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ABSTRACT 

 

INVESTIGATING THE ROLE OF THE HUMAN NAIP/NLRC4 INFLAMMASOME IN 

HOST DEFENSE AGAINST GRAM-NEGATIVE BACTERIAL INFECTION 

 

Valeria M. Reyes Ruiz 

Sunny Shin, Ph.D. 

 

Inflammasomes are key multiprotein intracellular complexes that mediate host 

defense against pathogenic microorganisms by activating caspase-1-dependent cytokine 

secretion and cell death. In mice, specific nucleotide-binding domain, leucine-rich repeat-

containing family, apoptosis inhibitory proteins (NAIPs) sense components of the type III 

secretion system (T3SS) and flagellar apparatus. Upon sensing of bacterial components, 

NAIPs recruit the nucleotide-binding domain, leucine-rich repeat-containing family, CARD 

domain-containing protein 4 (NLRC4). The resulting NAIP/NLRC4 inflammasome then 

recruits and activates caspase-1. Active caspase-1 mediates processing and secretion of 

IL-1 family cytokines and a proinflammatory cell death termed pyroptosis. In mice, 

bacterial ligands for four of seven distinct NAIPs are known: NAIP1 recognizes the T3SS 

needle protein, NAIP2 recognizes the T3SS inner rod protein, and both NAIP5 and NAIP6 

recognize flagellin. In contrast, humans encode a single functional NAIP, raising the 

question of whether human NAIP senses one or multiple bacterial ligands. In this 

dissertation we show that, in contrast to murine NAIPs, promiscuous recognition of 

multiple bacterial ligands is conferred by a single human NAIP. We found that NAIP, but 

not NLRC4, appears to dictate the specificity or promiscuity of bacterial ligand recognition. 

In addition, our studies define a role for human NAIP in the inflammasome response to 
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Salmonella Typhimurium infection. Overall, we provide a basis for understanding the 

mechanisms underlying human-specific innate immune responses against gram-negative 

bacterial infections.  
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CHAPTER 1: INTRODUCTION 

Microorganisms colonizing our bodies consist of both commensal and harmful 

pathogens (Littman and Pamer, 2011). Our mucosal surfaces, such as the intestinal 

epithelium, form an important barrier against invading microbes. Innate immune cells at 

these surfaces have evolved to recognize pathogens and promote host defense (Belkaid 

and Artis, 2013). However, since innate immune defense relies on recognition of microbial 

structures that can be shared between commensals and harmful pathogens, 

discrimination between these two groups of microorganisms is needed to maintain 

homeostasis in our bodies or to eliminate the invading pathogen (Medzhitov, 2007). 

 

1.1. Recognition of conserved structures in microbes by Toll-like receptors  

Germline-encoded pattern recognition receptors (PRRs) coordinate the innate 

immune response against pathogens through recognition of conserved structures termed 

pathogen-associated molecular patterns (PAMPs). Many of these conserved structures 

are essential for the survival of the pathogen and are not expressed by eukaryotic cells 

(Janeway, 1989; Janeway and Medzhitov, 2002). They include bacterial components such 

as flagellin, lipopolysaccharide (LPS), peptidoglycan, and nucleic acids. Engagement of 

PRRs with PAMPs is essential to initiate defense mechanisms and to alert neighboring 

cells to the presence of a pathogen (Medzhitov, 2007; Kawai and Akira, 2011).  

A subset of PRRs, termed Toll-like receptors (TLRs), has been extensively studied 

and can mediate extracellular sensing of microorganisms. TLRs are type I transmembrane 

proteins that can be encountered at the plasma membrane or in endosomal 

compartments. TLR1-TLR9 are conserved in both mice and humans. The TLRs that 

mediate recognition of nucleic acids are in endolysosomal compartments (TLR3, TLR7, 

TLR8, and TLR9), whereas the other members are found at the plasma membrane (TLR1, 
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TLR2, TLR4, TLR5, and TLR6) and can mediate recognition of extracellular components 

(Barton and Kagan, 2009; Kawai and Akira, 2010). TLR4 recognizes bacterial 

lipopolysaccharide (LPS), a major lipid component of the outer membrane from gram-

negative bacteria (Poltorak et al., 1998; Hoshino et al., 1999). Interaction of TLR4 with 

LPS also requires the host proteins CD14 and MD-2 (Haziot et al., 1996; Shimazu et al., 

1999; Moore et al., 2000). TLR2 can recognize a variety of ligands by forming 

heterodimers with TLR1 and TLR6. It can recognize bacterial lipoproteins (Aliprantis et al., 

1999; Brightbill et al., 1999; Takeuchi et al., 2000), peptidoglycan (Schwandner et al., 

1999; Takeuchi et al., 1999), and a component of yeast cell walls called zymosan 

(Underhill et al., 1999). TLR5 recognizes flagellin, the subunit that forms the bacterial 

flagellar apparatus (Hayashi et al., 2001).  

Endosomal TLRs have been well-characterized for their role in recognition of 

nucleic acids to mediate immune defense against bacteria and viruses. TLR3 recognizes 

double-stranded RNA (dsRNA) that are produced during viral replication of single-

stranded RNA (ssRNA) viruses (Liu et al., 2008; Kawai and Akira, 2010). TLR7 and TLR8 

recognize ssRNA from viruses such as human immunodeficiency virus (Heil et al., 2004; 

Kawai and Akira, 2006). Finally, TLR9 recognizes unmethylated 2’-deoxyribo(cytidine-

phosphate-guanosine) (CpG) DNA present in bacteria and viruses (Hemmi et al., 2000; 

Lund et al., 2003).  

Recognition of microbial structures by TLRs mediates activation of adaptor 

molecules and downstream signaling pathways, resulting in the generation of a 

proinflammatory response. These include the production of inflammatory cytokines and 

chemokines, antimicrobial peptides, and other effectors needed for host defense 

(Janeway and Medzhitov, 2002). Upon binding to their cognate ligand, TLRs dimerize and 

recruit cytosolic TIR domain-containing adaptor molecules, such as myeloid differentiation 
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primary-response protein 88 (MyD88) and TIR-domain-containing adaptor protein 

inducing interferon-b (TRIF) (Mogensen, 2009). Several TLRs, including TLR1, TLR2, 

TLR5, TLR6, TLR4, and TLR7, can recruit the adaptor protein MyD88, resulting in 

activation of NF-kB and mitogen-activated protein kinases (MAPKs) to induce 

inflammatory cytokines (Akira and Takeda, 2004). In contrast, TLR3 and TLR4 can signal 

through TRIF, resulting in the activation of IRF3 and NF-kB to induce type I interferon and 

inflammatory cytokines (Yamamoto et al., 2003). Ultimately, activation of TLRs and 

downstream gene expression is critical to initiate antimicrobial response mechanisms to 

eliminate the pathogen and promote survival of the host. However, TLRs recognize 

structures shared by commensal and pathogenic microbes; therefore, they require 

additional innate immune signaling pathways to recognize and mediate efficient control of 

pathogenic infections.  

 

1.2. Sensing of cytosolic access by NOD-like Receptors 

Bacterial pathogens can use specialized secretion systems or pore-forming toxins 

to access the host cell cytosol. Our innate immune system has evolved to express 

cytoplasmic immune sensors of the nucleotide-binding domain leucine-rich repeat (NLR) 

superfamily that can mediate recognition of PAMPs and damage-associated molecular 

patterns (DAMPs) to promote host defense (Kim et al., 2016). NLRs are defined by a 

structure with three main domains, including: (a) a variable domain in the N-terminus 

important for protein-protein interactions (b) a central nucleotide-binding oligomerization 

(NOD) domain (NBD), and (c) a leucine-rich repeat (LRR) domain in the C-terminus. The 

human NLR family is composed of 22 members, whereas the NLR family in mice is 

composed of at least 34 members. NLRs are further divided into five categories (NLRA, 
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NLRB, NLRC, NLRP, and NLRX) depending on the type of N-terminal domain (Chen et 

al., 2009). Three major signaling events typically happen downstream of microbial product 

recognition by NLRs: NF-kB signaling, MAPK signaling, and inflammasome activation 

(Chen et al., 2009).  

NOD1 and NOD2 were the first NLRs to be identified, and they sense bacterial 

peptidoglycan in the cytosol (Chamaillard et al., 2003; Girardin et al., 2003a; Girardin et 

al., 2003b; Inohara et al., 2003). Upon activation, NOD1 and NOD2 oligomerize to interact 

with the signaling adaptors receptor-interacting protein kinase 2 (RIPK2) and caspase-

recruitment domain-containing adaptor protein (CARD9), which are essential for 

subsequent activation of the NF-kB and MAPK signaling pathways (Chin et al., 2002; 

Kobayashi et al., 2002; Hsu et al., 2007). In addition to recognizing peptidoglycan, NOD1 

and NOD2 can sense a variety of danger signals (Keestra-Gounder and Tsolis, 2017). For 

example, the activation of small Rho GTPases by effector proteins from Salmonella 

Typhimurium and Shigella flexneri has been shown to be a danger signal detected by 

NOD1 (Fukazawa et al., 2008; Keestra et al., 2011; Keestra et al., 2013). NOD1 and NOD2 

can also induce autophagy to control S. flexneri by recruiting ATG16L1 to the plasma 

membrane upon bacterial entry (Travassos et al., 2010).  

A subset of NLRs can mediate the formation of the inflammasome, a multiprotein 

complex in the host cell cytosol that can lead to activation of the host enzyme caspase-1 

(Martinon et al., 2002) (Fig. 1.1). Activated caspase-1 mediates processing and secretion 

of interleukin-1 (IL-1) family cytokines and a proinflammatory cell death known as 

pyroptosis (Kuida et al., 1995; Li et al., 1995; Bergsbaken et al., 2009). The NLR family, 

pyrin domain-containing 1 (NLRP1) inflammasome was the first to be described (Martinon 

et al., 2002). In humans, there is a single gene that encodes NLRP1 and it contains a pyrin 
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(PYD), a NBD, a LRR, a function-to-find (FIIND) domain, and a caspase activation and 

recruitment (CARD) domain. However, mice encode three polymorphic paralogues 

(Nlrp1a, Nlrp1b, and Nlrp1c) (Elinav et al., 2011). The mouse NLRP1B system has been 

well-characterized and is activated upon direct cleavage by the lethal factor protease, a 

subunit from the anthrax lethal toxin (Fig. 1.1) (Hellmich et al., 2012; Levinsohn et al., 

2012). Recent findings demonstrate that the FIIND domain undergoes autoproteolysis but 

remains associated with the C-terminus of NLRP1B. The lethal factor from the anthrax 

toxin then cleaves an N-terminal fragment of NLRP1B that is targeted by ubiquitin ligases 

for its degradation. The degradation of the N-terminal fragment results in the release of 

the C-terminal portion from NLRP1B that contains a CARD domain which can now interact 

with caspase-1 (Okondo et al., 2018; Sandstrom et al., 2019; Xu et al., 2019). In addition, 

NLRP1B can be activated in response to infection by the apicomplexan parasite 

Toxoplasma gondii (Ewald et al., 2014; Gorfu et al., 2014); the identity of the precise 

stimulus leading to NLRP1B activation during T. gondii infection is unknown.  

Interestingly, the anthrax lethal toxin is not an agonist of human NLRP1. In 

contrast, it has been suggested that the ligand for human NLRP1 is muramyl dipeptide, a 

product from the bacterial cell wall (Faustin et al., 2007). The murine NLRP1 lacks a 

functional PYD domain and is predicted to not interact with the adaptor protein apoptosis-

associated speck-like protein containing a carboxy-terminal caspase recruitment domain 

(ASC), as NLRP1 activates caspase-1 in an ASC-independent manner (Van Opdenbosch 

et al., 2014). Despite these differences, the mechanism of activation seems to be 

somewhat conserved as proteolysis in the N-terminus is sufficient to activate NLRP1 in 

mice and humans (Chavarria-Smith et al., 2016). IpaH7.8, a ubiquitin ligase secreted by 

the bacterium S. flexneri, induces NLRP1B degradation and activation in mice, but not in 

humans (Sandstrom et al., 2019). These differences in inflammasome responses may be 
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a factor determining species specificity for S. flexneri, as it is human-adapted and not a 

natural pathogen of mice.  

The NLRP3 inflammasome can be activated by several stimuli (Fig. 1.1). These 

include extracellular adenosine triphosphate (ATP), RNA, bacterial pore-forming toxins or 

secretion systems, ROS, uric acid crystals, and other agents that cause cell stress 

(Kanneganti et al., 2006; Mariathasan et al., 2006; Martinon et al., 2006; Dostert et al., 

2008; Harder et al., 2009). A common step for NLRP3 activation involves potassium (K+) 

efflux (Kahlenberg and Dubyak, 2004; Petrilli et al., 2007; Munoz-Planillo et al., 2013). 

Potassium ionophores such as nigericin can activate the NLRP3 inflammasome in LPS-

stimulated macrophages (Mariathasan et al., 2006). The NLR family, pyrin domain-

containing protein 6 (NLRP6) inflammasome is also implicated in innate immune signaling 

(Anand et al., 2012). Lipoteichoic acid (LTA) from gram-positive bacteria was recently 

found to activate the NLRP6 inflammasome (Hara et al., 2018). 

The repertoire of NLRs varies between mice and humans (Table 1.1). Nod-like 

receptor pyrin domain-containing protein 7 (NLRP7) is absent in mice. However, it 

recognizes cytosolic microbial products in human macrophages (Radian et al., 2013). 

Bacterial acylated lipopeptides (acLP) activate an NLRP7-containing inflammasome to 

promote IL-1 maturation. Additionally, NLRP7 was required for restriction of bacterial 

replication in human macrophages upon infection with Staphylococcus aureus and Listeria 

monocytogenes (Khare et al., 2012). NLRP7 is also thought to negatively regulate 

inflammasome responses. Overexpression studies suggest that NLRP7 inhibits IL-1b 

processing and secretion (Kinoshita et al., 2005; Messaed et al., 2011). Future studies are 

needed to better understand the role of NLRP7 in human responses to bacterial infections.   
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The inflammasome can also be activated by receptors other than NLRs, as is the 

case for the absent in melanoma 2 (AIM2) inflammasome and the pyrin inflammasome. 

The AIM2 inflammasome recognizes dsDNA and mediates immune defense against 

several intracellular bacterial pathogens, including Fransicella tularensis, L. 

monocytogenes, and Mycobacterium species (Fig. 1.1) (Fernandes-Alnemri et al., 2009; 

Hornung et al., 2009; Jones et al., 2010; Kim et al., 2010; Sauer et al., 2010; Warren et 

al., 2010; Saiga et al., 2012). The immune sensor pyrin activates the inflammasome when 

pathogens inactivate the small GTPase, RHOA (Fig. 1.1). Pyrin is encoded by the gene 

MEFV, and mutations in this gene lead to an autoinflammatory disease known as familial 

Mediterranean fever (FMF) (French, 1997). Interestingly, human pyrin has a C-terminal 

B30.2 domain that is absent in murine pyrin. Gain-of-function mutations in this domain can 

cause pathological inflammation in humans (Chae et al., 2011; Broz, 2019). Mice were 

genetically modified to express the human B30.2 domain harboring mutations related to 

FMF, and this was sufficient to induce severe autoinflammation in mice (Chae et al., 2011). 

Table 1.1: Inflammasome-related host proteins in mice and humans. 

NLR 
family 

Mice Humans 
Number of 
Members Gene Nomenclature Number of 

Members Gene Nomenclature 

NLRA 1 Ciita 1 CIITA 

NLRB 7 
Naip1, Naip2, Naip3, 
Naip4, Naip5, Naip6, 

Naip7 
1 NAIP 

NLRC 5 Nod1, Nod2, Nlrc3, 
Nlrc4, Nlrc5 5 NOD1, NOD2, NLRC3, 

NLRC4, NLRC5 

NLRP 20 

Nlrp1a, Nlrp1b, Nlrp1c, 
Nlrp2, Nlrp3, Nlrp4a, 

Nlrp4b, Nlrp4c, Nlrp4d, 
Nlrp4e, Nlrp4f, Nlrp4g, 
Nlrp5, Nlrp6, Nlrp9a, 

Nlrp9b, Nlrp9c, Nlrp10, 
Nlrp12, Nlrp14 

14 

NLRP1, NLRP2, 
NLRP3, NLRP4, 
NLRP5, NLRP6, 
NLRP7, NLRP8, 

NLRP9, NLRP10, 
NLRP11, NLRP12, 
NLRP13, NLRP14 

NLRX 1 Nlrx1 1 NLRX1 
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Finally, ASC often bridges the interaction of the NLR, AIM2, or pyrin with caspase-1 to 

promote the release of alarmins and cell death (Broz and Dixit, 2016).   

 

1.3. Innate immune recognition by the NAIP/NLRC4 inflammasome 

A subfamily of NLRs, known as nucleotide-binding domain, leucine-rich repeat-

containing family, apoptosis inhibitory proteins (NAIP), can also result in inflammasome 

activation. Initial studies with NAIP suggest a correlation of this gene with spinal muscular 

atrophy (SMA), as most patients with the disease have deletions in NAIP. However, a role 

Figure 1.1: Canonical Caspase-1-dependent inflammasomes are activated by 
NLRs, AIM2, and Pyrin. The activation of caspase-1, secretion of IL-1 family 
cytokines, and pyroptosis requires the formation of the inflammasome in response to 
a variety of PAMPs and DAMPs. NLRP3 senses multiple stimuli including ATP, RNA, 
Pore-forming toxins, ROS, and crystals. The NLRP1B inflammasome can be 
activated by Toxoplasma gondii and Bacillus anthracis. NAIPs detect components 
from the T3SS and flagellin to recruit the adaptor protein NLRC4 for the formation of 
the inflammasome. AIM2 detects dsDNA and Pyrin detects the inactivation of Rho 
GTPases by bacterial toxins.  
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of NAIP in causing SMA or an underlying mechanism by which it can be related to this 

disease remains unknown (Roy et al., 1995). The human NAIP locus has a number of 

pseudogenes and has retained a single functional copy of the full-length NAIP gene 

(Romanish et al., 2007; Romanish et al., 2009). In contrast, rodents have an expansion in 

the number of Naips, with five copies in C57BL/6J mice and at least seven copies in the 

129 mice strain (Growney and Dietrich, 2000; Growney et al., 2000).  

A role of the NAIP inflammasome in immune defense against bacterial infections 

was first identified with Legionella pneumophila. Different inbred mouse strains have 

varying permissiveness to intracellular replication of L. pneumophila, and this 

permissiveness is controlled by a single genetic locus that maps to a region in the 

chromosome containing Naip genes (Yamamoto et al., 1991; Yoshida et al., 1991; 

Beckers et al., 1995; Dietrich et al., 1995). Additional studies showed that polymorphisms 

in Naip5 (also known as Birc1e) are responsible for the differences in L. pneumophila 

permissiveness among mouse strains (Diez et al., 2003; Wright et al., 2003) and that 

Naip5-dependent caspase-1 activation contributes to the detection and control of L. 

pneumophila (Zamboni et al., 2006).  

Gram-negative pathogens often employ specialized secretion systems, which are 

evolutionarily conserved virulence factors that promote bacterial colonization and disease. 

S. Typhimurium utilizes a type III secretion system (T3SS), a molecular syringe that injects 

bacterial effectors into the host cell cytosol, which promotes invasion into host cells and 

intracellular survival (Galan et al., 2014). Similarly, L. pneumophila uses a type IV 

secretion system (T4SS) to inject bacterial effectors into the host cell cytosol (Isberg et 

al., 2009). Different bacterial infections activate an NLR family, CARD domain-containing 

4 (NLRC4) inflammasome and this activation is dependent on bacterial secretion 
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mechanisms such as the T3SS and T4SS (Mariathasan et al., 2004; Franchi et al., 2006; 

Miao et al., 2006; Zamboni et al., 2006; Sutterwala et al., 2007; Suzuki et al., 2007). In 

addition, the cytosolic presence of flagellin or the T3SS inner rod, which is the protein 

subunit that comprises the T3SS inner channel, activates the NLRC4 inflammasome in 

macrophages to induce caspase-1 activation and IL-1b secretion (Franchi et al., 2006; 

Miao et al., 2006; Miao et al., 2010b). However, it remained unclear how the NLRC4 

inflammasome can mediate recognition of both the flagellar apparatus and the T3SS.  

Inflammasome activation requires NAIP5 in response to cytosolic delivery of 

flagellin from L. pneumophila and S. Typhimurium (Lightfield et al., 2008). However, 

NLRC4 inflammasome activation by the T3SS inner rod is independent of NAIP5 

(Lightfield et al., 2011). These results suggested that NAIP5 regulates the ligand specificity 

of the NLRC4 inflammasome. Additional studies showed that the NAIPs are the 

inflammasome sensors that lead to NLRC4 inflammasome activation. In mice, each NAIP 

has specificity to a single bacterial ligand from either the T3SS or flagellar apparatus. 

NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, 

and NAIP5 and NAIP6 both recognize flagellin (Fig. 1.1) (Kofoed and Vance, 2011; Zhao 

et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013; Rauch et al., 2016; Zhao et al., 

2016). In contrast, humans encode a single NAIP (Romanish et al., 2007; Romanish et 

al., 2009). Initial studies with human monocytic cell lines suggested that the single human 

NAIP only recognizes the T3SS needle protein (Zhao et al., 2011; Rayamajhi et al., 2013; 

Yang et al., 2013). However, flagellin was also found to trigger NAIP inflammasome 

activation in primary human macrophages, and it was proposed that detection of flagellin 

was mediated by an alternate splice isoform of NAIP (Kortmann et al., 2015).  
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NAIP5 and NLRC4 both contain a nucleotide-binding domain (NBD), helical 

domain 1 (HD1), winged helix domain (WHD), and helical domain 2 (HD2) in the central 

portion of the protein, and a leucine-rich repeat (LRR) domain in the C-terminus 

(Tenthorey et al., 2014). At the N-terminus, NLRC4 contains a CARD domain for 

recruitment of caspase-1, whereas NAIP5 contains three baculovirus inhibitor-of-

apoptosis repeat (BIR) domains (Chen et al., 2009). Upon binding their cognate ligand, 

the NAIPs recruit NLRC4. The resulting NAIP/NLRC4 inflammasome recruits caspase-1, 

resulting in caspase-1 activation (Martinon et al., 2002; Diebolder et al., 2015; Hu et al., 

2015; Zhang et al., 2015). Studies in which chimeric NAIP proteins were generated 

mapped the region of murine NAIPs that confers ligand specificity to be an internal region 

composed of several nucleotide-binding domain (NBD)-associated a-helical domains 

(Tenthorey et al., 2014).  

Recent studies employed cryo-electron microscopy to determine the structure of 

the flagellin-NAIP5-NLRC4 inflammasome and found that there is one bacterial ligand and 

one NAIP per inflammasome (Tenthorey et al., 2017). The single flagellin monomer is 

recognized by NAIP5 and does not directly interact with NLRC4. NAIP5 makes multiple 

contacts with flagellin using several regions, including the HD2, LRR, HD1, and BIR1 

domains (Tenthorey et al., 2017; Yang et al., 2018). The current model for NAIP activation 

involves binding of a single flagellin monomer to NAIP5 and a subsequent conformational 

change in NAIP5 that unfurls the protein to recruit and activate NLRC4. Active NLRC4 can 

then recruit additional NLRC4 proteins for self-propagating oligomerization and 

recruitment of caspase-1 (Tenthorey et al., 2017).  

The NAIP/NLRC4 inflammasome promotes host defense against L. pneumophila 

as well as other gram-negative bacterial infections. Mice deficient for Nlrc4 are more 
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susceptible to S. Typhimurium and show decreased survival and increased bacterial 

loads. The increased susceptibility is exhibited by specific mouse strains and only during 

orogastric challenge, but not when Salmonella is administered intraperitoneally (Lara-

Tejero et al., 2006; Carvalho et al., 2012; Franchi et al., 2012). Similarly, NLRC4 mediates 

protection against infection with Klebsiella pneumonia and Burkholderia pseudomallei 

(Ceballos-Olvera et al., 2011; Cai et al., 2012). Interestingly, NLRC4 protects against 

Anaplasma phagocytophilum, the causative agent of anaplasmosis, although A. 

phagocytophilum lacks both flagellin and a T3SS. In this case, A. phagocytophilum 

activates a functionally distinct NLRC4 inflammasome that requires production of the 

eicosanoid prostaglandin E2 and subsequent signaling through one of its receptors, EP3 

(Pedra et al., 2007; Wang et al., 2016).  

In addition to IL-1 signaling downstream of inflammasome activation, distinct 

defense mechanisms have been proposed for the NAIP/NLRC4 inflammasome. Signaling 

by NAIP5 in macrophages infected with Legionella results in increased colocalization with 

lysosomal markers (cathepsin D and Lamp-1), suggesting a role of this inflammasome in 

promoting phagosome-lysosome fusion (Amer et al., 2006; Fortier et al., 2007). Future 

studies are needed to understand the mechanism by which NAIP5 may be regulating 

phagosome maturation. Activation of the NAIP5 inflammasome results in pyroptosis, 

therefore eliminating the replicative niche of intracellular bacteria. It was recently proposed 

that pyroptosis triggers a cellular structure termed the pore-induced intracellular trap (PIT). 

The PITs have a largely intact plasma membrane, thus trapping intracellular bacteria. 

Neutrophils can then be recruited to mediate efferocytosis of the PIT together with the 

intracellular bacteria (Jorgensen et al., 2016). Another means by which the NAIP 

inflammasome promotes host defense has been shown in the intestinal epithelium, where 

activation of the NAIP/NLRC4 inflammasome drives expulsion of infected enterocytes in 
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order to restrict Salmonella replication in the intestine (Sellin et al., 2014). Interestingly, 

caspase-8 can compensate for the loss of caspase-1 and mediate expulsion of epithelial 

cells downstream of inflammasome activation (Rauch et al., 2017). Sensing by the 

NAIP/NLRC4 inflammasome in enterocytes also results in the production of prostaglandin 

E2 and fluid accumulation in the intestines. The authors proposed that this response may 

be important to eliminate the infected and expulsed enterocytes from the intestine (Rauch 

et al., 2017).  

Activation of the NAIP/NLRC4 inflammasome can also result in pathological 

outcomes. Studies in mice have shown that activation of the NAIP5/NLRC4 inflammasome 

by a multidrug-resistant pathobiont can lead to lethal systemic inflammation resembling 

sepsis (Ayres et al., 2012). Additionally, patients with gain-of-function mutations in human 

NLRC4 suffer from pathologic enterocolitis and Macrophage Activation Syndrome (MAS) 

(Canna et al., 2014; Romberg et al., 2014). The mutations were in amino acids 337 and 

341 within the helical domain 1 (HD1). These patients showed elevated levels of 

peripheral IL-18. In one patient where IL-1 blockade was ineffective, blockade of IL-18 

resulted in an improved clinical outcome (Canna et al., 2016). Another mutation in NLRC4 

has been described to result in more mild cases, where patients experience urticaria and 

arthritis after exposure to cold stimuli (Kitamura et al., 2014). Mutations for human NAIP 

have not yet been described, but perhaps gain-of-function mutations in NAIP confer similar 

pathological outcomes. 

 

1.4. Inflammatory Caspases associated with inflammasome activation  

Caspases are cysteine proteases that are synthesized as inactive zymogens. They 

are tightly controlled by proteolytic activation and cleave their substrates immediately 

following an aspartic residue (Schroder and Tschopp, 2010). Activation of inflammatory 
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caspases associated with the inflammasome can result in cell death and the release of 

inflammatory cytokines (Martinon et al., 2002). The canonical inflammasome is generally 

initiated by NLRs recognizing PAMPs and DAMPs and subsequent recruitment of 

caspase-1 (also known as ICE) through homotypic CARD-CARD interactions (Broz and 

Dixit, 2016). Caspase-1 contains an N-terminal CARD domain and consists of a large 

subunit and a small subunit separated by two linker domains. It was recently suggested 

that the predominant species of active caspase-1 elicited by the inflammasome are two 

dimers: full-length p46 and a transient species of p33/p10 (Boucher et al., 2018). Active 

caspase-1 can process IL-1b and IL-18 into their mature forms, but does not cleave IL-1a 

(Howard et al., 1991). In addition, active caspase-1 can cleave gasdermin-D and promote 

cell death (Kayagaki et al., 2015; Shi et al., 2015).  

In contrast, the non-canonical inflammasome recruits and activates caspase-11 in 

mice and caspase-4 and 5 in humans (Fig. 1.2). The non-canonical inflammasome is 

activated upon recognition of gram-negative bacteria and LPS (Kayagaki et al., 2011; 

Hagar et al., 2013; Casson et al., 2015). The CARD domain from caspase-11, 4, and 5 

can directly bind the lipid A moiety from LPS with high specificity and affinity (Shi et al., 

2014). The acylation state of lipid A affects the activation of the murine non-canonical 

inflamamsome, as hexa-acylated and penta-acylated lipid A activates caspase-11, 

whereas tetra-acylated lipidA is not detected (Hagar et al., 2013) (Shi et al., 2014). In 

contrast, human caspase-4 appears to be able to recognize both tetra-acylated and hexa-

acylated lipid A (Lagrange et al., 2018). 
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While both human caspase-4 and caspase-5 have been shown to bind LPS in vitro, 

it is possible that their functions may vary depending on the cell type and stimuli. For 

example, regulation of caspase-4 and 5 have been shown to be distinct. Caspase-4 is 

translationally upregulated by LPS and IFN-β, whereas caspase-5 is only translationally 

Figure 1.2: Non-canonical inflammasome activation requires caspase-11 in mice 
and caspase 4/5 in humans. Cytosolic access of LPS to the host cytosol can be 
sensed by inflammatory caspases resulting in inflammasome activation. Caspase-11 
in mice and caspase-4 or caspase-5 in humans can directly bind LPS to induce 
caspase oligomerization and activation. Active caspase-11/4/5 cleave Gasdermin-D 
resulting in pore formation, the release of IL-1 family cytokines, and cell death. 
Potassium efflux downstream of non-canonical inflammasome responses can activate 
the NLRP3 inflammasome resulting in more pore formation by Gasdermin D and 
release of alarmins. 
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induced by LPS (Casson et al., 2015). It has been reported that caspase-4, but not 

caspase-5, leads to inflammasome activation in response to LPS transfected into human 

THP-1 cells (Baker et al., 2015; Casson et al., 2015). Caspase-4 and caspase-5 can also 

play non-redundant roles, as they are both required for IL-1b secretion in monocytes 

infected with S. Typhimurium (Baker et al., 2015). In addition, caspase-4 was required in 

epithelial cells for control of bacterial replication, cell death, and IL-18 secretion during 

Salmonella Typhimurium infection (Knodler et al., 2014). Recent studies show that 

caspase-11 in mice can also be activated downstream of the NLRP6 inflammasome (Hara 

et al., 2018). In this model, lipoteichoic acid (LTA), a component of bacterial cell wall, can 

directly bind and activate NLRP6, which then recruits caspase-11 for its processing and 

activation (Hara et al., 2018). Downstream IL-18 production was detrimental for the host 

in response to Listeria monocytogenes infection and mice lacking caspase-11 were less 

susceptible to infection (Hara et al., 2018). It remains to be determined whether human 

NLRP6 has a similar mechanism for activation.  

The non-canonical inflammasome can lead to septic shock and thus needs to be 

tightly regulated (Wang et al., 1998). The oxidized phospholipid 1-palmitoyl-2-

arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical 

inflammasome in macrophages. It can directly bind to caspase-4 and caspase-11 and 

compete with LPS to inhibit pyroptosis, IL-1b, and septic shock (Chu et al., 2018). Bacterial 

pathogens can also encode virulence factors to counteract these defense mechanisms. 

For example, the human pathogen enteropathogenic Escherichia coli (EPEC) encodes an 

effector NleF that is capable of binding to the catalytic domain of caspase-4 to inhibit its 

activity (Pallett et al., 2017).  
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The apoptotic caspase, caspase-8, can also be recruited to the NLRC4 

inflammasome in response to Salmonella infection (Man et al., 2013). In addition, 

caspase-8 functions with the NLRP3 inflammasome to release IL-1b (Antonopoulos et al., 

2015; Karki et al., 2015). Further studies showed that caspase-8 can compensate for the 

loss of caspase-1 in intestinal epithelial cells to mediate the expulsion of infected cells 

(Rauch et al., 2017). Inactivating mutations in human caspase-8 are linked to increased 

susceptibility to infection (Chun et al., 2002). More studies are warranted to determine the 

contribution of human caspase-8 or its close homolog, caspase-10, to inflammasome 

responses to bacterial pathogens. 

 

Table 1.2: Family members in mice and humans of inflammasome-related host 
proteins. 
 

Family Mice Humans 
Number of 
Members Gene Nomenclature Number of 

Members Gene Nomenclature 

Inflammatory 
caspases 2 Casp1, Casp11 3 CASP1, CASP4, 

CASP5 
Gasdermin 

10 

Gsdma1, Gsdma2, 
Gsdma3, Gsdmc1, 
Gsdmc2, Gsdmc3, 
Gsdmc4, Gsdmd, 

Dfn5, Dfnb59 

6 
GSDMA, GSDMB, 
GSDMC, GSDMD, 
DFNA5, DFNB59 

Guanylate-binding 
proteins 11 

Gbp1, Gbp2, Gbp3, 
Gbp4, Gbp5, Gbp6, 
Gbp7, Gbp8, Gbp9, 

Gbp10, Gbp11 

7 
GBP1, GBP2, 
GBP3, GBP4, 

GBP5, GBP6, GBP7 

Immunity-related 
GTPases 

23 

Irgc, Irgm1, Irgb8, 
Irgb9, Irgb1, Irgb2, 
Irgb3, Irgb4, Irgb5, 
Irgb6, Irgb7, Irgd, 

Irgb10, Irgm3, Irgm2, 
Irga1, Irga2, Irga3, 
Irga4, Irga5, Irga6, 

Irga7, Irga8 

2 IRGC, IRGM 

PYD-only proteins 0  4 PYDC1, PYDC2, 
POP3, NLRP2B 

CARD-only 
proteins 0  3 CARD16, CARD17, 

CARD18 
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1.5. Gasdermin family: Effectors of pyroptosis 

Activation of the inflammatory caspases can result in the cleavage of the pore-

forming protein gasdermin D, resulting in pyroptosis (Kayagaki et al., 2015; Shi et al., 

2015). Gasdermin D is a substrate for caspase-1 and caspase 11/4/5 (Kayagaki et al., 

2015; Shi et al., 2015). Upon cleavage, the N-terminus of gasdermin D can be 

incorporated into the host membrane, creating pores that result in cell swelling and 

osmotic lysis. The 10-15nm diameter gasdermin pore is sufficient to allow release of the 

IL-1 family cytokines (Aglietti et al., 2016; Ding et al., 2016; Liu et al., 2016; Sborgi et al., 

2016).  

Pyroptosis can defend against intracellular infection by eliminating the replicative 

niche of the bacteria and inducing an inflammatory response. For example, bacteria such 

as Salmonella and Listeria engineered to robustly activate the inflammasome remain 

trapped within a cellular structure termed the pore-induced intracellular trap (PIT). The 

bacteria trapped in these PITs are susceptible to other immune cells that are recruited to 

aid in controlling infection. (Jorgensen et al., 2016). Activation of gasdermin D can also 

drive downstream activation of the NLRP3 inflammasome due to potassium efflux caused 

by the gasdermin D pores in the membrane (Baker et al., 2015; Schmid-Burgk et al., 2015; 

Evavold et al., 2018). In addition, the gasdermin D pore can target bacterial membranes 

of E. coli and Staphylococcus aureus in vitro (Liu et al., 2016). Whether this occurs in vivo 

and what the consequences are for immune defense remain to be determined.  

Humans have six gasdermin family members, including GSDMD, GSDMA, 

GSDMB, GSDMC, DFNA5, and DFNB59 (Table 1.2). While most mammals have one 

copy of each gasdermin, mice have three GSDMA (GSDMA1-3), four GSDMC (GSDMC1-

C4), and have lost GSDMB (Kovacs and Miao, 2017; Shi et al., 2017). While we have 

some understanding of the function of gasdermin-D, the function of the other members 
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from the gasdermin family is unclear. These other gasdermin family members are not 

cleaved by inflammatory caspases, but the conserved N-terminus domain from some of 

them can induce pyroptosis in mammalian cells (Shi et al., 2015; Ding et al., 2016). 

Whether pyroptosis by other members from the gasdermin family, in addition to gasdermin 

D, have a role in innate immune defense remains to be determined.  

 

1.6. Interferon-inducible GTPases: Guanylate-Binding Proteins 

Guanylate-binding proteins (GBPs) are a group of interferon-inducible GTPases 

with a wide range of innate immune functions against intracellular pathogens. Humans 

encode seven GBPs, whereas the murine genome encodes 11 GBPs (Table 1.2). The 

seven human Gbps are located within one cluster on chromosome 1 (Olszewski et al., 

2006). In contrast, the eleven murine Gbps are located within two gene clusters on 

chromosome 3 and chromosome 5 (Kresse et al., 2008). Many studies have shown that 

GBPs can act as cofactors important for inflammasome activation. The first observation 

that GBPs were involved in inflammasome activation was made by MacMicking and 

colleagues (Shenoy et al., 2012). In this study, human GBP5 and mouse Gbp5 were 

shown to be important for NLRP3 inflammasome responses, although the exact 

mechanism is not understood (Shenoy et al., 2012).  

The defense mechanisms by GPBs against many pathogens in vivo have been 

explored using mice lacking the Gbps located on chromosome 3, which are Gbp1, Gbp2, 

Gbp3, Gbp5, and Gbp7. For example, GBPs on chromosome 3 are necessary for 

caspase-11-dependent pyroptosis in response to Legionella pneumophila or cytosolic 

delivery of LPS (Pilla et al., 2014; Liu et al., 2018). In addition, GBPs on chromosome 3 

are necessary for inflammasome activation in response to the translocon proteins, YopB 

and YopD, from the T3SS of Yersinia (Zwack et al., 2017).  
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Several studies have aimed at understanding the mechanism by which GBPs can 

promote inflammasome responses. It has been proposed that GBPs mediate lysis of the 

pathogen-containing vacuole, which will then release bacteria into the cytosol to mediate 

caspase-11 inflammasome activation (Meunier et al., 2014). However, GBPs can also 

promote activation of caspase-11 independent of lysis of the vacuole, suggesting that 

there are other mechanisms for inflammasome activation (Finethy et al., 2015). In addition 

to targeting the vacuole, GBPs may also directly target bacteria that replicate in the 

cytosol. GBP2 and GBP5 are also important in promoting bacteriolysis of Francisella, 

releasing dsDNA, and activating the AIM2 inflammasome (Man et al., 2015; Meunier et 

al., 2015). Endogenous levels of GBPs are involved in the release of DNA from cytosol-

accessible L. pneumophila and are required for canonical and non-canonical 

inflammasome responses to bacterial infection. Moreover, mice deficient for GBPs from 

chromosome 3 are more susceptible to L. pneumophila and have lower levels of IL-1 

cytokines and the chemokine CXCL1 (Liu et al., 2018). Since GBPs from chromosome 3 

have been shown to be necessary for pyroptosis in response to free LPS, it has been 

suggested that GBPs may facilitate translocation of LPS into the cytoplasm or 

oligomerization and activation of caspase-11 (Pilla et al., 2014).  

Recently, more studies have been done to determine the role of human GBPs in 

defense against bacterial pathogens. Human GBP2 facilitates caspase-4 activation in 

response to F. novicida (Lagrange et al., 2018). In addition to their role in inflammasome 

activation, human GBPs also play a role in the control of cell-to-cell spread of cytosolic 

bacteria. Specifically, human GBP1 colocalizes with S. flexneri and Burkholderia 

thailandensis. The targeting of GBP1 to cytosolic bacteria recruits additional GBPs (GBP2, 

GBP3, GBP4, and GBP6). Shigella targeted by GBP1 have fewer actin tails and are 

deficient in cell-to-cell spread (Piro et al., 2017). Interestingly, the Shigella effector IpaH9.8  
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can induce degradation of GBP1 to counteract host defense (Li et al., 2017; Piro et al., 

2017). Future studies are needed to better understand the mechanisms of action for 

human and mouse GBPs to mediate host defense against bacterial pathogens. 

 

1.7. Interferon-inducible GTPases: Immunity-Related GTPases 

The immunity-related GTPases (IRGs) are important for innate immune defense 

against intracellular pathogens (Meunier and Broz, 2016). There are many IRGs in mice, 

with 23 IRGs in the C57Bl/6 strain that are localized to chromosomes 7, 11, and 18 

(Bekpen et al., 2005).  In contrast, humans encode only two IRGs, named IRGC and 

IRGM, which are located on chromosomes 19 and 5, respectively (Table 1.2) (Bekpen et 

al., 2005; Bekpen et al., 2009). The expression of most of the IRGs in mice is upregulated 

by IFN-g signaling, whereas the human IRGs are not interferon-inducible and are 

constitutively expressed (Boehm et al., 1998; Bekpen et al., 2005; Singh et al., 2006).  

Murine IRGs have been shown to be important for resistance against several 

bacterial pathogens, such as L. monocytogenes and Mycobacterium tuberculosis (Collazo 

et al., 2001; MacMicking et al., 2003; Feng et al., 2004). They are thought to be involved 

in phagosomal maturation or induction of autophagy in response to intracellular bacteria 

(MacMicking et al., 2003; Singh et al., 2006). IRGB10 was shown to target Chlamydia 

trachomatis inclusions (Haldar et al., 2013). A role for IRGs in inflammasome responses 

was recently determined. Mice deficient in Irgb10 have reduced IL-1 secretion and cell 

death in response to F. novicida. IrgB10 targets the cell membrane from cytosolic bacteria, 

leading to bacterial cell lysis and activation of the AIM2 inflammasome and the NLRP3 

inflammasome downstream of caspase-11. Additionally, IRGB10 provides host protection 

against F. novicida in vivo (Man et al., 2016). Currently, there has not been an implication 
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for human IRGC or IRGM in inflammasome responses. There is a link between specific 

IRGM gene variants with susceptibility to Crohn’s disease (Parkes et al., 2007). It is 

interesting to speculate that there may be a disadvantage for humans to contain IRGs, as 

they may lead to inflammatory diseases, thus providing an evolutionary pressure for the 

loss of genes in the IRG family. Future studies will expand our understanding of the 

mechanisms by which IRGs promote host defense. 

 

1.8. PYD-only proteins (POPs) and CARD-only proteins (COPs) 

PYD-only proteins (POPs) and CARD-only proteins (COPs) are small endogenous 

proteins that can inhibit inflammasome responses by binding to pyrin- or CARD-containing 

host proteins. POPs are proteins that only encode a pyrin domain (PYD) (Table 1.2). 

Humans encode four POPs named POP1-4 (Indramohan et al., 2018). POP1 (also known 

as PYDC1) can associate with ASC to inhibit its nucleation and caspase-1 activation 

downstream of ASC-containing inflammasomes (de Almeida et al., 2015). Using a 

transgenic mouse model, POP2 (also known as PYDC2) was found to affect both priming 

of macrophages and inflammasome activation (Periasamy et al., 2017; Ratsimandresy et 

al., 2017). POP3 interacts with AIM2 to inhibit inflammasome responses, and its depletion 

leads to increased IL-1 signaling in primary human macrophages infected with DNA 

viruses (Khare et al., 2014). Finally, POP4 (also known as NLRP2B) inhibits the activation 

of NF-kB, but does not seem to directly inhibit inflammasome activation (Porter et al., 

2014). Interestingly, POPs are absent in mice, adding to the complexity of inflammasome 

regulation specifically in humans (Indramohan et al., 2018). 

COPS are proteins that only encode a CARD domain. Other CARD-containing 

proteins include host caspases. Three COPs have been identified in humans: COP (also 
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named CARD16), INCA (also named CARD17), and ICEBERG (also named CARD18) 

(Table 1.2). They are located on chromosome 11 in close proximity to CASP1, CASP5, 

and CASP4. However, COPs are absent in the murine genome (Dorfleutner et al., 2015). 

COP, INCA, and ICEBERG interact with the CARD domain of caspase-1 (Humke et al., 

2000; Druilhe et al., 2001; Karasawa et al., 2015). These studies have only been 

performed in the context of overexpression. Studies to understand the role of endogenous 

levels of these proteins are needed to further our understanding of COPs and regulation 

of inflammasome responses.  

 

1.9. Immune signaling by Interleukin-1 cytokines 

 The Interleukin-1 (IL-1) family is composed of a variety of complex mediators with 

important roles in inflammation and immunity. IL-1 family cytokines are divided into three 

groups: secreted agonistic cytokines (IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b, and IL-

36g), receptor antagonists (IL-1Ra, IL-36Ra, and IL-38), and one anti-inflammatory 

cytokine (IL-37) (Mantovani et al., 2019). IL-1 was originally described as a fever-inducing 

factor that was secreted by activated leukocytes and that could induce the stimulation and 

proliferation of T cells (Rosenwasser and Dinarello, 1981). It was later found that the 

biological activities of IL-1 were due to the presence of two distinct cytokines, IL-1a and 

IL-1b (March et al., 1985).  

Inflammasome responses result in the activation and secretion of IL-1 cytokines 

such as IL-1a, IL-1b, and IL-18 (Martinon et al., 2002). In the cytoplasm, IL-1a and IL-1b 

are synthesized as 31kDa precursor peptides (pro-IL-1a and pro-IL-1b), whereas IL-18 is 

synthesized as a 23-kDa precursor (pro-IL-18). In contrast to most cytokines, IL-1a, IL-1b, 

and IL-18 lack signal peptides and are released by cells using an unconventional pathway 
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independent of the endoplasmic reticulum (ER) and Golgi apparatus (Mantovani et al., 

2019). The precursors of IL-1b and IL-18 are biologically inactive and require cleavage by 

caspase-1 to become active (Cerretti et al., 1992; Thornberry et al., 1992; Ghayur et al., 

1997). In contrast, IL-1a is not a substrate of caspase-1 and full-length IL-1a is biologically 

active (Mosley et al., 1987; Howard et al., 1991; Kim et al., 2013). Calpains are membrane-

bound cysteine proteases that can cleave IL-1a, although with low frequency (Carruth et 

al., 1991; Mantovani et al., 2019). However, the consequences of calpain-mediated 

cleavage of IL-1a is not understood.  

 IL-1a and IL-1b cytokines bind the same IL-1 receptor (IL-1R) (Dower et al., 1986; 

Sims et al., 1988). IL-1R contains a cytoplasmic TIR (Toll IL-1R) domain that allows for 

interaction with the adaptor molecule MyD88. The N-terminal death domain (DD) of 

MyD88 interacts with the IRAK family members, promoting their phosphorylation and 

activation (Lin et al., 2010). The IRAKs recruit tumor necrosis factor receptor-associated 

factor 6 (TRAF-6), resulting in the recruitment and activation of the TAK1 kinase. TAK1 

activates the IKK complex, releasing NF-kB for its translocation to the nucleus and 

regulation of its target genes (Chen, 2005; Dinarello, 2009). In addition, TAK1 activates 

mitogen-activated protein kinases (MAPKs), such as p38 and JNK (Deguine and Barton, 

2014).  

Activation of NF-kB and MAPKs downstream of IL-1 signaling results in the 

induction of a number of pro-inflammatory genes, including chemokines, cytokines, 

adhesion molecules and inducible nitric oxide synthase (iNOS) (Apte and Voronov, 2008; 

Mantovani et al., 2019). For example, IL-1b can induce the expression of adhesion 

molecules on endothelial cells, such as intercellular adhesion molecule-1 (ICAM-1) 

(Bevilacqua et al., 1985; Tamaru et al., 1998). In mice infected with gram-negative 
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bacteria, IL-1b derived from macrophages induce neutrophil-attracting chemokine 

production from non-hematopoietic cells (LeibundGut-Landmann et al., 2011). Even 

though IL-1a and IL-1b bind to the same receptor, distinct roles for innate immune defense 

against bacterial infection have been identified. IL-1a and IL-1b are both required for host 

resistance to M. tuberculosis (Mayer-Barber et al., 2011). In contrast, IL-1a but not IL-1b 

is required for the production of the chemokine CXCL1 and for neutrophil recruitment 

during pulmonary infection with Pseudomonas aeruginosa (Al Moussawi and 

Kazmierczak, 2014). In response to L. pneumophila, neutralizing antibodies that target IL-

1a specifically result in decreased neutrophil recruitment and increased bacterial burdens. 

Even though neutralizing IL-1b alone had no effect, neutralizing both IL-1a and IL-1b had 

a stronger effect than IL-1a alone. These data suggest that IL-1a and IL-1b play both 

overlapping and non-redundant roles for neutrophil recruitment and bacterial clearance 

(Casson et al., 2013). In agreement with these studies, Il1a -/- mice infected with L. 

pneumophila have reduced neutrophil recruitment, whereas Il1b -/- mice have similar levels 

of neutrophils in the lung compared to WT mice. However, at later timepoints of infection, 

IL-1b can compensate for the loss of IL-1a (Barry et al., 2013).  

IL-1 signaling also enables the production of inflammatory cytokines by uninfected 

bystander cells. L. pneumophila uses a T4SS to infect alveolar macrophages and to 

secrete effector molecules into the host cell (Isberg et al., 2009). Several of the secreted 

effector molecules can block host protein synthesis  (Belyi et al., 2006; Belyi et al., 2008; 

Shen et al., 2009; Fontana et al., 2011; Barry et al., 2013). As a result, infected 

macrophages are poor inducers of other cytokines such as IL-6, TNF, and IL-12 

(Copenhaver et al., 2015). However, despite the block in protein synthesis, infected 

macrophages produce IL-1a and IL-1b (Asrat et al., 2014; Copenhaver et al., 2015). 
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Instead, uninfected bystander cells robustly produce IL-6, TNF, and IL-12 and this 

bystander response requires IL-1 signaling (Copenhaver et al., 2015).  

IL-18 signaling also promotes host defense against bacterial infections (Sahoo et 

al., 2011). IL-18 cooperates with IL-12 to induce Th1 immunity. Signaling through the IL-

18R complex induces the production of IFN-g from natural killer (NK) cells and T cells 

(Okamura et al., 1995; Chaix et al., 2008). IL-18 is important for resistance to systemic 

infection by S. Typhimurium, but dispensable for epithelial restriction of early bacterial 

infection (Raupach et al., 2006; Sellin et al., 2014). In addition, IL-18-deficient mice are 

more susceptible to S. flexneri and B. pseudomallei (Sansonetti et al., 2000; Ceballos-

Olvera et al., 2011). Most of these phenotypes are potentially due to IL-18-dependent 

production of IFN-g and subsequent induction of microbicidal effector functions. IFN-g can 

induce enzymes important for the production of reactive nitrogen and oxygen species, 

such as iNOS and subunits that comprise the NADPH oxidase. In addition, it can lead to 

the production of complement proteins, chemokines, and adhesion molecules (Schroder 

et al., 2004). IFN-g also induces NRAMP1 (natural resistance-associated macrophage 

protein) and idoleamine 2,3-dioxygenase (IDO). NRAMP1 is a divalent cation transporter 

that can mediate phagosome acidification and starve bacteria from important cofactors, 

whereas IDO depletes host tryptophan to inhibit bacterial replication (Carlin et al., 1989; 

Govoni et al., 1995; Wessling-Resnick, 2015). Finally, IFN-g can also upregulate GBPs, 

which as discussed are important for innate immune defense.  

 

1.10. Salmonella: pathogenesis and manipulation of innate immune pathways 

Salmonella enterica is a gram-negative, flagellated, and facultative intracellular 

pathogen. The species of S. enterica include over 2,500 serovars, which are classified 
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into typhoidal or nontyphoidal. Typhoidal Salmonella include S. Typhi and S. Paratyphi, 

which are human-adapted and cause systemic disease (LaRock et al., 2015).  

Nontyphoidal Salmonella cause self-limiting gastroenteritis and is one of the leading 

causes of death from diarrheal disease, with ~93 million infections and 155,000 deaths 

each year (Ao et al., 2015). Salmonella is taken up via the fecal-oral route and can infect 

a broad range of hosts. S. Typhimurium causes gastroenteritis in humans and systemic 

disease in mice. Therefore, murine infections with S. Typhimurium are used as a model 

to study systemic disease by typhoidal Salmonella in humans (Broz et al., 2012).  

 

 
Once ingested, Salmonella invades epithelial cells in the small intestine (Fig. 1.3). 

The bacteria utilize several fimbrial and non-fimbrial adhesins to mediate adhesion to 

Figure 1.3: Salmonella employs two T3SS to inject virulence factors and cause 
disease. Upon colonization, Salmonella encodes the SPI-1 T3SS to invade M cells 
and enterocytes in the small intestine. Inside of the cell, the bacterium can sense the 
phagosomal environment and encode the SPI-2 T3SS to survive and replicate inside 
of the host cell. After crossing the epithelial barrier, the bacteria can be phagocytosed 
by immune cells where it can survive and disseminate to other sites of infection. 
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epithelial cells (Wagner and Hensel, 2011). Salmonella can then invade the epithelial 

barrier through infection of M cells or non-phagocytic enterocytes (Jones et al., 1994). To 

invade epithelial cells, Salmonella employs a Type III Secretion System (T3SS) encoded 

by Salmonella pathogenicity island 1 (SPI-1). Several effector molecules that activate Rho 

GTPases, including SopB, SopE, and SopE2, are important for actin rearrangement in the 

host cell, membrane ruffling, and internalization of the bacteria into epithelial cells (Bakshi 

et al., 2000; Zhou et al., 2001; LaRock et al., 2015).  

After crossing the epithelial barrier, Salmonella can be phagocytosed by innate 

immune cells, such as macrophages (Broz et al., 2012). To survive and replicate inside 

the host cell, Salmonella employs a second T3SS encoded by Salmonella pathogenicity 

island 2 (SPI-2) (Jennings et al., 2017). In order to induce the SPI-2 T3SS, Salmonella 

senses the environment within the acidified phagosome (Alpuche Aranda et al., 1992). 

Expression of the genes that encode the SPI-2 T3SS is tightly controlled by a two-

component regulatory system involving the sensor kinase PhoQ and its cognate response 

regulator PhoP.  PhoQ can be activated by low Mg2+ and low pH, which in turns activates 

PhoP. PhoP can repress the expression of prg (PhoP-repressed genes) and flagellar 

genes, whereas it activates the transcription of pag (PhoP-activated genes) (Prost and 

Miller, 2008). Therefore, once PhoQ is activated, the genes encoding the flagellar 

apparatus and the SPI-1 T3SS are repressed, whereas the genes encoding for the SPI-2 

T3SS are induced. In fact, growth of Salmonella in minimal medium with low pH and low 

Mg2+ concentration promotes expression of the SPI-2 T3SS, but not the SPI-1 T3SS or 

flagellin. Conversely, growing the bacteria in a rich medium with low aeration and high 

NaCl concentration leads to expression of the SPI-1 T3SS and flagellin, but not the SPI-2 

T3SS (Deiwick et al., 1999; Yu et al., 2010).  
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Following phagocytosis, the SPI-2 T3SS injects at least 28 effectors to establish 

an intracellular compartment named the Salmonella-containing vacuole (SCV) and inhibit 

phagosomal maturation (Jennings et al., 2017). Some of the important effectors secreted 

by the SPI-2 T3SS include SifA, SseJ, SseF, SseG, and PipB2. Bacterial mutants deficient 

in each of these effectors are attenuated in mice, highlighting their role in pathogenesis 

(Hensel et al., 1998; Beuzon et al., 2002; Freeman et al., 2003; Henry et al., 2006). SseF 

and SseG are important in tethering the SCV with the Golgi network and contribute to the 

formation of Salmonella-induced filaments (SIFs), which may promote nutrient acquisition 

for the bacteria (Jennings et al., 2017). The effector SseJ modifies the composition of 

cholesterol from the SCV (LaRock et al., 2012). PipB2 recruits kinesin-1 to the SCV, and 

SifA is important for vacuolar membrane integrity (Beuzon et al., 2000; Henry et al., 2006). 

SifA-deficient Salmonella leads to the rupture of the SCV and release of bacteria into the 

cytosol (Beuzon et al., 2000).  

Colonization resistance to Salmonella is in part provided by the commensal 

microbiota, as treatment with antibiotics prior to infection increases susceptibility to 

infection (Que and Hentges, 1985). S. Typhimurium causes inflammation of the gut by 

using both SPI-1 and SPI-2 to invade epithelial cells and survive inside the host cell. This 

inflammation is important for allowing Salmonella to outcompete the intestinal microbiota 

(Stecher et al., 2007). Immune cells infected by Salmonella release reactive oxygen 

species (ROS) that can react with endogenous thiosulphate to form tetrathionate. 

Tetrathionate can then be used by S. Typhimurium as an alternate respiratory electron 

acceptor and outcompete the microbiota (Winter et al., 2010a). Furthermore, S. 

Typhimurium can also induce the production of host-derived nitrate and mediate anaerobic 

nitrate respiration to enhance its growth in the inflamed intestine (Lopez et al., 2012).  
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Several host PRRs engage with Salmonella-derived PAMPs and DAMPs to 

promote innate immune defense. However, Salmonella employs several SPI-2 T3SS 

effectors that manipulate innate immune signaling pathways. For example, SpvC 

irreversibly dephosphorylates p38 and JNK MAPKs to inhibit transcription of 

proinflammatory cytokines (Mazurkiewicz et al., 2008). GgtA can directly cleave the NF-

kB transcription factors p65 and RelB, and the SseK family of effectors also inhibit NF-kB 

signaling (Sun et al., 2016; Jennings et al., 2017). The effector SopE activates small RHO 

GTPases, therefore activating NF-kB through NOD1 signaling (Keestra et al., 2013). In 

addition, SopE seems to have a role in the activation of caspase-1, although the 

mechanism is unknown (Muller et al., 2009). 

 

1.11. Dissertation Aims 

Salmonella is one of the leading causes of death from diarrheal disease. 

Increasing antibiotic resistance among Salmonella strains is highly concerning. Thus, 

there is an urgent need for a better understanding of the innate immune response to 

Salmonella, as this information is critical for developing novel therapeutics that can bolster 

host anti-microbial control. Most studies of Salmonella interactions with the immune 

system are conducted in mice. However, there are key differences in innate immune 

genes encoded by mice and humans, and the human immune response to Salmonella is 

poorly understood. To address this key knowledge gap, I have been investigating human-

specific innate immune responses to Salmonella infection.  

The inflammasome activates the protease caspase-1, which cleaves host 

substrates that enable secretion of IL-1 family cytokines and death of the infected cell. The 

NAIP inflammasome is crucial for host defense against Salmonella infection in mice. Mice 
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encode several NAIPs, each specific for a different bacterial ligand: NAIP1 recognizes the 

T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and NAIP5 and 

NAIP6 recognize flagellin. In contrast, humans encode a single NAIP, and it was unclear 

what human NAIP senses and its role in antimicrobial responses to Salmonella. To better 

understand NAIP inflammasome responses to Salmonella, this dissertation will focus on 

the following aims (Fig. 1.4):  

 

Figure 1.4: Human NAIP inflammasome responses to Salmonella infection. 
This dissertation will focus on defining the role of human the NAIP/NLRC4 
inflammasome in recognition of components from the Type III secretion system and 
flagellar apparatus from Salmonella Typhimurium.  
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Aim 1: Define the contribution of hNAIP to inflammasome responses against 

different bacterial ligands 

In contrast to mice, humans encode a single copy of the functional NAIP gene. 

Previous studies using biochemical approaches and immortalized monocytic cell lines 

determined that hNAIP is functionally similar to the murine NAIP1, as they both recognize 

the T3SS needle protein. However, studies in macrophages also suggested a role for 

hNAIP in restriction of flagellated bacteria. Preliminary data from our lab also show that L. 

pneumophila infection of primary human monocyte-derived macrophages (hMDMs) 

induces robust flagellin-dependent inflammasome activation. These data suggest that 

flagellin may be recognized by the hNAIP inflammasome. Indeed, a recent study found 

that flagellin triggers NAIP inflammasome responses in primary human monocyte-derived 

macrophages. In CHAPTER 2, we sought to determine inflammasome responses to S. 

Typhimurium and found that hNAIP promiscuously recognizes multiple bacterial ligands, 

which include flagellin, T3SS needle, and T3SS inner rod.  

 

Aim 2: Define inflammasome responses to PrgJ homologs from other bacterial 

species 

As our data showed that the T3SS inner rod from Salmonella is sensed by the 

human NAIP inflammasome, we also tested whether PrgJ homologs from other bacterial 

species similarly activate hNAIP in macrophages. In CHAPTER 2, we show that hNAIP 

broadly recognizes the T3SS inner rod from multiple bacterial species.  

 

Aim 3: Determine the role of the adaptor protein NLRC4 in broad recognition of 

multiple bacterial ligands 
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Our data demonstrate that hNAIP mediates promiscuous recognition of multiple 

bacterial ligands. In CHAPTER 3, we sought to determine if the interaction between 

human NAIP and NLRC4 is important for promiscuous recognition. To test the role of 

NLRC4 in promiscuous or specific recognition of bacterial ligands, we reconstituted the 

inflammasome in HEK293 cells with different combinations of NAIPs and NLRC4s from 

mice or humans. Our preliminary data suggest that NAIP, rather than NLRC4, dictates 

ligand recognition specificity or promiscuity. 

 

Aim 4: Determine the role of hNAIP in antimicrobial responses to Salmonella 

infection 

 Most studies aimed at determining the role of NAIP in anti-microbial responses are 

conducted in mice. In CHAPTER 3, we sought to determine the role of hNAIP in anti-

microbial responses to S. Typhimurium infection. We employed CRISPR/Cas9 to knock 

out the single NAIP gene in THP-1 cell lines. Our preliminary data suggest that hNAIP is 

required for maximal inflammasome responses to S. Typhimurium. Additionally, NLRP3 

may not be required for inflammasome responses to S. Typhimurium in human 

macrophages. Future studies are needed to validate these results and to test whether 

hNAIP mediates restriction of bacterial replication. 

 
 



34 
 

CHAPTER 2 
 

Broad detection of bacterial type III secretion system and flagellin proteins  
by the human NAIP/NLRC4 inflammasome 
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2.1. Abstract 

Inflammasomes are cytosolic multi-protein complexes that initiate host defense 

against bacterial pathogens by activating caspase-1-dependent cytokine secretion and 

cell death. In mice, specific NAIPs (NLR family, apoptosis inhibitory proteins) activate the 

NLRC4 (NLR family, CARD domain-containing protein 4) inflammasome upon sensing 

components of the type III secretion system (T3SS) and flagellar apparatus. NAIP1 

recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and 

NAIP5 and NAIP6 recognize flagellin. In contrast, humans encode a single functional 

NAIP, raising the question of whether human NAIP senses one or multiple bacterial 

ligands. Previous studies found that human NAIP detects both flagellin and the T3SS 

needle protein, and suggested that the ability to detect both ligands was achieved by 

multiple isoforms encoded by the single human NAIP gene. Here, we show that human 

NAIP also senses the Salmonella Typhimurium T3SS inner rod protein PrgJ, and that 

T3SS inner rod proteins from multiple bacterial species are also detected. Furthermore, 

we demonstrate that a single human NAIP isoform is capable of sensing the T3SS inner 

rod, needle, and flagellin. Our findings indicate that in contrast to murine NAIPs, 

promiscuous recognition of multiple bacterial ligands is conferred by a single human NAIP.  

 

2.2. Significance Statement 

Inflammasomes are cytosolic multiprotein complexes that initiate innate immune 

responses to microbial infection. Inflammasome specificity is determined by cytosolic 

innate immune sensors, including the NLR family, apoptosis inhibitory proteins (NAIPs). 

In mice, which encode seven different NAIPs, individual NAIPs recognize specific 

components of the structurally related bacterial type III secretion system (T3SS) and 

flagellar apparatus. Humans encode a single functional NAIP, raising the question of 
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whether human NAIP recognizes the same repertoire of bacterial ligands. Here, we find 

that in contrast to the ligand specificity exhibited by the murine NAIPs, the single human 

NAIP broadly detects multiple T3SS and flagellin proteins. These findings provide a basis 

for understanding the mechanisms underlying human-specific innate immune responses 

against bacterial infection. 

 

2.3. Introduction 

In response to pathogenic bacteria, the innate immune system is required for 

inflammatory responses that promote host defense. Host defense is initiated by the 

engagement of pattern recognition receptors (PRRs) by pathogen-associated molecular 

patterns (PAMPs) (Janeway and Medzhitov, 2002). Cytosolic PRRs detect pathogens that 

introduce products into host cells as a consequence of bacterial virulence activities, such 

as specialized secretion systems. A subset of cytosolic PRRs, termed the NLR 

(nucleotide-binding domain, leucine-rich repeat-containing) family, is composed of 22 

members in humans and 34 members in mice. A subfamily of NLRs, known as NLR family, 

apoptosis inhibitory proteins (NAIPs), recognize bacterial proteins that are translocated 

into the host cell by gram-negative bacteria. One such pathogen is Salmonella, which 

employ a virulence-associated type III secretion system (T3SS) to inject effector proteins 

into the host cell cytosol that promote bacterial invasion and survival (Galan et al., 2014). 

These secretion systems also translocate structurally related components of the T3SS or 

closely related flagellar apparatus, enabling cytosolic detection of bacteria by NAIPs (Sun 

et al., 2007). In mice, ligands for four of the seven distinct NAIPs are known: NAIP1 

recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and 

both NAIP5 and NAIP6 recognize flagellin (Kofoed and Vance, 2011; Zhao et al., 2011; 

Rayamajhi et al., 2013; Yang et al., 2013; Rauch et al., 2016; Zhao et al., 2016). Upon 
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binding their cognate ligands, the NAIPs recruit the adaptor NLRC4 (Diebolder et al., 2015; 

Hu et al., 2015; Zhang et al., 2015). The resulting NAIP/NLRC4 inflammasome then 

recruits and activates caspase-1 (Martinon et al., 2002). Active caspase-1 mediates 

processing and secretion of IL-1 family cytokines and a proinflammatory cell death termed 

pyroptosis (Kuida et al., 1995; Li et al., 1995; Bergsbaken et al., 2009), which promote 

anti-microbial functions critical for controlling bacterial infection (Miao et al., 2010a; Sellin 

et al., 2014; Jorgensen et al., 2016; Rauch et al., 2017). This inflammasome also plays a 

protective role in mouse models of colitis-associated colorectal cancer and may be a 

useful strategy in tumor immunotherapy (Garaude et al., 2012; Lin et al., 2016). However, 

the NLRC4 inflammasome can cause sepsis-like disease following antibiotic disruption of 

the microbiota, and activating NLRC4 mutations can lead to human auto-inflammatory 

diseases (Ayres et al., 2012; Canna et al., 2014; Kitamura et al., 2014; Romberg et al., 

2014; Canna et al., 2016). Defining the mechanisms of human NAIP sensing of bacterial 

ligands may therefore provide insight into therapeutic approaches for diverse infectious 

and autoinflammatory diseases. 

Unlike mice, the human NAIP locus has a number of pseudogenes and gene 

duplications and has retained a single functional copy of the full-length NAIP gene 

(Romanish et al., 2007; Romanish et al., 2009). Initial studies with human monocytic cell 

lines suggested that human NAIP could only sense the T3SS needle protein (Zhao et al., 

2011; Rayamajhi et al., 2013; Yang et al., 2013). However, a recent study found that 

flagellin also triggers NAIP inflammasome activation in primary human macrophages, and 

indicated that detection of flagellin was mediated by an alternate splice isoform of NAIP 

(Kortmann et al., 2015). These findings suggested that in humans, specificity for different 

bacterial ligands is encoded by distinct splicing variants of the single NAIP gene.  
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Here, we demonstrate that in addition to the T3SS needle protein and flagellin, 

primary human macrophages also mount NAIP inflammasome responses against T3SS 

inner rod proteins from multiple bacterial pathogens. In addition, our data show that the 

Salmonella Typhimurium SPI-2 T3SS inner rod protein, SsaI, which is required for 

intracellular bacterial replication, does not activate the inflammasome in human 

macrophages, suggesting that intracellular Salmonella evade NAIP recognition in both 

humans and mice. Intriguingly, we find that a single human NAIP isoform is sufficient for 

NLRC4 inflammasome responses to the T3SS needle, inner rod, and flagellin. Overall, 

our findings suggest that unlike mice, which express multiple NAIPs that each possesses 

exquisite ligand specificity, the single human NAIP has evolved to broadly recognize 

multiple bacterial ligands. These findings provide important insight into distinct 

mechanisms of innate immune sensing of gram-negative bacteria by mice and humans. 

 

2.4. Results 

2.4.1. Salmonella Typhimurium induces flagellin-independent inflammasome 

responses in primary human macrophages 

In murine macrophages, the NAIPs induce inflammasome activation upon direct 

recognition of proteins from the T3SS and the structurally related flagellar apparatus. The 

relative contribution of these components to the inflammasome response in human 

macrophages is still unclear. Thus, we examined cell death as well as secretion of IL-1α 

and IL-1β following infection of human monocyte-derived macrophages (hMDMs) with wild 

type (WT), SPI-1 T3SS-deficient (ΔsipB), or flagellin-deficient (ΔfliCfljB) Salmonella 

Typhimurium strains. Compared to WT Salmonella-infected macrophages, ΔfliCfljB 
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Salmonella-infected macrophages exhibited a slight, but not statistically significant 

decrease in inflammasome activation as measured by IL-1α and IL-1β secretion, IL-1β  

processing, and cell death (Fig. 2.1 A-D). In contrast, inflammasome activation was 

abrogated in ΔsipB-infected macrophages (Fig. 2.1 A-C). Immunoblot analysis indicated 

Figure 2.1: S. Typhimurium induces T3SS-dependent, flagellin-independent 
inflammasome responses in primary human macrophages. hMDMs were 
primed with LPS for 3 hours and treated with PBS (Mock), wild type Salmonella 
(WT ST), ΔsipB ST, or ΔfliCfljB ST at an MOI of 20 for 4 hrs. (A) Cell death (% 
cytotoxicity) was measured by LDH release assay and normalized to mock 
infected cells. (B-C) IL-1α and IL-1β supernatant levels were measured by ELISA. 
(D) Immunoblot analysis was performed on supernatants for mature IL-1β and on 
lysates for pro-IL-1β and β-actin as a loading control (representative of two 
donors). Each data point represents the mean of triplicate infected wells for each 
of five different human donors. Shaded bars represent the overall mean of the 
donors. * p<0.05, ** p<0.01 by paired t test.  
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no defect in pro-IL-1β production in ΔsipB-infected hMDMs, but inflammasome-mediated 

cleavage of pro-IL-1β into its active form was not observed (Fig. 2.1 D). These results 

suggest that Salmonella infection of primary human macrophages induces robust 

flagellin–independent inflammasome activation that requires the SPI-1 T3SS. 

 

2.4.2. S. Typhimurium T3SS inner rod protein PrgJ activates the inflammasome in 

primary human macrophages 

Previous studies using immortalized human monocyte cell lines found that the 

NAIP inflammasome could be activated by the T3SS needle protein, but not flagellin or 

the T3SS inner rod (Zhao et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013). However, 

another study found that NAIP played a role in restricting the intracellular replication of 

flagellated bacteria (Vinzing et al., 2008). Recently, it was shown that flagellin can activate 

the NAIP inflammasome in primary hMDMs (Kortmann et al., 2015). As our data 

suggested that there is a robust flagellin-independent, T3SS-dependent inflammasome 

response to Salmonella, we sought to determine whether in addition to the T3SS needle 

protein PrgI, the T3SS inner rod protein PrgJ could induce inflammasome activation in 

primary hMDMs. We utilized the gram-positive pathogen Listeria monocytogenes, which 

does not encode a T3SS apparatus, to directly deliver PrgJ or PrgI into host cells (Sauer 

et al., 2011). Following infection, Listeria uses the pore-forming toxin Listeriolysin O (LLO) 

to escape into the cytosol, where it expresses the protein ActA on the bacterial surface to 

polymerize actin (Gaillard et al., 1987; Tilney and Portnoy, 1989). We utilized strains that 

ectopically express PrgJ or PrgI translationally fused to the N-terminus of ActA and under 

control of the actA promoter. This approach of delivering flagellin into the host cell cytosol 

robustly activates the mouse NAIP5 inflammasome (Sauer et al., 2011). Indeed, as 
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expected, hMDMs infected with Listeria expressing PrgI induced robust IL-1α and IL-1β 

secretion, IL-1β processing, and cell death above that of WT Listeria-infected cells (Fig. 

2.2 A-D). Surprisingly, infection with PrgJ-expressing Listeria also induced robust IL-1α 

and IL-1β release, IL-1β processing, and cell death (Fig. 2.2 A-D). Importantly, cytosolic 

Figure 2.2: Listeria monocytogenes-mediated delivery of the T3SS inner 
rod protein PrgJ activates the inflammasome in primary human 
macrophages. hMDMs were primed with Pam3CSK4 for 3 hours and infected 
with PBS (Mock), WT Listeria (Lm), or strains expressing PrgJ and PrgI at an 
MOI of 5 for 16 hours. (A) Cell death (% cytotoxicity) was measured by LDH 
release assay and normalized to mock infected cells. (B-C) IL-1α and IL-1β 
supernatant levels were measured by ELISA. (D) Immunoblot analysis of 
supernatants for mature IL-1β and lysates for pro-IL-1β and β-actin as a 
loading control (representative of two donors). Each data point represents the 
mean of triplicate infected wells for each of seven different human donors.  
Shaded bars represent the overall mean of the donors. * p<0.05 by paired 
Wilcoxon signed-rank test 
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access was required for inflammasome activation, as PrgJ-expressing Listeria lacking hly, 

the gene encoding LLO, did not induce IL-1β secretion (Fig. 2.3).  

To determine whether PrgJ alone could induce inflammasome activation 

independently of bacterial infection, we employed an anthrax toxin-based delivery system 

(Zhao et al., 2011; von Moltke et al., 2012; Rauch et al., 2016). In this system, bacterial 

ligands are translationally fused to the N-terminal domain of Bacillus anthracis lethal factor 

(LFn). The LFn domain enables ligand translocation into the host cell cytosol through a 

membrane channel formed by the anthrax protective antigen (PA) protein. We employed 

a translational fusion of LFn and PrgJ (LFn-PrgJ), as well as LFn fused to flagellin as a 

positive control for NAIP inflammasome activation. To avoid potential confounding effects 

of TLR5 detection of flagellin, we used a truncated Legionella pneumophila flagellin that 

Figure 2.3: Listeria monocytogenes-mediated delivery of the T3SS inner rod 
protein PrgJ requires Listeriolysin O for inflammasome activation in primary 
human macrophages. hMDMs were primed with Pam3CSK4 for 3 hours and infected 
with PBS (Mock), WT Listeria (Lm) expressing PrgJ, or Δhly Lm expressing PrgJ at 
an MOI of 5 for 16 hours. IL-1β supernatant levels were measured by ELISA. Each 
data point represents the mean of triplicate infected wells for each of seven different 
human donors. Shaded bars represent the overall mean of the donors. * p<0.05, 
NS=not significant by paired Wilcoxon signed-rank test. 
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lacks the TLR5-activating region but retains the C-terminal 166 amino acids detected by 

murine NAIP5 (Lightfield et al., 2008; Lightfield et al., 2011). In agreement with previous 

findings (Kortmann et al., 2015), hMDMs treated with PA+LFn-FlaA310-475 (referred to as 

FlaTox) induced robust inflammasome activation, as measured by significantly increased 

Figure 2.4: Anthrax toxin-mediated delivery of the T3SS inner rod protein 
PrgJ induces robust inflammasome activation in primary human 
macrophages. hMDMs were primed with Pam3CSK4 for 4 hours and treated 
with: PA alone, LFn-FlaA310-475 alone, LFn-PrgJ alone, PA+LFn-FlaA310-475 
(FlaTox), or PA+LFn-PrgJ (PrgJTox) for 16h. (A) Cell death (% cytotoxicity) was 
measured by LDH release assay and normalized to mock infected cells. (B-C) 
IL-1α and IL-1β supernatant level were measured by ELISA. (D) Immunoblot 
analysis of supernatants for mature IL-1β and lysates for pro-IL-1β and β-actin 
as a loading control (representative of two donors). Each data point represents 
the mean of triplicate infected wells for each of four different human donors. 
Shaded bars represent the overall mean of the donors. * p<0.05, ** p<0.01 by 
paired t test. 
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IL-1α and IL-1β cytokine release, IL-1β processing, and cell death (Fig. 2.4 A-D). 

Treatment with PA+LFn-PrgJ (referred to as PrgJTox) also induced robust IL-1α and IL-

1β cytokine secretion, IL-1β processing, and cell death (Fig. 2.4 A-D). In contrast, 

treatment with PA, LFn-FlaA310-475, or LFn-PrgJ alone did not activate, indicating that FlaA 

and PrgJ induce inflammasome activation only when delivered into the host cell cytosol 

via PA. Altogether, these results show that primary human macrophages undergo 

inflammasome activation upon cytosolic sensing of the S. Typhimurium T3SS inner rod 

protein.  

 

2.4.3. Human NAIP is required for maximal inflammasome responses to the T3SS 

inner rod protein PrgJ 

Human NAIP is required for inflammasome responses to flagellin and the T3SS 

needle protein (Zhao et al., 2011; Yang et al., 2013; Kortmann et al., 2015). To test 

whether NAIP is also necessary for detecting PrgJ, we used siRNAs to silence NAIP in 

primary hMDMs (Fig. 2.5). As expected (Kortmann et al., 2015), anti-NAIP siRNA 

treatment resulted in significantly decreased IL-1α and IL-1β secretion following FlaTox 

administration compared to control siRNA treatment. Anti-NAIP siRNA treatment also led 

to significantly decreased IL-1α and IL-1β secretion in response to PrgJTox administration 

relative to control siRNA treatment, suggesting that NAIP is required for maximal 

inflammasome responses to PrgJ (Fig. 2.6 A and B). Importantly, siRNA-mediated 

silencing of NAIP did not significantly affect inflammasome responses to LPS+Nigericin, 

which specifically activates the NLRP3 inflammasome and does not engage NAIP 

(Mariathasan et al., 2006) (Fig. 2.6 C and D). These results indicate that NAIP is required 

for maximal inflammasome responses to the T3SS inner rod. 
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Figure 2.5: NAIP siRNA knockdown efficiency in primary human 
macrophages. qRT-PCR was performed to quantitate NAIP mRNA levels 
in hMDMs treated with either control siRNA or NAIP siRNA. For the NAIP 
siRNA-treated cells from each donor, NAIP mRNA levels were normalized 
to human HPRT mRNA levels, and each sample was normalized to control 
siRNA-treated cells from the same donor. 
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Figure 2.6: Human NAIP is required for maximal inflammasome responses to 
flagellin and the T3SS inner rod protein PrgJ. (A-D) Primary hMDMs were 
transfected with control siRNA or siRNA against NAIP for 48h and primed with 
Pam3CSK4 for 4h. (A-B, E-F) Cells were treated with PA+LFn-PrgJ (PrgJTox) or 
PA+LFn-FlaA310-475  (FlaTox) for 5h. (C-D) Cells were treated with LPS+Nigericin for 
5h. IL-1α and IL-1β supernatant levels were measured by ELISA. Each data point 
represents the mean of triplicate infected wells for six different human donors. Shaded 
bars represent the overall mean of the donors. * p<0.05, ** p<0.01 by paired t test. 
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2.4.4. T3SS inner rod proteins from other bacterial species induce inflammasome 

activation in human macrophages 

As T3SS inner rod proteins from multiple bacterial species activate the mouse 

NAIP2 inflammasome (Miao et al., 2010b), we next examined whether other bacterial 

T3SS inner rod homologs similarly activate human cells. We engineered Listeria strains 

expressing the T3SS inner rod proteins from Burkholderia thailandensis (BsaK), Shigella 

flexneri (MxiI), and Chromobacterium violaceum (CprJ). In agreement with previous 

findings (Miao et al., 2010b), mouse macrophages infected with Listeria expressing these 

inner rod homologs robustly secreted IL-1β (Fig. 2.7). hMDMs infected with Listeria 

expressing PrgI, PrgJ, BsaK, and MxiI resulted in robust IL-1β secretion and processing 

well above that of WT Listeria-infected cells (Fig. 2.8 A and B). In contrast, CprJ-

expressing Listeria induced relatively low levels of IL-1β secretion and processing. These 

Figure 2.7: Listeria monocytogenes strains ectopically expressing 
T3SS inner rod homologs induce inflammasome activation in mouse 
macrophages. Bone marrow-derived macrophages were primed with 
Pam3CSK4 for 16 hours and infected with WT Listeria (Lm) or strains 
ectopically expressing PrgJ, PrgI, BsaK MxiI, CprJ, or SsaI at an MOI of 5 for 
6 hours. Cells were treated with PBS for the Mock control. IL-1β levels in the 
supernatants was measured by ELISA. Bar graphs display the mean ± SD of 
triplicate wells. Representative of two independent experiments. **** 
p<0.0001 by Tukey’s multiple comparisons test. 
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findings show that human macrophages broadly detect and activate the inflammasome in 

response to T3SS inner rod proteins from multiple bacterial species.  

 

2.4.5. S. Typhimurium SPI-2 T3SS inner rod protein SsaI evades immune detection 

by human macrophages 

S. Typhimurium employs two different T3SS, termed SPI-1 and SPI-2. The SPI-1 

T3SS plays a role in bacterial invasion, whereas the SPI-2 T3SS is required for 

intracellular survival and replication (Galan, 2001; Figueira and Holden, 2012; LaRock et 

al., 2015), suggesting a need to evade host recognition of the SPI-2 T3SS. Indeed, while 

the SPI-1 T3SS inner rod protein, PrgJ, robustly activates the mouse NAIP2 

inflammasome, the SPI-2 T3SS inner rod protein, SsaI, evades detection (Miao et al., 

2010b). We therefore asked whether SsaI also evades human NAIP by expressing SsaI 

in Listeria. Consistent with previous findings (Miao et al., 2010b), mouse macrophages 

infected with Listeria expressing SsaI secreted negligible levels of IL-1β (Fig. 2.7). 

Infection of hMDMs with SsaI-expressing Listeria also resulted in negligible IL-1β 

secretion and cleavage compared to infection with Listeria expressing PrgJ or PrgI (Fig. 

2.8 C and D). These data suggest that the SPI-2 T3SS inner rod protein SsaI has evolved 

to evade NAIP recognition in both mice and humans. 
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2.4.6. The THP-1 monocytic cell line undergoes inflammasome activation in 

response to T3SS inner rod and flagellin proteins 

Previous studies using immortalized U937 and THP-1 monocyte cell lines found 

that anthrax toxin-mediated delivery of flagellin or inner rod proteins did not induce 

inflammasome activation (Zhao et al., 2011; Yang et al., 2013). Transfection of purified 

PrgJ protein into these cells also failed to activate the inflammasome (Rayamajhi et al., 

2013). In contrast, recent findings and the data presented here demonstrate that hMDMs 

Figure 2.8: The T3SS from multiple bacterial species activate the human 
inflammasome whereas the S. typhimurium SPI-2 T3SS inner rod protein, SsaI, 
evades immune recognition. hMDMs were primed with Pam3CSK4 for 3 hours and 
infected with WT Listeria (Lm) or strains ectopically expressing PrgJ, PrgI, BsaK MxiI, 
CprJ, or SsaI at an MOI of 5 for 16 hours. Cells were treated with PBS for the Mock 
control. (A, C) IL-1β supernatant levels were measured by ELISA. (B, D) Immunoblot 
analysis of supernatants for mature IL-1β and lysates for pro-IL-1β and β-actin as a 
loading control. Each data point represents the mean of triplicate infected wells for each 
of eight to ten different human donors. Shaded bars represent the overall mean of the 
donors. ** p<0.01 by paired Wilcoxon signed-rank test 
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mount robust inflammasome responses to flagellin (Kortmann et al., 2015) and the T3SS 

inner rod. A previously proposed explanation for these discrepant findings is that distinct 

NAIP splicing isoforms possess differing ligand specificities, and that primary human 

macrophages and immortalized cells express differing levels of particular isoforms 

(Kortmann et al., 2015). Alternatively, human NAIP may recognize all three bacterial 

ligands regardless of isoform type. As THP-1 cells express lower levels of NAIP and 

NLRC4 than primary macrophages (Kortmann et al., 2015), the method of ligand delivery 

or specific bacterial proteins previously employed may not have been sufficient for 

inflammasome activation in this cell type. Previous studies utilized the C. violaceum inner 

rod protein CprJ (Zhao et al., 2011; Yang et al., 2013), which we found to be a poor 

inflammasome activator in hMDMs relative to other T3SS inner rod homologs (Fig. 2.8 A 

and B). Another study used transfection-based delivery of PrgJ protein (Rayamajhi et al., 

2013), which is likely not as efficient at delivering proteins into host cells as the anthrax 

toxin system.  

Thus, we next tested whether THP-1 cells activate inflammasome responses to 

PrgJ delivered via Listeria or the anthrax toxin system. Although PrgI-expressing Listeria 

induced IL-1α and IL-1β secretion in THP-1 cells, PrgJ-expressing Listeria failed to do so 

(Fig. 2.9), despite robustly activating hMDMs (Fig. 2.2). In contrast, THP-1 cells treated 

with PrgJTox robustly secreted IL-1α and IL-1β (Fig. 2.10 A and B). Consistent with 

previous findings (Zhao et al., 2011; Yang et al., 2013), anthrax toxin-mediated delivery of 

full-length flagellin failed to activate THP-1 cells (Fig. 2.11). Intriguingly, anthrax toxin-

mediated delivery of a truncated version of flagellin robustly triggered IL-1α and IL-1β 

secretion (Fig. 2.10 A and B), likely due to more efficient delivery of truncated flagellin. 

These data demonstrate that THP-1 cells are capable of detecting the T3SS needle, inner 
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rod, and flagellin, but are less responsive than hMDMs, as the type of bacterial ligand and 

route of delivery influences the extent of inflammasome activation. 

 

 

Figure 2.9: Listeria monocytogenes-mediated delivery of PrgJ does not induce 
inflammasome activation in THP-1 cells. THP-1 cells were primed with Pam3CSK4 
for 16 hours and infected with WT Listeria (Lm) or strains ectopically expressing PrgJ 
or PrgI at an MOI of 5, 10, or 20 for 6 hours. Cells were treated with PBS for the Mock 
control. (A-B) IL-1α and IL-1β supernatant levels were measured by ELISA. Bar graphs 
display the mean ± SD of triplicate wells. Representative of three independent 
experiments. *** p<0.001 and **** p<0.0001 by unpaired t test. 
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Figure 2.10: A single NAIP isoform is sufficient for inflammasome responses to 
flagellin, the T3SS inner rod protein, and the T3SS needle protein. (A-B) THP-1 cells 
were primed with Pam3CSK4 and treated with PA alone, LFn-FlaA310-475  alone, LFn-PrgJ 
alone, PA+LFn-FlaA310-475  (FlaTox), or PA+LFn-PrgJ (PrgJTox) for 5h. IL-1α and IL-1β 
supernatant levels were measured by ELISA. Bar graphs display the mean ± SD of 
triplicate wells. Representative of three independent experiments. *** p<0.001, **** 
p<0.0001 by unpaired t test. (C) HEK293 cells were transfected with expression vectors 
encoding NLRC4, caspase 1, and IL-1β. Where indicated, cells were also transfected with 
vectors encoding NAIP* (+) or empty vector control (-). After 18 hours, cells were treated 
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with PA+LFn-PrgJ, PA+LFn-FlaA310-475, PA-LFn-YscF, or PA alone for 9 hours. 
Immunoblot analysis was performed on cell lysates for mature and pro-IL-1β, NAIP*, 
NLRC4, caspase-1, and β-actin as a loading control. Representative of three independent 
experiments. 
 
 
 

 
 

2.4.7. A single NAIP isoform mediates inflammasome responses to T3SS needle, 

inner rod, and flagellin proteins 

Our data demonstrate that both THP-1 cells and hMDMs recognize the T3SS 

needle, inner rod, and flagellin, and that NAIP contributes to ligand detection. We next 

sought to understand how a single human NAIP gene could confer recognition of all three 

ligands, in contrast to mice, which utilize distinct NAIPs to recognize each ligand. 

Interestingly, studies in which chimeric mouse NAIPs were generated to define the ligand 

Figure 2.11: Anthrax toxin-mediated delivery of full-length flagellin fails to induce 
inflammasome activation in THP-1 cells. (A-B) THP-1 cells were primed with 
Pam3CSK4 for 4h and treated with PA alone, LFn-FlaA (full-length FlaA) alone, LFn-
YscF alone, PA+LFn-FlaA (FlaTox) (full-length FlaA), or PA+LFn-YscF (YscFTox) for 
16h. IL-1α and IL-1β supernatant levels were measured by ELISA. Bar graphs display 
the mean ± SD of triplicate wells. Representative of two independent experiments. **** 
p<0.0001 by unpaired t test 
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specificity domain identified a chimeric mouse NAIP capable of recognizing multiple 

ligands, suggesting the possibility that human NAIP might function as a broad receptor 

(Tenthorey et al., 2014). Human monocytic cell lines express lower levels than hMDMs of 

a particular full-length NAIP splicing isoform (termed NAIP*) that enables sensing of 

flagellin (Kortmann et al., 2015). We therefore sought to test whether a single NAIP isoform 

possesses specificity for a given bacterial ligand or is capable of detecting all three 

bacterial ligands. We ectopically expressed the NAIP* isoform previously shown to 

recognize flagellin (Kortmann et al., 2015), along with other NLRC4 inflammasome 

components in HEK293 cells, and then used the anthrax toxin system to deliver bacterial 

ligands into these cells. As expected, HEK293 cells expressing the NAIP* isoform robustly 

processed IL-1β in response to flagellin (Fig. 2.10 C). Unexpectedly, delivery of PrgJ or 

the Burkholderia T3SS needle protein (YscF) also induced robust IL-1β processing (Fig. 

2.10 C). Critically, inflammasome activation by FlaA, PrgJ, and YscF required NAIP, as 

delivery of bacterial ligands into cells only expressing NLRC4, caspase-1, and IL-1β did 

not result in IL-1β processing. Inflammasome activation required delivery of the bacterial 

ligands, as untreated cells or PA treatment alone did not process IL-1β. Altogether, these 

data indicate that a single human NAIP isoform is sufficient to mediate inflammasome 

responses to the T3SS needle, inner rod, and flagellin proteins. 

 

2.5. Discussion 

Our data demonstrate that, like murine cells, human macrophages sense multiple 

bacterial ligands from the T3SS and flagellar apparatus. In addition to the T3SS needle 

and flagellin, T3SS inner rod proteins from multiple bacterial species activate the human 

NAIP inflammasome. Furthermore, a single human NAIP isoform can mediate 

inflammasome responses to all three bacterial proteins, in contrast to mouse NAIPs, which 
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are highly selective for recognition of individual flagellin or T3SS proteins (Kofoed and 

Vance, 2011; Zhao et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013; Rauch et al., 

2016; Zhao et al., 2016). Consistent with our findings, a recent study found that the 

Pseudomonas aeruginosa T3SS inner rod also activates the human NAIP inflammasome 

(Teddy et al., 2017). The conserved region of murine NAIPs that confers ligand specificity 

has been mapped to an internal region composed of several NBD-associated α-helical 

domains (Tenthorey et al., 2014). This region has evolved under positive selection in both 

rodents and primates (Tenthorey et al., 2014), suggesting that this domain mediates ligand 

detection in human NAIP as well. How NAIP achieves broad recognition of multiple 

ligands, and whether NAIP binds these ligands with similar or differing affinities or binding 

kinetics, is unclear. The T3SS inner rod, needle, and flagellin proteins exhibit low 

sequence conservation, but have some structural conservation, as the T3SS is thought to 

have evolved from the flagellar apparatus (Saier, 2004). Thus, human NAIP may 

recognize structural elements common to all three ligands. It will be of interest to determine 

whether NAIP detection of these three ligands is functionally redundant or distinct in the 

initiation of anti-microbial activities. 

Our study raises intriguing questions about the evolution of the NAIP/NLRC4 

inflammasome. It is likely that a single NAIP progenitor was present in the last common 

ancestor of primates and rodents (Growney et al., 2000). In mice, there has been an 

expansion of NAIP genes as a consequence of several gene duplication events (Endrizzi 

et al., 2000); interestingly, the murine NAIPs are specialists, as they each recognize only 

one of three bacterial proteins derived from the evolutionarily related T3SS and flagellar 

apparatus. In contrast, the single human NAIP is a generalist, as it is capable of 

functionally detecting all three bacterial proteins. The promiscuity displayed by human 
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NAIP may provide a selective advantage, as it may be more difficult for pathogens to 

simultaneously evade recognition of all three ligands by human NAIP. 

Promiscuous ligand recognition may be a general strategy used by the innate 

immune system to diversify protein functionality as a means of promoting responses 

against different pathogenic stimuli. For example, the natural killer (NK) activating receptor 

NKG2D broadly recognizes several major histocompatibility complex (MHC) class I-

related proteins, in contrast to other NK receptors, which typically recognize a single 

ligand. The ability of NKG2D to recognize a broad array of stress-inducible host ligands 

may provide an evolutionary advantage against viruses that employ mechanisms to 

downregulate NKG2D ligands as well as rapidly evolving cancers (Eagle and Trowsdale, 

2007). Furthermore, the TLR sorting adaptor TIRAP promiscuously detects multiple lipids, 

which diversifies subcellular sites of TLR signaling and thus enables responses to both 

extracellular and endosomal pathogens (Bonham et al., 2014). However, one possible 

tradeoff with a more promiscuous mode of sensing is that human NAIP may possess 

weaker affinities or altered binding kinetics for its bacterial ligands and hence decreased 

signaling potency. In contrast, a given mouse NAIP may possess higher affinity or binding 

kinetics for its particular ligand and thus confer heightened immune responses. Indeed, 

compared to mouse macrophages, human macrophages do not seem to be as responsive 

to cytosolic flagellin, as they are more permissive for intracellular replication of flagellated 

bacteria (Vinzing et al., 2008). While the precise basis for this difference is unknown, one 

possibility is that human NAIP detects flagellin with lower affinity or altered binding kinetics 

than mouse NAIP5.  

It will be of interest to examine how co-evolution with gram-negative bacteria 

shaped the NAIP genes in humans and other mammals, and whether pathogens have 

evolved strategies for evading human NAIP. Functional NAIP copy number varies among 



 
 

57 

human populations, and increased copy number has been postulated to confer a selective 

advantage in anti-bacterial defense (Boniotto et al., 2012). Studies in mice have shown 

that inappropriate activation of the NAIP/NLRC4 inflammasome can lead to lethal systemic 

inflammation resembling sepsis (Ayres et al., 2012; von Moltke et al., 2012). Moreover, 

gain-of-function mutations in human NLRC4 result in pathologic enterocolitis and 

autoinflammation (Canna et al., 2014; Kitamura et al., 2014; Romberg et al., 2014; Canna 

et al., 2016). Perhaps gain-of-function mutations in human NAIP confer similar 

pathological outcomes.  

Our results provide new insight into human NAIP detection of bacterial proteins 

from the T3SS and flagellar apparatus. The data presented here provide an important 

basis for elucidating the mechanisms underlying human NAIP inflammasome responses 

to bacterial infection, which could prove crucial to understanding how the NAIP/NLRC4 

inflammasome contributes to human health and disease. 
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2.7. Materials and Methods 

2.7.1. Primary Human Samples 

All studies involving human monocyte-derived macrophages (hMDMs) were 

performed in compliance with the requirements of the US Department of Health and 

Human Services and the principles expressed in the Declaration of Helsinki. Samples 

obtained from the University of Pennsylvania Human Immunology Core are considered to 

be a secondary use of de-identified human specimens and are exempt via Title 55 Part 

46, Subpart A of 46.101 (b) of the Code of Federal Regulations.  

 

2.7.2. Bacterial Strains and Growth Conditions 

Salmonella enterica serovar Typhimurium WT, ΔsipB (Lawley et al., 2006), and 

ΔfliCfljB (Wynosky-Dolfi et al., 2014) isogenic strains on the SL1344 background were 

used. Three hours before infection, Salmonella were diluted into Luria-Bertani (LB) broth 

containing 300 mM NaCl and grown for 3 h standing at 37°C to induce SPI-1 expression 

(Lee and Falkow, 1990). Listeria monocytogenes WT and isogenic strains on the 10403S 

background were cultured in brain heart infusion (BHI) medium (Sauer et al., 2011). 

Listeria strains encoding heterologous bacterial ligands (Legionella pneumophila FlaA, S. 

Typhimurium PrgJ, and S. Typhimurium PrgI) translationally fused to the truncated N-

terminus of ActA and under the control of the actA promoter were used (Sauer et al., 

2011). The pPL2 vector encoding PrgJ was introduced into Δhly Listeria as previously 

described (Lauer et al., 2002; Sauer et al., 2011). Listeria strains expressing S. 
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Typhimurium SsaI, Burkholderia thailandensis BsaK, Shigella flexeri MxiI, and 

Chromobacterium violaceum CprJ were constructed using codon-optimized gene 

fragments (IDT) cloned into the pPL2 vector and introduced into Listeria as previously 

described (Lauer et al., 2002; Sauer et al., 2011). 

 

2.7.3. Cellular Assays 

Purified human monocytes from de-identified healthy human donors were obtained 

from the University of Pennsylvania Human Immunology Core. Monocytes were cultured 

in RPMI supplemented with 10% (vol/vol) heat-inactivated FBS, 2 mM L-glutamine, 100 

IU/mL penicillin, 100 µg/ml streptomycin, and 50 ng/ml recombinant human M-CSF 

(Gemini Bio-Products) for 6 days to promote differentiation into hMDMs. One day prior to 

infection, adherent hMDMs were replated in media with 25 ng/ml human M-CSF lacking 

antibiotics at 1.0 x 105 cells/well in a 48-well plate. Pam3CSK4 (100 ng/ml) and LPS (500 

ng/ml) pretreatments, bacterial infections, anthrax toxin-mediated delivery of bacterial 

ligands, siRNA experiments, cytotoxicity assays, ELISA, immunoblot analyses, 

quantitative RT-PCR analyses, HEK293 inflammasome reconstitution assays, and 

statistical analyses were performed as described in SI Materials and Methods. 

 

2.7.4. Human Monocyte-Derived Macrophage Experiments 

In experiments where macrophages were primed with Pam3CSK4, cells were 

pretreated with 100 ng/mL or 400ng/mL Pam3CSK4 (Invivogen) for 3 hours prior to 

bacterial infections or 4 hours before anthrax toxin treatments, respectively. For 

experiments involving LPS, cells were pretreated with 500 ng/mL LPS (Sigma-Aldrich). 
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For infections with S. Typhimurium, bacterial cultures were pelleted at 6,010 x g 

for 3 minutes and washed with PBS. Bacteria were then resuspended in PBS and added 

to the cells at a multiplicity of infection (MOI) of 20. The infected cells were then centrifuged 

at 290 x g for 10 min and incubated at 37d. After 1 hour of infection, 100 µg/mL of 

gentamicin was added to each well to prevent extracellular growth. Infections proceeded 

at 37°C for a total of 4hrs. For infections with L. monocytogenes, bacterial cultures were 

backdiluted on the day of infection and grown until OD600=0.8. Cultures were pelleted at 

6,010 x g for 3 minutes and resuspended in PBS. Cells were infected with L. 

monocytogenes at an MOI of 5, 10, 20 or 75 and incubated at 37°C. After 1 hour of 

infection, 50 µg/mL of gentamicin was added to each well. Infections proceeded for a total 

of 16 hrs. For all experiments, control cells were mock-infected with PBS.  

 

2.7.5. Mouse Bone Marrow-Derived Macrophage Experiments.  

All experiments performed with mouse bone marrow-derived macrophages were 

done so in accordance with the Animal Welfare Act (AWA), the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The 

Institutional Animal Care and Use Committee of the University of Pennsylvania approved 

all procedures (protocol #804928). 

Bone marrow was collected from the femurs and tibiae of C57BL/6J mice (Jackson 

Laboratory). Bone marrow cells were differentiated into macrophages by culturing the cells 

in RPMI containing 30% L929 cell supernatant, 20% FBS, 100 IU/mL penicillin, and 100 

μg/mL streptomycin at 37˚C. One day before infection, macrophages were replated in 

RPMI containing 15% L929 cell supernatant and 10% FBS at a concentration of 1.25 x 

105 cells/well in a 48-well plate.  Cells were pretreated with 100 ng/mL Pam3CSK4 
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(Invivogen) for 16 hours prior to infection, then either mock-infected with PBS or infected 

with L. monocytogenes at an MOI of 5. After 1 hour of infection, 50 µg/mL of gentamicin 

was added to each well. Infections were continued for a total of 6 hours. 

 

2.7.6. THP-1 Monocytic Cell Line Experiments 

THP-1 cells (TIB-202; American Type Culture Collection) were maintained in RPMI 

supplemented with 10% (vol/vol) heat-inactivated FBS, 0.05 mM β-mercaptoethanol, 100 

IU/mL penicillin, and 100 μg/mL streptomycin at 37°C in a humidified incubator. One day 

before infection, cells were replated in media lacking antibiotics at a concentration of 2.0 

x 105 cells/well in a 48-well plate. THP-1 cells were differentiated into macrophages with 

200 nM phorbol 12-myristate 13-acetate (PMA) for 24 hours. 

 

2.7.7. Anthrax Toxin-Mediated Delivery of FlaA, PrgJ and YscF 

Recombinant proteins (PA, LFn-FlaA, LFn-PrgJ, and LFn-YscF) were kindly 

provided by R. Vance, University of California, Berkeley (Rauch et al., 2016). In 

experiments with THP-1 and hMDMs, cells were plated in a 48-well plate at a 

concentration of 2.0 x 105 and 1.0 x 105 cells per well, respectively. PA and LFn doses for 

in vitro delivery were 1 µg/ml PA (for FlaTox), 4 µg/ml PA (for PrgJTox and YscFTox), 

500ng/ml LFn-FlaA310-475 (truncated C-terminus of L. pneumophila flagellin), 8 ng/ml LFn-

PrgJ, 200 ng/mL LFn-YscF, and 2 µg/mL LFn-FlaA (full-length flagellin). 

 

2.7.8. Expression Plasmids Encoding Human Inflammasome Components 

pCMV6-XL5 plasmids encoding NAIP (NM_004536), IL-1β (NM_000576), or 

empty vector were purchased from Origene. The pCI plasmid encoding human caspase-
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1 (NM_033292.3) was a gift from Kate Fitzgerald (Addgene plasmid # 41552) (Hornung 

et al., 2009). The NLRC4 (NM_021209) ORF was amplified from an expression vector 

(GeneCopoeia), between flanking BamHI and NotI sites, and a Kozak sequence 

(GCCACC) was engineered to precede the start codon. The following primers were used 

(5’-3’):  

NLRC4 forward: AAAAGGATCCGCCACCATGAATTTCATAAAGGACAATAGCC 

NLRC4 reverse: TTTTTGCGGCCGCTTAAGCAGTTACTAGTTTAAAATCACC 

The digested NLRC4 PCR product was cloned into a BglII/NotI digested MSCV2.2 vector, 

which was a gift from Russell Vance (Addgene plasmid #60206) (Kofoed and Vance, 

2011). Plasmids were prepared with the Qiagen EndoFree Plasmid Maxi Kit.  

 

2.7.9. Reconstitution of the NAIP/NLRC4 Inflammasome in HEK293 cells 

HEK293 cells were maintained in DMEM supplemented with 10% (vol/vol) heat-

inactivated FBS, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 μg/mL streptomycin at 

37°C. Cells were replated at 7x104 cells/well in 500 µL replating media (DMEM + 10% 

FBS + 2 mM L-glutamine) in a 24-well plate. Transfection of expression plasmids 

(described above) was performed using Lipofectamine 2000 (Thermo Fisher Scientific). 

The amounts of plasmids used were 20 ng of NAIP, 20 ng of NLRC4, 10 ng of caspase-

1, and 400 ng of pro-IL-1β. 18 hours later, cells were treated with anthrax toxin 

components for cytosolic delivery of FlaA, PrgJ, or YscF. Cells were harvested 9h later 

and subjected to immunoblot analysis. 
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2.7.10. siRNA Knockdown Experiments 

All Silencer Select siRNA oligos were purchased from Ambion (Life Technologies). 

For NAIP, the siRNAs used were siRNA ID# s9262, s9263, and s9264. The siRNAs used 

for NLRC4 were siRNA ID# s33828, s33829, and s33830. To knockdown NAIP or NLRC4, 

10 nM each of the three oligos were used per well. As a control, Silencer Select negative 

control siRNAs (Silencer Select Negative Control No. 1 siRNA 4390843 and Silencer 

Select Negative Control No. 2 siRNA 4390846) were used at 15 nM each per well. 

Transfection of the pooled siRNAs into macrophages was performed using HiPerfect 

transfection reagent (Qiagen) following the manufacturer’s protocol for “Transfection of 

Differentiated Macrophage Cell Lines, Including THP-1.” Treatment with appropriate 

siRNAs was performed for 48 hours. After 24 hours, fresh media lacking antibiotics was 

added to each well. After a total of 48 hours, treatment with anthrax toxin components was 

performed as described above. In parallel, siRNA-transfected hMDMs were treated with 

LPS + Nigericin (500 ng/mL and 10 µM, respectively). 

 

2.7.11. Quantitative RT-PCR Analysis 

Cells were lysed and RNA was isolated using the RNeasy Plus Kit (Qiagen).  

Synthesis of the first strand cDNA was performed using Superscript II reverse 

transcriptase and oligo (dT) primer (Invitrogen). Quantitative PCR was performed with the 

CFX96 real-time system (Bio-Rad) using the SsoFast EvaGreen Supermix with LOW ROX 

kit (Bio-Rad). The following primers from PrimerBank (Wang and Seed, 2003; Spandidos 

et al., 2008; Spandidos et al., 2010) were used. The PrimerBank IDs are NAIP 

(119393877c3), NLRC4 (312433959c2), and HPRT (164518913c1) (all 5’-3’):  

NAIP forward: CCCATTAGACGATCACACCAGA 
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NAIP reverse: GGAGTCACTTCCGCAGAGG 

NLRC4 forward: TGCATCATTGAAGGGGAATCTG  

NLRC4 reverse: GATTGTGCCAGGTATATCCAGG 

HPRT forward: CCTGGCGTCGTGATTAGTGAT  

HPRT reverse: AGACGTTCAGTCCTGTCCATAA  

For analysis, mRNA levels of siRNA-treated cells were normalized to control siRNA-

treated cells using the 2-ΔΔCT (cycle threshold) (Livak and Schmittgen, 2001) method to 

calculate fold induction. 

 

2.7.12. Cytotoxicity Assays 

Cells were infected as described above and were assayed for cell death, as 

determined by measuring loss of cellular membrane integrity via lactate dehydrogenase 

(LDH) activity in the supernatant. LDH release was quantified using an LDH Cytotoxicity 

Detection Kit (Clontech) and normalized to mock infected cells. 

 

2.7.13. ELISA 

Harvested supernatants from infected cells were assayed using ELISA kits for 

human IL-1α (R&D Systems) and IL-1β (BD Biosciences). 

 

2.7.14. Immunoblotting 

Infected or treated cells were lysed directly with 1X SDS-PAGE sample buffer, and 

low-volume (90 µL per well of a 48-well plate) supernatants were mixed 1:1 with 2X SDS-

PAGE buffer containing Complete Mini EDTA-free Protease Inhibitor Mixture (Roche). 

Protein samples were boiled for 5 minutes, separated by SDS-PAGE, and transferred to 
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PVDF Immobilon-P membranes (Millipore). Samples were then probed with antibodies 

specific for IL-1β (8516; R&D Systems), NAIP (ab25968; Abcam), NLRC4 (12421S; Cell 

Signaling), and caspase-1 (2225S; Cell Signaling). As a loading control, all blots were 

probed with anti-β-actin (4967L; Cell Signaling). Detection was performed with HRP-

conjugated anti-mouse IgG (F00011; Cell Signaling) or anti-rabbit IgG (7074S; Cell 

Signaling).  

 

2.7.15. Statistical analysis 

Prism 6.0 (GraphPad Software) was utilized for the graphing of data and all 

statistical analyses. Statistical significance for human monocyte-derived macrophages 

was determined using the paired two-way t test in experiments delivering bacterial ligands 

via anthrax toxin and infections with S. Typhimurium, and the paired Wilcoxon signed-rank 

test in experiments delivering bacterial ligands via engineered L. monocytogenes. All data 

are graphed such that each data point represents the mean of triplicate infected wells for 

a given donor. Individual experiments in figures were performed using primary human 

monocyte-derived macrophages from at least four different donors. Statistical significance 

for experiments with THP-1 cells was determined using the unpaired two-way t test. 

Statistical analyses for experiments with mouse bone marrow-derived macrophages were 

determined using the one-way ANOVA test and the Tukey’s multiple comparisons test. 

Differences were considered statistically significant if the P value was <0.05. 
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CHAPTER 3 
 

NAIP is essential for recognition of bacterial type III secretion system and flagellin 
proteins and mediates inflammasome responses to Salmonella infection 
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3.1. Abstract 

Inflammasomes are cytosolic multiprotein complexes that initiate antimicrobial 

responses through recognition of bacterial ligands and activation of the host protease 

caspase-1. Activated caspase-1 cleaves and activates IL-1 family cytokines and the host 

protein gasdermin-D. The N-terminal domain of gasdermin-D creates pores in the host 

cell membrane and results in the proinflammatory type of cell death known as pyroptosis. 

In mice, specific nucleotide-binding domain, leucine-rich repeat-containing family, 

apoptosis inhibitory proteins (NAIPs) recognize components of the type III secretion 

system (T3SS) and flagellin to recruit the nucleotide-binding domain, leucine-rich repeat-

containing family, CARD domain-containing protein 4 (NLRC4), leading to caspase-1 

activation. NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner 

rod protein, and NAIP5 and NAIP6 recognize flagellin. In contrast, the single human NAIP 

is capable of sensing multiple bacterial ligands. However, whether NAIP is essential for 

sensing of bacterial ligands from the T3SS and flagellar apparatus and the precise 

mechanism by which human NAIP achieves promiscuous recognition of multiple bacterial 

ligands is unclear. Here, we sought to determine if NLRC4 plays a role in promiscuous 

recognition of the T3SS inner rod protein, T3SS needle protein, and flagellin by the 

NAIP/NLRC4 inflammasome. In addition, we generated NAIP, NLRC4, CASP1, and 

NLRP3 knockout cells using Clustered Regularly Interspersed Palindromic Repeat 

(CRISPR)/Cas9 to test if NAIP is essential for sensing of bacterial ligands and what 

inflammasome components are essential for inflammasome responses to Salmonella 

Typhimurium infection. Our findings suggest that NAIP, but not NLRC4, dictates the 

specificity or promiscuity of bacterial ligand recognition, and that NAIP appears to be 

essential for inflammasome responses to bacterial ligands. Additionally, our preliminary 

data suggest that Salmonella induces caspase-1-dependent inflammasome responses in 
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human macrophages. Human NAIP, but not NLRP3, appear to be required for maximal 

IL-1b secretion during infection with Salmonella Typhimurium. Our preliminary data 

provide insight into human-specific responses to Salmonella infection and are an 

important basis for elucidating antimicrobial mechanisms to other gram-negative bacteria. 

 

3.2. Significance Statement 

Salmonella is one of the leading causes of death from diarrheal disease. Antibiotic 

resistance among Salmonella strains is on the rise. Thus, there is an urgent need for 

alternative therapeutics and a better understanding of the innate immune response to 

Salmonella. Most studies of Salmonella interactions with the immune system are 

conducted in mice. However, there are key differences between the innate immune 

responses in mice and in humans. In fact, the human immune response to Salmonella is 

poorly understood. The studies presented in this chapter examine a role for the 

NAIP/NLRC4 inflammasome in macrophage responses to bacterial ligands and to 

Salmonella infection. Our data indicate that the human NAIP/NLRC4 inflammasome is 

essential for recognition of components from the T3SS inner rod protein, T3SS needle 

protein, and flagellin. Furthermore, the human NAIP/NLRC4 inflammasome appears to be 

required for inflammasome responses to Salmonella infection in macrophages. These 

findings provide a foundation for understanding human-specific innate immune responses 

to Gram-negative bacterial infection. 

 

3.3. Introduction 

Recognition of microbial products by pattern recognition receptors (PRRs) is 

critical to initiate host defense against bacterial pathogens (Medzhitov, 2007). A subfamily 
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of cytosolic PRRs termed Nod-like receptors (NLRs) mediate the formation of the 

inflammasome, a multiprotein complex that results in the activation of the host enzyme 

caspase-1 (Martinon et al., 2002). Activated caspase-1 can then lead to the secretion of 

pro-inflammatory cytokines from the IL-1 family as well as pyroptotic cell death, resulting 

in host defense and bacterial clearance (Kuida et al., 1995; Li et al., 1995; Martinon et al., 

2002; Bergsbaken et al., 2009). Intracellular bacterial pathogens such as Salmonella 

Typhimurium employ virulence-associated secretions systems to survive and cause 

disease (Galan et al., 2014; LaRock et al., 2015). Bacterial products from the type III 

Secretion System (T3SS) and flagellin activate a subfamily of NLRs termed the nucleotide-

binding domain, leucine-rich repeat-containing family, apoptosis inhibitory proteins 

(NAIPs). In mice, NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS 

inner rod protein, and NAIP5 and NAIP6 each recognize flagellin (Kofoed and Vance, 

2011; Zhao et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013; Rauch et al., 2016; 

Zhao et al., 2016). Upon binding their cognate ligand, the NAIPs recruit the adaptor 

nucleotide-binding domain, leucine-rich repeat-containing family, CARD domain-

containing protein 4 (NLRC4) (Diebolder et al., 2015; Hu et al., 2015; Zhang et al., 2015; 

Tenthorey et al., 2017). The resulting NAIP/NLRC4 inflammasome recruits and activates 

caspase-1 (Martinon et al., 2002). In contrast to mice, which possess multiple NAIP genes 

that encode NAIP receptors with strict ligand specificity, humans encode a single NAIP 

gene that encodes a NAIP receptor with promiscuous recognition of the T3SS inner rod 

protein, T3SS needle protein, and flagellin (Zhao et al., 2011; Rayamajhi et al., 2013; Yang 

et al., 2013; Kortmann et al., 2015; Reyes Ruiz et al., 2017). The precise molecular basis 

that allows for specific recognition by the murine NAIPs and promiscuous recognition by 

human NAIP is not yet understood.   
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 The region of the murine NAIPs that dictates ligand specificity has been mapped 

to an internal region composed of a-helical domains associated with the nucleotide-

binding domain (NBD). In addition, this region has evolved under positive selection in both 

primate and rodent genomes (Tenthorey et al., 2014). The cryo-electron microscopic 

structure of the murine flagellin-NAIP5-NLRC4 inflammasome complex shows that there 

is one bacterial ligand and one NAIP per inflammasome (Tenthorey et al., 2017). 

Furthermore, the flagellin monomer is recognized by NAIP5 and does not appear to 

directly bind NLRC4 (Tenthorey et al., 2017; Yang et al., 2018). The model for NAIP5 

activation therefore includes the binding of a flagellin monomer to NAIP5 and a 

subsequent conformational change in NAIP5 that unfurls the protein to recruit and activate 

NLRC4. Active NLRC4 can then recruit additional NLRC4 promoters for self-propagating 

oligomerization (Tenthorey et al., 2017). However, the model of activation of the human 

NAIP/NLRC4 inflammasome in response to the T3SS needle protein, T3SS inner rod 

protein, or flagellin by human NAIP is unclear. In addition, the role of the adaptor protein 

NLRC4 in promiscuous recognition of multiple bacterial ligands has not been tested. Thus, 

we sought to determine the role of human NLRC4 in the promiscuous recognition of 

bacterial ligands from the T3SS and flagellin. Here, our preliminary data suggest that, 

human NAIP and not NLRC4 dictates the broad recognition of multiple bacterial ligands.  

Our studies using siRNA-mediated silencing of human NAIP suggest that NAIP is 

required for maximal inflammasome responses to components of the T3SS and flagellar 

apparatus (Reyes Ruiz et al., 2017). However, whether residual human NAIP in siRNA-

treated cells or an additional NLR is also involved in cytokine secretion upon cytosolic 

delivery of these bacterial ligands is unclear. Additionally, the importance of NAIP in 

antimicrobial protection against Salmonella infection is not yet understood. Here, we used 
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CRISPR/Cas9 to generate NAIP and NLRC4 knockout THP-1 cells and tested the role of 

human NAIP and NLRC4 in inflammasome responses to both intracellular delivery of 

T3SS components and flagellin, as well as in vitro Salmonella infection. Our preliminary 

data suggest that human NAIP is essential for recognition of the T3SS inner rod, T3SS 

needle, and flagellin, as well as for maximal inflammasome responses to Salmonella 

infection.  

During systemic infection, Salmonella downregulates flagellin and expresses the 

SPI-2 T3SS, which is thought to evade immune recognition by the NAIP/NLRC4 

inflammasome (Cummings et al., 2006; Miao et al., 2010b). Salmonella induces delayed 

NLRP3 inflammasome activation independently of both the SPI-1 and SPI-2 T3SSs (Broz 

et al., 2010). The delayed inflammasome response is due to evasion of the NLRP3 

inflammasome via control of oxidative metabolism by Salmonella (Wynosky-Dolfi et al., 

2014). In murine macrophages, both NLRC4 and NLRP3 are required for maximal 

inflammasome responses to S. Typhimurium (Broz et al., 2010). Consistent with NLRC4 

and NLRP3 being important for inflammasome responses in vitro, mice lacking both NLRs 

are more susceptible to infection as compared to the WT or single knockout mice (Broz et 

al., 2010). However, the role of the NLRP3 inflammasome in human inflammasome 

responses to Salmonella is not yet understood. Here, we used CRISPR/Cas9 to target 

NLRP3 and determined that the NLRP3 inflammasome appears to be dispensable for the 

response to Salmonella in human macrophages. Overall, our preliminary data provides 

insight into human-specific immune responses to Salmonella infection in macrophages. 
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3.4. Results 

3.4.1. NAIP appears to dictate the specific or broad recognition of bacterial ligands 

The cryo-electron microscopic structure of the murine NAIP5 inflammasome 

shows that flagellin binds to NAIP5 and not NLRC4 (Tenthorey et al., 2017; Yang et al., 

2018). We sought to determine whether human NAIP could also bind flagellin by 

overexpressing human NAIP alongside c-Myc-tagged flagellin (c-Myc-FlaA) in HEK293 

cells and investigating their interaction via co-immunoprecipitation analysis. Untransfected 

HEK293 cells are not natively responsive to cytosolic delivery of flagellin, as they do not 

express any inflammasome components. Our data show that human NAIP co-

immunoprecipitates with c-Myc-FlaA (Fig. 3.1). Critically, uncoated beads bound to neither 

NAIP nor flagellin (Fig. 3.1). These data suggest that human NAIP binds flagellin in the 

absence of NLRC4.  

 

Figure 3.1: NAIP appears to bind flagellin independently of NLRC4. HEK293 cells 
were transfected with pCMV6-XL5 human NAIP and c-Myc-FlaA. The lysates were 
analyzed by co-immunoprecipitation analysis with Dynabeads coated with the c-Myc 
antibody. Uncoated beads were used as control (-). Immunoblot analysis after 
immunoprecipitation was performed on samples for human NAIP and c-Myc. 
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However, HEK293 cells may have low levels of endogenous NLRC4 that stabilize the 

interaction of human NAIP and flagellin. Therefore, an alternative approach such as 

biolayer-interferometry (BLI), or fluorescence polarization is needed to test whether 

flagellin or the T3SS inner rod and needle directly bind to human NAIP in the absence of 

an adaptor protein.  

It is possible that the interaction of flagellin with human NAIP is of lower affinity 

than flagellin binding to murine NAIP5, and that human NLRC4 may have higher affinity 

for NAIP, thus allowing for NLRC4 oligomerization and inflammasome activation. If this is 

the case, human NLRC4 may play a role in the promiscuous recognition of multiple 

bacterial ligands by human NAIP. We therefore sought to understand the role of NLRC4 

in promiscuous recognition of multiple bacterial ligands by the human NAIP/NLRC4 

inflammasome. To this end, we reconstituted the NAIP inflammasome in HEK293 cells 

with either mouse or human NLRC4, human caspase-1, and human IL-1b. We then 

delivered the T3SS inner rod protein from S. Typhimurium (PrgJ), the T3SS needle protein 

from B. thailandensis (YscF), or flagellin from L. pneumophila (FlaA) using an anthrax-

toxin based delivery system (von Moltke et al., 2012; Rauch et al., 2016). In this system, 

bacterial ligands are translationally fused to the N-terminal domain of Bacillus anthracis 

lethal factor (LFn). The LFn domain mediates cytosolic delivery of bacterial ligands by 

translocation through a membrane channel formed by the anthrax protective antigen (PA) 

protein. We used a translational fusion of LFn and PrgJ (LFn-PrgJ), LFn and FlaA (LFn-

FlaA), and LFn and YscF (LFn-YscF). To avoid confounding effects of TLR5 detection of 

flagellin, we used a truncated flagellin that lacks the TLR5-stimulating region but retains 

the ability to activate murine NAIP5 (Lightfield et al., 2008; Lightfield et al., 2011).  
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We first tested the ability of human NAIP and murine NAIP2 to form a functional 

inflammasome complex with human NLRC4 or murine NLRC4 in response to PrgJ. As 

shown previously, HEK293 cells ectopically expressing human NAIP and human NLRC4 

robustly processed IL-1b into the mature p17 form in response to PrgJ (Fig. 3.2 A) (Reyes 

Ruiz et al., 2017). Also, in agreement with previous findings, HEK293 cells expressing 

murine NAIP2 and murine NLRC4 in conjunction with human caspase-1 and IL-1b robustly 

processed IL-1b in response to PrgJ (Fig. 3.2 A) (Kofoed and Vance, 2011; Zhao et al., 

2011). HEK293 cells expressing murine NAIP2 and human NLRC4 were able to mediate 

inflammasome responses to PrgJ, as seen by the presence of processed IL-1b (Fig. 3.2 

A). However, HEK293 cells expressing both human NAIP and murine NLRC4 failed to 

process IL-1b in response to PrgJ (Fig. 3.2 A). These data suggest that murine NAIP2 

can functionally interact with both murine and human NLRC4, whereas human NAIP can 

only work in concert with its natural counterpart, human NLRC4, to mediate inflammasome 

responses to the T3SS inner rod.  

As our data suggested that murine NAIP2 can mediate functional inflammasome 

responses to the T3SS inner rod when coupled with human NLRC4, we next tested 

whether human NLRC4 could confer upon murine NAIP2 the ability to promiscuously 

recognize multiple bacterial ligands. In agreement with previous findings, ectopic 

expression of murine NAIP2 with murine NLRC4 results in inflammasome activation 

specifically in response to the T3SS inner rod PrgJ, as seen by the presence of processed 

IL-1b only in response to cytosolic delivery of PrgJ, but not in response to cytosolic delivery 

of flagellin or the T3SS needle protein YscF (Fig. 3.2 B) (Kofoed and Vance, 2011; Zhao 

et al., 2011). Murine NAIP2 co-expressed with human NLRC4 similarly resulted in robust 
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processing of IL-1b in response to PrgJ, but not in response to flagellin or YscF (Fig. 3.2 

B), indicating that the murine NAIP2/human NLRC4 inflammasome still exhibits specificity 

 

Figure 3.2: NAIP appears to dictate ligand specificity and subsequent 
inflammasome activation. (A-B) HEK293 cells were transfected with expression 
vectors encoding human caspase-1 and IL-1b. Where indicated, cells were also 
transfected with human NAIP, murine NAIP2, human NLRC4, murine NLRC4, or 
empty vector controls (-). After 18 h, cells were treated with PA+LFn-PrgJ, PA+LFn-
FlaA310-475, PA+LFn-YscF, or PA alone for 9 h. Immunoblot analysis was performed 
on cell lysates for mature and pro-IL-1b, and b-actin as a loading control.  



 
 

76 

 for the T3SS inner rod. Inflammasome activation in cells expressing each of the tested 

combinations of murine NAIP2 and murine or human NLRC4 required cytosolic delivery 

of bacterial ligands, as untreated cells or PA treatment alone did not contain high levels of 

processed IL-1b (Fig. 3.2 A-B). Our preliminary data suggest that NAIP, rather than 

NLRC4, dictates the specificity or promiscuity of bacterial ligand recognition. 

 

3.4.2. Generation of NLRC4- or NAIP-deficient THP-1 cells using CRISPR/Cas9  

In mouse macrophages, multiple NAIPs are required for inflammasome responses to the 

T3SS inner rod protein, the T3SS needle protein, and flagellin (Rauch et al., 2016; Zhao 

et al., 2016). In addition, both NAIPs and NLRC4 are required for the inflammasome 

response to S. Typhimurium infection (Miao et al., 2010b; Zhao et al., 2016). In human 

macrophages, the single hNAIP is required for maximal inflammasome responses to the 

T3SS inner rod, T3SS needle, and flagellin (Reyes Ruiz et al., 2017). However, it is still 

unclear whether human NAIP is completely essential for sensing these bacterial ligands 

or whether other NLRs can also mediate sensing of the T3SS inner rod, T3SS needle, 

and flagellin. Additionally, the roles of human NAIP and NLRC4 in anti-microbial 

responses to bacterial infections are poorly understood. Previous studies using siRNA-

mediated silencing of hNAIP indicate that hNAIP is required for maximal restriction of 

Legionella pneumophila (Vinzing et al., 2008).  

Here, we used the Clustered Regularly Interspersed Palindromic Repeat 

(CRISPR) system, in conjunction with the RNA-guided exonuclease Cas9, to disrupt the 

NAIP and NLRC4 genes and test their roles in inflammasome responses to T3SS 

components and flagellin, as well as during Salmonella infection. THP-1 cells were 

infected with lentiviral particles encoding Cas9 and gRNAs specific to either NAIP or 
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NLRC4 and a gene encoding puromycin resistance. After puromycin selection, single cell 

clones were expanded and sequenced to determine whether genome editing of NAIP and 

NLRC4 disrupted these two genes and resulted in a functional knockout. The NLRC4 

gRNA targets exon 3 and the targeted sequence is highlighted in Fig. 3.3 A. Out of 24 

clones tested for NLRC4 expression, we sequenced four clones that exhibited reduced 

NLRC4 expression. Of these four clones, two clones showed efficient CRISPR/Cas9 

editing of the NLRC4 gene. The sequencing chromatograms for the DNA region 

surrounding the target sequence of both NLRC4 alleles in each clone are shown (Fig. 3.3 

B-C). Additionally, sequence alignments of the WT THP-1 and NLRC4-/- THP-1 clones are 

shown for both NLRC4 alleles (Fig. 3.3 B-C). The NLRC4 alleles in clone 4 present with 

deletions of 31 or 13 nucleotides, resulting in premature stop codons in the translated 

protein sequence (Fig. 3.3 B). In clone 7, one allele for NLRC4-/- shows a small insertion 

and the other allele shows a deletion of 20 nucleotides. Both changes in the DNA result in 

protein products with premature stop codons. Western Blot analyses of both NLRC4-/- 

clone 4 and clone 7 showed abrogated NLRC4 expression as compared to WT THP-1 

cells (Fig. 3.4). Future experiments are needed to phenotypically validate these clones 

and to test the role of NLRC4 in responses to components from the T3SS and flagellar 

apparatus as well as antimicrobial responses to S. Typhimurium and other Gram-negative 

bacterial pathogens. 

To study the role of NAIP in recognition of different bacterial ligands from the T3SS 

and flagellar apparatus as well as antimicrobial responses to infection, THP-1 cells were 

transduced with lentiviral particles encoding Cas9 and gRNA against human NAIP. The 

targeted sequence for NAIP is in exon 4 and is highlighted in Fig. 3.5 A. After infection 

with lentiviral particles, we mediated puromycin selection. Single cell clones were then  
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Figure 3.3: Validation of NLRC4 mutant THP-1 clones generated with 
CRISPR/Cas9-mediated genome editing. (A) Schematic representation of the 
NLRC4 gene with exons (filled boxes) and introns (lines). gRNA target sequence is 
highlighted in red. (B-C) Sequencing chromatograms and sequence alignments of WT 
THP-1 and NLRC4-/- clones are shown for both alleles per clone. Red boxes highlight 
the mutated region. 
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expanded and sequenced. We saw reduced mRNA levels in six clones and sequenced 

three of these. One clone showed efficient CRISPR/Cas9 editing of both NAIP alleles. The 

 chromatogram for both alleles shows the sequencing results for the region of DNA 

containing the target sequence. Additionally, sequence alignments between WT THP-1 

and NAIP-/- THP-1 clone 12 are shown for both alleles (Fig. 3.5 B). The NAIP alleles in 

clone 12 show small deletions of 1 or 2 nucleotides and they both result in premature stop 

codons (Fig. 3.5 B). qRT-PCR analysis shows that the NAIP mRNA levels in NAIP-/- THP-

1 cells are severely diminished in comparison to those in WT THP-1 cells (Fig. 3.5 C). The 

other two clones sequenced also have mutations in one allele, but we are still in the 

process of determining the sequence of the second allele.  

 Our previous experiments used siRNA-mediated silencing of NAIP and determined 

that NAIP was required for maximal inflammasome responses to the components from the 

T3SS and flagellar apparatus (Reyes Ruiz et al., 2017). We next sought to determine 

whether NAIP is completely essential for recognition of the T3SS inner rod protein, T3SS 

needle protein, and flagellin or whether an additional NLR is responsible for residual 

inflammasome responses in siRNA-treated cells. The bacterial ligands were delivered into 

WT THP-1 cells or NAIP-/- THP-1 cells using the anthrax delivery system. In agreement 

with previous findings, WT THP-1 cells treated with PA+LFn-FlaA310-475 (referred to as 

FlaTox), PA+LFn-PrgJ (referred to as PrgJTox), or PA+LFn-YscF (referred to as YscFTox) 

exhibited robust inflammasome activation, as measured by IL-1β cytokine release (Fig. 

3.5 D) (Reyes Ruiz et al., 2017). In contrast, treatment of NAIP-/- THP-1 cells with FlaTox, 

PrgJTox, or YscFTox resulted in almost completely abrogated levels of IL-1b secretion 

(Fig. 3.5 D). As expected, NAIP deficiency had little effect on inflammasome responses 

to LPS+Nigericin, a known activator of the NLR pyrin domain-containing protein 3 (NLRP3) 
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inflammasome that does not engage NAIP (Fig. 3.5 D) (Mariathasan et al., 2006). 

Importantly, treatment with PA, LFn-FlaA310-475, LFn-PrgJ, or LFn-YscF alone did not 

activate the inflammasome, indicating that FlaA, PrgJ, and YscF induce inflammasome 

activation only when delivered into the host cell cytosol via PA. These results suggest that 

NAIP is essential for inflammasome responses to the T3SS inner rod, T3SS needle, and 

flagellin. Additionally, the NAIP-/- THP-1 cells have proven an appropriate tool with which 

to study NAIP-dependent antimicrobial responses to Salmonella infection and other Gram-

negative bacterial pathogens. 

 

Figure 3.4: Expression of NLRC4 in NLRC4 mutant THP-1 single cell clones 
generated by CRISPR/Cas9-mediated editing. Immunoblot analysis was performed 
on cell lysates for human NLRC4, and β-actin as a loading control. 
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Figure 3.5: Genetic and phenotypic validation of NAIP mutant THP-1 cells generated 
with CRISPR/Cas9 genome editing. (A) Schematic representation of the NAIP gene with 
exons (filled boxes) and introns (filled lines). gRNA target sequence is highlighted in red. 
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(B) Sequencing chromatograms and sequence alignments of WT THP-1 and NAIP-/- clone 
12 are shown for both alleles. Red boxes represent the mutated region. (C) qRT-PCR was 
performed to quantitate NAIP mRNA levels in WT THP-1 and NAIP-/- THP-1 cells. For the 
NAIP-/- THP-1 cells, NAIP mRNA levels were normalized to human HPRT mRNA levels 
and WT THP-1 cells. (D) THP-1 cells were primed with Pam3CSK4 for 16h and treated 
with PA alone, LFn-FlaA310-475  alone, LFn-PrgJ alone, LFn-YscF alone, PA+LFn-FlaA310-

475  (FlaTox), PA+LFn-PrgJ (PrgJTox), PA+LFn-YscF (YscFTox), or LPS+Nigericin for 6h. 
IL-1β supernatant levels were measured by ELISA. Bar graphs display the mean ± SD of 
triplicate wells. *p<0.05, *** p<0.001, **** p<0.0001 by unpaired t test. 
 

3.4.3 NAIP appears to be required for maximal inflammasome responses to 

Salmonella Typhimurium 

Our studies show that human NAIP is essential for inflammasome responses to 

components from the T3SS and flagellar apparatus. However, the requirement of NAIP 

for inflammasome responses to infection with Salmonella is unknown. To test the role of 

human NAIP in inflammasome responses to Salmonella infection, WT or NAIP-/- THP-1 

cells were infected with wild type (WT) or SPI-1 T3SS-deficient (ΔsipB) Salmonella 

Typhimurium (ST) strains. As expected, infection of WT THP-1 cells with WT ST results 

in robust IL-1b secretion, and this secretion is dependent on the T3SS, as infection with 

ΔsipB ST results in decreased inflammasome responses (Fig. 3.6 A). Interestingly, WT 

Salmonella-infected NAIP-/- THP-1 cells exhibited abrogated IL-1b secretion (Fig. 3.6 A). 

In contrast, NAIP deficiency had little effect on inflammasome responses to LPS+Nigericin 

(Fig. 3.6 B). Release of TNF, an inflammasome-independent cytokine, was not affected 

in NAIP-/- THP-1 cells when compared to WT THP-1 cells (Fig. 3.6 C). These preliminary 

data suggest that NAIP is required for maximal inflammasome responses to Salmonella. 

However, the data additionally suggest that there exists NAIP-independent inflammasome 

activity in response to Salmonella, as seen by residual IL-1b secretion in NAIP-/- THP-1 

cells. 
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3.4.4. CASP1 but not NLRP3 may be required for inflammasome responses to 

Salmonella  

Studies in murine macrophages suggest that both the NAIP/NLRC4 and NLRP3 

inflammasomes are required for maximal secretion of IL-1 cytokines in response to S. 

Typhimurium infection (Broz et al., 2010). As our preliminary data suggested that 

Salmonella-infected THP-1 cells undergo a NAIP-independent inflammasome response, 

Figure 3.6: NAIP appears to be required for maximal inflammasome responses 
to Salmonella Typhimurium. (A and C) WT and NAIP-/- THP-1 cells were primed 
with Pam3CSK4 for 16 hours and treated with PBS (Mock), wild type Salmonella (WT 
ST), or ΔsipB ST at an MOI of 20 for 6 hrs. (B) Cells were treated with LPS+Nigericin 
for 6h. (A-B) IL-1β supernatant levels were measured by ELISA. (C) TNF supernatant 
levels were measured by ELISA. Bar graphs display the mean ± SD of triplicate wells. 
Representative of two independent experiments. NS p>0.05, * p<0.05, *** p<0.001 by 
unpaired t test.   
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we next sought to determine the role of the NLRP3 inflammasome in antimicrobial 

responses to Salmonella infection.  THP-1 cells were infected with lentiviral particles 

encoding Cas9 and gRNAs specific to CASP1 or NLRP3. After 48 hours, the bulk 

population was selected in puromycin. Western Blot analysis of CASP1-/- THP-1 and 

NLRP3-/- THP-1 bulk populations showed decreased CASP1 and NLRP3 expression, 

respectively. WT THP-1 cells expressed high levels of both CASP1 and NLRP3 (Fig 

3.7A). These cells were then infected with WT ST, flagellin-deficient (ΔfliCfljB) ST, or 

ΔsipB ST. CASP1-/- THP-1 cells infected with WT ST or ΔfliCfljB ST exhibited reduced IL-

1b secretion as compared to infected WT THP-1 cells (Fig. 3.7B). In contrast, NLRP3-/- 

THP-1 cells had similar levels of IL-1b secretion as compared to WT THP-1 cells in 

response to ΔfliCfljB ST (Fig. 3.7B). However, a small but significant decrease in IL-1b 

secretion was observed in NLRP3-/- THP-1 cells as compared to WT THP-1 cells in 

response to WT ST (Fig. 3.7B). As expected, both CASP1-/- THP-1 and NLRP3-/- THP-1 

cells showed abrogated IL-1b secretion when treated with LPS+Nigericin, a known 

activator of the NLRP3 inflammasome that results in CASP1 activation and subsequent 

IL-1b secretion (Fig. 3.7C). These preliminary data suggest that CASP1, but not NLRP3, 

is indispensable for inflammasome responses to Salmonella infection. Additional 

experiments with sequence-validated CASP1-/- and NLRP3-/- single cell clones are needed 

to confirm these results and further understand the role of the NLRP3 inflammasome in 

antimicrobial responses to Salmonella infection. Altogether, these preliminary data 

suggest that Salmonella induces CASP1-dependent inflammasome responses that may 

involve the NAIP and NLRP3 inflammasomes in human macrophages. 
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Figure 3.7: CASP1, but not NLRP3, may be required for inflammasome 
responses to Salmonella. (A) Immunoblot analysis was performed on cell lysates for 
human NLRC4, human CASP1, and β-actin as a loading control. (B) WT THP-1, 
CASP1-/- bulk THP-1, and NLRP3-/- bulk THP-1 cells were primed with Pam3CSK4 for 
16 hours and treated with PBS (Mock), wild type Salmonella (WT ST), ΔsipB ST, or 
ΔfliCfljB ST at an MOI of 20 for 6 hrs. (C) Cells were treated with LPS+Nigericin for 
6h. (B-C) IL-1β supernatant levels were measured by ELISA. Bar graphs display the 
mean ± SD of triplicate wells. Representative of two independent experiments. NS 
p>0.05, * p<0.05, *** p<0.001, ****p<0.0001 by unpaired t test.   
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3.5. Discussion 

Our data suggest that specific or broad detection of bacterial ligands is dictated by 

NAIP rather than NLRC4. Additionally, we tested the requirement of human NAIP in 

recognition of the T3SS inner rod, T3SS needle, and flagellin by knocking out NAIP and 

NLRC4 in THP-1 cells with CRISPR/Cas9 technology. Our data suggest that human NAIP 

is essential for recognition of these bacterial ligands. We next tested the role of NAIP, 

caspase-1, and NLRP3 in inflammasome responses during S. Typhimurium infection. Our 

data suggest that Salmonella induces CASP-1 dependent inflammasome responses and 

that the NAIP inflammasome, rather than the NLRP3 inflammasome, appears to be the 

main inflammasome activated in human macrophages during Salmonella infection. In 

mice, bacterial ligands bind to specific NAIPs and do not bind to NLRC4 (Tenthorey et al., 

2017). Furthermore, specific recognition of bacterial ligands has been mapped to NBD-

associated a-helical domains in the murine NAIPs (Tenthorey et al., 2014). Our 

preliminary data suggest that flagellin binds human NAIP in HEK293 cells where NLRC4 

is not overexpressed. However, HEK293 cells may have low levels of endogenous NLRC4 

or a human-specific adaptor that can interact with human NAIP and flagellin. Thus, a 

different approach such as biolayer-interferometry (BLI) or fluorescence polarization is 

needed to test whether flagellin, the T3SS inner rod, or T3SS needle can directly bind to 

human NAIP. How human NAIP achieves broad recognition of multiple bacterial ligands 

and whether NAIP has differing affinities or binding kinetics remains to be determined. It 

is possible that human NAIP mediates recognition of multiple bacterial ligands through the 

NBD-associated a-helical domains, as this region has evolved under positive selection in 

both humans and primates (Tenthorey et al., 2014). 
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 Although human NAIP can mediate sensing of the T3SS inner rod, T3SS needle, 

and flagellin, genetic evidence of its role in antimicrobial responses to Salmonella infection 

is lacking. In an effort to more closely analyze immune responses to Salmonella infection, 

we generated NAIP or NLRC4 mutant THP-1 cells using CRISPR/Cas9 technology and 

sequence-validated single cell clones deficient for NAIP or NLRC4 expression. Our data 

suggest that NAIP appears to be essential for maximal inflammasome responses to 

Salmonella infection. In mice, the NAIP5/NLRC4 inflammasome is critical for defense 

against L. pneumophila infection (Growney and Dietrich, 2000; Wright et al., 2003; 

Zamboni et al., 2006; Kofoed and Vance, 2011; Zhao et al., 2011). The involvement of 

human NAIP in the restriction of L. pneumophila infection has also been shown via 

overexpression of NAIP or siRNA-mediated silencing of human NAIP (Vinzing et al., 

2008). It will be of interest to utilize our NAIP-deficient THP-1 cells and determine whether 

human NAIP is critical for restriction of S. Typhimurium, L. pneumophila, or other Gram-

negative bacterial infections. The mechanisms by which human NAIP may be defending 

against these bacterial infections are still unclear. In addition, our study raises intriguing 

evolutionary questions about NAIP/NLRC4 inflammasome activation. Promiscuous 

recognition may provide an evolutionary advantage to the host in restricting bacterial 

pathogens due to the host’s ability to recognize rapidly evolving microbial structures. In 

contrast, promiscuous recognition may be an evolutionary disadvantage to the host due 

to weaker affinities for given ligands, thereby decreasing signaling potency.  

Salmonella infection in human macrophages can also lead to activation of the non-

canonical inflammasome, which is dependent on human caspase-4 or caspase-5 (Casson 

et al., 2015). Interestingly, under our experimental conditions, most of the inflammasome 

responses to Salmonella appear to be caspase-1-dependent. In agreement with these 

results, human monocyte-derived macrophages infected with Salmonella exhibited IL-1b 
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secretion independently of caspase-4 (Casson et al., 2015). Future studies are needed to 

better understand the kinetics and respective consequences of the activation of the 

canonical and non-canonical inflammasomes. Even though human NAIP recognizes the 

T3SS inner rod, the T3SS needle, and flagellin, when these ligands are delivered into the 

host cytosol, studies are needed to determine whether all bacterial components are 

detected under physiological conditions. A mouse model of systemic infection with 

Salmonella engineered to ectopically express bacterial ligands was used to understand 

the role of murine NAIPs in host defense. NAIP2- and NAIP5-mediated recognition of the 

inner rod and flagellin, respectively, result in host protection and survival. NAIP1 

recognition of the T3SS needle appears to be dispensable for host defense (Zhao et al., 

2016). It would be of interest to determine whether human NAIP detection of these three 

bacterial ligands is functionally redundant or distinct in antimicrobial responses and host 

defense against Salmonella infection.  

In murine macrophages, both NLRC4 and NLRP3 are required for maximal 

inflammasome responses to S. Typhimurium (Broz et al., 2010). Additionally, mice lacking 

both NLRs are more susceptible to infection compared to WT or single knockout mice 

(Broz et al., 2010). However, the contribution of the human NLRP3 inflammasome in 

inflammasome responses to Salmonella is not yet understood. As our data suggested that 

there are NAIP-independent inflammasome responses in human macrophages, we also 

tested the role of NLRP3 in the inflammasome response to Salmonella infection. 

Interestingly, NLRP3 does not appear to be critical for inflammasome responses to 

Salmonella infection. However, we still need to determine whether the NLRP3 

inflammasome is involved in inflammasome responses during later stages of infection 

during which flagellin is downregulated and Salmonella expresses the SPI-2 T3SS. It 

would be of interest to test whether NLRP3 is important in other cell types or during later 
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stages of infection to mediate restriction of Salmonella. Additionally, other NLR family 

members may be involved in inflammasome responses to Salmonella infection as there 

are 22 known NLRs in humans. Our preliminary data provide insight into human-specific 

responses to Salmonella infection. The data presented here provide an important basis 

for elucidating antimicrobial mechanisms to other gram-negative bacteria that also utilize 

specialized secretion systems to cause disease. This understanding could provide a 

foundation for future therapeutics aimed at controlling bacterial infection or dampening 

pathological immune responses by the NAIP/NLRC4 inflammasome. 
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3.7. Materials and Methods 

3.7.1. Expression Plasmids Encoding Human Inflammasome Components 

For human inflammasome components, pCMV6-XL5 plasmids encoding NAIP 

(NM_004536), IL-1β (NM_000576), or empty vector were purchased from Origene. The 

NAIP (NM_004536) ORF was amplified from the pCMV6-XL5 vector, between flanking 
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sites XhoI and SalI, and a Kozak sequence (GCCACC) was engineered to precede the 

start codon. The following primers were used (5’-3’): 

NAIP forward: AATTAGATCTCTCGAGGCCACCATGGCCACCCAGCAGAAAG 

NAIP reverse: TATCGATACCGTCGACTTATTTCTGAATGATTGGAGAGAAC 

The NAIP PCR product was cloned into XhoI and SalI digested MSCV2.2 vector (Addgene 

plasmid #60206) using In-Fusion HD Cloning purchased from Takara Bio USA, Inc. (Cat 

# 638909). 

The pCI plasmid encoding human caspase-1 (NM_033292.3) was a gift from Kate 

Fitzgerald (Addgene plasmid # 41552) (Hornung et al., 2009). The human NLRC4 

(NM_021209) ORF was amplified from an expression vector (GeneCopoeia), between 

flanking BamHI and NotI sites, and a Kozak sequence (GCCACC) was engineered to 

precede the start codon. The following primers were used (5’-3’):  

NLRC4 forward: AAAAGGATCCGCCACCATGAATTTCATAAAGGACAATAGCC 

NLRC4 reverse: TTTTTGCGGCCGCTTAAGCAGTTACTAGTTTAAAATCACC 

The digested NLRC4 PCR product was cloned into a BglII/NotI digested MSCV2.2 vector. 

The MSCV2.2 vector was a gift from Russell Vance (Addgene plasmid #60206) (Kofoed 

and Vance, 2011).  

For mouse inflammasome components, mscv2.2-NAIP2 was a gift from Russell 

Vance (Addgene plasmid # 60201; http://n2t.net/addgene:60201; RRID:Addgene_60201) 

and mscv2.2-NLRC4 was also a gift from Russell Vance (Addgene plasmid # 60199; 

http://n2t.net/addgene:60199; RRID:Addgene_60199) (Kofoed and Vance, 2011). All 

plasmids were prepared with the Qiagen EndoFree Plasmid Maxi Kit.  
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3.7.2. Reconstitution of the Inflammasome in HEK293 cells 

HEK293 cells were maintained in DMEM supplemented with 10% (vol/vol) heat-

inactivated FBS, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 μg/mL streptomycin at 

37°C. Cells were replated at 7x104 cells/well in 500 µL replating media (DMEM + 10% 

FBS + 2 mM L-glutamine) in a 24-well plate. Transfection of expression plasmids 

(described above) was performed using Lipofectamine 2000 (Thermo Fisher Scientific). 

The amounts of plasmids used were 20 ng of human NAIP, 20ng murine NAIP2, 20 ng of 

human NLRC4, 20ng of murine NLRC4, 10 ng of human caspase-1, and 400 ng of human 

pro-IL-1β. 18 hours later, cells were treated with anthrax toxin components for cytosolic 

delivery of FlaA, PrgJ, or YscF. Cells were harvested 9 hours later and subjected to 

immunoblot analysis. 

 

3.7.3. Anthrax Toxin-Mediated Delivery of FlaA, PrgJ and YscF 

Recombinant proteins (PA, LFn-FlaA, LFn-PrgJ, and LFn-YscF) were kindly 

provided by Russell Vance (Rauch et al., 2016). In experiments with THP-1, cells were 

plated in a 48-well plate at a concentration of 2.0 x 105 per well. PA and LFn doses for in 

vitro delivery were 1 µg/ml PA for FlaTox, 4 µg/ml PA for PrgJTox and YscFTox) 500ng/ml 

LFn-FlaA310-475 (truncated C-terminus of L. pneumophila flagellin), 8 ng/ml LFn-PrgJ, and 

200 ng/mL LFn-YscF. 

 

3.7.4. Co-Immunoprecipitation assay 

For co-immunoprecipitation assays, the MSCV2.2 plasmid encoding c-Myc-FlaA 

was purchased from Addgene (Addgene plasmid #60203). The pCMV6-XL5 plasmid 

encoding NAIP (NM_004536) or empty vector were purchased from Origene. HEK293 

cells were plated at 2.0 x 106 cells/10 cm dish in 10mL of DMEM supplemented with 10% 
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(vol/vol) heat-inactivated FBS, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 μg/mL 

streptomycin. After 24 hours, plasmids were transfected using Lipofectamine 2000. The 

amounts of plasmids used were 4µg of c-Myc flagellin and 2µg of human NAIP. The 

amount of Lipofectamine 2000 used was 40µl per 10cm dish. After 18 hours, HEK293 

cells were resuspended in 10mL of growth media and centrifuged at 2000rpm for 10 

minutes at 4°C. For crosslinking of proteins, the pellet was resuspended in 500µl of 5mM 

BS3 (Thermo Fisher Scientific Cat # 21580) in Conjugation Buffer (20mM Sodium 

Phosphate, 0.15M NaCl, pH 7-9) and incubated for 30 minutes in ice. Quench solution 

(1M Tris, pH 7.5) was added to a final concentration of 20mM Tris and incubated for 15 

minutes at room temperature. The solution was spun down at 1200rpm for 10 minutes and 

the cell pellet was lysed in 500µL of NP40 cell lysis buffer (Thermo Scientific Cat # 

FNN0021) supplemented with a protease inhibitor cocktail (Sigma Aldrich Cat # 

11836170001) for 30 minutes on ice and vortexing at 10-minute intervals. The extract was 

spun down at 13,000rpm for 10 minutes at 4°C. 50µL of the supernatant was saved as the 

input sample.  

 To conjugate the antibody with the beads, 50µL of magnetic Dynabeads Protein G 

(Thermo Fisher Scientific Cat # 10003D) were placed on a magnet, the supernatant was 

removed, and the beads were resuspended in the c-Myc antibody solution. The c-Myc 

antibody (Clone 9E10) was purchased from Takara (Cat # 631206) and 5µg of antibody 

was diluted in 200µl of PBS + 0.02% Tween-20 per sample. The beads and antibody were 

incubated for 1 hour at 4°C. The beads conjugated with antibody were then washed and 

incubated with 5mM BS3 in Conjugation Buffer for 30 minutes at room temperature with 

rotation. Quenching Buffer was added and incubated for 15 minutes at room temperature. 

The sample with the target antigen was incubated with the conjugated beads overnight at 
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4°C with rotation. The next morning, the tube was placed in the magnet and the beads 

were washed 3 times with PBS.  For elution of target antigen, the beads were resuspended 

in 50µl of 1X SDS/PAGE Sample Buffer and boiled for 5 minutes. The samples were then 

removed from the Dynabeads using the magnet and assayed for Western Blot. 

 

3.7.5. Generation of CRISPR Cas9 knockouts in THP-1 cells 

 To mediate NAIP, NLRC4, PYCARD, or CASP1 knockout in THP-1 cells, plasmids 

encoding the desired guide RNA (gRNA) and Cas9 in the pLentiCRISPR v2 plasmid were 

purchased from GenScript. The following target sequences were used: 

NAIP: gRNA 1 (ACATTGCCAAGTACGACATA) 

NLRC4: gRNA 1 (AAACATCATTTGCTGCGAGA) 

NLRP3: gRNA 1 (CGAAGCAGCACTCATGCGAG) 

CASP1: gRNA 1 (GACAGTATTCCTAGAAGAAC) 

 For the production of lentiviral particles, pCMV-VSV-G and psPAX2 plasmids were 

kindly provided by Paul Bates at the University of Pennsylvania. HEK293T cells were 

plated at 2.5X106 cells per 10cm dish in 10mL of DMEM supplemented with 10% (vol/vol) 

heat-inactivated FBS, 2 mM L-glutamine, 100 IU/mL penicillin, and 100 μg/mL 

streptomycin. After 24 hours, plasmids were transfected using the Lipofectamine 2000 

protocol. The amounts of plasmids used were 1µg of pCMV-VSV-G, 2.5µg of psPAX2, 

and 8µg of pLentiCRISPR v2 with appropriate gRNA. The amount of Lipofectamine 2000 

used was 50µL per dish. Transfected HEK293T cells were incubated for 18 hours at 37°C, 

and the media was then aspirated and replaced with 6mL of fresh growth media. After 16-

18 hours, the supernatant containing lentiviral particles was harvested and filtered using 

0.22µM filter. THP-1 cells were infected in 1mL of viral-containing media with 8µg/mL of 
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polybrene. The cells were spin-infected at 1250 ´ g for 90 min at 25°C, then incubated at 

37°C for 48 hours. After 48 hours, puromycin was added to a final concentration of 

1.0µg/mL. The cells were maintained in puromycin for 3 weeks and then harvested for 

Western Blot analysis and clonal selection.  For clonal selection, cells were plated in 96-

well plates at 0.5 cell per well or 2 cells per well in 200µl of growth media and were 

incubated for 4-8 weeks until single clones were visible in the bottom of the well. Single 

clones were then expanded from a 96-well plate through a series of multi-well plates 

ending in 10cm dishes. Cells were then plated in 48-well plates at a concentration of 2.0 

x 105 cells per well in 500µl of media and harvested for purification of RNA, DNA, and 

Western Blot assays. 

 

3.7.6. Validation of CRISPR Cas9 THP-1 single clones for NAIP and NLRC4 

knockouts 

  To validate single cell clones after CRISPR Cas9 editing, DNA was purified using 

the DNeasy Blood and Tissue kit (Qiagen). The genomic region containing the target 

sequence was then amplified by PCR using the following primers (all 5’ to 3’): 

NAIP forward: CCGTACAGCTCATGGATACCACAG 

NAIP reverse: GTACCTGTAAAGACAAAGCCAGCC 

NLRC4 forward: CCCAGCCGGATATGCACATT 

NLRC4 reverse: TCTGCCATGGGGAAGATGGAT 

 The PCR product was purified using the PCR Cleanup kit (Qiagen). A poly A-tail 

was added to the purified PCR product by adding together 7µl of PCR product, 5 Units of 

Taq DNA polymerase, 1X PCR Buffer containing MgCl2, and 0.2mM dATP. The reaction 

was then incubated at 70°C for 30 minutes. 2µL of this product was then ligated into the 
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pGEM-T vector and transformed into DH5a competent cells using the protocol in the 

pGEM-T Vector System Protocol (A1360; Promega). Positive colonies were sequenced 

using a T7 Promoter Primer (5′ TAATACGACTCACTATAGGG 3′).  

 

3.7.7. Bacterial Strains and Growth Conditions 

Salmonella enterica serovar Typhimurium WT, ΔsipB (Lawley et al., 2006), and 

ΔfliCfljB (Wynosky-Dolfi et al., 2014) isogenic strains on the SL1344 background were 

used. Three hours before infection, Salmonella were diluted into Luria-Bertani (LB) broth 

containing 300 mM NaCl and grown for 3 h standing at 37°C to induce SPI-1 expression 

(Lee and Falkow, 1990).  

 

3.7.8. THP-1 Monocytic Cell Line Experiments 

THP-1 cells (TIB-202; American Type Culture Collection) were maintained in RPMI 

supplemented with 10% (vol/vol) heat-inactivated FBS, 0.05 mM β-mercaptoethanol, 100 

IU/mL penicillin, and 100 μg/mL streptomycin at 37°C in a humidified incubator. Two days 

before infection, cells were replated in media lacking antibiotics at a concentration of 2.0 

x 105 cells/well in a 48-well plate. THP-1 cells were differentiated into macrophages with 

200 nM phorbol 12-myristate 13-acetate (PMA) for 24 hours. After 24 hours, cells were 

primed with 100ng/mL of Pam3CSK4. The next day, THP-1 cells were infected with 

Salmonella. Bacterial cultures were pelleted at 6,010 ´ g for 3 min and washed with PBS. 

Bacteria were then resuspended in PBS and added to the cells at a multiplicity of infection 

(MOI) of 20. The infected cells were then centrifuged at 290 ´ g for 10 min and incubated 

at 37°C. After 1 h of infection, 100µg/mL of gentamicin was added to each well to prevent 

extracellular bacterial growth. Infections proceeded at 37°C for a total of 6 h. Control cells 
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were mock-infected with PBS. For the LPS+Nigericin control, cells were primed with 

500ng/mL of LPS for 4 hours and treated with 10µM Nigericin for 6 hours.  

 

3.7.9. Quantitative RT-PCR Analysis 

Cells were lysed and RNA was isolated using the RNeasy Plus Kit (Qiagen).  

Synthesis of the first strand cDNA was performed using Superscript II reverse 

transcriptase and oligo (dT) primer (Invitrogen). Quantitative PCR was performed with the 

CFX96 real-time system (Bio-Rad) using the SsoFast EvaGreen Supermix with LOW ROX 

kit (Bio-Rad). The following primers were used (all 5’-3’): 

NAIP forward: GCATTCTCCTCTATTAGACTAG 

NAIP reverse: GCCAACTGAACTGCATCTAG 

HPRT forward: CCTGGCGTCGTGATTAGTGAT  

HPRT reverse: AGACGTTCAGTCCTGTCCATAA  

For analysis, mRNA levels of CRISPR-modified THP-1 cells were normalized to control 

THP-1 cells using the 2-ΔΔCT (cycle threshold) (Livak and Schmittgen, 2001) method to 

calculate fold induction. 

 

3.7.10. ELISA 

Harvested supernatants from infected cells were assayed using ELISA kits for IL-

1β (BD Biosciences Cat # 557953) and TNF-a (Biolegend Cat # 430201). 

 

3.7.11. Immunoblotting 

Infected or treated cells were lysed directly with 1X SDS-PAGE sample buffer. 

Protein samples were boiled for 5 minutes, separated by SDS-PAGE, and transferred to 
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PVDF Immobilon-P membranes (Millipore). Samples were then probed with antibodies 

specific for IL-1β (8516; R&D Systems), NAIP (ab25968; Abcam), NLRC4 (12421S; Cell 

Signaling), caspase-1 (2225S; Cell Signaling), c-Myc (631206; Takara), and NLRP3 

(15101S; Cell Signaling). As a loading control, all blots were probed with anti-β-actin 

(4967L; Cell Signaling). Detection was performed with HRP-conjugated anti-mouse IgG 

(F00011; Cell Signaling) or anti-rabbit IgG (7074S; Cell Signaling).  

 

3.7.12. Statistical analysis 

Prism 6.0 (GraphPad Software) was utilized for the graphing of data and all 

statistical analyses. Statistical significance for experiments with THP-1 cells was 

determined using the unpaired two-way t test. Differences were considered statistically 

significant if the P value was <0.05. 
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CHAPTER 4 
 

A. Data Summary 

Inflammasomes are critical for host defense against bacterial pathogens (Broz and 

Dixit, 2016; Broz, 2019). Most studies of bacterial interactions with the innate immune 

system are conducted in mice. However, there are key differences between the innate 

Figure 4.1: Model for human NAIP inflammasome responses to bacterial T3SS 
and flagellin proteins. Human NAIP mediates promiscuous recognition of the SPI-1 
T3SS inner rod, SPI-1 T3SS needle, and flagellin. The T3SS inner rods from multiple 
bacterial species can also activate the human NAIP/NLRC4 inflammasome. However, 
the SPI-2 T3SS from S. Typhimurium evades immune recognition by human NAIP. 
Future directions for this project are highlighted and discussed in this chapter.  
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immune genes encoded by mice and those encoded by humans (Tables 1.1 and 1.2). 

Therefore, a better understanding of inflammasome responses in humans is necessary to 

inform the development of novel therapeutics for bacterial infections. To address this 

knowledge gap, we have been investigating human innate immune responses to Gram-

negative bacterial infections. The work presented in this dissertation defined the human-

specific innate immune recognition of bacterial T3SS and flagellin proteins by the 

NAIP/NLRC4 inflammasome (Fig. 4.1).  

In Chapter 2, we found that in addition to the T3SS needle protein and flagellin, 

human NAIP can also sense the T3SS inner rod from multiple bacterial species. 

Furthermore, our data indicate that the S. Typhimurium SPI-2 T3SS inner rod, SsaI, which 

is required for intracellular bacterial replication, does not activate the inflammasome in 

human macrophages. The basis for this evasion of human NAIP is not understood, but 

studies in murine macrophages suggest that divergent sequences in the C-terminus of 

SsaI allow for evasion of NAIP2-mediated immune detection in mice. Furthermore, we 

determined that a single isoform of human NAIP is sufficient to activate inflammasome 

responses to the T3SS inner rod, needle, and flagellin. It remains to be determined 

whether other NAIP isoforms have specificity for a given bacterial ligand. Our findings 

indicate that, in contrast to the requirement for multiple NAIPs in the murine model, 

promiscuous recognition of multiple bacterial ligands is conferred by a single NAIP in 

humans.  

In Chapter 3, we utilized CRISPR/Cas9 technology to generate NAIP and NLRC4 

knockout cell lines and tested the role of NAIP in recognition of bacterial ligands from the 

T3SS and flagellar apparatus as well as the role for inflammasome responses to 

Salmonella infection. Our preliminary data suggest that NAIP is essential for 

inflammasome responses to the T3SS inner rod, T3SS needle, and flagellin. In addition, 
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NAIP, but not the adaptor protein NLRC4, dictates the specificity or promiscuity of ligand 

recognition. We also found that human NAIP does not interact with murine NLRC4. Similar 

to the murine model where NAIPs, but not NLRC4, bind bacterial ligands, human NAIP 

appears to bind flagellin in the absence of NLRC4. However, one caveat of this experiment 

is that HEK293 cells may be expressing low endogenous levels of NLRC4 or a human-

specific adaptor protein that also interacts with human NAIP and flagellin. Therefore, we 

will be taking additional approaches such as Biolayer Interferometry (BLI) and 

fluorescence polarization to test whether human NAIP directly binds the T3SS inner rod, 

T3SS needle, and flagellin. To understand the role of the NAIP/NLRC4 inflammasome in 

antimicrobial responses to S. Typhimurium, we infected our THP-1 cell lines deficient in 

NAIP or NLRC4. Our data suggest that NAIP is necessary for maximal inflammasome 

responses against S. Typhimurium. However, there are NAIP-independent inflammasome 

responses to Salmonella infection. In addition, caspase-1 appears to be required whereas 

NLRP3 may be dispensable for inflammasome responses. 

Overall, our studies raise intriguing questions about the evolution and mechanisms 

of NAIP/NLRC4 inflammasome activation. In this chapter, I will be discussing open 

questions and proposing future studies to better understand the NAIP/NLRC4 

inflammasome and its role in antimicrobial responses to gram-negative bacterial infections 

and human health. 

 

B. Future Directions 

How does human NAIP achieve broad recognition of multiple bacterial ligands? 

 Our data show that human NAIP is a generalist, as it is capable of functionally 

detecting the T3SS inner rod, T3SS needle, and flagellin. In contrast, the murine NAIPs 

are specialists as they each recognize only one bacterial protein (Kofoed and Vance, 
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2011; Zhao et al., 2011; Rayamajhi et al., 2013; Yang et al., 2013; Rauch et al., 2016; 

Zhao et al., 2016). The bacterial ligands recognized by the NAIP/NLRC4 inflammasome 

are structurally related, as they all belong to the T3SS and flagellar apparatus, which are 

thought to be of a common evolutionary origin (Saier, 2004). The T3SS inner rod, needle, 

and flagellin proteins exhibit low sequence conservation, but have some structural 

homology. Therefore, it is possible that human NAIP may recognize structural elements 

common to all three ligands. In mice, both NAIP5 and NAIP2 recognize two conserved 

structures in flagellin and the T3SS inner rod, respectively. These two conserved surfaces 

are located at the central portion and at the C-terminus of the bacterial ligands (Miao et 

al., 2010b; Tenthorey et al., 2017). Specifically, in flagellin they correspond to residues 

31-33 (RLS motif) and 470-473, and in the T3SS inner rod, PrgJ, they correspond to 

residues 32-34 (RLS motif) and 95-101. These two surfaces in flagellin and the T3SS inner 

rod are highly conserved among bacterial species (Miao et al., 2010b; Tenthorey et al., 

2017). Despite recognizing similar motifs in flagellin and the T3SS inner rod, NAIP5 and 

NAIP2 are highly specific to their cognate ligand. Interestingly, NAIP5 divergence from 

NAIP2 is concentrated in the regions where flagellin binds (Tenthorey et al., 2017). The 

conserved motifs in flagellin and the T3SS inner rod may be important for recognition by 

NAIPs, but variable regions surrounding these conserved motifs may additionally 

contribute to the specificity of ligand recognition by the murine NAIPs. Sequence 

divergence in human NAIP may allow for recognition of these variable regions in all three 

bacterial ligands, therefore allowing for promiscuous recognition. Another possibility is that 

the sequence differences in human NAIP may allow for the presence of multiple binding 

pockets for the bacterial ligands. In this case, the T3SS inner rod, T3SS needle protein, 

and flagellin may bind to different regions of the single human NAIP. 
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 To test what portion of human NAIP allows for its broad recognition of bacterial 

ligands, we will use chimeric proteins made from the murine and human NAIPs. 

Reconstitution of the inflammasome with the different chimeric proteins and delivery of 

bacterial ligands will allow for the identification of regions in human NAIP critical for the 

recognition of bacterial ligands. This approach was used to determine the domain 

responsible for specific recognition of bacterial components by the different murine NAIPs 

(Tenthorey et al., 2014). We hypothesize that, similar to the murine NAIPs, the internal 

region composed of the NBD and adjacent a-helical domains will be required for specificity 

or promiscuity in NAIP. An additional approach would be to determine the function of NAIP 

in different host species and gain insights into the features that dictate NAIP to be a 

generalist or specialist. NAIP from multiple eukaryotic species can be cloned and used to 

reconstitute the inflammasome in HEK293 cells. We will perform sequence analysis of 

generalist versus specialist NAIPs and search for conserved motifs between the two 

modes of recognition. We can then perform mutagenesis analyses to confirm the 

importance of the same motifs in broad or specific recognition.  

To test if the same conserved residues in the bacterial ligands are required for 

immune recognition by human NAIP, as they are required for recognition by the murine 

NAIPs, we will be performing alanine scanning in the T3SS needle, T3SS inner rod, and 

flagellin. We performed sequence alignments of all three bacterial ligands recognized by 

human NAIP and identified three highly conserved amino acids present in the three 

bacterial ligands. Future studies will determine if these amino acids are important for 

immune recognition by human NAIP. Additionally, cryo-electron microscopy of the 

NAIP/NLRC4 inflammasome bound to bacterial ligands will shed light into the mechanisms 

of activation by multiple bacterial ligands.  
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The affinities and binding kinetics of multiple NLRs to their cognate ligands have 

been determined (Schaefer et al., 2017; Hara et al., 2018). However, the affinities and 

binding kinetics of both murine and human NAIPs to components of the T3SS and flagellin 

are still unknown. We hypothesize that broad recognition by human NAIP will lead to a 

weaker binding affinity to each bacterial ligand compared to the specific murine NAIPs. To 

test this, we will perform Bio-layer interferometry and fluorescence polarization studies to 

determine the affinity and binding kinetics of each NAIP to their cognate ligands. Overall, 

the proposed studies will define the mechanism by which human NAIP achieves broad 

recognition of multiple bacterial ligands. 

 

What is the role of NAIP in antimicrobial responses to Gram-negative bacterial 

infections? 

Innate immunity mediated by murine NAIPs can defend against a variety of Gram-

negative bacterial pathogens through several mechanisms. Flagellin-mediated activation 

of NAIP5 in mice can restrict L. pneumophila infection in vivo and in vitro (Growney and 

Dietrich, 2000; Wright et al., 2003; Zamboni et al., 2006; Kofoed and Vance, 2011; Zhao 

et al., 2011). A/J mice expressing a hypomorphic allele of NAIP5 are more susceptible to 

L. pneumophila infection (Diez et al., 2003). The NAIP5/NLRC4 inflammasome contributes 

to the control of bacterial replication by enhancing fusion of the Legionella-containing 

vacuole (LCV) with the lysosome (Amer et al., 2006; Fortier et al., 2007). Activation of the 

NAIP/NLRC4 inflammasome and IL-1 signaling are also important for host defense 

against S. Typhimurium, as Nlrc4-/- and Il1r1-/- mice are more susceptible to orogastric 

infection (Franchi et al., 2012). In addition, pyroptosis leads to the production of pore-

induced intracellular traps (PITs), which can trap viable bacteria and recruit neutrophils to 

mediate clearance through efferocytosis (Jorgensen et al., 2016).  
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Most studies looking at the role of NAIP in antimicrobial responses to bacterial 

infection have been performed in mice. We sought to determine the role of human NAIP 

in antimicrobial responses to S. Typhimurium infection. Our data suggest that human NAIP 

and caspase-1 are both important for inflammasome responses to Salmonella. Future 

studies are needed to determine whether human NAIP promotes restriction of intracellular 

bacterial replication. In addition, by assessing the necessity of gasdermin-D in THP-1 

cells, we will determine whether cell death downstream of the NAIP/NLRC4 

inflammasome is important for the control of Salmonella. Microscopy studies looking at 

lysosomal markers and the Salmonella-containing vacuole (SCV) are needed to test 

whether NAIP activation in humans promotes fusion with the lysosome and further 

degradation of the bacteria.  

Activation of the NAIP/NLRC4 inflammasome in intestinal epithelial cells is also 

critical for host defense against S. Typhimurium in a mouse model of infection. 

Inflammasome activation drives expulsion of infected enterocytes to control Salmonella 

replication in the intestine (Sellin et al., 2014; Rauch et al., 2017). Studies in our laboratory 

are currently defining the role of human NAIP in intestinal epithelial cells for antimicrobial 

responses to Salmonella infection. Human intestinal organoid cultures can be used to 

study expulsion of enterocytes as a consequence of NAIP/NLRC4 inflammasome 

activation. Overall, a better understanding is needed to determine if human NAIP is 

important for control of bacterial infection, as well as elucidate the mechanism NAIP uses 

to promote host defense. A humanized mouse can be generated to understand in vivo 

responses downstream of human NAIP activation. In this case, both human NAIP and 

NLRC4 should be incorporated in the mouse, as our data indicate that human NAIP does 

not interact with murine NLRC4 (Figure 3.1).  
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Does promiscuity or specificity in NAIP affect its potential to mount antimicrobial 

responses? 

Promiscuous recognition by human NAIP may provide a selective advantage, as 

it may be more difficult for pathogens to simultaneously evade the recognition of all three 

bacterial ligands by human NAIP. NAIP5 contacts flagellin at residues that are typically 

buried within the flagellar filament when flagellin is polymerized. Mutations in flagellin that 

disrupt the interaction with NAIP5 therefore disrupt the flagellar filament formation, which 

results in a lack of motility (Tenthorey et al., 2017). Perhaps similar residues are targeted 

for recognition by human NAIP in order to limit immune evasion by pathogens. 

Additionally, similar studies are needed to determine whether the mutation of residues 

recognized by human NAIP in the T3SS inner rod and needle proteins leads to a non-

functional T3SS. Mutations can be generated in Salmonella, and we can take advantage 

of a reporter system to validate the functionality of the T3SS. Salmonella will be 

transformed with a plasmid containing β-lactamase fused to an effector protein known to 

be secreted through the T3SS. After infection, cells are loaded with a membrane-permeant 

β-lactamase substrate. In the presence of a functional T3SS, the translocation of β-

lactamase will lead to substrate cleavage and a shift in emission fluorescence 

(Copenhaver et al., 2015). Another selective advantage for promiscuous recognition may 

be to diversify protein functionality, allowing for responses to multiple pathogenic stimuli. 

In contrast, promiscuous recognition by human NAIP may only provide a selective 

advantage in certain circumstances, as it may affect the potency of its antimicrobial 

activities. One possible tradeoff of a promiscuous mode of recognition by human NAIP 

may be weaker binding affinities or altered binding kinetics to its bacterial ligands, which 

may decrease signaling potency. In contrast, each murine NAIP may possess a higher 

affinity or half-life in binding to its cognate ligand and thus confer heightened antimicrobial 
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activities. Indeed, compared to mouse macrophages, human macrophages do not seem 

to be as responsive to flagellin, as they are more permissive for intracellular bacterial 

replication of flagellated bacteria (Vinzing et al., 2008). The basis for these differences is 

unknown, but one possibility is that murine NAIP5 detects flagellin with a higher affinity 

than does human NAIP. Now that we have generated THP-1 cell lines deficient in human 

NAIP, we can add a copy of human NAIP or murine NAIP5 and compare the ability of 

each NAIP to mount antimicrobial responses against L. pneumophila infection. L. 

pneumophila would be a good model since it does not contain a T3SS, and, therefore, it 

is expected to only activate human NAIP through recognition of cytosolic flagellin.  

 

Is recognition of bacterial ligands redundant or distinct in the initiation of 

antimicrobial properties? 

 During infection, several Gram-negative bacteria downregulate or halt the 

expression of flagellin (Chain et al., 2004; Tominaga et al., 2005; Cummings et al., 2006; 

Winter et al., 2010b). The relative contribution of recognition of the T3SS inner rod, needle, 

and flagellin by human NAIP for antimicrobial responses is unknown. In mice, it has been 

suggested that detection of the T3SS inner rod, but not the needle protein, by the 

NAIP/NLRC4 inflammasome leads to the clearance of S. Typhimurium. This observation 

was made by infecting WT or NLRC4 deficient mice with Salmonella overexpressing the 

T3SS inner rod or the needle protein (Miao et al., 2010b). In recent studies, the relative 

contribution of the murine NAIPs in host defense against S. Typhimurium was determined. 

In vitro studies suggest that there is redundancy among various NAIPs for inflammasome 

responses, as Naip1-/-, Naip2-/-, and Naip5-/- bone marrow-derived macrophages (BMDMs) 

infected with S. Typhimurium had similar levels of pyroptosis compared to WT bone 

marrow-derived macrophages. In contrast, BMDMs deficient in all murine NAIPs (Naip1-
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6D/D) had a defect in cell death when infected with Salmonella (Rauch et al., 2016). 

Infection of BMDMs with a flagellin-deficient strain of Salmonella or WT S. flexneri 

suggests that the recognition of the T3SS inner rod by NAIP2 is required for optimal 

inflammasome responses, whereas the recognition of the T3SS needle protein by NAIP1 

is dispensable (Zhao et al., 2016). However, this phenotype may be due to lower NAIP1 

expression levels. Additionally, S. Typhimurium was engineered to mediate ectopic 

expression of each of the bacterial ligands from the SPI-1 T3SS and flagellin and to 

secrete each bacterial ligand using the SPI-2 T3SS. Mice infected with Salmonella 

ectopically expressing flagellin or the T3SS inner rod have increased survival as compared 

to mice infected with WT Salmonella or Salmonella expressing the T3SS needle protein 

(Zhao et al., 2016). These results suggest that the recognition of bacterial ligands by 

murine NAIPs can be redundant or specific during different stages of infection.  

To test whether recognition of bacterial ligands by human NAIP is redundant or 

distinct in the initiation of antimicrobial responses, WT or NAIP-deficient THP-1 cells can 

be infected with Salmonella engineered to express and deliver distinct bacterial ligands 

using the SPI-2 T3SS. Additionally, the knowledge of residues required for immune 

recognition by human NAIP can be utilized to mutate the T3SS inner rod, T3SS needle, 

or flagellin in S. Typhimurium to abolish specific recognition of distinct bacterial 

components. Recognition of bacterial ligands by human NAIP leading to redundancy in 

antimicrobial activities would limit evolutionary immune evasion mechanisms by 

pathogens, as it would be less likely to simultaneously mutate several distinct bacterial 

components. S. Typhimurium has evolved to express a second T3SS (SPI-2 T3SS) to 

survive and replicate inside of host cells. Our data indicate that the SPI-2 T3SS inner rod, 

SsaI, evades immune recognition by human NAIP. In mice, it is suggested that SsaI 
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evades immune recognition by NAIP2 through amino acid changes in its C-terminus (Miao 

et al., 2010b). It remains to be determined whether similar amino acid changes in SsaI 

result in evasion of immune recognition by human NAIP. Some Salmonella serovars, 

including S. Typhi, are human-adapted and cause systemic disease (Broz et al., 2012). It 

will be of interest to determine whether S. Typhi can secrete effector molecules that 

specifically target the NAIP/NLRC4 inflammasome, as well as whether inflammasome 

responses play any role in host tropism.  

 

Are there additional bacterial ligands recognized by the NAIP/NLRC4 

inflammasome? 

 In mice, ligands for four of the seven distinct NAIPs are known: NAIP1 recognizes 

the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and both NAIP5 

and NAIP6 recognize flagellin (Kofoed and Vance, 2011; Zhao et al., 2011; Rayamajhi et 

al., 2013; Yang et al., 2013; Rauch et al., 2016; Zhao et al., 2016). It will be of interest to 

determine if additional bacterial ligands can be detected by the remaining three NAIPs or 

by the single human NAIP. As the T3SS and flagellar apparatus are evolutionarily related, 

it remains to be determined whether bacterial ligands from the flagellar apparatus basal 

body are recognized. Interestingly, BMDMs infected with a strain of Salmonella lacking a 

hook-associated protein (FlgK) from the flagellar apparatus show reduced cell death 

compared to WT-infected macrophages (Miao et al., 2006). We will be using different 

approaches to mediate cytosolic delivery of FlgK and test whether it can be recognized by 

the NAIP/NLRC4 inflammasome. Additionally, we can perform pull-down assays for 

human NAIP and mass-spectrometry to identify potential binding partners during infection 

with S. Typhimurium. 
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What are the roles of other caspases in inflammasome responses downstream of 

human NAIP activation? 

 The apoptotic caspase, caspase-8, can bind ASC and be recruited to the NLRC4 

inflammasome-dependent ASC speck during Salmonella infection of macrophages 

(Masumoto et al., 2003; Man et al., 2013). Caspase-8 compensates for the loss of 

caspase-1 in intestinal epithelial cells and mediates expulsion of infected enterocytes 

downstream of NAIP/NLRC4 inflammasome activation (Rauch et al., 2017). Therefore, 

caspase-8 contributes to NAIP/NLRC4 responses against S. Typhimurium infection in 

mice. However, the roles of caspase-8 and its close ortholog, caspase-10, in human 

NAIP/NLRC4 inflammasome responses are unknown. Human patients with inactivating 

mutations in caspase-8 are more susceptible to infections (Chun et al., 2002). Studies in 

our laboratory will use siRNA-mediated silencing and CRISPR-Cas9 technology to target 

caspase-8 and caspase-10 and test their role in inflammasome responses to Salmonella 

infection. Our preliminary data suggest that most inflammasome responses to Salmonella 

require CASP1. However, it is possible that caspase-8 and caspase-10 have a role in 

other host cells or stages of infection. 

 In L. pneumophila or S. Typhimurium-infected primary human macrophages, 

secretion of IL-1b requires caspase-1, whereas IL-1a secretion does not. Instead, 

secretion of IL-1a requires caspase-4 (Casson et al., 2015).  Our data suggest that 

infection with S. Typhimurium and delivery of bacterial ligands leads to IL-1a secretion 

which is dependent on activation of the NAIP/NLRC4 inflammasome. It will be of interest 

to determine whether activation of the NAIP/NLRC4 inflammasome can also recruit human 

caspase-4 or caspase-5 to the same inflammasome to aid the secretion of IL-1a. We can 

perform microscopy analyses of the NAIP/NLRC4 inflammasome, co-
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immunoprecipitation, or native gels and immunoblot analyses to determine which host 

caspases are being recruited to the same macromolecular complex. 

 

Can other NLRs mediate recognition of bacterial ligands and host defense against 

Gram-negative bacterial infections? 

 In mice there are 35 NLRs whereas there are 23 in humans (Table 1.1). There has 

been an expansion of NAIP and NLRP genes in mice. However, there are NLRs specific 

to humans, such as NLRP7, NLRP8, NLRP11, and NLRP13. It will be of interest to 

mediate an siRNA or CRISPR/Cas9 screen for the known human NLRs to determine 

whether additional NLRs mediate the recognition of components from the T3SS and 

flagellin or unknown bacterial ligands to mediate host defense against S. Typhimurium 

infection. Additionally, it would be of interest to determine whether mutations in any of 

these genes in humans increases the risk of infection or results in autoinflammation.  

 

Can activation of human NAIP result in excessive inflammation and pathological 

outcomes? 

 Gram-negative bacteria cause about 70% of hospital-acquired infections in 

intensive care units (Peleg and Hooper, 2010). Infected cells use innate immune 

mechanisms to control bacterial infection. However, in many cases, uncontrolled immune 

responses to bacterial infection can lead to pathological outcomes such as sepsis. 

Annually, there are approximately 300,000 cases of Gram-negative septicemia in the US 

with a >30% mortality rate (Martin et al., 2003; Mayr et al., 2014). These infections are 

increasingly difficult to treat with the rise of multidrug-resistant Gram-negative bacteria. 

Additionally, alternative approaches to treat sepsis developed in mouse models failed 

during clinical trials in humans (Fink and Warren, 2014; Marshall, 2014). The basis for 
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these failures is unclear, but differences between mouse and human innate immune 

responses may play an important role. Therefore, understanding human-specific innate 

immune responses to pathogens is needed to identify more effective approaches for 

treating bacterial infections or sepsis in humans. 

Although inflammasome responses are protective against multiple bacterial 

pathogens, excessive inflammation caused by the inflammasome has the potential to be 

pathological. In mice, gut injury and disruption of the microbiota results in lethal systemic 

inflammation resembling sepsis. This sepsis-like disease has been associated with the 

systemic spread of a multidrug-resistant pathobiont and required activation of the 

NAIP5/NLRC4 inflammasome (Ayres et al., 2012). It remains to be determined whether 

disruption in intestinal homeostasis in humans can result in members of the microbiota 

leading to a sepsis-like disease that is dependent on the human NAIP/NLRC4 

inflammasome. As mentioned previously, promiscuous recognition of human NAIP may 

result in decreased signaling potency as compared to the murine NAIPs. This potential 

decrease in signaling potency may be a disadvantage when defending against bacterial 

pathogens; however, in some cases it may be beneficial to avoid excessive inflammation 

and pathological outcomes such as in sepsis. 

Other examples of pathological outcomes associated with the human 

NAIP/NLRC4 inflammasome have been defined in human patients. Gain-of-function 

mutations in human NLRC4 can result in pathologic enterocolitis and Macrophage 

Activation Syndrome (MAS) (Canna et al., 2014; Romberg et al., 2014; Canna et al., 

2016). Other mutations in NLRC4 result in more mild cases where patients experience 

urticaria and arthritis after exposure to cold stimuli (Kitamura et al., 2014). Future studies 

are needed to determine whether mutations in human NAIP also confer similar 

pathological outcomes.  
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Out of the eight orthologs from the inhibitor of apoptosis protein (IAP) family, 

human NAIP has undergone the most extensive genomic rearrangements during 

mammalian evolution (Romanish et al., 2007).  The NAIP gene is located in a genomic 

region of 500-kb containing the gene responsible for spinal muscular atrophy (SMN1). 

This 500-kb region has undergone an inverted duplication specifically in humans. In 

contrast, other primates have a pericentromeric inversion and a translocation to a different 

chromosome that has repositioned NAIP (Romanish et al., 2007). In contrast to mice, the 

human NAIP locus has a number of pseudogenes and gene duplications and has retained 

only a single functional copy of the full-length NAIP gene (Romanish et al., 2009). NAIP 

also possesses multiple promoters that are not shared between humans and mice. Long 

terminal repeats (LTRs) of endogenous retroviral elements provide NAIP promoter 

function in humans and rodents. However, these LTRs functioning as promoters for NAIP 

were independently acquired during mammalian evolution (Romanish et al., 2007). 

Another level of regulation in human NAIP is conferred by the presence of intragenic 

retrotransposons, resulting in 5’ truncated transcripts (Romanish et al., 2009). Future 

studies are needed to determine if any of the pseudogenes or 5’ truncated transcripts from 

the human NAIP gene are important for innate immune defense. Interestingly, African 

populations have a duplication of the full-length human NAIP at a higher frequency than 

Europeans and Asians. The higher amount of NAIP results in increased cell death upon 

infection with L. pneumophila (Boniotto et al., 2012). These data suggest that a gene 

duplication in Africans may confer an advantage for host defense against flagellated 

bacteria or against bacteria that utilize a T3SS to cause disease. The presence of 

pseudogenes and gene duplications events in the human NAIP locus will make the 

discovery of potential single-nucleotide polymorphism associated with pathology in 

humans difficult. Therefore, a better understanding of the composition and evolution of the 
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NAIP locus is needed to further our understanding of NAIP in bacterial defense and human 

health.   

 

Concluding remarks 

 Our results provide insight into human NAIP detection of bacterial proteins from 

the T3SS and flagellar apparatus. In contrast to mice having specialist NAIPs, human 

NAIP mediates promiscuous recognition of multiple bacterial ligands. In addition, our data 

defined a role for human NAIP in antimicrobial responses to S. Typhimurium infection. Our 

study raises intriguing questions about the evolution of the NAIP/NLRC4 inflammasome. 

It will be of interest to understand how coevolution with Gram-negative bacteria has 

shaped the NAIP genes in humans and other mammals. Perhaps pathogen-induced 

evolutionary pressure on rodents caused the expansion of specialist NAIPs. In contrast, it 

is possible that the single human NAIP may have decreased signaling potency, which 

could be beneficial in cases of NAIP-mediated pathological inflammation. It will be of 

interest to understand whether human NAIP plays a role in species tropism for human 

adapted pathogens or whether human NAIP can also defend against other bacterial 

pathogens that use a T3SS to cause disease.  

 Overall, our studies provide an important basis for elucidating the mechanisms 

underlying human NAIP inflammasome responses, which could prove crucial to 

understanding how the NAIP/NLRC4 inflammasome contributes to human health and 

disease. In addition, we defined a role for human NAIP in antimicrobial responses to 

Salmonella infection. Future therapeutics may be developed to target this immune sensor 

as an alternative mechanism to treat bacterial infections or pathological outcomes. Future 

work is needed to further our knowledge of human-specific innate immune responses to 

Gram-negative bacterial infections.  
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