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Abstract

Benford’s Law suggests that the first digits of numerical data are heavily skewed towards low
numbers. Data that fail to conform to Benford’s Law when conformity is to be expected may
have been manipulated. Using Benford’s Law, we conduct digital frequency analysis on the
emission reduction claims of Clean Development Mechanism projects. Digital frequency
analysis indicates that although emission reduction claims made in project design documents
do not conform to Benford’s Law, we cannot reject the null hypothesis that data on certified
emission reductions do. Benford’s Law offers a rapid, low-cost means of identifying possible
instances of data manipulation.

Keywords Clean Development Mechanism - Emission reductions - Benford’s Law - Data
manipulation

1 Introduction

It has long been understood that if data underpinning environmental policy are unreliable then the
policies based upon these data may be inefficient. One cause of data unreliability is deliberate
manipulation by those reporting it. The threat of deliberate manipulation of GHG emission data is,
however, inadequately addressed in the climate change literature. This is not because of any
consensus that the scope for misreporting GHG emissions is limited and certainly not because the
consequences of misreporting are benign. Indeed, it is widely agreed that formulating an appropriate
response to climate change is vital and the integrity of GHG emission data is the cornerstone upon
which national and international climate policies are built.

One technique that has been used to examine the integrity of data rests upon a statistical
phenomenon known as Benford’s Law (BL). A large number of processes have been shown to
result in data conforming to BL and when these processes occur the distribution of the first (and
subsequent) digits does not follow a uniform distribution, but is instead heavily skewed towards low
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numbers. Nonconformity with BL in instances where conformity was to be expected is viewed as
indicative of possible data mishandling or even manipulation, and BL is for this reason widely used
in forensic auditing e.g. Durtschi et al. (2004), Dlugosz and Miiller-Funk (2009) and Nigrini (2012).
There are also a few applications of BL examining the integrity of environmental data although
surprisingly, none of these involves climate policy or greenhouse gases (GHGs).

This paper uses BL to examine the integrity of emission reduction data from Clean
Development Mechanism (CDM) projects. The CDM has played a key role in international
climate policy but many have expressed concerns about the additionality of such projects and
the claimed extent of any emission reductions. Some commentators have even concluded that
future research into the CDM should focus on the ‘development of fraud detection systems for
the CDM and...quantitative and qualitative screening of the claims of additionality as part of a
broader system of fraud identification.” (Drew and Drew 2010, page 250).

Apart from being a pillar of global climate policy, the CDM provides an interesting application of
BL for other reasons. First, there is a clear incentive for manipulating emission reductions since
projects with greater emission reductions will be more attractive. Second, it is possible to observe
emission reductions both prior to and after significant auditing activity. Specifically, we take data
from the United Nations Framework Convention on Climate Change (UNFCCC) CDM website
and examine the expected emissions reduction (EER) claims contained in project design documents
(PDDs) and the eventual issuance of certified emission reductions (CERs). Third, it is possible to
stratify the data enabling us to locate the source of any nonconformity. Fourth, there are good reasons
to suppose that, in the absence of data manipulation, CDM GHG emission reduction projects should
conform to BL in view of the processes involved. Our reasons for believing CDM GHG emission
reductions ought to conform to BL are discussed below.

In sum, this paper provides the first statistical analysis of the integrity of emission reductions from
CDM projects; the first application of BL to any baseline-and-credit system; and the first application
to GHGs. More generally, and in contrast to the largely US focus of the existing BL literature, this is
also the first study to use BL to examine environmental data across a range of countries.

To anticipate our main findings, there is evidence that EERs do not always conform to BL. Such
a finding is not inconsistent with the suggestion that there is data manipulation at this point in the
CDM project cycle. It is notable, however, how well BL often describes CDM GHG emission
reductions. This finding throws into sharp relief those instances where it does not and supports in our
view, the application of BL to other GHG emission datasets. Most importantly, however, we cannot
reject null hypothesis that the distribution of CERs conforms to BL.

The remainder of the paper is organised as follows. Section 2 explains BL and the statistical
processes that give rise to it. Section 3 reviews previous attempts to apply BL to emissions and
pollution concentrations. Section 4 describes the CDM project cycle and section 5 presents
data on CDM GHG emission reductions. Section 6 discusses the various tests used by us to
assess conformity with BL. Section 7 presents the results which are then further explored in
section 8. Finally, section 9 considers the role BL might play in testing for manipulation of
GHG emission data, whether by firms or governments.

2 Benford’s Law

BL is a counterintuitive property of data whereby the leading digit of a number (d1) is more
likely to be small than large. According to BL, the probability of d1 = d is given by log, (<)
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so the probability that d1 = 1 is 30.1% decreasing to 4.6% for d1 = 9. A similar rule applies to
the second (42) and subsequent digits, although after the fourth digit, each digit appears with a
frequency of approximately 10.0%.

The highly nonuniform distribution of leading digits was discovered by Newcomb (1881)
but popularised by Benford (1938). The idea was prompted by the observation that the first
few pages in logarithmic tables always wear out more quickly. Benford (op cit) collected
20,229 observations on data including data on river lengths, populations, scientific constants
and numbers contained in newspapers and confirmed that in these data, the distribution of
digits followed BL.

Data conforming to BL is widely encountered throughout the social, physical and bio-
sciences (see e.g. Pietronero et al. 2001; Nigrini and Miller 2007; Fu et al. 2007; Tam Cho and
Gaines 2007; Judge and Schechter 2009; Moret et al. 2009; Joannes-Boyau et al. 2015).

The ubiquity of BL is due to many common statistical processes having BL as a limiting
distribution. For example, geometric sequences will generally follow BL (Raimi 1976).
Lemons (1986) considers the possible distributions of pieces of some conserved quantity.
Assuming each distribution is equally likely, the expected distribution turns out to conform to
BL. When random variables are repeatedly multiplied, divided or raised to an integer power,
the data that ensue eventually conform to BL (Boyle 1994). If distributions are randomly
selected and samples are randomly drawn from these distributions, and furthermore supposing
that the average distribution is scale or base-invariant (see below), the distribution of signif-
icant digits will conform to BL (Hill 1998). Lastly, any distribution will approximate BL if it
spans several orders of magnitude and is smooth (Fewster 2009).

A Benfords set also possesses the property of scale invariance (Pinkham 1961). This means
that units of measurement do not influence whether data conform to BL. For example,
irrespective of whether monetary amounts are expressed in Dollars, Sterling or Euros, this
should not affect whether data conform to BL. The digit frequencies corresponding to BL are
the only set of frequencies possessing this property (Hill 1995).

Some explanations appear more useful than others in understanding why particular data
conform to BL. In the case of stock markets, an explanation for conformity with BL based on
geometric sequences seems appropriate. If, however, the challenge is to explain why the size of
freshwater lakes conforms to BL, the most appropriate explanation is that they form part of a
conserved quantity. The reason why accounting data conforms to BL might be because such
data are the product of price x quantity.

We expect CDM GHG emission reduction project data to conform to BL. First, the data
comprises random samples from random distributions, each one relating to a different sort of
project. As argued by Hill (op cit), this is sufficient to generate a distribution that conforms to
BL. Second, the distribution of emission reductions spans many orders of magnitude (see
below) and there is no reason why the distribution should not be smooth. Finally, emission
reduction claims are the consequence of mathematical operations e.g. emissions avoided
multiplied by the number of wind turbines (although multiple mathematical operations are
generally required before a distribution conforms closely to BL).

Because we are relying in part on the argument that multiple orders of magnitude combined
with smoothness are a reason for expecting conformity with BL, it is perhaps worth providing
a more in depth explanation of the point.

Conformity with BL amounts to the claim that the areas under the probability density
function of emission reductions between the values of 1.0-1.9, 10.0-19.9, 100.0-199.9 and
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1000.0-1999.9 tons of carbon etc. sum to 0.301. Now take the Log;, of these quantities to
obtain Log;o(1.0)-Log;¢(1.9), Log;0(10.0)-Log((19.9), Log;¢(100.0)-Log;¢(199.9),
Log;¢(1000.0)-Log0(1999.9) etc. The distance on the horizontal axis corresponding to each
of these ‘stripes’ is also 0.301.

Now consider the areas under the probability density function between the values of 2.0—
2.9, 20.0-29.9, 200.0-299.9 and 2000.0-2999.9 tons of carbon etc. Here, conformity with BL
amounts to the claim that the areas under the probability density function amounts to 0.176.
Once more taking the Log;, of the quantities, the distance on the horizontal axis corresponding
to each of these stripes is 0.176. The same process is performed where the leading digit is 3-9.
The distances on the horizontal axis corresponding to each of these stripes range from 0.124 to
0.045.

We now make the simple observation that the combined lengths of the distances on the x-
axis provide an approximation of the areas under the entire probability density function. This
approximation, moreover, becomes better and better as the number of orders of magnitude
increases. The approximation could, however, still be poor if the probability density function is
not smooth.

Having explained when BL holds and why we expect it to do so, here it is important to
mention situations where BL does not apply. Assigned numbers such as telephone numbers do
not follow BL. Numbers influenced by human psychology, including manipulated numbers,
likewise tend not to conform to BL. Indeed, the manner in which a distribution containing
manipulated numbers departs from BL reveals the emphasis placed on particular numbers.
When individuals manipulate numbers they likely use heuristic techniques. Collins (2017)
contends that someone using a computer keyboard is likely to use their more dominant index
and middle fingers and hence type 4, 5, 6 or 7 more often than other digits.

Other situations where BL does not apply are those where there is a minimum (other than
zero), or a maximum. Critically for our purposes, however, there is no minimum or maximum
value for the CDM GHG emission reductions.

There are some forms of data manipulation that BL cannot detect e.g. multiplying all
figures in a dataset by the same amount (a consequence of the property of scale invariance).
BL cannot distinguish between accidental mishandling and deliberate manipulation. Even the
innocent practice of rounding-off terminal digits results in nonconformity with BL. Most
fundamentally there is the problem of type-I and type-II errors when testing the null hypothesis
that data conform to BL. Put differently, statistical tests may point to possible data manipu-
lation when it is absent and the absence of data manipulation when it is present. BL is
accordingly best viewed only as a first step in examining data for possible data manipulation
and not as a substitute for auditing.

3 Applications of Benford’s Law to analysing emissions and pollution
concentrations

The first attempt to apply BL to emission data is Dumas and Devine (2002). Using data from
North Carolina 1996-1998, they analyse firms’ self-reported emissions of volatile organic
compounds. They argue that these data should conform to BL in the absence of manipulation
or other forms of data mishandling because the data exhibits multiple orders of magnitude and
can be considered as a random sample from random distributions. Tests reveal that not only is
there nonconformity with BL, there is, as expected, evidence of statistically significant
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underreporting of between 9.5 and 10%. They suggest that when evidence of nonconformity is
more apparent in some sectors than others, it might pay the regulator to focus attention on the
nonconforming sectors.

According to de Marchi and Hamilton (2006), BL offers a simple way to conduct triage on
self-reported emission data, although critically, the test does not allow the regulator to
determine precisely which plants are misreporting data (if any). They use data from the US
Toxic Release Inventory (TRI). These data refer to both emissions and off-site transfers of 12
chemicals. Two substances, nitric acid and lead, fail to conform to BL with the distribution of
d1 containing too many 2s and Ss.

Fugitive and stack emissions, as well as off-site transfers, have all been subject to analysis
using BL. Critically, however, some of these are easier to conceal than others. Using data on
lead from the US TRI, Zahran et al. (2014) demonstrate that data for off-site transfers conforms
most closely to BL. Changes in the extent of nonconformity with BL are also shown to
coincide with changes in emission monitoring regulations.

Apart from emissions and off-site transfers, BL has also been applied to pollution concen-
trations. Brown (2005) analyses the d1 frequencies of 8 selected UK datasets comprising
pollution concentrations. Results indicate that the annual average and weekly concentrations of
12 measured heavy metals at 17 monitoring sites conform very closely to BL. The key
determinant of whether data conform to BL appears to be how many orders of magnitude
are present in the data, with more than four orders of magnitude resulting in a close
correspondence. Brown (op cit) also examines the effects of data mishandling where, for a
percentage of the data, d1 is dropped such that @2 is then misinterpreted as d1, d3 as d2 and so
on. Conformity with BL is very sensitive to data being mistreated in this way. Another form of
accidental data mishandling discussed is where d1 and d2 become accidentally transposed.

Fu et al. (2014) analyse data from the Chinese Air Quality Index (AQI) taken from 35
different sites in Beijing. They use BL to test the frequency of d2. The data the authors use
relates to 2013-2014, the period immediately after the Blue Sky Days initiative had ended.
Blue Sky Days are days when the Chinese AQI is below a threshold of 100 and this was once
used as a performance indicator for evaluating local officials (hence the incentive to misreport).
They find that although hourly data conform to BL, daily data do not.

One way to validate the use of BL is by comparing data collected by different parties, one
of which has no incentive to manipulate the data. Data manipulation is suspected if data
collected by the disinterested party conforms to BL whereas the other data does not. Using this
approach, Stoerk (2016) compares Beijing Municipal Environmental Protection Bureau
(BMEPB) air pollution data with data recorded by an air pollution monitor run by the US
embassy. Whereas data from the US embassy conforms to BL throughout the entire period of
investigation, conformity is poor in early years for the BMEPB data. This discrepancy persists
when aerosol optical density data from satellites is used instead of the US embassy data.

Recently, Beiglou et al. (2017) use BL to examine wastewater discharges in Ohio. Data are
taken from 223 facilities and cover a period of 3 years. Measurements relate to a variety of
wastewater parameters: microbial, nutrients, metals and solids. The authors screen the data
prior to analysis. Parameters not spread over at least one order of magnitude were deemed
unsuitable for analysis using BL. The authors find that conformity with BL differs greatly
across different wastewater parameters.

A notable feature of the literature is the desire to demonstrate that the data are such that BL
ought to hold absent manipulation or other sorts of data mishandling. An alternative strategy is
to validate BL by demonstrating that BL holds only when either the opportunity/incentive to

@ Springer



Climatic Change

manipulate the data is absent. Interestingly, there are no published attempts to substantiate the
use of BL by demonstrating that numbers with excess frequencies are associated with use of
heuristic techniques. There are likewise no attempts to analyse environmental data known with
certainty to have been manipulated. Finally, there are no prior attempts to use BL to analyse
GHG emissions; something we now seek to correct.

4 The Clean Development Mechanism

The CDM is an arrangement under the Kyoto Protocol whereby emission reduction projects in
developing countries earn CERs which can then be sold. The two objectives of the CDM are to
help Annex I Parties cost-effectively meet part of their emission reduction targets under the
Kyoto Protocol and to assist non-Annex I Parties in achieving sustainable development. CDM
projects can be bilateral whereby an Annex I country develops a project or unilateral whereby
a non-Annex I country develops projects and sells the CERs.

A significant body of research examines the accomplishments of the CDM (Olsen 2007;
Sutter and Parreno 2007; Lecocq and Ambrosi 2007; Paulsson 2009); opinion is, however,
divided over the success of the scheme. Some point to its achievements in reducing the costs of
mitigating GHGs and in promoting a degree of north-south technology transfer (Aslam 2001;
Haites et al. 2006; Pearson 2007; Dechezleprétre et al. 2008, 2009; Seres et al. 2009). Others
allege that CDM projects do not help countries to achieve sustainable development
(Anagnostopoulos et al. 2004; Gundimeda 2004; Karakosta et al. 2009; Nussbaumer 2009;
Bumpus and Cole 2010; Crowe 2013). Many researchers express scepticism about the
additionality of CDM projects (Zhang and Wang 2011). The transactions costs of CDM
projects (which include the costs of auditing) moreover appear to be high (Krey 2005;
Bellassen et al. 2015).

The CDM project cycle involves seven steps. First, the project participants prepare a PDD
with a detailed description of the proposed CDM project, including estimated emission
reductions, a methodology supporting their estimates and importantly, evidence of the
additionality of the project. The PDD is then submitted to and reviewed by an accredited
designated operational entity (DOE) contracted by the project participants. These DOEs are
approved third-party auditors. After the review, the DOE proceeds with the validation of the
CDM project by preparing a validation report which confirms that the proposed project is a
valid project. The PDD is then made publicly available by the DOE on the UNFCCC CDM
website for comments. Second, the project developer secures a letter of approval from the
designated national authority (DNA) of the host country. The letter of approval confirms that
the project meets the host country’s sustainable development criteria, complies with the
country’s laws and regulations and fulfils any other requirement specified by the DNA. Third,
following the host country’s approval, the DOE validates the PDD. Fourth, after determining
that the proposed project meets all relevant requirements of the CDM, the DOE submits the
project to CDM Executive Board (EB) with request for registration. The project is registered if
there are no objections from member countries or at least three EB members. Fifth, if the
project is registered and operating, the project participant monitors actual emission reductions
made by the project according to approved methodology and submits a monitoring report to
the DOE. Sixth, the DOE verifies the actual emission reductions and if satisfied prepares
verification and certification reports. The DOE who verifies the emission reductions cannot be
the same that validates the project except for small-scale projects. The DOE submits these
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reports to EB with request for issuance of CERs. Finally, EB issues CERs to the project
participants through the CDM registry. A significant number of projects fail to complete the
project cycle (Cormier and Bellassen 2013).

In view of the linking of the two schemes, it is interesting to compare the auditing
requirements of the CDM with those of the EU emissions trading scheme (EUETS) where
the auditing requirements seem less stringent (Warnecke 2014). Some researchers have also
drawn attention to the critical role of the DOEs and argued that DOEs are affected by
misaligned incentives: DOEs might not want to be too strict if the effect is to scare away
new business (Drew and Drew, op cit).

China is the largest host country for CDM projects in terms of the number of projects and
the largest supplier of CERs on the CDM market. Measures for the Operation and Manage-
ment of Clean Development Mechanism Projects is the regulatory framework for CDM
implementation in China. This includes detailed guidance on the eligibility, application and
approval procedures for CDM projects (Zhang and Wang 2011; Fay et al. 2011). All hydro and
wind projects as well as all new combined cycle natural gas power plants are required to be
submitted through the CDM (Karakosta et al. 2009).

5 Testing emission reduction data from CDM projects using Benford’s
Law

Data are sourced from the UNFCCC CDM website. The dataset includes detailed information
on CDM projects, including project title, project type, project classification, host country,
methodology, project status, type of crediting period and CERs issued. There are in the dataset
we use 12,880 CDM activities in total including 12,382 project activities and 498 programmes
of activities. The dataset that we use was last updated on 10 October 2016. It includes projects
starting the validation process from 1 December 2003 to 5 October 2016.

Table 1 describes the data in terms of project status. Project status is also presented for the
two main host countries: China and India. Of the 12,880 projects contained in the data, 8038
(62.40%) are registered. The next largest category refers to 2856 projects (22.17%) whose
validation was terminated.

Turning to type of project, Table 2 reveals that the most common project involved wind
(3065 projects corresponding to 23.79%) closely followed by hydro (3020 projects corre-
sponding to 23.44%). For wind, these percentages are even higher for China and India
(32.04% and 32.43% respectively). Whereas in China, hydro constitutes 34.50% of all
projects, in India, the figure is only 9.78%. India has numerous biomass energy projects
(659) constituting 19.60% of Indian projects. By contrast, China has only 220 such projects
constituting only 4.37% of all its projects.

Table 3 presents information on EERs and CERs broken down for China and India. Note
that in total, there are 12,675 observations on EERs rather than 12,880. The reason for this
discrepancy is that some projects do not include information on emission reductions. Likewise,
the number of observations on EERs for registered projects is 8035 rather than 8038 since for
three projects, this information is missing. In no case has the same project inadvertently been
included multiple times (the unique project identifiers contained in the data are all different).
Evident from comparing the minimum and maximum values in Table 3 is the fact that both
EERs and CERs the data span 4-6 orders of magnitude. This means that if the probability
density function of emission reductions is smooth, these data ought to conform to BL.
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Table 1 Projects by status

All China India

Status No. % No. % No. %
Bundled Registered: Ref 0784 1 0.00 0 0 0 0
Deregistered 2 0.01 0 0 1 0.02
Pending publication 187 1.45 34 0.67 67 1.99
Registered 8038 62.40 3806 75.60 1660 49.39
Rejected 276 2.14 96 1.90 54 1.60
Requesting registration 6 0.04 0 0 3 0.08
Review requested 2 0.01 0 0 1 0.02
Validation public 632 4.90 85 1.68 324 9.63
Validation replaced 812 6.30 236 4.68 216 6.42
Validation terminated 2856 22.17 760 15.09 1016 30.22
Withdrawn 67 0.52 17 0.33 19 0.56
Withdrawn before publication 1 0.00 0 0 0 0

Listed are the numbers and shares of CDM projects of different status. Projects hosted in China and India are

separately identified

Table 2 Project type by country

All China India

Project type No. % No. % No. %
Afforestation 20 0.15 3 0.05 1 0.02
Agriculture 6 0.04 1 0.01 4 0.11
Biogas 1 0.00 0 0 1 0.02
Biomass energy 1506 11.69 220 437 659 19.60
Cement 98 0.76 46 091 27 0.80
CO, usage 6 0.04 0 0 0 0
Coal bed/mine methane 183 1.42 167 331 4 0.11
EE households 240 1.86 29 0.57 85 2.52
EE industry 339 2.63 24 0.47 229 6.81
EE own generation 837 6.49 496 9.85 242 7.20
EE service 104 0.80 3 0.05 47 1.39
EE supply side 211 1.63 43 0.85 76 2.26
Energy distribution 40 0.31 20 0.39 6 0.17
Fossil fuel switch 255 1.97 53 1.05 86 2.55
Fugitive 929 0.76 4 0.07 19 0.56
Geothermal 44 0.34 3 0.05 0 0
HFCs 27 0.20 13 0.25 9 0.26
Hybrid renewables 27 0.20 0 0 4 0.11
Hydro 3020 23.44 1737 34.50 329 9.78
Landfill gas 637 4.94 156 3.09 59 1.75
Methane avoidance 1195 9.27 149 2.95 101 3.00
Mixed renewables 20 0.15 4 0.07 7 0.20
N,O 117 0.90 51 1.01 9 0.26
PFCs and SF6 24 0.18 2 0.03 2 0.05
Reforestation 90 0.69 8 0.15 26 0.77
Solar 553 4.29 175 3.47 187 5.56
Tidal 2 0.01 0 0 0 0
Transport 72 0.55 10 0.19 29 0.86
Wind 3065 23.79 1613 32.04 1090 3243
Not specified 42 0.32 4 0.07 23 0.68

Listed are the numbers and shares of CDM projects of different types. Projects hosted in China and India are

separately identified
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Table 3 Expected and certified emission reductions by country

Country Number of Percentage of Mean Std. Dev. Min. Max.

projects projects

Expected emission All 12675 100 131941.8 4434099 13 21931348
reductions China 5010 39.5 158514.5 4209504 465 10437249
India 3338 26.4 96640.7 5200924 13 21931348

Of which registered All 8035 100 128839.2 3872235 13 10437249
projects China 3806 474 157327.5 441039.2 465 10437249
India 1660 20.7 72401.3 2716492 13 4017202

Certified emission All 2854 100 4977227 3205171 391 74928479
reductions China 1451 50.8 603326.3 3682392 7152 63011172
India 597 20.9 241138.4 1487168 16.2 29688497

Listed are summary statistics of expected and certified emission reductions from all CDM projects, as well as
those hosted in China and India

6 Methodology

We start by visually comparing the frequencies of the significant digits of the observed data
with the expected (Benford) frequencies. Then, we use the x2, Kolmogorov-Smirnov (K-S)
and Kuiper statistical tests described below to test for conformity with BL the distributions of
dl, d2 and d1d2. The latter combination is preferred because it captures more information;
there are 90 possible digit combinations (10-99 inclusive). We delete all positive numbers that
are less than 10 as they do not have a second digit.

The X2 test provides good insight into the general fit over the entire range of the
distribution. Other things being equal a higher x? value indicates a larger deviation of the
observed frequencies from the expected Benford frequencies. The 2 statistic is for dl
calculated as follows:

2
(p (d) Observed P (d) Benford )
p (d) Benford

X2 =NY%]

where N is the sample size and p(d)opserved aNd P(d)Benfora are respectively, the observed and
Benford frequencies for digit d. For d1, the x? is calculated with 9 — 1 = 8 degrees of freedom.
This test may be extended to examine the distribution of d2 and d1d2. For d2, the degrees of
freedom are however, 10 — 1 = 9 and for d1d2, the degrees of freedom are 90 — 1 = 89. The
null hypothesis of this test is that the distribution of digital frequencies observed corresponds to
BL. An important shortcoming of the 2 test is that it is dependent on sample size. As the
sample size increases, the probability of rejecting the null hypothesis grows. What this means
is that the 2 test statistic cannot be used to compare two distributions in terms of how well
they conform to BL when sample sizes differ.

The K-S test may also be used to test whether two underlying probability distributions
differ. The K-S statistic D is calculated as follows:

D= Sup‘F(d)Benford_F(d)Observed‘

where sup is the supremum function and F(d) is the cumulative distribution of d. The K-S test
relies upon the maximum absolute difference between the theoretical and observed cumulative
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distributions. The null hypothesis of this test is also that the distribution of digital frequencies
observed corresponds to BL. Although widely used to compare discontinuous distributions, an
important weakness is that the critical values assume a continuous distribution. The critical
values are too high when the distribution is discontinuous.

The Kuiper test provides another means of determining whether two probability distribu-
tions differ. Giles (2007) recommends using this test rather than the K-S test to investigate
whether data conform to BL. It suffers from the same problem as the K-S test in that the critical
values assume the distribution is continuous. The test involves calculating the maximal extent
of the deviation of F(d)opserved OVEr F(d)Benord (D) as well as the maximal extent of the
deviation of the observed cumulative distribution below the theoretical one (D). Where N is
the sample size, the Kuiper test statistic Vy" is as follows:

Vi =V (M +0.155 + 0248 1)
Where:
N = D+ +D

Finally, we include the Kullback-Leibler (K-L) statistic. This provides a measure of the information
lost when one distribution is used to approximate another. We use the K-L statistic as a means of
ranking distributions in terms of their conformity with BL. Where p(d)opserved T€presents the observed
distribution and p(d)penforg represents the Benford distribution, the K-L statistic D is for d1:

p (d) Observed

Dygr (P Observed ||P )Benford) zd lp( )Observedln d
P ( )Benford

The K-L measure can be extended to d2 and d1d2.

7 Results

Commencing with the full sample of EERs contained in the PDD data, the correspondence with BL
is poor. Table 4 contains the 2, K-S and Kuiper test results for d1, d2 and d1d2. All the tests reject at
the 1% level of significance the null hypothesis that the distribution conforms to BL.

With a dataset that ought and yet fails to conform to BL, it can be helpful to stratify the data
in an attempt to identify the source of nonconformity. Accordingly, we consider separately the
EER claims contained in the PDDs for China and India. The x2, K-S and Kuiper tests for d1,
d2 and d1d2 are again reported in Table 4.

For the EERs contained in the PDDs of CDM GHG emission reduction projects in China,
both the graphs and statistical tests once more point to nonconformity with BL. Figure 1
reveals excessive frequencies for d1 = 1, 8 and 9. For d2, the digits 0, 1 and 2 appear more
frequently than expected whilst 3—9 appear less frequently. For d1d2, excess frequencies are
observed for 10, 11, 12, 35, 41, 46, 78 and 81-99.

By contrast, the graphs of d1, d2 and d1d2 for India (see Fig. 2) show a remarkably good
fit. The 2, K-S and Kuiper tests also fail to reject the null hypothesis that the data conform to
BL (apart from the x? test for d1 which is ambiguous: significant at the 5% but not at the 1%
level of confidence). These results are not a consequence of the fact that there are more
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Table 4 Statistical analysis of expected and certified emission reductions

Country N Digit(s) x? test K-S test Kuiper K-L
test statistic
Expected emission All 12675 d1 123.833%%  (0.025%* 2.89%* 0.00463
reductions countries d2 42.679%%  0.021%* 2.46%* 0.00165
dld2 354.234%%  0.026%* 5.63** 0.01356
China 5010 dl 482.492%*%  0.082%** 7.53%* 0.04133
d2 103.336%*  0.061%* 4.32%* 0.00988
dld2  993.413*%* 0.083** 11.27** 0.08571
India 3338 dl 18.455% 0.016 1.56 0.00282
d2 4.132 0.008  0.55 0.00061
dld2  93.871 0.017 1.76* 0.01413
Of which registered All 8035 dl 228.099%*  0.046%** 4.53%* 0.01283
projects countries a2 58.686%*  0.033%* 297 0.00357
dld2 513.353%%  0.046%* 7.63%* 0.02963
China 3806 dl 604.124%%  (.105%* 8.52%* 0.06613
a2 134.971%%  0.074%* 4.61** 0.01672
dld2 1182.408** 0.107** 12.32%*  0.12945
India 1660 dl 13.895 0.012  0.87 0.00410
a2 9.827 0.012 093 0.00295
dld2 82.084 0.013 092 0.02527
Certified emission All 2854 dl 9.523 0.020 1.10 0.00167
reductions countries d2 4.208 0.009  0.52 0.00074
dld2 72.568 0.023 1.26 0.01344
China 1451 dl 17.834* 0.027 1.07 0.00623
d2 3.573 0.010  0.50 0.00123
dld2 103.381 0.028 1.44 0.03631

Reported are the statistics of the x2, K-S and Kuiper tests and K-L statistic for d1, d2 and d1d2 of EERs for
CDM projects and those registered, including projects hosted in all countries, as well as China and India.
Statistics for CERs of all countries and those hosted in China are also reported. “*** and “*’ denote a significant
difference from the Benford distribution at 1% and 5% level of significance respectively

observations for China than India because the K-L test confirms that much more information is
lost when the Benford distribution is used to approximate the observed distribution for China
than for India. Similar results are obtained even if the sample is restricted to those projects
whose website status indicates that they are registered.

We now analyse the CERs issued to each project. These have been subject to additional
auditing. Beginning once more with the full sample, the visual conformity of d1, d2 and d1d2
with BL is now excellent (see Fig. 3). The x2, K-S and Kuiper tests contained in Table 2
confirm the distributions of d1, d2 and d1d2 possess the expected frequencies.

Given that the digital frequency analysis of EERs found in the PDDs of projects in China
does not correspond to BL, we repeat the analysis for CERs for projects in China. Now the
results are quite different: although the x2 test for d1 is ambiguous, the 2 tests for d2 and d1d2
are not significant, and neither the K-S nor the Kuiper tests are significant either.

8 Discussion

Before investigating the source of nonconformity with BL for the case of Chinese EERs, we
explore whether our inability to reject the null of conformity with BL in the case of India
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Fig. 1 Digital frequency analysis of expected emission reductions for projects in China. Plotted are the
frequencies of each digit for d1, d2 and d1d2 for EERs of CDM projects hosted in China as well as the
corresponding expected frequencies from Benford’s Law

happens for other countries too. We use the K-L statistic to compare the loss of information
from using BL to approximate the distribution of digits observed for these countries.
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each digit for d1, d2 and d1d2 for EERs of CDM projects hosted in India as well as the corresponding expected
frequencies from Benford’s Law

Examining EERs for CDM projects in Brazil and Mexico, we are unable to reject the null
hypothesis that the distributions of d1, d2 and d1d2 conform to BL although in two instances
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the test is ambiguous (see Table 5). The K-L statistics are lower than for China in the case of d1
but in the case of d2, the statistic for Mexico is higher. Given the small number of projects,
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some d1d2 combinations are missing e.g. there are no projects in Brazil beginning with the
digit combination 74.

To determine whether nonconformity in Chinese EERs is caused by projects of a
particular type, we drop major project categories, one by one. Dropping hydro projects,
however, fails to resolve the problem of nonconformity with BL with all tests continuing
to reject the null hypothesis that the distribution of digits conforms to BL at the 1% level
of confidence.

Dropping wind projects by contrast changes things. Now, whether the null hypothesis is
rejected depends on the specific test and the digit(s) under consideration. For d1, although the
x?2 and Kuiper tests are significant at the 1% level of confidence, the K-S test is significant only
at the 5% level of confidence. None of the tests is significant even at the 5% level of
confidence for d2. For d1d2, the x? and Kuiper tests are significant at 1% level of confidence,
but the K-S test is significant only at the 5% level of confidence. More importantly, the K-L
statistics are lower: 0.005 for d1 for wind compared with 0.041 for all projects.

Based on these results, we investigate whether the distribution of digits for EERs for wind
projects in China conforms to BL. Here all the tests reject the null of conformity at the 1%
level of significance. By contrast, for EERs for wind projects in India, none of the tests rejects
the null of conformity to BL, even at the 5% level of confidence. The K-L statistics too are
much higher for China.

Table 5 Further results

Country N Digit(s)  x? test K-S test  Kuiper test K-L statistic
EERs  Brazil 748 dl 15.541* 0.035 1.619 0.010
d2 12.375 0.027 0.752 0.008
dld2 95.236 0.042 1.866* NA
Mexico 324 dl 10.815 0.038 1.039 0.017
d2 10.858 0.045 0.977 0.017
dld2 94.206 0.048 1.318 NA
China excluding hydro 3275  d1 998.164%* 0.134%*  12.681%* 0.131
d2 182.448%* 0.101%#*  5.811%* 0.026
dld2 1820.464**%  0.144**  16.148** 0.226
China excluding wind 3397  dl 40.180%* 0.025* 2.687%* 0.005
d2 6.059 0.007 0914 0.000
dld2 156.82%* 0.026* 3.010%* 0.023
China wind 1613 4l 1928.362%*  0.284**  16.213%** 0.481
d2 352.843%* 0.192%*  7.742%* 0.096
dld2 3437.143%%  0.296%*  22.541%* NA
India wind 1089 d1 12.263 0.033 1.108 0.005
d2 8.575 0.013 0.597 0.003
dld2 90.121 0.035 1.621 0.040
CERs  China wind 547 dl 10.833 0.050 1.203 0.010
d2 9.217 0.020 0.902 0.008
dld2 89.381 0.056 1.687 0.085
EERs  China wind 547 dl 356.551%* 0.260%*  8.927%* 0.321
(if CERs issued) d2 190.133%%* 0.271%%  6.403%* 0.167

dld2 1023.707*%*%  0.384%*  11.843%* NA

Reported are the statistics of the x2, K-S and Kuiper tests and K-L statistic for d1, d2 and d1d2 of EERs of CDM
projects hosted in Brazil and Mexico, as well as projects hosted in China excluding hydro and wind, and only
wind projects in China and India. The same statistics are reported for CERs of China’s wind projects and the
EERs of wind projects that went on to earn CERs. “*** and ‘** denote a significant difference from the Benford
distribution at 1% and 5% level of significance respectively
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Analysing the distribution of digits for CERs for 547 wind projects in China, we are unable
to reject the null of conformity with BL using any test and moreover, the K-L statistics point to
only a minor loss of information from using BL to approximate the distribution. By contrast,
the distribution of digits for EERs for those exact same 547 wind projects that went on to earn
CERs continues to display nonconformity with BL. All the tests are significant at the 1% level
of confidence and the K-L tests indicate a significant loss of information from using BL as an
approximation. Even if EERs are measured in terms of annual emission reductions and CERs
are in terms of cumulative emission reductions, it is hard to reconcile these findings because of
the scale invariance property of Benford sets.

With data manipulation, there is usually a plausible direction of bias. Along with evidence
that the distribution of digits does not conform to BL, this provides another opportunity to
assess whether data might have been manipulated. The Distortion Factor (DF) model was
developed by Nigrini (1996) to measure the bias in US income tax data. This is achieved by
comparing the mean of the reported numbers after they have been ‘collapsed’ (so that they all
fall in the range 10-99) with the mean of the numbers in a Benford set. The DF model rests on
a number of assumptions. First, those who manipulate data do so in a way which does not alter
the order of magnitude (this is deemed too suspicious). Second, the percentage change caused
by data manipulation is on average the same across all orders of magnitude. The expected
mean (EM) of the collapsed dataset is as follows:

90
EM=———
N(10VV-1)
And the DF is given by:
1 —
D — 100(AM-EM)
EM

However, whilst there is fairly obviously underreporting of taxable income, with a baseline-
and-credit system such as the CDM, the incentive is to exaggerate (although in the case of
CDM projects, the dependency of registration fees on EERs might point in the opposite
direction). For the full sample of EER claims in PDDs, the DF test displayed in Table 7 shows
that reported numbers are indeed 2.92% above those normally found in a Benford set whereas
for China, they are on average 8.58% higher. Both distortion factors are, moreover, significant
at the 1% level of significance (Table 6).

Table 6 Distortion factor analysis

Country N Observed Expected Distortion Std. Z-

mean mean factor Dev. statistic

Expected emission All 12675 40.223 39.082 0.029 0.005  5.146%*

reductions China 5010 42.431 39.077 0.085 0.009  9.517**

Of which registered All 8035 41.023 39.080 0.049 0.007  6.979%%*
projects China 3806 43.406 39.074 0.110 0.010  10.714%*

Reported are the results of the distortion factor analysis for EERs of all and registered CDM projects. Projects
hosted in China are separately identified. The null hypothesis is that the observed mean of the collapsed data is
equal to the expected mean for that of a Benford’s set. “**’ and “*’ denote statistical significance at 1% and 5%
respectively
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Table 7 The effect of deliberate data manipulation on tests for nonconformity: The case of Indian expected
emission reductions

Percentage of data manipulated Digit(s) X2 test K-S test Kuiper test K-L statistic
1 dl 19.854* 0.019 1.724 0.00301
a2 4.409 0.008 0.572 0.00065
dld2 103.252 0.019 1.863 0.01552
5 dl 26.076%* 0.0327%* 2.2627%% 0.00394
a2 4.066 0.005 0.546 0.00060
dld2 117.564* 0.0327%* 2.401%* 0.01758
10 dl 48.555%* 0.049%* 3.026%* 0.00741
a2 7.831 0.0121 0.702 0.00118
dld2 130.721%* 0.050%* 3.195%* 0.01968
25 dl 147.510%* 0.092%* 5.342%* 0.02336
a2 34.871%* 0.026* 1.535 0.00534
dld2 264.180%* 0.095%* 5.546%* 0.03986

Reported are the statistics of the x2, K-S and Kuiper tests and K-L statistic for d1, d2 and d1d2 of EERs for
CDM projects hosted in India. A percentage of these data have been contaminated by adding 1 to every digit
apart from when the digit is 9. “**’ and “*’ denote a significant difference from the Benford distribution at 1%
and 5% level of significance respectively

We cannot be certain why EER claims contained in the PDDs of projects in China do not
conform to BL or why, according to the DF test, the EER claims appear to have been inflated. Our
findings are, however, not inconsistent with the possibility that data for some Chinese CDM projects,
particularly those involving wind, might have been manipulated. For concerns about the integrity of
Chinese data, see Hsu et al. (2012), Ghanem and Zhang (2014), Zheng et al. (2014), Liang et al.
(2016), Morris and Zhang (2017), Stoerk (2016) and Brombal (2017). Nevertheless, it is important
to stress that, even if the reason EERs do not conform to BL is data manipulation, attempts at data
manipulation have not survived the full auditing process: data on CERs conforms to BL. In addition,
we cannot rule out the possibility that, rather than manipulation, data from the PDDs of Chinese
projects might at some point have been mishandled. Also possible is that statistical processes
resulting in conformity with BL do not describe the processes generating EER claims contained
in Chinese PDDs (although the ones from India and two other host countries do).

Finally, we investigate the sensitivity of tests used to detect data manipulation by randomly
replacing a percentage of observations with data that we have deliberately manipulated. More
specifically, data for EERs for India are altered by adding 1 to each digit unless the digit is already
9 in which case it is left unaltered. This obviously inflates expected emission reductions. For example,
with this heuristic, 4,486,341 becomes 5,597,452 and 64,996 becomes 75,997. We then examine how
the tests for nonconformity with BL respond as the percentage of manipulated observations increases.

The results of this admittedly simple experiment are presented in the Table 7. They indicate
that as the percentage of data that is manipulated increases, the tests against the null of
conformity to BL quickly begin to show statistical significance. For example, when 5% of
the data are manipulated, the X2 test for d1 becomes statistically significant at the 1% level of
confidence along with the K-S and Kuiper tests.

9 Conclusion

This paper examines the integrity of the emission reduction claims of CDM projects by
subjecting EERs and CERs to digital frequency analysis. We find that EERs do not always
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conform to BL, specifically those from China which distortion factor analysis suggests might
have been inflated. Our findings are therefore not inconsistent with the possibility that the
EERs in Chinese CDM projects, and particularly those involving wind energy, have been
manipulated. Interestingly, however, we cannot reject the null hypothesis that the distribution
of CERs does conform to BL, implying that the full CDM auditing process is effective.

Given the prevalence of self-reporting emissions, the growing use of regulatory systems
that incentivise the manipulation of emission data and the high resource costs of environmental
auditing, we believe that digital frequency analysis, which is both rapid and low-cost, has an
important role to play in the analysis of self-reported GHG emissions and emission reductions.
BL can improve the chance of detecting data manipulation compared with random auditing.
We also perceive a role for employing the same techniques to analyse countries’ self-reported
GHG emissions. We suggest that emission (and emission reductions) data for GHGs whether
reported by firms or governments be routinely screened for nonconformity with BL whilst
recognising that this is only a first step and will never supplant the need for environmental
auditing.

One interesting case study might be to use BL to analyse data from carbon trading schemes.
The number of facilities involved in the EUETS for example, is extremely large and includes
many different countries across which regulation is perhaps, unevenly applied. The pressure on
those entities liable to the EUETS to cheat is intensified by competition from unregulated
entities outside the EU. Furthermore, although with more than 14,000 installations, the EUETS
carbon trading scheme is the largest, there are numerous other carbon trading schemes in
operation. BL might also be a tool with which the relevant authorities could scrutinise data
from the Chinese emission trading scheme, which is expected to launch soon.

Finally, we need further methodological advances in the use of BL. We need to find ways to
demonstrate that departures from BL really do indeed point to data manipulation or
mishandling rather than something else. One way to do this is through comparing conformity
with BL before and after some policy change influencing firms’ or even governments’ decision
whether to misreport data. Another important task will be to establish criteria for the use of BL
e.g. how many orders of magnitude should be present in the data in order to expect it to
conform to BL?
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