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Abstract. Satellite instruments are nowadays successfullyaerosols, forest fires over Greece and Russia, and Sahara
utilised for measuring atmospheric aerosol in many appli-desert dust. The statistical methodology presented is general,
cations as well as in research. Therefore, there is a growing is not restricted to this particular satellite retrieval applica-
need for rigorous error characterisation of the measurementgion.
Here, we introduce a methodology for quantifying the uncer-
tainty in the retrieval of aerosol optical thickness (AQT). In
particular, we concentrate on two aspects: uncertainty due to
aerosol microphysical model selection and uncertainty duel Introduction
to imperfect forward modelling. We apply the introduced
methodology for aerosol optical thickness retrieval of the Many ongoing studies aim for a better understanding of at-
Ozone Monitoring Instrument (OMI) on board NASA's Earth mospheric aerosol properties such as size distribution, type,
Observing System (EOS) Aura satellite, launched in 2004 optical properties, formation and transport. The remote sens-
We apply statistical methodologies that improve the uncer-ing of atmospheric aerosols from space enables the monitor-
tainty estimates of the aerosol optical thickness retrieval bying of aerosols on both regional and global scales. Satellite
propagating aerosol microphysical model selection and for-measurements are widely used together with ground-based
ward model error more realistically. For the microphysical and airborne measurements to provide data for important at-
model selection problem, we utilise Bayesian model selecimospheric aerosol studies related to, for example, climate
tion and model averaging methods. Gaussian processes agBange, energy budget, air quality and cloud properties.
utilised to characterise the smooth systematic discrepancies Atmospheric aerosols have been monitored for years from
between the measured and modelled reflectances (i.e. resigeveral satellite instruments including the Ozone Monitoring
uals). The spectral correlation is composed empirically bylnstrument (OMI) Torres et al.2007), the Moderate Resolu-
exploring a set of residuals. The operational OMI multi- tion Imaging Spectroradiometer (MODIS)dvy et al, 201Q
wavelength aerosol retrieval algorithm OMAERO is used van Donkelaar et al2013, the Global Ozone Monitoring
for cloud-free, over-land pixels of the OMI instrument with Experiment-2 (GOME-2), the Multi-angle Imaging Spec-
the additional Bayesian model selection and model discreptroRadiometer (MISR)Kahn et al, 2010, the (Advanced)
ancy techniques introduced here. The method and improvedlong-Track Scanning Radiometers ((A)ATSR)homas et
uncertainty characterisation is demonstrated by several exal., 2009 Sayer et al.201Q 2012, the Cloud-Aerosol Li-
amples with different aerosol properties: weakly absorbingdar and Infrared Path finder (CALIPSO), the Scanning Imag-
ing Absorption spectroMeter for Atmospheric Chartography
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1186 A. Maatté et al.: OMI aerosol model uncertainty

(SCIAMACHY), the Polarisation and Directionality of the The aerosol microphysical models contain results of radia-
Earth’s Reflectances (POLDERD(bovik et al, 2011) and tive transfer calculations for various aerosol physical proper-
the Spinning Enhanced Visible and Infrared Imager (SE-ties. Systematic differences in retrieval residuals (i.e. mod-
VIRI) (Govaerts et a).201Q Wagner et al.2010. The in-  elled values minus observed values) indicate imperfect for-
struments vary in terms of spatial and spectral resolution, poward modelling. We call this source of ernorodel discrep-
larisation, and viewing geometry. ancy, following Kennedy and O’Haga(2001). The model

The determination of aerosol properties from satellite discrepancy itself is modelled using Gaussian processes that
measurements is an ill-posed inverse problem as the limdefine the allowed deviations from modelled to observed
ited information content in the observations does not allowreflectance by a suitable covariance structure that lets the
for complete determination of all relevant aerosol proper-residuals correlate depending on their distance in wavelength
ties. Prior information, such as assumed surface conditiongkennedy and O’'Hagan2001, Rasmussen and Williams
and selection of aerosol optical properties for pre-calculated2006. The spectral correlation is composed empirically by
radiative transfer results, is an essential part in the retrievaéxploring a set of residuals.
process. For the solution of the inverse problem, various as- Here, the introduced methodology is applied to OMI mea-
sumptions and simplifications are needed. sured reflectances at the top of the atmosphere (TOA), us-

The forward problem in aerosol retrieval is based oning the aerosol microphysical models of the OMI multi-
radiative transfer calculations which depend on variouswavelength aerosol algorithm OMAERO. The operational
aerosol properties. Currently, these calculations are too time©OMAERO product uses a look-up table (LUT)-based tech-
consuming to be performed simultaneously with the retrievalnique for the retrieval of aerosol optical properties in the
inversion, and many operational algorithms are based on predltraviolet and visible wavelength region. The multidimen-
calculated look-up tables (LUT) for a selection of aerosolsional LUT contains pre-calculated aerosol microphysical
types. The atmospheric aerosol column content above thenodels having specific optical properties such as AOT and
Earth’'s ground pixel can be a mixture of several aerosolsingle scattering albedo (SSA). The aerosol microphysical
types, which complicates the choice of the correct aerosomodels represent four main types of aerosols: desert dust,
type. One important reason for the disagreement between résiomass burning, weakly absorbing and volcanic aerosols
sults derived from different satellite instruments for the same(Torres et al.2002 2007 Livingston et al, 2009.
location and time is the difference in the algorithms and inthe  The motivation for this study was to improve the exist-
assumption of the underlying aerosol mod€bkhanovsky  ing model selection algorithm of OMI to the benefit of the
et al, 201Q Li et al., 2009 Livingston et al, 2009. This future TROPOspheric Monitoring Instrument (TROPOMI)
choice of an appropriate aerosol model plays a significantlgorithm development\Veefkind et al, 2012. The next
part in the retrieval of aerosols from satellites. An additional Sect. 2 introduces the OMAERO algorithm. Secti®wle-
large source of uncertainty comes from the assumptions omcribes the Bayesian model selection technique for choos-
surface albedoThomas et a).2009 Govaerts et al.2010Q ing the aerosol microphysical model based on satellite obser-
Wagner et al.2010. This aspect will not be studied in the vations with associated uncertainty. The characteristics for
current paper. See the references given for the individual infmodel error are determined in Sedt.Finally, aerosol mi-
struments at the beginning of this Sect. for different aerosolcrophysical model selection in different atmospheric cases is
retrieval algorithms and attempts at uncertainty quantifica-exemplified in Sect5.
tion. References for non-theoretical aerosol optical thick-
ness (AOT) validation and error budgets inclugihn et al.
(2010, Levy et al.(2010 andSayer et al(2013. 2 Data and operational OMI multi-wavelength aerosol

The aim of this paper is to introduce a methodology for  algorithm OMAERO
quantifying the uncertainty in the retrieved AOT (sometimes
referred to as AOD for aerosol optical depth by other au-In this study we have used reflected solar radiation measure-
thors), which is a dimensionless measure of the amount ofments from OMI on board NASAs Earth Observing Sys-
light absorbed or scattered by the aerosols. In particular, weéem (EOS) Aura satellite, launched in July 2004. The Aura
concentrate on two related and often overlooked aspectsspacecraft is in polar sun-synchronous orbit at an altitude of
uncertainty due to aerosol microphysical model selection705km and has a daily global coverage with 14 orbits. The
and uncertainty due to forward model errors. We use toolSOMI instrument was built in cooperation with Finland and
from Bayesian model selection methodology to weight thethe Netherlands. OMI is a nadir-viewing solar backscatter
aerosol microphysical models according to their goodness ofpectrometer, measuring in the ultraviolet (UV) and visible
fit (MacKay, 1992 Spiegelhalter et 312002 Robert 2007 (VIS) regions between 270 and 500 nm. The ground pixel
and combine information about the AOT over the best fitting size is 13x 24 kn? at nadir. OMI-measured Earth radiance
models by averaging over the best modéfoéting et al. and solar irradiance spectra with moderate spatial resolution
1999. are used to retrieve (among others) aerosol characteristics,

surface UV, cloud information and atmospheric trace gases
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including ozone, N@, SO, HCHO, BrO and OCIO. The re- Table 1. The size distribution parameters and the wavelength de-
trievals are used in the studies of air quality, ozone trend andgbendent single scattering albedo (SSA) for each aerosol microphys-
relation between atmospheric chemical composition and clidical model in LUTs used in this study. The third digit in the model
mate changelfevelt et al, 20063 b; Torres et al.2007). ID number, which is zero in the table, has a range of 1-3 for BB
The operational OMI aerosol multi-wavelength algorithm 2nd DD models, and 1 for WA and VO models, is used for different
OMAERO has been developed to retrieve aerosol op,[i_vertlcal distributions. The mean particle radius, rg [micron] and the

cal properties for cloud-free scenes using reflectance spe standard deviationy [micron], are given for both modes, m1 and
P . p e 9 P %2, of bimodal distribution, and n21 is the second mode fraction
trum in the near UV and visible wavelength range be-

A “~ of the number concentration. The SSA is given for the first and last
tween 331 and 500 nm. The OMAERO Level-2 data is avail-\yayelength band only.

able for public access from NASAs Goddard Space Flight

Center (GSFC) Earth Sciences (GES) Data and Informa- wogel rgml rgm2 oml om2 n2l  SSA

tion Services Center (DISCh(tp://@sc.gsfc.nasa:goy/Aura/ WALIOL 0078 0497 1499 2160 43604 1-1
OMIl/omaero_v003.shtil The available data period is from  \wa1102 0088 0509 1499 2160 4.04e-4 1-1

1 October 2004 to the present. The OMAERO Level-2 prod- wa1103 0.137 0567 1.499 2.160 8.10e-4 1-1

uct provides aerosol properties including aerosol type, AOT, WA1104 0.030 0.240 2.030 2.030 1.53e-2 1-1
SSA, aerosol absorption indices and other related data ( ~ WA1201 0078 0497 1.499 2.160 4.36e-4 0.96-0.95

- : WA1202 0.088 0.509 1.499 2.160 4.04e-4 0.97-0.96
res et al.2002 2007). The principal component analysis ap- WA1203 0137 0567 1499 2160 810e-4 0.97-0.98

plied to the OMAERO algorithm byeihelmann et a|2007) WA1301 0.078 0497 1.499 2.160 4.36e-4 0.91-0.88
shows that OMI reflectance measurements have two to four wa1302 0.088 0509 1.499 2.160 4.04e-4 0.91-0.90
degrees of freedom of SignaL WA1303 0.137 0567 1.499 2.160 8.10e-4 0.92-0.92

The current version (V003) of operational OMAERO ~ BB2101 0074 0511 1537 2203 1.70e-4 0.94-0.93
. . BB2102 0.087 0.567 1.537 2.203 2.06e-4 0.94-0.93
product uses a sgrface a_Ibedo climatology basgd onfiveyears geslos 0124 0719 1537 2203 294e-d  0.93-094
of OMI observationsKleipool et al, 2008 for pixels over BB2201 0074 0511 1537 2203 1.70e-4 0.90-0.88
land. Over oceans the spectral bidirectional reflectance dis- BB2202 0.087 0.567 1.537 2.203 2.06e-4 0.90-0.89
tribution function is calculated by means of an ocean model gggggi 8-3?3 8-212 1223 ;;83 i'%e'i 8-22-8-22
H H . . . . .roe- .00—U.
that accqunts for wind spee_d and chlorophyll concentration BB2302 0087 0567 1537 2203 20604 086-0.84
from a climatology. The main factors that have an effect on  ggs303 0124 0719 1537 2203 2.94e-4 084-0.85
the retrieved AOT uncertainty are the sub-pixel cloud con- pp3101 0042 0.670 1.697 1.806 4.35e-3 0.82-0.94
tamination, assumed surface albedo spectrum, instrumental DD3102 0.052 0.670 1.697 1.806 4.35e-3 0.86-0.95
factors and aerosol model assumptioksiielmann et a). ngggé 8-8‘5‘2 8-2;8 i-gg; 1-282 i-gge'g 8-;‘9‘—8-82
. . P . . . . .oo0e- A9-0.
2007 Brinksma et al.2008 Curier e_t a_ll, 2008 Livingston VO4101 0230 0230 0800 0800 05 11
et al, 2009. For a thorough description of the OMAERO

aerosol retrieval algorithm, the reader is referredidores

et al. (2002 2007 and to the OMAERO Readme document e gherational OMAERO algorithm uses TOA re-
(available onhng, for example http://disc.sci.gsfc.nasa.gov/ flectance measuremenRyps(4) to find aerosol microphys-
Aura/data-holdings/OMl/omaero_v003.shiml ical model and a value for AOT;, that best matches the
observations. As the spectral shape of the AOT is fixed by
any given aerosol microphysical model input configurations,
For the OMAERO algorithm, the radiative transfer calcula- there is only one parameter to be fitted, the AOT at reference
tions were done in advance for a range of aerosol physicay/avelength (500 nmj =z (iref).

properties and sun-satellite geometri@er(es et al. 2002 In the fitting pr'ocedure, gsgbset of aerosol models are pre-
2007). These aerosol microphysical models are divided intoSelected according to a priori knowledge of aerosol regional
four main types: desert dust (DD), biomass burning (BB),and seaspnal dlstrlb_u_tlo_n._ The fitting is done using the least
weakly absorbing (WA) and volcanic aerosols (VO). The Sauare criteria by minimising

2.1 Aerosol optical thickness retrieval

main types are divided into subtypes according to aerosol L/ Rops(hi) — Remod(T, i)\ 2
size distribution, refractive index and vertical profile, adding x24 = Z ( obs17i mod?t: % ) , 1)
up to about fifty aerosol microphysical models in total. See i=1 o (i)

Table 1 for the tabulated aerosol properties. LUTs. The re-\\harer is the number of wavelength bands (14 in our case)
sults of the radiative transfer model calculations are stored iyatween 331 and 500 nm();) is the standard deviation un-
4

multidimensional LUTS. The LUTSs consist of various model ¢ tainty in the measured reflectance, which is assumed to be
parameters for a set of nodal points including AOT, SSA, SO-known, andRmod(T, A;) is the reflectance from the aerosol

lar zenith angle, viewing zenith angle, relative azimuth angle,| T model (Torres et al.2002 2007). The best fitted model
path reflectance, transmission and spherical albedo. is selected according to lowest chi-squared vadﬁqu andis
used to determine the spectral AOT. In addition, a maximum
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of ten models, for which the root mean square of the residuamight be equally good, an important task here is to be able
reflectance is below a given threshold value, is delivered withto quantify the uncertainty coming from the model selection
related AOT and SSATprres et al.2007 Livingston et al, procedure. We will use tools from Bayesian statistical in-

2009. ference for model choice, model averaging and model error
that naturally account for different sources of uncertainties.
2.2 Reflectance Bayesian analysis will provide the solution to the estimation

_ _ after accounting for the uncertainties in the modelling proce-
The AOTz =7 (Aref) is retrieved from TOA reflectance spec- qyre. This solution will take the form of a posterior probabil-

trum. The TOA spectral reflectand®ns(1) is calculated as ity gensity that is a measure of uncertainty in the quantity of
the ratio of observed OMI Level-1b Earth radiaricé.) over  jnterest.

the observed OMI Level-1b solar irradiance spedtta) by Model selection in general is a delicate problem that can
not be solved by statistical reasoning only. Theoretically
speaking, for a given data set, there will be an infinite num-
ber of different models that fit the data equally well. Here,
we deal with the specific problem of choosing the most suit-
able aerosol microphysical model from a given finite set of
candidate models. We acknowledge the fact that none of the
aerosol microphysical models might give adequate fit to the
observations and also want to have a measure for that situa-
tion.

___mEQ
Robs(A) = Gogtom FOO (2

wherefdgynis the solar zenith anglé.évelt et al, 2006k Tor-
res et al, 2007).

Above a Lambertian surface the TOA reflectance
Rnoq(t, ) for the aerosol microphysical model is calculated
as

RmOd()‘-’ T, U, 1o, A¢7 pS) = R(l ()\'7 T, 4, KO, A¢’ PS)
As(A)
1— As(AM)s (A, T, ps)

3.1 Bayesian parameter estimation and model
T (A, T, ity 1O, Ps) A3) comparison

Typical statistical parameter estimation is a stepwise proce-
where path reflectanc®,, transmittancel” and spherical  qyre, where first a given model is fitted to the observations
albedos of the atmosphere as seen from below together withyg get a parameter estimate and its uncertainty. Then model
the parameters (AOT), A¢ (relative azimuth angle)ps  yesiduals (i.e. the difference between modelled values and
(surface pressure), (cosine of viewing zenith angle) and gpserved ones) are studied to see if the assumptions about
po (cosine of solar zenith angle) are in practice taken fromne resjduals are met. This is called model diagnostics, where
LUT. Over land the surface reflectivitys is taken from the  gpe typically checks any systematic features in the residu-
land albedo climatology. In this paper, we concentrate on|s which signal inadequacy in the model formulation, and
over-land retrieval, only. Over-sea the reflectance model issne also checks the form of the distribution of the residuals,
a little more complicated as the land albedo climatology isyhijch signals problems in the statistical assumptions. When
replaced with an ocean model depending on chlorophyll andye have several possible models, as in the OMI case, one
wind propertiesTorres et al.2002 Veihelmann et a] 2007). can fit all the models, one by one, and see which provides the
best fit according to some chosen criteria, such as minimum
least squaresselman et al(2003 provide a comprehensive
introduction to statistical modelling in general and Bayesian

There are various sources of uncertainty affecting the acculférence in particular. _ o
racy of the retrieved AOT values, and the selection of an ap- Ve recall and outline the Bayesian parameter estimation

propriate LUT for modelled reflectance calculations is only @1d model selection in the current framework of finding
one factor. Others are related to the size of OMI pixels,the posterior distribution of the AOT parameteusing the

sub-pixel cloud contamination, aerosol horizontal inhomo- ©MAERO algorithm. The posterior distribution for the un-

geneity, etc. One large source of uncertainty comes from th&€rtainty in after observingRobs is given by Bayes' for-
use of surface albedo climatologies. In this study, we apply™ul2
Bayesian model selection tools to select the most appropriat (| Rops m) = P(Ropgz,m) p(z|m) (4)
LUT and quantify the related uncertainty. Secondly, we need?) obs p(Ropbsm)
quantify y Y,

to take into account the other sources of uncertainties thatvhere the likelihoodp(Rgpgt, m) and the prior distribu-
might cause systematic model discrepancies. This is done bijon p(z|m) depend on the aerosol microphysical moael
characterising model discrepancy with Gaussian processebhis will give us valid posterior inferences abaugiven the
described in Sect. observed and modelled reflectance, prior distributionzon

We want to choose an aerosol microphysical model fromand assuming that is the correct model. As the posterior
a set of models that provides then best explanation to the(z|Rops, m) is a probability distribution and the denomi-
observed reflectance at each OMI pixel. As several modelsator p(Rqpgdm) does not depend on, the latter must be a

3 Bayesian model choice
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constant that normalises the numerator In case when, a priori, all models are equally likely, the
model comparison and calculation of relative weights for
P (Robslm) = [ p (Robdt, m) p(t|m)dr. (5)  each model simplifies to calculating the relative evidences:

For model selection this constant has an important use. It is

the probability of observindRops given the modetn. This p(m|R0bs):%. (9)
value is sometimes called evidence (&grshenfeld1999 i

and it is needed in the computation of model posterior prob-
abilities. Basically, we could select the aerosol microphys-
ical model that has the largest evidence with respect to th

observations. There are some caveats on using the eviden Sher models, o if there are several that are equally plausi-

fzooromoollelt(r:]howe $0|r|1ted outin s:]atlstlcal I|tera}tul Ecbtert ¢ ble. Note, however, that having the largest evidence among a
; .7)‘ n tis particu’ar case, where a one-element Veclolgq o models does not guarantee a good, or even adequate,
is fitted with a selection of possible models, we find basmm in itself

Bayesian model selection very useful, provided that we can An important aspect in Bayesian analysis, the specifica-

a\sc;)ur:itnfo:;hevrir;odnel efrrror;altzs d?ne Iir: Sebtlln iq(iir:]er::\rl], tion of prior distributions, has not been discussed so far. As
_eta ual gh' ?1"3 d'?f' ctho kq‘;)(equ feg_ca cua ? € weare mainly performing a feasibility and method develop-
integral, which IS diflicuit forunknowns ot cimensions ‘arger: o ¢ study, we have used rather conventional choices. For

tha;[(, sat%].threcle. “P ?ur calsetz thle dltmgnhstl?m m‘ogeb, which . each individual model fit, the prior distribution for AOT pa-
ma|1 es drlstc? culation refatively straignt forward by NUMer- . meter: was set to log-Gaussian with mean value 2 and
cal quadrature. 700 % standard deviation. This ensured the positivity of the

The least square criteria in Eq)(has a direct counterpart estimated AOT values and was only weakly informative in

W“h"? Baye_sian_ inference as it appears_in exactly th_e SaM&)| of the test cases. For the model choice, uniform prior was
form in the likelihood function for Gaussian observation er- used forp(m), i.e. all the models were a priori equally likely.

ror

Consequently, in this case the model with the highest ev-
idence is the best among the models involved. We can com-
are models to see if one is clearly the best with respect to

(Ropd7. ) o 3.2 Bayesian model averaging
P (obs|T, M

1IN [ Rops(hi) — Rmod(T, 1)\ 2 In practice, several aerosql microphysical models can pro-
exp 5 Z o 00 ) (6) vide equally good explanations for the measurements and the
i=1 ' particular one with the highest evidence may simply have

where we assume the measurement noise standard deviatioR§€" oPtained by chance. If there is uncertainty in the model
o (%) to be known. If we assume an uninformative prior for selection, it should be accounted for in the inference about

7,i.e. p(zlm) = 1, the least squares estimate, maximum Iike-the quantit)_/ of interest. A Bayesian model averaging tech-
lihood estimate (MLE) and Bayesian maximum a posteriori nique (Hoeting et al. 1999 Rober} 2007) enables the shared

(MAP) estimate are all equal inference about an unknown appearing in several alternative

To compare models, we use a method based on the pod'CJels: _ _ _ )
terior model probabilities. For a model and measurements .The B,ayes'a,n model averaging uses _combmed posterior
RopsWe use Bayes’ theorem again to obtain distribution defined by weighting the individual posteriors by

their evidence-based weights:

P (m| Ropg) = LR pn), (7) "
. . . , Pavg(t|Rob = Y p(t|Robs mi) p (mi|Robs) - (10)
wherep(m) is the prior probability that modet is the cor- )

rect one. This formula describes the probability of model giff dels aive ri diff | for th
assuming that the measurements have been generated frdfpdifferent models give rise to different values for the un-

this model. The evidence term from E®) @ppears here as known, then the uncertainty in the averaged posterior distri-
the marginal likelihoodp(Ropgm) of observed data within bution pavg(t| Ropsy can be larger than it is with any single
modelm. The denominator is again a normalising constantModel- This means that the uncertainty in model selection
defined as the sum over all the models considered: has been incorporated into the residoting et al. 1999
Robert 2007).
P (Robs) :Z P (Robdm;) p (m;). (8)
1

4 Model discrepancy
As we are going to deal with a relatively small number of
different models, this term is easily calculated, provided weln Fig. 1, the reflectance spectrum from one OMI pixel
can calculate the individual evidence values. is shown together with two fited OMAERO models. The
models represent two different aerosol main types, weakly

www.atmos-meas-tech.net/7/1185/2014/ Atmos. Meas. Tech., 7, 118899 2014
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Orbit: 16546, lat: 37.0667, lon: 22.7944, 25-Aug-2007 \
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Fig. 1. Two aerosol models that fit the observed reflectance equally
well.
-0.03

360 380 400 420 440 460 480
Wavelength [nm]

absorbing (model “1212") and biomass burning (model _. .

%2223 They both fit the observed reflectance equally well Fig. 2. The spectral differences between the observed reflectance

L .. and the reflectance for the best fit models. Each colour represents a
and the two modelled curves show similar, though opposite

A set of residuals for pixels from a selected orbit. The residuals cor-
deviations from the observed curve. Both models can explaifegpond to different atmospheric situations: dust storm in Sahara
the observations within the individual observation error-bar green), wildfires in Russia (red) and when weakly absorbing mod-
uncertainties, but there is significant systematic bias. Nextels dominate (blue).
we want to characterise this forward modelling uncertainty,
which is called model discrepanci(énnedy and O’Hagan
2001). It contains all sources of uncertainties not directly due 1

to the measurement noise, such as those related to surface

albedo, LUT interpolation and aerosol microphysical mod- Following Kennedy and O'Hagaf2001), we use a Gaussian

elling. . - rocess approach to describe the model discrepancy term
To account for the model discrepancy, we use an additional

. : n (1) that originates from the difference between the aerosol-
error termn (1) and write the general model equation as . .
model-generated reflectance and the observations. Gaussian

Robs(A) = Rimod(T, 1) + (1) + €obs(A). (11) process is a stochastic process for which every finite set of its
realisations has a joint Gaussian distributiBagmussen and
As before, we assume that the spectral measurement Urwjjjliams, 2006). It is a theoretical tool that provides a gen-
certainty due to instrument noise is known and Gaussian  era| and flexible framework for constructing the discrepancy
2 modeln(1). As we only deal with finite representations, we
€obs(A) ~ N (O’ o (U)- (12) can, in practice, work with random variables and covariance
We wish to build a statistical model for the remaining matrices. : . ' . :
A Gaussian process is defined by its mean and covari-

model discrepancy term(1). In order to see how this dis- . : . . .
. . - ance functions, and the essential part in the implementation
crepancy behaves, we studied residuals of model fits, i.e. the

. (I_jS the determination and parameter estimation related to the
differences between the observed reflectances and the mod- = . . . .
elled reflectances Covariance function. Here, the model discrepancy will be a

zero mean Gaussian procegsa) ~ GP(0,C), where the co-
Ries(A) = Rops(A) — Rmod(T, A) (13) variance functionC quantifies the correlation properties of

the discrepancy. As there typically is no direct data avail-
at wavelengths. The modelled reflectances were calculated . " 0 Co covariance, one proceeds by assuming a cer-

from aerosol microphysical models that were the most ap-

. . . tain parameterised functional form. FollowiBgnerjee et al.
pTOF’“a‘e accordlng to the operatlc_mal OMAE.RO product. (2009, we derived the covariance functighusing a Gaus-
Figure 2 shows residuals representing three different atmo-

T : .. sian variogram model. The covariance depends only on the
spheric situations: dust storm in Sahara (green), wildfires iNyavelenath distancg,; — ;| and is defined as
Russia (red) and when weakly absorbing models dominate 9 ! /
(blue). We found that the residuals have typically very sim-
ilar systematic behaviour that could be modelled by a suit-C (*i, &) = (14)
able correlation structure. By using standard tools from spa- 2
. e . y using Ste pa afexp(—(xi—xj) /12),Ai7uj
tial statistics, we estimate this correlation structure and use it 2 >

oy + o1, Al = Aj

to build a model for the model error.

Gaussian process

’
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wherel is the correlation length parameterising the distance 19
between two wavelengths where the residuals are still cor [
related. Parametarg represents non-spectral diagonal vari-
ance anal:rl2 corresponds to spectral variance. These three pa
rameters:é, 012 and! are the essential characteristics of the 6r
covariance function to be determined. In the next section we
show how we estimated the covariance function empirically § 7
from wavelength-dependent correlation structure of residual: 3
of model fits. IS
After the model discrepancy term has been estimated, th<§
theoretical covariance function is used to form the corre-
sponding covariance matr, defined for the range of wave- ol
length bands of the observations. Then it can be incorporate
into the likelihood function (Eg6) as an additional error co- 1
variance:

7+

4+

150

P (Ropd T, m) o Distance between wavelengths [nm]
-1
exp (_} Rés (C + diag<02(1)>) Rres> , (15) Fig. 3. The variance of the residual differences versus wavelength
2 distance is expressed by the empirical semivariogram (circles) and

. . . - the fitted Gaussian parametric semivariogram model (solid line).
where Ryes is the residual of model fit (EdL3). The joint P g ( )

covariance matrix in Eql6) consists now of two elements:

C is the covariance matrix for model discrepancy (E4) plotted as circles in Fig3. This Fig. shows the wavelength-
and diago2(1)) is the diagonal matrix having measurement dependent correlation structure of the residual differences.
error variances%() as its diagonal elements. The residuals are similar at nearby wavelengths while the

By choosing a suitable representation for model error co-variance of residual differences increases for those wave-
variance matrixC, we allow a smooth departure from the length pairs that are further apart.

model to the observed reflectance. The covariance func- Next we estimate the parameters of a theoretical para-
tion parameters define this allowed smoothness. As a conmetric semivariogram model that fits the empirical semivari-
sequence we achieve a more realistic, although wider, unceipgram. In the literature there are several predefined paramet-
tainty estimation of AOT. ric forms of semivariogramBanerjee et al2004). The com-

. o monly used Gaussian variogram model used here is given as
4.2 Empirical semivariogram

uals can been estimated by means of an empirical semivar () =
ogram. The relationship between theoretical variogram mod-

els and the covariance functions of the Gaussian process pravhered = |1; — 4| is the particular distance between wave-
vides a way to determine the covariance function of modellengths. In spatial statistics, parameiéris called a nugget,
discrepancyBanerjee et a2004. The empirical semivari- 52 4 52 is called a sill and-? is a partial sill Banerjee et a|.
ogram for particular distaneé between wavelengths and  2004). The correlation lengthdefines a scale for the distance

The wavelength-dependent correlation structure of the resid- 2 211 _ _ (4 i
g p {Uo+ff1 [1 exp( (12>)],|fd>0 (17)

0, otherwise’

A j is given as between wavelengths where the residuals are still correlated.
nd) Parameters, og, ando-l2 are tuning parameters of the vari-
11 2 ogram model that exactly correspond to those of the covari-
d)=-—— Rres(Mi) — Rres(2))”, 16 o . : L
rd) =3 n(d) d_MZ;H (Rres(hi) — Rres(2.7)) (18)  Ace function n Eq.14). The fitted Gaussian semivariogram
=Ih—A;

model is plotted in Fig3 as a solid curve.

wheren(d) is the number of pairs of wavelengths with the  To illustrate the covariance function parameters, Hig.

same distancé. In the formula for the particular distande =~ shows how the averaged posterior probability (Ed)

the sum of squared residual differences is taken over the sathanges when the correlation lengih the covariance func-

of wavelength pairs with that distande The variance of the tion (Eq.14) is increased from 20 to 200. The averaged pos-

difference between residuals at any two wavelengths dependsrior probability ofz is the weighted mean of the posteriors

only on the wavelength distance. within the best models. Between any two wavelength bands
We have calculated the empirical semivariogram ().  at the distance of appointed correlation length, the modelled

for the ensemble of residuals from different orbits. The em-reflectance is allowed to smoothly diverge from the measured

pirical semivariogram at different wavelength distanges reflectance, instead of a close fit at intervening wavelength
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61 200 Table 2. Orbits, dates and locations of example cases.
Orbit Date Latitude (deg) Longitude (deg)

= 016415 16 Aug 2007 37.088 22.906
§ 016546 25 Aug 2007 37.067 22.794
S 032258 8 Aug 2010 55.335 36.878
S 035754 5 Apr 2011 30.120 13.790
g 010153 12 Jun 2006 region region
2

o

we used a simpler SNR (signal-to-noise ratio)-based esti-
mate, with SNR=500 ando (1) = Rops(A)/SNR. We used

2 25 3 35 4 fifty OMAERO aerosol microphysical model LUTs and the
N modelled TOA reflectancRmoq Was calculated as in EQBY,
Fig. 4. The effect of correlation length defining the model er- The size of the covariance matixin Eqg. (15) depends on

ror covariance matrix, on the posterior probability distribution. The the number of wavelength bands involved. In our case the di-

posterior is the weighted average on individual posteriors, each fittmension ofC is 14 x 14, which is quite moderate for the ma-

ted with the same model discrepancy term. Each coloured curverix operations needed. The empirical semivariogram model

corresponds to the averaged posterior obtained with a given valugescribed in Sect.2 was used to estimate the parameters

of the correlation length. defining the covariance matri€ as/ =90, 02 =1x 10°°
ando? = 0.0004.

As we are mainly performing a feasibility and method de-

bands. That is, the higher the value of correlation length, th%/elopment study, we have used rather conventional choices
smoother the modelled spectral reflectance is allowed to defor prior distributions. We have used only weakly informa-

viate from the measurements. This is related to the higheg o' riors in all of the test cases. For each individual model
uncertainty from model discrepancy that increases the UNCelg; tho prior distribution for AOT parametarwas set to log-

tainty in the AOT retrieval in our case. Gaussian with mean value 2 and 700 % standard deviation.
This ensured the positivity of the estimated AOT values. For
the model choice, uniform prior was used fo¢m), i.e. all

5 Results the models were a priori equally likely. In the example be-
low, we first include all the 50 aerosol microphysical mod-

The aerosol microphysical model selection, model averageg Then, up to ten models with a total posterior probability
ing and model discrepancy modelling are demonstrated herg; |aast 80 % are selected for further analysis.

by four examples representing different atmospheric aerosol

situations where we expect different dominant main aerosob 1 Greece forest fires, 2007

types. In the examples, we have tested the method using two

cases: without the model discrepancy term being includeduring summer 2007 there were massive forest fires in many
(Eq. 6) and with the model discrepancy included (Bdp). parts of Greecel{askaoutis et al2011). We considered two
Table2 lists the examples with the appropriate information. days, approximately at the same location in the Peloponnese,
The selected pixels are cloud free and over land, and9rig. namely, 16 and 25 August 2007 (Tale The latter date rep-

has MODIS true-colour images for the cases. resents the time when the fires were in their most disastrous
Our work is based on the OMI multiwavelength algo- phase in that area.
rithm OMAERO (Torres et al.2002 introduced in Sect2. Figure5 shows observed and modelled reflectances on the

We used spectral measurements from 14 wavelength band&eft column for 16 August 2007. The observed reflectance
342.5, 367.0, 376.5, 388.0, 399.5, 406.0, 416.0, 425.5, 436.59s marked by blue dots and the measurement uncertainty
442.0, 451.5, 463.0, 477.0 and 483.5nm. For practical reaas error-bars for @ standard error. The posterior distribu-
sons, there were some differences in our experimental retions ofr on the right-hand column describe the uncertainty
trieval algorithm compared to the operational OMAERO. We of the retrieved AOT, assuming that the associated aerosol
took the surface reflectivity at a given location and date frommicrophysical model is correct. The legend shows the rela-
the database based on Total Ozone Mapping Spectrometéive posterior probability percentage values for each of the
(TOMS) and MODIS data, whereas, for cases over land, theaerosol microphysical models involved. The upper row rep-
current OMAERO product (version V003) uses the surfaceresents the results of model comparison and AOT estimation
albedo climatology based on OMI measurements spanningvhen the model discrepancy has not been involved. The five
five years. Also, instead of using the exact operational al-most likely models are of weakly absorbing (models with
gorithm for the measurement noise standard deviatior), “1” as the first digit) and biomass-burning types (“2” as the

Atmos. Meas. Tech., 7, 1185199 2014 www.atmos-meas-tech.net/7/1185/2014/



A. Maatta et al.: OMI aerosol model uncertainty 1193

Orbit: 16415, lat: 37.0877, lon: 22.9057, 16—-Aug—2007 Orbit: 16415, lat: 37.0877, lon: 22.9057, 16—Aug—2007
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Fig. 5. Greece, 16 August 2007. Upper row: the best five models when model discrepancy is not included. Bottom row: the best ten models
when model discrepancy is included. Observed and modelled reflectances on the left, and posterior probability distributions for the AOT
parametet on the right. The reflectance observations are marked by blue dots and error-bars correspongdisigutward error uncertainty.

The modelled reflectance curves on the left match the colours of the individual posterior distributions on the right, although overlaying each
other. On the right, the dashed black curve is the averaged posterior distribution over the best models that account for at least 80 % of the
total posterior weights of all the models.

Orbit: 16546, lat: 37.0667, lon: 22.7944, 25-Aug—2007 Orbit: 16546, lat: 37.0667, lon: 22.7944, 25-Aug—2007
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Orbit: 16546, lat: 37.0667, lon: 22,7944, 25—Aug—2007 Orbit: 16546, lat: 37.0667, lon: 22.7944, 25-Aug—2007
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Fig. 6. Greece, 25 August 2007. Upper row: the best three models when the model discrepancy is not included. Bottom row: the best seven
models when the model discrepancy is included. SeeSHigy. more explanation.

first digit). The model “1213" has the strongest contribution underestimates the true uncertainty. The lower row shows the
to the posterior distribution. The averaged posterior distribu-results when the model discrepancy has been acknowledged
tion (Eq.10), plotted as a thick dashed black line, has spreadn the fitting procedure. Now there are ten models almost as
over the posteriors of within these five models. The sharp likely in the averaged posterior distribution of It appears
peaked and narrow posterior probabilities indicate low un-that the uncertainty averaged over models is very wide when
certainty of retrieved AOT. We suspect that this posterior the model discrepancy is involved. Also, the single posterior
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Orbit: 32258, lat: 55.3348, lon: 36.8782, 08-Aug-2010 Orbit: 32258, lat: 55.3348, lon: 368782, 08—Aug—2010
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Orbit: 32258, lat: 55.3348, lon: 36.8782, 08-Aug-2010 Orbit: 32258, lat: 55.3348, lon: 36.8782, 08—Aug-2010
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Fig. 7. Wild fires in Moscow, 2010. Upper row: the best two models when the model discrepancy is not included. Bottom row: the best three
models when the model discrepancy is included. Also seeSFithe AOT_500 from AERONET is near the mode, i.e. the maximum point,
of the averaged posterior as can be seen from the black vertical line (bottom right panel).

distributions oft within models are clearly broader in this model to the measured reflectance and acknowledging the

case. model discrepancy term, the ranking between the best two
On 25 August, all the best models are of the biomass-models is not so clear anymore. The posterior distributions

burning type (see Fig6). Again, when the model discrep- of r under the best models are broad and they now overlap.

ancy is not included, the uncertainty shown in the graph on There is a ground-based AOT measurement site in

the upper right-hand panel gives the impression of low un-Moscow, Moscow_MSU_MO (583N, 37 E), operated

certainty of retrieved AOT. In addition, there is clearly only within the Aerosol Robotic Network (AERONET). The

one best model according to the relative posterior probabillLevel-2 Smirnov et al. 2000 AOT at 500nm from

ity. When the model discrepancy is included (Fsgbottom  AERONET is 2.88. This ground-based AOT value lies al-

panels), there are seven models almost as likely. This camost in the middle of the possible AOT range (Fiy.

also be seen by the mean posterior curve when the support is

spread over the most likely seven models. When comparing-3 Sahara sandstorm, 2011

the results of these two days, the aerosol load is larger on the

latter day, leading to different aerosol microphysical models!n APril 2011 there were strong Sahara dust storRreiler
chosen and higher AOT estimates. et al, 2011). At that time, favourable weather conditions

transported the dust a long way across the North Atlantic
and Europe. We consider here the date of 5 April 2011 (Ta-
ble 2). The best fitted aerosol microphysical models are of

There were several wildfires in the western part of Russiathe desert dust type (Fig). With or without model discrep-

from the end of July until August 201MMgi et al, 2011, ZTCy, ttrr:e sar‘?e tV\éO lb(f;tzinz?delsh%hfw Ithe l?rt?]eSt eVIden::e.
Mielonen et al. 2011). The sample ground pixel from dur- S0, Ihe DESt model, » Exnibits aimost the same rel-

ing the day on 8 August 2010 is located near Moscow (Ta_atlve evidence in both cases, as can be seen from the rela-

ble 2). Figure7 shows the reflectances and AOT estimates!V® Posterior model probability percentage values in the Ieg-
end boxes. However, when the model discrepancy term is

of the best fitted models when the model discrepancy is : o X

not included (upper row) and when the model discrepanc nclut_jed _(Iower rov_v) the posterior curves indicate higher un-

is included (lower row). In both cases the two best fitted certainty in the retrle\{eq AQT value. The reflec'tance curves

aerosol microphysical models are the same biomass-burning£—|neft column) .ShOW .V'S'ble systematlc_errors in bOth of the
odels. The inclusion of the model discrepancy shifts both

type models. When the model discrepancy is not included ; X . . .
tzz model *2122" is clearly the most IFi)keryand the second posterior curves to the right and widens the uncertainty (right
8olumn).

best model does not have much weight. Because of this, th
averaged posterior (dashed black line) covers the posterior
curve oft within model “2122” completely. When fitting the

5.2 Russian wildfires, 2010
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Fig. 8. Sahara dust storm, 2011. Upper row: the best two models when the model discrepancy is not included. Bottom row: the best two
models when the model discrepancy is included. See5Higy. more explanation.

5.4 Western Europe 2006 operational OMAERO means. However, as the posterior dis-
tributions are very asymmetric and skewed to the right, the

In addition to the single pixel studies above, we have con-ean of the posterior would be closer to the OMAERO

ducted a limited study for a larger set of pixels. We Con_value. AERO.NET has three sites in the area of inter-'
est that provide data for that day. These sites are Paris

sider one summer day, 12 June 2006, over western Europ .
with small aerosol amounts. Figut® shows the results from fl\ej:w?zz ’(\IA:QZS'éiE)é I;;nsmﬁ_k;llgul_gifg\l Aé_?cysgz) ?rgi]

operational OMAERO using the best aerosol microphysicalAERONET are marked by red dots in the panel and we show
model. It also shows results from the new algorithm that useg : ; !
he daily average AOT values, which are 0.16 for Paris, 0.15

model averaging and accounts for model discrepancy in %or Fontaineblau, and 0.10 for Mainht{p://aeronet.gsfc.

set of 14x 7 pixels that also collocate with 3 AERONET .
ground-based measurements. For the operational aIgorithn?isri'gow The AERONET values are in reasonable agree-

the model chosen as the best was weakly absorbing aeroso
microphysical model number 1211, 1212, or 1213 in all the
cases (see Tablg. The grey vertical lines show results with g Discussion and conclusions
95 % uncertainty regions from the proposed new algorithm.
We see that the variability between pixels in the OMAERO Our aim was to study the additional retrieval uncertainty
results corresponds very well to the uncertainty attributed tooriginating from the need to select an LUT-based aerosol mi-
each individual pixel in the new algorithm, suggesting more crophysical model from a set of pre-calculated models. We
realistic uncertainty characterisation. We assume here thaitilised Bayesian statistical methodologies that are general in
the variability in OMAERO in the neighbouring pixels is scope and applicable to a wide range of similar problems. As
mostly due to the uncertainty in model selection and not ina particular application example we used operational OMI
the actual variability of the AQT. In the pixels furthest to the reflectance measurements from NASA's Aura satellite and
left, that is, in column number 10, the agreement is not asmodified operational OMAERO aerosol algorithm to esti-
good. Here, we are at the edge of the cloud-masked area. Imate AOT parameter. In OMI, the amount of information
the three OMAERO values marked with stars the fit did notin the measurements is known to be too small to accurately
pass the operational goodness of fit threshold. Also, in manelect the correct aerosol type. Also, in practice there may
pixels where the operational algorithm does not produce anye several models that explain the observations equally well
results, the proposed algorithm seems to give reasonable valithin the uncertainties of the sensor and forward model.
ues. The use of Bayesian statistical inference provides a unified
The grey dots over the vertical lines mark the modeapproach to the quantification of uncertainties originating
of the posterior distribution (i.e. the maximum a poste- from the model choice and from parameter estimation. Here,
riori estimate). These values are typically lower than theBayes’ formula is applied twice: first, when defining the
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Fig. 9. MODIS true-colour images for the four example cases described in Se&t5.3. Top left is Greece, 16 August 2007; top right is
Greece, 25 August 2007; bottom left wildfires are in Moscow, 2010; bottom right is Sahara sandstorm, 2011. The approximate centre location
of the OMI pixel is marked with small red dot.

posterior distribution of unknown AOT within each aerosol global model error covariance matrix was used in our case for
microphysical model, and second, when comparing thesall the test cases we considered. If needed, it would be pos-
models to select the most appropriate aerosol microphysicatible to set up a table of model error covariance parameters
model. In our particular case there is only one unknown pa-depending, for instance, on geographical distribution clima-
rameter (the AOT) and the actual statistical calculations aregology of models, or even to estimate error model parameters
rather simple. The obtained posterior probability weights ofindividually for each orbit, etc. Instead of using observed de-
the models are used to build an averaged model that accountgances, one way to study model error would be by doing ra-
for the uncertainty in the selection procedure. diative transfer simulations for some fixed atmospheric states
The aerosol microphysical model represents some aerosa@nd then estimating the model deviations for these situations.
type with certain size distribution, refractive index and In our examples, all the available aerosol microphysical
aerosol layer height, and is an approximation of the realitymodels were equally probable a priori. Because of the lim-
which seldom matches the simplifying assumptions used irited information in the measured reflectance, the prior selec-
model calculation. This causes additional uncertainty in thetion of aerosol models for certain locations and times would
retrieval. This model discrepancy is taken into considerationbe necessary, in practice. Prior information about the back-
by applying a Gaussian process model to explain the charagground aerosol conditions is important, especially, in situa-
teristics for this model error. The covariance function defin-tions where the amount of aerosols is small, as the different
ing the model discrepancy is estimated empirically from anmodels would be indistinguishable based on the observed re-
ensemble of residuals of fits. Adding this model discrepancyflectance only. In practice these prior weights could be based
term to measurement errors in the fitting procedure will al-on aerosol distribution climatologies.
low wider deviation for the forward model from the observed  Aninteresting question is how large the uncertainty caused
spectral reflectance. by the choice of aerosol microphysical model is, compared
The applied characterisation of model discrepancy is justo other forward model errors and to the measurement uncer-
one example of different possible ways to explain the sys-tainty. Based on our limited experiments, we can not give
tematic uncertainties in forward modelling. The Gaussiana definite answer. If we look at the uncertainties of AOT
process approach allows the modelled reflectances to hauetrievals from individual models based solely on the as-
smooth deviations from the observed reflectances, and in olsumed observation noise, we see that this within-model un-
studies it was able to account for the typical systematic feacertainty is, in general, significantly smaller than the vari-
tures in the model residual. Once having estimated it, oneability between those models that fit the same observations
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Fig. 10. The top left panel shows AOT from the official OMAERO product. The data are from one orbit (010153), 12 June 2006. The top
right panel shows a MODIS true-colour image from the same day. The lower panel shows AOT values and their uncertainties for a selection
of pixels, marked as a red rectangle at the top left. The pixel indexes vary from columns 10 to 23 and rows 1002 to 1008. Each column
of seven pixels has been grouped together along the horizontal axis. The vertical axis shows AOT at 500 nm reference wavelength. Not all
individual pixels were available, due to cloud contamination. The vertical lines with different shades of grey correspond to the rows of pixels
in the satellite orbit and show the results of the retrieval algorithm using model averaging and accounting for discrepancy. The grey dot is
the mode of the posterior distribution and the line spans 95% of the posterior probability mass. The blue dot is the best fit model from the
operational OMAERO algorithm (also shown on the top left panel) with 2 times standard error uncertainty indicated by the blue line. Three
OMAERO values, marked with a star, did not pass the operational goodness of fit threshold. The three red dots show AOT values from
collocated AERONET stations, whose locations are shown as black dots in the top left panel. See the text for a discussion of the results.

equally well. The between-model uncertainty reflects thetimes larger that the uncertainty from the assumed measure-
uncertainty that arises from using discrete LUT-based ap-ment noise and this model choice uncertainty may contribute
proximate aerosol microphysical model, but it can also in-(or can be used to account for) at least one half, and typi-
clude other sources of uncertainties as the model-choiceeally even more, of the total uncertainty budget. This issue
related uncertainties probably correlate with other forwardis also discussed with the multi-pixel example in Séct
model approximation errors. The model discrepancy termwhere we see that our wider uncertainty regions covered the
tries to account for typical non-modelled systematic featuremearby pixel variability in the official product. Overall, this

in residuals by using a statistical approach. Also, averagingndicates that the results obtained from using just one indi-
over different models and allowing for statistical model dis- vidual aerosol microphysical LUT model can vastly under-
crepancy will hopefully account for most of the uncertain- estimate the overall uncertainty.

ties in the AOT retrieval. Judging very roughly from the ex- We see potential for this proposed method. If empirical
ample cases, e.g. Figs-8, we could conclude that uncer- studies of the model discrepancy can be conducted, this in-
tainty from the discrete model choice can be from 2 up to 10formation can be included in the retrieval estimation. The
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use of Bayesian model selection methodology as describe®eferences
here depends on calculation of the full posterior probabil-
ity distribution of the quantity of interest, here the AOT, in-
stead of point estimates and uncertainty standard deviation®
However, in the OMAERQO case, and probably in many sim-
iIar. case.s., the numerical_ F:alculations ngeded can he donIsrinksma, E. J., Pinardi, G., Volten, H., Braak, R., Richter, A,,
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