

iii

© Yahya Khraishi

2016

iv

© Yahya Mohammad Suleiman Khraishi

2016

v

Dedication

To my family…

vi

ACKNOWLEDGMENTS

I would like to give my deep thanks and gratitude to my advisor Dr. Husni Al-Muhtaseb

who supervised this work, for his continuous guidance and supervision, which made this

research possible. I also would like to thank the committee members: Dr. Mustafa Elshafei

and Dr. Wasfi Al-Khatib.

In addition, I would like to acknowledge the Deanship of research at KFUPM as the work

is part of DSR projects with numbers RG1104-1 and RG1104-2 under Dr. Husni Al-

Muhtaseb.

Also, I would like to give my thanks to the authors of the many tools I have used, and I

would like to acknowledge their work. I have used several tools and libraries in the

research, which assisted me greatly in the work. My personal appreciation and thanks to

the authors.

vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. VI

TABLE OF CONTENTS .. VII

LIST OF TABLES .. IX

LIST OF FIGURES .. X

LIST OF ABBREVIATIONS .. XI

ABSTRACT .. XII
الرسالة ملخص ...XIV

1 CHAPTER 1 INTRODUCTION ... 1
1.1 Problem Statement .. 4
1.2 Motivation .. 5
1.3 Objectives ... 5
1.4 Thesis Structure.. 6

2 CHAPTER 2 LITERATURE REVIEW ... 7
2.1 Text Vocalization .. 7
2.2 Automatic Diacritics Restoration for Arabic Text at KFUPM .. 19
2.3 Summary .. 21

3 CHAPTER 3 CORPUS DEVELOPMENT ... 22
3.1 “Tashkeel-2016” Corpus ... 22
3.1.1 Unvocalized Words... 23

3.1.2 Incorrect Vocalization .. 24

3.1.3 Long Words and Lines .. 24

3.1.4 Foreign Letters and Words ... 25

3.1.5 Words with Numbers ... 25

3.1.6 Punctuation Marks Inconsistences ... 26

3.2 “Tashkeel-2016” Statistics .. 26
3.3 MUSHAF Corpus ... 29
3.4 Some Statistics on the MUSHAF Corpus .. 31
3.5 The “AKHBAR-2016” Corpus .. 34
3.5.1 Text Extraction ... 35

3.5.2 Corpus Vocalization .. 37

3.6 Summary .. 38

4 CHAPTER 4 TEXT VOCALIZATION ... 39
4.1 WEKA Data Mining Software .. 42
4.1.1 J48 Decision Tree Classifier .. 42

4.2 Features Extraction .. 43
4.2.1 Character .. 43

4.2.2 Position ... 43

4.2.3 Connection ... 43

4.2.4 Letter Position .. 44

4.2.5 Current Word Length, Previous Word Length, and Next Word Length 44

4.2.6 Word’s First Letter, Second Letter, Before Last Letter, and Last Letter 44

4.2.7 Next Word First Letter and Next Word Last Letter .. 44

4.2.8 Previous Word First Letter and Previous Word Last Letter .. 44

4.2.9 Next Letter and Next-Next Letter ... 44

viii

4.2.10 Previous and Previous-Previous Letter .. 44

4.2.11 Current Word Part of Speech Tag (POS), Previous Word POS Tag, and Next Word POS Tag 45

4.2.12 Features Sum .. 45

4.3 Modules ... 45
4.3.1 Characters – Diacritics Generator Module ... 46

4.3.2 Feature Extraction Module .. 46

4.3.3 POS Tagger Module .. 48

4.3.4 Data Preparation Module ... 54

4.3.5 Instant Diacritizer and Trainer Module .. 58

4.4 Feature Selection ... 64
4.4.1 Feature Extraction Phase 1... 66

4.4.2 Feature Extraction Phase 2... 74

4.5 Post-processing .. 75
4.5.1 N-Gram Vocalization .. 76

4.5.2 “Sukoon” Diacritic Normalization ... 77

4.6 Implementation Issues ... 78
4.6.1 Features Combinations .. 78

4.6.2 Experiments ... 78

4.7 Summary .. 79

5 CHAPTER 5 EVALUATION ... 80
5.1 Performance Metrics.. 80
5.1.1 Diacritic Error Rate (DER) ... 81

5.1.2 Word Error Rate (WER) .. 81

5.1.3 Accuracy ... 81

5.1.4 KAPPA ... 81

5.1.5 Receiving Operating Characteristics Curve (ROC) .. 82

5.2 Experiments ... 82
5.2.1 Experiments with “TASHKEEL-2016” Corpus .. 83

5.2.2 Experiments with MUSHAF Corpus .. 87

5.3 Performance Tuning ... 89
5.4 Comparison .. 94
5.5 Summary .. 95

6 CHAPTER 6 CONCLUSION AND FUTURE WORK .. 96
6.1 Conclusion .. 96
6.2 Future work .. 97

REFERENCES ... 98

APPENDIX I HOW TO VOCALIZE A TEXT FILE ... 103

VITAE 107

ix

LIST OF TABLES

Table 1: Arabic letters ... 1

Table 2: Letters writing variations .. 2

Table 3: Different shapes of the letter Ein .. 2

Table 4: Diacritics ... 3

Table 5: Studies on foreign languages .. 17

Table 6: Studies on Arabic .. 18

Table 7: Examples of “Shadda” violation at the start of the word.................................... 24

Table 8: Long words ... 24

Table 9: Split marks .. 26

Table 10: “Tashkeel-2016” diacritics frequencies .. 27

Table 11: “Tashkeel-2016” Letters - diacritics distribution part1 27

Table 12: “TASHKEEL-2016” letters - diacritics distribution part2 28

Table 13: MUSHAF diacritics frequencies... 32

Table 14: MUSHAF letters - diacritics distribution part1 .. 32

Table 15: MUSHAF letters - diacritics distribution part2 .. 33

Table 16: Crawled websites list .. 35

Table 17: Crawled corpus statistics .. 37

Table 18: Characters numeric ... 47

Table 19: Features extraction for the word “ ََ48 ... ”ذَهب

Table 20: Stanford tags list – part 1 .. 50

Table 21: Stanford tags list - part 2 ... 51

Table 22: Quran Morphological corpus tags list - part 1 .. 52

Table 23: Quran Morphological corpus tags list - part 2 .. 52

Table 24: Diacritics and their class values .. 58

Table 25: ARFF format for known classification value and for “to be predicated” value 58

Table 26: Voting example ... 63

Table 27: Features space for feature selection. ... 68

Table 28: Wrapper feature selection per window ... 75

Table 29: “TASHKEEL-2016” Experimental Results ... 84

Table 30: ROC values for each class in 14000 and 15000 lines 86

Table 31: MUSHAF experimental results .. 88

Table 32: MUSHAF ROC value for each class .. 88

Table 33: J48 classifier performance turning results .. 93

Table 34: “TASHKEEL-2016” and MUSHAF DER and WER results 94

Table 35: Systems comparison ... 94

x

LIST OF FIGURES

Figure 1 Thesis work overview... 6

Figure 2 Vocalization System Architecture .. 41

Figure 3 Feature extraction module .. 47

Figure 4 Tagging example using Stanford Tagger tool .. 50

Figure 5 MUSHAF POS tagging example.. 53

Figure 6 Data preparation module .. 54

Figure 7 An ARFF file example ... 56

Figure 8 Instant diacritizer training and testing .. 59

Figure 9 Instant diacritizer testing .. 60

Figure 10 Voting ... 62

Figure 11 Accuracy for sliding window of size 1 ... 69

Figure 12 Accuracy for sliding window of size 2 ... 70

Figure 13 Accuracy for sliding window of size 3 ... 70

Figure 14 Accuracy for sliding window of size 4 ... 71

Figure 15 Accuracy for sliding window of size 5 ... 71

Figure 16 Accuracy for sliding window of size 6 ... 72

Figure 17 Accuracy for all used sliding window sizes ... 73

Figure 18 Post-processing ... 76

Figure 19 “TASHKEEL-2016” experimental results: Size vs Accuracy 84

Figure 20 “TASHKEEL-2016” experimental results: Size vs KAPPA............................ 85

Figure 21 “TASHKEEL-2016” experimental results: Size vs ROC 85

Figure 22 14000 and 15000 lines datasets ROC comparison for each class 87

Figure 23 MUSHAF experimental results: Class vs ROC.. 88

Figure 24 “TASHKEEL-2016” performance tuning results: CF vs Accuracy 90

Figure 25 “TASHKEEL-2016” performance tuning results: CF vs KAPPA 91

Figure 26 “TASHKEEL-2016” performance tuning results: CF vs ROC 91

Figure 27 MUSHAF performance tuning results: CF vs Accuracy 92

Figure 28 MUSHAF performance tuning results: CF vs KAPPA 92

Figure 29 MUSHAF performance tuning results: CF vs ROC ... 93

Figure 30 Instant Diacritizer Main Screen .. 103

Figure 31 Instant Diacritizer Settings Screen ... 104

Figure 32 Trainer & Tester Screen ... 104

Figure 33 Instant Diacritizer Main Screen - File Vocalization Tap 106

xi

LIST OF ABBREVIATIONS

 AATD Arabic Automatic Text Diacritization

 ARFF Attribute Relation Format File

 ASR Automatic Speech Recognition

 ATD Automatic Text Diacritization

 AUC Accuracy

 CR Correct Ratio

 CE Case Ending

 CSV Comma Separated Vectors

 DER Diacritic Error Rate

 DLL Dynamic Link Library

 DT Diacritization Tool

 HMM Hidden Markov Models

 IG Information Gain

 JAR Java Archive

 POS Part of Speech Tagging

 ROC Receiver Operation Characteristic

 WER Words Error Rate

 WS Window Size

xii

ABSTRACT

Full Name : Yahya Mohamad Suleiman Khraishi

Thesis Title : Automatic Vocalization of Arabic Text

Major Field : Computer Science

Date of Degree : May 2016

Diacritical marks in Arabic play a major role in understanding the meaning of the words,

their pronunciations and the overall meaning of the context. A word could have different

forms of diacritics and thus different meaning for each form. While native Arabic speakers

face no problems in reading and understanding Arabic text with no diacritics, non-native

speakers find it difficult. Arabic computer applications such as speech recognition

applications or text to speech applications need the Arabic words to be vocalized.

Otherwise, using unvocalized text on such applications would add ambiguity to the process

and may have a negative impact on the results.

Automatic vocalization is the process of inserting diacritics to unvocalized or partially

vocalized text. This process, sometimes called "diacritic restoration", is common with

different levels in several languages including some Latin and Semitic languages.

This research work reports the development process of the updated fully diacritized corpus

and Arabic text vocalization using decision trees algorithms.

For the corpus development, we redeveloped a previously built corpus, SENTENCES3.

The SENTENCES3 corpus was normalized to have it consistent and fully vocalized. We

have named the newly corpus as “Tashkeel-2016” Furthermore, we introduced a new

corpus which is the MUSHAF, for being accurately vocalized and consistent to be used in

text vocalization. A third corpus was also developed. The new corpus targeted Modern

Standard Arabic (MSA) in news since the nature of the “Tashkeel-2016”corpus was mostly

Classical Text. The news corpus, named “Akhbar-2016”, contains over 10 million words.

The second part of the work was Arabic text vocalization. Features extraction was done to

come up with features that would help in the classification process. After applying feature

extraction, feature selection was performed to select the best set of features.

To prepare an appropriate setup for vocalization, several modules were developed. The

developed modules communicate together to form the vocalization system. The

vocalization system uses decision tree algorithm for classifications. The system also

applies a post-processing step of vocalization using N-Gram word models.

Many experiments were conducted trying to achieve the highest accuracy and the best

performing model. The highest result achieved was for the MUSHAF corpus. Results of

xiii

6% and 9% for diacritic error rate (DER) without case ending and a DER with case ending

were achieved respectively. For “Tashkeel-2016”experiments, results of 18% and 28% was

achieved for both the word error rate (WER) without case ending and WER with case

ending respectively.

xiv

 ملخص الرسالة

 خريشييحيى محمد سليمان :الاسم الكامل

 تشكيل النص العربي آليا :عنوان الرسالة

 الآلي علوم الحاسب التخصص:

 2016مايو :تاريخ الدرجة العلمية

لمعنى اوصكككحة لا ما وفمم في اللغة العربية دورا رئيسكككا في فمم معاني الكلمات)الحركات(تشككككيلالعلامات تمثل

ولمذا السكككبب يواجه .مختلفلكل وجه معنىً ،تحتمل عدة أوجه في التشككككيلقد الكلمة الواحدة نأالعام للنص، حيث

لة. و صعوبة في قراءة غير العربي فمم النصوص العربية غير المُشَكَّ

لةالعربية تكون النصوص والكلمات أنتطبيقات اللغة العربية العديد من تتطلبو كون نتائج هذه التطبيقات كي ت مُشَكَّ

 ومن هذه التطبيقات أن مة التعرف الآلي على الكلام العربي. ،مقبولة

لالإلى النصوص غير المناسبة عملية إضافة علامات التشكيل على أنه الآليالتشكيل نعرف لة أو المُشَكَّ ة جزئياً. مُشَكَّ

 ض اللغاتبع منماشائعة في عدة لغات وعملية التشكيل الآلي .باسترجاع علامات التشكيلسمي هذه العملية أحيانا وت

 السامية. واللغاتاللاتينية

 وطورنا طرقا للتشكككككيل الآلي للنص العربي. ،عربي مشكككككل تشكككككيلا كاملا مكنز رتطويبالعمل البحثي في هذا قمنا

قمنا بتعريض حيث ،”SENTENCES3“سكككمي ب و هؤعلى مكنز قد سكككبن إنشكككا المكنز عملية تطويرفي اعتمدنا

 وكانت النتيجة الوصكككول إلى كنز. المكنز واكتمال التشككككيل كلمات صكككحةتصكككحيحية للت كد من ات المكنز إلى معالج

هو مكنز المصحف، ولقد اخترنا العمل عليه لت كدنا و قمنا بالعمل على مكنز جديد كما" 2016-جديد أسميناه "تشكيل

، في محتواه النصوص العربية المعاصرة ناالتشكيل. عدا عن ذلك، قمنا بتطوير مكنز جديد استمدفومن دقة المحتوى

حيث انه "2016-أخبار"المكنز الجديد بمكنز نايم . سكديةالتقلياعتمد على النصكوص " 2016-"تشككيلحيث إن مكنز

 ملايين كلمة. 10يحتوي المكنز على اكثر من و ،اعتمد على النصوص الإخبارية فقط

لى استنباط عواعتمد البحث . آليا العربي تشكيل النصعلى تطوير طرن لالعمل البحثي هذا الجزء الثاني من ويتركز

في ءللبدو ،الخصكككائصمجموعة من هذه لمن ثم اختيار افضكككو دقتهو التي تسكككاهم في عملية التشككككيل الخصكككائص

مل يستعو .الآليمع بعضما مشكلة ن ام التشكيل مترابطة وحداتبرمجية تحتوي على عدة عملية التشكل تم تطوير

نسككتخدم "بعد المعالجة" ليما مرحلة إ" يضككاف WEKA J48خوارزمية " بالأخصو ن ام التشكككيل أشككجار القرار

 ". N-Gram"التكرار نماذج فيما

نز المصحف مك حصلذجٍ للتشكيل حيث اافضل نمالممكنة و من التجارب للحصول على أدن النتائج"لقد تم إجراء العديد
 ."2016-"تشكيلمكنز بعلى افضل النتائج مقارنة

في حالة التشكيل %6بنسبة مكنز المصحف الخط التشكيلي على مستوى الحرف ل نسبة في لأقلأفضل النتائج كانت

فكانت نسبة " 2016-"تشكيل مكنز إلىما بالنسبة أوفي حالة التشكيل الكامل. %9ودون تشكيل آخر حرف في الكلمة
التشكيل في حالة %28وفي حالة التشكيل دون تشكيل آخر حرف في الكلمة %18 الكلمةتشكيلي على مستوى الخط ال

 الكامل.

1

1 CHAPTER 1

INTRODUCTION

Arabic is the fifth largest language in the world in terms of native speakers with about 300

million speakers [1]. It is one of the Semitic languages, which includes Amharic, Ethiopian,

Assyrian, Babylonian, Hebrew and other languages [2]. Some of these languages use

diacritic marks. Diacritic marks are added to letters to resolve possible word ambiguity.

Adding such marks to an unvocalized word may change the pronunciation of the word and

its meaning.

Arabic consists of 28 basic letters and 8 additional letters which represent writing

variations. Table 1 shows the basic Arabic letters while Table 2 shows the writing

variations. It is to note that an Arabic letter may have different shapes depending on its

position in the text and surrounding letters. Table 3 shows the basic shapes that the letter

“Ein” may have depending on its position in the word (first, internal or last).

Table 1: Arabic letters

Letter Unicode Letter Name

 ARABIC LETTER ALEF ا 1

 ARABIC LETTER BEH ب 2

 ARABIC LETTER TEH ت 3

 ARABIC LETTER THEH ث 4

 ARABIC LETTER JEEM ج 5

 ARABIC LETTER HAH ح 6

 ARABIC LETTER KHAH خ 7

 ARABIC LETTER DAL د 8

 ARABIC LETTER THAL ذ 9

 ARABIC LETTER REH ر 10

2

Letter Unicode Letter Name

 ARABIC LETTER ZAIN ز 11

 ARABIC LETTER SEEN س 12

 ARABIC LETTER SHEEN ش 13

 ARABIC LETTER SAD ص 14

 ARABIC LETTER DAD ض 15

 ARABIC LETTER TAH ط 16

 ARABIC LETTER ZAH ظ 17

 ARABIC LETTER AIN ع 18

 ARABIC LETTER GHAIN غ 19

 ARABIC LETTER FEH ف 20

 ARABIC LETTER QAF ق 21

 ARABIC LETTER KAF ك 22

 ARABIC LETTER LAM ل 23

 ARABIC LETTER MEEM م 24

 ARABIC LETTER NOON ن 25

 ARABIC LETTER HEH ه 26

 ARABIC LETTER WAW و 27

 ARABIC LETTER YEH ي 28

Table 2: Letters writing variations

Letter Unicode Letter Name

 ARABIC LETTER HAMZA ء 1

 ARABIC LETTER ALEF WITH MADDA ABOVE آ 2

 ARABIC LETTER ALEF WITH HAMZA ABOVE أ 3

 ARABIC LETTER WAW WITH HAMZA ABOVE ؤ 4

 ARABIC LETTER ALEF WITH HAMZA BELOW إ 5

 ARABIC LETTER YEH WITH HAMZA ABOVE ئ 6

 ARABIC LETTER TEH MARBUTA ة 7

 ARABIC LETTER ALEF MAKSURA ى 8

Table 3: Different shapes

of the letter Ein

In word

Example

Shape

 عـ عالم

 ـعـ مصعب

 ـع ربيع

 ع شجاع

3

Arabic has 14 diacritical marks. Table 4 shows these diacritics.

Diacritics can be categorized into four groups:

1. Short vowel diacritics, called "Tashkil". They are "Arabic Fatha", "Arabic Kasra"

and "Arabic Damma”.

2. No vowel mark. The “Sukoon” (Arabic Sukun) denotes that the letter has no vowel.

3. Nunation diacritics called "Tanween". They are "Tanween-Fath" (Arabic Fathatan),

"Tanween-Kasr" (Arabic Kasratan) and "Tanween-Damm" (Arabic Dammatan).

4. Gemination diacritics consonant marks called "Shaddah" (Arabic Shadda). It

includes "Shaddah" with "Fatha", "Shaddah" with "Kasra", "Shaddah" with

"Damma", "Shaddah" with "Fathatan", "Shaddah" with "Kasratan", and "Shaddah"

with "Dammatan".

The remaining of this chapter is divided into 4 sections. Section 1.1 addresses the problem

statement. Section 1.2, states the motivation behind the study. Thesis contribution is

presented in Section 1.3. Section 1.4 layouts the thesis structure.

Table 4: Diacritics

Diacritic
Unicode Diacritic

Name
 # Diacritic Unicode Diacritic Name

1 ََ ARABIC FATHA 8 ٌ ARABIC DAMMATAN

2 َ ARABIC KASRA 9 ٌَ ٌ ARABIC SHADDA WITH FATHA

3 َ ARABIC DAMMA 10 ٌ ٌ ARABIC SHADDA WITH KASRA

4 َ ARABIC SUKUN 11 ٌُ ٌ ARABIC SHADDA WITH DAMMA

5 َ ARABIC SHADDA 12 ًٌ ٌ
ARABIC SHADDA WITH

FATHATAN

6 َ ARABIC FATHATAN 13 ٌٍ ٌ
ARABIC SHADDA WITH

KASRATAN

7 َ ARABIC KASRATAN 14 ٌ ٌ
ARABIC SHADDA WITH

DAMMATAN

4

1.1 Problem Statement

Modern Arabic text is rarely written with diacritics. The absence of diacritical marks could

cause ambiguity for the reader. Usually, native Arabic speakers face no difficulties in

reading unvocalized text because they can deduce the diacritics from the context of the

text, syntax of the language and their knowledge of the morphology of the words. However,

non-native speakers would have difficulties in understanding the unvocalized text as a

single word with different diacritics may have different word forms with different

meanings and different pronunciations.

Restoring diacritics from unvocalized text is an active research area. Several studies have

been pursued with different languages including French, Spanish, Persian, Arabic and

Hebrew. Computer applications that rely on text processing are another reason that

motivates researchers to tackle this problem. Examples of these applications are speech

recognition [3] [4] [5], text to speech [6] [7], and automatic translation [8].

On the other hand, corpora developed to support Arabic text vocalization research need to

be consistent in terms of content and vocalization as they should represent general Arabic

text.

In this research work, we normalize a previously built corpus SENTENCES3 [9] and

introduce the MUSHAF corpus [10] for being fully vocalized and prepared for automatic

Arabic text vocalization. Also, we work on building a new news corpus (“Akhbar-2016”)

based on MSA as the SENTECNES3 corpus is 90% classical.

Furthermore, we propose a way to automatically vocalize Arabic text using decision trees

classifier. Many studies have been conducted on the area of text vocalization. The Studies

5

showed that decision trees were scarcely used in vocalizing foreign text and up to our

knowledge was never used for Arabic text vocalization.

1.2 Motivation

As mentioned before, Modern Arabic text is almost never written with diacritics. Ignoring

diacritical marks in writing could cause difficulties in understanding the unvocalized text

for non-native Arabic speakers, since a single word could have different diacritics and that

would change the meaning and pronunciation of the different forms of the word.

Other motivations behind the study are the various computer applications that require the

Arabic text to be vocalized. Applications such as speech recognition [3] [4] [5], text to

speech [6] [7] and many other applications require text to be vocalized. Providing vocalized

text for such applications will have a positive impact on functionality and performance of

these applications.

1.3 Objectives

The main objectives of this thesis are:

1. Conduct an in depth study on the vocalization techniques of Arabic text.

2. Investigate and propose feature selection towards efficient vocalization and

develop the needed tools to extract and prepare proper features.

3. Use decision trees to build a model for vocalization. Literature reported very little

studies done on text vocalization using decision trees in general and Arabic on

specific.

4. Determine the effectiveness of the proposed prototype.

6

5. Expand previously developed vocalized corpus [9] with at least 10 million extra

vocalized words from modern Arabic text (MSA).

1.4 Thesis Structure

 Figure 1 shows an overview of the thesis work. The work consists of two main parts:

corpus development and text vocalization.

The rest of the thesis is organized as follow: Chapter 2 presents previous studies in the

subject. Chapter 3 describes the process of building and developing the new corpus and the

improvement of other two corpora. Chapter 4 discuss features selection and extraction and

introduces the developed models. Chapter 5 introduces the performance metrics used for

evaluation and results compared with other relative work. Finally, the conclusion and

future work are given in Chapter 6.

Figure 1 Thesis work overview

 Corpus Development Automatic Vocalization

Gathering Data from Websites (Crawling)

Text Extraction

Corpora’s Refinement and Normalization

Feature Extraction & Selection

Automatic Vocalization by Decision Trees

Modules Development

7

2 CHAPTER 2

LITERATURE REVIEW

Many studies have been conducted on the area of vocalization exploring different

languages. In this section we briefly address related studies highlighting core information.

 Section 2.1 presents previous work on Arabic and foreign languages. Section 2.2

introduces a previous study done at KFUPM.

2.1 Text Vocalization

Mihalcea [11], used learning techniques for the restoration of diacritics for Romanian text.

The learning process was done at the letter level instead of the word level. The reasons

behind choosing letters in the learning process instead of words were:

 Lack of large fully vocalized corpora.

 Unavailability of supportive tools such as morphological analyzers and syntactic

analyzers.

Part of author experiment was to build a corpus based on Romanian. Articles were

downloaded from the internet in HTML format and converted to text files. The size of the

resulted corpus was around 3 million words. The learning algorithm chosen was based on

instance learning. The features used were on the letter level and depended on its

surrounding letters. The reported average accuracy was over 99%.

8

Same approach was used and tested on four other languages [12]. The authors used Czech,

Hungarian, Polish and Romanian languages. The result was an average accuracy of over

98%.

Ya'akov [13], used Hidden Markov Model (HMM) for diacritics restoration for both Arabic

and Hebrew. Phonetic accuracy was measured for Hebrew as part of the research. Two

models were designed, unigram and bigram models. The corpus used for Hebrew was the

Hebrew Bible and the corpus used for Arabic was the MUSHAF. In both models, 90% of

each corpus was used as a training set and the remaining 10% went through undiacritization

process and then used as a test set. The hidden state for both models were the diacritized

words, each hidden state was linked to its corresponding undiacritized word which

represented the observation. Using the unigram model, a word accuracy of 68% and 74%

were achieved for Hebrew and Arabic respectively. As for the bigram model, an 81%

accuracy and an 87% phonetic accuracy were achieved for Hebrew, while Arabic achieved

an accuracy of 86%.

Crandall [14], used three approaches in his study on accent restoration of Spanish text. He

used Bayesian framework, HMM bigram model and a combination of both. Due to the lack

of large comprehensive corpora, the author created his own corpus using the typical

approach of crawling and processing websites extracted information. The corpus created

contained around 35 million words.

Bayesian framework was used to determine the word accentuation by looking at the

surrounding words. Using the framework and testing with different window sizes, the best

accuracy achieved was 99.1% with a window size of two (-/+). Increasing the window size

9

decreased the accuracy, so a method for selecting the best window size was devised.

Selecting the optimal window size resulted in a 99.2% accuracy. As for the second

approach, HMMs bigram was used for the purpose of performing part of speech tagging

(POS). Matching rules were applied to produce the data for training. Viterbi decoding was

used for testing. An accuracy of 99.1% was achieved. Finally, the hybrid approach was

used. This approach alternates between both approaches and takes the best result. An

accuracy of 99.24% was achieved.

Elshafei et al [15], used HMMs unigram, bigram and trigram for diacritics restoration.

They used a fully vocalized corpus of the MUSHAF. They extracted all the words in the

corpus into a list, then constructed a frequency table with distinct words. To determine

identical words, a metric was developed. A database was generated from mapping each

unvocalized word to its possible vocalized forms. Another database was generated by

constructing a two words sequence table (bigram).

The hidden state for the HMMs were the possible vocalized words and the observations

were the unvocalized sequences of the words. To determine the best transition state, Viterbi

algorithm was used. An error rate of approximately 4.1% was resulted. The authors stated

that an error rate of 2.5% could be achieved by using trigrams and a preprocessing phase

to clear out some of the error roots.

Same experiment was conducted on a different corpus [16]. The corpus used was

developed by (KACST) and contains about 102 thousand words. Two databases were

generated "unvowled word database" and "bigram database". Applying HMMs to this

corpus resulted in a WER of 5.5%.

10

EL-Harby et al [17], conducted a research on the diacritics restoration of MUSHAF. The

authors proposed two systems. The first was based on a unigram model while the other was

based on bigram HMMs. The corpus used was a fully vocalized MUSHAF text.. A

frequency table was constructed for each word in the corpus. The unigram system

implemented determines the correct vocalized word by looking for the same word structure

disregarding its diacritics. The result would be a set of different vocalized forms for the

word. Then the word with the highest frequency is selected as the correct vocalized word.

As for the bigram system, the hidden states represent the last letter diacritic of a vocalized

word, while the observation represent none vocalized words. Viterbi algorithm was used

to obtain the best transition sequence. Both systems were tested on different parts of

different sizes of the corpus. The unigram based system was tested on 25%, 50%, 75% and

100%, and the results of accuracy were 94%, 94.3%, 93.4% and 92.5% respectively, while

the bigram system resulted in 95.2%, 94.8%, 93.7% and 93% respectively.

Maher et al [18], presented their work on the diacritics restoration of Sindhi language.

Sindhi is similar to Arabic. Missing diacritics on letters could change the word meaning

and the context it is in. The corpus used was a book with the name "Shah Jo Risalo". The

system implemented used n-gram models (unigram, bigram and trigram). The system

resulted in three probabilities. A fourth probability was calculated from the multiplication

of the previous probabilities. The system had three phases, the first was the tokenization,

which breaks the input text into segments. Usually white spaces are used to segment words

but some words in Sindhi are a combination of a word and a white space. This means that

a word of two syllable exists. This led the authors to devise a new method for tokenization.

11

Second phase involves calculating the probabilities of the n-gram models and then the

multiplication of their probabilities. For the third phase, Viterbi algorithm is applied to find

the most likely path between the probabilities. The results obtained were a word error rate

(WER) of 0.71% and diacritization error rate (DER) 3.21%.

Khorsheed [19], used HMMs and designed 14 models where each model represented a

diacritic with an addition model that represented no diacritic. All 15 models formed what

he called the global model. Hidden Markov Model toolkit (HTK) [20] was used for the

development of these models. The corpus was built by the author and it contained over

24,000 sentences. The developed system consisted of two main phases. First, the Arabic

text was coded into a sequence readable by HTK. Features were extracted for all the Arabic

characters and diacritics along with the white space character which resulted in a 110

features. Another feature was added which represented the starting and the ending of a

sentence. In the second phase, HTK was used to perform the experiments. Two sets of

experiments were conducted. In each experiment the system was trained and tested with

10,000 sentences and a 20,000 sentences. The first set of experiments resulted in an average

Correct Ratio (CR) of 72.76% and 72.80% and the second set resulted in a CR of 72.50%

and 72.67% for the 10,000 and the 20,000 sentences respectively.

Hifny [21], used a statistical approach (bigram models) for Arabic diacritics restoration.

He used higher n-gram models. The proposed algorithm (dynamic lattice search) calculates

the probabilities of transition in lattices at run time. In his experiment, he used a corpus

named "Tashkeela" which consisted of classical Arabic text. SRILM toolkit was used to

build the language model. The best results achieved were a WER of 8.9% with case ending

12

and a WER of 3.4% without case ending (WER2). These results were achieved using n-

gram of order four.

In a related study, Hifny [22], applied smoothing techniques to improve the vocalization

accuracy. The smoothing was suggested to be applied when the tested words are not in the

training set. The smoothing techniques takes a portion of the observed n-gram probability

and distributes it to the ambiguous n-grams. The author tried using three different

smoothing techniques which were Katz Smoothing, Absolute Discounting, and Kneser-

Ney smoothing. The results showed that using smoothing techniques may yield better

accuracy.

Bebah et al [23], used a combination of both morphological analysis and HMMs hybrid

approach. The morphological analyzer used was "AlkhalilMorpho". It was adjusted by

adding a new lexicon. The lexicon included the most frequent words from all the available

Arabic corpora which resulted in a 16,200 words corpus. Output of the analyzer was

changed to produce the possible vocalizations and ignore other outputs. The analyzer was

used to get all the possible vocalized words out of context. After that, HMMs were used to

remove the ambiguity.

Two HMMs were used. The first model used unvocalized words as its observations and

vocalized words as its hidden states. The second model had the same observations as the

first model but for the hidden states possible diacritics were used. The system was tested

using the original analyzer and using the modified version.

For the first model, testing resulted in a 21.11% of word error rate with case ending

(WER1), 9.93% of word error rate without case ending (WER2), 7.37% of diacritic error

13

rate with case ending (DER1) and 3.75% of diacritic error rate without case ending DER2.

The results of the second model were a 21.41% WER1, 10.59% WER2, 7.47% DER1 and

3.95% DER2.

Harrat et al [24], used statistical machine translation for diacritics restoration of Algiers

dialects. The main purpose of their study was to develop a speech translation system which

translates from modern Arabic to Algerian dialect. Due to the importance of vocalization

in the speech translation system, a vocalizer was needed. Two experiments were

performed. First conducted experiment was on Arabic using two corpora "Tashkeela" and

“LDC Arabic Tree Bank". Second experiment was done on Algerian where they created

their own corpus since there were no resources on Algerian dialects. A statistical machine

translation system based on the phrase level was built. Testing with corpora, "Tashkeela"

corpus yielded 16.2% WER and 4.1% DER while "LDC" yielded 23.1% WER and 5.7%

DER. For the Algerian corpus, a result of 25.8% WER and 12.8% DER were achieved.

Alghamdi and Muzafar [25], built an Arabic vocalizer using quad-gram probability model

on the letter level. The corpus used was KDATD. The corpus was analyzed and a frequency

table was constructed for four consecutive letters. The extracted frequency table was then

used in the vocalization process. Testing with KDATD corpus a DER of 7.64% was

achieved. Testing with another set of data that was taken from a newspaper resulted in an

8.87% DER. Both resulted in an average DER of 8.52%.

Shaalan et al [26], used a hybrid approach in building an Arabic vocalizer. The hybrid

approach consisted of three methods which were "lexicon retrieval, bigram and SVM-

statistical prioritized techniques" [26]. The corpus used was “LDC Arabic Tree Bank”. The

14

first method (lexicon retrieval) takes an unvocalized word as its input and tries to find a

single vocalized match for it in the lexicon. If a match is found then it is considered to be

the correct vocalized word. If more than one match is returned then the second method

(bigram) is used. As for the third method, POS tags are used to find the right vocalization.

The best results achieved by the system were a WER of 12.16% and a DER of 3.78% both

with case ending.

Rashwan et al [27], introduced a stochastic hybrid system for automatic Arabic

vocalization. The hybrid system used two vocalizers, the first was morphological and the

second was based on full form words. Using an Arabic corpus, a dictionary of full form

words was built. The input is searched in the dictionary and if found, then all its possible

vocalization is returned. To determine the most likely path for the sequence of vocalization,

both n-gram and a lattice search are used. In case if the input was not found, words were

factorized into their morphological possibilities, then again n-gram and a lattice search is

performed to disambiguate the possibilities and find the most likely vocalization sequence.

Testing the hybrid system on the “LDC Arabic Tree Bank” corpus resulted in a 12.5%

WER and 3.8% DER with case ending. Without case ending, a results of 3.1% WER and

1.2% DER were achieved.

Haraty et al [28], designed a vocalization engine "Shakkel" for the restoration of diacritics

of Arabic text. Corpus of the University of Leeds was used with several modifications

mainly for POS tagging. The "Shakkel" engine receives the user input and then tokenizes

it into words, then assigns a POS tags to the words. After that each word is searched in the

corpus and a tuple value that corresponds to that word is retrieved. If a word is not found,

then it will be tagged with "None". When the whole input words are tagged, the list of all

15

POS tags will be reprocessed again to assign tags to the "None" words tag. HMMs and rule

based approaches were used in the implementation of the system. Metrics such as word

error rate or accuracy were not used. Instead a program using the "Shakkel" engine was

implemented using Python. Authors reported that the results were promising.

Rosenfeld [29], conducted a study on the restoration of both capitalization and diacritics of

the Portuguese language. The study compared classifications between Naïve Bayes and

Decision Trees classifier on the letter level. WEKA was used for the classification and both

the Naïve Bayes and J48 classifiers were used. The data used in the experiments were from

a recent Portuguese Wikipedia dump taken at the time of the study and it consisted of

83,610 words. Different window sizes (N) (on each side of the letter) were used in the

experiments. For diacritics restoration, J48 classifier achieved 97.61% accuracy at (N=3)

while NaiveBayes scored 95.19% at (N=1). As for the capitalization, an accuracy of

49.35% using NaiveBayes and 51.67% using J48 were achieved.

Al-Thwaib [30], carried out a research on Arabic text classification. She used two feature

selection techniques: text summarization and term frequency. Each technique was applied

separately on a set of documents. WEKA SVM was used in the classification process to

predict the class of these documents. Results showed a remarkable increase in accuracy,

precision and recall but suffered from execution time for the devised method.

Almuhareb et al [31], worked on Arabic text classification and specifically on poems. Their

target was to be able to determine and classify a text as a poem or not. Several features

were selected based on the nature of Arabic poems such as average-line-length, line-

repetition-rate, diacritics-rate…etc. WEKA Decision Trees and Naive Bayes classifiers

16

were used in classification. It was shown that decision tree classifier performed the best

with 99.81% accuracy using all features proposed.

Table 5 summarizes the studies done on foreign languages and Table 6 summarizes the

studies done on Arabic.

From the surveyed work, we can see that decision trees were used scarcely in the area of

vocalization and as far as our knowledge, that decision trees have not been used in Arabic

vocalization. Thus we focused on using decision trees techniques in our work.

17

Table 5: Studies on foreign languages

Author Approach Languages Corpus Size (words) Accuracy WER DER

Mihalcea
[11], 2002

Learning
algorithms

Romanian Custom 3,000,000
99% at letter

level
N/S N/S

Mihalcea
et al [12],

2002

Learning
algorithms

Czech,
Hungarian,
Polish and
Romanian

Czech,
Hungarian,

Polish,
Romanian

1,460,000,
1,720,000
2,500,00

and
3,000,000

98% at letter
level

N/S N/S

Gal [13],
2002

HMMs -
unigram

and bigram
Hebrew

Westminster
Hebrew

Morphologica
300,000

68%
(unigram)
and 81%

(bigram) at
word level

N/S N/S

Crandall
[14], 2005

Bayesian
framework,

HMM
bigram and

hybrid of
both

Spanish Custom 35,318,775

99.211% -
99.0501-

99.2433% (at
letter level)

N/S N/S

MAHER et
al [18],
2011

HMMs -
unigram,

bigram and
trigram

Sindhi Shah Jo Risalo 27,360 Not specified
0.71

%
3.21

%

Gal [32],
2011

HMMs -
unigram

and bigram
Hebrew

Westminster
Hebrew

Morphological
300,000

80% at word
level

N/S N/S

Rosenfeld
[29], 2014

WEKA
Decision
Tree &
Naïve
Bayes

Portuguese
Portuguese
Wikipedia

dump
83,610

97.61 for DT,
95.16 for NB

at letter
level

N/S N/S

18

Table 6: Studies on Arabic

Author Approach Corpus
Size

(words)
Accuracy

WER
(CE)

WER
(WCE)

DER
(CE)

DER
(WCE)

Gal [13],
2002

HMMs -
unigram and

bigram
MUSHAF 90,000

74%
unigram,

86%
bigram at

word
level

N/S N/S N/S N/S

Elshafei et al
[15], 2006

HMMs -
unigram,

bigram and
trigram

MUSHAF 78,672 N/S 4.1% N/S N/S N/S

Elshafei et al
[16], 2006

HMMs -
unigram and

bigram
KACST 102,000 N/S 5.5% N/S N/S N/S

EL-Harby et
al [17], 2008

Unigram
model and

HMM bigram
MUSHAF 87,803

95.2% at
word
level

N/S N/S N/S N/S

Khorshed
[19], 2012

HMMs Custom 200,000 72.80%
0.71

%
N/S

3.21
%

N/S

Hifny [21],
2012

Bigram model Tashkeela
6,149,72

6
N/S 8.9% 3.4% N/S N/S

Hifny [22],
2012

Bigram model
with

smoothing
techniques

Tashkeela
6,149,72

6
N/S 8.9% 3.4% N/S N/S

Bebah et al
[23], 2014

Morphological
analysis and

HMMs

Tashkeela&
RDI

2,463,35
1

N/S
21.1
1%

9.93%
7.37

%
3.75%

Harrat et al
[24], 2012

SMT

Tashkeela
and LDC

Arabic Tree
Bank

6,000,00
0 and

340,000
N/S

16.2
%

N/S
4.1
%

N/S

Alghamdi
and Muzafar

[25], 2007

Quad-gram
model

KDATAD N/S N/S N/S N/S
7.64

%
N/S

Shaalan et al
[26], 2009

Lexicon
retrieval,

bigram model
and SVM

LDC Arabic
Tree Bank

340,000 N/S
12.1
6%

31.86
%

3.78
%

7.92%

Rashwan et
al [27], 2009

Morphological
and full form

words
vocalizers

LDC Arabic
Tree Bank

340,000 N/S
12.5

%
3.1%

3.8
%

1.2%

Haraty et al
[28], 2013

HMMs and
rule based
approach

Corpus of
University
of Leeds

N/S N/S N/S N/S N/S N/S

19

2.2 Automatic Diacritics Restoration for Arabic Text at KFUPM

Shaaban [9], proposed a hybrid system for automatic restoration of Arabic text. Part of his

work was the development of new comprehensive corpus. The development resulted in a

"General Corpus". This corpus was a synthesis of both vocalized and unvocalized words

containing a 1,587,511,592 billion words. According to the author it was the largest and

most comprehensive corpus up to the date of the study. Vocalized text was extracted which

resulted in another vocalized corpus that have 30,169,610 million words.

The other part of the research work was the development of a prototype for diacritics

restoration and the experimental work related to the development. The experiments he

conducted used a hybrid approach which combined, rule-based and statistical approaches.

For the statistical part, a custom N-gram extraction tool was built to better meet the author’s

needs. The tool built aimed to generate letter-grams, word-grams and POS-grams. It also

had the option of including non-Arabic words, numbers or punctuation. The tool had the

capability to deals with POS-grams in a proper manner in case of a word having multiple

POS tags for the same diacritical form.

After applying the N-gram extraction and to get the best possible vocalization, a greedy

algorithm without backtracking was applied for both letter and word grams. The same was

also applied for the POS with a difference of handling multiple diacritical forms for a single

POS tag.

By developing the vocalized corpus, the author was able to infer a set of rules. These

inferred rules were used in the rule-based part and were divided into three parts as quoted

by the author [9]:

20

• Diacritics assumed to be missing and not part of the feature set.

• Diacritics assumed to be missing with the addition of contextual feature such as

Previous Letter, Previous Word, Next Letter or Next Word.

• Diacritics are part of the feature set and the current letters diacritic was

removed.

The vocalizer system consists of six main components which are:

• User interface

• N-gram statistical component

• Rule-based component

• The vocalizer component which handles the use of both the n-gram and the rule-

based components.

• Utilities which include many tools that perform different functionality such as:

the tokenization of words, a normalizer for diacritization and other tools.

The vocalizer system starts by receiving input text from the user along with specifying the

vocalization methods (Statistical or Rule-based) order. The order has major effect on the

final result. For the evaluation of the system, four systems were considered for comparison.

The systems were: 1) Arabi NLP [33] 2) Mishkal [34] 3) AraDiac [35] 4) Sakhr [36]

The results showed that the implemented hybrid system have a DER (case ending) with a

3.511% which is better than a 6.577% and 11.663% for both Arabi-NLP and Mishkal

respectively. On the other hand, it was found the author’s system performed worse than

Sahkr's with a 2.905%. For WER (case-endings) it was shown that the hybrid system

performed better than the other two systems but not the third respectively. As for the

21

vocalization level, it achieved an 81.672% which outperform the first two but behind the

third as it has a 99.26% diacritization level.

2.3 Summary

In this chapter we have surveyed some of the related studies on vocalization. The studies

covered both Arabic and non-Arabic languages. Many solutions and techniques have been

introduced. We have noticed that WEKA was not used much on our target research area.

Using WEKA will be the primary focus of our thesis. Also, we presented a previous study

that was done at KFUPM. We will use the built corpus as a bases to our corpus.

22

3 CHAPTER 3

CORPUS DEVELOPMENT

In this chapter we explain the normalization process of the previously built corpus

(SENTENCES3) [9]. We also introduce the MUSHAF corpus as another valid and

consistent resource. Furthermore, the process of developing a new corpus will be detailed.

The new corpus in which we called “AKHBAR-2016” corpus will contain only Modern

Standard Arabic (MSA). The reason for specifying the content to be MSA is because the

SENTENCES3 corpus had 90% of its content as Classical Text.

In section 3.1 we enumerate through all the steps that creates a fully vocalized and

consistent “Tashkeel-2016” corpus depending on the previously prepared SENTENCES3

corpus. In section 3.2, we present statistics on the “Tashkeel-2016” corpus. Section 3.2,

introduces the MUSHAF corpus and the adjustments we made to it, while in section 3.4,

we present some statics on the MUSHAF corpus. Section 3.5 describes the criteria used in

developing the “AKHBAR-2016” corpus. The process of selecting the target websites for

data gathering, the tool used for crawling, text extraction and the vocalization process are

described. Finally, we conclude with summary in section 3.6.

3.1 “Tashkeel-2016” Corpus

Our objective from studying this corpus was to ensure that we have a trusted and a

consistent resource of Arabic text. Upon investigating the corpus we have found many

inconsistencies. Some of these where: unvocalized words, wrong vocalization, long words,

23

foreign letter, and others. The following subsections explains some of these inconsistencies

and how they were addressed.

3.1.1 Unvocalized Words

In Arabic, some letters tend to be normally unvocalized. However, since we are going to

use this corpus for classification, then it is important that every letter in a word is explicitly

vocalized. To ensure that words are fully and consistently vocalized, we automatically add

diacritics to some of the letters by applying the following rules:

 If a letter has a "Fatha" diacritic and is followed by an unvocalized letter Alef ("ا"),

then the letter Alef will be vocalized with "Sukoon".

 If a letter has a "Kasra" diacritic and is followed by an unvocalized letter Yaa ("ي"),

then the letter Yaa will be vocalized with "Sukoon".

 If a letter has a "Fatha" diacritic and is followed by an unvocalized letter Alef-

Maqsora ("ى"), then the letter Alef-Maqsora will be vocalized with "Sukoon".

 If a letter has "Tanween-Fath" diacritic and is followed by an unvocalized letter

Alef ("ا"), then the letter Alef will be vocalized with "Sukoon".

 If a letter has "Tanween-Fath" diacritic and is followed by an unvocalized letter

Alef-Maqsora ("ى"), then the letter Alef-Maqsora will be vocalized with "Sukoon".

 If a letter has "Damma" diacritic and is followed by an unvocalized letter Waw

 then both letters Waw and Alef will be vocalized with ,("ا") then a letter Alef ("و")

"Sukoon".

 If a letter Alef ("ا") without Hamza ("ء") is appearing at the beginning of a word

and this letter Alef is followed by a letter Lam ("ل") with “Sukoon” then we put

“Sukoon” on the letter Alef.

24

3.1.2 Incorrect Vocalization

This is cleaning position violations of Diacritics. One example was the diacritic “Shadda”

at the first letter of a word. All starting letters of words were checked for “Shadda” diacritic

and if found, was removed.

Furthermore, we encountered diacritics that were scattered around the lines and were not

placed on any letter. We searched for all of these diacritics and removed them. Table 7

shows two words with “Shadda” violations at the first letter.

Table 7: Examples of “Shadda” violation at the start of the word

Word

كَّان سُّ

 تَّغَيَّرَ

3.1.3 Long Words and Lines

We identified words that have more than 10 letters excluding diacritics. Upon examination

of these words, we found that they were a combination of two words or more concatenated

together. We removed all lines containing these words. Table 8 shows two examples of

long words.

Table 8: Long words

Word

ت ب الَ بيَاَناَت ا ك

ر ي ب ا تَّد
ن يُّالَ لتَّعَاوُّ

25

We also noticed that some lines were very long in term of words, other lines contain

multiple lines (more than one full-stop mark). To address the issue, we decided that each

line should contain a number of words between eight and twenty. The normalization was

done by applying the following set of rules in the same order (only one rule is applied per

line):

 Check for multiple full-stop marks. If found the line is split by the full-stop mark.

 Count the number of words in a line and if they exceeds twenty words, then we

look for several punctuation marks to split the line by them. Table 9 shows the

punctuation marks used for splitting. Note that priority for using a mark for splitting

a line, was given in the same top-down order in Table 9. A study of choosing better

precedence of punctuation marks may be needed in related future work.

 The resulted lines were checked again until all lines that match these rules were

collected and others were rejected.

3.1.4 Foreign Letters and Words

Non-Arabic words and letters were found between the Arabic texts. We searched for all

Non-Arabic letters and removed them.

3.1.5 Words with Numbers

Some words were concatenated with numbers. These words were split and a whitespace

was added between the number and the word.

26

3.1.6 Punctuation Marks Inconsistences

We encountered some lines starting with a punctuation mark or a bullet. We removed the

occurrence of punctuation marks and bullets at the beginning of lines. Also, consecutive

punctuation marks were found, so we kept only one of these marks.

After filtering, we traversed the corpus and identified all the lines that contains words that

were not fully vocalized and removed them. We claim that our corpus has 100% fully

vocalized text.

Table 9: Split marks

Mark

;

،

?

!

,

3.2 “Tashkeel-2016” Statistics

We present in this section some statistics of the updated “Tashkeel-2016” Corpus.

Table 10 shows the corpus the number of times a diacritic occurs. Table 11 and Table 12

show letters - diacritics distributions in the updated “Tashkeel-2016” Corpus. The tables

show the occurrence percentage for a letter and all its possible diacritics.

27

Table 10: “Tashkeel-2016” diacritics frequencies

Table 11: “Tashkeel-2016” Letters - diacritics distribution part1

Letter
Diacritic

 ََ َ َ َ َ َ َ

 %13.439 %13.874 %4.169 %0.002 %30.030 %13.104 %25.382 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 %100.000 آ

 %0.048 %0.077 %0.094 %3.905 %0.095 %5.724 %90.055 أ

 %0.259 %0.173 %0.322 %44.471 %0.133 %26.173 %28.471 ؤ

 %0.032 %0.000 %0.000 %0.000 %99.968 %0.000 %0.000 إ

 %0.452 %0.299 %9.506 %5.110 %70.952 %4.345 %9.336 ئ

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ا

 %1.474 %0.993 %1.055 %8.772 %39.814 %9.119 %35.997 ب

 %14.363 %12.308 %12.360 %0.005 %32.087 %12.970 %15.908 ة

 %1.103 %0.478 %0.292 %11.475 %14.829 %13.694 %53.470 ت

 %1.581 %1.356 %1.595 %14.507 %13.659 %27.959 %38.430 ث

 %0.421 %0.327 %0.268 %15.280 %18.081 %19.023 %41.618 ج

 %0.936 %0.866 %0.563 %17.232 %15.569 %9.656 %51.769 ح

 %0.469 %0.404 %0.278 %22.860 %14.036 %13.452 %47.090 خ

 %4.886 %2.911 %2.506 %12.099 %19.740 %12.506 %34.814 د

 %1.157 %0.169 %0.308 %9.051 %10.863 %5.937 %70.577 ذ

 %3.392 %2.250 %2.026 %11.955 %22.402 %12.472 %40.235 ر

 %1.017 %1.516 %0.923 %10.528 %23.081 %13.962 %46.010 ز

 %1.569 %0.840 %0.760 %28.703 %15.481 %8.644 %42.397 س

 %1.232 %0.457 %0.408 %25.717 %9.453 %6.666 %55.272 ش

 %0.661 %0.567 %0.572 %21.235 %20.330 %9.386 %42.025 ص

 %3.776 %1.578 %5.848 %9.653 %25.486 %13.272 %38.431 ض

Diacritic Frequency

 َ 4742398

 َ 1910834

 َ 1270679

 َ 3800880

 َ 107358

 َ 147140

 َ 112266

 َ َ 307745

 َ َ 73974

 َ َ 43974

 َ َ 6662

 َ َ 9074

 َ َ 7732

28

Letter
Diacritic

 ََ َ َ َ َ َ َ

 %1.751 %1.115 %0.867 %19.773 %16.902 %10.242 %45.763 ط

 %1.587 %0.787 %0.912 %12.798 %16.697 %18.077 %46.855 ظ

 %1.058 %0.948 %1.167 %16.572 %12.184 %8.834 %59.136 ع

 %0.328 %0.189 %0.277 %11.736 %7.260 %7.921 %72.171 غ

 %0.910 %0.857 %0.785 %7.374 %30.587 %5.254 %52.592 ف

 %0.809 %0.938 %0.786 %9.735 %13.644 %11.080 %59.590 ق

 %0.789 %0.795 %0.342 %8.028 %9.839 %19.606 %58.465 ك

 %0.925 %0.903 %0.753 %30.754 %17.020 %6.131 %39.060 ل

 %1.304 %0.914 %0.800 %15.887 %20.078 %15.784 %39.303 م

 %1.173 %0.705 %0.737 %37.109 %10.413 %4.792 %31.694 ن

 %0.236 %0.203 %0.102 %2.978 %31.201 %45.634 %19.495 ه

 %0.054 %0.029 %0.053 %37.753 %1.603 %1.372 %57.428 و

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.00 ى

 %0.042 %0.040 %0.230 %56.246 %0.477 %8.480 %27.246 ي

Table 12: “TASHKEEL-2016” letters - diacritics distribution part2

Letter
Diacritic

 َ َ َ َ َ َ ََ َ َ َ َ َ
 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.000 %0.001 %0.000 %0.000 %0.000 أ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ؤ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 إ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ئ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ا

 %0.756 %0.559 %1.358 %0.030 %0.037 %0.037 ب

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ة

 %0.244 %0.120 %4.233 %0.034 %0.011 %0.017 ت

 %0.397 %0.067 %0.417 %0.013 %0.013 %0.005 ث

 %1.220 %0.529 %3.026 %0.128 %0.028 %0.051 ج

 %0.351 %1.354 %1.694 %0.004 %0.002 %0.003 ح

 %0.487 %0.071 %0.846 %0.007 %0.001 %0.000 خ

 %1.769 %1.253 %6.995 %0.167 %0.134 %0.219 د

 %0.572 %0.134 %1.156 %0.013 %0.047 %0.016 ذ

 %1.029 %0.668 %3.017 %0.198 %0.211 %0.145 ر

 %0.553 %0.293 %1.997 %0.080 %0.017 %0.024 ز

 %0.514 %0.155 %0.895 %0.013 %0.005 %0.024 س

 %0.235 %0.059 %0.454 %0.019 %0.019 %0.009 ش

 %0.665 %0.803 %3.120 %0.162 %0.230 %0.244 ص

 %0.348 %0.129 %1.440 %0.006 %0.016 %0.018 ض

 %0.564 %0.689 %2.245 %0.028 %0.016 %0.044 ط

 %0.771 %0.327 %0.841 %0.112 %0.133 %0.104 ظ

29

Letter
Diacritic

 َ َ َ َ َ َ ََ َ َ َ َ َ
 %0.013 %0.004 %0.083 %0.000 %0.000 %0.000 ع

 %0.034 %0.003 %0.082 %0.000 %0.000 %0.000 غ

 %0.379 %0.086 %1.111 %0.031 %0.012 %0.023 ف

 %1.028 %0.728 %1.164 %0.174 %0.195 %0.129 ق

 %0.510 %0.138 %1.414 %0.040 %0.013 %0.019 ك

 %1.107 %0.762 %2.428 %0.075 %0.046 %0.037 ل

 %0.596 %0.288 %4.897 %0.075 %0.037 %0.035 م

 %0.608 %0.150 %12.545 %0.026 %0.016 %0.031 ن

 %0.027 %0.021 %0.104 %0.000 %0.000 %0.000 ه

 %0.279 %0.079 %1.303 %0.018 %0.015 %0.014 و

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ى

 %1.884 %0.975 %3.193 %0.446 %0.423 %0.318 ي

3.3 MUSHAF Corpus

The motive behind working on the MUSHAF corpus is because we are sure that the corpus

is accurately diacritized. The text of MUSHAF can be acquired at [10]. The website

provided several versions of the MUSHAF text from simple text to Uthmani text. At the

current of accessing it, the site also provided the option of downloading the MUSHAF in

different file formats. When downloading the MUSHAF, the user is given the option to

include the following in the MUSHAF text:

 Pause marks.

 Sajdah signs (۩).

 El-hizb signs (۞).

 Superscript alefs (like in إ لى).

 The version we have chosen was the simple version in text format. We excluded all the

options mentioned above, as the inclusion of these characters is beyond our work.

30

As the simple text includes the diacritics reflecting TAJWEED rules, we needed to filter

these to reflect MSA writing. We analyzed the corpus and made some adjustments to the

text:

 Some words first letters had “Shadda” diacritic which reflect TAJWEED rules.

Thus we removed the “Shadda” in that case.

 We found that some words were not fully vocalized as some letters were without

diacritics reflecting TAJWEED rules. We generated a list of the target words and

letters and based on our analysis we decided to vocalize all unvocalized letters with

“Sukoon”. This processes included the unvocalized letters due to “Edgham” (إدغام),

“Ekhfaa” (إخفاء), and "Eqlab" (إقلاب).

 We generated a list of all unvocalized words and letters, then we analyzed the list

and decided to vocalize all remaining unvocalized letters with “Sukoon”.

 Due to the fact that the version of the corpus we downloaded was written as a

simple text and not in Uthmani writing, we found six cases that needed to be fixed.

Addressing these cases were also essential so that the corpus would be in line with

Quran morphology corpus which was used for the MUSHAF POS tagger in which

will be explained in the next chapter 4.3.3.2). The cases were:

o All words that start with (َيا) were followed by a space. This does not match

the original writing in MUSHAF. i.e. (َياَ أيَُّها). To fix this the whitespace is

removed from any word that is (َيا) followed by a whitespace.

o All words that start with (َها) were followed by a space. This does not match

the original writing in MUSHAF. i.e. (هاَ أنَ ت م). To fix this the whitespace is

removed from any word that starts by (َها) and followed by a whitespace.

31

o All words that start with (َوَيا) were followed by a space. This does not match

the original writing in MUSHAF. i.e. (وَياَ آ دَم). To fix this the whitespace is

removed from any word that starts by any (َوَيا) and followed by a

whitespace.

o Removed whitespace from (َّياَ ا ب نَ أ م).

o Removed whitespace from (َي ن .(إ ل ياَ س

o Removed white space from (أنَ لوَ وَ)

After fixing all the issues mentioned above, we indexed the corpus. The indexing was done

on each line and not by Sora. We added an index number for each line followed by a

character “|”.The indexing was done because it was necessary for using the MUSHAF POS

tagger.

3.4 Some Statistics on the MUSHAF Corpus

We present in this section some statistics of the MUSHAF’s Corpus.

Table 13 shows the frequency of each diacritic in the corpus.

32

Table 13: MUSHAF diacritics frequencies

Table 14 and Table 15 show letters - diacritics distribution. They show the occurrence

percentage for each letter and all its possible diacritics.

Table 14: MUSHAF letters - diacritics distribution part1

Letter
Diacritic

 ََ َ َ َ َ َ َ

 %14.639 %3.359 %5.513 %0.000 %17.934 %20.722 %37.833 ء

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.033 %0.044 %5.582 %0.000 %9.628 %84.713 أ

 %0.000 %0.297 %0.446 %77.860 %0.149 %16.345 %4.903 ؤ

 %0.176 %0.000 %0.000 %0.000 %99.824 %0.000 %0.000 إ

 %0.423 %0.000 %7.445 %10.237 %64.975 %7.614 %9.306 ئ

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ا

 %1.297 %1.680 %1.897 %9.956 %35.550 %9.181 %29.319 ب

 %16.254 %15.102 %21.630 %0.000 %21.800 %10.452 %14.761 ة

 %1.749 %0.466 %0.437 %6.644 %16.302 %20.751 %47.006 ت

 %0.990 %0.141 %1.202 %16.054 %11.174 %35.078 %34.441 ث

 %0.784 %0.693 %1.296 %19.837 %14.652 %12.662 %46.518 ج

 %0.845 %0.821 %1.884 %24.444 %16.570 %9.396 %45.797 ح

 %0.040 %0.200 %0.160 %21.986 %16.139 %7.809 %51.822 خ

 %2.270 %2.320 %5.358 %16.875 %20.915 %21.666 %23.736 د

 %1.480 %0.020 %0.831 %9.874 %36.740 %6.427 %38.909 ذ

 %1.871 %3.564 %4.684 %14.722 %17.504 %17.028 %36.999 ر

Diacritic Class Value

 َ 111915

 َ 43551

 َ 36216

 َ 117087

 َ 3472

 َ 2542

 َ 2385

 َ َ 9523

 َ َ 2419

 َ َ 1104

 َ َ 270

 َ َ 91

 َ َ 134

33

Letter
Diacritic

 ََ َ َ َ َ َ َ

 %0.688 %1.751 %1.438 %12.320 %27.142 %12.070 %37.273 ز

 %0.948 %0.516 %0.532 %21.790 %15.452 %13.789 %45.509 س

 %0.188 %0.047 %0.282 %19.492 %9.981 %7.439 %59.840 ش

 %0.483 %0.241 %0.338 %18.967 %22.490 %9.749 %44.788 ص

 %3.677 %1.008 %1.720 %13.879 %31.435 %13.938 %31.969 ض

 %2.907 %1.257 %1.964 %11.783 %21.838 %9.662 %46.976 ط

 %0.821 %1.055 %1.407 %10.434 %19.578 %24.150 %41.266 ظ

 %0.298 %0.734 %1.329 %21.414 %10.494 %9.899 %55.736 ع

 %0.328 %0.491 %0.491 %28.911 %5.487 %11.712 %52.580 غ

 %0.412 %0.583 %0.903 %7.465 %28.810 %8.643 %51.446 ف

 %0.810 %0.611 %1.351 %7.378 %11.715 %22.633 %50.796 ق

 %0.095 %0.229 %0.200 %6.192 %8.164 %38.220 %44.908 ك

 %0.479 %0.382 %0.979 %33.589 %11.550 %6.172 %37.925 ل

 %1.231 %1.679 %1.227 %28.218 %19.488 %14.206 %29.991 م

 %0.785 %0.524 %0.693 %26.142 %6.909 %6.975 %45.985 ن

 %0.114 %0.229 %0.222 %3.845 %27.771 %45.926 %21.623 ه

 %0.000 %0.020 %0.125 %50.296 %0.592 %0.512 %47.423 و

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ى

 %0.000 %0.036 %0.086 %59.833 %0.332 %7.814 %26.983 ي

Table 15: MUSHAF letters - diacritics distribution part2

Letter
Diacritic

 َ َ َ َ َ َ ََ َ َ َ َ َ
 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 أ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ؤ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 إ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ئ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ا

 %6.353 %2.132 %2.524 %0.009 %0.009 %0.096 ب

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ة

 %0.152 %0.086 %6.407 %0.000 %0.000 %0.000 ت

 %0.141 %0.071 %0.636 %0.000 %0.000 %0.071 ث

 %1.055 %0.452 %1.990 %0.030 %0.000 %0.030 ج

 %0.048 %0.000 %0.193 %0.000 %0.000 %0.000 ح

 %0.320 %0.000 %1.522 %0.000 %0.000 %0.000 خ

 %1.168 %2.003 %3.388 %0.017 %0.017 %0.267 د

 %2.676 %0.020 %3.021 %0.000 %0.000 %0.000 ذ

 %0.863 %0.669 %1.637 %0.097 %0.145 %0.218 ر

 %2.251 %0.500 %4.378 %0.000 %0.000 %0.188 ز

34

Letter
Diacritic

 َ َ َ َ َ َ ََ َ َ َ َ َ
 %0.200 %0.283 %0.965 %0.000 %0.000 %0.017 س

 %2.024 %0.047 %0.659 %0.000 %0.000 %0.000 ش

 %0.724 %0.627 %1.593 %0.000 %0.000 %0.000 ص

 %0.119 %0.652 %1.601 %0.000 %0.000 %0.000 ض

 %0.628 %0.079 %2.907 %0.000 %0.000 %0.000 ط

 %0.469 %0.000 %0.117 %0.234 %0.000 %0.469 ظ

 %0.021 %0.021 %0.043 %0.000 %0.000 %0.011 ع

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 غ

 %0.309 %0.091 %1.212 %0.034 %0.000 %0.091 ف

 %1.820 %1.024 %1.251 %0.114 %0.242 %0.256 ق

 %0.419 %0.029 %1.372 %0.133 %0.010 %0.029 ك

 %0.775 %0.456 %7.499 %0.045 %0.089 %0.060 ل

 %0.161 %0.082 %3.602 %0.007 %0.011 %0.097 م

 %0.814 %0.180 %10.957 %0.000 %0.022 %0.015 ن

 %0.088 %0.000 %0.182 %0.000 %0.000 %0.000 ه

 %0.125 %0.012 %0.709 %0.012 %0.093 %0.081 و

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ى

 %1.779 %1.120 %1.288 %0.123 %0.137 %0.469 ي

3.5 The “AKHBAR-2016” Corpus

The first step in developing the corpus is to choose the target domains to be crawled. Since

we already decided that we want only MSA text, we have chosen to go with news websites.

News websites cover several domains as they do not only contain news, but also sport,

art…etc.

To select the websites to crawl, we tried to be subjective in the selection process. We used

Alexa [37], a website ranking system based on traffic metrics. We searched through Alexa

to get Arabic news websites that have the highest global ranking. Table 16 shows the list

of websites selected with their ranking at the time they were accessed.

35

Table 16: Crawled websites list

Website Url Rank
Last

Accessed

1
BBC News -

Arabic
http://www.bbc.com/arabic/ 107

September,

2015

2 Alwakeel News http://www.alwakeelnews.com/ 3,323
September,

2015

3 Saraya News http://www.sarayanews.com/ 4,449
September,

2015

4
Arabian Business

- Arabic
http://www.arabic.arabianbusiness.com/ 10,407

September,

2015

After identifying the list of websites to be crawled, a tool was needed for the crawling

process. The tool we used in which we have found to be efficient and flexible is called

WinHTTrack-Website-Copier [38]. The tool can download a website and built the same

website structure allowing you to navigate offline. In crawling the websites, we limited the

files to be downloaded to HTML files by specifying the files extensions. Also, we found

that some of the navigated URLs are irrelevant so we prevented the crawling of these URLs

by specifying certain query parameters.

3.5.1 Text Extraction

While there are several tools for text extraction, we decided to build our own tool. One of

the main reasons that lead us to this decision was to avoid extracting text that would make

the corpus inconsistent in term of content. Since we are dealing with news websites then it

is expected that each page could have a comment section. The comment section could

contain slang Arabic which is called “Aamieh”. Extracting such text will cause problems

since many of the slang words are not available in Arabic dictionaries. Also the text could

contain content from advertisements or any kind of unrelated content.

http://www.bbc.com/arabic/
http://www.alwakeelnews.com/
http://www.sarayanews.com/
http://www.arabic.arabianbusiness.com/

36

To extract specific portions of the text from the crawled HTML pages, we faced several

challenges. Some of these challenges were:

1. We needed to identify the HTML tag that holds the news details.

2. The identified HTML tag could change if the website went through some updates.

Since the amount of crawled data was large, it covered around one to three years

of content. Thus we needed to check a range of the crawled pages to make sure

that if there were any changes to be taken into consideration.

3. Each crawled website used a different HTML tag for its news description. Hence,

we needed to identify the tag for each website.

After the identification of the target HTML tags for each website, the tool was built to

iterate through all the crawled HTML pages and extract the text. To ensure the consistency

of the extracted text, the text went through several filtration processes which are explained

in the following subsections.

3.5.1.1 Foreign Words and Letters

We removed HTML tags in the text. We found out that sometime tags that make the text

bold or italic or tags that change the font size were injected inside the text. Also, we took

out escape words, extra spaces between words, symbols and foreign letters (Non-Arabic).

Furthermore, we replaced Arabic letters in different fonts or formats with standard format

letters, the reason for replacing these letters is that they were saved in different Unicode

presentations (using the Unicode of the shape of the letter). This assures that the text is in

standard Unicode. Similarly, Arabic numbers were replaced with English numbers for the

same reason.

37

3.5.1.2 Punctuation Marks

The full-stop punctuation mark (.) is supposed to be connected to the last letter in a

sentence, but this was not always the case as we found some lines having space(s) before

the (.) mark. We removed all the spaces and connected the mark with the last word.

Furthermore, we handled space issues with parentheses brackets, i.e. space inside the

bracket at the start or end of the bracket or spaces before brackets…etc.

3.5.1.3 Lines

We removed any line that have less than 100 characters. We also removed empty and

duplicate lines.

Table 17 shows basic statistics on the corpus after extracting text and addressing all

inconstancies mentioned. As we can see from the statistics that the corpus have a very low

diacaritziton level. This is expected due to the nature of the domain selected.

Table 17: Crawled corpus statistics

Lines Count 278,562

Words Count 10,579,257

Unique Words Count 591,318

Letters Count 50,393,237

Diacritized Letter Count 122,875

Diacritization Level 0.2%

3.5.2 Corpus Vocalization

To vocalize the corpus, the vocalization steps mentioned in section 3.1.1 were applied.

After that, best performing models as described in chapter 5.3 were chosen. Both voting

and N-Gram vocalization were used for the best results possible. The steps to vocalize a

text file is enumerated in Appendix I.

38

3.6 Summary

In this chapter, we presented the steps followed in normalizing the SENTENCES3 corpus

leading to the new fully vocalized “Tashkeel-2016” corpus. We also presented the

preparation of MUSHAF corpus for text vocalization, the statistics of letters and diacritics

in the two corpora, and the approach followed in the development of “AKHBAR-2016”

corpus in term of websites selection, tools for crawling and the process of vocalization.

39

4 CHAPTER 4

Text Vocalization

When building a model for classification, we are basically describing a dataset. The dataset

can be described by the attributes (features) it has. The number of attributes and their types

varies depending on the nature of the data. Thus extracting features is very important as it

reflects the characteristics of the data. Feature extraction is the process of creating new

features or the use of existing ones to come up with new features. If the amount of

information (features) used to describe a dataset is big, then it would be hard to have a clear

understanding of the data [39].

Having too many features may include irrelevant or correlated ones. Irrelevant features are

considered as noise. Using such features when building a model will most likely increase

the size of the model. Thus, more computational power will be needed in building the

model. Correlated features on the other hand, are several attributes that are trying to

describe the same thing. As a consequence, they may contribute nothing or they may end

up reducing the predictive power of the built model.

Feature selection is the process of extracting an optimal number of features that are not

redundant nor correlated but are descriptive and accurate [40]. This would reduce the

number of features and as a consequence could reduce the model size and the time needed

to build the model. It may also increase the model accuracy [41].

40

While features are an essential and critical part of classifications, other parts are important

as well.

Figure 2 shows the proposed vocalization system architecture. The system consists of

different modules: Input, Settings, Instant Diacritizer, Data Preparation, and Feature

Extraction, Post-processing, and Output modules. The system works as follows: first, an

input text that is line formatted is provided to be vocalized. Several settings are set and

given to the diacritizer, along with the input. The instant diacritizer delegates the input and

the required settings to the data preparation module. The data preparation module sends

the input to the feature extraction module. The features will be extracted and then sent

back. Afterward, the training and testing files will be generated. These files, will be used

for classifications. The vocalized text will be built from the result of the classifications. If

post-processing option was selected, then the vocalized text will go through extra

processing to enhance its vocalization.

41

The remaining of this chapter presents some technical details related to the vocalizer and

its modules. In section 4.1 WEKA data mining software is introduced. In section 4.2, we

describe the features we extracted. Section4.3 presents the modules of the vocalization

system. The selection process of the best set of features is discussed in section 4.4.

Section 4.5 introduces the post-processing used to enhance vocalization. Some impletion

Settings

Mode
Confidence

Factor
Training &

Testing Ratio

Window Size POS Taggers
Post

Processing

Instant
Diacritizer

Module

Data
Preparation

Module

Feature
Extraction

Module
Input Lines

Vocalized
Text

Post
Processing

Figure 2 Vocalization System Architecture

42

issues is discussed in Section 4.6. Finally, the summary of the chapter is presented in

section4.7.

4.1 WEKA Data Mining Software

WEKA [42] is an open source data mining tool t developed in Java programming language.

It contains a vast number of classification algorithms. It also contains tools for data

processing, regression, clustering…etc. it is considered a suitable environment for the

development of new classifiers [42].

WEKA can be used in different ways. It can be used from either the interface or command

lines. Furthermore, it can be used by importing its library, then accessing its functionality

through coding. Our main interest in WEKA is the use of a Decision Trees (DT) classifier

called the J48. The next subsection will introduce the classifier.

4.1.1 J48 Decision Tree Classifier

The J48 classifier is an implementation of the open source C4.8 algorithm [43] which is

also an improvement of the ID.3 algorithm [44]. The idea of the ID.3 algorithm is to

generate a DT from a training dataset (S) that contains instances that are already classified

(their classes are already known)

𝑆 = 𝑠1, 𝑠2, 𝑠3, …

Each classified instance 𝑆𝑖 contains a set of attributes.

 𝑠𝑖 = {𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3, … }

The algorithm iterates through each unused attribute for all 𝑆 and calculates its information

gain 𝐼𝐺(𝑎), and then the attribute with the highest information gain is chosen to split the

43

dataset into smaller subsets. After that, unused attributes will be iterated in the subsets,

splitting them into more subsets. The same process will keep recurring until all the

attributes are traversed and the DT is created.

C4.8 uses the same concept but with some improvements that include the ability to handle

discrete and continuous attributes and the use of missing value attribute which indicates

that the data haven’t been used in forming the DT.

4.2 Features Extraction

Features extraction is the process of creating and coming up with new features. As

mentioned earlier, features are critical in the classification process. Although we

experimented with different types of features, the created features were based on the letter

level. The following subsections lists all the features we extracted.

4.2.1 Character

Character represents the base feature in which all other features are related to.

4.2.2 Position

Position indicates whether the letter is at the beginning of the word, internal or at the end

of the word.

4.2.3 Connection

Connection feature indicates the letter connection with its adjacent letters. A letter can be

left connected, right connected, left-right connected or it can be neither (isolated).

44

4.2.4 Letter Position

Letter Position indicates the index of the letter in a word. For example, a four letters word

means that it has four indices: first, second, third and fourth. If the letter is the second one

in the word its index is 2.

4.2.5 Current Word Length, Previous Word Length, and Next Word Length

These three features indicate the number of letters in current word, previous word and next

words, respectively.

4.2.6 Word’s First Letter, Second Letter, Before Last Letter, and Last Letter

These four features indicate the letter being either first, second, before last letter or if it is

the last letter. When a word consists of two letters, the second letter is only considered last.

4.2.7 Next Word First Letter and Next Word Last Letter

These two features indicate the next word first and last letters.

4.2.8 Previous Word First Letter and Previous Word Last Letter

These two features indicate the previous word first and last letters.

4.2.9 Next Letter and Next-Next Letter

These two features indicate the next and the next-next letters of the current letter being

traversed, i.e. in a word of three letters and while the pointer points to the first letter, the

next letter would be the second letter and the next-next letter would be the third letter.

4.2.10 Previous and Previous-Previous Letter

These two features indicate the previous letter and the letter before the previous letter of

the current letter being traversed, i.e. in a word of three letters and while the pointer points

45

to the third (last) letter, the previous letter would be the second and the previous-previous

would be the first letter.

4.2.11 Current Word Part of Speech Tag (POS), Previous Word POS Tag, and

Next Word POS Tag

These three features were implemented using the Stanford POS tagger [45] for normal text

and the MUSHAF Morphology Tagger [46] for MUSHAF text. Both taggers will be

introduced later in this chapter. See sections (4.3.3.1 and 4.3.3.2).

4.2.12 Features Sum

Feature Sum is the summation of the used features. It sums all numeric representations of

selected features into a single number.

As a general note on related features, when deciding the previous and the next words to

extract features from, if the next word starts with a non-letter or the previous word ends

with a non-letter, then they are considered null.

To extract the needed features from a text, we had to develop our own system as there are

no systems available to automate this process. The next section will present the modules/

tools we have developed and describe how each works. Also, we will list the third party

tools we have used and integrated with our tools.

4.3 Modules

The tools we developed were for feature extraction, data preparation and real time

vocalization. The next subsections describes briefly each developed tool and how it

operates.

46

4.3.1 Characters – Diacritics Generator Module

This tool main purpose is to generate three lists:

1. All Arabic letters without any diacritics.

2. All diacritics.

3. Every possible combination of Arabic letters and diacritics.

The lists have been generated by iterating through all Arabic letters and diacritics Unicode

representations. The generated lists contained some letters with diacritics that could never

occur in Arabic and thus were filtered out. These generated lists were used in all the

modules we have developed.

4.3.2 Feature Extraction Module

Most of machine learning tools require their input to be converted into discreet sequences.

Since we were working with WEKA, the same concept applies. To extract features from

Arabic text, we developed a module to handle the conversion process. Before starting the

development we determined all the characters that we may encounter in the text besides

Arabic letters, i.e. punctuation marks, numbers, special characters…etc. Other characters

that occurs without being specified were considered as a foreign characters and were

47

ignored. All these characters were added to the characters list generated earlier (See

Section 4.3.1). Figure 3 shows an overview of the process of this module.

The following steps illustrate in details how the module operate:

First, the characters list is used. For each character inside the list, a unique numeric code is

assigned. The same applies for the diacritics list. Table 18 shows an example of four Arabic

letters with their assigned numeric codes.

Table 18: Characters numeric

Character Numeric

Code

 105 ب

 136 ت

 151 ث

 166 ج

Second, we determine the set of features to be extracted from the input text on the letter

level (for characters). Each extracted feature from a character is mapped to the unique

Data Preparation

Settings

Features

Window Size

POS Taggers

Input Lines

Tokenization
(Letters)

Extract
Features

Stanford POS
Tagger

MUSHAF POS
Tagger

Figure 3 Feature extraction module

48

numeric code that was assigned for each character. Numeric codes will be converted into

binary based on a specific number of bits determined for each feature.

Third, after the extraction of all features for a single character, all the extracted binary

codes are accumulated (appended) together to form a single unique numeric number. Due

to the large numbers resulted (high number of bits) and in case we increased the number of

features, we used Big Integers which are integers that have no boundaries. The result will

be a sequence of numeric numbers such that each number represents a set of features for a

single character.

Fourth, the output will be used as input to another module to format the data as required

by WEKA. We can also reverse back the sequence of numbers into their original text.

Table 19 shows an example of features extraction for the word “ ََذَهب”. Each numeric

sequence represent a letter with all its defined features. This example assumes nine features

for each letter.

Table 19: Features extraction for the word “ ه ب ”ذ

Word Feature Extraction Result (Numeric Sequence)

ه ب 35732536197735738788641 16685102005727510411985 ذ

7860676838263722619841

4.3.3 POS Tagger Module

The POS tagger module consists of two taggers. The Stanford POS tagger and the

MUSHAF POS tagger. The next two subsection will describe each one respectively.

49

4.3.3.1 Stanford POS Tagger

A part of speech (POS) tagger is a software that is used to tag words with their part of

speech such as a verb, a noun, an adjective… etc. The Stanford POS tagger is a java

implemented software [45] that has been developed, enhanced and improved by several

researchers [47]. The tagger supports a variety of languages such as English, Arabic and

French…etc. Also, the software is available in different programming languages such as

C#, F# or Ruby…etc.

To use the Stanford POS tagger, we have downloaded the C# version of the software. Since

the software is implemented in java, a Dynamic Link Library (DLL) was already complied

and used in the project. The DLL used was the result of conversion of the Java Archive

(JAR) file to DLL assembly using IKVM [48] library. We created a separate tool and

referenced Stanford assembly and the IKVM assemblies. The IKVM assemblies were

needed because functions calls in Stanford library requires java objects.

The tool we developed can tag sentences on the fly and can also tag a text file. In tagging

we added two options which are tagging with/without vocalization. The reason for

implementing these two features is because we noticed that tagging results for unvocalized

words were better than vocalized words.

The first step of the integration was to determine all possible tags that the tagger uses.

Table 20 and Table 21 show a list of all tags that Stanford tagger uses along with their

definitions. After determining these tags, a unique number was assigned to each tag. These

unique numbers were used in forming the related features.

50

Figure 4 shows an example for tagging the sentence “ المدرسة إلىذهب أحمد ” using the tool.

Table 20: Stanford tags list – part 1

Tag Definition

CC Coordinating conjunction

CD Cardinal number

DT Determiner

DTJJ Determiner + Adjective

DTJJR Determiner + Adjective, comparative

DTNN Determiner + Noun, singular or mass

DTNNP Determiner + Proper noun, singular

DTNNPS Determiner + Proper noun, plural

DTNNS Determiner + Noun, plural

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

NN Noun, singular or mass

NNP Proper noun, singular

NNPS Proper noun, plural

NNS Noun, plural

NOUN Noun

Figure 4 Tagging example using Stanford Tagger tool

51

Tag Definition

PRP Personal pronoun

PRP$ Possessive pronoun

PUNC Punctuation

RB Adverb

RP Particle

Table 21: Stanford tags list - part 2

Tag Definition

UH Interjection

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VN Verbal noun

WP Wh-pronoun

WRB Wh-adverb

, Punctuation

. Punctuation

: Punctuation

4.3.3.2 MUSHAF POS Tagger

The development of a POS tagger for MUSHAF was inspired by a project that many people

contributed to. The origin of the project is an open source project [46] named “Quranic

Arabic Corpus”, which was started by the University of Leeds. The project included “POS

tagging, morphological segmentation and a formal representation of the Quranic syntax

using dependency graphs” [46].

The corpus includes each word in the MUSHAF mapped from Arabic to English via the

“Buckwalter Morphological Analyzer”, each word have its tag and also a set of features

that specify the word’s properties. Each word is indexed by the chapter and verse number.

Table 22 and Table 23 show a list of all tags used by the Quran Morphological corpus.

52

Table 22: Quran Morphological corpus tags list - part 1

Tag Definition

N Noun

PN Proper noun

ADJ Adjective

IMPN Imperative verbal noun

PRON Personal pronoun

DEM Demonstrative pronoun

REL Relative pronoun

T Time adverb

LOC Location adverb

V Verb

P Preposition

EMPH Emphatic lām prefix

IMPV Imperative lām prefix

PRP Purpose lām prefix

CONJ Coordinating conjunction

SUB Subordinating conjunction

ACC Accusative particle

AMD Amendment particle

ANS Answer particle

AVR Aversion particle

CAUS Particle of cause

CERT Particle of certainty

Table 23: Quran Morphological corpus tags list - part 2

Tag Definition
CIRC Circumstantial particle
COM Comitative particle

COND Conditional particle
EQ Equalization particle

EXH Exhortation particle
EXL Explanation particle
EXP Exceptive particle
FUT Future particle
INC Inceptive particle
INT Particle of interpretation

INTG Interrogative particle
NEG Negative particle

PREV Preventive particle
PRO Prohibition particle
REM Resumption particle

http://corpus.quran.com/documentation/adjective.jsp
http://corpus.quran.com/documentation/subordinate.jsp
http://corpus.quran.com/documentation/verb.jsp
http://corpus.quran.com/documentation/prepositionphrase.jsp
http://corpus.quran.com/documentation/imperative.jsp
http://corpus.quran.com/documentation/mood.jsp
http://corpus.quran.com/documentation/conjunction.jsp
http://corpus.quran.com/documentation/subordinate.jsp
http://corpus.quran.com/documentation/particleinna.jsp
http://corpus.quran.com/documentation/particlefa.jsp

53

Tag Definition
RES Restriction particle
RET Retraction particle

RSLT Result particle
SUP Supplemental particle
SUR Surprise particle
VOC Vocative particle
INL Quranic initials

The version of the Morphological corpus we used was the enhanced version. We used the

MUSHAF corpus we have and tagged the whole corpus. This resulted in a fully tagged

MUSHAF corpus. We then started developing a tool for the goal of tagging only MUSHAF

text. Both the tagged corpus and text corpus were indexed so that we can retrieve either the

tag or the text. Figure 5 shows an example of tagging a verse through the tool.

Figure 5 MUSHAF POS tagging example

54

4.3.4 Data Preparation Module

The purpose of the data preparation module is to provide a proper input to WEKA learning

scheme. WEKA’s most common files formats are comma separated vector (CSV) format

and Attribute Relation File Format (ARFF). We choose the ARFF format since it is the

native format used by WEKA. This module integrates with the feature extraction module

discussed earlier and uses its output for the creation of ARFF files. Figure 6 shows how

the module works in order to generate the ARFF files.

The following steps explain how the input files for WEKA are prepared:

First, settings which include training and testing ratios, window size and features are

specified. The window size refers to the number of characters traversed to extract features

Input Lines

Settings

Features
Training &

Testing Ratio
Window Size

Generate Training &
Testing

Feature Extraction
Module

Feature Selection

Create ARFF Files

Figure 6 Data preparation module

55

for a single character. For example, a window size of three, means that we are going to

extract the features for the first, second and then the third character. All of these will

represent the features of the characters diacritic.

Second, the input (Arabic text) is selected. The input has to be line formatted. The data

selection for training and testing is in term of lines. This means that the ratio of training

and testing will split the input by lines and not words. We used lines instead of words

because choosing words may breaks the natural aspect of the language. Selection of data

can be either random or static. For random selection, lines are selected randomly based on

the training and testing ratios. In static selection, selected lines for training and testing are

the same during the same cycle of training and testing.

Third, the input will go through feature extraction. When the extraction process is done,

the results will be processed again. Each generated numeric number (similar to Table 19)

encapsulates several features. All features will be extracted for all the generated numeric

sequences. Then, the output will be written into an ARFF files. An ARFF file format is

broken down into two sections:

1. Header section, in which the “@Attribute” tags are specified. Each tag corresponds

to a feature.

2. Data section, which includes comma separated values. The number of values

corresponds to the number of attributes used in the header.

56

Figure 7 shows an example of ARFF file.

When an attribute is flagged with the “class” property, it means that this attribute will be

the target for classification and since we are predicting diacritics, all diacritics were

specified as possible values for predication.

Table 24 lists all diacritics and their corresponding class values. These values are used in

the ARFF file. The last two class values correspond to a new line and no diacritic

respectively. The new line class value was added at a later stage because it was needed to

construct the output and its diacritics. As for the no diacritic class, it was needed for

punctuation marks and special characters that have no diacritic.

Figure 7 An ARFF file example

57

There are two things to note here. First, when selecting a window size larger than one, the

features generated will be different as opposed to selecting a window size of one. Let us

assume a word of three letters and a window size of two was chosen for generating training

and testing features. The features will be generated in the following manner:

1. The first and the second letter features would be generated and for both, the class

value would be the diacritic of the first letter.

2. The second and the third letter features would be generated and for both, the class

value would be the diacritic of the second letter.

3. Since the third letter has no next letter, then it will be represented by a null character

feature that we define. The class value will be the diacritic of the third letter its class

value will be the diacritic of the letter.

Second thing to note is that when generating training and testing files using vocalized data,

the output for the classification is already known and is included in the testing file. WEKA

ignores the classification in the testing file while performing predictions and then uses these

values later to determine the accuracy rate. When generating only testing files from

unvocalized data, then question marks (?) are used for the classification output since real

values are unknown and we want to predict them. The question mark is also referred to as

missing value.

Table 25 shows an example of both cases. The last value for both letters is the class value.

58

Table 24: Diacritics and their class values

Table 25: ARFF format for known classification value and for “to be predicated”

value

Mode Letter Feature Extraction ARFF Format

Training and Testing َ1 ,3 ,1 ,2 ,1 ,264 994509390599649 ذ

Testing 3 ,1 ,2 ,1 ,264 212982943996929 ه, ?

4.3.5 Instant Diacritizer and Trainer Module

This module has three main functionalities:

1. Instantly diacritize text using decision trees models.

2. Automate the process of training and testing.

3. Build incremental classification models.

We have integrated the instant diacritizer module with the feature extraction and data

preparation modules.

Diacritic Class Value

 َ Fatha

 َ Kasra

 َ Damma

 َ Sukoon

 َ Tanween-Fath

 َ Tanween-Kasr

 َ Tanween-Damm

 َ َ Shadda-Fatha

 َ َ Shadda-Kasra

 َ َ Shadda-Damma

 َ َ Shadda-Tanween-Fath

 َ َ Shadda-Tanween-Kasr

 َ َ Shadda-Tanween-Damm

- N/A

- NewLine

59

The next subsections present the functionality of the instance diacritizer.

Figure 8 shows how the module operates in training and testing mode, while Figure 9

shows how it operates using testing mode only.

Input Lines

Settings

Mode Confidence Factor

Vocalize Text
Data Preparation

Module
Feature Extraction

Module

J48 Classifier
Generate Decision

Tree
Classification Model

Output Training

TestingTesting

Figure 8 Instant diacritizer training and testing

60

4.3.5.1 Instant Diacritizer (Testing)

The process of instant Diacritization needs to go into four procedures. These procedures

are:

First, since we want our text to be diacritized, testing mode is set by default. Also, the ratio

of training and testing is set to 0 and 100 respectively. It is important to note that same used

parameters (window size, features and class index) generating the training file must be used

for the testing file as choosing different settings will result in incompatibility between the

files.

Second, the built model(s) has/ have to be selected and then loaded. If more than on model

is loaded, then voting will be triggered, voting will be explained in the following

subsection. Once loading finishes, the user enters the text to be vocalize.

Input Lines

Settings

Mode Confidence Factor

Vocalize Text
Data Preparation

Module
Feature Extraction

Module

Load Model(s)

Classification

Post Processing

Output

Voting

Models = 1

Models > 1

Figure 9 Instant diacritizer testing

61

Third, before vocalizing the text, two options are provided. The first option is to normalize

the output and remove the “Sukoon” diacritic based on specific rules. The second option,

is to apply an extra layer of vocalization on top of WEKA by using n-gram models. We

call both of these options post-processing since they are done after classification. Both of

these options will be detailed at the end of this chapter.

Fourth, the system will automatically generate a testing file and classifies its contents

against the loaded model(s) and process the output if post-processing option was selected.

4.3.5.1.1 Voting

Voting technique is activated when more than one model is loaded. One of the motives

behind implementing such technique is the inability to train the whole database at once.

Moreover, using more than one model for prediction at the same time means that these

models learned from different information. The voting technique simply works by loading

more than one model such that all participate in making the final predictions by majority.

Note this is done to each instance being predicted.

Figure 10 gives an overview of how does voting work.

62

Table 26 shows an example of vocalizing the letter “أ” from the word “أحمد”. The ID column

represents the letter number assigned from the character list. Four models are used in the

prediction. The result of the voting will the diacritic “Fatha” by majority as it has 3 votes

out of 4.

Input Lines

Classification Models

Model 1

Predication Selection
By Majority

Output

Model 2

Model 3

Model N

Generate Predictions

Model 1 - Predications

Model 2 - Predications

Model 3 - Predications

Model N - Predications

Figure 10 Voting

63

Table 26: Voting example

Model Letter ID Predicted

M1 91 أ Fatha

M2 91 أ Fatha

M3 91 أ Damma

M4 91 أ Fatha

4.3.5.2 Trainer for Training and Testing

As stated earlier, the purpose of the trainer module is to automate the process of training

and testing. The automation process is done in the following manner:

First, other than the previously mentioned settings, the mode and classifier are to be set.

There are three options for the mode: 1) testing, 2) building model, and 3) building model

and testing. In “building” mode each trained model is saved. As for the classifier option, a

set of classifiers are listed to select from. All available classifiers are incremental learners

except for the J48 classifier. In our extensively pursued experiments, we have found that

J48 classifier performs the best for Arabic text vocalization.

Second, the input file (line formatted) has to be selected. If an incremental classifier was

chosen and the input file size exceeds 4MB then the file will be split into smaller chunks.

Third, based on the selected mode, the process of training and testing will commence, and

for each input file(s), the classification results will be recorded and logged.

We want to note that in testing mode, if the text entered was partially diacritized, then all

the diacritics are left untouched and only the letters without diacritics are predicated.

64

4.4 Feature Selection

As mentioned in the beginning of this chapter, feature selection is the process of extracting

an optimal or sub-optimal subset of features from a set of features.

The main goal behind performing feature selection is to meet one or more of the following

[49]:

1. Select an optimal or a sub-optimal subset of features that could increase the

predictive power of the model.

2. Reduce the computational requirements and time needed to build and test a model.

3. Identify a subset of features that are related to the domain of the problem being

worked on.

The basic process of feature selection can be summarized as follow [50]:

1. Generation, in which different subsets of features will be generated for evaluation.

2. Evaluation, in which the subsets generated will be evaluated and the best

performing subset will be selected.

3. Stopping criterion, which represent the condition(s) for stopping the feature

selection process. A condition could be based on either the generation or evaluation

step. It could be a specific number of generated subsets or a number of iterations.

4. Validation, which represents testing the resulted subset. This step is not considered

part of the process when we want to vocalize text in real time without having its

ground truth vocalized text.

Feature selection techniques can be categorized into two groups which are filter method

and wrapper method [51]. The filter method produces a subset of features based on the data

65

properties and characteristics without using any learning scheme, while the wrapper

method applies a learning scheme (classifier) to find the best subset.

WEKA provides a feature called “Attribute Selection” [42] . The process of attribute

(feature) selection is composed of two parts:

1. Attribute evaluator, in which features are assessed and evaluated.

2. Search method, in which the space of attributes is searched.

Feature selection in WEKA can be either supervised or unsupervised [42] . Supervised

feature selection uses features correlation with the class value when evaluating the features,

while the other uses the distribution or the variance of the data for evaluation. We will be

using supervised feature selection since we know that our features are correlated with the

class value.

The attribute evaluator in WEKA, implements nine evaluators; seven of them are used for

ranking individual features, while the remaining two evaluators identify the best features

subsets. These two evaluators are:

1. Correlation-based feature subset (CFS) evaluation. It evaluates features based on

their accuracy in prediction and prefers the features with the high correlation with

the class and low correlation between other features.

2. Wrapper subset evaluator. It evaluates features by using a classifier in which a

model will be generated for each subset of features searched, and the evaluation

will be based on a specific measurement criteria which can be accuracy, recall, f-

measure, and others.

66

Using the wrapper evaluator has an advantage on the other evaluators. Studies showed [52]

[53] that by using the wrapper evaluator, the extracted features will be optimized for the

used classifier with the wrapper. As a consequence this should yield a better result on

classification. Since our work is based on using the decision tree classifier J48, we are

going to use the same classifier with the wrapper.

The feature extraction done was broken into two phases. The first phase was done at an

early stage of our work, so it covered only the first ten features mentioned earlier, while

the second phase covers all features. Details of the work done is explained in the next two

subsections.

4.4.1 Feature Extraction Phase 1

This phase was implemented before finishing the process of feature extraction. We decided

that we are going to perform feature selection even though we still had ideas for other

features. This decision was chosen to evaluate the features we had at that time and to

identify the best performing features.

To determine the best set of features and the best sliding window size, we conducted many

experiments. In those experiments, the space of possible features was explored using the

hill climbing algorithm in which we started from the most basic feature “Character” until

we traversed through all features. Table 27 shows all the combinations of features that were

generated and tested.

The text lines used for training and testing were selected from “Tashkeel-2016” corpus.

We created a validation dataset for this purpose. The set consisted of 500 lines. In

generating the training and testing sets, a ratio of 80/20 was used respectively. The

67

generation of the sets were not random as the first 400 lines were always taken for training

and the reminder 100 lines were taken for testing. The reason for this is to eliminate any

factor that could manipulate the prediction results. This minimizes the possibility of

choosing the wrong features subset. In the pursed experiments we have covered six sliding

window sizes (from one to six).

Table 27 shows the features space to be searched for feature selection. The table shows a

list of feature sets with a code assigned to each set.

To perform these experiments, we used our developed module “Instant Diacritizer and

Trainer” which we introduced earlier (See4.3.5). Figure 11, Figure 12, Figure 13, Figure

14, Figure 15, and Figure 16 show the results of the experiments in terms of features tested

and their accuracy rates using different sliding window sizes. Each one of these five figure

represents the results for a single sliding window size. Figure 17 shows the performance of

all features across all used sliding window sizes.

68

Table 27: Features space for feature selection.

Features

F1 Character + Position

F2 Character + Connection

F3 Character + LetterPosition

F4 Character + WordFirstLetter

F5 Character + CurrentWordLength

F6 Character + NextWordLength

F7 Character + PreviousWordLength

F8 Character + WordSecondLetter

F9 Character + WordBeforeLastLetter

F10 Character + WordLastLetter

F11 Character + Position + Connection

F12 Character + Position + LetterPosition

F13 Character + Position + WordFirstLetter

F14 Character + Position + CurrentWordLength

F15 Character + Position + NextWordLength

F16 Character + Position + PreviousWordLength

F17 Character + Position + WordSecondLetter

F18 Character + Position + CurrentWordBeforeLastLetter

F19 Character + Position + WordBeforeLastLetter

F20 Character + Position + WordLastLetter

F21 Character + Position + Connection + WordFirstLetter

F22 Character + Position + Connection + CurrentWordLength

F23 Character + Position + Connection + NextWordLength

F24 Character + Position + Connection + PreviousWordLength

F25 Character + Position + Connection + WordSecondLetter

F26 Character + Position + Connection + WordBeforeLastLetter

F27 Character + Position + Connection + WordLastLetter

F28 Character + Position + Connection + LetterPosition + WordFirstLetter

F29 Character + Position + Connection + LetterPosition + CurrentWordLength

F30 Character + Position + Connection + LetterPosition + NextWordLength

F31 Character + Position + Connection + LetterPosition + PreviousWordLength

F32 Character + Position + Connection + LetterPosition + WordSecondLetter

F33 Character + Position + Connection + LetterPosition + WordBeforeLastLetter

F34 Character + Position + Connection + LetterPosition + WordLastLetter

F35 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength

F36 Character + Position + Connection + LetterPosition + WordFirstLetter + NextWordLength

F37 Character + Position + Connection + LetterPosition + WordFirstLetter + PreviousWordLength

F38 Character + Position + Connection + LetterPosition + WordFirstLetter + WordSecondLetter

F39 Character + Position + Connection + LetterPosition + WordFirstLetter + WordBeforeLastLetter

F40 Character + Position + Connection + LetterPosition + WordFirstLetter + WordLastLetter

F41 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength

F42 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
PreviousWordLength

F43 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
WordSecondLetter

69

Figure 11 Accuracy for sliding window of size 1

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window Size 1

F44 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
WordBeforeLastLetter

F45 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
WordLastLetter

F46 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength

F47 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + WordSecondLetter

F48 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + WordBeforeLastLetter

F49 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + WordLastLetter

F50 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordSecondLetter

F51 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordBeforeLastLetter

F52 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordLastLetter

F53 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordSecondLetter + WordBeforeLastLetter

F54 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordSecondLetter + WordLastLetter

F55 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength +
NextWordLength + PreviousWordLength + WordSecondLetter + WordBeforeLastLetter +
WordLastLetter

70

Figure 12 Accuracy for sliding window of size 2

Figure 13 Accuracy for sliding window of size 3

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window size 2

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window Size 3

71

Figure 14 Accuracy for sliding window of size 4

Figure 15 Accuracy for sliding window of size 5

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window Size 4

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window Size 5

72

Figure 16 Accuracy for sliding window of size 6

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

F1 F3 F5 F7 F9

F1
1

F1
3

F1
5

F1
7

F1
9

F2
1

F2
3

F2
5

F2
7

F2
9

F3
1

F3
3

F3
5

F3
7

F3
9

F4
1

F4
3

F4
5

F4
7

F4
9

F5
1

F5
3

F5
5

A
cc

u
ra

cy

Features

Accuracy vs Features

Window Size 6

73

Figure 17 Accuracy for all used sliding window sizes

From the results we conclude the following:

 The fluctuation in the line represent features either doing good or bad.

 Increasing the window size would not necessarily increase classification results.

 The lowest classification was resulted from features set F6 with window size one.

It scored 52.351%.

 The highest classification was achieved by features set F39 scoring 77.114% using

window of size three. The Feature set F39 has the features: Character, Position,

Connection, LetterPosition, WordFirstLetter, and WordBeforeLastLetter.

50

55

60

65

70

75

80

F1 F2 F3 F4 F5 F6 F7 F8 F9
F1

0
F1

1
F1

2
F1

3
F1

4
F1

5
F1

6
F1

7
F1

8
F1

9
F2

0
F2

1
F2

2
F2

3
F2

4
F2

5
F2

6
F2

7
F2

8
F2

9
F3

0
F3

1
F3

2
F3

3
F3

4
F3

5
F3

6
F3

7
F3

8
F3

9
F4

0
F4

1
F4

2
F4

3
F4

4
F4

5
F4

6
F4

7
F4

8
F4

9
F5

0
F5

1
F5

2
F5

3
F5

4
F5

5

A
cc

u
ra

cy

Features

Features vs Accuracy

W1 W2 W3 W4 W5 W6

74

4.4.2 Feature Extraction Phase 2

After completing the process of feature extraction, we came up with 23 features, excluding

the diacritic since it represents the class value for prediction. In this phase we used WEKA

from its interface to perform the feature selection. The features evaluator we used was the

wrapper along with the J48 classifier as a learning scheme. As for the search method, we

used the Greedy Stepwise search. WEKA provides another native method which is the

Best-First search. The reason for choosing the Greedy Stepwise is due to the time taken in

searching the features space. The Greedy Stepwise implementation provides a critical

feature, the user can specify the number of CPU cores to use which reduces computation

time greatly.

One key difference between the feature selection in this phase and the feature selection in

phase I, is that a feature significance was determined by using it in all sliding window sizes.

For example, assume that we have a set of features and we want to test a newly created

feature “X” across different sliding window sizes. We tested this feature against a sliding

window of size two and found that the feature did not perform well. The issue here is that

our conclusion could be wrong because we assumed that the “X0” (Window 1) and “X1”

(Window 2) are bad while may be if one of them was tested alone, accuracy may get better.

The dataset we used, was the same validation dataset used before. Similar settings to the

previous feature selection were used.

Table 28 shows the results of feature selection per sliding window size. We can see from

the results that a sliding window with width one scored the lowest while the highest results

were scored by sliding window with widths three, four, five and six. Furthermore, we can

75

notice that in sliding windows with sizes three, four, five and six, the widening of the

sliding window has no effect on accuracy. Also the selected features remained unchanged.

Comparing these results with the previous results of feature selection, we can see that the

accuracies here dominate all the results from the previous phase. Hence we choose the

features subset with sliding window of size three to be our optimal subset.

Table 28: Wrapper feature selection per window

4.5 Post-processing

To further enhance the vocalization, another step was added after classification. Basically

what will happen is that at first, the best features subset will be used to generate a model

using the decision tree classifier, then the model will be used for text vocalization. After

text vocalizing, post-processing will occur. Post-processing consist of two parts in which

will be described in the following subsections. The aim of the first part (N-Gram

Vocalization) is to enhance vocalization while the second part aim (“Sukoon” Diacritic

Window
Size

Accuracy Features

1 80.3%
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + NextNextLetter0 + PreviousLetter0 +
WordPOS0

2 80.4%
Character0 + Position0 + Connection0 + LetterPosition0 +CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + NextNextLetter0 + PreviousLetter0 +
WordPOS0 + Character1 + Position1 + WordBeforeLastLetter1 + WordPOS1

3 0.783%

Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 +
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2

4 80.5%
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 +
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2

5 80.5%
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 +
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2

6 80.5%
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 +
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 +
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2

76

Normalization) is to make the output text more consistent. Figure 18 shows how post-

processing works.

4.5.1 N-Gram Vocalization

To enhance the vocalization, n-gram models were constructed for this goal. Three n-gram

models were created, bi-grams, tri-grams and quad-grams models. We used the

SENTNCES3 corpus in building these models. The n-gram model format used is the word

vocalized without its cased ending and a list of its previous unvocalized words along with

the frequency of each possible case. When vocalizing a word in a sentence, the word and

its previous words are collected based on the n-gram size and then all of their diacritics

will be striped. After that a search through each model is initiated starting from the highest

n-gran model. If a match is found, then the word is vocalized with the matched word while

keeping the original diacritic of the word case ending. If no match is found, then searching

through lower n-grams models takes place. Note that in the construction of the models,

while traversing words, if we find that the current token we are traversing starts with a

punctuation mark such i.e. “(“ or “]” …etc, Then we consider this word as the first word

of a sentence. Similarly, if while going over the previous words, we encounter a word that

Vocalized Text Process Text Processed Text

Remove Sukon NGram Vocalization

Figure 18 Post-processing

77

ends with a punctuation mark, then we stop looking for any words behind that word. This

feature was added to Instant Diacritizer tool explained before.

4.5.2 “Sukoon” Diacritic Normalization

In the corpus development chapter, we detailed the process followed in making sure that

the corpus is fully vocalized. One of the main things we did, was applying "Sukoon"

diacritic to all unvocalized letters. Although, this step is necessary for classification, the

appearance of "Sukoon" on some letters does not look natural in Arabic, e.g. با ل طا ل)). So

to make the vocalization output more consistent, we removed the “Sukoon” diacritic. The

removal was done by reversing the rules used in applying the “Sukoon” diacritic. The rules

used in the removal are:

1. If letter "ا" vocalized with "Sukoon" is followed by letter "ل" vocalized with

"Sukoon" at the start of a word, then we remove "Sukoon" from both letters.

2. If a letter "ا" vocalized with "Sukoon", then we remove the "Sukoon".

3. If a letter has a "Kasra" diacritic and is followed by a letter "ي" vocalized with

"Sukoon", then we remove the "Sukoon" from the letter "ي".

4. If a letter has a "Fatha" diacritic and is followed by a letter "ى" vocalized with

"Sukoon", then we remove the "Sukoon" from the letter "ى".

5. If a letter has a "Tanween-Fath" diacritic and is followed by a letter "ى" or "ا"

vocalized with "Sukoon", then we remove "Sukoon" from either letters.

6. If a letter has a "Damma" diacritic and is followed by letter "و" and/or "ا" vocalized

with "Sukoon", we remove "Sukoon" from either or both letters.

78

4.6 Implementation Issues

This section discusses some implementation issues related to this research work.

4.6.1 Features Combinations

One of the implementation issues we had to deal with was the time consumption of the

searching process to find the best set of features using WEKA the search algprithms

provided through WEKA, namely, the Best-First search and the Greedy-Stepwise search.

. While both algorithms try to find the best set features, one critical feature was available

in the Greedy-Stepwise and not in the other algorithm. The feature was to be able to set the

number of CPU cores. Although using this feature decreased the search time by ¾, the

process of finding the best set of features took over 24 hours on a HPC machine. The HPC

machine we used had two CPU’s and 45 GB of RAM.

4.6.2 Experiments

 In our work, we conducted hundreds of experiments. Some implementation issues related

to these experiments were:

1. We wanted to make the process of experimentation automated. This led us to

develop our own tools.

2. The tools developed integrate with WEKA, which is built on Java, while the

programming language we used was C#, we had to convert the Java library into a

DLL in order to use it.

3. To conduct the experiments we used the same HPC machine used before, and even

though, the experiments we did took days to finish.

79

4.7 Summary

In this chapter, we discussed features extraction and selection. We listed all features we

were produced. We also introduced the modules we have developed to automate text

diacritization. Feature selection process was divided into two phases, one that was done at

an early stage and the second phase was pursued after completing extracting all considered

features. An optimal features subset was chosen and discussed, and finally we highlighted

the major implementation issues we faced during our work

80

5 CHAPTER 5

EVALUATION

The evaluation phase of any implemented system is critical as it defines the boundary

between success and failure. In this chapter, we discuss the used evaluation metrics in

Section 5.1. In Section 5.2, we discuss the experiments we performed using the best

reached settings along with the results. Section 5.3 presents applying performance tuning

to possibly enhance the vocalization accuracy. . Comparing our work with some other

related work is presented in Section5.4. Finally, Section 5.5 is the summary of the chapter.

5.1 Performance Metrics

There are many metrics that can be used to measure the performance of a diacritizer. We

choose common metrics that researchers often apply with the addition of specific metrics

that WEKA provides. The metrics are:

 Diacritics Error Rate (DER)

 Word Error Rate (WER)

 Accuracy

 KAPPA

 Receiving Operating Characteristics Curve (ROC)

In the next subsections, a brief description of each metric will be given along with their

calculation methods.

81

5.1.1 Diacritic Error Rate (DER)

Diacritic Error Rate is the ratio of wrongly diacritized letters to the total number of letters

[54], as denoted by Equation 1

𝐷𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑧𝑒𝑑 𝑙𝑒𝑡𝑡𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑡𝑡𝑒𝑟𝑠

Equation 1: Diacritic-error rate (DER)

5.1.2 Word Error Rate (WER)

Word Error Rate is the ratio of wrongly diacritized words to the total number of words as

denoted by Equation 2.

𝑊𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑧𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠

Equation 2: Word error rate (WER)

5.1.3 Accuracy

The accuracy represents the ratio of correctly classified instances. Equation 3 shows how

accuracy is calculated.

𝐴𝑈𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

Equation 3: Accuracy (AUC)

5.1.4 KAPPA

KAPPA measures the chance of agreement between what have been classified and the

actual results of the classification. It means that it estimates the degree of whether the

82

classification was done by chance or not. A KAPPA value of zero would mean that a

classifier is classifying instances completely by chance (random). A value greater than zero

indicates that a classifier is doing better than chance. A value of one, means that the

classifier is sure of what the classification result would be. Note that the classifier being

sure of the result, does not mean that the classification would be right. This can be

represented as “I have learned” versus “I am sure of what I have learned”. To explain it in

a more easy way, assume that a student has been asked a question. The student answers the

question and he is sure of his answer, but the problem is that his answer might be wrong.

5.1.5 Receiving Operating Characteristics Curve (ROC)

The ROC measures the model predictive ability. i.e., a model ability to separate classes

and distinguish them. A model with a ROC value of 50% means that its prediction is

random, much like a coin toss, while a higher value indicates a better prediction. Based on

a point system, we can say that for example an ROC of 90%, means that its ability to

distinguish between classes is excellent, as opposed to 50% which is actually failing in

distinction.

5.2 Experiments

After determining the best settings (features and sliding window size) through feature

selection, we pursued more experiments to obtain higher classification accuracy and good

models to be used for vocalization. In these experiments, both the “TASHKEEL-2016”

and the MUSHAF corpus were used. The following subsections describes the experiments

done on each corpus.

83

5.2.1 Experiments with “TASHKEEL-2016” Corpus

As a start, we tried training the whole corpus but the generated training file was big for

used tool and resources to handle. As a consequence, we had to split the corpus to smaller

chunks. To split the corpus, we first decided on the sizes of the training sets in terms of

lines per file. We have chosen sizes ranging from 1000 to 15000 lines. For each size, the

whole corpus was used to generate the datasets. E.g. for a 1000 lines size, about 300 sets

were generated. The generation of the lines in the datasets, were random. Since the corpus

covers different domains of text, ignoring random generation for the data may result in

training sets that covers only a specific domain. Thus, we used random generation

expecting that our training data would be diverse.

Table 29 shows the highest results achieved for each lines size. Note that for these results

we did not measure DER and WER because when we generated the training files for

WEKA, we ignored both new lines and spaces between words, so it was not possible to

reconstruct the output and calculate these metrics. Figure 19, Figure 20, and Figure 21

show the results in term of size, accuracy, KAPPA and ROC respectively.

We notice from the results the gradual increase in all metrics as the number of lines

increases. The highest accuracy and KAPPA achieved were with a dataset of 14000 lines,

while the highest ROC was scored by a dataset of 15000 lines. In general we can conclude

the bigger that data, the better the results. The highest accuracy and KAPPA achieved were

86.68% and 81.77% respectively, while the highest ROC achieved was 96.3%. The highest

KAPPA achieved implies that the model has a good precision (reliability). Similarly, the

highest ROC indicates that the model predictions is not random and can distinguish

between classes very well.

84

Table 29: “TASHKEEL-2016” Experimental Results

Lines Size Accuracy KAPPA Average ROC

1000 81.60% 74.70% 92.60%

2000 82.95% 76.51% 93.70%

3000 83.96% 77.88% 94.30%

4000 84.57% 78.76% 94.70%

5000 85.06% 79.40% 95.10%

6000 85.24% 79.69% 95.50%

7000 85.57% 80.13% 95.60%

8000 85.71% 80.36% 95.80%

9000 85.98% 80.75% 95.90%

10000 86.13% 80.92% 96.10%

11000 86.25% 81.09% 96.10%

12000 86.52% 81.46% 96.30%

13000 86.55% 81.47% 96.30%

14000 86.72% 81.77% 96.30%

15000 86.69% 81.71% 96.40%

Figure 19 “TASHKEEL-2016” experimental results: Size vs Accuracy

79

80

81

82

83

84

85

86

87

88

A
cc

u
ra

cy

Size

Size vs Accuracy

85

Figure 20 “TASHKEEL-2016” experimental results: Size vs KAPPA

Figure 21 “TASHKEEL-2016” experimental results: Size vs ROC

70

72

74

76

78

80

82

84

K
A

P
P

A

Size

Size vs KAPPA

90

91

92

93

94

95

96

97

R
O

C

Size

Size vs ROC

86

To understand the results better, we take a closer look at the ROC values generated for

each class using the best models of 14000 and 15000 lines. Table 30 shows the ROC values

for each class per each dataset. Figure 22 shows a comparison between the resulted ROC

values. While the difference between the results is not high, we can see that the class

“Shadda-Tanween-Kasr” scored the lowest value while the class “Sukoon” scored the

highest value. This denotes that the model cannot distinguish very well when it comes to

certain diacritics. The reason behind this is that the diacritics distribution in the data in

general and in Arabic in specific is not balanced. In Arabic, the percentage of occurrence

of the diacritics “Fatha” and “Kasra” is higher than diacritic “Shadda-Damma”. Due to the

lack of enough instances of such diacritics, the model could not train very well on those

cases.

Table 30: ROC values for each class in 14000 and 15000 lines

Class Value ROC

- - 14000 Lines 15000 Lines

1 Fatha 95.90% 96.00%

2 Kasra 95.60% 95.80%

3 Damma 94.40% 94.10%

4 Sukoon 98.80% 98.80%

5 Tanween-Fath 97.10% 97.10%

6 Tanween-Kasr 90.00% 90.50%

7 Tanween-Damm 88.70% 88.00%

8 Shadda-Fatha 94.40% 95.40%

9 Shadda-Kasra 89.00% 87.60%

10 Shadda-Damma 87.30% 87.30%

11 Shadda-Tanween-Fath 97.70% 94.80%

12 Shadda-Tanween-Kasr 81.00% 82.10%

13 Shadda-Tanween-Damm 87.80% 88.70%

87

Figure 22 14000 and 15000 lines datasets ROC comparison for each class

5.2.2 Experiments with MUSHAF Corpus

Since the size of the MUSHAF corpus is very small compared to the “TASHKEEL-2016”

corpus, we used the whole corpus for training and testing. Note that when extracting

features from the text, the POS features were generated through the MUSHAF POS tagger.

Table 31 shows the results of the experiments. The ROC result for each class value is

presented in Figure 23, while Table 32 shows the detailed results. The MUSHAF model

results dominate the results achieved from “TASHKEEL-2016” with significance.

Furthermore, we notice that the ROC values are much higher than what have been achieved

before, with the exception of the “Shadda-Tanween-Kasr” which is the same class that the

previous models suffered from. The lowest ROC value achieved by the highest model for

the same class was 82.1% for MUSHAF as opposed to 74.8% for the “TASHKEEL-2016”.

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Class vs ROC

14000 Lines 15000 Lines

88

Table 31: MUSHAF experimental results

Accuracy KAPPA Average ROC

90.72% 87.29% 96.8%

Table 32: MUSHAF ROC value for each class

Class Value ROC
1 Fatha 96.50%

2 Kasra 95.80%

3 Damma 94.80%

4 Sukoon 98.80%

5 Tanween-Fath 98.30%

6 Tanween-Kasr 92.10%

7 Tanween-Damm 92.20%

8 Shadda-Fatha 95.50%

9 Shadda-Kasra 90.60%

10 Shadda-Damma 90.50%

11 Shadda-Tanween-Fath 97.90%

12 Shadda-Tanween-Kasr 74.80%

13 Shadda-Tanween-Damm 93.70%

Figure 23 MUSHAF experimental results: Class vs ROC

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13

R
O

C

Class

Class vs ROC

89

Trying to achieve better results than what we currently have, we pursued tuning to optimize

the J48 classifier parameters. The next subsection describes the tuning process of the

classifier.

5.3 Performance Tuning

Tuning the classifier for better performance depends on how the classifier actually works.

The J48 decision tree classifier uses a technique called pruning while building the decision

trees. Pruning means reducing the size of the resulting decision tree by removing parts that

are not contributing much in the classification. This reduces the complexity of the tree and

as a consequence may improve the accuracy. While the J48 classifier provides several

options for controlling the pruning process, most studies [55] [56] that conducted

performance tuning focused throughout their work on the “confidence factor” parameter.

The confidence factor controls the level of pruning and allows a range of values from 0 -

1. Choosing a low confidence value close to zero results in an aggressive pruning. While

increasing the confidence value to its upper bound results in a minimal pruning.

To tune the classifier, we pursued 10 experiments in which we tested various confidence

values. We started at 0.05 with a step size of 0.05 and keep incrementing until we reach

0.5 confidence value. We used the best dataset achieved from “TASHKEEL-2016” and the

MUSHAF corpora.

Figure 24, Figure 25 and Figure 26 show the results of performance turning for accuracy,

KAPPA and ROC respectively. Figure 27 Figure 28, and Figure 29 show the results for

MUSHAF for the same metrics respectively. Table 33 shows the detailed results for both

corpora.

90

From the results, we notice the following:

 An aggressive pruning using a CF of 0.05 hindered the accuracy performance,

while the ROC value increased.

 A minimal pruning using a CF of 0.5 hindered both accuracy and ROC for the

“TASHKEEL-2016” while the contrary happened for the MUSHAF.

 For the “TASHKEEL-2016”, the highest score achieved was with a CF of 0.3 and

0.35. It scored an 86.72% for both CF values which is an increase of 0.01% over

the base result. As for the MUSHAF the highest result was achieved by using a CF

of 0.3 to 0.45 with a score of 90.75% compared to 90.72% before tuning.

 We see that the relation between the level of pruning and the ROC value is linear.

A high level of pruning achieved the highest score, and while lowering the

pruning level, the ROC values decrease gradually.

Figure 24 “TASHKEEL-2016” performance tuning results: CF vs Accuracy

85.8

85.9

86

86.1

86.2

86.3

86.4

86.5

86.6

86.7

86.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
cc

u
ra

cy

CF

CF vs Accuracy

91

Figure 25 “TASHKEEL-2016” performance tuning results: CF vs KAPPA

Figure 26 “TASHKEEL-2016” performance tuning results: CF vs ROC

80.4

80.6

80.8

81

81.2

81.4

81.6

81.8

82

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

K
A

P
P

A

CF

CF vs KAPPA

95.2

95.4

95.6

95.8

96

96.2

96.4

96.6

96.8

97

97.2

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
O

C

CF

CF vs ROC

92

Figure 27 MUSHAF performance tuning results: CF vs Accuracy

Figure 28 MUSHAF performance tuning results: CF vs KAPPA

90.1

90.2

90.3

90.4

90.5

90.6

90.7

90.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
cc

u
ra

cy

CF

CF vs Accuracy

86.5

86.6

86.7

86.8

86.9

87

87.1

87.2

87.3

87.4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

K
A

P
P

A

CF

CF vs KAPPA

93

Figure 29 MUSHAF performance tuning results: CF vs ROC

Table 33: J48 classifier performance turning results

 “Tashkeel-2016” MUSHAF

CF Accuracy KAPPA Avg ROC Accuracy KAPPA Avg ROC

0.05 86.15% 80.95% 97.00% 90.37% 86.80% 97.20%

0.1 86.45% 81.39% 96.80% 90.47% 86.94% 97.10%

0.15 86.56% 81.55% 96.70% 90.51% 87.01% 97.00%

0.2 86.62% 81.64% 96.50% 90.62% 87.16% 97.00%

0.25 86.71% 81.77% 96.30% 90.72% 87.29% 96.80%

0.3 86.72% 81.79% 96.20% 90.75% 87.34% 96.80%

0.35 86.72% 81.79% 96.10% 90.75% 87.34% 96.80%

0.4 86.68% 81.74% 96.00% 90.75% 87.34% 96.80%

0.45 86.62% 81.65% 95.90% 90.75% 87.35% 96.80%

0.5 86.57% 81.59% 95.90% 90.74% 87.33% 96.70%

To calculate DER and WER, we used the best datasets from the previous experiments along

with the best settings from performance tuning. Table 34 shows the results.

96.6

96.7

96.8

96.9

97

97.1

97.2

97.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
O

C

CF

CF vs ROC

94

Table 34: “TASHKEEL-2016” and MUSHAF DER and WER results

Model
DER without case

ending
DER

WER without case

ending
WER

“TASHKEEL-

2016”
7% 13% 20% 37%

MUSHAF 6% 9% 18% 28%

We see from the results that the MUSHAF dataset performed better than the dataset from

the “TASHKEEL-2016”. The highest results achieved was a 6% and 9% for DER (without

case ending) and DER respectively. Also, a result of 18% and 28% was achieved for both

the WER (without case ending) and WER respectively.

5.4 Comparison

To validate our work, we considered comparing our work with other researchers’ work.

The problem was that the majority of reported related researches were either not available

or licensed. We had access to only one research by Shaaban [9]. We used his testing set,

and produced a fully vocalized and consistent subset. The test set we used will be made

available public.

Table 35 shows the comparison results between both systems. One thing to note about

Shabban’s system, is that the level of vocalization is around 81%, while in our system it is

100%. Thus to make the comparison fair, we considered each undiacritized letter as a

misclassified letter. We can see from the results that our systems performs better.

Table 35: Systems comparison

System DER1 DER2 WER1 WER2

Shabban 36.28% 36.28% 78.37% 78.37%

Our System 9.8% 9.76% 30.81% 30.81%

95

5.5 Summary

In this chapter, we introduced the most commonly evaluation metrics that researchers use

to test their vocalization systems. A set of experiments were conducted to determine the

best classification rate and the best models. Performance tuning was performed to enhance

the vocalization results.

96

6 CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Restoring diacritics of unvocalized text is an active research area. Several studies have

been pursued with different languages and different approaches. However using decision

trees for vocalization have been not been explored thoroughly. We showed in this thesis

that using decision trees classifier (J48) is effective in the area of Arabic text vocalization.

In this thesis we developed a corpus that contains only MSA text, and due to the nature of

the domain selected in developing the corpus, we had to vocalize it using our own built

vocalizer. We also refined the “TASHKEEL-2016” and the MUSHAF corpora.

Through the development process of the automatic vocalizer, we conducted feature

extraction and produced 23 features. These features were later reduced to 13 features using

feature selection. Feature selection was used through the wrapper evaluator within WEKA

which employed the J48 classifier as its learning scheme. Stanford and MUSHAF POS

taggers were used in POS features. Furthermore, to enhance the vocalization, voting and

n-gram models were introduced.

For the evaluation we used several metrics such as DER, WER, KAPPA and others. We

evaluated our experiments based on these metrics. We tuned the used parameters of the

classifier for possible better results. The highest result achieved was with the MUSHAF

corpus. Results of 6% and 9% for DER (without case ending) and DER were achieved

97

respectively. Also, Results of 18% and 28% were achieved for both the WER (without case

ending) and WER respectively.

Finally, we compared our work with a previous work [9]. The comparison showed that our

vocalizer performed better.

6.2 Future work

The features we came up with did not consider partially diacritized text. Thus, a possible

alternative approach would be to come up with features selected particularly for partially

diacritized text.

As the “AKHBAR-2016” corpus we developed was diacritized using our developed

system, the corpus needs to be validated to make sure that the diacritized content is more

accurate.

Another future work would be to use the corpus we have to build a minimal corpus. The

minimal corpus would cover different linguistic cases, letters with all their possible shapes

or letters with all their possible diacritics…etc.

98

References

[1] J. Owens, The Oxford handbook of Arabic linguistics, Oxford University Press,

2015.

[2] A. D. Rubin, "The Subgrouping of the Semitic Languages," Language and

Linguistics Compass, vol. 2, no. 1, pp. 79-102, 2008.

[3] K. Kirchhoff, D. Vergyri, J. Bilmes, D. Kevin and A. Stolcke, "Morphology-based

Language Modeling for Conversational Arabic Speech Recognition," Computer

Speech & Language, pp. 589-608, 2006.

[4] D. Vergyri and K. Kirchhoff, "Automatic diacritization of Arabic for acoustic

modeling in speech recognition," in Proceedings of the workshop on computational

approaches to Arabic script-based languages. Association for Computational

Linguistics, 2004.

[5] A. Messaoudi, L. Lamel and J.-L. Gauvain, "The LIMSI RT-04 BN Arabic

System," in Proceedings of the EARS RT-04 Workshop, 2004.

[6] M. Elshafe, H. Al-Muhtaseb and M. Al-Ghamdi, "Techniques for High Quality

Arabic Speech Synthesis," Information sciences, vol. 140, no. 3, pp. 255-267, 2002.

[7] Y. Hifny, S. Qurany, S. Hamid, M. Rashwan, M. Atiyya, A. Ragheb and G.

Khallaaf, "ArabTalk®: An Implementation for Arabic Text To Speech System," in

The proceedings of the 4th Conference on Language Engineering, 2004.

[8] H. Trost, "Recognitionand Generation Of Word Forms For Natural Language

Understanding Systems: Integrating Two-Level Morphology," Applied Artificial

Intelligence an International Journal, vol. 5, no. 4, pp. 411-457, 1991.

[9] O. Shaaban, "Automatic Diacritic Restoration for Arabic Text," King Fahd

University of petroleum and minerals, Al-Dahran, 2012.

[10] H. Zarrabi-Zadeh, "Tanzil Quran Text," [Online]. Available:

http://tanzil.net/download/. [Accessed 2 3 2016].

99

[11] R. F. Mihalcea, "Diacritics restoration: Learning from letters versus learning from

words," in Computational linguistics and intelligent text processing, 2002.

[12] R. Mihalcea and V. Nastase, "Letter level learning for language independent

diacritics restoration," in Proceedings of The 6th conference on natural language

learning, 2002.

[13] Y. Gal, "An HMM approach to vowel restoration in Arabic and Hebrew," in

Proceedings of the ACL-02 workshop on Computational approaches to semitic

languages, 2002.

[14] D. Crandall, "Automatic accent restoration in Spanish text," Indiana University

Bloomington, 2005.

[15] M. Elshafei, H. Al-Muhtaseb and M. Alghamdi, "Statistical methods for automatic

diacritization of Arabic text," in The Saudi 18th National Computer Conference,

Riyadh, 2006.

[16] M. Elshafei, H. Al-Muhtaseb and M. Al-Ghamdi, "Machine Generation of Arabic

Diacritical Marks," in The 2006 International Conference on Machine Learning,

2006.

[17] A. Harby, M. Shehawey and R. Barogy, "A statistical approach for Quran vowel

restoration," ICGST International Journal on Artificial Intelligence and Machine

Learning, vol. 8, no. 3, pp. 9-16, 2008.

[18] J. A. Mahar, G. Q. Memon and H. Shaikh, "Automatic Diacritics Restoration

System for Sindhi," Sindh University Research Journal, vol. 43, no. 1, 2011.

[19] M. Khorsheed, "A HMM-Based System To Diacritize Arabic Text," Journal of

Software Engineering and Applications, vol. 5, pp. 124-127, 2012.

[20] Microsoft, "Hidden Markove Model Toolkit," Microsoft, 29 November 2015.

[Online]. Available: http://htk.eng.cam.ac.uk. [Accessed Sunday November 2015].

[21] Y. Hifny, "Higher Order n-gram Language Models for Arabic Diacritics

Restoration," in Proceedings of the 12th Conference on Language Engineering

(ESOLEC’12), Cairo, Egypt, 2012.

[22] Y. Hifny, "Smoothing techniques for Arabic diacritics restoration," in Proceedings

of the 12th Conference on Language Engineering (ESOLEC’12), Cairo, 2012.

100

[23] M. Bebah, C. Amine, M. Azzeddine and L. Abdelhak, "Hybrid Approaches for

Automatic Vowelization of Arabic Texts," International Journal on Natural

Language Computing (IJNLC), vol. 3, no. 4, August 2014.

[24] S. Harrat, M. Abbas, K. Meftouh and K. Smaili, "Diacritics restoration for Arabic

dialect texts," in 14th Annual Conference of the International Speech

Communication Association, Lyon, France, 2013.

[25] M. Alghamdi and a. Z. Muzaffar, "KACST Arabic diacritizer," in The First

International Symposium on Computers and Arabic Language, 2007.

[26] K. Shaalan, H. M. Abo Bakr and I. Ziedan, "A hybrid approach for building Arabic

diacritizer," in Proceedings of the EACL 2009 workshop on computational

approaches to semitic languages. Association for Computational Linguistics, 2009.

[27] M. Rashwan, M. Attia, S. Abdou, M. Al Badrashiny and A. Rafea, "Stochastic

Arabic hybrid diacritizer," in Natural Language Processing and Knowledge

Engineering, 2009.

[28] R. A. Haraty, M. M. Allaham and A. El-Homaissi, "Towards Diactritizing Arabic

Text," in International Conference on Computer Applications in Industry and

Engineering, 2013.

[29] B. Rosenfeld, "A Comparison of Letterl-Level Classifiers of Portuguese Diacratic

and Capitalization Restoration," Princeton University, 2014.

[30] E. Al-Thwaib, "Text Summarization as Feature Selection for Arabic Text

Classification," World of Computer Science and Information Technology Journal

(WCSIT), vol. 4.7, no. 2221-0741, pp. 101-104, 2014.

[31] A. Almuhareb, W. A. Almutairi, H. Altuwaijri, A. Almubarak and M. Khan,

"Recognition of Modern Arabic Poems," Journal of Software, vol. 10, no. 4, pp.

454-464, 2015.

[32] K. Gal, "Hebrew vowel restoration using a bigram HMM model," Harvard

University, 2011.

[33] "Arabi NLP Website," [Online]. Available: http://www.arabinlp.com/. [Accessed 1

5 2013].

[34] "Mishkal Diacritization Tool," [Online]. Available:

http://sourceforge.net/projects/mishkal/. [Accessed 14 6 2016].

101

[35] M. A. Rashwan, M. A. Al-Badrashiny, M. Attia, S. M. Abdou and A. Rafea, "A

Stochastic Arabic Diacritizer Based on a Hybrid of Factorized and Unfactorized

Textual Features," Audio, Speech, and Language Processing, IEEE Transactions

on, vol. 19, no. 1, pp. 166-175, jan. 2011.

[36] "Sakhr Software," [Online]. Available: http:/www.sakhr.com. [Accessed 14 6

2016].

[37] Alexa, "Alexa - Actionable Analytics for the Web," [Online]. Available:

http://www.alexa.com. [Accessed 29 November 2015].

[38] "https://www.httrack.com," [Online]. Available: https://www.httrack.com.

[Accessed 29 November 2015].

[39] H. Liu, H. Motoda, R. Setiono and Z. Zhao, "Feature Selection: An Ever Evolving

Frontier in Data Mining," Fuzzy Systems and Data Mining, vol. 10, pp. 4-13, 2010.

[40] L. Yu and H. Liu, "Feature selection for high-dimensional data: A fast correlation-

based filter solution," in International Conference on Machine Learning, 2003.

[41] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection,"

Journal of machine learning research, vol. 3, no. Mar, pp. 1157-1182, 2003.

[42] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann and I. H. Witten, "The

WEKA data mining software: an update," ACM SIGKDD explorations newsletter,

vol. 11, no. 1, pp. 10-18, 2009.

[43] J. R. Quinlan, C4.5: Programs for Machine Learning, Elsevier, 2014.

[44] J. R. Quinlan, "Induction of decision trees," Machine learning, vol. 1, no. 1, pp. 81-

106, 1986.

[45] K. Toutanova, D. Klein, C. D. Manning and Y. Singer. [Online]. Available:

http://nlp.stanford.edu/software/tagger.shtml. [Accessed 21 3 2016].

[46] K. Dukes, 2009. [Online]. Available: http://corpus.quran.com. [Accessed 2 4 2016].

[47] K. Toutanova, D. Klein, C. D. Manning and Y. Singer, "Feature-rich part-of-speech

tagging with a cyclic dependency network," in Proceedings of the 2003 Conference

of the North American Chapter of the Association for Computational Linguistics on

Human Language Technology, Stroudsburg, 2003.

102

[48] J. Frijters. [Online]. Available: http://www.ikvm.net. [Accessed 21 3 2016].

[49] V. Balasubramanian, S. Ho and V. Vovk, Conformal Prediction for Reliable

Machine Learning: Theory, Adaptations and Applications, Newnes, 2014.

[50] M. Dash and H. Liu, "Feature selection for classification," Intelligent data analysis,

vol. 1, no. 3, pp. 131-156, 1997.

[51] G. H. John, R. Kohavi and K. Pfleger, "Irrelevant features and the subset selection

problem," in Machine learning: proceedings of the eleventh international

conference, 1994.

[52] M. A. Hall and G. Holmes, "Benchmarking attribute selection techniques for

discrete class data mining," IEEE Transactions on Knowledge and Data

Engineering, vol. 15, no. 6, pp. 1437 - 1447, 2003.

[53] A. G. Karegowda, M. Jayaram and A. Manjunath, "Feature Subset Selection

Problem using Wrapper Approach in Supervised Learning," International journal

of Computer applications, vol. 1, no. 7, pp. 13-17, 2010.

[54] I. Zitouni, J. S. Sorensen and R. Sarikaya, "Maximum entropy based restoration of

Arabic diacritics," in Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics. Association for Computational Linguistics,

Stroudsburg, PA, USA, 2006.

[55] E. C. Lemnaru, "Strategies for dealing with real world classification problems,"

Technical University of Cluj-Napoca, 2012.

[56] O. Villacampa, "Feature Selection and Classification Methods for Decision

Making: A Comparative Analysis," Nova Southeastern University, 2015.

103

Appendix I How to Vocalize a Text File

To vocalize a text file, the following steps needs to be followed:

1. Run the Instant Diacritizer application. Figure 30 shows the Instant diacritizer main

screen.

2. Assuming that we do not have any models, we need to generate models for

classification. If you already have any model, you can skip to step 8.

Figure 30 Instant Diacritizer Main Screen

3. Click on the menu button located on the upper left of the screen. Then click on the

“Settings” menu item. This will open up a new window which contains all the

settings for building classification models. Figure 31 shows the settings screen.

104

Figure 31 Instant Diacritizer Settings Screen

4. Make sure that the settings are set exactly as shown in Figure 31. After that, click

on the “Save” button.

5. In the main screen, click on the menu button again. Then click “Trainer & Tester”

menu item. Figure 32 shows the Trainer & Tester screen.

Figure 32 Trainer & Tester Screen

105

6. Make sure that the Classifier “J48” is selected. Click on the browse button for the

input file. For building models, the input file must be a vocalized text file so that it

can be used for Training. After choosing the appropriate input file, click on the Start

button to start the training process.

7. After the training process finishes, a log will be inserted in the “Training Log” and

process progress bar will be full. The models built will be located in a folder named

“Model” which can be found in application root directory. After that, close the

“Trainer” screen.

8. In the main screen, click on the browse button and select all the models built in the

previous steps. Then click on the “Load” button. Upon clicking the “Load” button,

the screen will be disabled until the loading process is finished.

9. After loading is finished, check both options:

a. Post-Processing Remove Sukoon (Sukon).

b. Post-Processing Vocalization.

10. Go to the file vocalization tab. Figure 33 shows the file vocalization tap.

106

Figure 33 Instant Diacritizer Main Screen - File Vocalization Tap

11. Click on the “Browse” button for the input file, and select the input file you want

to vocalize. Also, click on the “Browse” button for the output file name and

location.

12. Click on the “Vocalize” button, and wait for the vocalization process to finish.

107

Vitae

Personal Information

Gender: Male

Nationality: Jordanian

Birth Place: Saudi Arabia

Birth Date: 27/10/1988

E-Mail: yahya.khraishi@gmail.com

Address: Amman, Jordan

Education

2016 King Fahd University of Petroleum & Minerals, Dahran, Saudi Arabia

Master of Science in Computer Science (GPA 3.34 out of 4)

2010 Al-Zaytoonah University, Amman, Jordan

Bachelor in Computer Science (Cumulative Average 83.5%)

Publications

2016 Khrishe, Yahya, and Mohammad Alshayeb. "An empirical study

on the effect of the order of applying software

refactoring." Computer Science and Information Technology

(CSIT), 2016 7th International Conference on. IEEE, 2016.

Experience

2016-now SSS Process, Amman, Jordan

“Senior Software Engineer”

 Developing ASP.Net applications using MVC technology under

C# using Visual Studio 2015.

 Database development using SQL 2015.

108

3/2016-

6/2016

OrderMe, Dahran, Saudi Arabia

“Senior Software Developer”

 Integration and customization of an open source Java project

“JSprit” for solving vehicle routing problem

6/2012-

7/2013

Safat Enterprise Solutions, Kuwait

“Senior Software Developer”

 Developing ASP.Net and Windows applications using third

party component “DevExpress” under C#.

 Database development using SQL 2008, 2012.

 Design and Development of Crystal Reports.

 Worked in the following projects:

o MyApp – National Bank of Kuwait (NBK).

o Operation Document Flow – Kuwait Financial House

(KFH).

12/2011-

6/2012

CrownIT, Amman, Jordan

“Software Developer”

 Developing ASP.Net Applications under C#.

 Worked on Ajax, JQuery, JavaScript, JSON, and XML.

 Tuning of SMPP application.

 Integration and customization of open source projects with

existing applications, such as Blogs, Forums, Wikipedia, etc.

 Database development using SQL2008.

 Worked in the following projects:
o www.icn.com

o www.fxpulp.com

10/2010-

11/2011

HyperExecution, Amman, Jordan

“Software Developer”

 Developing ASP.Net and Windows Applications under C# using

Visual Studio 2005, 2008.

 Worked on Ajax and Javascript.

 Developing Windows Mobile Application - Windows Mobile 6.0

using C#.

 Database development using SQL2005, SQL2008.

 Design and development of Crystal Report.

 Worked in the following projects:
o www.hiwash.com

o www.hiwashportal.com

o (Hammurabi) Law firm application.

http://www.fxpulp.com/
http://www.hiwash.com/

109

Programming Languages & Computer Skills

Programming Languages

 ASP.Net

 ADO.Net

 C#.Net

 VB.Net

 SQL Server 2005 ,2008, 2012 :-

- Database design and implementation.

- Relations and constrains.

- Queries and procedures.

Web Design Skills

 Scripting: HTML, CSS, JQuery, JavaScript and Json.

Operating System& Maintenance Skills

 Microsoft Windows (98, XP, Vista , 7, 8, 10)

 Experience in troubleshooting all problems in windows

 Microsoft Office 2003, 2007, 2010

 (Very Good at Word, Good PowerPoint, Excel and Access)

 Experience in troubleshooting and maintaining PC Hardware

 Experience in troubleshooting and maintaining windows applications

 Ability to get familiar with applications quickly

Graphic Design Skills

 Adobe Photoshop

 Microsoft Expression Design

