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DESIGNING FPT ALGORITHMS FOR CUT PROBLEMS USING
RANDOMIZED CONTRACTIONS∗

RAJESH CHITNIS† , MAREK CYGAN‡ , MOHAMMADTAGHI HAJIAGHAYI† ,

MARCIN PILIPCZUK‡ , AND MICHA L PILIPCZUK‡

Abstract. We introduce a new technique for designing fixed-parameter algorithms for cut prob-
lems, called randomized contractions. We apply our framework to obtain the first fixed-parameter
algorithms (FPT algorithms) with exponential speed up for the Steiner Cut and Node Multiway
Cut-Uncut problems. We prove that the parameterized version of the Unique Label Cover prob-

lem, which is the base of the Unique Games Conjecture, can be solved in 2O(k2 log |Σ|)n4 logn
deterministic time (even in the stronger, vertex-deletion variant), where k is the number of unsatis-
fied edges and |Σ| is the size of the alphabet. As a consequence, we show that one can in polynomial
time solve instances of Unique Games where the number of edges allowed not to be satisfied is
upper bounded by O(

√
logn) to optimality, which improves over the trivial O(1) upper bound. We

prove that the Steiner Cut problem can be solved in 2O(k2 log k)n4 logn deterministic time and

Õ(2O(k2 log k)n2) randomized time, where k is the size of the cutset. This result improves the double
exponential running time of the recent work of Kawarabayashi and Thorup presented at FOCS’11.
We show how to combine considering “cut” and “uncut” constraints at the same time. More pre-
cisely, we define a robust problem, Node Multiway Cut-Uncut, that can serve as an abstraction of

introducing uncut constraints and show that it admits an algorithm running in 2O(k2 log k)n4 logn
deterministic time, where k is the size of the cutset. To the best of our knowledge, the only known
way of tackling uncut constraints was via the approach of Marx, O’Sullivan, and Razgon [ACM
Trans. Algorithms, 9 (2013), 30], which yields algorithms with double exponential running time. An
interesting aspect of our algorithms is that they can handle positive real weights.

Key words. fixed-parameter tractability, randomized contractions, graph separations problems,
unique label cover

AMS subject classifications. 68Q25, 68W40

DOI. 10.1137/15M1032077

1. Introduction. Graph cut problems is a class of problems where, given a
graph, one is asked to find a cutset of minimum size whose removal makes the graph
satisfy a global separation property. The motivation for studying graph cut problems
stems from the fundamental minimum cut problem, where the goal is to separate two
terminals from each other by removing the least possible number of vertices or edges,
depending on the variant. Even though the minimum cut problem can be solved in
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polynomial time, many of its natural generalizations become NP-hard. Moreover,
many problems, whose classical definitions do not resemble cut formulations, after
choosing an appropriate combinatorial viewpoint show deep links with finding mini-
mum separators; the most important examples are Feedback Vertex Set and Odd
Cycle Transversal.

Therefore, circumventing NP-hardness of fundamental graph cut problems, like
Multiway Cut (given a graph with a set of terminals, separate the terminals from
each other using minimum size cutset) or Multicut (given a graph with a set of
terminal pairs, separate terminals in the pairs using minimum size cutset), became
an important algorithmic challenge. It is then no surprise that graph cut problems
were studied intensively from the point of view of approximation; cf. [1, 4, 9, 22, 23,
29, 27, 36, 48, 52, 56].

In this paper we address a different paradigm of tackling NP-hard problems, that
is, fixed-parameter tractability (FPT). Recall that in the parameterized complexity
setting an instance of the problem comes with an additional integer k, called the
parameter , which intuitively measures the hardness of the instance. The goal is to
devise an algorithm solving the problem with running time of form f(k)nc, where f
is some computable function and c is a fixed constant. In other words, for every fixed
parameter the algorithm has to work in polynomial time, where the degree of the
polynomial is independent of the parameter. Algorithms with such a running time
guarantee are called fixed-parameter algorithms, and if a problem admits one, then
we say that it is fixed-parameter tractable. For a more detailed introduction to fixed-
parameter tractability we address the interested reader to the recent monographs
[15, 21].

Graph separation problems in the context of parameterized complexity were
probably first considered in the seminal work of Marx [44]. Marx established fixed-
parameterized complexity of Multiway Cut parameterized by the size of the cutset
and Multicut parameterized by the size of the cutset plus the number of terminal
pairs. The main tool introduced by Marx is the notion of an important separator,
which later turned out to be the core ingredient of parameterized algorithms for, e.g.,
Directed Feedback Vertex Set [11] or Almost 2-SAT [54]. In the last decade,
the graph separation problems have become one of the most intensively studied sub-
areas of parameterized complexity, leading to the development of various interesting
techniques, such as shadow removal [46] and its generalizations to directed graphs [14],
treewidth reduction [45], and branching guided by an LP or (k-)submodular CSP re-
laxation [18, 57].

We introduce a new technique, called randomized contractions, of constructing
fixed-parameter algorithms for graph cut problems. In this introduction, we first
give an overview of this technique and our results, and then provide a discussion and
comparison with other known techniques.

1.1. Our techniques. On a high level, the technique of randomized contractions
is based on a WIN/WIN approach, introduced by Kawarabayashi and Thorup [37]
and also used by Grohe and Marx in their algorithm to test the topological minor
relation [31]. The WIN/WIN approach can be described as follows: either we find a
well-balanced separation of small order, whose one side can be simplified by a recursive
call, or the graph admits a highly connected structure, which can be used to identify
the solution. The main novelty of this paper is the way these steps are executed:
we show that a well-balanced separation can be easily and efficiently found using
the color coding technique introduced by Alon, Yuster, and Zwick [2], and the color
coding technique also greatly helps in exhibiting the solution in the presence of the
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high-connected structure.
Recall that the main idea of the color coding technique, originally introduced

to solve some special cases of the Subgraph Isomorphism problem, is to color the
graph at random and ensure that with high probability the solution gets sufficiently
highlighted to be recognizable quickly. It has now become a classical tool in the
parameterized complexity toolbox. At the heart of our results lies an observation
that it also can be used to highlight either a well-balanced separation or a structure
of the solution in a highly connected graph. Our usage of the color coding technique,
especially in the search for a well-balanced separation, resembles the algorithm of
Karger [35] that finds a minimum cut in a graph in near-linear time by contracting
random edges; this inspiration gave the name to our technique.

Although the intuition behind color coding is of probabilistic nature, the algo-
rithms obtained using this approach can be derandomized using the technique of
splitters of Naor, Schulman, and Srinivasan [49]. In fact, we find it more convenient
to present our algorithms already in the derandomized version, so in spite of the name
of the technique there will be no randomization at all; instead we use the following
abstraction.

Lemma 1. Given a set U of size n, and integers 0 ≤ a, b ≤ n, one can in time
2O(min(a,b) log(a+b))n log n construct a family F of at most 2O(min(a,b) log(a+b)) log n sub-
sets of U , such that the following holds: for any sets A,B ⊆ U , A ∩ B = ∅, |A| ≤ a,
|B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

Our approach is most natural for edge-deletion problems; however, we can also
extend it to node-deletion variants. For the node-deletion problems, however, the
situation is more complicated and we need to define two kinds of separations. Only
when the graph does not have both kinds of separations do we get enough structure to
solve the problem with other methods. Moreover, one needs to be much more careful
in this final case, as we obtain much weaker structural properties of the graph.

1.2. Our results. We use the technique of randomized contractions to provide
the first fixed-parameter algorithm solving an important problem in parameterized
complexity, and moreover we show how our approach can be applied to reduce the time
complexity of the best known algorithms from double exponential to single exponential
for some problems already known to be FPT.

1.2.1. Unique Label Cover. In the Unique Label Cover problem we are
given an undirected graph G, where each edge uv = e ∈ E(G) is associated with a
permutation ψe,u of a constant size alphabet Σ. The goal is to construct a labeling
Ψ : V (G) → Σ maximizing the number of satisfied edge constraints, that is, edges
for which (Ψ(u),Ψ(v)) ∈ ψuv,u holds. At first glance Unique Label Cover does
not seem related to the previously mentioned cut problems; however, it is not hard
to show that the node-deletion version of Unique Label Cover is a generalization
of the Group Feedback Vertex Set problem [33], and hence of Odd Cycle
Transversal, Feedback Vertex Set, as well as Multiway Cut.

The optimization version of Unique Label Cover is the subject of the very
extensively studied Unique Games Conjecture, proposed by Khot [38] in 2002,
which is used as a hardness assumption for showing several tight inapproximabil-
ity results. The Unique Games Conjecture states that for every sufficiently
small ε, δ > 0, there exists an alphabet size |Σ|(ε, δ), such that given an instance
(G,Σ, (ψe,v)e∈E(G),v∈e) it is NP-hard to distinguish between the cases |OPT | ≤
δ|E(G)| and |OPT | ≥ (1 − ε)|E(G)|. In 2010 Arora, Barak, and Steurer [3] pre-
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sented a breakthrough subexponential time algorithm, which in 2O(|Σ|nε) running
time satisfies (1 − ε)|E(G)| edge constraints, assuming the given instance satisfies
|OPT | ≥ (1− εc)|E(G)|. We refer the reader to a recent survey of Khot [39] for more
detailed discussion on the Unique Games Conjecture.

Since all the edge constraints are permutations, fixing a label for one vertex gives
only one possibility for each of its neighbors, assuming we want to satisfy all the
edges. For this reason we can verify in polynomial time whether OPT = |E(G)|. In
this paper we show that we can efficiently solve the Unique Label Cover problem,
assuming almost all the edges are to be satisfied. In particular, we design a fixed
parameter algorithm for Node Unique Label Cover, which is a generalization of
Edge Unique Label Cover.

Node Unique Label Cover
Input: An undirected graph G, a finite alphabet Σ of size s, an integer k, and
for each edge e ∈ E(G) and each of its endpoints v a permutation ψe,v of Σ, such
that if e = uv, then ψe,u = ψ−1

e,v .
Question: Does there exist a set X ⊆ V (G) of size at most k and a function
Ψ : V (G)\X → Σ such that for any uv ∈ E(G\X) we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

Theorem 2. There is an O(2O(k2 log s)n4 log n) time algorithm solving
Node Unique Label Cover.

To justify our parameterization, we would like to note that there is a long line of
polynomial time approximation algorithms designed for instances of Unique Label
Cover; currently the best is by Charikar, Makarychev, and Makarychev [8], working
under the assumption |OPT | ≥ (1− ε)|E(G)|, and where the alphabet is of constant
size. Therefore, it is reasonable to assume that only a small number of constraints is
not going to be satisfied. Our results imply that one can in polynomial time verify
whether it is possible to satisfy |E(G)| − O(

√
log n) constraints; consequently, we

extend the range of instances that can be solved optimally in polynomial time.
Finally, we show that the dependence on the alphabet size in Theorem 2 is prob-

ably necessary, since the problem parameterized by the cutsize only is W [1]-hard.
Hence, the existence of an algorithm parameterized by the cutsize only would cause
FPT = W [1], which is considered implausible. For a more detailed introduction to
the hierarchy of parameterized problems and consequences of its collapse, we refer to
the books of Downey and Fellows [20] or of Flum and Grohe [25]. We consider this re-
sult an interesting counterposition of the parameterized status of Group Feedback
Vertex Set [17], which is FPT even when the group size is not a parameter.

Theorem 3. The Edge Unique Label Cover problem, and consequently Node
Unique Label Cover, is W [1]-hard when parameterized by k only.

1.2.2. Steiner Cut. Next, we address a robust generalization of both k-Way
Cut and Multiway Cut problems, namely, the Steiner Cut problem.

Steiner Cut
Input: A graph G, a set of terminals T ⊆ V (G), and integers s and k.
Question: Does there exist a set X of at most k edges of G, such that in G \X
at least s connected components contain at least one terminal?
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Using our technique we present an FPT algorithm working inO(2O(k2 log k)n4 log n),
where the polynomial factor can be improved to Õ(n2) at the cost of our algorithm
being randomized. These results improve the double exponential time complexity of
the recent algorithm of Kawarabayashi and Thorup [37].1

Theorem 4. There is a deterministic O(2O(k2 log k)n4 log n) and randomized

Õ(2O(k2 log s)n2) running time algorithm solving Steiner Cut.

1.2.3. Connectivity constraints. We define the following problem as an ab-
straction of introducing “cut” and “uncut” constraints at the same time.

Node Multiway Cut-Uncut (N-MWCU)
Input: A graph G together with a set of terminals T ⊆ V (G), an equivalence
relation R on the set T , and an integer k.
Question: Does there exist a set X ⊆ V (G) \ T of at most k nonterminals
such that for any u, v ∈ T , the vertices u and v belong to the same connected
component of G \X iff (u, v) ∈ R?

Fixed-parameter tractability of this problem can be derived from the framework
of Marx, O’Sullivan, and Razgon [45], complemented with a reduction of the number
of equivalence classes of R in the flavor of the reduction for Multiway Cut of Raz-
gon [53]. However, the dependence on k of the running time is double exponential.
Using our framework we show the following.

Theorem 5. There is an O(2O(k2 log k)n4 log n) time algorithm solving N-MWCU.

1.2.4. Weights. As mentioned in the abstract, our approach generalizes well to
the weighted setting, which is not the case for many other techniques in parameterized
complexity such as important separators. As the level of technical details in all our
algorithms is high, we prove Theorems 2, 4, and 5 in the unweighted case (i.e., as
they are stated in the introduction). Then, in section 8, we discuss extensions to the
weighted setting.

1.2.5. Subsequent usages and extensions. We would like to mention here
a few applications and extensions of our techniques, developed after the extended
abstract of our work was published [12].

First, the technique turned out to be useful in a number of other problems. Lok-
shtanov during Dagstuhl Seminar 14071 (February 2014) noticed that our technique
immediately gives fixed-parameter tractability the Vector Connectivity problem,
parameterized by the cutset size only, solving an open problem posed by Milanič; we
refer to the recent work of Kratsch and Sorge [41] for the problem definition and a
discussion of recent developments. Bringmann et al. [7], in their study of different
parameterizations of Steiner Multicut, noticed that one can use randomized con-
tractions to obtain an FPT algorithm for one of their most natural parameterizations.

Finally, a subset of the current authors together with Lokshtanov and Saurabh [16]
developed a way to replace the recursive scheme in our approach with a static tree
decomposition, where every adhesion has bounded size and every bag has properties
similar to those dubbed “highly connected” in the description above. This improve-
ment has led to an FPT algorithm for Minimum Bisection.

1In [37] the authors solve the k-Way Cut problem; however, a straightforward generalization of
their algorithm solves the Steiner Cut problem as well.
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1.3. Discussion of related work.
Important separators. Perhaps the most fruitful consequence of the early work of

Marx [44] was the introduction of the concept of an important separator . Important
separators proved to be a robust tool that enable us to capture the bounded-in-
parameter character of the family of reasonable cutsets. They also can be naturally
extended to the directed setting. This basic technique has found numerous applica-
tions [10, 11, 14, 19, 32, 42, 44, 54].

The important separators technique is based on greedy arguments, which unfor-
tunately makes this approach work only in restricted settings. Consider, for instance,
the “uncut” constraint present in the N-MWCU problem, i.e., we look for a cutset
that separates some pairs of terminals but is required not to separate some other
pairs. Any greedy choice of the farthest possible cutset, which is precisely the idea
behind the notion of an important separator, can spoil the delicate requirements of
the existence of some paths.

Furthermore, the proof of the core property of important separators—the bound
on their number expresses in the parameter only—relies on amortization by the in-
crease of the cost of the separation, which makes the argument work only in the
unweighted setting (or with small integer weights). It is unclear whether this no-
tion can lead to parameterized algorithms in the setting with arbitrary (positive) real
weights.

Shadow removal. The fixed-parameter tractability of Multicut parameterized
by the cutsize only, after resisting attacks as a long-standing open problem, was fi-
nally resolved in 2011 by Marx and Razgon [46] and, independently, by Bousquet,
Daligault, and Thomassé [6]. The most important contribution of the work of Marx
and Razgon [46] was the introduction of the shadow removal technique, an intricate
blend of the important separators with the color coding technique. In some problems
(e.g., Multicut) one can argue that a greedy step, in the sense of important sepa-
rators, is possible, but one cannot apply it directly, as one does not know one side of
the separation. The color coding technique is used to highlight possible application
places.

A subset of the current authors together with Marx [14] showed that after a
delicate transfer of the shadow removal technique to directed graphs, it almost im-
mediately yields an FPT algorithm for Multiway Cut in directed graphs. Further
usages include [13, 40, 42].

On a high level, one could say that the shadow removal technique extends the
applicability of important separators and is used to obtain additional properties of the
cutset we are looking for. In some sense it is perpendicular to randomized contractions:
On one hand, its applicability is limited due to the need of some greedy reasoning
to apply important separators. On the other hand, shadow removal seems crucial for
most of its applications, especially in directed graphs; in particular, we are unable to
handle these applications using randomized contractions.

Treewidth reduction. The treewidth reduction technique, developed by Marx,
O’Sullivan, and Razgon [45], is probably the closest, in terms of the scope of ap-
plicability, to randomized contractions. It essentially states that in an undirected
graph G with two terminals s and t, all inclusionwise minimal cuts between s and t of
size at most k live in a part of G of treewidth bounded exponentially in k. The result
is robust in the sense that it allows one to include a bounded number of terminal pairs
to separate.

This clean structural result allows one to bypass the limitations of important sepa-
rators: similarly as randomized contractions, it does not require any greedy step (thus
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handling, e.g., the “uncut” contraints) and it easily handles weighted variants. The
most natural problems that can be handled using the treewidth reduction technique,
like N-MWCU, usually can be also solved using randomized contractions.

However, we note that there are two shortfalls of treewidth reduction, as com-
pared to randomized contractions. First, it inherently leads to double-exponential
dependency on the parameter: the bound on the treewidth of the “small cut part”
of G is necessarily exponential, and on top of that one uses a dynamic program-
ming algorithm whose running time almost always depends at least exponentially on
this treewidth. Second, it requires one to specify a bounded number of terminals to
start with; hence it is unclear how to use it, e.g., for the Unique Label Cover
problem.

It should be noted that algorithms using the treewidth reduction technique, de-
spite their double-exponential dependency on the parameter, are usually conceptually
much simpler and cleaner than their counterparts obtained using randomized contrac-
tions. This is particularly visible in the case of Steiner Multicut [7].

Branching guided by LP relaxations. A subset of the current authors, together
with Wojtaszczyk [18], showed that one can use very strong structural properties of the
LP relaxations of Vertex Cover and Multiway Cut to develop efficient branching
algorithms for these problems, parameterized by the gap above the optimum value of
the LP relaxation. Narayanaswamy et al. [50] observed that in the case of Vertex
Cover, one can apply known reduction rules to improve running time even further.
In this manner, quite unexpectedly, they obtained an improvement upon the classic
O(3knm)-time algorithm for Odd Cycle Transversal [55]. The currently fastest
algorithm in this line is due to Lokshtanov et al. [43].

Wahlström [57] observed that instead of the very inflexible LP relaxations, one
could use (k-)submodular relaxation to a valued CSP problem, obtaining surprisingly
efficient algorithms for a number of problems, including the |Σ|2knO(1)-time algorithm
Unique Label Cover. Subsequently, the dependency on the input size has been
improved to linear [34]. We note that these works [34, 57] are subsequent to our work.

The above line of research gave a number of surprisingly efficient algorithms: the
running time is usually single-exponential in the cutsize, and the techniques of [34]
usually give good dependency on the input size. On the other hand, to apply them
one needs to find a relaxation with strong properties (a k-submodular one in most
cases), which is unknown, e.g., for Multicut or N-MWCU.

Limitations of randomized contractions. This discussion exhibits three limitations
of the randomized contractions technique.

First, we do not know how to apply the randomized contractions technique to the
Multicut problem without any bound on the number of terminals; recall that the
algorithm of Marx and Razgon [46] makes use of important separators and shadow
removal. This is mostly due to the fact that our technique, in the recursive step, needs
a bound on the number of possible behaviors on a small cutset, similarly as is needed
to develop a dynamic programming algorithm on graphs of bounded treewidth, or to
apply the protrusion machinery [5, 26]. Note that Multicut, in the edge-deletion
setting, is NP-hard on trees [28].

Second, our technique is inherently tailored to undirected graphs, whereas both
important separators and shadow removal are well-understood on directed graphs as
well. It is an interesting question whether one can obtain a convenient structural
description of bounded size cuts in directed graphs, in the spirit of the treewidth
reduction technique for undirected graphs [45]. A very recent work of one of the
authors and Wahlström [51] showed that one cannot hope for bounded treewidth of
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the underlying undirected graph, but directed treewidth can be bounded. However,
the latter is probably insufficient for many algorithmic applications, as [51] proved
also W [1]-hardness of Multicut in directed graphs with only four terminal pairs.

Third, in the case of Unique Label Cover our technique gives suboptimal run-
ning time, in terms of both the dependency on the parameter and the input size [34].
In our approach, we require that q, the minimum size of a side in a well-balanced sep-
aration, is greater than the number of possible behaviors of the solution on a cutset
(which is usually exponential in the size of the cutset), and subsequent applications

of the color coding technique introduce term qk = 2Ω(k2) to the running time bound.
Furthermore, the recursion scheme, together with multiple needs of finding small cuts,
blows up the polynomial factor to quartic. We conjecture that in the other studied
problems, as well as in the case of Minumum Bisection [16], it is possible to decrease
both factors of the running time bound significantly, but possibly using very different
techniques.

1.4. Organization of the paper. We start with an informal illustration of our
technique in section 2, using the example of the edge-deletion version of the Unique
Label Cover problem. We follow the illustration with some formal generic defini-
tions and preliminary results in section 3. In sections 4, 5, and 6 we consider Node
Unique Label Cover, Steiner Cut, and N-MWCU, respectively, proving Theo-
rems 2, 4, and 5. Section 7 contains a reduction showing W [1]-hardness of the Edge
Unique Label Cover problem, when parameterized by the size of the cutset only.
Finally, in section 8 we discuss extensions of our framework to weighted graphs. As the
introduction included an extensive discussion of related work and possible extensions,
we skip the conclusions section.

2. Illustration. In this section we present the outline of the technique, illus-
trating it with a running example of the Edge Unique Label Cover problem.
Since this section serves as an introduction and illustration, the arguments here are
mostly informal. Note that a more general problem, Node Unique Label Cover,
is formally proven to be fixed-parameter tractable in section 4.

Edge Unique Label Cover Parameter: k + s
Input: An undirected (multi)graph G, a finite alphabet Σ of size s, an integer
k, and for each edge e ∈ E(G) and each of its endpoints v a permutation ψe,v of
Σ, such that if e = uv, then ψe,u = ψ−1

e,v .
Question: Does there exist a set X ⊆ E(G) of size at most k and a function
Ψ : V (G)→ Σ such that for any uv ∈ E(G) \X we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

The permutations ψe,u are called constraints, the function Ψ is called a labeling,
and the set X is the deletion set.

As we consider the edge-deletion version, we use edge cuts throughout this section.
However, as our general framework also can be applied to node-deletion problems, we
comment throughout the description where additional argumentation is needed in the
node-deletion setting.

We assume that the graph given in the input is connected, as it is easy to reduce
the problem to considering each connected component separately. This is true for all
the considered problems. Connectivity of the graph will be maintained during the
whole course of the algorithm. Note that this means that the graph after excluding
X can have at most k + 1 connected components.

The algorithm, at the very high level, closely follows the approach of
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Kawarabayashi and Thorup [37]. We distinguish two cases: either the graph has
a somewhat balanced separator or it is highly connected in the following sense: any
cut of bounded size can separate only a very small part of the graph. More formally,
we use the following notion of good edge separation.

Definition 6. Let G be a connected graph. A partition (V1, V2) of V (G) is called
a (q, k)-good edge separation if

• |V1|, |V2| > q;
• |δ(V1, V2)| ≤ k, where δ(V1, V2) is the set of edges with one endpoint in V1

and second endpoint in V2;
• G[V1] and G[V2] are connected.

In the first phase of the algorithm, named recursive understanding , we iteratively
find a good edge separation and reduce one of its sides up to the size bounded by
a function of the parameter. We use the lower bound on the number of vertices of
either side to ensure that we indeed make some simplification. The applied reduction
step needs introduction of a more general problem, in which, intuitively, we have to
prepare for every possible behavior on a bounded number of distinguished vertices of
the graph, called border terminals.

When no good edge separation can be found, by Menger’s theorem we know that
between every two disjoint connected subgraphs of size larger than q we can find
k + 1 edge-disjoint paths. Then we proceed to the second phase, named, the high
connectivity phase, where we exploit this highly connected structure to identify the
solution.

While the structure of the first phase is the same as in [37], our work differs in
two important aspects. First, using Lemma 1 we show a simple efficient way to find
a balanced separator to recurse. Second, we show a general methodology for how to
apply Lemma 1 again for the second, high connectivity phase, to highlight important
parts of the graph and find the solution efficiently.

2.1. Recursive understanding. First, we show a simple way to find a good
edge separation in the graph. A full proof of the following lemma can be found in
section 3.

Lemma 7. There exists a deterministic algorithm that, given an undirected, con-
nected graph G on n vertices along with integers q and k, in time O(2O(min(q,k) log(q+k))

n3 log n) either finds a (q, k)-good edge separation or correctly concludes that no such
separation exists.

Proof. Consider a family F obtained via Lemma 1 for the universe U = E(G) and
integers a = 2q and b = k. Let (V1, V2) be a good separation in G and, for i = 1, 2,
let Ti be any tree with q edges that is a subgraph of G[Vi]. By the properties of F,
there exists S ∈ F such that E(T1), E(T2) ⊆ S, but S ∩ E(V1, V2) = ∅. Consider a
(multi)graph GS obtained from G by contracting the edges of S (we preserve multiple
edges in the contraction process), and let v ∈ V (GS) be called heavy if more than q
vertices of G were contracted onto it. It is easy to see that the good separation (V1, V2)
corresponds to a cut between two heavy vertices in GS of size at most k; moreover,
any such cut yields a good separation in G. Such a desired cut can be found in
polynomial time; the claimed running time follows if we first apply the sparsifying
technique of Nagamochi and Ibaraki [47] and then the classical algorithm of Ford and
Fulkerson to find a minimum cut between each pair of heavy vertices. We note that,
using instead a variant of the classical Karger’s algorithm for minimum cut [35], the
problem can be solved in Õ(2O(min(q,k) log(q+k))(|V (G)|+ |E(G)|)) time at the cost of
being randomized.
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The general methodology of the proof of Lemma 7—to use color coding to pick
a set of undeletable edges that is disjoint from the solution, but highlights it—is the
main engine of our work. We will see this idea exploited much more deeply in the
high connectivity phase.

Having found a good edge separation we can proceed to simplification of one of
the sides. To this end, following [37], we consider a more general problem, where the
input graph is equipped with a set of border terminals Tb, whose number is bounded
by a function of the budget for edge deletions. Intuitively, each considered instance of
the border problem corresponds to solving some small part of the graph, which can
be adjacent to the remaining part only via a small boundary—the border terminals.
Our goal in the border version is, for every fixed behavior on the border terminals,
to find some minimum size solution or to conclude that the size of the minimum
solution exceeds the given budget. Of course, the definition of behavior is problem-
dependent; therefore, we present this concept on the example of the Edge Unique
Label Cover problem.

Luckily, the definition in this case is natural and simple. The behavior on the
border terminals, whose number will be bounded by 4k, is defined as a function
Ψb : Tb → Σ expressing the labeling we expect on the border terminals. More formally,
for an instance of the border problem Ib = (G,Σ, k, (ψe,v)e∈E(G),v∈e) with border
terminals Tb, by P(Ib) we denote the set of all possible functions Ψb : Tb → Σ. For
any Ψb ∈ P(Ib), we say that a pair (X,Ψ) is a solution to (Ib,Ψb) if it is a solution to
Edge Unique Label Cover on Ib (ignoring the border terminals) and, additionally,
Ψ|Tb

= Ψb. The border problem is defined as follows.

Border E-ULC
Input: An Edge Unique Label Cover instance I =
(G,Σ, k, (ψe,v)e∈E(G),v∈e) with G being connected, and a set Tb ⊆ V (G)
of size at most 4k; denote Ib = (I, Tb).
Output: For each Ψb ∈ P(Ib) output a solution solΨb

= XΨb
to (Ib,Ψb) with

|XΨb
| minimum possible, or output solΨb

= ⊥ if such a solution does not exist.

Border E-ULC generalizes Edge Unique Label Cover: we may ask for
Tb = ∅ and take the output for the empty function Ψb.

Note that for a Border E-ULC instance Ib, we have |P(Ib)| = |Σ||Tb| ≤ s4k, and
the total number of edges output for Ib is bounded by ks4k. Define q = ks4k + 1.
In the recursive understanding phase for the Edge Unique Label Cover problem
we seek (q, 2k)-good separations. The reason why we allow cuts of size 2k in the
recursion, even though the solution is allowed to cut only k edges, will become more
clear in the high connectivity phase. There, we would like to rely on the fact that
any two connected subgraphs of more than q vertices are connected by at least 2k+ 1
edge-disjoint paths, and the majority of these paths do not intersect the solution we
are looking for.

Assume that, using the algorithm of Lemma 7, we have found a (q, 2k)-good
separation (V1, V2) of the graph G, for the input instance Ib. As |Tb| ≤ 4k, at least
one of the sides contains at most 2k border terminals. Without loss of generality we
assume that |V1 ∩ Tb| ≤ 2k. Now consider an instance Îb that equals Ib restricted to

vertices V1, with border terminals T̂b = (V1 ∩ Tb) ∪NG(V2). In other words, we treat
all the endpoints of the cut δ(V1, V2) that lie in V1 as border terminals. Note that, as

|δ(V1, V2)| ≤ 2k, we have |T̂b| ≤ 4k and Îb is a valid Border E-ULC instance.

Now, recursively solve the instance Îb, and let Z be the union of all edges that
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appear in any of the solutions output for Îb; note that |Z| ≤ q − 1. It is not hard to
see that, for any Ψb ∈ P(Ib), if there exists a solution to (Ib,Ψb), then there exists
one that does not delete any edge of E(G[V1]) \Z. Indeed, for any solution (X,Ψ) to

(Ib,Ψb) one can replace the part of this solution living in G[V1] with the output to Îb

that is consistent with the appropriate behavior on the border terminals T̂b, that is,
with a solution to (Îb,Ψ|T̂b

).

Thus, all the edges of E(G[V1]) \ Z can be made undeletable. In most edge-
deletion problems, an undeletable edge can be contracted. However, in the case
of Edge Unique Label Cover the situation is slightly more involved, as when
contracting an edge uv we need also to adjust the constraints on the edges incident
to u and v, to take into the account how ψuv,v translates the label Ψ(u) into Ψ(v)
and vice versa. This issue, together with a need of some reduction rule to reduce
superfluous parallel edges, causes some technical trouble in the formal proof but does
add any real difficulty to the problem. Hence, in this illustration we simply assume
that the undeletable edges may be contracted.

We remark that the operation applied to reduce parts of the graph determined
to be undeletable is problem-dependent. More complex problems, in particular node-
deletion versions, may require even more careful simplification rules.

We now note that the assumptions |Z| ≤ q − 1 and |V1| > q ensure that at
least one edge is contracted and we make progress due to the recursion step. Even
more, we infer that there are only at most q vertices left in V1 after the contrac-
tion. With this observation, we proceed to the estimation of the running time of
the algorithm. By Lemma 7 the time required to find a (q, 2k)-good edge separa-

tion is O(2O(k log q)n3 log n) = O(2O(k2 log s)n3 log n); hence, the total running time is

O(2O(k2 log s)n4 log n). We note that if q, more or less equal the bound on the number
of behaviors on the border terminals, is only a function of k, then we always obtain a
running time of the form O(g(k)n4 log n) for some function g.

2.2. High connectivity phase. We are left with the more involved part of our
approach, namely, what to do when no (q, 2k)-good edge separation is present in the
graph. Note that we can assume that the graph has more than q(k + 1) vertices, as
otherwise a brute-force search, which checks all the subsets of edges of size at most
k, runs within the claimed time complexity bound.

The following simple lemma formalizes the structural properties of the graph after
removing the solution. Note that this structure is precisely the gain of the first phase
of the algorithm.

Lemma 8. Let G be a connected graph that admits no (q, 2k)-good edge separation.
Let F be a set of edges of size at most k, such that G \ F has connected components
C0, C1, . . . , C`. Then (i) ` ≤ k, and (ii) all the components Ci except at most one
contain at most q vertices.

Moreover, for any two connected subgraphs Z1 and Z2 of G that are vertex-disjoint
and both containing more than q vertices, there exist at least 2k+1 edge-disjoint paths
between vertices of Z1 and vertices of Z2.

We would like to remark that if we apply the framework directly to the node-
deletion problems, we do not have any bound on `, i.e., the number of components—in
the node-deletion setting we need additional tools here.

Fix some behavior on the border terminals Ψb : Tb → Σ; we iterate through all of
them, which gives 2O(k log s) overhead to the running time. Assume that there exists
a solution X ⊆ E(G) for this particular choice. Without loss of generality let X be
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Fig. 1. An illustration of the application of Lemma 1 in the high connectivity phase. The
edges of the solution X are dotted, and the edges required to be in the interrogating set S are thick.
We require that S contains spanning trees of all small connected components and large subgraphs
attached to endpoints of the edges of X in the big connected component. Note that it is possible that
an edge of the solution has both endpoints in the big connected component. In this case we require
that S contains large subgraphs attached to its both endpoints.

of minimum size. Let C0, . . . , C` be components of G \ X, as in Lemma 8, where
|V (Ci)| ≤ q for i = 1, 2, . . . , `. Note that the assumption |V (G)| > q(k + 1) implies
that |V (C0)| > q, that is, the connected component of unbounded size is actually
huge. We call C0 the big component , and other components are small components.

We now explain the general methodology for how to highlight the solution X,
using Lemma 1. Let V (X) denote the set of endpoints of the edges of X. For

every component Ci, choose its arbitrary spanning tree Ti. Let A1 =
⋃`
i=1E(Ti) be

the set of edges of the spanning trees of small components. As ` ≤ k, we have that
|A1| ≤ (q−1)k. For every vertex u ∈ V (X)∩V (C0) construct an arbitrary subtree Tu0
of T0 such that u ∈ V (Tu0 ) and |V (Tu0 )| = q + 1, and let A2 =

⋃
u∈V (X)∩V (C0)E(Tu0 ).

We have that |V (X)| ≤ 2k and hence |A2| ≤ 2qk.
We say that a set S ⊆ E(G) interrogates the solution X if S ∩ X = ∅ but

A1 ∪ A2 ⊆ S. Note that a family F constructed by Lemma 1 for the universe E(G)
and constants a = (3q − 1)k and b = k contains a set that interrogates X. Hence
we may branch into |F| cases, guessing a set S that interrogates the solution we are
looking for. We refer to Figure 1 for an illustration.

The set S is our way to highlight the solution X. Note that there are three main
properties of an interrogating set:

1. it is disjoint with the solution;
2. it spans all the small connected components; and
3. it spans a large connected subgraph around each endpoint of an edge of X
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Fig. 2. An illustration of the situation after the set S is guessed in the high connectivity phase:
the bottom half is the union of all big stains, Sbig; for each connected component of G\Sbig we need
to decide whether it goes entirely to C0 (the component on the left) or whether we cut it according
to the stains (the components in the middle and on the right).

that belongs to the big connected component.
In the subsequent arguments we will heavily exploit all three properties. Our goal is
to deduce X using its interrogating set S; formally, we are going to find a minimum
solution to (Ib,Ψb) that is additionally interrogated by S.

We analyze connected components of the graph (V (G), S). Each such connected
component is called a stain. A stain is big if it contains more than q vertices and
small otherwise. Note that any (unknown to us) connected component Ci for i ≥ 1
is a small stain, whereas all big stains are contained in C0. Let Sbig be the union of
vertex sets of all big stains. The following structural observation greatly limits the
number of possible sets X to consider.

Lemma 9. For any connected component D of G\Sbig, exactly one of the follow-
ing is true:

1. no edge incident to D is contained in X, and D ⊆ C0;
2. D contains no vertex of C0, and the small stains contained in D are in one-

to-one correspondence with components Ci of G \X that are contained in D.

Proof. If D contains no vertex of C0, the second property in the second point
follows from the assumption that S contains a spanning tree Ti of each connected
component Ci for i ≥ 1 and that S is disjoint from the solution.

If D contains a vertex of C0, but the first point is not satisfied, then there exists
a vertex v that is both in D ∩C0 and is an endpoint of an edge of X. However, then
S should contain T v0 and v belongs to a big stain, a contradiction to the definition
of D.

We remark that in the node-deletion setting the situation is a bit more complex,
but an equivalent of Lemma 9 can still be proven and exploited. We also refer to
Figure 2 for an illustration for Lemma 9.

The main difficulty of the high connectivity phase is to deduce, for each connected
component D of G \ Sbig, which option of Lemma 9 is true for D. Once this decision
is made, in all problems considered by us it is easy to deduce the entire set X. Let us
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now illustrate this claim with the running example of Edge Unique Label Cover.
We remark that we now work closely in the Edge Unique Label Cover setting;
the following argumentation is highly problem-dependent.

We need the following observation: as we seek a solution X disjoint with S, if we
fix a label of a vertex v ∈ Z for some stain Z, the constraints on the edges of S in Z
propagate the labeling to the whole stain Z. Here, we heavily rely on the fact that the
constraints in the Unique Label Cover problem are permutations. A labeling of Z
that originated from a labeling of a single vertex, propagated through the constraints
of S, is called a reasonable labeling of Z. Note that there are at most |Σ| reasonable
labelings of a single stain.

Thus, if for a connected component D of G\Sbig we know that the second option
of Lemma 9 is true, for each small stain Z contained in D we may find (by enumerating
the reasonable labelings of Z) a labeling of Z that minimizes the number of unsatisfied
constraints in G[Z]. On the other hand, if the first option of Lemma 9 is true for D,
then we may forget D for a moment, solve the problem in the rest of the graph, and
extend the obtained labeling of Sbig to D. The last step should be possible, as we
decided not to delete any constaint incident to D.

Thus, we are left with the quest to decide, for each connected component of
G \ Sbig, which option of Lemma 9 to choose. In Edge Unique Label Cover, the
main trick in this quest is to correctly label Sbig. Consequently, we now focus on
big stains. As in the high connectivity phase our graph does not admit (q, 2k)-good
separation, any two big stains Z1 and Z2 are connected by a family P of at least 2k+1
edge-disjoint paths. Let us focus on one path P ∈ P and assume that P is disjoint
with the solution X. Using again the fact that all constraints in the Unique Label
Cover problem are permutations, we infer that for any label assigned to the first
vertex of P , there exists a unique way to label all the vertices of P while satisfying
all the constraints on the edges of P .

Fix now one of at most |Σ| reasonable labelings of Z1; denote it Ψ1. Assum-
ing Z1 is labeled according to Ψ1, there is a unique way to label the vertices of a
path P ∈ P assuming P is disjoint with the solution X. Moreover, the obtained
(unique) label of the endpoint of P yields a unique reasonable labeling of Z2. As
the majority of the paths of P are disjoint with the solution X, the majority of
paths of P should yield the same labeling of Z2, given the labeling Ψ1 of Z1. Conse-
quently, fixing a reasonable labeling on one big stain provides us with a unique way
to label all other big stains, even without knowing the set X. Therefore, we may
branch into at most |Σ| ways, guessing the labeling of all big stains, that is, of the
set Sbig.

We remark that the argumentation in the previous paragraph is the sole reason
for considering cuts of size 2k instead of only k in the recursive understanding phase.

Hence, we have obtained a labeling Ψbig of Sbig. Consider a component D of
G \ Sbig and assume that the first option of Lemma 9 is true for D. Consequently,
the labeling Ψbig can be (uniquely) extended to D without violating any constraint
incident to D. Moreover, observe that an implication is true in the other direction
as well: if Ψbig can be extended to D without violating any constraint incident to D,
then we can greedily choose the first option of Lemma 9 for D, as there is no need to
delete any edge incident to D (assuming labeling Ψbig).

This finishes the description of high connectivity phase and the entire algorithm
for Edge Unique Label Cover.
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3. Preliminaries. In this section we prepare ground for formal proofs of the
theorems stated in the introduction. We start with setting up the notation, and then
we give definitions and preliminary results on “good separations,” in both the edge-
and node-deletion variants.

3.1. Notation. We use standard graph notation. As the definitions vary among
the algorithms, we introduce problem-specific notation at the beginning of each corre-
sponding section, describing whether we work on graphs, multigraphs, or some other
structures. Generally, by a graph we denote the pair G = (V,E) consisting vertex set
V and edge set E. By V (G) we denote the vertex set of G and by E(G) the edge
set. For F ⊆ E(G) by V (F ) we denote the set of endpoints of F . For V1, V2 ⊆ V (G),
by δ(V1, V2) we denote the set of edges with one endpoint in V1 and second in V2.
For W ⊆ V (G), by G[W ] we denote the graph induced by W . For u ∈ V (G), by
N(u) we denote the neighborhood of u, i.e., N(u) = {v | uv ∈ E(G)}, and the closed
neighborhood is defined by N [u] = N(u) ∪ {u}. We extend this notion to subsets in
the following manner: for W ⊆ V (G), N [W ] =

⋃
u∈W N [u], and N(W ) = N [W ] \W .

If X is a set of vertices or edges, by G \ X we denote the graph G with edges or
vertices of X removed.

3.2. Contractions. In this section we gather the definitions and simple facts
connected to the notion of an edge contraction. Our definition works in multigraphs.

Definition 10. Given a multigraph G and an edge uv ∈ E(G), contraction of
uv is the operation that yields a new multigraph G′ with following properties:

• V (G′) = V (G) \ {u, v} ∪ {wuv}, where wuv /∈ V (G) is a new vertex;
• E(G′) is first constructed from E(G) by deleting all edges uv and then sub-

stituting all occurrences of u or v by wuv in all the other edges.

In other words, we preserve multiple edges but delete loops. With contraction
of an edge uv we can associate a mapping ιuv : V (G) → V (G′) by setting ιuv(u) =
ιuv(v) = wuv and ιuv(t) = t for all t ∈ V (G) \ {u, v}. For w ∈ V (G), we say that
vertex w is contracted onto ιuv(w). By somewhat abusing the notation we identify all
the edges of E(G′) with the edges from E(G) in which they originated. By contracting
the edge set S ⊆ E(G) we mean consecutively contracting edges of S in an arbitrary
order. Note that if some edge already disappeared from the graph because of becoming
a loop, we omit this contraction. We usually use ι to denote the composition of all
the mappings ιuv corresponding to the performed contractions. The following lemma,
which can be considered folklore, implies that the order of performing the contractions
does not matter.

Lemma 11. Let G be a multigraph, D ⊆ E(G) be a set of edges, and G′ be the
graph obtained by contracting D in an arbitrary order. Then the following holds:

• ι(u) = ι(v) iff u and v can be connected via a path consisting of edges from
D for u, v ∈ V (G).

• ι−1(v) induces a connected subgraph of G for v ∈ V (G′);
• E(G′) ⊆ E(G);
• an edge vw ∈ E(G) is contained also in E(G′) iff ι(v) 6= ι(w);
• if X ⊆ V (G′), then G′[X] is a maximal connected component iff G[ι−1(X)]

is;
• in particular, G is connected iff G′ is;
• for every set F such that D ∩ F = ∅, G′ \ F can be obtained by contracting
D in G \ F .
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From Lemma 11 it follows that given a graph G = (V,E) and the set D ⊆ E, in
time O(|V |+ |E|) we can construct the graph G′ obtained by contracting edges of D.
We simply find connected components of the graph (V,D), construct a new vertex for
each of them, and for every edge of E check whether it should be introduced in G′,
and where.

3.3. Preliminary results. We start with a formal proof of Lemma 1.

Proof of Lemma 1. For a = 0 or b = 0 the lemma is trivial; assume then a, b ≥ 1.
We use the standard technique of splitters. A (n, r, r2)-splitter is a family of func-

tions from {1, 2, . . . , n} to {1, 2, . . . , r2}, such that for any subset X ⊆ {1, 2, . . . , n} of
size r, one of the functions in the family is injective on X. Naor, Schulman, and Srini-
vasan [49] gave an explicit construction of an (n, r, r2)-splitter of size O(r6 log r log n)
using O(poly(r) · n log n) time.

Without loss of generality, assume that a ≤ b and that U = {1, 2, . . . , n}. Let
c = min(a + b, n). We construct a (n, c, c2)-splitter using the algorithm of Naor,
Schulman, and Srinivasan and, for each function f in the splitter and for each subset
S′ ⊆ {1, 2, . . . , c2} of size a, we put into the family F the set f−1(S′) ⊆ U . Assume
now that we have A,B ⊆ U such that |A| ≤ a and |B| ≤ b. Obtain A′ and B′

by adding arbitrary elements of U \ (A ∪ B) to A and B so that |A′| + |B′| = c. By
definition of the splitter, there exists some f in the splitter that is injective on A′∪B′.
To finish the proof one needs to observe that if we take S = f−1(f(A′)), then A ⊆ S
and B ∩ S = ∅.

The time bound and the size of the constructed family F follow from the bound

on the size of the splitter and the fact that there are at most
(

(a+b)2

a

)
= 2O(a log(a+b))

choices for the set S′; note that for fixed f and S′, the set f−1(S′) can be computed
in linear time.

A well-known result by Nagamochi and Ibaraki [47] states that the graph can be
efficiently sparsified while preserving all the essential connectivity.

Lemma 12 (see [47]). Given an undirected graph G = (V,E) and an integer
k, in O(k(|V | + |E|)) time we can obtain a set of edges E0 ⊆ E of size at most
(k + 1)(|V | − 1), such that for any edge uv ∈ E \E0 in the graph (V,E0) there are at
least k + 1 edge-disjoint paths between u and v.

Proof. The algorithm performs exactly k+ 1 iterations. In each iteration it finds
a spanning forest F of the graph G, adds all the edges of F to E0, and removes all
the edges of F from the graph G.

Observe that for any edge uv remaining in the graph G, the vertices u and v are
in the same connected components in each of the forests found. Hence in each of those
forests we can find a path between u and v; thus, we obtain k+ 1 edge-disjoint paths
between u and v.

3.4. Good separations in edge-deletion problems. For the sake of com-
pleteness, let us recall the definition of a (q, k)-good edge separation.

Definition 13. Let G be a connected graph. A partition (V1, V2) of V (G) is
called a (q, k)-good edge separation if

• |V1|, |V2| > q;
• |δ(V1, V2)| ≤ k;
• G[V1] and G[V2] are connected.

We are ready to present proofs of lemmas regarding algorithms finding good edge
separations.
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Lemma 14. There exists a deterministic algorithm that, given an undirected, con-
nected graph G on n vertices along with integers q and k, in time O(2O(min(q,k) log(q+k))

n3 log n) either finds a (q, k)-good edge separation or correctly concludes that no such
separation exists.

Proof. The algorithm iterates through all the sets from the family F, obtained
from Lemma 1 for universe U = E(G) and constants a = 2q and b = k. For a set S ∈
F, we obtain a new graph H by contracting all the edges of S. Let ι : V (G)→ V (H)
be the mapping that maps every vertex of G to the vertex it is contracted onto. We
say that a vertex u ∈ V (H) is big if |ι−1(u)| > q. Now, for every pair of big vertices
u1, u2 ∈ V (H) we compute some minimum edge cut between u1 and u2 if it is of size
at most k, or we find that it has to have larger size. This can be done in O(k2n3) time,
since first we can sparsify the graph by removing all the edges outside of the set E0

returned by Lemma 12, and next for each of the O(n2) pairs of big vertices using the
classical algorithm by Ford and Fulkerson in O(k2n) time find a cut of size at most k
if it exists. Assume that for some pair of big vertices u1, u2 we have found a minimum
edge cut Fu1,u2 , of size at most k. We claim that Fu1,u2 induces a (q, k)-good edge
separation of G, which can be returned as the output of the algorithm.

Let v1 ∈ ι−1(u1) and v2 ∈ ι−1(u2) be arbitrary vertices. Let V1, V2 be the sets
of vertices reachable from v1, v2 in G \ Fu1,u2

, respectively. We claim that (V1, V2)
is a (q, k)-good edge separation of G. First, observe that V1 and V2 are disjoint.
Otherwise there would be a path from v1 to v2 in G that avoids Fu1,u2 , which after
applying the contractions would become a path from u1 to u2 in H that avoids Fu1,u2 .
Second, observe that V1 ∪ V2 = V (G). It follows from the well-known properties of
minimum cuts that in H \ Fu1,u2

every vertex is reachable either from u1 or from
u2. As graphs G[ι−1(u)] are connected for u ∈ H, we find that in G every vertex is
reachable either from v1 or from v2. Third, observe that |V1|, |V2| > q, as ι−1(u1) ⊆ V1

and ι−1(u2) ⊆ V2.
We are left with proving that if the graph admits a (q, k)-good edge separation,

then for at least one set S0 ∈ F we obtain two big vertices that can be separated
by an edge cut of size at most k. This ensures that if no solution has been found
for any S ∈ F, then the algorithm can safely provide a negative answer. Fix some
(q, k)-good edge separation (V1, V2) and let T1, T2 be arbitrary subtrees of G[V1] and
G[V2], respectively, each having exactly q+1 vertices. By the choice of family F, there
exists S0 ∈ F that contains all the edges of T1 and T2 but is disjoint with δ(V1, V2). In
the step when S0 is considered, after applying contractions all the vertices of T1 are
contracted onto one vertex u1, all the vertices of T2 are contracted onto one vertex
u2, but edges from δ(V1, V2) are not being contracted. Hence, we obtain big vertices
u1, u2 that can be separated by an edge cut of size at most k.

Lemma 15. Let G be a connected graph that admits no (q, k)-good edge separation.
Let F be a set of edges of size at most k, such that G \ F has connected components
C0, C1, . . . , C`. Then (i) ` ≤ k, and (ii) all the components Ci except at most one
contain at most q vertices.

Proof. Claim (i) follows directly from the fact that removing an edge from the
graph can increase the number of connected components by at most one. For claim
(ii), observe that if two components had at least q vertices, then F could serve as an
edge cut between their vertex sets of size at most k. It follows that the minimum
edge cut between their vertex sets would also have size bounded by k, hence it would
induce a (q, k)-good edge separation in G.
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We now show that we can improve the polynomial factor in the running time of
the procedure of Lemma 14, at the cost of randomization.

Lemma 16. There exists a randomized algorithm that, given an undirected, con-
nected graph G = (V,E) along with integers q and k, in time Õ(2O(min(q,k) log(q+k))(|V |+
|E|)) either finds a (q, k)-good edge separation or correctly concludes that no such sep-
aration exists with probability at least (1− 1/|V |2).

Proof. Let (V1, V2) be a (q, k)-good edge separation. Intuitively, we want to have
an edge-contraction process such that no edge of δ(V1, V2) is contracted and each
vertex which remains is big, because then any cut of size at most k gives a (q, k)-good
edge separation, which we can find by using Karger’s algorithm. We use Lemma 1 in a
fashion very similar to the proof of Lemma 14; however, as a few details are different,
we repeat the entire proof.

The algorithm iterates through all the sets from the family F, obtained from
Lemma 1 for universe U = E(G) and constants a = 2qk and b = k. For a set S ∈ F,
we obtain a new graph H ′ by contracting all the edges of S. Let ι′ : V (G)→ V (H ′) be
the mapping that maps every vertex of G to the vertex it is contracted onto. We say
that a vertex u′ ∈ V (H ′) is big if |ι′−1(u′)| > q and small otherwise. Let S′ ⊆ E(H ′)
be the set of edges of H ′ having at least one small endpoint. We construct a graph H
by contracting all the edges of S′ in H ′. Let ι : V (G)→ V (H) be the mapping from
the graph G to the graph H. Note that after contracting all the edges of S′ all the
vertices are big in the graph H with respect to ι. By using Karger’s algorithm [35], in
Õ(k log(qk)(|V |+ |E|)) time we find the minimum cut in the graph H with probability
at least (1− 1

2ck log(qk)|V |2 log |V | ) for some constant c. If the minimum cut found is of

size at most k, it immediately gives a (q, k)-good edge separation in the graph G,
since all the vertices of H are big.

We are left with proving that if G admits a (q, k)-good edge separation (V1, V2),
then for at least one set S0 ∈ F the graph H contains a cut of size at most k, providing
some (possibly different) (q, k)-good edge separation. This ensures that if no solution
has been found for any S ∈ F, then the algorithm can safely provide a negative answer.
For each vertex u ∈ N(V2) ⊆ V1 let Tu be an arbitrary subtree of G[V1] containing
the vertex u, having exactly q + 1 vertices. Similarly, for each vertex u ∈ N(V1) let
Tu be an arbitrary subtree of G[V2] containing u, having exactly q + 1 vertices. By
the choice of the family F, there exists S0 ∈ F that contains all the edges of Tu for
each u ∈ V (δ(V1, V2)), but at the same time S0 is disjoint with δ(V1, V2). In the step
when S0 is considered, after applying contractions, for each u ∈ V (δ(V1, V2)) all the
vertices of Tu are contracted onto one vertex u′, which is big. However, the edges from
δ(V1, V2) are not being contracted. Observe that in the graph H ′ no edge of δ(V1, V2)
has a small endpoint, and consequently all of the edges of δ(V1, V2) are present in the
graph H, and they induce a cut of size at most k.

Note that the algorithm of Karger is used O(2O(k log(qk)) log |V |) times, and there-
fore, by the union bound, if our algorithm does not find a (q, k)-good edge separation,
with probability at least (1− 1/|V |2) it does not exist.

3.5. Good separations in node-deletion problems. As we consider node-
deletion problems in most of our results, we need to define an appropriate variant of
good separations; that is the main goal of this section. In the edge-deletion variant, we
might have assumed that we only consider cuts that separate the graph into exactly
two connected components; this is no longer a case in the node-deletion variant.
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Moreover, the applications require us to handle the possibility that some vertices are
undeletable.

It turns our that in the node-deletion problems we need to use two types of
separations. In the first one, we require that after removal of the separator, at least
two connected components are large.

Definition 17. Let G be a connected graph and V∞ ⊆ V (G) a set of undeletable
vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node separa-
tion if

• |Z| ≤ k,
• Z ∩ V∞ = ∅,
• V1 and V2 are vertex sets of two different connected components of G\Z, and
• |V1 \ V∞|, |V2 \ V∞| > q.

In the second one we require a bunch of connected components with the same
neighborhood.

Definition 18. Let G be a connected graph, V∞ ⊆ V (G) a set of undeletable
vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)

`
i=1) is called

a (q, k)-flower separation in G (with regard to border terminals Tb) if the following
holds:

• 1 ≤ |Z| ≤ k and Z ∩ V∞ = ∅; the set Z is the core of the flower separation
(Z, (Vi)

`
i=1);

• Vi are vertex sets of pairwise different connected components of G \ Z each
set Vi is a petal of the flower separation (Z, (Vi)

`
i=1);

• V (G)\ (Z ∪
⋃`
i=1 Vi), called a stalk, contains more than q vertices of V \V∞;

• for each petal Vi we have Vi ∩ Tb = ∅, |Vi \ V∞| ≤ q, and NG(Vi) = Z;

• |(
⋃`
i=1 Vi) \ V∞| > q.

We now show how to detect the aforementioned separations using Lemma 1,
similarly as in the case of good edge separations.

Lemma 19. Given a connected graph G with undeletable vertices V∞ ⊆ V (G)
and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n) time a (q, k)-
good node separation of G or correctly conclude that no such separation exists.

Proof. The algorithm iterates through all the sets from the family F, obtained
from Lemma 1 for universe U = V (G) \ V∞ and constants a = 2q+ 2 and b = k. For
a set S ∈ F, we obtain a new graph H by contracting all the edges between vertices
of S ∪ V∞ in G. Let ι : V (G) → V (H) be the mapping that maps every vertex of
G to the vertex it is contracted onto, and let S′ = ι(S ∪ V∞). We say that a vertex
u ∈ S′ is big if |ι−1(u) \ V∞| > q.

In the graph H, we assign weight ∞ to all vertices of S′ and weight 1 to all
vertices of V (H) \S′. In this weighted graph, for every pair of big vertices u1 and u2,
we compute a minimum node cut between u1 and u2 if it is of size at most k or find
that it has to have larger size. This can be done in O(kn3) time using the Gomory–Hu
tree extended to node weighted separations by Granot and Hassin [30]. That is, we
can use |V (H)|−1 applications of the classic Ford–Fulkerson algorithm, each of which
consumes O(kn2) time, since after finding k+1 vertex disjoint paths we may stop the
algorithm. Assume that for some pair of big vertices u1, u2 we have found a minimum
node cut Fu1,u2

, of size at most k. We claim that Fu1,u2
induces a (q, k)-good node

separation of G, which can be returned as the output of the algorithm.
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Let v1 ∈ ι−1(u1) \ V∞ and v2 ∈ ι−1(u2) \ V∞ be arbitrary vertices. Note that
Fu1,u2

⊆ V (G) \ V∞, as only vertices of V (H) \ S′ = V (G) \ (S ∪ V∞) have finite
weights. Let V1, V2 be the sets of vertices reachable from v1, v2 in G \ Fu1,u2

, respec-
tively. We claim that (Fu1,u2 , V1, V2) is a (q, k)-good node separation of G. Indeed, V1

and V2 are defined as vertex sets of two connected components of G\Fu1,u2 ; moreover,
V1 6= V2 as Fu1,u2

separates u1 from u2 in H, and therefore v1 from v2 in G. Finally,
observe that |V1 \ V∞|, |V2 \ V∞| > q, as ι−1(u1) ⊆ V1 and ι−1(u2) ⊆ V2.

We are left with proving that if the graph admits a (q, k)-good node separation,
then for at least one set S0 ∈ F we obtain two big vertices that can be separated by
a node cut of size at most k. This ensures that if no solution has been found for any
S ∈ F, then the algorithm can safely provide a negative answer. Fix some (q, k)-good
node separation (Z, V1, V2) and let T1, T2 be arbitrary subtrees of G[V1] and G[V2],
respectively, each having exactly q+ 1 vertices that are in V (G)\V∞. As |Z| ≤ k, by
the choice of family F, there exists S0 ∈ F that contains (V (T1)∪ V (T2)) \ V∞ but is
disjoint with Z. In the step when S0 is considered, after applying contractions all the
vertices of T1 are contracted onto one vertex u1, all the vertices of T2 are contracted
onto one vertex u2, but vertices of Z get weight 1. Hence, we obtain big vertices
u1, u2 that can be separated by a node cut of size at most k (note that the algorithm
does not necessarily find precisely the cut Z in this step).

Lemma 20. Given a connected graph G with undeletable vertices V∞ ⊆ V (G) and
border terminals Tb ⊆ V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))

n3 log n) time a (q, k)-flower separation in G w.r.t. Tb or correctly conclude that no
such flower separation exists.

Proof. We first note that given a set Z ⊆ V (G) of size at most k, we can in
O(n2) time verify whether there exists a (q, k)-flower separation with Z as the core,
that is, (Z, (Vi)

`
i=1) for some choice of the family of petals (Vi)

`
i=1. Indeed, we may

simply iterate over connected components of G \Z using a simple dynamic program.
For each prefix of the sequence of connected components and for each n′ ≤ n we
compute whether some of the components can be chosen to be petals so that the
total number of vertices of V (G) \ V∞ in the petals is equal to n′. When we consider
the next connected component, if it does not satisfy requirements for a petal, then
we cannot take it as a petal (and we take the value of the cell computed in the last
iteration for the same value of n′). However, if it does satisfy these requirements,
then we either do not take it to be a petal (and do the same as previously) or take
it (and we take the value of the cell computed in the last iteration for the value n′

decremented by the number of vertices from V \ V∞ in the considered component).
There exists a flower separation with Z as the center iff some of the values for q +
1 ≤ n′ ≤ |V (G) \ (V∞ ∪ Z)| − q − 1 are true in the last iteration. It is trivial to
augment the dynamic program with backlinks, so that the flower separation can be
retrieved.

To prove the lemma, we iterate through all the sets from the family F, obtained
from Lemma 1 for universe U = V (G) \ V∞ and constants a = q and b = k. For a
set S ∈ F, we obtain a new graph H by contracting all the edges between vertices of
S ∪ V∞ in G. Let ι : V (G)→ V (H) be the mapping that maps every vertex of G to
the vertex it is contracted onto, and let S′ = ι(S ∪ V∞). We say that a vertex u ∈ S′
is interesting if |ι−1(u) \V∞| ≤ q. For each interesting vertex u with |NH(u)| ≤ k we
verify whether there exists a (q, k)-flower separation (Z, (Vi)

`
i=1) in G w.r.t. Tb with

the core Z = NH(u); note that NH(u) ⊆ V (G). We output such a flower separation
if we find one. If no flower separation is found for any choice of S and u, we conclude

D
ow

nl
oa

de
d 

12
/0

3/
19

 to
 1

47
.1

88
.1

08
.1

70
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FPT ALGORITHMS USING RANDOMIZED CONTRACTIONS 1191

that no (q, k)-flower separation exists in G w.r.t. Tb. The time bound follows from
the fact that for each vertex u, we can verify whether u is interesting and compute
NH(u) in O(n2) time, and then within the same complexity check if NH(u) is the core
of some (q, k)-flower separation. To finish the proof of the lemma we need to show
that if the algorithm concludes that there is no appropriate flower separation in the
graph, then this conclusion is correct.

To this end, assume that there exists a (q, k)-flower separation (Z, (Vi)
`
i=1) in G

w.r.t. Tb. Note that |V1 \ V∞| ≤ q (` ≥ 1 since |(
⋃`
i=1 Vi) \ V∞| > q) and |Z| ≤ k, so

by the properties of the family F there exists a set S0 ∈ F with (V1 \ V∞) ⊆ S0 and
Z ∩ S0 = ∅. Recall that NG(V1) = Z; thus, in the graph H constructed for the set
S0 there is a vertex u ∈ V (H) with ι−1(u) = V1. Note that u is an interesting vertex
(as |V1 \ V∞| ≤ q) and NH(u) = Z (as NG(V1) = Z by the definition of the flower
separation). Therefore the algorithm considers Z = NH(u) and finds a (q, k)-flower
separation in G w.r.t. Tb.

We conclude this section with a lemma that shows that if we do not have any
good node or flower separations, then any k-cut not only cannot split the graph into
two large components but also cannot split the graph into too many small ones.

Lemma 21. If a connected graph G with undeletable vertices V∞ ⊆ V (G) and
border terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or a (q, k)-
flower separation w.r.t. Tb, then, for any Z ⊆ V (G)\V∞ of size at most k, the graph
G \Z contains at most (2q+ 1)(2k − 1) + |Tb|+ 1 connected components containing a
vertex of V \ V∞, out of which at most one has more than q vertices not in V∞.

Proof. Let Z ⊆ V (G) \ V∞, |Z| ≤ k. First, if there are at least two connected
components of G\Z with more than q vertices in V (G)\V∞, then a minimal subset of
Z separating these two components would induce a (q, k)-good node separation in G.
Thus, in G \ Z we have at most one connected component with more than q vertices
outside V∞ and at most |Tb| connected components that contain a vertex from Tb. We
denote the remaining connected components containing at least one vertex of V \V∞
as nice ones; they have at most q vertices outside V∞ each. Let us partition them
with respect to their neighborhood (which is a subset of Z). Note that if there exists
a set Z ′ ⊆ Z, such that at least 2q + 2 nice connected components of G \ Z that are
adjacent to exactly Z ′, then there exists a (q, k)-flower separation in G w.r.t. Tb with
core Z ′ and petals being q+ 1 of aforementioned nice connected components of G\Z.
As there are at most 2k − 1 nonempty subsets of Z, the lemma follows.

4. The algorithm for Node Unique Label Cover. This section is devoted
to fixed-parameter tractability of the Node Unique Label Cover problem, param-
eterized by both the size of the cutset and the size of the alphabet. We solve a bit
more general version of the problem, where we allow arbitrary unary relations and
we allow the binary relations to be only partial permutations. This generalizations
appear naturally in our branching and reduction rules.

More formally, for an alphabet Σ, a binary relation ψ ⊆ Σ× Σ is called a partial
permutation if for every α ∈ Σ both ({α} × Σ) ∩ ψ and (Σ × {α}) ∩ ψ are of size
at most one; in other words, for every α ∈ Σ, at most one value β satisfies φ(α, β)
and at most one value β′ satisfies φ(β′, α). For a partial permutation ψ, its reverse is
defined as ψ−1 = {(β, α) : (α, β) ∈ ψ}. For any two partial permutations ψ1, ψ2 their
composition is defined as

ψ2 ◦ ψ1 = {(α, γ) : ∃β∈Σ(α, β) ∈ ψ1 ∧ (β, γ) ∈ ψ2}.
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Note that a composition of two partial permutations is a partial permutation itself
and behaves in a similar manner as a composition of functions.

It is more convienient notationally to treat the deletion of a vertex as another,
special label A. Formally, we consider the following problem.

Node Unique Label Cover Parameter: k + s
Input: An undirected graph G, a finite alphabet Σ of size s, an integer k, for
each vertex v ∈ V (G) a set φv ⊆ Σ and for each edge e ∈ E(G) and each its
endpoint v a partial permutation ψe,v of Σ, such that if e = uv, then ψe,u = ψ−1

e,v .

Question: Does there exist a function Ψ : V (G)→ Σ∪{A} such that at most k
vertices are assigned value A, for every v ∈ V (G) we have Ψ(v) ∈ φv ∪{A} and
for every uv ∈ E(G\X) we have Ψ(u) =A, Ψ(v) =A, or (Ψ(u),Ψ(v)) ∈ ψuv,u?

The relations ψe,u are called edge constraints, the sets φv are called vertex con-

straints, the function Ψ is called a labeling, and the set Ψ−1(A) is the deletion set.
For a vertex v with Ψ(v) =A, we say that v is deleted by Ψ.

Before we start, we note that the edge-deletion variant (where we look for a
deletion set being a subset of edges; we are to label all vertices, but we do not need to
satisfy the constraints on the deleted edges) reduces to the defined above node-deletion
variant.

Indeed, first observe that in the Node Unique Label Cover problem we can
assume that additionally we are given in the input a set of undeletable vertices V∞ ⊆
V (G) and we are to find a labeling Ψ that does not delete any vertex of V∞: we can re-
duce this variant to the original one by replacing each undeletable vertex with a clique
on k+ 1 vertices, with constraints on the edges of the clique being identities. Second,
given an Edge Unique Label Cover instance (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e),
we can first make all vertices of G undeletable and then subdivide each edge, so that
the edge constraints on the two halves of the edge e = uv of G compose to the con-
straint ψe,u; the new vertices introduced in this operation are kept
deletable.

We remark that the aforementioned reduction blows up the number of vertices
and edges of the input graph; thus the obtained algorithm for Edge Unique Label
Cover has worse dependency on n than n4 log n we obtain for the node-deletion
variant. Note that section 2 contains a sketch of an algorithm of Edge Unique
Label Cover with n4 log n dependency on n in the running time. As the main result
of our work is fixed-parameter tractability of considered problems, and the proven
dependency on n is far from being linear or even quadratic, we refrain from formally
showing an algorithm for Edge Unique Label Cover with n4 log n dependency on
n in the running time.

Note that we may assume that the input graph G in the Node Unique Label
Cover problem is connected; otherwise, we may solve the problem on each connected
component, for all budgets between 0 and k, separately. During the course of the
algorithm, we maintain the connectivity of G. We denote by n the number of vertices
of the graph of the currently considered Node Unique Label Cover instance.

We also assume that the elements of Σ can be compared in constant time.
The description of the algorithm consists of a sequence of steps. Each step is

accompanied with some lemmas and a discussion that justifies its correctness and
verifies complexity bounds.
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4.1. Labelings. We first extend the notion of labeling to arbitrary subsets of
V (G).

Definition 22. Given an instance I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) and

a set S ⊆ V (G), a function ΨS : S → Σ ∪ {A} is called a labeling if it satisfies all
constraints on G[S] in I, that is, for each v ∈ S we have ΨS(v) ∈ φv ∪ {A} and for
each uv ∈ E(G[S]) we have ΨS(u) =A, ΨS(v) =A, or (ΨS(u),ΨS(v)) ∈ ψuv,u.

A labeling is deletion-free if it does not assign the value A to any vertex.

For a labeling Ψ, by dom(Ψ) we denote its domain.
The following lemma is a straightforward corollary of the fact that the edge con-

straints are partial permutations.

Lemma 23. Let I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) be a Node Unique
Label Cover instance and let A ⊆ V (G) be an arbitrary subset of the vertex set that
induces a connected subgraph of G. Then, for every v ∈ A and α ∈ Σ there exists at
most one deletion-free labeling ΨA : A → Σ such that ΨA(v) = α. Furthermore, in
O(s|A|2) time one can find such a labeling or correctly conclude that it does not exist.
Consequently, for each set A ⊆ V (G) such that G[A] is connected, there are at most
s deletion-free labelings of A and those can be enumerated in O(s2|A|2) time.

Proof. Note that for every uw ∈ E(G[A]), if ΨA(u) is fixed, then there exists at
most one value ΨA(w) such that (ΨA(u),ΨA(w)) ∈ ψuw,u, and such a value ΨA(w)
can be found in O(s) time. The first claim of the lemma follows from the assumption
that G[A] is connected: the labeling ΨA can be found using a breadth-first search and
then verified to satisfy all the constraints in O(s|A|2) time. For the second claim, we
simply iterate over all possible values ΨA(v) for one fixed vertex v ∈ A.

4.2. Operations on the input graph. In this section we define two basic op-
erations the algorithm repetitively applies on the graph and show their key properties.

Definition 24. Let I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) be a Node Unique
Label Cover instance, let u, v ∈ V (G), and let ψ be a partial permutation of Σ.
By updating an edge uv with a constraint ψ we mean the following operation: if
uv /∈ E(G), then we add an edge uv to the graph G with constraints ψuv,u = ψ,
ψuv,v = ψ−1; otherwise, we modify the constraints on the edge uv in G by replacing
ψuv,u with ψuv,u ∩ ψ and ψuv,v with ψuv,v ∩ ψ−1.

Informally speaking, updating an edge uv with ψ is equivalent to adding a new
edge between u and v with this constraint; however, we use the definition above to
avoid multiple edges in G. Note that obviously updating an edge cannot spoil the
assumption of connectivity of G. The following lemma is immediate.

Lemma 25. Let I′ be a Node Unique Label Cover instance obtained from I by
updating and edge uv with a constraint ψ. Then Ψ is a solution to I′ iff it is a solution
to I that satisfies the following additional property: either Ψ(u) = A, Ψ(v) = A, or
(Ψ(u),Ψ(v)) ∈ ψ.

The second operation allows us to remove a vertex that, for some reason, will not
be deleted by an optimum solution.

Definition 26. Let I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) be a Node Unique
Label Cover instance and v ∈ V (G). By bypassing the vertex v we mean the fol-
lowing operation:

1. remove the vertex v with its incident edges from the graph G;
2. for each u ∈ NG(v) we replace φu with φu ∩ {β : ∃α∈φv

(α, β) ∈ ψuv,v};
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3. for each u1, u2 ∈ NG(v), u1 6= u2, we update an edge u1u2 with a constraint
ψvu2,v ◦ ψvu1,u1

.

In the next lemma we formally check that bypassing a vertex has the same mean-
ing as proclaiming it undeletable.

Lemma 27. Let I′ be a Node Unique Label Cover instance obtained from an
instance

I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e)

by bypassing a vertex v with φv 6= ∅. Then the following holds:
• if Ψ is a solution to I′, then there exists α ∈ Σ such that Ψ ∪ {(v, α)} is a

solution to I;
• if Ψ is a solution to I that satisfies Ψ(v) 6=A, then Ψ|V (G)\{v} is a solution

to I′.

Proof. For the first claim, pick α as follows. If there exists a neighbor of v whose
value in Ψ is not A, pick any such neighbor w, set α such that (Ψ(w), α) ∈ ψvw,w
and α ∈ φv. Note that such α exists as, by the definition of the bypassing operation,
in I′ the vertex constraint for w are contained in {β : ∃α′∈φv (β, α′) ∈ ψvw,w}. If such
a neighbor w does not exist, pick Ψ(v) to be an arbitrary element of φv.

We claim that Ψ ∪ {(v, α)} is a solution to I. Clearly, Ψ ∪ {(v, α)} satisfies all
vertex constraints of V (G) as well as all edge constraints on edges not incident to v, as
those constraints in I are supersets of the corresponding constraints in I′. Moreover,
the choice of α ensures that α ∈ φv. We are left with verifying edge constraints
ψuv,v for u ∈ NG(v). If Ψ(u) = A, then we are done, and if u = w, then clearly
(α,Ψ(w)) ∈ ψvw,v by the choice of α. Otherwise, by the definition of the bypassing
operation, (Ψ(w),Ψ(u)) ∈ ψuv,v ◦ ψvw,w. Since (Ψ(w), α) ∈ ψvw,w, we infer that
(α,Ψ(u)) ∈ ψuv,v and the claim is proven.

For the second claim, denote α = Ψ(v). To prove the claim we need to verify
that Ψ|V (G)\{v} satisfies vertex constraints on NG(v) (that may shrink during the
bypassing operation) and edge constraints on edges between vertices in NG(v) (that
are updated during the bypassing operation). First consider a vertex u ∈ NG(v). If
Ψ(u) = A, there is nothing to check, so assume otherwise. Since Ψ is a solution
to I and Ψ(v) 6= A, we have Ψ(u) ∈ φu, α ∈ φv and (Ψ(u), α) ∈ ψuv,u. Thus
Ψ(u) ∈ {β : ∃α′∈φv

(α′, β) ∈ ψuv,v} and Ψ(u) satisfies the vertex constraint at u

in I′. Second, consider two vertices u1, u2 ∈ NG(v), u1 6= u2 and Ψ(u1) 6= A,
Ψ(u2) 6= A. Since Ψ is a solution to I and Ψ(v) 6= A, we have (Ψ(u1), α) ∈ ψvu1,u1

and (α,Ψ(u2)) ∈ ψvu2,v. Therefore (Ψ(u1),Ψ(u2)) ∈ ψvu2,v ◦ ψvu1,u1 and the claim is
proven.

During the course of the algorithm we perform bypassing operations multiple
times, which can drastically increase the number of edges, even if the graph was
sparse in the beginning. Therefore, we measure the complexity of our algorithm only
in n, the number of vertices, and always use only the trivial quadratic bound on the
number of edges.

4.3. Borders and recursive understanding. As discussed in the illustra-
tion, in the case of the Node Unique Label Cover problem, the definition of
the border variant is completely natural: informally speaking, for each vertex on
the border, we need to know whether it is deleted and, if not, what label is as-
signed to it. More formally, given a Node Unique Label Cover instance I =
(G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) and a set of border terminals Tb ⊆ V (G), for
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every function P : Tb → Σ ∪ {A}, we say that a solution Ψ to I is consistent with P

if Ψ|Tb
= P. Let P(I) be the set of all functions from Tb to Σ ∪ {A}. We define the

border problem as follows.

Border N-ULC
Input: A Node Unique Label Cover instance I =
(G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e) with G being connected, and a set
Tb ⊆ V (G) of size at most 4k.
Output: For each P ∈ P(I), output a solution solP = ΨP to the instance I

that is consistent with P and deletes (assigns A) to minimum possible number
of vertices, or output solP = ⊥ if no such solution exists.

Note that |P(I)| ≤ (s+ 1)4k and all output solutions ΨP delete at most k(s+ 1)4k

different vertices in total. Let q = k(s+ 1)4k + 2k; if |V (G)| > q + 2k, then there are
at least |V (G)| − q− 2k vertices in G that are not in Tb nor are deleted by any of the
output solutions ΨP.

In the next lemma we formalize what a recursive step looks like and verify its
correctness. The statement and its proof, although technical and notationally quite
heavy, is completely standard: we essentially need to verify that the information
carried by the boundary terminals in the definiton of Border N-ULC is sufficient
to independently substitute partial solutions on different sides of a separation.

Lemma 28. Assume we are given a Border N-ULC instance

Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb)

and two disjoint sets of vertices Z, V̂ ⊆ V (G), such that |Z| ≤ 2k, NG(V̂ ) ⊆ Z,

|V̂ ∩ Tb| ≤ 2k and the subgraph of G induced by W := V̂ ∪ ZW is connected, where

ZW := NG(V̂ ). Denote T̂b = (Tb ∪ ZW ) ∩W and

Îb = (G[W ],Σ, k, (φv)v∈W , (ψe,v)e∈E(G[W ]),v∈e, T̂b).

Then Îb is a proper Border N-ULC instance. Moreover, if we denote by (ŝolP)
P∈P(Îb)

an arbitrary output to the Border N-ULC instance Îb and

U(Îb) = T̂b ∪
⋃
{Ψ̂−1

P (A) : P ∈ P(Îb), ŝolP = Ψ̂P 6= ⊥},

then there exists a correct output (solP)P∈P(Ib) to the Border N-ULC instance Ib

such that every vertex that is deleted by some solution solP 6= ⊥ belongs to U(Îb).

Proof. The claim that Îb is a proper Border N-ULC instance follows directly
from the assumptions that G[W ] is connected, |ZW | ≤ |Z| ≤ 2k, and |V̂ ∩ Tb| ≤ 2k.
In the rest of the proof we justify the second claim of the lemma.

Fix P ∈ P(Ib). Assume that there exists a solution to the instance Ib that is
consistent with P; let ΨP be such a solution with the minimum possible number of
deleted vertices. To prove the lemma we need to show a second solution Ψ′P to Ib
that deletes no more vertices than ΨP does, is consistent with P, and such that all
vertices from W that are deleted by Ψ′P lie in U(Îb).

Let P̂ be the restriction of ΨP to T̂b. Note that P̂ ∈ P(Îb) and ΨP|W is a solution

to Îb consistent with P̂. Therefore the output ŝol
P̂

to Îb is different from ⊥; denote
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it Ψ̂
P̂

. By definition, this output deletes minimum possible number of vertices; in
particular

|Ψ̂−1

P̂
(A)| ≤ |Ψ−1

P (A) ∩W |.

Define Ψ′P : V (G) → Σ ∪ {A} as follows: Ψ′P(v) = Ψ̂
P̂

(v) for v ∈ W and

Ψ′P(v) = ΨP(v) otherwise. By the optimality of Ψ̂
P̂

, the number of vertices deleted
by Ψ′P is not larger than the number of vertices deleted by ΨP. Since Ψ′P is a blend of

two labelings, it clearly satisfies all vertex constraints. The fact that ZW = N(V̂ ) ⊆ T̂b
ensures that Ψ′P, Ψ̂

P̂
, and ΨP agree on ZW and thus Ψ′P satisfies all edge constraints.

Finally, Tb ∩W ⊆ T̂b and P̂ is a restriction of ΨP, which in turn is consistent with
P, and the labeling Ψ′P is consistent with P as well. This finishes the proof of the
lemma.

Note that in Lemma 28 we have |U(Îb) ∩ V̂ | ≤ q. We are now ready to present
the recursive steps of the algorithm.

Step 4.1. Assume we are given a Border N-ULC instance

Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb).

Invoke first the algorithm of Lemma 19 in a search for a (q, 2k)-good node separation
(with V∞ = ∅). If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2} be such

that |Vj ∩ Tb| ≤ 2k and denote Ẑ = Z, V̂ = Vj. Otherwise, if it returns that no such
good node separation exists in G, invoke the algorithm of Lemma 20 in a search for
a (q, k)-flower separation w.r.t. Tb (with V∞ = ∅ again). If it returns that no such
flower separation exists in G, pass the instance Ib to the next step. Otherwise, if it
returns a flower separation (Z, (Vi)

`
i=1), denote Ẑ = Z and V̂ =

⋃`
i=1 Vi.

In the case we have obtained Ẑ and V̂ (from either Lemma 19 or Lemma 20),

invoke the algorithm recursively for the Border N-ULC instance Îb defined as in the
statement of Lemma 28 for separator Ẑ and set V̂ , obtaining an output (ŝolP)

P∈P(Îb)
.

Compute the set U(Îb). Bypass (in an arbitrary order) all vertices of V̂ \ U(Îb) to
obtain a new instance I′b (observe that for each bypassed vertex v we have φv 6= ∅,
which is a necessary condition for bypassing). Recall that T̂b ⊆ U(Îb), so no border
terminal gets bypassed. Restart the algorithm on the new instance I′b and obtain a
family of solutions (sol′P)P∈P(Ib). For every P ∈ P(Ib), if sol′P = ⊥, then output

solP = ⊥ as well, while if solP = Ψ′P, then obtain ΨP by extending Ψ′P on U(Îb)
using Lemma 23 (we justify that such an extension exists in Lemma 29) and output
solP = ΨP.

Let us first verify that the application of Lemma 28 is justified. Indeed, by the
definitions of the good node separation and the flower separation, as well as the
choice of V̂ , we have in both cases |V̂ ∩Tb| ≤ 2k and that G[V̂ ∪NG(V̂ )] is connected.
Moreover, note that the recursive call is applied to the graph with strictly smaller
number of vertices than G: in the case of a good node separation, V2 is removed from
the graph, and in the case of a flower separation, recall that the definition of the flower
separation requires Z ∪

⋃`
i=1 Vi to be a proper subset of V (G). Finally, in both cases

|V̂ | > q, and |V̂ \ U(Îb)| ≥ |V̂ | − q ≥ 1 vertices are bypassed in Step 4.1.
The following lemma verifies the correctness of Step 4.1.

Lemma 29. Assume we are given a Border N-ULC instance

Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb)
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on which Step 4.1 is applied, and let I′b be an instance after all bypassing operations
of Step 4.1 are applied. Let (sol′P)P∈P(I′b) be a correct output to I′b. Then there exists
a correct output (solP)P∈P(Ib) to Ib, such that

• solP = ⊥ if sol′P = ⊥;
• if sol′P = Ψ′P, then Ψ′P can be consistently extended to V (G) and for every

such extension ΨP is a correct output for P in Ib;

Proof. The lemma is a straightforward corollary of Lemma 28 and the properties
of the bypassing operation described in Lemma 27. Lemma 28 ensures us that each
vertex of V̂ \ U(Îb) is omitted by some optimal solution for every P ∈ P(Ib), which
enables us to use Lemma 27. Note that existence of the extension is asserted by the
second claim of Lemma 27.

We are left with an analysis of the time complexity of Step 4.1. The applications
of Lemmas 19 and 20 use O(2O(min(q,2k) log(q+2k))n3 log n) = O(2O(k2 log s)n3 log n)

time. Let n′ = |V̂ |; the recursive step is applied to the graph with at most n′ + 2k
vertices and, after bypassing, there are at most n−n′+q vertices left. Moreover, each
bypassing operation takes O(sn2) time, the computation of U(Îb) takes O((s+ 1)4kn)
time, and extending the labelings from the trimmed instance takes O((s + 1)4ksn2)
time. The values of s = |Σ| and k do not change in this step. Therefore, we have
the following recursive formula for time complexity as a function of the number of
vertices of G:

(1) T (n) ≤ max
q+1≤n′≤n−2k−1

(
2O(k2 log s)n3 log n+ T (n′ + 2k) + T (n− n′ + q)

)
.

Note that the function p(t) = t4 log t is convex, so the maximum of the expression
is attained at one of the ends. A straightforward inductive check of both of the
ends proves that we have indeed the claimed bound on the complexity, i.e., T (n) =

O(2O(k2 log s)n4 log n).
We conclude this section with a note that Lemma 21 asserts that if Step 4.1 is not

applicable, then for every set Z ⊆ V (G) of size at most k, the graph G \ Z contains
at most t := (2q + 1)(2k − 1) + 4k + 1 connected components, out of which at most
one has more than q vertices.

4.4. Brute-force approach. If the graph reduced by Step 4.1 is small, the
algorithm may apply a straightforward brute-force approach to the Border N-ULC
problem. In this section we describe this method formally.

Lemma 30. Assume we are given a Border N-ULC instance

Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb).

Let X ⊆ V (G) be a set of size at most k and let P ∈ P(Ib). Then, in time O(s2n2),
one can compute a function Ψ : V (G) → Σ ∪ {A} such that Ψ−1(A) = X and Ψ is
a solution to Ib consistent with P or correctly conclude that no such function exists.

Proof. We apply Lemma 23 to the vertex set of every connected component of the
graph induced by A = V (G)\X. For each output labeling, we verify if it is consistent
with P.

Lemma 31. A correct output to a Border N-ULC instance

Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb)

can be computed in O((s+ 1)4ks2knk+2) time.
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Proof. We apply Lemma 30 for each P ∈ P(Ib) (there are at most (s+1)4k choices)
and for each deletion set X ⊆ V (G) with |X| ≤ k (at most (k + 1)nk choices).

Step 4.2. If |V (G)| ≤ qt + k, apply Lemma 31 to find a correct output to a
Border N-ULC instance Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb).

Recall that q = (s+1)2kk = 2O(k log s) and t = (2q+2)(2k−1)+2k+1 = 2O(k log s).

Thus, if Step 4.2 is applicable, its running time is 2O(k2 log s).

4.5. High connectivity phase. Assume we have a Border N-ULC instance
Ib = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e, Tb) where Steps 4.1 and 4.2 are not appli-
cable. In this section we show how to exploit high connectivity of the graph implied
by Lemma 21 to compute a correct output to Ib. To this end, fix P ∈ P(Ib); we focus
on finding the solution solP. First, let us solve some simple cases.

Step 4.3. For each P ∈ P(Ib), verify using Lemma 30 whether there exists solu-
tion solP = ΨP that does not delete any vertex at all. If yes, output such a solution.

Note that if |V (G)| is too large for Step 4.2 to be applicable, for every set Z ⊆
V (G) of size at most k, the bound on the number of connected components from
Lemma 21 implies that there exists exactly one connected component of G \ Z with
more than q vertices; denote its vertex set by big(Z). We extend this notion to
labelings: for a labeling Ψ that deletes at most k vertices, we denote big(Ψ) =
big(Ψ−1(A)).

4.5.1. Interrogating sets. We now use Lemma 1 to get some more structure
of the graph G.

Definition 32. Let Z ⊆ V (G) be a set of size at most k and let S ⊆ V (G). We
say that S interrogates Z if the following holds:

1. S ∩ Z = ∅;
2. for every connected component C of G\Z with at most q vertices, all vertices

of C belong to S;
3. for every v ∈ Z, such that NG(v) ∩ big(Z) 6= ∅, there exists a connected

component of G[S] that has more than q vertices and contains at least one
neighbour of v.

We say that S interrogates a labeling Ψ if it interrogates the deletion set Ψ−1(A).

Note that in the third point, the considered component has to be entirely con-
tained in big(Z) due to its size.

Lemma 33. Let F be a family obtained by the algorithm of Lemma 1 for universe
U = V (G) and constants a = qt + (q + 1)k and b = k. Then, for every Z ⊆ V (G)
with 1 ≤ |Z| ≤ k, there exists a set S ∈ F that interrogates Z.

Proof. Fix Z ⊆ V (G) with |Z| ≤ k. Let A1 be the union of vertex sets of all
connected components of G\Z that have at most q vertices; by Lemma 21, |A1| ≤ qt.
For each v ∈ Z such that NG(v) ∩ big(Z) 6= ∅, fix wv ∈ NG(v) ∩ big(Z) and a tree
Tv with exactly q+ 1 vertices that contains wv and is contained in big(Z); note that
this is possible due to |big(Z)| > q. Let A2 be the union of vertex sets of all trees Tv
for v ∈ Z; clearly |A2| ≤ (q + 1)k. By Lemma 1, as |A1 ∪ A2| ≤ qt + (q + 1)k and
|Z| ≤ k, there exists a set S ∈ F that contains A1 ∪ A2 and is disjoint with Z. By
the construction of the sets A1 and A2, the set S interrogates Z and the lemma is
proven.

Note that, as q, t = 2O(k log s), the family F of Lemma 33 is of size 2O(k2 log s) log n
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and can be computed in O(2O(k2 log s)n log n) time. Therefore we may branch, guessing
a set S that interrogates the solution solP = ΨP we are looking for.

Step 4.4. Compute the family F from Lemma 33 and branch into |F| subcases,
indexed by sets S ∈ F. In a branch S we seek for a solution ΨP with the minimum
possible number of deleted vertices that not only is a solution to Ib consistent with P

but is also interrogated by S.

Lemma 33 verifies the correctness of the branching of Step 4.4; as discussed, the
step is applied in O(2O(k2 log s)n log n) time and leads to O(2O(k2 log s) log n) subcases.

After choosing a set S, we may now slightly modify the set S to make it more
regular.

Definition 34. A vertex v ∈ V (G) is said to be forsaken if
• v ∈ Tb and P(v) =A or
• φv = ∅.

The forsaken vertices are those that are necessarily deleted by any solution ΨP

consistent with P.

Step 4.5. As long as there exists a vertex v ∈ V (G) that is not forsaken and
NG[v] ∩ S = ∅, add v to S.

Step 4.5 can clearly be applied in O(sn2) time (for all vertices it is applied to;
note that Step 4.5 is applied to one vertex v at a time and, by its application to the
vertex v, it may become not applicable to the neighbors of v). We now discuss its
correctness. Let ΨP be a solution to Ib that is interrogated by S and consistent with
P. Then ΨP is interrogated by S∪{v} unless ΨP(v) =A. If this is the case, then since
NG[v] ∩ S = ∅, by the last property of an interrogating set v is not adjacent to any
vertex of big(ΨP). Moreover, by the second property of an interrogating set, v is not
adjacent to any vertex of connected component of G \Ψ−1

P (A) of size at most q. We
infer that all vertices of NG[v] are deleted by the labeling ΨP. Since v is not a forsaken
vertex, there exists a value α ∈ φv such that if we assign α to v in the labeling ΨP,
we obtain a solution to Ib that is consistent with P (but not necessarily interrogated
by S). Therefore ΨP is not a solution to Ib consistent with P with minimum possible
number of deleted vertices, and we may omit it from consideration.

Step 4.5 gives us the following property of the set S.

Lemma 35. After Step 4.5 is applied, any vertex v that is not forsaken is con-
tained in NG[S].

Proof. If v is not forsaken and v /∈ NG[S], then NG[v] ∩ S = ∅ and Step 4.5 is
applicable to v.

4.5.2. Labelings of big stains. Let us now focus on a fixed branch S ∈ F.

Definition 36. Each connected component of G[S] is called a stain. A stain is
big if it has more than q vertices and is small otherwise.

Let Sbig ⊆ S be the union of all vertex sets of big stains of G[S]. We now establish
a crucial observation that the fact that G admits no (q, 2k)-good node separations
implies that there are only very few reasonable labelings for Sbig.

Lemma 37. One can in O(ksn3 + ks2n2) time compute a family PSI of at most
s deletion-free labelings of Sbig such that for every solution Ψ to Ib such that S inter-
rogates Ψ, there exists Ψbig ∈ PSI with Ψ|Sbig = Ψbig.
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Proof. If Sbig = ∅ the lemma is trivial; assume then Sbig 6= ∅. For any big stain
with vertex set C in G[S], by Lemma 23 there are at most s deletion-free labelings
of C and all these labelings can be computed in O(s2|C|2) time. Moreover, we know
that any such a labeling is induced by fixing a label of one vertex of C; in other
words, for every two different labelings Ψ′,Ψ′′ of G[C] and for every v ∈ C, we have
Ψ′(v) 6= Ψ′′(v).

Let C1 and C2 be vertex sets of two different big stains in G[S]. As G ad-
mits no (q, 2k)-good node separations, by Menger’s theorem there exists a sequence
P 0, P 1, . . . , P 2k of 2k+ 1 paths, where each path starts in C1 and ends in C2 and the
sets of internal vertices of those paths are pairwise disjoint. Moreover, such a sequence
of paths P 0, P 1, . . . , P 2k can be found in O(kn2) time by the classic Ford–Fulkerson
algorithm.

Let Ψ be a solution to Ib that is interrogated by S. The crucial observation is that
for at least k+ 1 indices 0 ≤ i ≤ 2k (i.e., for the majority of them), the path P i does
not contain a vertex deleted by Ψ (note that the endpoints of P i are in C1 ∪ C2 ⊆ S
and thus not deleted by Ψ). Denote the endpoints of P i as vi1 ∈ C1 and vi2 ∈ C2. If
P i does not contain any vertex deleted by Ψ, the composition of all edge constraints
on P i (denote it by ψi) is a partial permutation such that (Ψ(vi1),Ψ(vi2)) ∈ ψi. We
infer that for every 0 ≤ i ≤ 2k and every labeling Ψ′ of G[C1] there exists at most
one labeling Ψ′C2,i

of G[C2] such that (Ψ′(vi1),Ψ′C2,i
(vi2)) ∈ ψi. Moreover, given Ψ′,

all labelings Ψ′C2,i
for all 0 ≤ i ≤ 2k can be computed in O(ks(n+ s|C2|2)) time using

Lemma 23.
Let Ψ′ = Ψ|C1 . As at least k+ 1 paths P i do not contain any vertices deleted by

Ψ, for a majority of indices 0 ≤ i ≤ 2k, the labelings Ψ′i,C2
are the same labelings. For

a fixed big stain C1 and for each labeling Ψ′ of G[C1], we can compute this majority
labeling Ψ′maj,C2

of G[C2] for every big stain C2 6= C1 in time O(kn2 +ks(n+ s|C2|2))

(including the time needed to compute paths P i). As there are at most n big stains,
and s labelings of a fixed big stain C1, the lemma follows.

Note that for every Z ⊆ V (G), 1 ≤ |Z| ≤ k, there exists the component big(Z)
and, if S interrogates Z, then there exists at least one big stain in G[S] (note that we
require here that Z is nonempty; the solutions with empty deletion sets are found
by Step 4.3). This observation, together with Lemma 37, justifies the following
step.

Step 4.6. For each P ∈ I, in a branch with index S, if G[S] contains no big
stains, terminate this branch, and otherwise invoke Lemma 37 to obtain a family PSI
and branch into at most s subcases, indexed by labelings Ψbig ∈ PSI. For fixed P, in
a branch with indices S and Ψbig, we seek a solution ΨP with minimum possible size
of the deletion set, such that ΨP is a solution to Ib consistent with P, interrogated by
S and ΨP|Sbig = Ψbig.

Each application of Step 4.6 takes O(ksn3+ks2n2) time and leads to O(2O(k2 log s)

log n) subcases in total.

4.5.3. Final bounded search tree algorithm. In this section we show how
to finish the search for an appropriate output solP for P ∈ P(Ib) in a fixed branch
with indices S and Ψbig. This is done in a standard framework of a bounded search
tree algorithm. Informally speaking, the goal is to look at all connected components
of G after removal of all already deleted vertices and NG[Sbig] and decide, one by one,
whether it should be merged into the big(solP).

Formally speaking, we maintain a labeling Ψ, initiated as Ψbig ∪P together with
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all forsaken vertices deleted, and our goal is to extend it to the desired solution via a
bounded search algorithm. That is, at every recursive call of the branching algorithm,
we look for a solution with minimum number of deleted vertices that additionally
extends Ψ.

At every step, either no branching is performed and some new value is added to
Ψ or we branch into O(Σ) directions, in every branch deleting at least one new vertex.

The branching algorithm is described as a set of four rules. At each moment, we
apply the first applicable rule.

First, let us define the stopping condition for the branching algorithm.

Rule 4.1 (finishing rule). If there is some inconsistensy in Ψ (it deletes more
than k vertices or violates one of the constraints), then terminate the current branch.
If Ψ can be extended to V (G) without deleting any additional vertex, then return such
an extension as a solution for the current branch.

Note that recognizing whether the finishing rule can be applied takes O(s2n2)
time using Lemma 23.

Given the labeling Ψ, let N(Ψ) be the set of vertices that do not belong to the
domain of Ψ but have a neighbor that is assigned a value from Σ by Ψ (i.e., in the
domain of Ψ but not deleted by Ψ). Furthermore define N [Ψ] = N(Ψ) ∪ dom(Ψ).
Consider now the following task: given a labeling Ψ, we would like to extend Ψ to
N(Ψ) without deleting any new vertex. Observe that there is essentially at most only
one candidate ΨN for such an extension: for every v ∈ N(Ψ), we fix a neighbor w(v)
of v with Ψ(w(v)) ∈ Σ and assign to v the unique value that satisfies the constraint
ψvw(v),v; note that such a value may not exist as ψvw(v),v is a partial permutation or
may not belong to φv.

We use this observation in the following two rules. First, since we are looking for
a solution interrogated by S, we can immediately extend Ψ to vertices in N(Ψ)∩ S.

Rule 4.2 (extension rule). If there exists a vertex v ∈ N(Ψ) ∩ S with a neighbor
w(v) satisfying Ψ(w(v)) ∈ Σ, then assign to v the unique value that satisfies the
constraint ψvw(v),v.

Note that we can check if the extension rule can be applied in O(sn2) time, and
in total it cannot be applied more than n times in a single root-to-leaf path in the
bounded search tree.

For the second rule, we observe in the next lemma that if ΨN does not exist (i.e.,
it violates some constraint), then there is a witnessing contradiction on at most two
vertices of N(Ψ).

Lemma 38. If ΨN is undefined or violates some constraint (and hence is not a
labeling), then there exists a set B ⊆ N(Ψ) of size at most two such that any labeling
extending Ψ needs to delete at least one vertex of B. Moreover, such a set B can be
found on O(sn2) time.

Proof. First, if for some vertex v ∈ N(Ψ), the value ΨN (v) is undefined (there is
no value matching Ψ(w(v)) in the constraint ψvw(v),v) or such a value does not belong
to ψv, we can take B = {v}. Otherwise, ΨN needs to violate some edge constraint,
say, ψvu,v for some v, u ∈ N [Ψ]. As Ψ satisfies all edge constraints, either u or v is
not in dom(Ψ), assume then v /∈ dom(Ψ). If u ∈ dom(Ψ), then B = {v} satisfies
the conditions of the lemma: any assignment of a value from Σ to v would violate
either ψvu,v or ψvw(v),v. If u /∈ dom(Ψ), then B = {u, v} satisfies the conditions of
the lemma: however, we assign values from Σ to u and v, so we would either violate
ψvw(v),v, violate ψuw(u),u, or assign the values as in ΨN and violate ψuv,v.
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dom(Ψ)

N(Ψ)

C

C ∩ S

C ∩ S

C ∩ S

C′

C′ ∩ S

C′ ∩ S

Fig. 3. Situation before the last step of the branching algorithm. The stripped rectangles
represent the set S.

We note that we can compute ΨN and find a constraint not satisfied by ΨN in
O(sn2) time.

Rule 4.3 (neighborhood branching rule). Find ΨN . If it is undefined or is not
a labeling, apply Lemma 38 obtaining a set B, and branch into |B| subcases, deleting
one of the vertices of B (i.e., assigning it value A in Ψ).

Unfortunately, the neighborhood branching rule is not always applicable. How-
ever, we now show that if it is not applicable, then we can make decisions on different
components of G \ N [Ψ] nearly independently. Henceforth we assume that ΨN is
well-defined and is a labeling; see Figure 3 for an illustration.

Lemma 39. Let C be a vertex set of an arbitrary connected component of G\N [Ψ]
and let Ψ0 be a labeling of V (G) that extends Ψ and is interrogated by S. Then either

• C ⊆ big(Ψ0), in particular no vertex of C is deleted by Ψ0, or
• C \ S is exactly the set of vertices from C that are deleted by Ψ0 and all

vertices of N(C) are deleted by Ψ0.
Furthermore, if one can extend ΨN to a labeling ΨC of N [Ψ]∪C without deleting any
new vertex, then a function Ψ1 defined as equal ΨC on C and equal Ψ0 on V (G) \ C
is a labeling of V (G) extending Ψ that deletes not more vertices than Ψ0 does.

Proof. For the first part of the lemma, assume there exists v ∈ C ∩ big(Ψ0).
From the connectivity of G[C], we have that either C ⊆ big(Ψ0) or there exists
uw ∈ E(G[C]) with Ψ0(w) = A and u ∈ big(Ψ0). Recall that S interrogates Ψ0;
from the last property of the interrogating set we infer that w is adjacent to a big stain
of S, a contradiction with the fact that all big stains are in dom(Ψ) but w /∈ N [Ψ].
Therefore either C ⊆ big(Ψ0) or C ∩ big(Ψ0) = ∅.

In the latter case, pick any v ∈ C that is not deleted by Ψ0. As C ∩ big(Ψ0) =
∅, v is contained in a connected component C(v) of G \ Ψ−1

0 (A) with at most q
vertices. By the second property of the interrogating set S, C(v) is a small stain of S.
Consequently, we have C(v) ⊆ C, as any vertex of C(v) ∩N(Ψ) would be amenable
to the extension rule.

Consider now a vertex w ∈ N(C) with a neighbor u ∈ C. Assume that w is
not deleted by Ψ0, that is, Ψ0(w) 6= A. If w ∈ big(Ψ0), then Ψ0(u) = A as we
have assumed that C ∩ big(Ψ0) = ∅. However, then, from the last property of the
interrogating set, we infer that u is adjacent to a big stain of S, a contradiction
with the fact that all big stains are in dom(Ψ) but u /∈ N [Ψ]. In the other case,
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if w /∈ big(Ψ0), then the extension rule is applicable to w if w ∈ N(Ψ) or to u if
w ∈ dom(Ψ). As we have reached a contradiction in all subcases, we infer that w is
deleted by Ψ0. Since the choice of w was arbitrary, we have that all vertices of N(C)
are deleted by Ψ0. This finishes the proof of the first part of the lemma.

For the second part of the lemma, first note that Ψ1 deletes a subset of the vertices
deleted by Ψ0, as ΨC does not delete any vertex of C. Furthermore, since both Ψ0

and ΨC are labelings, Ψ1 satisfies all vertex contraints.
As for edge constraints, clearly Ψ1 satisfies all edge constraints for edges com-

pletely contained either in G[C] or G \ C. Consider now an edge uv with u ∈ C and
v ∈ N(C). If Ψ0(v) = A, then we are done. Otherwise, as C is a connected compo-
nent of G \N [Ψ], we have v ∈ N(Ψ). Since Ψ0 extends Ψ, we have Ψ0(v) = ΨN (v).
Since ΨC extends ΨN and is a labeling, we have that Ψ1 satisfies the constaint on the
edge uv. This completes the proof of the lemma.

Consider now the following step: for every connected component C of G \N [Ψ]
we apply Lemma 23 to check if there exists an extension ΨC of ΨN to N [Ψ]∪C. Note
that if such an extension exists, Lemma 39, together with the fact that ΨN exists and
is a labeling, implies that the union of all such labelings ΨC is a labeling of V (G) that
extends Ψ and does not delete any new vertex, and the finishing rule is applicable.
Note that such an output labeling may not be interrogated by S, but it is not an
issue at this point. Otherwise, we can use the limited options given by Lemma 39 to
perform branching.

Rule 4.4 (small stains rule). For every connected component C of G\N [Ψ] apply
Lemma 23 to check if there exists an extension ΨC of ΨN to N [Ψ] ∪ C. Since the
finishing rule is not applicable, there exists a component for which such an extension
does not exist; we pick such a component C and branch into at most s+ 1 cases.

1. Apply Lemma 23 to find at most s deletion-free labelings of G[C], and for
every such labeling consider a branch with Ψ extended with this labeling.

2. Furthermore, in an additional branch assign A to every vertex of N(C) ∪
(C \ S), and for every connected component of G[C ∩ S] apply Lemma 23 to
find a deletion-free labeling of this component.

First, note that the small stains rule is applicable in O(s2n2) time.
The first option of the small stains rule corresponds to the case C ⊆ big(Ψ0)

of Lemma 39. Note that the inexistence of ΨC implies that in every subcase of the
first option, the neighborhood branching rule will execute on some vertices of N(C),
leading to an increase in the number of deleted vertices.

The second option corresponds to the second case of Lemma 39. Note that the
inexistence of ΨC implies that either this branch is not executed at all (due to the
fact that some component of G[C ∩ S] does not admit any deletion-free labeling) or
either C \ S or N(C) is nonempty, leading to an increase in the number of deleted
vertices. Note that after all vertices N(C)∪ (C \ S) are assigned A, every connected
component C ′ of G[C \ S] has all its neighbors deleted and can freely choose any
deletion-free labeling output by Lemma 23.

Consequently, the small stains rule, coupled with a possible following application
of the neighborhood branching rule, gives at most 2s + 1 subcases, and in every
such subcase at least one new vertex is deleted. As the small stains rule is always
applicable if no previous rule is applicable, we have concluded the description of
the branching algorithm. Recall that we terminate the algorithm after more than k
vertices are deleted. As each rule is applicable in O(s2n2) time and the number of rule
applications before reaching a leaf is bounded by n the whole branching algorithm
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works in O(2O(k log s)n3) time. This finishes the description of the fixed-parameter
algorithm for Border N-ULC and the proof of Theorem 2.

5. The algorithm for Steiner Cut. This section is devoted to the proof of
Theorem 4, i.e., to the Steiner Cut problem, parameterized by the size of the cutset.

Steiner Cut Parameter: k
Input: A graph G, a set of terminals T ⊆ V (G), and integers s and k.
Question: Does there exist a set X of at most k edges of G, such that in G \X
at least s connected components contain at least one terminal?

For a Steiner Cut instance (G,T, s, k), a set X ⊆ E(G) is called a solution if
|X| ≤ k and G \ X contains at least s connected components that contain at least
one terminal.

First, observe that by Lemma 12 in O(kn2) time we can ensure that the graph
G has O(kn) edges, by removing the edges outside of the set E0. Correctness of this
step follows from the fact that in this operation all cuts of size at most k are preserved
and moreover no new cut of size at most k appears, since for each of the removed
edges at least k+1 edge-disjoint paths between its endpoints remain. We are going to
use the assumption that there are O(kn) edges in the graph during the course of our
algorithm. To this end, we use Lemma 12 after each reduction, thus always ensuring
that the graph has at most O(kn) edges, where n is the current number of vertices. We
note that the only reason for using Lemma 12 is caring about the polynomial factor.

Second, we observe that in the Steiner Cut problem we may assume that the
graph G is connected. Indeed, otherwise we may add to G a clique on k + 2 vertices
(so that the clique cannot be split with removal of k edges), make all vertices of the
clique adjacent to exactly one vertex of each connected component of G, and decrease
s by the number of connected components of G containing a terminal minus one.

If G is connected, removal of k edges may lead to at most k + 1 connected com-
ponents. Thus, we may assume that s ≤ k + 1, as otherwise the answer is trivially
negative.

Moreover, in the course of the algorithm we repetitively contract some edges of
G. In the process of contraction, we remove loops, but we keep multiple edges. Thus
we allow G to be a multigraph with multiple edges, but without loops. Note that if
an edge uv ∈ E(G) has multiplicity more than k, the aforementioned sparsification
process using Lemma 12 reduces the multiplicity down to at most k + 1.

The algorithm performs a number of steps. Description of each step is accompa-
nied by discussion of correctness and analysis of running time.

5.1. Operations on the input graph. The basic operation the algorithm per-
forms on the graph is an edge contraction. As mentioned in the last section, we
assume that after performing a series of contractions we reduce all multiplicities of
the multiedges that exceed k + 1 down to k + 1. Moreover, if in G a set of terminals
T ⊆ V (G) is given, if T ∩ {u, v} 6= ∅, we replace T with (T \ {u, v}) ∪ {wuv}, i.e., we
put wuv into T iff u or v belongs to T .

The following straightforward corollary of Lemma 11 shows when we may contract
an edge of G in the Steiner Cut case.

Lemma 40. Let I = (G,T, s, k) be a Steiner Cut instance, let D ⊆ E(G) and
let I′ = (G′, T ′, s, k) be the instance I with the edges D contracted in an arbitrary
order. Then,
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1. any solution X to I′ is a solution to I as well (recall that we treat E(G′) as
a subset of E(G));

2. for any solution X to I that is disjoint with D, the set

X ′ = {ι(u)ι(v) : uv ∈ X, ι(u) 6= ι(v)} ⊆ E(G′)

is a solution to I′.

We also use the notion of identifying two vertices.

Definition 41. Given a multigraph G and two vertices u, v, identification of u
and v is the operation of adding an edge uv and contracting it.

As identification is modeled by edge addition and contraction, we apply the same
terminology also to this notion.

5.2. Borders and recursive understanding. In the border problem the graph
is additionally equipped with at most 2k border terminals Tb. For a border Steiner
Cut instance Ib = (G,T, k, Tb), we need to remember an equivalence relation Rb on Tb
that corresponds to how the border terminals are to be distributed among connected
components, a set Yb ⊆ Tb, that carries information about which border terminal is in
connected component with some terminal of T , and an integer sb, which means that
in Ib we are to obtain sb connected components that contain a terminal. Formally
speaking, we define P(Ib) as the set of all triples P = (Rb, Yb, sb), where Rb is an
equivalence relation on Tb, Yb ⊆ Tb and 0 ≤ sb ≤ k + 1 is an integer. Moreover, we
require that if (u, v) ∈ Rb, then u ∈ Yb iff v ∈ Yb.

We say that a set X ⊆ E(G) is a solution to (Ib,P) for a triple P = (Rb, Yb, sb) ∈
P(Ib) if

• two border terminals u, v ∈ Tb are in the same connected component of G\X
iff (u, v) ∈ Rb;

• for any border terminal u ∈ Tb, the connected component of G \ X which
contains u contains a vertex of T iff u ∈ Yb;

• G \X contains exactly sb connected components that contain a vertex of T ;
• |X| ≤ k.

We formally define the border problem as follows.

Border Steiner Cut
Input: A Steiner Cut instance I = (G,T, s, k) with G being connected, and
a set Tb ⊆ V (G) of size at most 2k; denote Ib = (G,T, k, Tb).
Output: For each P ∈ P(Ib) output a solution solP = XP to (Ib,P) with
minimum possible |XP|, or solP = ⊥ if such a solution does not exist.

Observe that Border Steiner Cut generalizes Steiner Cut as we may ask for
Tb = ∅ and check the value of a solution consistent with (∅, ∅, s), as we can assume that
after removing the minimum size solution there are exactly s connected components
containing a terminal.

Note that |P(Ib)| ≤ (2k)2k · 22k · (k + 2), as there are at most |Tb||Tb| choices for
an equivalence relation Rb, 2|Tb| choices for Yb, and k + 2 choices for the value of sb.
Denote

q = k(2k)2k22k(k + 2) + 1 = 2O(k log k).

Let Ib = (G,T, k, Tb) be the given instance of Border Steiner Cut. Assume
that G admits a (q, k)-good edge separation (V1, V2).
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As V1 and V2 are disjoint, at least one of them contains at most k border terminals
from Tb. Without loss of generality assume that |Tb ∩ V1| ≤ k. Let Ĝ = G[V1],

T̂ = T ∩V1, and T̂b = (Tb∩V1)∪NG(V2). Consider an instance Îb = (Ĝ, T̂ , k, T̂b). Note

that Îb is a correct instance of Border Steiner Cut, as |(Tb ∩ V1)∪NG(V2)| ≤ 2k.

Apply the algorithm recursively to the instance Îb (note that it is a strictly smaller

instance as the vertex set V2 is removed) and let U(Îb) be the set of edges that are

contained in any output solution for any behavior on the border terminals of Îb.
Observe that |U(Îb)| ≤ q − 1. Let R = E(Ĝ) \ U(Îb) be the set of remaining edges in

Ĝ = G[V1]. Contract the edges of R in G to obtain the new graph G′ with terminals
T ′ and border terminals T ′b. Let V ′1 be the set of vertices of G′ onto which vertices
of V1 were contracted. Observe that G′[V ′1 ] is still connected as a contraction of a

connected graph, and has at most q− 1 edges, as |U(Îb)| ≤ q− 1. Therefore, |V ′1 | ≤ q.
The contraction induces a mapping ι : V (G) → V (G′) that maps every vertex of G
to the vertex of G′ onto which it is contracted.

The following lemma is useful in arguing safeness of the described operation.

Lemma 42. Let P ∈ P(Ib) and let XP be a solution to (Ib,P). Then there exists
a second solution X ′P to (Ib,P

′) such that |X ′P| ≤ |XP| and additionally X ′P ∩R = ∅.

Proof. Consider the graph Ĝ = G[V1] and the set XP ∩ E(Ĝ). Define

• R̂b to be an equivalence relation on T̂b such that for any u, v ∈ T̂b we have
(u, v) ∈ R̂b iff u and v are in the same connected component of Ĝ \XP;

• Ŷb to be a set of those vertices v ∈ T̂b, such that the connected component of
Ĝ \XP that contains v contains a terminal from T̂ = T ∩ V1 as well;

• ŝb to be the number of connected components of Ĝ\XP that contain a vertex

of T̂ .
Let P̂ = (R̂b, Ŷb, ŝb). Clearly, P̂ ∈ P(Îb) and XP ∩ E(Ĝ) is a solution to (Îb, P̂) (note

that ŝb ≤ |XP ∩ E(Ĝ)| + 1 ≤ k + 2, as Ĝ is connected). Therefore sol
P̂

= X̂
P̂
6= ⊥,

that is, there exists a solution X̂
P̂

to (Îb, P̂), such that |X̂
P̂
| ≤ |XP ∩ E(Ĝ)| and

X̂
P̂
∩R = ∅.
Define X ′P = (XP \ E(Ĝ)) ∪ X̂

P̂
. Clearly |X ′P| ≤ |XP|. To finish the proof of the

lemma we need to show that X ′P is a solution to (Ib,P).

First, we show the following claim: for any u, v ∈ Tb∪ T̂b, u and v are in the same
connected component of G \ XP iff u and v are in the same connected component
of G \ X ′P. We show only a proof in one direction, as proofs in both directions are

totally symmetric and use only the facts that XP \E(Ĝ) = X ′P \E(Ĝ) and that both

XP ∩ E(Ĝ) and X ′P ∩ E(Ĝ) are solutions to (Îb, P̂).

Let u, v ∈ Tb ∪ T̂b be two vertices that are connected by a path P in G \XP. Let

u = v0, v1, . . . , vr = v be the sequence of all vertices on P that belong to Tb∪T̂b, in the
order they appear on P . To prove the claim we need to show that for any 0 ≤ i < r,
the vertices vi and vi+1 belong to the same connected component of G \ X ′P. By

definition, as NG(V2) ⊆ T̂b, the subpath Pi of P between vi and vi+1 lies entirely in

Ĝ or entirely in G \E(Ĝ). In the first case, we infer that vi, vi+1 ∈ T̂b, (vi, vi+1) ∈ R̂b

and vi and vi+1 are in the same connected component of Ĝ \ X ′P as X ′P ∩ E(Ĝ) is

a solution to (Îb, P̂). In the second case, we infer that vi and vi+1 are in the same

connected component of (G \ E(Ĝ)) \X ′P, as XP \ E(Ĝ) = X ′P \ E(Ĝ). This finishes
the proof of the claim.
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As a straightforward corollary of the aforementioned claim, we infer that for any
u, v ∈ Tb, we have (u, v) ∈ Rb iff u and v are in the same connected component of

G \X ′P. We now show that for any v ∈ Tb ∪ T̂b, its connected component of G \XP

contains a vertex of T iff its connected component of G \X ′P contains a vertex of T .
The proofs in both directions are again totally symmetric, and thus we present only
the forward implication.

Let P be a path that connects the vertex v with a terminal w ∈ T in G \XP. Let

u be the last (closest to w) vertex on P that belongs to Tb ∪ T̂b (as v ∈ Tb ∪ T̂b, such
a vertex u exists). From the claim we infer that u and v are in the same connected
component of G \X ′P. Let Pu be the subpath of P from u to w. We have two cases:

Pu is contained either in Ĝ or in G \ E(Ĝ). In the first case, we infer that u ∈ T̂b,
u ∈ Ŷb (as XP ∩ E(Ĝ) is a solution to (Îb, P̂)) and that the connected component of

Ĝ \X ′P that contains u contains a vertex from T̂ = T ∩ V1 (not necessarily the vertex

w). In the second case, we infer that the path Pu is present in (G \E(Ĝ)) \X ′P. This
finishes the proof that v ∈ Yb iff there exists a terminal in the connected component
of G \X ′P that contains v.

To finish the proof of the lemma we need to show that the number of connected
components of G\X ′P that contain a terminal equals sb. To this end, we partition the
connected components of G \XP and G \X ′P containing terminals into three types:

1. those that contain a vertex from Tb ∪ T̂b;
2. those that do not contain such a vertex but are contained in Ĝ;
3. and the rest—those that do not contain a vertex from Tb∪T̂b and are contained

in G \ V1.
Our goal is to prove that for each type, the numbers of connected components con-
taining terminals of corresponding types in G \XP and G \X ′P are equal.

For the first type, the claim is a straightforward corollary of already proven facts
that (i) any two vertices u, v ∈ Tb ∪ T̂b are in the same connected component of
G \ XP iff they are in the same connected component of G \ X ′P and (ii) for every

vertex u ∈ Tb ∪ T̂b, the connected component of G \ XP containing u contains a
terminal iff the connected component of G \X ′P containing u contains a terminal.

For the second type, note that we are to count the number of connected compo-
nents of Ĝ \XP and Ĝ \XP that do not contain a vertex of Tb ∪ T̂b, or, equivalently,

T̂b, but contain a terminal from T̂ . As both XP ∩E(Ĝ) and X ′P ∩E(Ĝ) are solutions

to (Îb, P̂), this number is equal to ŝb minus the number of equivalence classes of R̂b
that contain vertices from Yb.

For the third type, recall that XP \ E(Ĝ) = X ′P \ E(Ĝ), so the sets of connected
components of the third type in G \XP and G \X ′P are equal. This finishes the proof
of the lemma.

We now show that the output for the new instance I′b = (G′, T ′, k, T ′b) can be
easily transformed to the output for the original instance Ib.

Lemma 43. Let (sol′P)P∈P(I′b) be a correct output for the instance I′b. For any
P = (Rb, Yb, sb) ∈ P(Ib) define solP as follows:

• If ι maps two border terminals u, v ∈ Tb with (u, v) /∈ Rb to the same vertex
of T ′b, then we take solP = ⊥.

• Otherwise, we define P′ = (R′b, Y
′
b , sb) as follows: (u′, v′) ∈ R′b if ι−1(u′) ∩ Tb

are contained in the same equivalence class as ι−1(v′) ∩ Tb, and v′ ∈ Y ′b if
ι−1(v′) ∩ Tb ⊆ Yb; and take solP = sol′P′ .

Then the sequence (solP)P∈P(Ib) is a correct output to the instance Ib.
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Proof. The lemma is a straightforward corollary of the contraction properties of
Lemmas 11 and 40, as well as Lemma 42.

We can now formally define the first step of the algorithm.

Step 5.1. Using Lemma 14 we check whether G admits a (q, k)-good edge
separation. If this is not the case, we proceed to the second phase, i.e., the high
connectivity phase. Otherwise let (V1, V2) be this separation and without loss of gen-

erality assume that |Tb ∩ V1| ≤ k. Construct the instance Îb = (G[V1], T ∩ V1, k, (Tb ∩
V1)∪NG(V2)), apply Lemma 12 to it, solve it recursively, and compute U(Îb), the set
of edges that appear in any solution given in the output. Contract all the remaining
edges of G[V1] in G to obtain new graph G′ with terminals T ′ and border terminals
T ′b. Define I′b = (G′, T ′, k, T ′b); recall that a vertex belongs to (border) terminals iff
some (border) terminal was contracted onto it. Apply Lemma 12 to I′b, recursively
solve the instance I′b, and transform the output according to Lemma 43.

Let us now estimate the running time. First, we spend O(2O(k2 log k)n3 log n) time
to check whether there exists a (q, k)-good edge separation. We apply the algorithm

recursively to the instance Îb, which has n′ vertices for some q + 1 ≤ n′ ≤ n − q −
1. Construction of the instance Îb takes O(kn) time, construction of U(Îb) takes
O(2O(k log k)n) time, and construction of the instance I′b takes O(kn) time. Then, we
apply the algorithm recursively to the instance I′b that has at most n−n′+ q vertices.
Therefore, we can derive the following recurrential inequality:

(2) T (n) ≤ max
q+1≤n′≤n−q−1

(
O(2O(k2 log k)n3 log n) + T (n′) + T (n− n′ + q)

)
.

Note that the function p(t) = t3 log t is convex, so the maximum of the expression is at-
tained at one of the ends. A straightforward inductive check of both of the ends proves
that we have indeed the claimed bound on the complexity, i.e., O(2O(k2 log k)n4 log n).

Observe that if we use the randomized algorithm for finding good edge sepa-
rations from Lemma 16, we obtain T (v) ≤ Õ(2O(k2 log k)n2) time complexity with
success probability at least (1− 1/n), since the graph is partitioned using good edge
separations less than n times.

5.3. Brute-force approach. If the graph returned by Step 5.1 turns out to be
small, we apply a brute-force approach. In this section we describe this step formally.

Lemma 44. A correct output to a Border Steiner Cut instance Ib =
(G,T, k, Tb) can be computed in O(2O(k log k)n2k+2) time.

Proof. For every P ∈ P(Ib), and for every set X ⊆ E(G) of at most k edges that,
for all u, v ∈ V (G), takes either all or zero edges uv, in O(n2) time we verify whether X
is a solution to (Ib,P). The time bound follows from the fact that |P(Ib)| ≤ 2O(k log k)

and there are at most (k + 1)n2k choices of the set X.

We are ready to provide the step of the algorithm that finishes resolving the
problem, providing that the graph is sufficiently small.

Step 5.2. If |V (G)| ≤ (k+1)q, then apply Lemma 44 to resolve the given Border
Steiner Cut instance Ib = (G,T, k, Tb).

The correctness of this step is obvious, while from Lemma 44 we find that the
running time is O(2O(k2 log k)) as q = 2O(k log k). Therefore, from now on we can
assume that |V (G)| > (k + 1)q.
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5.4. High connectivity phase. We now show how to solve Border Steiner
Cut in Õ(2O(k2 log k)n log n) time for the remaining case, when the graph G does not
admit a (q, k)-good edge separation yet is still too big to apply brute force. We need
to output answers for all the possible triples P ∈ P(Ib). We iterate through all such
P; note that this gives only 2O(k log k) overhead in the running time. Therefore, from
now on we may assume that P = (Rb, Yb, sb) is fixed.

First, we make a quick check for whether an empty deletion set is sufficient for
our needs. We formally need this step in order to be able to use nontriviality of the
solution in some technical reasonings.

Step 5.3. Given Border Steiner Cut instance Ib = (G,T, k, Tb) and P ∈
P(Ib), verify in O(kn) time whether ∅ is a solution to (Ib,P). If this is the case,
output solP = ∅.

The described step requires O(kn) time and its correctness is obvious. From now
on we may assume that the minimum deletion set is nonempty.

5.4.1. Interrogating sets. We now prepare ourselves to use Lemma 1 to extract
more structure of the graph G.

Definition 45. Let X ⊆ E(G), 1 ≤ |X| ≤ k, and let C0, C1, . . . , C` be connected
components of G \ X, where, due to Lemma 15, ` ≤ k and |V (Ci)| ≤ q for i ≥ 1.
We say that a set of edges S ⊆ E(G) interrogates X if the following properties are
satisfied:

• X ∩ S = ∅;
• for every component Ci, i ≥ 1, S contains a spanning tree of Ci;
• for every vertex u ∈ V (C0)∩ V (X), u is contained in a connected component

of (V (G), S) of size at least q + 1.

Note that the first property together with |V (Ci)| ≤ q for i ≥ 1 implies that the
connected component considered in the third property has to be entirely contained in
C0. We now prove that a sufficiently large family given by Lemma 1 contains a set
interrogating a solution.

Lemma 46. Let F be a family obtained by an application of the algorithm of
Lemma 1 for universe U = E(G) and constants a = 3qk and b = k. Then, for
any X ⊆ E(G) with 1 ≤ |X| ≤ k, there exists a set S ∈ F that interrogates X.

Proof. Let C0, C1, . . . , C` be connected components of G \ X, where, due to
Lemma 15, ` ≤ k and |V (Ci)| ≤ q for i ≥ 1. As the algorithm did not finish
when performing Step 5.2, we have that |V (G)| > (k + 1)q, so |V (C0)| ≥ q + 1. Fix

a spanning tree Ti of each component Ci. Let A1 =
⋃`
i=1E(Ti); note that |A1| ≤ qk.

For every vertex u ∈ V (C0) ∩ V (X) fix an arbitrary subtree Tu0 of T0 that contains
exactly q + 1 vertices, and define A2 =

⋃
u∈V (C0)∩V (X)E(Tu0 ); this is possible due to

|V (C0)| ≥ q + 1. By Lemma 1, there exists a set S ∈ F such that A1 ∪ A2 ⊆ S and
S ∩X = ∅. It follows from the construction that S interrogates X.

This gives raise to the following branching step.

Step 5.4. Using Lemma 1 generate family F for universe U = E(G) and con-
stants a = 3qk and b = k. Branch into |F| subcases, labeled with S ∈ F. In branch
S we seek a solution X to (Ib,P) such that S interrogates X and, moreover, |X| is
minimum among these.

Lemma 46 asserts that the deletion set of an optimal solution is interrogated
by some set from family F. Therefore, in order to find a solution with minimum
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possible size of deletion set it suffices to take minimum over solutions given by
the branches. Note that in this manner we introduce O(2O(min(q,k) log(q+k)) log n) =

O(2O(k2 log k) log n) branches. Moreover, as the family F can be computed in

O(2O(k2 log k)n log n) time and the construction of every branch takes O(kn) time,

the whole branching procedure takes O(2O(k2 log k)n log n) time. We now describe the
subroutine performed in each branch; let it be labeled by S ∈ F. To simplify the
presentation we assume that S interrogates X0 for some minimum solution X0 and
examine what happens with X0 during the operations performed on the graph.

Let us contract all the edges from S to obtain a new graph H0. Let ι0 be the
mapping from V (G) to V (H0) corresponding to these contractions. Then, we obtain
the new graph H by identifying all the vertices u ∈ H0 for which |ι−1

0 (u)| > q into a
single vertex; such vertices u are called heavy . If there are no heavy vertices, we can
safely terminate the branch, as a set that interrogates an nonempty solution must
induce at least one connected component that has at least q + 1 vertices. Otherwise,
denote b the vertex resulting in their identification; we will further refer to it as the
core vertex. Let ι1 be the mapping from V (H0) to V (H) corresponding to these iden-
tifications. Moreover, let ι = ι1◦ι0 be the mapping from V (G) to V (H) corresponding
to the composition of these operations.

We claim that the feasible deletion set X0 “survives” both steps.

Lemma 47. Let v, w ∈ V (G) such that ι(v) = ι(w). Then v and w are in the
same connected component of G \X for any set X ⊆ E(G) interrogated by S.

Proof. Assume otherwise, that is, that we have ι(v) = ι(w) but v ∈ V (Ci) and
w ∈ V (Cj) for i 6= j. Without loss of generality assume that i 6= 0.

Assume first that ι0(v) = ι0(w). As v and w are contracted onto the same vertex,
there exists a path from v to w in G that consists of edges of S. As S ∩ X = ∅,
this means that v and w are in the same connected component of G \X, which is a
contradiction.

Assume now that ι0(v) 6= ι0(w). This means that ι0(v) and ι0(w) have to be
identified while constructing graph H from H0. It follows that |ι−1

0 (v)| ≥ q + 1.
Therefore, there are at least q vertices of G that are reachable from v via paths
contained in S, hence disjoint with X. However, i 6= 0 so |V (Ci)| ≤ q, which is a
contradiction.

From Lemma 47 we infer that all the edges of X0 are still present in H, as from
the minimality of X0 we may assume that the edges of X0 connect different connected
components of G \X0. Let us define the sets of terminals T ′ and border terminals T ′b
in H by setting u ∈ T ′ iff ι−1(u) ∩ T 6= ∅ and u ∈ T ′b iff ι−1(u) ∩ Tb 6= ∅.

Moreover, due to Lemma 47 and the fact that X0 is a solution to (Ib,P), we infer
that for any v, w ∈ Tb with ι(v) = ι(w), we have (v, w) ∈ Rb and v ∈ Yb iff w ∈ Yb.
Thus we can project Rb and Yb on T ′b ⊆ V (H), by defining a relation R′b by taking
(ι(v), ι(w)) ∈ R′b iff (v, w) ∈ Rb and a set Y ′b by taking ι(v) ∈ Y ′b iff v ∈ Yb.

Define I′b = (H,T ′, k, T ′b) and P′ = (R′b, Y
′
b , sb); note that P′ ∈ P(I′b). The next

lemma can be proven by a straightforward check of the definition of the solution, as
Lemma 47 asserts connected components of G\X0 correspond in a one-to-one manner
to connected components of H \X0.

Lemma 48. The set X0 is a solution to (I′b,P
′).

In the same manner we can also obtain a converse implication.D
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Lemma 49. If a set X ′ ⊆ E(H) is a solution to (I′b,P
′) of minimum possible size,

then X ′ is a solution to (Ib,P) as well.

Lemmas 48 and 49 justify correctness of the following step, which we now state
formally.

Step 5.5. Contract the edges of S to obtain the graph H0. If there are no heavy
vertices in H0, terminate the branch as S cannot interrogate any feasible deletion
set. Otherwise, identify all heavy vertices into one core vertex b and denote by H the
resulting graph. Define the instance I′b = (H,T ′, k, T ′b) and P′ in a natural manner,
described in this section. Run the remaining part of the algorithm on the instance I′b
and triple P′ to obtain a solution sol, which then output as solP.

Note that Step 5.5 can be performed in O(kn) time.

5.4.2. Connected components of H \ {b} and dynamic programming.
We now establish some structural properties of the behavior of X0 in H. The goal
is to limit the class of possible solutions in I′b we need to search through. Note
that in the constructed graph H the vertex b plays a special role, as we know that
V (X0) ∩ V (C0) ⊆ ι−1(b).

Let B′1, B
′
2, . . . , B

′
p be the components of H \ {b} and let Bi = H[V (B′i) ∪

{b}] for i = 1, 2, . . . , p. Observe that Bi are connected and edge-disjoint and b
separates them. Moreover, we can compute them in O(kn) time. We now claim
that for each component Bi, the solution either takes E(Bi) entirely or is disjoint
with it.

Lemma 50. For each i = 1, 2, . . . , p, either E(Bi) ∩X0 = ∅ or E(Bi) ⊆ X0.

Proof. We consider two cases. Assume first that no vertex in V (B′i) is in the
same connected component of H \X0 as the core b. In particular, this implies that
edges connecting b with V (B′i) belong to X0. Moreover, in G the set ι−1(V (B′i)) is
a union of vertex sets of some components Ci for i ≥ 1. As S interrogates X0, each
component Ci for i ≥ 1 is projected by ι onto a single vertex in H. Consider an edge
e ∈ E(B′i). We infer that e connects two different connected components of G \X0,
thus e ∈ X0. Therefore E(Bi) ⊆ X0 in this case.

Assume now that there exists a vertex v ∈ V (B′i) that is in the same connected
component of H \ X0 as b, i.e., ι−1(v) ⊆ V (C0). Let w ∈ NB′

i
(v). As v 6= b, we

have |ι−1(v)| ≤ q and |ι−1(w)| ≤ q, so we have vw /∈ X0, as otherwise S does not
interrogate X0. Since the choice of v and its neighbor w was arbitrary, and since B′i is
connected, we infer that all vertices of B′i belong to the same connected component of
H \X0. As ι−1(v) ⊆ V (C0), we find that ι−1(V (B′i)) ⊆ V (C0). From the minimality
of X0 we infer that E(Bi) ∩X0 = ∅.

Lemma 50 ensures us that we may seek the optimal solution among the ones
that do not intersect edge sets of components Bi nontrivially. We now show how to
construct the optimal solution in the remaining instance in O(k2n) time. First, we
resolve components B′i that contain border terminals.

Step 5.6. We define D ⊆ T ′b as follows. If b ∈ T ′b, we define D to be the equiva-
lence class of R′b that contains b. Otherwise, we branch into at most 1 + |T ′b| ≤ 1 + 2k
subcases, taking D to be an empty set or one of the equivalence classes of R′b. Given
D, we seek a solution X where the set of border terminals being in the same connected
component of H \X as b equals D.
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For a fixed choice of D, we may immediately resolve the connected components B′i
that contain a border terminal of T ′b. Initiate a counter s0 = 0. For each component
B′i with V (B′i) ∩ T ′b 6= ∅ perform the following:

1. If there exists a border terminal in V (B′i) ∩ D, as well as a border termi-
nal in (V (B′i) ∩ T ′b) \ D, terminate this branch, as for any of the two cases
given by Lemma 50, we cannot satisfy the conditions implied by R′b and the
set D.

2. If all border terminals in V (B′i)∩T ′b belong to D, contract all edges of Bi (we
have E(Bi) ∩X = ∅ in this case).

3. If all border terminals in V (B′i) ∩ T ′b do not belong to D, include E(Bi) into
the constructed solution: decrease k by |E(Bi)| and increase s0 by |V (B′i) ∩
T ′| (by including E(Bi) into a solution, we delete |E(Bi)| edges and create
|V (B′i) ∩ T ′| new connected components that contain a terminal).

Note that Step 5.6 can be performed in O(k2n) time and results in at most 2k+1
branches. Its correctness is asserted by Lemma 50. After Step 5.6 is applied, all
terminals of T ′b are either contracted onto b (if they belong to D) or became isolated
vertices after the removal of edges included to the constructed solution. If some
equivalence class of R′b different than D is larger than a single vertex of H, or we
do not satisfy the conditions implied by the set Y ′b for some vertex of T ′b, we may
immediately reject the current branch. Otherwise, we may forget the relation R′b (as
all conditions imposed by it are already satisfied). Moreover we may also forget almost
all information carried by the set Y ′b , except for the fact whether D ⊆ Y ′b . This is
done in the following step.

Step 5.7. Terminate the current branch if one of the following conditions is
satisfied:

1. There exists an equivalence class of R′b that is different from D and contains
at least two border terminals.

2. There is a vertex v ∈ T ′b \D such that v is exactly in one of the sets T ′ and
Y ′b .

3. D 6= ∅, D ∩ Y ′b = ∅, and b ∈ T ′ after Step 5.6 is applied.
Otherwise, denote α = ⊥ if D 6= ∅ and D ∩ Y ′b = ∅, and α = > otherwise.

We note that from the minimality of X and the connectivity of G, we have that
any connected component of G \X that does not contain a border terminal contains
a terminal from T . Indeed, otherwise, if G \ X contains a connected component C
that does not contain a terminal or a border terminal, one edge incident to C may be
removed from X and still X would be a solution to (Ib,P), a contradiction. Therefore,
if D = ∅, we may assume that the connected component of G\X that contains ι−1(b)
contains at least one terminal.

From now on we know that all the remaining components B′i do not contain
border terminals. Without loss of generality, let B′1, B

′
2, . . . , B

′
p′ be the remaining

components. For every remaining component Bi we have two numbers: ai = |E(Bi)|,
the cost of incorporating it to the solution, and bi = |V (B′i) ∩ T ′|, the number of
separated terminals. Computation of ai, bi can be done in O(kn) time. We would
like to know what is the optimal number of edges needed to separate exactly s1 =
sb − s0 connected components with terminals, with the additional constraint that
the connected component containing b contains a terminal iff α = >.

This can be solved in time O(sbp
′) via a standard dynamic programming routine.

We create a three-dimensional table T [j, `, t] for ` = 0, 1, . . . , s1, j = 0, 1, . . . , p′,
t = {⊥,>} with the following meaning: T [j, `, t] is the minimum cost of a solution
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contained in the prefix B1, B2, . . . , Bj that separates exactly ` isolated vertices being
terminals and t denotes whether the remaining connected component with b contains
a terminal different from b (or +∞ if such a solution does not exist). Formally,

T [j, `, t]= min

∑
γ∈Γ

aγ | Γ ⊆ {1, 2, . . . , j} ∧
∑
γ∈Γ

bγ = ` ∧ (t=> ⇔
∑

γ∈{1,2,...,j}\Γ

bγ>0)

 .

Observe that T admits the following recurrential formula (by somewhat abusing
notation, we assume that cells of T with negative coordinates contain +∞):

T [j, `,⊥] =


+∞ if j = 0 and ` > 0,

0 if j = ` = 0,

min(T [j − 1, `,⊥], aj + T [j − 1, `− bj ,⊥]) if j > 0 and bj = 0,

aj + T [j − 1, `− bj ,⊥] otherwise.

T [j, `,>] =


+∞ if j = 0,

min(T [j − 1, `,>], aj + T [j − 1, `− bj ,>]) if j > 0, and bj = 0,

min(T [j − 1, `,⊥], T [j − 1, `,>], aj + T [j − 1, `− bj ,>]) otherwise.

Hence, we can fill the table T in time O(s1p
′) = O(kn); the optimal value can be

deduced from the cells T [p′, s1,⊥] and T [p′, s1,>]. Although we presented here only
the algorithm for computing the optimal value, it is straightforward to implement the
dynamic program so that it also maintains backlinks via which one can retrieve the
corresponding set Γ from the definition of T . Thus, we can formally present the final
step of our algorithm.

Step 5.8. Compute numbers ai and bi and fill table T in O(kn) time. Let t ∈
{⊥,>} be defined as t = ⊥ if α = ⊥, t = > if α = > and b /∈ T ′, and otherwise pick
t ∈ {⊥,>} to minimize the value T [p′, s1, t]. Let Γ ⊆ {1, 2, . . . , p′} be the set from the
definition of the value T [p′, s1, t], computed in O(n) time by following backlinks in the
table T . If the value T [p′, s1, t] exceeds the remaining budget k, terminate the branch.
Otherwise, incorporate the set

⋃
γ∈ΓE(Bγ) to the constructed solution.

Step 5.8 can be performed in O(kn) time and its correctness follows from the
definition of the table T and the previous steps of the algorithm.

This finishes the description of the fixed-parameter algorithm for Steiner Cut
and the proof of Theorem 4.

6. The algorithm for N-MWCU. In this section we show an FPT algorithm
for the following generalization of the well-known Multiway Cut problem.

N-MWCU Parameter: k
Input: A graph G together with a set of terminals T ⊆ V (G), an equivalence
relation R on the set T , and an integer k.
Question: Does there exist a set X ⊆ V (G) \ T of at most k nonterminals
such that for any u, v ∈ T , the vertices u and v belong to the same connected
component of G \X iff (u, v) ∈ R?

In other words, we are to delete at most k vertices from the graph, so that
the terminals are split between connected components exactly as it is given by the
equivalence relation R. Given an N-MWCU instance I = (G,T,R, k), a set of vertices
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X is called a solution to I the if |X| ≤ k and for any u, v ∈ T , the vertices u and v
belong to the same connected component of G \X iff (u, v) ∈ R.

Our algorithm not only resolves the N-MWCU instance, but, in the case of a
YES answer, it returns a solution X with minimum possible |X|. This property will
be used in the course of the algorithm.

6.1. Reduction of the number of equivalence classes. We now show how
to reduce the number of equivalence classes of R in an N-MWCU instance I =
(G,T,R, k). We use a reduction similar to the one used by Razgon [53, Theorem 5].

Lemma 51. Let I = (G,T,R, k) be an N-MWCU instance and let v ∈ V (G) \ T .
Assume that there exist k + 2 paths P1, P2, . . . , Pk+2 in G, such that

• for each 1 ≤ i ≤ k + 2, the path Pi is a simple path that starts at v and ends
at vi ∈ T ;

• the paths Pi have pairwise disjoint sets of vertices, except for the vertex v;
• for any i 6= j, (vi, vj) /∈ R.

Then for any solution X in I we have v ∈ X.

Proof. Let X ⊆ V (G) \ T with v /∈ X and |X| ≤ k. As the paths Pi are disjoint
(except for v), there exist two indices 1 ≤ i < j ≤ k+ 2 such that Pi and Pj does not
contain any vertex from X. A concatenation of Pi and Pj is a path from vi to vj that
avoids X. As (vi, vj) /∈ R, we infer that X is not a solution to I.

Lemma 52. Let I = (G,T,R, k) be an N-MWCU instance. For any v ∈ V (G),
we can verify if v satisfies the conditions of Lemma 51 in O(kn2) time.

Proof. Consider the following auxiliary graph H. For each equivalence class A ⊆
T of R, we attach a new vertex tA that is adjacent to all vertices of A. We make v an
infinite-capacity source and each vertex tA a unit-capacity sink; each other vertex of
H has unit capacity. Clearly, v satisfies the conditions of Lemma 51 iff there exists a
flow of size at least k + 2 in H. As vertices in H have unit capacities (except for v),
this can be done in O(kn2) time by the classic Ford–Fulkerson algorithm.

Lemma 51 justifies the following step.

Step 6.1. For each v ∈ V (G), if v satisfies the conditions of Lemma 51, delete v
from the graph and decrease k by one; if k becomes negative by this operation, return
NO. Afterward, restart the algorithm.

By Lemma 52, each application of Step 6.1 takes O(kn3) time. As we cannot
apply Step 6.1 more than k times, all applications of this step take O(k2n3) time.

Let us now show that Step 6.1 leads to a bound on the number of equivalence
classes of R.

Lemma 53. Let I = (G,T,R, k) be an N-MWCU instance where Step 6.1 is not
applicable. If there exists a connected component of G that contains terminals of more
than k2 + k equivalence classes of R, then I is a NO-instance to N-MWCU.

Proof. Let C be the vertex set of any connected component of G, and let X be a
solution to I. Fix arbitrary v ∈ X ∩ C. We say that v sees an equivalence class A of
R if there exists a connected component CA of G[C \X] that contains a terminal of A
and such that NG(v)∩CA 6= ∅. Note that if v sees k+2 equivalence classes of R, then
in each component CA for each equivalence class A seen by v we can find a path from
v to a terminal of A. Thus v satisfies the assumptions of Lemma 51, as CA 6= CB
for A 6= B (recall that X is a solution to I). Therefore, each vertex v ∈ X sees at
most k + 1 equivalence classes of R. From connectivity of G[C] we infer that each
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component CA must be seen by some element of X, so C \X may contain vertices of
at most k(k + 1) equivalence classes of R.

Step 6.2. If there exist u, v ∈ T such that u and v lie in different connected
components of G, but (u, v) ∈ R, or there exists a connected component of G with
terminals of more than k2 + k equivalence classes or R, return NO.

Clearly, Step 6.2 can be applied in O(n2) time.
We now ensure connectivity of G by considering separately all connected compo-

nents. Recall that we are developing an algorithm that not only resolves the given
N-MWCU instance but also, in case of the positive answer, returns a solution of
minimum possible size.

Step 6.3. For each connected component of G with vertex set C, pass the instance
(G,T ∩C,R|T∩C , k) to the next step. If any of the subinstances returns NO, or if the
union of the solutions to the subcases is larger than k, return NO. Otherwise, return
YES and the union of the solutions for the connected components as the solution to
the given instance.

The correctness of Step 6.3 is straightforward (note that Step 6.2 refutes instances
where one equivalence class of R is scattered among more than one connected com-
ponent of G) and splitting G into connected components takes linear time in the size
of G. Thus, from this point we may assume that G is connected and that the number
of equivalence classes or R is bounded by ` := k2 + k.

6.2. Operations on the input graph. In this section we show basic operations
the algorithm repetitively applies to the graph.

Definition 54. Let I = (G,T,R, k) be an N-MWCU instance and let v ∈ V (G)\
T . By bypassing a vertex v we mean the following operation: we delete the vertex v
from the graph and for any u1, u2 ∈ NG(v), we add an edge u1u2 if it is not already
present in G.

We now state the properties of the bypassing operation.

Lemma 55. Let I = (G,T,R, k) be an N-MWCU instance, let v ∈ V (G)\T , and
let I′ = (G′, T,R, k) be the instance I with v bypassed. Then,

• if X is a solution to I′, then X is a solution to I as well;
• if X is a solution to I and v /∈ X then X is a solution to I′ as well.

Proof. The claim follows from the following correspondence of the paths in G and
G′: any path P ′ in G′ has a corresponding walk P in G, where each occurrence of
an edge of E(G′) \ E(G) is replaced with a length-2 subpath via v. Moreover, any
path P in G that does not start or end in v has a corresponding path P ′ in G′, where
a possible occurrence of v is circumvented by an edge in G′ between two neighbors
of v.

Apart from the bypassing operation, we need to show a way to reduce the number
of terminals.

Definition 56. Let I = (G,T,R, k) be an N-MWCU instance and let u, v ∈ T
be two terminals with u 6= v, (u, v) ∈ R. By identifying u and v we mean the following
operation: we replace vertices u and v with a new vertex wuv that is adjacent to all
vertices of NG(u)∪NG(v). Moreover, we update R by substituting u and v with w in
the equivalence class they belong to.

Lemma 57. Let I = (G,T,R, k) be an N-MWCU instance and let u, v ∈ T be
two different terminals with (u, v) ∈ R, such that uv ∈ E(G) or |NG(u)∩NG(v)| > k.
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Let I′ be instance I with terminals u and v identified. Then the set of solutions to I′

and I are equal.

Proof. The lemma follows from the fact that for any X ⊆ V (G) \ T of size at
most k, in G \X the vertices u and v lie in the same connected component.

Lemma 58. Let I = (G,T,R, k) be an N-MWCU instance and let u1, u2, u3 ∈ T
be three different terminals of the same equivalence class of R, pairwise nonadjacent
and such that NG(u1) = NG(u2) = NG(u3) ⊆ V (G) \ T . Let I′ be obtained from I by
deleting the terminal u3 (and all pairs that contain u3 in R). Then the set of solutions
to I′ and I are equal.

Proof. Let X ⊆ V (G) \ T . We claim that for any u, v ∈ V (G) \ {u3}, u and v
are in the same connected component of G \ X iff they are in the same connected
component of G′ \ X. Indeed, the backward implication is trivial, whereas for the
forward implication observe that any path from u to v in G \X that visits u3 can be
redirected via u1 or u2.

The proven equivalence already shows that any solution to I is a solution to I′ as
well. For the other direction, we need to additionally verify that for any v ∈ T , we
have (u3, v) ∈ R iff v and u3 are in the same connected component of G\X, assuming
that X is a solution to I′. As X is a solution to I′ and (u1, u2) ∈ R, there exists
w ∈ NG(u1) \X. Therefore u1, u2, and u3 are in the same connected component of
G \X. As (u1, v) ∈ R iff (u3, v) ∈ R, the claim follows.

6.3. Borders and recursive understanding. For the recursive understanding
phase, we need to define the bordered problem. Let I = (G,T,R, k) be an N-MWCU
instance and let Tb ⊆ V (G) \ T be a set of border terminals; we assume |Tb| ≤ 2k.
Define Ib = (G,T,R, k, Tb) to be an instance of the bordered problem. By P(Ib) we
define the set of all triples P = (Xb, Eb,Rb), such that Xb ⊆ Tb, Eb is an equivalence
relation on Tb\Xb and Rb is an equivalence relation on T ∪(Tb\Xb) such that Eb ⊆ Rb
and Rb|T = R. For a triple P = (Xb, Eb,Rb), by GP we denote the graph G∪Eb, that
is, the graph G with additional edges Eb.

We say that a set X ⊆ V (G) \ T is a solution to (Ib,P) if |X| ≤ k, X ∩ Tb = Xb,
and for any u, v ∈ T ∪ (Tb \ Xb), the vertices u and v are in the same connected
component of the graph GP \ X (i.e., we delete vertices X and add edges Eb) iff
(u, v) ∈ Rb.

We also say that X is a solution to Ib = (G,T,R, k, Tb) whenever X is a solution
to I = (G,T,R, k). Note that if X is a solution to (Ib,P), the set X is not necessarily
a solution to Ib; however, X is a solution to the N-MWCU instance (GP, T,R, k).

One may think of the set of edges Eb as the “prediction” of which vertices will
be connected outside the currently considered part of the graph, after the solution
edges have been deleted. Since such a definition may not be very intuitive, we provide
detailed proofs of all equivalences in this section; note that corresponding equivalence
claims in the previous sections were nearly straightforward.

We formally define the bordered problem as follows.

Border N-MWCU
Input: An N-MWCU instance I = (G,T,R, k) with G being connected and a
set Tb ⊆ V (G) \ T of size at most 2k; denote Ib = (G,T,R, k, Tb)
Output: For each P = (Xb, Eb,Rb) ∈ P(Ib), output a solP = XP being a
solution to (Ib,P) with minimum possible |XP|, or solP = ⊥ if such a solution
does not exist.

Clearly, N-MWCU reduces to Border N-MWCU, as we may ask for an instance
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with Tb = ∅. Moreover, in this case the single answer to Border N-MWCU for
P = (∅, ∅,R) returns a solution of minimum possible size.

We note that

|P(Ib)| ≤ (1 + |Tb|(|Tb|+ `))|Tb| ≤ (2k3 + 6k2 + 1)2k = 2O(k log k),

as Rb has at most `+ |Tb| equivalence classes, Eb has at most |Tb| equivalence classes,
and each v ∈ Tb can either go to Xb or choose an equivalence class in Rb and Eb. Let
q = k(2k3 + 6k2 + 1)2k + k; all output solutions to a Border N-MWCU instance Ib
contain at most q − k vertices in total.

Armed with the previous definitions, we are now ready to prove a somewhat ex-
pected at this point lemma showing that if a Border N-MWCU instance Ib contains
another, smaller subinstance Îb, then it suffices to restrict our attention to only one,
fixed output to Border N-MWCU on Îb. In other words, we show that there exists
a valid output to Border N-MWCU on Ib that, on Îb, behaves as prescribed by the
aforementioned fixed output. Due to an involved definition of Eb as a connectivity
prediction, the formal proof is quite involved.

Lemma 59. Assume we are given a Border N-MWCU instance Ib = (G,T,R, k,

Tb), a set Z ⊆ V (G) \ T with |Z| ≤ k, and a connected component V̂ of G− Z. De-

note ZW := NG(V̂ ) ⊆ Z and W := V̂ ∪ ZW , and assume furthermore that G[W ] is

connected and that |V̂ ∩ Tb| ≤ k.

Denote Ĝ = G[W ], T̂b = (Tb ∪ ZW ) ∩W , T̂ = T ∩W , R̂ = R|T∩W , and Îb =

(Ĝ, T̂ , R̂, k, T̂b). Then Îb is a proper Border N-MWCU instance. Moreover, if we

denote by (ŝol
P̂

)
P̂∈P(Îb)

an arbitrary output to the Border N-MWCU instance Îb

and
U(Îb) = T̂b ∪

⋃
{X̂

P̂
: P̂ ∈ P(Îb), ŝolP̂ = X̂

P̂
6= ⊥}

to be a set of vertices used by the solutions of (ŝol
P̂

)
P̂∈P(Îb)

, then there exists a cor-

rect output (solP)P∈P(Ib) to the Border N-MWCU instance Ib such that whenever

solP = XP 6= ⊥, then XP ∩ V̂ ⊆ U(Îb).

Proof. The claim that Îb is a proper Border N-MWCU instance follows directly
from the assumptions that Ĝ = G[W ] is connected, |ZW | ≤ |Z| ≤ k, and |V̂ ∩Tb| ≤ k.
In the rest of the proof we justify the second claim of the lemma.

Fix P = (Xb, Eb,Rb) ∈ P(Ib) and recall that GP = G ∪ Eb. Assume that there
exists a solution to the instance (Ib,P); let XP be such a solution with minimum
possible |XP|. To prove the lemma we need to show a second solution X ′P to (Ib,P),

|X ′P| ≤ |XP|, and X ′P ∩ V̂ ⊆ U(Îb).
Let us first give an intuition of the proof. We are given a solution XP; our goal is

to modify it on V̂ so that it behaves on Îb as predicted by the output (ŝol
P̂

)
P̂∈P(Îb)

.

To this end, we observe how XP ∩W behaves on Îb and define a triple P̂ ∈ P(Îb) so

that XP ∩W is a solution to (Îb, P̂). The information stored in the triple P̂ should
be enough to argue that swapping XP ∩W with ŝol

P̂
does not invalidate XP as a

solution to (Ib,P).
Let us now proceed with this strategy in full detail. We start by defining a triple

P̂ = (X̂b, Êb, R̂b) that represents how XP ∩W behaves on Îb.

• As X̂b is meant to keep information on deleted border terminals, its definition
is straightforward. We take X̂b = XP ∩ T̂b; note that Xb ∩W ⊆ X̂b since XP
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is a solution to (Ib,P).

• Recall that Êb is meant to predict connectivity between border terminals
outside the instance Îb. Consequently, in the definition of Êb we need to take
into account both the graph G−V̂ after the deletion of XP as well as the edges
Eb. Formally, we define Êb to be the following relation on T̂b \X̂b: (u, v) ∈ Êb
iff u and v are in the same connected component of GP \ ((V̂ \ Tb) ∪XP) (in
particular, if (u, v) ∈ Eb).

• Recall that R̂b is meant as a requirement on the final connectivity of the
terminals and border terminals in the entire graph; to this end, we can use
connectivity in GP \ XP. That is, we define R̂b to be the following relation

on T̂ ∪ (T̂b \ X̂b): (u, v) ∈ Rb iff u and v are in the same connected component

of GP \XP. As XP is a solution to (Ib,P), R̂b|T̂ = R̂ = R|T̂ .

Note that Êb ⊆ R̂b, as both Êb and R̂b correspond to the relation of being in the
same connected component, but in Êb we consider a smaller graph than in R̂b. This
justifies that P̂ ∈ P(Îb).

The main idea of the definition of P̂ is that XP ∩W is a solution to (Îb, P̂). Let

us now verify it formally. Clearly, |XP ∩W | ≤ k. By the definition of X̂b, we have

XP ∩W ∩ T̂b = X̂b. Consider two vertices u, v ∈ T̂ ∪ (T̂b \ X̂b). We have (u, v) ∈ R̂b

iff there exists a path P between u and v in GP \XP. By the definition of Êb, such a

path P exists iff there exists a path P̂ connecting u and v in Ĝ
P̂
\XP: each subpath

of P with internal vertices in V (G) \W corresponds to an edge in Êb and vice versa.

Thus, u and v are in the same connected component of Ĝ
P̂
\XP iff (u, v) ∈ R̂b and

the claim is proven.
To wrap up, we have defined an element P̂ ∈ P(Îb) that represents the behavior

of XP on Îb. Our goal now is to show that if we swap XP ∩W with ŝol
P̂

, that is, the

prescribed solution to (Îb, P̂), we obtain another solution to (Ib,P) that fulfills our
requirements.

Since XP ∩W is a solution to (Îb, P̂), we infer that ŝol
P̂

= X̂
P̂
6= ⊥ and |X̂

P̂
| ≤

XP ∩W . Let us define our new solution to (Ib,P) as X ′P = (XP \W ) ∪ X̂
P̂

. Clearly,
|X ′P| ≤ |XP|. To finish the proof of the lemma, we need to formally show that indeed
X ′P is a solution to (Ib,P).

It is straightforward to verify that X ′P satisfies the constaint imposed by Xb: As

X̂b is defined as XP ∩ T̂b and XP is a solution to (Ib,P), we have X ′P ∩ Tb = Xb.
It remains to check the connectivity requirement imposed by Rb. Let u, v ∈

T ∪ (Tb \Xb). Our goal is to show that u and v lie in the same connected component
of GP \X ′P iff they lie in the same connected component of GP \XP. We present the
proof only in one direction, as the proofs in both directions are totally symmetric: we
use only the facts that both XP ∩W and X ′P ∩W are solutions to (Îb, P̂) and that

XP \ V̂ = X ′P \ V̂ . The last equality holds because ZW ⊆ T̂b, so ZW ∩XP = ZW ∩X̂P̂
.

Thus, assume that u, v ∈ T ∪ (Tb \ Xb) and u and v lie in the same connected
component of GP \ XP. Let P be a path that connects u and v in GP \ XP. The
remainder of the proof works as follows: we partition P into parts that live entirely
in GP \ V̂ and in GP[W ] and argue that each such part of P has its counterpart in
GP \X ′P.

Formally, let u = v0, v1, v2, . . . , vr = v be a sequence of vertices that lie on the
path P and belong to D := T ∪ (Tb \Xb)∪ZW , in the order they appear on P . First

note that since XP \ V̂ = X ′P \ V̂ and both XP ∩W and X ′P ∩W are solutions to
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(Îb, P̂), we have that XP ∩D = X ′P ∩D = Xb ∪ X̂b. Thus, for each 0 ≤ i ≤ r, we have
vi /∈ X ′P. To finish the proof of the lemma we need to show that for any 0 ≤ i < r,
the vertices vi and vi+1 lie in the same connected component of GP \X ′P.

Let Pi be the subpath of P between vi and vi+1. As ZW ⊆ D, Pi is either a path

in GP \ V̂ or a path in GP[W ]. In the first case, since XP \ V̂ = X ′P \ V̂ , we infer that
the path Pi is present in GP \X ′P and the claim is proven. In the second case, note

that we have (vi, vi+1) ∈ R̂b. As X ′P ∩W is a solution to (Îb, P̂), we infer that vi and

vi+1 are connected via a path P̂i in Ĝ
P̂
\ (X ′P ∩W ). However, by the definition of

Êb, for any edge w1w2 ∈ Êb on P̂i, the vertices w1 and w2 are in the same connected
component of GP \ ((V̂ \ Tb)∪XP). Since XP \ V̂ = X ′P \ V̂ and XP ∩ Tb = X ′P ∩ Tb,
we have that XP \ (V̂ \ Tb) = X ′P \ (V̂ \ Tb) and the claim is proven. This finishes the
proof of the lemma.

Note that in Lemma 59 we have |U(Îb) ∩ V̂ | ≤ q.
A recursive call due to an application of Lemma 59 allows us to reduce the number

of nonterminal vertices in V̂ to at most q = 2O(k log k). To make the recursion work
in FPT time, we need to reduce the number of terminals as well. Fortunately, this is
quite easy, due to the identifying operation and Lemma 57.

We are now ready to present the recursive step of the algorithm.

Step 6.4. Assume we are given a Border N-MWCU instance Ib = (G,T,R,
k, Tb). Invoke first the algorithm of Lemma 19 in a search for (q, k)-good node sepa-
ration (with V∞ = T ). If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2}
be such that |Vj ∩Tb| ≤ k and denote Ẑ = Z, V̂ = Vj. Otherwise, if it returns that no
such good node separation exists in G, invoke the algorithm of Lemma 20 in a search
for (q, k)-flower separation w.r.t. Tb (with V∞ = T again). If it returns that no such
flower separation exists in G, pass the instance Ib to the next step. Otherwise, if it
returns a flower separation (Z, (Vi)

`
i=1), denote Ẑ = Z and V̂ =

⋃`
i=1 Vi.

In the case we have obtained Ẑ and V̂ (from either Lemma 19 or Lemma 20), in-

voke the algorithm recursively for the Border N-MWCU instance Îb defined as in the
statement of Lemma 59 for separator Ẑ and set V̂ , obtaining an output (sol

P̂
)
P∈P(Îb)

.

Compute the set U(Îb). Bypass (in an arbitrary order) all vertices of V̂ \ (T ∪U(Îb)).

Recall that T̂b ⊆ U(Îb), so no border terminal gets bypassed.

After all vertices of V̂ \ U(Îb) are bypassed, perform the following operations on

terminals of V̂ ∩ T :
1. As long as there exist two different u, v ∈ V̂ ∩ T that satisfy uv ∈ E(G) or
|NG(u) ∩ NG(v)| > k do as follows: if (u, v) ∈ R, identify u and v, and
otherwise output ⊥ for all P ∈ P(Ib).

2. If the above is not applicable, then, as long as there exist three pairwise distinct
terminals u1, u2, u3 ∈ T of the same equivalence class of R that have the same
neighborhood, delete u3 from the graph (and delete all pairs containing u3 from
R).

Let I′b be the outcome instance.
Finally, restart this step on the new instance I′b and obtain a family of solutions

(sol′P)P∈P(Ib) and return this family as an output to the instance Ib.

Let us first verify that the application of Lemma 59 is justified. Indeed, by the
definitions of the good node separation and the flower separation, as well as the
choice of V̂ , we have in both cases |V̂ ∩ Tb| ≤ k and that G[V̂ ∪NG(V̂ )] is connected.
Moreover, note that the recursive call is applied to a graph with a strictly smaller
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number of vertices than G: in the case of a good node separation, V2 is removed from
the graph, and in the case of a flower separation, recall that the definition of the flower
separation requires Z ∪

⋃`
i=1 Vi to be a proper subset of V (G).

We have that after the bypassing operations, V̂ contains at most q vertices that
are not terminals (at most k border terminals and at most q − k vertices which are
neither terminals nor border terminals). Let us now bound the number of terminal

vertices once Step 6.4 is applied. Note that after Step 6.4 is applied, for any v ∈ T ∩V̂ ,
we have NG(v) ⊆ (V̂ \T )∪Z and |(V̂ \T )∪Z| ≤ (q+k). Due to the first rule in Step

6.4, for any set A ⊆ (V̂ \T )∪Z of size k+1, at most one terminal of T ∩ V̂ is adjacent

to all vertices of A. Due to the second rule in Step 6.4, for any set B ⊆ (V̂ \ T ) ∪ Z
of size at most k and for each equivalence class of R, there are at most two terminals
of this equivalence class with neighborhood exactly B. We infer that

|T ∩ V̂ | ≤ (q + k)k+1 + 2`

k∑
i=1

(q + k)i =: q′.

Note that q′ = 2O(k2 log k).
The following lemma verifies the correctness of Step 6.4.

Lemma 60. Assume we are given a Border N-MWCU instance Ib = (G,T,R,
k, Tb) on which Step 6.4 is applied, and let I′b be an instance after Step 6.4 is applied.
Then any correct output to the instance I′b is a correct output to the instance Ib as
well. Moreover, if Step 6.4 outputs ⊥ for all P ∈ P(Ib), then this is a correct output
to Ib.

Proof. The lemma is a straightforward corollary of Lemma 59, the properties of
the bypassing operation described in Lemma 55, and Lemmas 57 and 58. Lemma 59
ensures us that each vertex not in U(Îb) is omitted by some optimal solution for every
P ∈ P(Ib), which enables us to use Lemma 55. Finally, if for any terminals u, v ∈ T ,
we have uv ∈ E(G) or |NG(u) ∩NG(v)| > k, then u and v are in the same connected
component of G \ X for any set X of at most k nonterminals and if (u, v) /∈ R, for
any P ∈ P(Ib), there is no solution to (Ib,P).

We are left with the analysis of the time complexity of Step 6.4. The applica-
tions of Lemmas 19 and 20 use O(2O(min(q,k) log(q+k))n3 log n) = O(2O(k2 log k)n3 log n)

time. Let n′ = |V̂ |; the recursive step is applied to a graph with at most n′ + k
vertices and, after bypassing, there are at most min(n − 1, n − n′ + q + q′) vertices
left. Moreover, each bypassing operation takes O(n2) time, and the computation of

U(Îb) takes O(2O(k log k)n) time. Application of Lemma 57 takes O(kn2) time per
operation, which can be implemented by having a counter for each pair of terminals
and increasing those counters accordingly by considering every pair of terminals of
NG(x), for each x ∈ V . Since when a counter reaches value k + 1 for vertices u, v,
we know that |NG(u) ∩NG(v)| > k, the total time consumed is bounded by O(kn2).
Application of Lemma 58 takes O(n2 log n) time per one operation, since we can sort
terminals from one equivalence class according to their sets of neighbors. Thus all
applications of Lemmas 57 and 58 take O(n3(k + log n)) time in total. The value of
k does not change in this step. Therefore, we have the following recursive formula for
time complexity as a function of the number of vertices of G:
(3)

T (n) ≤ max
q+1≤n′≤n−q−1

(
O(2O(k2 log k)n3 log n)+T (n′+k)+T (min(n−1, n−n′+q+q′))

)
.

Note that the function p(t) = t4 log t is convex, so it is easy to see that the maximum
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is attained either when n′ = q + q′ − 1 or when n′ = n − q − 1. A straightforward
inductive check of both of the ends proves that we have indeed the claimed bound on
the complexity, i.e., T (n) = O(2O(k2 log k)n4 log n).

We conclude this section with a note that Lemma 21 asserts that if Step 6.4 is
not applicable, then for any set Z ⊆ V (G) \ T of size at most k, the graph G \ Z
contains at most t := (2q + 1)(2k − 1) + 2k + 1 connected components containing a
nonterminal, out of which at most one has more than q vertices not from T .

6.4. Brute-force approach. If the graph output by Step 6.4 has a small num-
ber of vertices outside T , the algorithm may apply a straightforward brute-force
approach to the Border N-MWCU problem. In this section we describe this method
formally.

Lemma 61. A correct output to a Border N-MWCU instance Ib = (G,T,R, k,
Tb) can be computed in O(2O(k log k)n2nk¬T ) time, where n¬T = |V (G) \ T |.

Proof. Simply, for each P ∈ P(Ib) (at most 2O(k log k) choices) for each deletion
set X ⊆ V (G) \ T with |X| ≤ k (at most (k+ 1)nk¬T choices) we verify in O(n2) time
if X is a solution to (Ib,P).

Step 6.5. If |V (G) \ T | ≤ qt + k, apply Lemma 61 to find a correct output to a
Border N-MWCU instance Ib = (G,T,R, k, Tb).

Recall that q, t ≤ 2O(k log k). Thus, if Step 6.5 is applicable, its running time is
O(2O(k2 log k)n2).

6.5. High connectivity phase. Assume we have a Border N-MWCU in-
stance Ib = (G,T,R, k, Tb) where Steps 6.4 and 6.5 are not applicable. In this section
we show that high connectivity of G makes the problem much easier. To this end, fix
P = (Xb, Eb,Rb) ∈ P(Ib). We focus on finding the solution solP; iterating through all
the possible P gives additional 2O(k log k) overhead to the running time. Recall that
GP = G ∪ Eb.

Note that if |V (G) \ T | is too large for Step 6.5 to be applicable, for any set
Z ⊆ V (G) \ T of size at most k, the bound on the number of connected components
from Lemma 21 implies that there exists exactly one connected component of G \ Z
with more than q vertices outside T ; denote its vertex set by big(Z).

We now use Lemma 1 to get some more structure of the graph G.

Definition 62. Let Z ⊆ V (G)\T be a set of size at most k and let S ⊆ V (G)\T .
We say that S interrogates Z if the following holds:

1. S ∩ Z = ∅;
2. for any connected component C of G \ Z with at most q vertices outside T ,

all vertices of C belong to S ∪ T .

Lemma 63. Let F be a family obtained by the algorithm of Lemma 1 for universe
U = V (G) \ T and constants a = qt and b = k. Then, for any Z ⊆ V (G) \ T with
|Z| ≤ k, there exists a set S ∈ F that interrogates Z.

Proof. Fix Z ⊆ V (G) \ T with |Z| ≤ k. Let A be the union of vertex sets of all
connected components of G\Z that have at most q vertices outside T ; by Lemma 21,
|A \ T | ≤ qt. By Lemma 1, as |A \ T | ≤ qt and |Z| ≤ k, there exists a set S ∈ F that
contains A\T and is disjoint with Z. By the construction of the set A, S interrogates
Z and the lemma is proven.

Note that, as q, t = 2O(k log k), the family F of Lemma 63 is of size 2O(k2 log k) log n
and can be computed in O(2O(k2 log k)n log n) time. Therefore we may branch, guessing
a set S that interrogates a solution solP = XP we are looking for. Formally, we
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perform computations in each branch and return the minimum size solution from
those obtained in the branches.

Step 6.6. Compute the family F from Lemma 63 and branch into |F| subcases,
indexed by sets S ∈ F. In a branch S we seek for a set XP with minimum possible
|XP| that not only is a solution to (Ib,P) but also is interrogated by S.

Lemma 63 verifies the correctness of the branching of Step 6.6; as discussed, the
step is applied in O(2O(k2 log k)n log n) time and leads to O(2O(k2 log k) log n) subcases.

The following observation is crucial for the final step.

Lemma 64. Let XP be a minimum size set that is a solution to (Ib,P) interrogated
by S. Then there exists a set T big ⊆ T ∪(Tb\Xb) that is empty or contains all vertices
of exactly one equivalence class of Rb, such that XP = Xb ∪ NG(S(T big)), where
S(T big) is the union of vertex sets of all connected components of G[S∪T ∪ (Tb \Xb)]
that contain a vertex of (T ∪ (Tb \Xb)) \ T big.

Proof. Consider the graph GP \ XP and let bigP(XP) be the vertex set of the
connected component of GP\XP that contain big(XP) (recall that GP is the graph G
with additional edges Ep; thus bigP(XP) may be significantly larger than big(XP)).
As XP is a solution to (Ib,P), we have XP ∩Tb = Xb. Define T big = (T ∪ (Tb \Xb))∩
bigP(XP); as XP is a solution to (Ib,P), T big is empty or contains vertices of exactly
one equivalence class or Rb.

Now let C be the vertex set of a connected component of G \XP that contains
a vertex v ∈ (T ∪ (Tb \ Xb)) \ T big. Clearly, v /∈ bigP(XP). As S interrogates XP,
bigP(XP) contains big(XP), and XP ∩ (T ∪ Tb) = Xb ⊆ Tb, we infer that C is the
vertex set of a connected component of G[S ∪ T ∪ (Tb \Xb)] as well. As v ∈ C, C is
a connected component of G[S(T big)]. Since the choice of C was arbitrary, we infer
that NG(S(T big)) ⊆ XP. Denote X ′P = Xb ∪NG(S(T big)) ⊆ XP. To finish the proof
of the lemma we need to show that X ′P is a solution to (Ib,P) as well.

Clearly, X ′P∩(T ∪Tb) = Xb, as NG(S(T big))∩(T ∪(Tb\Xb)) = ∅ by the definition
of S(T big). Moreover, as X ′P ⊆ XP and XP is a solution to (Ib,P), if (u, v) ∈ Rb, then
u and v are in the same connected component of GP \X ′P. We now show that for any
(u, v) /∈ Rb the vertices u and v are in different connected components of GP \ X ′P.
Assume the contrary, and let u, v ∈ T ∪ (Tb \Xb) be such that (u, v) /∈ Rb, u and v
are in the same connected component of GP \X ′P, and the distance between u and v
in GP \ X ′P is the minimum possible. Let P be a shortest path between u and v in
GP \X ′P.

As XP is a solution to (Ib, Xb), u and v are in different connected components of
GP \XP; without loss of generality assume v /∈ bigP(XP) and let C be the vertex set
of the connected component of G \XP that contains v. Clearly, since (u, v) /∈ Rb, we
have u /∈ C. Moreover, v ∈ (T ∪ (Tb \Xb)) \ T big and C is a connected component of
G[S(T big)]. Therefore NG(C) ⊆ X ′P. Since u /∈ C, the path P needs to go via an edge
v1u1 ∈ Eb, where v1 ∈ C but u1 /∈ C. Note that then u1, v1 ∈ Tb. As v1 ∈ C and XP

is a solution to (Ib,P), we have (v, v1) ∈ Rb. As Eb ⊆ Rb, we have that (v, u1) ∈ Rb.
As (u, v) /∈ Rb, we infer that (u1, u) /∈ Rb, but u1 and u are connected via a proper
subpath of P in GP \X ′P, a contradiction to the choice of u, v, and P . This finishes
the proof of the lemma.

Lemma 64 justifies the final step.

Step 6.7. In each branch, where by S we denote the corresponding guess, for each
set T big that is empty or contains all vertices of one equivalence class of Rb, check if
Xb∪NG(S(T big)) is a solution to (Ib,P) that is interrogated by S. For given P, output

D
ow

nl
oa

de
d 

12
/0

3/
19

 to
 1

47
.1

88
.1

08
.1

70
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FPT ALGORITHMS USING RANDOMIZED CONTRACTIONS 1223

the smallest solution to (Ib,P) found, or ⊥ if no solution is found for any choice of
S and T big.

Note that R has at most ` = k2 +k equivalence classes. As |Tb| ≤ 2k, there are at
most 1 + 3k+ k2 choices of the set T big. For each T big, computing Xb ∪NG(S(T big))
and verifying if it is a solution to (Ib,P) interrogated by S takes O(n2) time. Therefore

Step 6.7 takes O(2O(k2 log k)n2 log n) time for all subcases.
This finishes the description of the fixed-parameter algorithm for N-MWCU.

7. Lower bound for big alphabet size. In this section we prove that the
dependence on s in the algorithm from Theorem 2 is probably essential, even for
the edge-deletion case and in the classical setting, when every vertex has a full list of
possible labels and the partial permutations on edges are required to be permutations.
We define formally the problem as follows.

Edge Unique Label Cover (k) Parameter: k
Input: An undirected graph G, a finite alphabet Σ of size s, an integer k, and
for each vertex v ∈ V (G) a set φv ⊆ Σ and for each edge e ∈ E(G) and each its
endpoint v a partial permutation ψe,v of Σ, such that if e = uv, then ψe,u = ψ−1

e,v .
Question: Does there exist a set F ⊆ E(G) of size at most k and a function
Ψ : V (G) → Σ such that for any v ∈ V (G) we have Ψ(v) ∈ φv and for any
uv ∈ E(G) \ F we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

Theorem 65. Edge Unique Label Cover (k) is W [1]-hard, even in the re-
stricted case, when φv = Σ for all v ∈ V (G) and ψuv,u, ψuv,v are permutations for all
uv ∈ E(G).

Before we proceed to the proof, we state that this restricted case is not easier
than the general one.

Lemma 66. There exists a polynomial time algorithm that, given an instance

I = (G,Σ, k, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e)

of Edge Unique Label Cover, outputs an equivalent instance

I ′ = (G′,Σ′, k′, (φ′v)v∈V (G), (ψ
′
e,v)e∈E(G),v∈e),

where k′ = k(k + 2), |Σ′| = |Σ| + k + 2, φ′v = Σ′ for all v ∈ V (G) and ψ′e,v is a
permutation for all e ∈ E(G), v ∈ e.

Proof. The graph G′ we are going to construct will be a multigraph, possibly
with loops. Note that we can easily get rid of multiple edges and loops by subdividing
every edge and loop and for each subdivision preserving the constraint on one of the
obtained edges while setting the constraint on the other edge to be identity.

We start with setting k′ = k(k+ 2) and Σ′ = Σ∪Γ, where Γ = {γ1, γ2, . . . , γk+2}
is the set of k + 2 new symbols that do not belong to Σ. Now we construct the
multigraph G′ as follows. First, V (G′) = V (G). For every vertex v ∈ V (G) we take
an arbitrary permutation πv of Σ′ such that φv is exactly the set of labels that πv
stabilizes; note that this is possible due to k + 2 ≥ 2. We create k′ + 1 loops in v
with πv as the constraint. Then, for every edge uv ∈ E(G) denote by Xuv,u the set
of labels from Σ that do not have an image in ψuv,u, and similarly denote by Xuv,v

the set of labels from Σ that do not have an image in ψuv,v. Let {ψiuv,u}i=1,...,k+2 be
an arbitrary family of permutations of Σ′, such that
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• each ψiuv,u extends ψuv,u;

• each label α ∈ Xuv,u ∪ Γ is mapped to pairwise different labels in ψiuv,u for
i = 1, 2, . . . , k + 2;

• each label β ∈ Xuv,v ∪ Γ is mapped to pairwise different labels in ψiuv,v =(
ψiuv,u

)−1
for i = 1, 2, . . . , k + 2.

Observe that as |Γ| = k+2, one can find such family {ψiuv,u}i=1,...,k+2 by enumerating
Xuv,u ∪ Γ and Xuv,v ∪ Γ in arbitrary orders, fixing one bijection between them and
shifting it cyclicly k + 1 times. Between u and v we insert the set of k + 2 edges
Puv = {uvi}i=1,2,...,k+2, imposing the constraints (ψiuv,u, ψ

i
uv,v) on uvi. Finally, we

set φ′v = Σ′ for all v ∈ V (G). This concludes the construction. We are left with a
formal proof of the equivalence.

Assume first that there exists a set of edges F ⊆ E(G), |F | ≤ k, such that G \ F
admits a labeling Ψ respecting constraints in the input instance I. Let F ′ = {ei : e ∈
F}; note that |F ′| = (k + 2)|F | ≤ k′. A direct check shows that Ψ is also a correct
labeling in G′ \ F ′, which proves that F ′ is a solution to the instance I ′.

Now assume that there exists a set of edges F ′ ⊆ E(G′), |F ′| ≤ k′, such that
G′ \ F ′ admits a labeling Ψ′ respecting constraints in the output instance I ′. Note
that for each v ∈ V (G) we have that Ψ′(v) ∈ φv, as otherwise the set F ′ would
need to contain k′ + 1 loops at v. Let F ⊆ E(G) be the set of edges uv of G such
that (Ψ′(u),Ψ′(v)) /∈ ψuv,u. Clearly, F is a solution in the instance I as Ψ′ is a
correct labeling of G \ F . It remains to prove that |F | ≤ k. Assume otherwise, i.e.,
|F | ≥ k + 1.

Consider an edge uv ∈ E(G) such that (Ψ′(u),Ψ′(v)) /∈ ψuv,u. We claim that
|F ′ ∩ Puv| ≥ k + 1. If Ψ′(u) belongs to the domain of ψuv,u, then all the constraints
ψiuv,u map Ψ′(u) to a label different than Ψ′(v). Hence Puv ⊆ F ′ and the claim holds.

Otherwise, Ψ′(v) is mapped to k+2 different images in constraints ψiuv,u, which means
that at least k + 1 of them must be different than Ψ′(v). The corresponding edges
have to be contained in F ′ and the claim holds in this case as well. As |F | ≥ k + 1,
we have that |F ′| ≥ (k + 1)2 = k′ + 1, which is a contradiction.

We are now ready to prove Theorem 65.

Proof of Theorem 65. By Lemma 66, we may consider the general problem defini-
tion, where we allow lists in vertices and partial permutations as constraints imposed
on edges.

We provide a parameterized reduction from the Multicolored Clique problem,
which is known to be W[1]-hard [24].

Multicolored Clique Parameter: k
Input: An undirected graph H with vertices partitioned into k parts
V0, V1, . . . , Vk−1, such that H does not contain edges connecting vertices from
the same part Vi, for i = 0, 1, . . . , k − 1.
Question: Is there a clique C in G of size k?

Observe that by the assumption on the structure of H, the clique C has to contain
exactly one vertex from each part Vi. Moreover, by adding independent vertices we
can assume that each part Vi is of the same size n. In each part Vi fix an arbitrary
ordering of vertices vi0, v

i
1, . . . , v

i
n−1.

Now, we are going to construct an instance (G,Σ, k′, (φv)v∈V (G), (ψe,v)e∈E(G),v∈e)
that is a YES instance of Edge Unique Label Cover iff H contains a clique of size
k. As the construction will be performed in polynomial time and k′ = k2, this gives
the promised parameterized reduction.
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We take Σ = {0, 1, 2, . . . , n} × {0, 1, 2, . . . , n} and let Λ = {0, 1, . . . , n − 1} ×
{0, 1, . . . , n − 1} ⊆ Σ. For every part Vi we create a cycle Ci of length kn. Denote
the vertices of Ci by ui0, u

i
1, . . . , u

i
kn−2, u

i
kn−1 in the order of their appearance on the

cycle. For every vertex uip let next(uip) be the next vertex on the cycle Ci, i.e., uip+1

if p < kn − 1 and ui0 if p = kn − 1. Let e(uip) be the edge connecting uip with

next(uip).
On every edge of the cycle Ci we impose a constraint given by the permutation

π0((a, b)) = (a − 1, b), where the numbers behave cyclicly modulo n + 1. More pre-
cisely, the constraint on the edge e(uip) states that the label of next(uip) has the first

coordinate decremented by 1 modulo n + 1 comparing to the label of uip. Now, for

every i 6= j, 0 ≤ i, j < k, we create an edge uij·nu
j
i·n with constraint given by the

partial permutation σi,j = {((p, q), (q, p)) | vipvjq ∈ E(H)}. In other words, from the
domain of the permutation σ((a, b)) = (b, a) we remove out all the pairs that contain
n + 1 and all the pairs that correspond to nonedges between Vi and Vj . Finally, we
set φv = Λ for every v ∈ V (G) and k′ = k2. This concludes the construction.

Let us first assume that C is a clique of size k in H and let {vici} = V (C) ∩ Vi.
We construct

• a set of edges F = {e(uijn+ci
) | 0 ≤ i, j < k};

• a labeling Ψ(uip) = ((ci−p) mod n, cq/n), where uiq is the closest next vertex
on the cycle that has lower index being a multiplicity of n, i.e., q/n = dp/ne
mod n.

Obviously, |F | = k′. Let us check that Ψ is a correct labeling of G \ F . Clearly,
Ψ(v) ∈ Λ = φv for any v ∈ V (G). Consider any edge e(uip) /∈ F . As p mod n 6= ci,

we have that Ψ(uip) = (x, y) for some x > 0 and Ψ(next(uip)) = (x − 1, y); hence,

these constraints are satisfied. Now consider any edge of the form uij·nu
j
i·n for i 6= j,

0 ≤ i, j < k. By the construction of Ψ we have that Ψ(uij·n) = (ci, cj) and Ψ(uji·n) =

(cj , ci). Recall that C is a clique, so viciv
j
cj ∈ E(H). Hence, (ci, cj) lies in the domain

of σij and the constraint imposed on this edge is satisfied as well.
Let us now assume that there is a set of edges F ⊆ E(G), |F | ≤ k′, such that

there exists a correct labeling Ψ of G\F . First, we claim that for every n consecutive
edges of every cycle Ci, F has to contain at least one of these edge. Otherwise there
would be n+ 1 consecutive vertices uip, u

i
p+1, . . . , u

i
p+n such that edges uip+iu

i
p+i+1 do

not belong to F for i = 0, 1, . . . , n − 1 (indices behave cyclicly). It follows that if
Ψ(uip) = (`, d) for some ` < n, then we would have Ψ(uip+`+1) = (n, d), but n is a
forbidden value in a label for every vertex. As every cycle Ci has length kn, it has
to contain at least k edges from F . As k′ = k2, it has to contain exactly k edges
from F . We can use again the claim to infer that between every two subsequent edges
from F there must be exactly n − 1 edges not from F , as otherwise there would be
n consecutive edges not belonging to F . Moreover, the same argumentation yields
that the vertices of each interval on the cycle between the two subsequent edges from
F have to be labeled with (n − 1, d), (n − 2, d), . . . , (0, d), in this order, for some d
depending on the interval, but constant within. Hence, for every cycle Ci we can
find an integer ci ∈ {0, 1, . . . , n − 1}, such that F = {e(uijn+ci

) | 1 ≤ i, j < k} and

Ψ(uijn) = (ci, d
i
j) for all j = 0, 1, . . . , k − 1 and some numbers dij .

We are going to prove that vertices vici for i = 0, 1 . . . , k − 1 induce a clique in

H. Take parts Vi, Vj for i 6= j and examine the edge uij·nu
j
i·n with constraint σij . As

Ψ(uij·n) = (ci, d
i
j), Ψ(uji·n) = (cj , d

j
i ), and σij swaps the elements of the pair, we findD
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that dij = cj and dji = ci. Moreover, (ci, cj) is in the domain of σij iff viciv
j
cj ∈ E(H).

Therefore, vici and vjcj are adjacent for all i 6= j and we are done.

8. Weights. We would like to note that using our technique we can solve a more
general problem, where the graph is edge-weighted (or vertex-weighted, in the vertex-
deletion setting), and the goal is, instead of minimizing the cardinality of the cutset,
to find a cutset of size at most k, having minimum sum of weights of the edges (or
vertices) it contains. For example for the problem considered in section 2, the formal
definition is as follows.

Weighted Edge Unique Label Cover (W-E-ULC) Parameter: k + s
Input: An undirected (multi)graph G together with a weight function ω :
E(G) → R+, a finite alphabet Σ of size s, an integer k, and for each edge
e ∈ E(G) and each of its endpoints v a permutation ψe,v of Σ, such that if
e = uv, then ψe,u = ψ−1

e,v .
Question: What is the minimum weight of a setX ⊆ E(G) of size at most k such
that there exists a function Ψ : V (G)→ Σ satisfying that for any uv ∈ E(G)\X
we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

Note that now we have to reformulate the bordered problem definition as well,
because solutions to the bordered problem need to have a prescribed cardinality in
order to make them comparable. Let us see it on the example of W-E-ULC.

By P(Ib) we define the set of all pairs P = (Ψb, kb), such that Ψb is a function
from Tb to Σ and 0 ≤ kb ≤ k. We say that a set X ⊆ E(G) is a solution to (Ib,P)
if |X| ≤ kb, there exists a function Ψ : V (G) → Σ extending Ψb such that for any
uv ∈ E(G) \ X we have (Ψ(u),Ψ(v)) ∈ ψuv,u, and the sum of weights of edges in
X is the minimum possible (comparing to all other sets X ′ satisfying the remaining
constraints). The border problem is defined as follows.

Border W-E-ULC
Input: An W-E-ULC instance I = (G,ω,Σ, k, (ψe,v)e∈E(G),v∈e) with G being
connected, and a set Tb ⊆ V (G) of size at most 4k; denote Ib = (I, Tb).
Output: For each P ∈ P(Ib) output a solution solP = XP to (Ib,P) or output
solP = ⊥ if such a solution does not exist.

Since, while finding a good separation, our algorithm does not perform any greedy
choices, we almost leave the algorithm unchanged. Similarly, the recursive under-
standing step in the node-deletion problems is not affected significantly by this change.
However, when solving a weighted problem, we need to be more careful in the final,
high connectivity phase, as the existence of weights limits our possibilities of being
greedy. In the following paragraphs we argue that the high connectivity phases of the
algorithms presented in this paper can be adjusted to the weighted variants without
greater effort.

Node Unique Label Cover. In the case of the Node Unique Label Cover
problem, the high connectivity phase remains almost unchanged; however, we need
to argue that all greedy steps used in this part of the algorithm are justified also
in the weighted case. As in the case of the other problems, we start with guessing
an interrogating set that (i) is disjoint with the solution Z we are looking for, (ii)
contains all vertices of all small connected components of G \ Z, and (iii) contains a
large connected set adjacent to each vertex of Z that is adjacent to the large connected
component of G \Z. The algorithm performs now two simple greedy steps: it checks
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whether Z = ∅ is a solution and looks for not forsaken vertices without neighbors in
S. Both steps can be easily justified in the weighted case, as we assume nonnegative
weights and we require only |X| ≤ kb in the border problem definition. The crucial
observation—that there are only at most s reasonable labelings of the big stains (big
connected components) of S—does not interfere with weights. In the final bounded
search tree algorithm we argue that there is a limited number of vertices, out of which
we need to delete at least one (the neighborhood branching rule), or that there are
only a limited number of ways a small stain can be handled (the small stains rule).
Both argumentations are oblivious to weights; note that this is also true in the second
part of Lemma 39, where we argue about a greedy choice of a labeling in the case
when the chosen labeling of the big stains can be consistently extended to a connected
component of G \N [Ψ].

Steiner Cut. In the case of the Steiner Cut problem, we need to slightly
change the final dynamic programming routine. Recall that in the high connectivity
phase for this problem we first guess a set of edges S that (i) is disjoint with the
solution Z we are looking for, (ii) contains a spanning tree of each small connected
component ofG\Z, and (iii) contains a large spanning tree with an endpoint of an edge
of the solution Z, for each such endpoint contained in the large connected component
of G\Z. Then we obtain a graph H by contracting the edges of S and identifying the
images of the large trees of S (assumed in point (iii)) into the core vertex b. For each
connected component B′i of H \b we have two choices: we delete either all edges or no
edges from B′i ∪ {b}. The choices between different components B′i are independent,
and we find the optimal solution via a simple dynamic programming routine. In the
weighted case we need to add to the dynamic programming table one more dimension
responsible for storing the cardinality of the constructed cutset, and the value in the
table T is the minimum weight of a cutset of the prescribed cardinality.

N-MWCU. The simplicity of the high connectivity phase of the N-MWCU al-
gorithm allows us to solve the weighted variant with almost no changes. Recall that
in this phase we first guess a set S that (i) is disjoint with the solution Z we are
looking for and (ii) covers all nonterminal vertices of small connected components of
G \ Z. Then we argue that any inclusionwise minimal solution chooses at most one
equivalence relation of Rb to be the set of terminals contained in the big connected
component of G \Z and takes as the solution the neighborhood of all connected com-
ponents of G[S ∪T ] that contain a terminal not contained in the selected equivalence
class. The same argumentation holds in the case of nonnegative weights; note that in
the border problem we require |X| ≤ kb (instead of maybe more natural |X| = kb),
and thus we may consider only inclusionwise minimal solutions.
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