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Abstract. Presently only limited sets of tropospheric am-
monia (NH3) measurements in the Earth’s atmosphere have
been reported from satellite and surface station measure-
ments, despite the well-documented negative impact of NH3
on the environment and human health. Presented here is a de-
tailed description of the satellite retrieval strategy and analy-
sis for the Tropospheric Emission Spectrometer (TES) using
simulations and measurements. These results show that: (i)
the level of detectability for a representative boundary layer
TES NH3 mixing ratio value is∼0.4 ppbv, which typically
corresponds to a profile that contains a maximum level value
of ∼1 ppbv; (ii) TES NH3 retrievals generally provide at
most one degree of freedom for signal (DOFS), with peak
sensitivity between 700 and 900 mbar; (iii) TES NH3 re-
trievals show significant spatial and seasonal variability of
NH3 globally; (iv) initial comparisons of TES observations
with GEOS-CHEM estimates show TES values being higher
overall. Important differences and similarities between mod-
eled and observed seasonal and spatial trends are noted, with
discrepancies indicating areas where the timing and magni-
tude of modeled NH3 emissions from agricultural sources,
and to lesser extent biomass burning sources, need further
study.

Correspondence to:M. W. Shephard
(mark.shephard@acappsinc.com)

1 Introduction

Global high-spectral resolution nadir measurements from
the Tropospheric Emissions Spectrometer (TES) on NASA’s
Aura platform enable the simultaneous retrieval of a num-
ber of tropospheric pollutants and minor trace gases in ad-
dition to standard operationally retrieved products (tempera-
ture, water vapor, ozone, carbon monoxide, and methane).
Ammonia (NH3) is one of the additional species that can
be retrieved in conjunction with the TES standard products
and is important for local, regional, and global tropospheric
chemistry studies. NH3 contributes significantly to several
well-known environmental problems; excess deposition in
terrestrial ecosystems can lead to soil acidification and loss
of plant diversity (e.g. Carfrae et al., 2004); in coastal ecosys-
tems, it can cause eutrophication, algal blooms, and loss
of fish and shellfish (e.g. Paerl et al., 2002). In the atmo-
sphere NH3 can combine with sulfates and nitric acid to
form ammonium nitrate and ammonium sulfate, which con-
stitute a substantial fraction of fine particulate matter (PM2.5)

(e.g. Seinfeld and Pandis, 1988). These particles are statisti-
cally associated with health impacts (e.g. Pope et al., 2000)
and contribute to atmospheric radiative forcing by the atmo-
sphere (e.g. Charlson et al., 1991), while also impacting vis-
ibility. Nevertheless the knowledge of the magnitude and
seasonal/spatial variability of the NH3 emissions is severely
limited.
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The greatest uncertainty in atmospheric transport of re-
active nitrogen is in the rates of NH3 emission from all
sources, at all scales (Galloway et al., 2008). In situ NH3
measurements are challenging and not available in many re-
gions. Limiting factors in improving the emission inventory
are infrequent and sparse in situ observations, and the re-
liance of previous inversion methods on using a limited num-
ber of available condensed-phase measurements (Gilliland
et al., 2006; Henze et al., 2009). Satellite observations of
tropospheric NH3 are therefore highly desirable (Beer et al.,
2008), especially given the projections that free NH3 will in-
crease with time, both for the eastern US (Pinder et al., 2008)
and for agricultural regions over the entire globe, as the use
of fertilizer continues to climb (Erisman et al., 2008).

First satellite observations of boundary layer tropospheric
NH3 were reported by Beer et al. (2008) using TES-Aura
nadir infrared FTS spectra. That study presented prelimi-
nary TES retrievals over a limited range of conditions. Sim-
ilar to TES, the Infrared Atmospheric Sounder Interferom-
eter (IASI) instrument also retrieves NH3 in nadir viewing
mode using the thermal infrared spectral region. The excel-
lent spatial coverage of the IASI instrument, coupled with
a very simple and fast retrieval based on the conversion of
brightness temperature differences into total column mea-
surements, has provided a global picture of the distribution
of NH3 (Clarisse et al., 2009). Clarisse et al. (2010) used
a more refined algorithm to provide greater insight into the
remote sensing of tropospheric NH3 and introduced impor-
tant sensitivity issues (e.g. the impact of the thermal contrast
on the boundary layer retrievals of NH3). Upper tropospheric
limb emission measurements of NH3 have also been reported
from MIPAS (Michelson Interferometer for Passive Atmo-
spheric Sounding) limb-sounding measurements (Burgess et
al., 2006).

TES has less dense spatial coverage than scanning satel-
lites (e.g. IASI, AIRS), but has a higher spectral resolution
of 0.06 cm−1 (compared to more typical scanning infrared
satellite sensors with 0.5–1.0 cm−1). The combination of the
higher spectral resolution and good signal-to-noise (SNR) of
the TES instrument in the NH3 region (Shephard et al., 2008)
provides increased sensitivity to NH3 mixing ratios near the
surface from satellite observations. In addition, TES is in
a sun-synchronous orbit that has both a daytime ascending
orbit with a local overpass time of 13:30 mean solar time,
providing favorable conditions for high thermal contrast and
thus increased sensitivity to boundary layer NH3 (Clarisse
et al., 2010), and a nighttime descending orbit with a corre-
sponding 01:30 local overpass time. The high spectral reso-
lution also allows for selection of spectral regions (microwin-
dows) that reduce the impact of interfering species, and con-
sequently systematic errors in the retrievals. The smaller
footprint of TES (5× 8 km) also allows for the potential to
detect localized NH3 sources. These TES sensor character-
istics and a sophisticated global retrieval algorithm provide
the capability to obtain a more detailed estimate of NH3 not

previously available over most of the globe.
Presented here are results that expand upon the initial TES

NH3 observations provided by Beer et al. (2008) and include:
(i) detailed description of the TES NH3 retrieval strategy
including error characterization; (ii) estimation of the TES
level of detectability of NH3 under various conditions based
directly on the SNR; (iii) evaluation of the TES NH3 retrieval
performance using simulations; (iv) TES NH3 observation
examples showing the spatial and seasonal variability of NH3
globally; (v) initial comparison results of TES observations
with GEOS-Chem model output globally and over twelve
distinct regions.

2 Retrieval strategy and sensitivity studies

2.1 Retrieval strategy

2.1.1 Retrieval methodology

The TES NH3 retrieval is based on an optimal estimation ap-
proach that minimizes the difference between the observed
spectral radiances and a nonlinear radiative transfer model
driven by the atmospheric state, subject to the constraint that
the estimated state must be consistent with an a priori proba-
bility distribution for that state (Bowman et al., 2006). If the
estimated (retrieved) state is close to the actual state, then the
estimated state can be expressed in terms of the actual state
through the linear retrieval (Rodgers, 2000):

x̂ = xa+A(x −xa)+Gn+GKb(b−ba), (1)

where,x̂, xa, andx are the retrieved, a priori, and the “true”
state vectors respectively. For TES trace gas retrievals, these
are expressed as the natural logarithm of volume mixing ratio
(VMR). G is the gain matrix, which maps from measurement
(spectral radiance) space into retrieval space. The vectorn

represents the noise on the spectral radiances. The vector
b represents the true state for those parameters that also af-
fect the modeled radiance (e.g. concentrations of interfering
gases, calibration, etc.).ba holds the corresponding a priori
values, and the Jacobian,Kb = ∂L

/
∂b, describes the depen-

dency of the forward model radiance,L , on the vectorb. Fur-
ther details on the Line-By-Line Radiative Transfer Model
(LBLRTM) and the fast forward model (OSS-TES) used for
the forward model calculations can be found in Clough et
al. (2005), Moncet et al. (2008) and Shephard et al. (2009).

A =
∂x̂

∂x
= (KT SnK +3)−1KT S−1

n K = GK . (2)

The averaging kernel,A, describes the sensitivity of the re-
trieval to the true state:K describes the sensitivity of the for-
ward model radiances to the state vector (K = ∂L

/
∂x). Sn

is the noise covariance matrix, representing the noise in the
measured radiances, and3 is the constraint matrix for the
retrieval.
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For profile retrievals, the rows ofA are functions with
some finite width that give a measure of the vertical res-
olution of the retrieval. The sum of each row ofA rep-
resents an estimate of the fraction of retrieval information
that comes from the measurement rather than the a priori
(Rodgers, 2000) at the corresponding altitude, provided the
retrieval is relatively linear. The trace of the averaging ker-
nel matrix gives the number of degrees of freedom for signal
(DOFS) from the retrieval.

The relatively low spectral contribution of the mostly
boundary layer NH3 infrared nadir signal (∼1 K brightness
temperature for a polluted profile) compared with the back-
ground atmospheric state, and the lack of site-specific NH3
a priori information, present additional challenges to the
retrieval of NH3 compared with more traditional retrieved
species (e.g. ozone, water vapor). Since tropospheric NH3
retrievals from nadir mid-tropospheric infrared spectra have
not been routinely performed, specific details into the re-
trieval approach are provided. The NH3 retrievals are carried
out after the retrievals of temperature, water vapor, ozone,
methane, carbon dioxide, clouds, and surface temperature
and emissivity (using V004 TES products). For this initial
study we only performed retrievals where the TES retrieved
cloud optical depths were≤1.0. Adjustments to the surface
emissivity and temperature are carried out simultaneously
with the NH3 retrieval.

2.1.2 Retrieval error analysis

An advantage of the optimal estimation retrieval approach is
that an error estimate can be computed in a straight-forward
manner utilizing retrieval input parameters. The total error
on the retrieved profile can be expressed as the sum of the
representation (smoothing) error, the cross-state error, which
accounts for errors due to other parameters in the joint re-
trieval (i.e. temperature and ozone), and the measurement er-
ror (due to instrument random noise and the systematic er-
rors (Worden et al., 2004). In this initial analysis the total
error estimates (e.g. Fig. 8) do not include any contribution
from cross-state or systematic errors. One of the main po-
tential systematic errors that was considered is the errors in
the spectroscopic parameters. The spectroscopic line in HI-
TRAN 2004 (Rothman et al., 2005) originated from the HI-
TRAN 2000 compilation (Rothman et al., 2003). Those pa-
rameters were described in the paper by Kleiner et al. (2003).
Intensities for14NH3 near the 10 µm (the only isotopologue
of significance for the present work) were derived from lab-
oratory measurements at the US National Solar Observatory.
As described in that summary, the best-fit derived from a
fit to those measurements has a standard deviation of<1 %.
Air-pressure-broadening coefficients were calculated from a
polynomial best-fit to experimental measurements reported
in several studies. Based on both results, we have estimated
the total uncertainty due to potential bias in the assumed

Table 1. Microwindows for TES NH3 retrievals.

Retrieved
Index Filter V1 (cm−1) V2 (cm−1) Parameter

1 1B2 949.82 950.90 emiss
2 1B2 956.50 957.50 emiss
3 1B2 962.06 962.42 NH3
4 1B2 963.38 964.64 NH3
5 1B2 964.94 965.66 NH3
6 1B2 966.38 966.62 NH3
7 1B2 967.10 967.52 NH3
8 1B2 967.88 968.18 NH3
9 1B2 968.24 968.8 Emiss & NH3 bkgd
10 1B2 972.20 973.0 emiss

V1 andV2 are the beginning and ending wavenumbers of the microwindow. The spec-

tral resolution of the microwindow is 0.06 cm−1.

spectroscopic parameters as<1 %. Since this is well below
other sources of retrieval error it is ignored in this study.

2.1.3 TES NH3 microwindows

Rather than using an entire TES band, the TES retrieval algo-
rithms define spectral microwindows for retrieving each pa-
rameter in order to reduce the impact of interfering species
and increase computational speed. For the NH3 retrievals
we have selected microwindows for the background window
calculation, the surface temperature and emissivity. Figure 1
shows a simulated sensitivity analysis depicting the NH3 mi-
crowindows and interfering species. Table 1 contains the
microwindows used in the NH3 retrievals. The microwin-
dows were carefully chosen to minimize signal from inter-
fering species, (e.g. water vapor) and maximize the surface
and NH3 signal. Also note that the spectral region for these
TES ammonia retrievals is not previously used by any other
TES retrieval, which greatly reduces the impact of other re-
trievals on the NH3 retrievals.

2.1.4 A priori vector and constraints

The a priori profiles for TES NH3 retrievals are derived
from the GEOS-Chem model simulations of 2005 global
distributions of NH3. GEOS-Chem is a chemical transport
model driven using assimilated meteorology from the God-
dard Earth Observing System (GEOS) of the NASA Global
Modeling and Assimilation Office (GMAO). The GEOS-
Chem NH3 emissions for anthropogenic and natural sources
are originally based on data from the 1990 GEIA inventory
of Bouwman et al. (1997), with additional contributions ow-
ing to biomass burning and biofuel use from inventories by
Duncan et al. (2003) and Yevich and Logan (2003). Monthly
variability is calculated according to an exponential temper-
ature scaling (Adams et al., 1999), with additional top-down
constraints provided from Gilliland et al. (2003). Figure 2
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Fig. 1. Plot of the TES spectral microwindow selection for NH3
retrievals. The top panel is the model (LBLRTM) simulated TES
observation for a reference atmosphere (plotted in black). Overplot-
ted in color are various simulated model calculations the reference
atmospheric profile has been additionally perturbed separately by
10 % H2O, 10 % CO2, 10 % O3, and the NH3 increased to a pol-
luted profile. The bottom panel shows the residual (reference – per-
turbation) TOA brightness temperatures. The diamonds represent
spectral points in the NH3 microwindows.

presents the monthly GEOS-Chem mean NH3 volume mix-
ing ratios at the surface. The enhanced surface NH3 corre-
lates with the intensities of the seasonally varying emission
sources in the model. Due to its short lifetime, NH3 exhibits
strong spatial and temporal variability, and a wide range of
values (over three orders of magnitude at the surface); thus
more than one a priori profile was created for the retrieval to
take into account the non-linear nature of the retrieval prob-
lem. To build the TES NH3 a priori profiles we generated
three categories of NH3 profiles, “polluted”, “moderately
polluted”, and “unpolluted”, starting from a GEOS-Chem
model run on a 2◦ latitude by 2.5◦ longitude grid for 2005.
Figure 3 shows the individual profiles and the averaged pro-
files for each category. The “polluted” a priori profile is the
average of all profiles with surface NH3 VMR ≥5 ppbv. The
“moderately polluted” a priori profile is the average of all
profiles with 1 ppbv≤ NH3 < 5 ppbv at the surface or NH3
<1 ppbv at the surface, but greater than 1 ppbv between the
surface and 500 hPa; this profile type seeks to represent those
cases in which the local emissions are less than the transport
into the region. Finally, the “unpolluted” a priori profile is
the average of all profiles with NH3 < 1 ppbv between the
surface and 800 hPa. Note that unlike other species com-
monly retrieved from infrared nadir measurements, NH3 is
heavily concentrated in the boundary layer, especially in pol-
luted environments. The variability of each of the three a
priori profiles is also derived from the GEOS-Chem model
data. Figure 4 shows the square roots of the diagonals of

the covariance matrices, which are the basis for generating
the constraint matrix used in the retrievals. The constraints
were modified to reflect the sensitivity of the TES (i.e. where
there is very little NH3 and no TES sensitivity, e.g. above
400 hPa, the retrieval is constrained back to the a priori). The
off-diagonals of the constraint matrix were generated with a
1-km correlation length.

The NH3 concentrations are highly variable in time and
space and not well known, especially outside the US and
Europe. Therefore, for a given TES target scene there are
usually no a priori site specific observations or assimilated
model output. To provide additional insight into the selection
of one of the three possible three GEOS-Chem profiles used
for the NH3 initial guess and a priori profiles it is beneficial
to examine the strength of the NH3 signal in the measured
radiance.

The strength of the TES NH3 infrared spectral signature
can be represented as a signal to noise ratio (SNR), which is
a function of a number of parameters such as the NH3 con-
centration, temperature profile, clouds, and surface thermal
contrast. In order to examine the sensitivity of the SNR to
these parameters, we obtained retrieved atmospheric profiles
of temperature, water vapor and ozone, plus retrieved sur-
face temperature and emissivity, from two TES Global Se-
ries (GS), one from January and one from July, consisting
of 180 measurements over land between 60◦ N and 60◦ S. To
each profile three different simulated NH3 profiles represent-
ing unpolluted, moderately polluted, and polluted conditions
were added, which built a set of 540 cases. To create a range
of simulated NH3 profiles, we took each of the a priori pro-
files and applied a scaling factor determined from a normal
random number generator. This set was then used as input
for the TES-OSS forward radiative transfer model in order to
generate simulated TES spectra. From each spectrum we cal-
culated a SNR value, defined as the difference between the
background brightness temperature (BT) and the BT in the
NH3 spectral region, and divided by the expected TES noise
(see Appendix A for SNR calculation details).

The results of this simulated sensitivity analysis are in
Fig. 5, where the SNR is plotted as a function of the thermal
contrast. The points corresponding to each profile type fall
roughly in three regions on the plot, suggesting that these two
parameters can be used to estimate the NH3 profile type cor-
responding to the SNR and thermal contrast. The selection
of the profile type is correctly estimated more often when the
absolute value of the SNR is greater than 1.0 and the thermal
contrast is greater than 5.0 K or less than−3.0 K. If these
thresholds are not met then the default unpolluted a priori
and moderate initial guess profiles are used in the retrieval.
The scatter for each type can be attributed to other factors im-
portant in the SNR determination not considered here, such
the structure of the temperature profile, the amount of water
vapor and the location of the maximum NH3 concentration.
This plot was used to build the a priori selection criteria.
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Figure 1.  GEOS-Chem monthly mean surface NH3 mixing ratio amounts. 

 

Fig. 2. GEOS-Chem monthly mean surface NH3 mixing ratio amounts.

2.2 Sensitivity studies

2.2.1 Level of detectability

The minimum requirement for TES to detect NH3 is that the
TES signal in the NH3 spectral region be greater than the
expected TES noise in this region. Using the simulation set
discussed in Sect. 2.1.4, we estimated this signal as the BT
difference between runs with and without NH3, divided by
the TES noise. Note that this value, which can also be termed
an SNR, is different from the SNR defined in Sect. 2.1.4,
since here it is calculated from the difference between two
spectra, rather than from the difference between two spectral

regions. In effect, the SNR in Sect. 2.1.4 is an estimate of the
true SNR calculated here.

Each SNR was plotted in the thermal contrast/NH3 plane
(Fig. 6). The filled circles represent cases where the
SNR≥ 1, and empty circles otherwise. The circles are col-
ored according to the pollution level of the NH3 profile; the
percentage of detectable profiles of each type is also shown
on the plot. Several conclusions can be drawn from this fig-
ure:

www.atmos-chem-phys.net/11/10743/2011/ Atmos. Chem. Phys., 11, 10743–10763, 2011
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Figure 2: Three sets of atmospheric NH3 monthly mean profiles (gray) from GEOS-Chem 
2005 global model simulations. The mean profile for each set is shown in black. These 
three mean NH3 profiles constitute the TES NH3 retrieval a priori profiles. 

Fig. 3. Three sets of atmospheric NH3 monthly mean profiles (gray)
from GEOS-Chem 2005 global model simulations. The mean pro-
file for each set is shown in black. These three mean NH3 profiles
constitute the TES NH3 retrieval a priori profiles.

Fig. 4. The square root (SQRT) of the diagonals of the three covari-
ance matrices derived from the GEOS-Chem NH3 global monthly
mean profiles (unpolluted, moderately polluted, and polluted), in
lnVMR, plotted as functions of pressure.

– polluted profiles are usually detectable (85 %);

– unpolluted profiles rarely are detectable;

– thermal contrast increases detectability;

– the TES minimum level of detectability is for a profile
that contains a peak level value of∼1 ppbv.

The distribution of points with SNR greater than 1 sug-
gests that the minimum detectability level will be influenced

Fig. 5. Scatter plot of SNR over the TES NH3 band versus the ther-
mal contrast (surface temperature – air temperature at the bottom
of the profile) for unpolluted (blue), moderately polluted (green),
and polluted (red) NH3 profiles. The straight lines are linear fits to
the results for each profile type. The two horizontal dashes lines
(yellow) correspond to the SNR of±1.

Fig. 6. Scatter plot of the maximum NH3 VMR in each profile as
a function of thermal contrast for the same simulated data set used
in Fig. 5. The filled circles indicate spectra with NH3 SNR≥ 1
whereas the open circles correspond to NH3 SNR< 1. The colors
correspond to unpolluted (blue), moderately polluted (green), and
polluted (red) NH3 profiles. Also provided are the percentage of
cases for each polluted condition that meet the SNR> 1 criteria.

by a number of factors such as the altitude of the peak NH3
concentration and the thermal structure of the atmosphere.
For example, if the thermal contrast is low (in general less
than 5 K) it is difficult to reach the minimum detectability
level of a profile with a peak value of 1 ppbv.

Atmos. Chem. Phys., 11, 10743–10763, 2011 www.atmos-chem-phys.net/11/10743/2011/
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2.2.2 Cloud sensitivity study

TES performs a cloud retrieval that accounts for the impacts
of clouds on the passive infrared retrievals (Eldering et al.,
2008; Kulawik et al., 2006). Since the NH3 signal is rel-
atively small compared to the overall background infrared
signal, a simple cloud sensitivity study was performed to de-
termine the effect of clouds on the performance of NH3 re-
trievals. The sensitivity of the NH3 retrieval information con-
tent to cloud was tested by running the forward model with a
polluted NH3 profile and clouds of varying optical depth and
height. The NH3 averaging kernels were also computed for
each case to provide the information content (DOFS). As ex-
pected, as the cloud optical depth increases (Fig. 7) there is
less measurement information available to the retrieval and
the DOFS decrease; the NH3 retrieval information content
increases slightly with decreasing cloud altitudes, especially
from ∼700 hPa towards to the surface, where the highest
concentration of NH3 is located. As an illustration, in this
typical NH3 polluted retrieval the DOFS would go from 0.90
in clear sky conditions to∼0.65 when a cloud with an optical
depth = 1 is present. It is important to note that this sensitiv-
ity study shows the impact of the cloud on NH3 retrievals
if no cloud retrieval were performed. Since TES retrievals
account for the radiative effects of clouds by retrieving an ef-
fective cloud optical depth and cloud height the impact of the
thin clouds on the NH3 retrievals is mitigated; however, the
information content below the clouds is reduced. The simu-
lations show that for a polluted scene, the DOFS is reduced
by 40 % for cases with cloud optical depth of 1 compared to
clear-sky cases. For the results shown in this work we took
a more conservative approach and did not perform NH3 re-
trievals for cases where the retrieved cloud optical depth was
above 1. In addition, we did not also consider the impact of
aerosols on the NH3 retrievals as the microwindows selected
for the NH3 retrievals are from the mid-infrared portion of
the spectrum that is not sensitive to aerosols.

3 Ammonia observations and comparisons

3.1 Comparison methodologies

There are a variety of ways to perform the comparisons be-
tween TES retrievals and model output or in situ observa-
tions, depending on the ultimate goal of the analysis. Before
presenting the comparison results we have provided an out-
line of comparison approaches used in this study.

3.1.1 Profile comparison method

A comparison method that accounts for the a priori bias and
the sensitivity and vertical resolution of the satellite retrievals
is to apply the TES averaging kernel,A, and a priori,xa, to a
model or observed profile. This method obtains an estimated
profile xest

in situ that represents what TES would measure for

Fig. 7. TES NH3 retrieval DOFS as a function of cloud optical
depth and altitude.

the same air mass sampled by the in situ measurements or
model. A detailed outline of the procedure is provided in
the TES Level 2 Data User’s Guide (JPL, 2006). The TES
standard procedure is to “map” the comparison data to the
TES levels using a linear weighted average and applying the
TES averaging kernel and the a priori to the mapped in situ
profile:

xest
in situ= xa+A

(
x

mapped
in situ −xa

)
. (3)

Differences betweenxest
in situ and x̂ can then be presumed to

be associated with the latter two terms in Eq. (1): the ob-
servational error on the retrieval, or systematic errors result-
ing from parameters which were not well represented in the
forward model (e.g. temperature, interfering gases, and in-
strument calibration). Note that differences betweenxest

in situ
andxa go to zero in regions where the TES retrieval contains
little information from the measurement, i.e. the retrieval is
dominated by the a priori. The same procedure can be used
to compare modeled NH3 profiles to TES.

3.1.2 Single point comparison method

Even though there is limited information available from the
NH3 retrieval, typically∼0.5–1 DOFS, the retrieval sensi-
tivity varies from profile to profile depending on the atmo-
spheric state. To capture this sensitivity NH3 must be re-
trieved at more levels than there is information. Therefore,
at any given single profile level the retrieved NH3 VMR is
substantially influenced by the a priori profile. The method
of applying the averaging kernel and a priori profile out-
lined above in Sect. 3.3.1 works well for data assimilations
and comparisons with model output or sonde profiles. How-
ever, if the desired application is the creation of NH3 maps
or single level point comparisons from retrievals with lim-
ited amount of vertical information (e.g. 1 DOFS) then a

www.atmos-chem-phys.net/11/10743/2011/ Atmos. Chem. Phys., 11, 10743–10763, 2011
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different metric is needed to reduce the influence of the a
priori. To address this issue, Beer et al. (2008) utilized an
averaging kernel weighted volume mixing ratio (AKVMR)
for TES NH3 and methanol retrievals. Payne et al. (2009)
developed a representative tropospheric volume mixing ra-
tio (RTVMR) metric for TES methane profiles, which takes
into account the measurement sensitivity to map the retrieved
profile onto four points (surface, peak sensitivity, tropopause,
TOA) then selects the value near the peak sensitivity of the
methane averaging kernel as the representative value. The
mapping suitable for methane does not work well for NH3
due to its near surface peak concentrations.

For the TES NH3 point comparisons presented in this
study we developed a Representative Volume Mixing Ratio
(RVMR) metric, which differs from the methane RTVMR in
that it maps the NH3 VMR values from all the retrieval levels
onto a subset that is more representative of the information
provided by the measurement (refer to Appendix B for more
details). Typically for NH3 retrievals the RVMR represents a
TES sensitivity weighted boundary layer averaged value with
the influence of the a priori reduced as much as possible. The
level to which the influence is reduced depends on the avail-
able retrieval information content for the observation: if there
is one piece of information from a given retrieval then a sin-
gle RVMR value can be generated with almost all of the a
priori removed, making comparisons with in situ measure-
ments simpler. As shown in Fig. 8, a retrieval performed
with very different a priori choices (polluted vs. moderate)
will still generate similar RVMR values, valid over a similar
altitude range, if the DOFS from each case are not drastically
different. A similar test over a range of profiles is shown in
Fig. 9 in which the top panel displays the RVMR values cal-
culated from the simulated retrieval presented in Sect. 3.2 in
red, along with the results in blue from a similar retrieval
from the same spectra but which did not allow polluted pro-
files as a priori and set the observations flagged as moderate
to unpolluted. The RVMR difference decreases with increas-
ing DOFS as expected. The differences become small above
0.65 DOFS confirming that in general the NH3 RVMR is
nearly independent of the a priori selection in this range (e.g.
there is enough information coming from the measurement to
move the RVMR value away from the a priori). Comparisons
with DOFS differences up to 0.5 between the two retrievals
were included in Fig. 9.

The RVMR is a “weighted” average over the region of the
profile where TES is sensitive and thus is significantly lower
than the maximum value. By comparing the RVMR and peak
profile values from a set of simulated cases (see next sec-
tion) we determined that the RVMR for cases with NH3 near
the detectability level of 1 ppbv, can in general be roughly
estimated as 40 % of the maximum value; thus in terms of
RVMR, the detectability level is 0.4 ppbv, though as stated
earlier, this level is influenced by the thermal contrast and
other atmospheric parameters.

3.2 Simulated retrieval results

To provide more insight into the performance of the TES
NH3 retrieval we performed simulated retrievals for which
the true profiles are known. The simulation data set con-
tained 361 NH3 profiles from a GEOS-Chem model simula-
tion, sampled at TES global survey times and locations over
the central US during July 2005. To reduce similarity of these
GEOS-Chem estimates with those used to build the retrieval
a priori and constraint matrices, these simulations were per-
formed with double NH3 emissions. Radiances were sim-
ulated by inputting these GEOS-Chem profiles into the ra-
diative transfer forward model and adding the expected TES
noise for the given retrieval. Retrievals were then performed
using these simulated radiances and the retrieval strategy de-
scribed in Sect. 2.1. The profile comparison methodology in
Sect. 3.3.1 was applied to evaluate the performance of the
TES retrieval algorithm with the results shown in Fig. 10.
The bias and the standard deviation from these simulated re-
trievals are both very small: at 825 hPa the averaged retrieved
NH3 value is 0.7 ppbv with a bias of 0.05 ppbv and the stan-
dard deviation±0.07 ppbv. The shape of the sum of the rows
of the averaging kernel in Fig. 10 shows that the retrievals in
general provide at most one piece of information, centered
approximately between 700 and 900 hPa.

3.3 Global ammonia observations and model
comparisons

Pinder et al. (2011) have shown that TES NH3 retrievals over
North Carolina provided information on spatial and seasonal
variability that was well correlated with in situ surface mea-
surements. Here we present global scale results, examining
the retrievals over subcontinental regions for four different
months to show both the spatial and seasonal variability. Fig-
ure 11 shows NH3 RVMR results from the TES retrievals
with at least 0.5 DOFs over land between 60◦ S and 60◦ N
from TES Global Surveys in January, April, July and October
and for years spanning 2006–2009. These initial retrievals
excluded observations over water and at higher latitudes for
computational expediency. Some large NH3 emission re-
gions, or “hotspots”, are readily apparent. For example, the
Indus and Ganges river valleys in northern India, which sus-
tain intense agriculture year round; eastern South America in
October near the end of the biomass burning season; North
America in July, especially in the agricultural Midwest; north
central Africa in January owing to biomass burning.

Since one of the goals of retrieving NH3 from space is to
use these retrievals to constrain emissions, we compared the
TES RVMR values with GEOS-Chem output. For compari-
son purposes the TES observational operator (e.g. averaging
kernel and a priori) and RVMR weighting function were ap-
plied to the GEOS-Chem values from 2008 (Fig. 12), with
the difference between TES and GEOS-Chem RVMR val-
ues shown in Fig. 13. The comparisons are only performed
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Fig. 8. Differences in retrieved profile shape due to different a priori selection choices: moderate (top) and polluted (bottom). In the left
panels the solid curve is the retrieved profile, dashed curve is a priori, red star indicates RVMR at the RVMR pressure level, while the vertical
extent of the grey bar indicates the range covered by the RVMR and the width shows the estimated error due to instrument noise. In the right
panels the colored curves are the rows of the averaging kernel (AK), the solid grey curve is the sum of the rows of the AK, and the dashed
grey curve is weighting function that maps the retrieved profile into the RVMR.

Fig. 9. RVMR values for simulated retrievals: spectra are identical,
but a priori selection schemes are different. Red results are from a
retrieval in which the a priori could be polluted, moderate or unpol-
luted, while blue results are from a retrieval in which the polluted a
priori was changed to moderate, and the moderate was changed to
unpolluted (top). Difference in RVMR as a function of DOF (bot-
tom).

Fig. 10. Simulated retrieval results: (left) retrieved profiles, (mid-
dle) retrieved – true profiles, where the thick solid red line is mean
difference and the dashed red line is standard deviation (the black
line is just the reference zero line), (right) sum of the rows of the av-
eraging kernel (black line is the average). The thin colors indicate
type of true profile: polluted (red), moderate (green), unpolluted
(blue).
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Figure 3: TES RVMR averaged over 2 x 2.5 degree boxes.  The white grid 
boxes over land are just regions without a valid TES RVMR.  In this study we 
did not analyze observations over the ocean.    

 
 

Fig. 11. TES RVMR averaged over 2× 2.5 degree boxes. The white grid boxes over land are just regions without a valid TES RVMR. In
this study we did not analyze observations over the ocean.
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Fig. 12. GEOS-Chem with TES observational operator and RVMR applied for 2× 2.5◦ averages.
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Fig. 13. Difference (TES – GEOS-Chem) RVMR plots for the 2× 2.5◦ averages.

under conditions where TES is sensitive with a DOFS≥ 0.5
(i.e. elevated NH3 conditions). Similar hotspots are inden-
tified between the two, yet persistence and seasonality are
notably different. For example, the hotspot in northern India
is prominent in both TES and GEOS-Chem during April, yet
lacking from the latter in other months, most notably July.
The most striking difference is that the overall magnitudes of
the TES observations are higher than the GEOS-Chem model
estimates and spatially more broadly ubiquitous. This result
indicates that over the altitude range where TES has sensi-
tivity to NH3 there is more NH3 measured than predicted by
GEOS-Chem. This difference could be due to several factors.
There could be a low bias in the model’s emission database,
which is primarily GEIA (Wang et al., 1998), overwritten by
Streets et al. (2003) in SE Asia, EMEP in Europe (Vestreng
and Klein, 2002), and Park et al. (2004) in the US. Given
the potential for NH3 sources to be highly localized, there
could also be a sampling bias driven by subgrid variability
of NH3 within the GEOS-Chem 2◦ × 2.5◦ model grid cells.
There could also be a sampling bias in the TES measure-
ments driven by lack of sensitivity to concentrations below
1 ppbv; however this is not likely the cause of the discrep-
ancy because comparisons between TES and GEOS-Chem
are made only in locations with successful retrievals. There
is also the potential that the TES retrieval is placing the ob-
served NH3 too high in the boundary layer, which could have

a significant impact given the vertical distribution of NH3.
Further study is needed to determine the origin of this differ-
ence, though it seems plausible that the difference over areas
of broad source regions (e.g. SE Asia, Central Africa, Mid-
western US) reflects model emissions being too low, while
the differences over areas with sparse, localized sources may
reflect a sampling issue.

In order to obtain more insight into the spatial and sea-
sonal variability, twelve large areas (Fig. 14) were selected.
Over each region the mean, median, the 25 and 75 percentile,
number of observations, and maximum value were com-
puted and plotted in Fig. 15 for retrievals with DOFS≥ 0.5
and RVMR≥ 0.4. Figure 16 is a similar plot created from
the corresponding GEOS-Chem values. Note the differ-
ent vertical scales and that the TES measurements are con-
sistently higher than GEOS-Chem estimates, as discussed
above. Nevertheless, some of the temporal and spatial fea-
tures are similar and in two regions can be compared against
surface measurements. Peak concentrations occur in the
Northern Hemisphere summer in the US in both the TES
(Fig. 15d) and GEOS-Chem (Fig. 16d) results and also in
the in situ measurements (Fig. 17) (Blanchard and Tanen-
baum, 2008). These higher summer values are likely due to
the influence of temperature on emissions from animal ma-
nure and fertilized soil. Note that the measurements (from
space and in situ) over the US mid-west show a broad warm
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Fig. 14. Delimitation regions of interest that are grouped together for regional analysis.

weather maximum, rather than the sharp July peak predicted
by GEOS-Chem. Over southeast China measurements and
model estimates also show a peak in the warmer months.
However the GEOS-Chem (Fig. 16f) maximum is in April,
while both space-based measurements (Fig. 15f) and in situ
observations in China (Ianello et al., 2010) have a July max-
imum. This reflects the lack of seasonality in the Streets
et al. (2003) inventory used for Asia, an issue that will
be corrected in subsequent future versions of GEOS-Chem,
see Fisher et al. (2011). The same warm weather agricul-
tural driver may be contributing to the peaks shown both by
TES and GEOS-Chem in the Southern Hemisphere summer
over South America (Fig. 15i and Fig. 16i) and Australia
(Fig. 15l and Fig. 16l). A different process appears to be oc-
curring over North Central Africa, where the measurements
(Fig. 15h) and model (Fig. 16h) show a January to December
decrease in NH3. Finally, TES (Fig. 15g) and GEOS-Chem
(Fig. 16g) both show a global maximum in NH3 over South-
west Asia, though TES sees peaks in July, while GEOS-
Chem predicts the highest concentrations should occur in
April. The strength of the NH3 signal detected by TES in
this region, well above the TES sensitivity level, suggests
that GEOS-Chem is significantly underestimating summer
and fall emissions in this area, further supporting the need
to revise the seasonality of emissions in this area.

The NH3 amounts retrieved from TES show a differ-
ent correlation with the biomass burning season than the
GEOS-Chem estimates (though it should be kept in mind that
GEOS-Chem values reflect 2008 only). Over South Amer-
ica the model (Fig. 15i) and measurements (Fig. 16i) differ

in the magnitude rather than the timing, with both showing
significant October peaks; over Australia, where the burn-
ing season peaks in the summer, GEOS-Chem (Fig. 16l) has
a peak in October, while the TES measurements (Fig. 15l)
reach their maximum value in January. A similar pattern in
the TES/GEOS-Chem differences is evident over southern
Africa (Fig. 15k and Fig. 16k). It should be noted that this
pattern over southern Africa may also reflect a combination
of sparse agricultural (livestock) and biogenic (compensation
point) emissions. Biomass burning appears to be dominating
the signal over North Central Africa, where the TES mea-
surements (Fig. 15h), model (Fig. 16h), and in situ measure-
ments (Adon et al., 2010) have the highest levels from De-
cember to April.

In natural and semi-natural ecosystems with very sparse
or no localized NH3 sources, and which are uninfluenced by
transport from source regions, the seasonality of atmospheric
NH3 concentrations is driven by the influence of tempera-
ture on the compensation point of the soil and vegetation.
The compensation point, which is the concentration of NH3
at which the atmosphere is in equilibrium with the vegeta-
tion/soil system, is a function of the pH and NH+

4 concen-
tration of solution within the stomatal cavity of the vegeta-
tion (leaf or needle) and soil pore water, and increases ex-
ponentially with temperature. For unmanaged, low nitrogen
ecosystems, a typical leaf emission potential (0) would cor-
respond to compensation points of∼0.08, 0.30 and 1.0 ppb
at 0, 10, and 20◦C, respectively (using a median value of
0 = 190, Massad et al., 2010). This biogeochemical pro-
cess may drive the seasonal pattern (Fig. 16c and Fig. 17c)
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Fig. 15. TES NH3 averages in Fig. 11 for each region in Fig. 14 for the 4 yr period spanning 2006–2009. The boxes are the 25 and 75
percentile, the line in the box is the median, the diamond is the mean, whiskers are the 10 and 90 percentile and the circles are the outlier
values outside the whiskers.

observed over northern Eurasia and underlies the patterns ob-
served in other regions.

The TES results from Europe (Fig. 15b and Fig. 16b) are
harder to interpret and will need further detailed evaluation.
GEOS-Chem predicts a strong maximum in July, while TES
shows little seasonal variability. In contrast to other regions,
the TES pattern over Europe may reflect a distribution of
emissions more strongly influenced by sources with less sea-
sonal variability, such as automobile sources (Perrino et al.,
2002; Whitehead et al., 2007). Southern Canada also shows a
maximum in October, which needs further investigation and
again may be due to sampling or some strong sources have
less seasonal dependence.

4 Summary/conclusions

We have presented a detailed description of the TES NH3 re-
trieval strategy including the a priori selection algorithm and
the spectral microwindows selected to reduce systematic er-
rors from interfering species. A transformation matrix was
also developed to map the retrieval level VMRs to a subset
of RVMR value(s) that better represent the information pro-
vided by the satellite by reducing the influence of the a priori.
This RVMR is particularly useful for applications involving
simple single level maps of species with a limited amount of
information, which can contain a significant amount of a pri-
ori information at any given retrieval level. The SNR sensi-
tivity study estimated the TES level of detectability for NH3
to be a profile with a peak concentration of 1 ppbv, or equiv-
alently an RVMR of 0.4 ppbv, provided there is significant
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Fig. 16. GEOS-Chem NH3 averages in Fig. 12 for each region in Fig. 14 for the 4 yr period spanning 2006–2009. The boxes are the 25 and
75 percentile, the line in the box is the median, the diamond is the mean, whiskers are the 10 and 90 percentile and the circles are the outlier
values outside the whiskers.

thermal contrast. The cloud sensitivity study showed that the
DOFS for a typical polluted NH3 profiles will be reduced by
∼40 % for clouds with optical depth∼1 compared to clear-
sky cases. The newly developed retrieval algorithm was then
applied to TES measurements to provide examples of the
spatial and temporal variability of NH3 observations.

Comparisons of TES RVMRs to equivalent values from
GEOS-Chem model simulations show important similarities
and differences. The overall magnitudes of the TES mea-
surements are consistently larger than the GEOS-Chem re-
sults. This may be explained by underestimates of emis-
sions in GEOS-Chem or over-representation of NH3 value
at the 2◦ × 2.5◦ resolution coming from TES sampling NH3
hotspots at the subgrid level. The persistence of this differ-
ence over areas with broad source regions is indicative of the
former, while the latter cause may be driving the difference

over areas with relatively sparse, localized sources. Better,
though far from perfect, agreement between TES and GEOS-
Chem seasonality over biomass burning regions compared to
agricultural source regions suggests the latter may be a more
likely source of uncertainty in models.

An advantage of the optimal estimation retrieval approach
is that the standard retrieval products (e.g. averaging kernels,
error covariance matrices) facilitate direct assimilation into
chemical transport models. TES NH3 retrievals over North
America from both simulations and real spectra have been
performed and are currently being used in an inverse model-
ing framework (Henze et al., 2007), which seeks to constrain
the NH3 emissions using the TES measurements. This work
will be described in a future paper.
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Appendix A

TES NH3 SNR calculations

The computations are performed as follows, using only the
L1B radiances and GMAO initial guess parameters. The
SNR is computed as the NH3 signal divided by the TES
noise.

SNR=(BTBkgd−BTNH3)/NEdT (A1)

The NH3 signal is defined as the background brightness
temperature (without NH3), BTBkgd, minus the brightness
temperature containing NH3. In order to avoid performing
a forward model calculation to determine the BTBkgd, it is
estimated by obtaining the L1B brightness temperature from
a nearby spectral window region.

BTBkgd=

[(
BT968.34 cm−1+BT968.40 cm−1+BT968.46 cm−1

)
3

]
−ADJ(A2)

To further improve the BTBkgd estimate a small empirical
correction, ADJ, that is a function of the thermal contrast,
TC, was developed using simulated data. This correction
accounts for the small differences between the background
brightness temperature computed in the nearby window re-
gion with the true background in the NH3 spectral region.

ADJ= 0.073+0.013·TC (A3)

The thermal contrast is the initial guess (GMAO) surface
temperature,Tsfc, minus the near surface air temperature,
Tairbot, from the initial guess (GMAO) profile.

TC=Tsfc−Tairbot (A4)

The NH3 brightness temperature is simply computed as
average of the 3 values around the peak of the NH3 signal,

BTNH3=

(
BT967.28 cm−1+BT967.34 cm−1+BT967.40 cm−1

)
3

(A5)

The NEdT is computed directly from the provided TES
L1B NESR.

NedT=NESR·
∂BT

∂R
(A6)

where the NESR is average over the BTNH3 spectral and di-
vided by the SQRT(3.0) and thedBT/dR is computed using
the mean radiance and wavenumber of the BTNH3 spectral
points.

The computed SNR and the thermal contrast determine
a point in the plane shown in Fig. 5. The distance from
the point to each of the straight-line fits is calculated using
Eq. (A7) and the smallest distance determines the a priori
type and the initial guess profile. If the SNR is less than 0.5,
the type is always returned as unpolluted. If the type is un-
polluted, the initial guess is set to moderate to avoid falling
into null space,

x = (SNR+TC/α−β)/(α+1./α)

y = α ·x +β

d =

√
(x −TC)2+(y −SNR)2

(A7)

where,α = [0.001, 0.225, 0.762], andβ = [0.116,−0.126,
0.270].

Appendix B

Representative Volume Mixing Ratio (RVMR)

In this section we describe the process used to map the re-
trieval level values (10–13 levels), which individually can
contain a significant amount of a priori, to a reduced number
of RVMR values, which have less a priori influence. Instead
of using a typical linear mapping, this transformation (or
“mapping”) matrix is constructed based on the information
content from the various retrieval levels. The transformation
matrix is generated from an iterative rank procedure going
from the greatest to the least information content estimated
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Fig. 18. These plots demonstrate the generation of the RVMR values from an example TES NH3 retrieved profile where:(a) shows the
example retrieved and a priori profiles;(b) the corresponding rows of the averaging kernel, with the sum of the rows of the averaging kernel
(SRAK) in the thick solid line and reported degrees of freedom for signal (DOFS) for the example;(c) the vertical resolution at each of the
retrieved levels;(d) the resulting rows of the transformation matrix used to produce the RVMR values; and(e) the resultant RVMR values
marked with a star and vertical lines showing their resolution.

from the sum of the rows of the averaging kernel (SRAK). An
example of the procedure is presented in Fig. 18. Figure 18a
shows the retrieved and apriori NH3 values at the 10 retrieval
levels. Figure 18b contains the individual averaging kernels
of each original retrieval level and the SRAK. The trace of
the averaging kernel matrix provides the total amount of in-
formation or degrees of freedom for signal (DOFS). For this
retrieval example there are 1.4 DOFS spread across 10 re-
trieval levels. The vertical resolution of each retrieved level
is computed as the FWHM of the corresponding averaging
kernel for that level. These values are computed and plotted
in Fig. 18c. Rows of the averaging kernels from the retrieval
are combined in an iterative rank order procedure to con-

struct a transformation matrix used to generate the RVMR.
The procedure starts by selecting the pressure level corre-
sponding to the peak of the SRAK. The vertical resolution of
the selected level (FWHM of the averaging kernel) is used to
determine the vertical extent in which the averaging kernels
are combined, and thus the top and bottom of the resulting
RVMR values. In other words, the rows of all the averaging
kernels corresponding to pressure levels within this vertical
extent are combined to form a single row of the transforma-
tion matrix. These levels are then removed from considera-
tion for the next peak selection and the procedure is repeated
creating additional rows of the transformation matrix until
the remaining retrieval levels contain less then a specified
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Fig. 19. TES RVMR pressure levels averaged over 2× 2.5◦ boxes corresponding to the RVMR values in Fig. 11.
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Fig. 20. The TES retrieval degrees of freedom averaged over the 2× 2.5◦ boxes corresponding to the RVMR values in Fig. 11.
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Fig. 21. The TES retrieval vertical resolution averaged over the 2× 2.5◦ boxes corresponding to the RVMR values in Fig. 11.

minimum DOFS threshold value (e.g. 0.1 DOFS). Note that
in order to conserve the total retrieval information content the
contributions from overlap regions between adjacent rows in
the transformation matrix are distributed piece-wise linearly.
Figure 18d shows the resulting rows of the transformation
matrix generated from combining the averaging kernels in
(Fig. 18e). The transformation matrix is then normalized and
convolved with the retrieved parameters (e.g. retrieved NH3
“profile”) to provide RVMR values (Fig. 18e) with DOFS,
resolution, and the bottom and top pressure levels.

Appendix C

Additional TES retrieval parameters from the global
comparisons

To provide additional insight on the global TES retrieved
RVMR values, Figs. 19, 20, and 21, contain the RVMR peak
pressure level, the retrieval degrees of freedom for signal (in-
formation content), and the vertical resolution corresponding
to the RVMR values in Fig. 11 for the four seasons.

Appendix D

Distribution functions from the global comparisons

A different perspective on the retrievals from the TES Global
Surveys can be obtained by examining the density distri-
bution of the RVMR values (Fig. 22). The distribution is
strongly skewed to low values, except over southwest Asia.
In most cases we were able to fit a Weibull PDF very suc-
cessfully to the plotted distributions. The Weibull PDF is
characterized by a peak at low values and a long tail, and is
used to model datasets where most values are small, but there
are statistically significant occasional high values that are not
outliers that skew the distribution and contain important in-
formation on the system under study. A typical example is
the distribution of wind speeds at a given location; in gen-
eral the wind speed is fairly low, but it is high wind days that
are of greatest interest. Similarly for the measured NH3 dis-
tributions, most sampled locations are characterized by low
RVMR values (less than 2 ppbv), but the sparse “hotspots”
are statistically significant and of greatest interest.

Southwest Asia presents a very different distribution, sug-
gesting that great extents of this region are characterized by
high NH3 concentrations.
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Fig. 22. Density distribution of the TES RVMRs for each region and month; histogram bin size is 1.0; dashed lines indicate mean values for
the corresponding month.
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