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Memories are dynamic, rather than static, in nature. The reactivation of a memory 

through re-exposure to salient training stimuli results in its destabilisation, necessitating 

a restabilisation process known as reconsolidation, a disruption of which leads to 

amnesia. Here I show that one normal function of hippocampal memory reconsolidation 

in rats is to modify the strength of a contextual fear memory as a result of further 

learning. 

Following their initial acquisition and consolidation, memories can be modified through 

further experience. For example additional learning strengthens an already-established 

memory trace. It is, however, not known whether such a change in memory strength depends 

upon the same cellular mechanisms as initial learning. 

The phenomenon of memory reconsolidation, as revealed by the demonstration of an 

experimentally-induced retrograde amnesia for a consolidated memory in a manner that is 

critically dependent upon the reactivation of that memory
1
, has been suggested to enable the 

updating of a previously-acquired memory
2,3

. However, it has not yet been demonstrated that 

reconsolidation is necessary to update memories in an animal model
2,4

, although in some 

settings memory reconsolidation is only observed under conditions in which memory 

updating occurs
5,6

. Therefore, it remains unclear whether the modification of a memory, in 

particular its strengthening, depends upon reconsolidation mechanisms. 

Memory reconsolidation consists of two phases, a reactivation-dependent 

destabilisation process, followed by the protein synthesis-dependent restabilisation phase
1
. 

Reconsolidation can be isolated from initial memory consolidation using the doubly 

dissociable mechanisms of hippocampal contextual fear memories
7
, the destabilisation of 

which is also dependent upon synaptic protein degradation
8
. 

Here, a second learning trial (see Supplementary Methods online; all procedures were 

conducted in accordance with the UK 1986 Animals (Scientific Procedures) Act (Project 

License PPL 80/1767)) strengthened a contextual fear memory, but only following its 
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destabilisation (Supplementary Fig. 1). Infusion of the protein synthesis inhibitor 

anisomycin into the hippocampus immediately after the second trial resulted in subsequent 

amnesia, consistent with previous findings in an auditory fear conditioning procedure
9
. The 

use of the broad-spectrum translational inhibitor, as well as having important side-effects
10

, 

does not enable isolation of consolidation and reconsolidation mechanisms, and so it 

remained possible that the amnesia resulted from inhibition of both reconsolidation of the 

trial 1 memory and consolidation of the new trial 2 memory
9
. Hence, updating memory 

strength might depend upon consolidation, and not reconsolidation mechanisms. 

Given that there are doubly dissociable cellular mechanisms of hippocampal contextual 

fear memory consolidation and reconsolidation
7
, BDNF (brain-derived neurotrophic factor) 

being required for consolidation and zif268 (also known as EGR1, NGFI-A and Krox24) 

being necessary for reconsolidation, it was possible to determine whether the memory 

strengthening incurred by additional learning involved consolidation or reconsolidation 

processes. If memory strengthening involved consolidation mechanisms, both BDNF and 

zif268 would have to be knocked down in order to disrupt the reconsolidation of the existing 

memory as well as the consolidation of the new memory, and produce amnesia. However, in 

contrast to this hypothesis, knockdown of BDNF in the dorsal hippocampus during a second 

learning trial by antisense oligodeoxynucleotide (ASO) infusion, as used previously
7
 and 

demonstrated to be functionally active by disrupting contextual fear memory consolidation 

(Supplementary Fig. 2 online), had no effect upon the subsequent expression of the 

strengthened contextual fear memory relative to the infusion of control missense sequences 

(MSO), even when the concentration of oligodeoxynucleotide was doubled (Supplementary 

Fig. 3 online). Instead, infusion of zif268 ASO alone into the dorsal hippocampus was 

sufficient to cause a subsequent severe amnesia (Fig. 1a). This amnesia was of the same 

magnitude as that following anisomycin infusion and both took several hours to emerge, as 

evidenced by the intact short-term memory (STM) observed 3 hours after the second learning 

trial, and was long-lasting for at least 7 days (Supplementary Fig. 4 online). These 

observations are consistent with typical memory reconsolidation deficits
11

 and, coupled with 
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the previous demonstration that zif268 ASO infusion selectively impairs memory 

reconsolidation
7
, support the assertion that knockdown of zif268 in the dorsal hippocampus 

impaired memory strengthening through the blockade of hippocampal memory 

reconsolidation.  

While zif268-dependent reconsolidation mechanisms appear to mediate memory 

strengthening, the amnestic effect of zif268 ASO might be related instead to the increased 

absolute strength of the contextual fear memory conditioned through two learning trials, 

relative to that resulting from the single trial learning that functionally recruits BDNF 

(Supplementary Fig. 1 online). However, when a stronger fear conditioning procedure was 

used, in which both trials were condensed into a single session, memory consolidation 

remained dependent upon hippocampal BDNF and not zif268 (Fig. 1b,c and Supplementary 

Fig. 5 online). Therefore, these data reveal a double dissociation between the cellular 

mechanisms of initial memory consolidation (BDNF) and memory strengthening through 

additional learning (zif268). Moreover, the selective dependence of the two processes upon 

their relative cellular mechanisms is not a result of non-specific or quantitative factors. 

A further contention might be that zif268 is not required for memory strengthening per 

se, but instead for synaptic plasticity in neural circuits that have been modified recently by 

behavioural experience. Thus the selective dependence of additional learning upon zif268 

may result not from the fact that an existing memory is being updated and strengthened, but 

arises because some learning experience, which need not have been related, engaged the 

dorsal hippocampus on the previous day. To test this hypothesis, rats were first conditioned in 

a separate context (different operant chambers
12

), before being returned to the standard fear 

conditioning apparatus (context 2) for the second day of training. Infusion of zif268 ASO into 

the dorsal hippocampus prior to this second conditioning trial had no effect on subsequent 

conditioned freezing in context 2 (Fig. 2a and Supplementary Fig. 6 online). In contrast, 

knockdown of hippocampal BDNF resulted in severe amnesia, suggesting that even when 

there has been recent synaptic plasticity in the hippocampus, contextual fear conditioning 
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functionally recruits consolidation, but not reconsolidation, mechanisms. Moreover, these 

results provide strong evidence that memory strengthening has separable underlying 

mechanisms to memory acquisition/consolidation. 

If the mechanisms of reconsolidation are the same as those that strengthen the memory 

trace, impairing memory destabilisation should prevent the modification of memory strength. 

It has been shown recently that hippocampal synaptic protein degradation is a critical process 

in the destabilisation of contextual fear memories
8
. Infusion of the proteasome inhibitor lac 

into the dorsal hippocampus prevented the amnestic action of anisomycin in a standard 

memory reconsolidation setting. Thus whereas anisomycin infusion alone, immediately after 

contextual re-exposure, resulted in subsequent amnesia, the co-infusion of lac rendered the 

memory invulnerable to protein synthesis inhibition
8
. Here, anisomycin alone also resulted in 

amnesia when infused into the dorsal hippocampus immediately after a second learning trial 

(Fig. 2b and Supplementary Fig. 1 online). However, whereas the co-administration of lac 

mitigated against the amnestic effect of anisomycin, the resultant levels of contextual 

freezing remained significantly lower than vehicle-infused controls. Moreover, infusion of 

lac, regardless of whether it was combined with anisomycin, resulted in the failure of 

additional learning to strengthen the pre-existing contextual fear memory (see also 

Supplementary Fig. 7 online). Therefore, preventing memory destabilisation maintained the 

strength of the previously-acquired memory at a constant level, further supporting the 

assertion that memory reconsolidation is the mechanism by which memories are strengthened 

through additional learning. 

Given that the process of memory destabilisation is an integral step in the strengthening 

of memories, greater emphasis must be placed upon the mechanisms of destabilisation that 

are only beginning to be delineated
8,13,14

. Another important implication of the present 

findings is that memory reconsolidation may, in fact, be the predominant process that occurs 

during learning and memory in situations that involve more than a single training trial. 

However, given that these findings are limited to certain training parameters in a contextual 
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fear procedure, it remains to be determined to what extent they can be generalised and 

whether any boundary conditions exist. Nevertheless, it remains likely that the persistence of 

memories acquired through repeated experience will be understood primarily through the 

study of memory reconsolidation, rather than initial consolidation, given their dissociable 

mechanisms. Moreover, these findings demonstrate that memory reconsolidation has an 

adaptive function in normal learning and memory, by showing that it enables the 

modification of memory strength. 
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Figure legends 
 

Figure 1. (a) Knockdown of zif268, but not BDNF, during a second conditioning 

session results in subsequent amnesia. Rats were fear conditioned on two 

consecutive days (Cond1 & Cond2), and were tested 24 hr later (Test). ANOVA 

revealed a significant Session x Gene x ASO interaction (F2,38=18.73, P<0.001). 

Analysis of the BDNF groups alone revealed no main effect of ASO or Session x 

ASO interaction (F’s<1), whereas analysis of the zif268 groups revealed a significant 

Session x ASO interaction (F2,20=38.71, P<0.001), driven by a significant effect of 

ASO during the test (simple effects one-way ANOVA; P<0.05), with no differences 

during Cond1 and Cond2 (n=5–6 per group). Knockdown of (b) BDNF, but not (c) 

zif268, during a single 2-trial conditioning session results in subsequent amnesia. 

Rats were tested 3 hr (STM), 24 hr (LTM) and 7 d (LTM2) after conditioning. ANOVA 

revealed an overall significant Session x Gene x ASO interaction (F2,44=11.11, 

P<0.001). Analysis of the zif268 groups alone revealed no main effect of ASO 

(F1,12=1.05, P=0.32) or Session x ASO interaction (F2,24=1.23, P=0.31), whereas 

analysis of the BDNF groups revealed a significant Session x ASO interaction 

(F2,20=19.95, P<0.001), which was driven by a significant effect of ASO during the 

LTM and LTM2 tests (simple effects one-way ANOVA; P<0.05), with no effect on the 

STM test (n=6–7 per group). Data presented as mean ± s.e.m. 

 

Figure 2. (a) Knockdown of BDNF, but not zif268, during fear conditioning to a 

changed context results in subsequent amnesia. Rats were fear conditioned first to 

CX1 (Cond1), on the next day (Cond2) to CX2, and were tested 24 hr later (Test) in 

CX2. While ANOVA revealed no gene x ASO interaction during Cond1 (F<1), there 

was an overall significant Session x Gene x ASO interaction in CX2 (F1,22=11.31, 

P=0.003). Analysis of the zif268 groups alone revealed no main effect of ASO or 

Session x ASO interaction (F’s<1), whereas the BDNF groups had a significant 

Session x ASO interaction (F1,12=22.17, P<0.001), driven by a significant effect of 
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ASO during the LTM test (simple effects one-way ANOVA; P<0.05; n=6–7 per 

group). (b) Proteasome inhibition protects a contextual fear memory against both 

additional learning and amnesia. Rats were fear conditioned on two consecutive 

days (Cond1 & Cond2), and were tested 24 hr later (Test). ANOVA revealed a 

significant Session x ANI x lac interaction (F2,48=26.80, P<0.001). There were 

significant Session x lac interactions for the ANI (F2,24=19.24, P<0.001) and VEH 

(F2,24=9.16, p=0.001) groups analysed separately, but no differences between the 

two groups infused with lac (F’s<1). Simple effects analysis (one-way ANOVA; 

P<0.05) revealed that at Test, the lac groups were significantly different from both 

the VEH and ANI alone groups, and that while the VEH and ANI alone groups 

changed in freezing levels from Cond2 to Test, the lac groups did not (n=7 per 

group). Data presented as mean ± s.e.m. 
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Supplementary Fig. 1. Protein synthesis inhibition after a second contextual fear 
conditioning session results in subsequent amnesia. Rats were fear conditioned on two 
consecutive days (Cond1 & Cond2), immediately after the second of which they were 
infused with anisomycin into the dorsal hippocampus, and then were tested 24 hr later 
(Test). Repeated measures ANOVA revealed an overall significant Session x ANI 
interaction (F

2,20
=56.67, P<0.001), which was driven by a significant effect of ANI during the 

Test (simple effects one-way ANOVA; P<0.05), with no differences during Cond1 and 
Cond2. VEH controls showed a statistically significant 46.9% increase in freezing from 
Cond2 to Test (F

1,6
=25.9, P<0.001). Data presented as mean ± s.e.m. (n=7 per group). 
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Supplementary Fig. 2. Verification of BDNF ASO efficacy. Infusion of the standard dose of BDNF 

ASO (1 nmol/l) into the dorsal hippocampus 90 min before contextual fear conditioning results in 
severe amnesia 24 hr later (one-way ANOVA: F

1,13
=20.88, P=0.001). Data presented as mean + 

s.e.m. (n=6 per group). 
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Supplementary Fig. 3. Knockdown of zif268, but not BDNF, during a second conditioning 
session results in subsequent amnesia (supplement to Figure 1A). (a) cannula placements for the 
rats included in the statistical analysis (●=BDNF MSO; X=BDNF ASO; □=zif268 MSO; ∆=zif268 
ASO; Bregma –3.00, –3.24, –3.48, –3.72 & –3.96 mm). (b) no amnesia was observed 3 hr after 
Cond2 (one-way ANOVA: F<1). (c) rats infused with zif268 ASO remained impaired 7 d later 
(zif268: one-way ANOVA: F

1,10
=91.02, P<0.001; BDNF: one-way ANOVA: F<1). Data presented 

as mean + s.e.m. (n=5–6 per group). 
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Supplementary Fig. 4. Infusion of a high dose of BDNF ASO before a second conditioning 
session has no effect on subsequent conditioned freezing. (a) cannula placements for the rats 
included in the statistical analysis (●=BDNF MSO; X=BDNF ASO; Bregma –3.00, –3.24, –3.48, –
3.72 & –3.96 mm). (b) rats were fear conditioned on two consecutive days (Cond1 & Cond2), 90 

min before the second of which they were infused with BDNF ASO or MSO (2 nmol/l), and then 
were tested 24 hr later (Test). Repeated measures ANOVA revealed no main effect of ASO, nor a 
significant Session x ASO interaction (F‘s<1). Data presented as mean ± s.e.m. (n=5–6 per 

group). 
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Supplementary Fig. 5. Cannula placements for the rats included in the statistical analysis of Fig. 
1b,c (●=BDNF MSO; X=BDNF ASO; □=zif268 MSO; ∆=zif268 ASO; Bregma –3.00, –3.24, –3.48, 
–3.72 & –3.96 mm).  
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 a b 

c 

Supplementary Fig. 6. Knockdown of BDNF, but not zif268, during a fear conditioning to a 
changed context results in subsequent amnesia (supplement to Fig. 2a). (a) cannula placements 
for the rats included in the statistical analysis (●=BDNF MSO; X=BDNF ASO; □=zif268 MSO; 
∆=zif268 ASO; Bregma –3.00, –3.24, –3.48, –3.72 & –3.96 mm). (b) no amnesia was observed 3 
hr after Cond2 (one-way ANOVA: F<1). (c) rats infused with BDNF ASO remained impaired 7 d 
later (BDNF: one-way ANOVA: F

1,12
=24.27, P<0.001; zif268: one-way ANOVA: F<1). Data 

presented as mean + s.e.m. (n=6–7 per group). 
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 a b 

Supplementary Fig. 7. Proteasome inhibition protects a contextual fear memory against both 
additional learning and amnesia (supplement to Fig. 2b). (a) cannula placements for the rats 

included in the statistical analysis  (●=PBS; X=ANI; □=lac/PBS; ∆=lac/ANI; Bregma –3.00, –
3.24, –3.48, –3.72 & –3.96 mm). (b) no amnesia was observed 3 hr after Cond2 (one-way 
ANOVA: F<1). (c) the pattern of long-term amnesia remained the same 7 d later (one-way 

ANOVA: F
3,24

=14.01, P<0.001; tukey’s post-hoc analysis [P<0.05] revealed the lac groups to be 

different from both other groups, but not to be different from each other). Data presented as mean 
+ s.e.m. (n=7 per group). 
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Supplementary Text 

Methods 

Subjects and surgical procedures. 142 adult male Lister Hooded rats, weighing 280-320 g 

at the time of surgery, were implanted with chronic indwelling cannulae targeting the dorsal 

hippocampus as described previously1. At the end of the experiment, rats were perfused, 

and their brains were sectioned and stained to confirm cannula placements as previously 

described1. Cannula placements are shown on reproduced atlas figures2. 10 rats were 

excluded from the statistical analysis due to misplaced cannulae or failure to complete the 

full schedule of testing. 

Infusions. Infusion procedures were as previously described1. Rats were habituated to the 

infusion procedure using the PBS vehicle on 2 occasions prior to behavioural training. 

Infusions (1 l, 0.5 l/min) were carried out of oligodeoxynucleotides (sequences and 

concentrations as previously used1), or PBS/DMSO vehicle, anisomycin (80 g/l),  clasto-

lactacystin--lactone (lac; 32 ng/l) and a combination of anisomycin and lac prepared as 

previously described3. 

Behavioural procedures. Training and testing took place in 4 operant chambers as 

previously described4. The rats were subjected to a previously described contextual fear 

conditioning procedure1. For the memory strengthening experiments, two minutes after 

being placed singly in the chambers, the rats were exposed to a single unsignalled footshock 

(0.5 mA, 2 s), 60 s after which the session terminated. On the next day the rats received 

intra-hippocampal infusions either 90 min before (oligodeoxynucleotides) or immediately 

after (anisomycin/ lac) an identical training trial, and then were tested repeatedly in 2-min 

context re-exposure sessions at three subsequent timepoints: 3 hr (STM), 24 hr (LTM test) & 

7 d (LTM2). For the stronger conditioning experiment, rats were given intra-hippocampal 

infusions of oligodeoxynucleotides 90 min prior to an extended 4-min conditioning session in 

which they received 2 unsignalled footshocks after 2 and 3 mins, and then were tested as 
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before. Behaviour was video recorded for later analysis of conditioned freezing by an 

experimenter blind to the experimental conditions as previously described1. 

 

1 J. L. C. Lee, B. J. Everitt, and K. L. Thomas, Science 304 (5672), 839 (2004). 

2 G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 6 ed. 
(Academic Press, New York, 2007). 

3 S. H. Lee, J. H. Choi, N. Lee et al., Science 319 (5867), 1253 (2008). 

4 J. L. C. Lee, A. Dickinson, and B. J. Everitt, Behav Brain Res 159 (2), 221 (2005). 
 

  

 

 

 


