′− ε

1
4 (λ + γ)R∗′, (100)

dAP
′

dτ ′
= A′R∗′− ε

1
4 (λ + εµ̂)AP

′, (101)

ε
1
4

dP
dτ ′

= AP
′(1−P)− ε

1
2 uP. (102)

The leading-order solutions are

P= 1, M′ = v̂τ ′, B′ =
α v̂
2

τ ′2, T ′ =
αλ v̂

6
τ ′3, a′ =

αkφ̂λ v̂
6η

τ ′3, AP
′ =

λ v̂
2η

τ ′2,

along with the long-term behaviour,

S′,R′ ∼ 3
kτ ′

, R∗′ ∼ φ̂αλ v̂
6η

τ ′3, A′ ∼ 6

φ̂ατ ′2
,

asτ ′ → ∞.
Now that the cells have reached an up-regulated state, the QSloop continues, but the level of free

receptors and transmembrane AgrD begins to decrease as more receptors become bound by AIP, continuing
to activate the cells and more AIPs are produced. This decrease is evident in the numerical solutions shown
in Figure 6 and corresponds with the sharp decrease following the maximum values ofR(τ) (receptor
proteins) andS(τ) (transmembrane AgrD). Notice that, despite being governed byvery different terms at
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leading order, these two variables behave identically until this timescale (we will see on the final timescale
that their steady state behaviour will differ). This is due to the fact that the numbers of receptors and AIP
are in balance with the two proteins required to produce the signal (AgrB and AgrD) each being ultimately
determined by mRNA levels.
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