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Diacritical marks in Arabic play a major role in understanding the meaning of the words, 

their pronunciations and the overall meaning of the context. A word could have different 

forms of diacritics and thus different meaning for each form. While native Arabic speakers 

face no problems in reading and understanding Arabic text with no diacritics, non-native 

speakers find it difficult. Arabic computer applications such as speech recognition 

applications or text to speech applications need the Arabic words to be vocalized. 

Otherwise, using unvocalized text on such applications would add ambiguity to the process 

and may have a negative impact on the results.  

Automatic vocalization is the process of inserting diacritics to unvocalized or partially 

vocalized text. This process, sometimes called "diacritic restoration", is common with 

different levels in several languages including some Latin and Semitic languages. 

This research work reports the development process of the updated fully diacritized corpus 

and Arabic text vocalization using decision trees algorithms. 

For the corpus development, we redeveloped a previously built corpus, SENTENCES3. 

The SENTENCES3 corpus was normalized to have it consistent and fully vocalized. We 

have named the newly corpus as “Tashkeel-2016” Furthermore, we introduced a new 

corpus which is the MUSHAF, for being accurately vocalized and consistent to be used in 

text vocalization. A third corpus was also developed. The new corpus targeted Modern 

Standard Arabic (MSA) in news since the nature of the “Tashkeel-2016”corpus was mostly 

Classical Text. The news corpus, named “Akhbar-2016”, contains over 10 million words.  

The second part of the work was Arabic text vocalization. Features extraction was done to 

come up with features that would help in the classification process. After applying feature 

extraction, feature selection was performed to select the best set of features. 

To prepare an appropriate setup for vocalization, several modules were developed. The 

developed modules communicate together to form the vocalization system. The 

vocalization system uses decision tree algorithm for classifications. The system also 

applies a post-processing step of vocalization using N-Gram word models. 

Many experiments were conducted trying to achieve the highest accuracy and the best 

performing model. The highest result achieved was for the MUSHAF corpus. Results of 
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6% and 9% for diacritic error rate (DER) without case ending and a DER with case ending 

were achieved respectively. For “Tashkeel-2016”experiments, results of 18% and 28% was 

achieved for both the word error rate (WER) without case ending and WER with case 

ending respectively. 

  



xiv  

 

 ملخص الرسالة

 خريشييحيى محمد سليمان  :الاسم الكامل
 

 تشكيل النص العربي آليا :عنوان الرسالة
 

 الآلي علوم الحاسب التخصص:
 

 2016مايو  :تاريخ الدرجة العلمية
 

لمعنى اوصكككحة لا ما وفمم  في اللغة العربية دورا رئيسكككا في فمم معاني الكلمات)الحركات(  تشككككيلالعلامات تمثل 

ولمذا السكككبب يواجه  .مختلفلكل وجه معنىً  ،تحتمل عدة أوجه في التشككككيلقد الكلمة الواحدة  نأالعام للنص، حيث 

لة. و صعوبة في قراءة غير العربي  فمم النصوص العربية غير المُشَكَّ

لةالعربية تكون النصوص والكلمات  أنتطبيقات اللغة العربية العديد من  تتطلبو كون نتائج هذه التطبيقات كي ت مُشَكَّ

 ومن هذه التطبيقات أن مة التعرف الآلي على الكلام العربي. ،مقبولة

لالإلى النصوص غير  المناسبة عملية إضافة علامات التشكيل على أنه الآليالتشكيل  نعرف لة أو المُشَكَّ ة جزئياً. مُشَكَّ

 ض اللغاتبع منماشائعة في عدة لغات  وعملية التشكيل الآلي .باسترجاع علامات التشكيلسمي هذه العملية أحيانا وت

 السامية. واللغاتاللاتينية 

 وطورنا طرقا للتشكككككيل الآلي للنص العربي. ،عربي مشكككككل تشكككككيلا كاملا مكنز رتطويبالعمل البحثي في هذا قمنا 

قمنا بتعريض  حيث ،”SENTENCES3“سكككمي ب و  هؤعلى مكنز قد سكككبن إنشكككا المكنز عملية تطويرفي  اعتمدنا

 وكانت النتيجة الوصكككول إلى كنز. المكنز واكتمال التشككككيل كلمات صكككحةتصكككحيحية للت كد من ات المكنز إلى معالج

هو مكنز المصحف، ولقد  اخترنا العمل عليه لت كدنا و قمنا بالعمل على مكنز جديد كما" 2016-جديد أسميناه "تشكيل

، في محتواه النصوص العربية المعاصرة ناالتشكيل. عدا عن ذلك، قمنا بتطوير مكنز جديد استمدفومن دقة المحتوى 

حيث انه  "2016-أخبار"المكنز الجديد بمكنز  نايم  . سكديةالتقلياعتمد على النصكوص " 2016-"تشككيلحيث إن مكنز 

 ملايين كلمة. 10يحتوي المكنز على اكثر من و ،اعتمد على النصوص الإخبارية فقط

لى استنباط عواعتمد البحث . آليا العربي تشكيل النصعلى تطوير طرن لالعمل البحثي هذا الجزء الثاني من ويتركز 

في  ءللبدو ،الخصكككائصمجموعة من هذه  لمن ثم اختيار افضكككو دقتهو التي تسكككاهم في عملية التشككككيل الخصكككائص

مل يستعو .الآليمع بعضما مشكلة ن ام التشكيل  مترابطة وحداتبرمجية تحتوي على عدة  عملية التشكل تم تطوير

نسككتخدم   "بعد المعالجة" ليما مرحلة إ" يضككاف WEKA J48خوارزمية  " بالأخصو ن ام التشكككيل أشككجار القرار

 ". N-Gram"التكرار نماذج فيما 

نز المصحف مك حصلذجٍ للتشكيل حيث اافضل نمالممكنة و من التجارب للحصول على أدن النتائج"لقد تم إجراء العديد 
 ."2016-"تشكيلمكنز بعلى افضل النتائج مقارنة 

 
في حالة التشكيل  %6بنسبة مكنز المصحف الخط  التشكيلي على مستوى الحرف ل نسبة في لأقلأفضل النتائج  كانت

فكانت نسبة  " 2016-"تشكيل مكنز إلىما بالنسبة أوفي حالة التشكيل الكامل.  %9ودون تشكيل آخر حرف في الكلمة 
التشكيل في حالة  %28وفي حالة التشكيل دون تشكيل آخر حرف في الكلمة  %18 الكلمةتشكيلي على مستوى الخط  ال

 الكامل.
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1 CHAPTER 1  

INTRODUCTION 

Arabic is the fifth largest language in the world in terms of native speakers with about 300 

million speakers [1]. It is one of the Semitic languages, which includes Amharic, Ethiopian, 

Assyrian, Babylonian, Hebrew and other languages [2]. Some of these languages use 

diacritic marks. Diacritic marks are added to letters to resolve possible word ambiguity. 

Adding such marks to an unvocalized word may change the pronunciation of the word and 

its meaning. 

Arabic consists of 28 basic letters and 8 additional letters which represent writing 

variations. Table 1 shows the basic Arabic letters while Table 2 shows the writing 

variations. It is to note that an Arabic letter may have different shapes depending on its 

position in the text and surrounding letters. Table 3 shows the basic shapes that the letter 

“Ein” may have depending on its position in the word (first, internal or last). 

Table 1: Arabic letters 

# Letter Unicode Letter Name 

 ARABIC LETTER ALEF ا 1

 ARABIC LETTER BEH ب 2

 ARABIC LETTER TEH ت 3

 ARABIC LETTER THEH ث 4

 ARABIC LETTER JEEM ج 5

 ARABIC LETTER HAH ح 6

 ARABIC LETTER KHAH خ 7

 ARABIC LETTER DAL د 8

 ARABIC LETTER THAL ذ 9

 ARABIC LETTER REH ر 10
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# Letter Unicode Letter Name 

 ARABIC LETTER ZAIN ز 11

 ARABIC LETTER SEEN س 12

 ARABIC LETTER SHEEN ش 13

 ARABIC LETTER SAD ص 14

 ARABIC LETTER DAD ض 15

 ARABIC LETTER TAH ط 16

 ARABIC LETTER ZAH ظ 17

 ARABIC LETTER AIN ع 18

 ARABIC LETTER GHAIN غ 19

 ARABIC LETTER FEH ف 20

 ARABIC LETTER QAF ق 21

 ARABIC LETTER KAF ك 22

 ARABIC LETTER LAM ل 23

 ARABIC LETTER MEEM م 24

 ARABIC LETTER NOON ن 25

 ARABIC LETTER HEH ه 26

 ARABIC LETTER WAW و 27

 ARABIC LETTER YEH ي 28

 

 

 

 

 

 

Table 2: Letters writing variations 

# Letter Unicode Letter Name 

 ARABIC LETTER HAMZA ء 1

 ARABIC LETTER ALEF WITH MADDA ABOVE آ 2

 ARABIC LETTER ALEF WITH HAMZA ABOVE أ 3

 ARABIC LETTER WAW WITH HAMZA ABOVE ؤ 4

 ARABIC LETTER ALEF WITH HAMZA BELOW إ 5

 ARABIC LETTER YEH WITH HAMZA ABOVE ئ 6

 ARABIC LETTER TEH MARBUTA ة 7

 ARABIC LETTER ALEF MAKSURA ى 8

 

Table 3: Different shapes 

of the letter Ein 

In word 

Example 

Shape 

 عـ عالم

 ـعـ مصعب

 ـع ربيع

 ع شجاع
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Arabic has 14 diacritical marks. Table 4 shows these diacritics.  

Diacritics can be categorized into four groups: 

1. Short vowel diacritics, called "Tashkil". They are "Arabic Fatha", "Arabic Kasra" 

and "Arabic Damma”. 

2. No vowel mark. The “Sukoon” (Arabic Sukun) denotes that the letter has no vowel. 

3. Nunation diacritics called "Tanween". They are "Tanween-Fath" (Arabic Fathatan), 

"Tanween-Kasr" (Arabic Kasratan) and "Tanween-Damm" (Arabic Dammatan). 

4. Gemination diacritics consonant marks called "Shaddah" (Arabic Shadda). It 

includes "Shaddah" with "Fatha", "Shaddah" with "Kasra", "Shaddah" with 

"Damma", "Shaddah" with "Fathatan", "Shaddah" with "Kasratan", and "Shaddah" 

with "Dammatan". 

The remaining of this chapter is divided into 4 sections. Section 1.1 addresses the problem 

statement. Section 1.2, states the motivation behind the study.  Thesis contribution is 

presented in Section 1.3. Section 1.4 layouts the thesis structure. 

Table 4: Diacritics 

# Diacritic 
Unicode Diacritic 

Name 
 # Diacritic Unicode Diacritic Name 

1  ََ ARABIC FATHA  8   ٌ ARABIC DAMMATAN 

2   َ ARABIC KASRA  9  ٌَ  ٌ ARABIC SHADDA WITH FATHA 

3   َ ARABIC DAMMA  10   ٌ  ٌ ARABIC SHADDA WITH KASRA 

4   َ ARABIC SUKUN  11  ٌُ  ٌ ARABIC SHADDA WITH DAMMA 

5   َ ARABIC SHADDA  12  ًٌ  ٌ 
ARABIC SHADDA WITH 

FATHATAN 

6   َ ARABIC FATHATAN  13  ٌٍ  ٌ 
ARABIC SHADDA WITH 

KASRATAN 

7   َ ARABIC KASRATAN  14   ٌ  ٌ 
ARABIC SHADDA WITH 

DAMMATAN 
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1.1 Problem Statement 

Modern Arabic text is rarely written with diacritics. The absence of diacritical marks could 

cause ambiguity for the reader. Usually, native Arabic speakers face no difficulties in 

reading unvocalized text because they can deduce the diacritics from the context of the 

text, syntax of the language and their knowledge of the morphology of the words. However, 

non-native speakers would have difficulties in understanding the unvocalized text as a 

single word with different diacritics may have different word forms with different 

meanings and different pronunciations. 

Restoring diacritics from unvocalized text is an active research area. Several studies have 

been pursued with different languages including French, Spanish, Persian, Arabic and 

Hebrew. Computer applications that rely on text processing are another reason that 

motivates researchers to tackle this problem. Examples of these applications are speech 

recognition [3] [4] [5], text to speech [6] [7], and automatic translation [8]. 

On the other hand, corpora developed to support Arabic text vocalization research need to 

be consistent in terms of content and vocalization as they should represent general Arabic 

text.  

In this research work, we normalize a previously built corpus SENTENCES3 [9] and 

introduce the MUSHAF corpus [10] for being fully vocalized and prepared for automatic 

Arabic text vocalization. Also, we work on building a new news corpus (“Akhbar-2016”) 

based on MSA as the SENTECNES3 corpus is 90% classical.  

Furthermore, we propose a way to automatically vocalize Arabic text using decision trees 

classifier. Many studies have been conducted on the area of text vocalization. The Studies 
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showed that decision trees were scarcely used in vocalizing foreign text and up to our 

knowledge was never used for Arabic text vocalization. 

1.2 Motivation 

As mentioned before, Modern Arabic text is almost never written with diacritics. Ignoring 

diacritical marks in writing could cause difficulties in understanding the unvocalized text 

for non-native Arabic speakers, since a single word could have different diacritics and that 

would change the meaning and pronunciation of the different forms of the word. 

Other motivations behind the study are the various computer applications that require the 

Arabic text to be vocalized. Applications such as speech recognition [3] [4] [5], text to 

speech [6] [7] and many other applications require text to be vocalized. Providing vocalized 

text for such applications will have a positive impact on functionality and performance of 

these applications. 

1.3 Objectives 

The main objectives of this thesis are: 

1. Conduct an in depth study on the vocalization techniques of Arabic text. 

2. Investigate and propose feature selection towards efficient vocalization and 

develop the needed tools to extract and prepare proper features. 

3. Use decision trees to build a model for vocalization. Literature reported very little 

studies done on text vocalization using decision trees in general and Arabic on 

specific. 

4. Determine the effectiveness of the proposed prototype. 
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5. Expand previously developed vocalized corpus [9] with at least 10 million extra 

vocalized words from modern Arabic text (MSA). 

1.4 Thesis Structure 

 Figure 1 shows an overview of the thesis work. The work consists of two main parts: 

corpus development and text vocalization. 

The rest of the thesis is organized as follow: Chapter 2 presents previous studies in the 

subject. Chapter 3 describes the process of building and developing the new corpus and the 

improvement of other two corpora. Chapter 4 discuss features selection and extraction and 

introduces the developed models. Chapter 5 introduces the performance metrics used for 

evaluation and results compared with other relative work. Finally, the conclusion and 

future work are given in Chapter 6. 

 

 
 

Figure 1 Thesis work overview 

 

 Corpus Development Automatic Vocalization 

Gathering Data from Websites (Crawling) 

Text Extraction 

Corpora’s Refinement and Normalization 

 
Feature Extraction & Selection 

 

Automatic Vocalization by Decision Trees 

Modules Development 
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2 CHAPTER 2  

LITERATURE REVIEW 

Many studies have been conducted on the area of vocalization exploring different 

languages. In this section we briefly address related studies highlighting core information.  

 Section 2.1 presents previous work on Arabic and foreign languages. Section 2.2 

introduces a previous study done at KFUPM.  

2.1 Text Vocalization 

Mihalcea [11], used learning techniques for the restoration of diacritics for Romanian text. 

The learning process was done at the letter level instead of the word level. The reasons 

behind choosing letters in the learning process instead of words were: 

 Lack of large fully vocalized corpora.  

 Unavailability of supportive tools such as morphological analyzers and syntactic 

analyzers. 

Part of author experiment was to build a corpus based on Romanian. Articles were 

downloaded from the internet in HTML format and converted to text files. The size of the 

resulted corpus was around 3 million words. The learning algorithm chosen was based on 

instance learning. The features used were on the letter level and depended on its 

surrounding letters. The reported average accuracy was over 99%. 
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Same approach was used and tested on four other languages [12]. The authors used Czech, 

Hungarian, Polish and Romanian languages. The result was an average accuracy of over 

98%. 

Ya'akov [13], used Hidden Markov Model (HMM) for diacritics restoration for both Arabic 

and Hebrew. Phonetic accuracy was measured for Hebrew as part of the research. Two 

models were designed, unigram and bigram models. The corpus used for Hebrew was the 

Hebrew Bible and the corpus used for Arabic was the MUSHAF. In both models, 90% of 

each corpus was used as a training set and the remaining 10% went through undiacritization 

process and then used as a test set. The hidden state for both models were the diacritized 

words, each hidden state was linked to its corresponding undiacritized word which 

represented the observation. Using the unigram model, a word accuracy of 68% and 74% 

were achieved for Hebrew and Arabic respectively. As for the bigram model, an 81% 

accuracy and an 87% phonetic accuracy were achieved for Hebrew, while Arabic achieved 

an accuracy of 86%.  

Crandall [14], used three approaches in his study on accent restoration of Spanish text. He 

used Bayesian framework, HMM bigram model and a combination of both. Due to the lack 

of large comprehensive corpora, the author created his own corpus using the typical 

approach of crawling and processing websites extracted information. The corpus created 

contained around 35 million words. 

Bayesian framework was used to determine the word accentuation by looking at the 

surrounding words. Using the framework and testing with different window sizes, the best 

accuracy achieved was 99.1% with a window size of two (-/+). Increasing the window size 
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decreased the accuracy, so a method for selecting the best window size was devised. 

Selecting the optimal window size resulted in a 99.2% accuracy. As for the second 

approach, HMMs bigram was used for the purpose of performing part of speech tagging 

(POS). Matching rules were applied to produce the data for training. Viterbi decoding was 

used for testing. An accuracy of 99.1% was achieved. Finally, the hybrid approach was 

used. This approach alternates between both approaches and takes the best result. An 

accuracy of 99.24% was achieved. 

Elshafei et al [15], used HMMs unigram, bigram and trigram for diacritics restoration. 

They used a fully vocalized corpus of the MUSHAF. They extracted all the words in the 

corpus into a list, then constructed a frequency table with distinct words. To determine 

identical words, a metric was developed. A database was generated from mapping each 

unvocalized word to its possible vocalized forms. Another database was generated by 

constructing a two words sequence table (bigram). 

The hidden state for the HMMs were the possible vocalized words and the observations 

were the unvocalized sequences of the words. To determine the best transition state, Viterbi 

algorithm was used. An error rate of approximately 4.1% was resulted. The authors stated 

that an error rate of 2.5% could be achieved by using trigrams and a preprocessing phase 

to clear out some of the error roots. 

Same experiment was conducted on a different corpus [16]. The corpus used was 

developed by (KACST) and contains about 102 thousand words. Two databases were 

generated "unvowled word database" and "bigram database". Applying HMMs to this 

corpus resulted in a WER of 5.5%. 
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EL-Harby et al [17], conducted a research on the diacritics restoration of MUSHAF. The 

authors proposed two systems. The first was based on a unigram model while the other was 

based on bigram HMMs. The corpus used was a fully vocalized MUSHAF text..  A 

frequency table was constructed for each word in the corpus. The unigram system 

implemented determines the correct vocalized word by looking for the same word structure 

disregarding its diacritics. The result would be a set of different vocalized forms for the 

word. Then the word with the highest frequency is selected as the correct vocalized word. 

As for the bigram system, the hidden states represent the last letter diacritic of a vocalized 

word, while the observation represent none vocalized words. Viterbi algorithm was used 

to obtain the best transition sequence. Both systems were tested on different parts of 

different sizes of the corpus. The unigram based system was tested on 25%, 50%, 75% and 

100%, and the results of accuracy were 94%, 94.3%, 93.4% and 92.5% respectively, while 

the bigram system resulted in 95.2%, 94.8%, 93.7% and 93% respectively. 

Maher et al [18], presented their work on the diacritics restoration of Sindhi language. 

Sindhi is similar to Arabic. Missing diacritics on letters could change the word meaning 

and the context it is in. The corpus used was a book with the name "Shah Jo Risalo".  The 

system implemented used n-gram models (unigram, bigram and trigram). The system 

resulted in three probabilities. A fourth probability was calculated from the multiplication 

of the previous probabilities. The system had three phases, the first was the tokenization, 

which breaks the input text into segments. Usually white spaces are used to segment words 

but some words in Sindhi are a combination of a word and a white space. This means that 

a word of two syllable exists. This led the authors to devise a new method for tokenization. 
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Second phase involves calculating the probabilities of the n-gram models and then the 

multiplication of their probabilities. For the third phase, Viterbi algorithm is applied to find 

the most likely path between the probabilities. The results obtained were a word error rate 

(WER) of 0.71% and diacritization error rate (DER) 3.21%. 

Khorsheed [19], used HMMs and designed 14 models where each model represented a 

diacritic with an addition model that represented no diacritic. All 15 models formed what 

he called the global model. Hidden Markov Model toolkit (HTK) [20] was used for the 

development of these models. The corpus was built by the author and it contained over 

24,000 sentences. The developed system consisted of two main phases. First, the Arabic 

text was coded into a sequence readable by HTK. Features were extracted for all the Arabic 

characters and diacritics along with the white space character which resulted in a 110 

features. Another feature was added which represented the starting and the ending of a 

sentence. In the second phase, HTK was used to perform the experiments. Two sets of 

experiments were conducted. In each experiment the system was trained and tested with 

10,000 sentences and a 20,000 sentences. The first set of experiments resulted in an average 

Correct Ratio (CR) of 72.76% and 72.80% and the second set resulted in a CR of 72.50% 

and 72.67% for the 10,000 and the 20,000 sentences respectively. 

Hifny [21], used a statistical approach (bigram models) for Arabic diacritics restoration. 

He used higher n-gram models. The proposed algorithm (dynamic lattice search) calculates 

the probabilities of transition in lattices at run time. In his experiment, he used a corpus 

named "Tashkeela" which consisted of classical Arabic text. SRILM toolkit was used to 

build the language model. The best results achieved were a WER of 8.9% with case ending 
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and a WER of 3.4% without case ending (WER2). These results were achieved using n-

gram of order four. 

In a related study, Hifny [22], applied smoothing techniques to improve the vocalization 

accuracy. The smoothing was suggested to be applied when the tested words are not in the 

training set. The smoothing techniques takes a portion of the observed n-gram probability 

and distributes it to the ambiguous n-grams. The author tried using three different 

smoothing techniques which were Katz Smoothing, Absolute Discounting, and Kneser-

Ney smoothing. The results showed that using smoothing techniques may yield better 

accuracy.  

Bebah et al [23], used a combination of both morphological analysis and HMMs hybrid 

approach. The morphological analyzer used was "AlkhalilMorpho". It was adjusted by 

adding a new lexicon. The lexicon included the most frequent words from all the available 

Arabic corpora which resulted in a 16,200 words corpus. Output of the analyzer was 

changed to produce the possible vocalizations and ignore other outputs. The analyzer was 

used to get all the possible vocalized words out of context. After that, HMMs were used to 

remove the ambiguity. 

Two HMMs were used. The first model used unvocalized words as its observations and 

vocalized words as its hidden states. The second model had the same observations as the 

first model but for the hidden states possible diacritics were used. The system was tested 

using the original analyzer and using the modified version.  

For the first model, testing resulted in a 21.11% of word error rate with case ending 

(WER1), 9.93% of word error rate without case ending (WER2), 7.37% of diacritic error 
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rate with case ending (DER1) and 3.75% of diacritic error rate without case ending DER2. 

The results of the second model were a 21.41% WER1, 10.59% WER2, 7.47% DER1 and 

3.95% DER2. 

Harrat et al [24], used statistical machine translation for diacritics restoration of Algiers 

dialects. The main purpose of their study was to develop a speech translation system which 

translates from modern Arabic to Algerian dialect. Due to the importance of vocalization 

in the speech translation system, a vocalizer was needed. Two experiments were 

performed. First conducted experiment was on Arabic using two corpora "Tashkeela" and 

“LDC Arabic Tree Bank". Second experiment was done on Algerian where they created 

their own corpus since there were no resources on Algerian dialects. A statistical machine 

translation system based on the phrase level was built. Testing with corpora, "Tashkeela" 

corpus yielded 16.2% WER and 4.1% DER while "LDC" yielded 23.1% WER and 5.7% 

DER. For the Algerian corpus, a result of 25.8% WER and 12.8% DER were achieved. 

Alghamdi and Muzafar [25], built an Arabic vocalizer using quad-gram probability model 

on the letter level. The corpus used was KDATD. The corpus was analyzed and a frequency 

table was constructed for four consecutive letters. The extracted frequency table was then 

used in the vocalization process. Testing with KDATD corpus a DER of 7.64% was 

achieved. Testing with another set of data that was taken from a newspaper resulted in an 

8.87% DER. Both resulted in an average DER of 8.52%. 

Shaalan et al [26], used a hybrid approach in building an Arabic vocalizer. The hybrid 

approach consisted of three methods which were "lexicon retrieval, bigram and SVM-

statistical prioritized techniques" [26]. The corpus used was “LDC Arabic Tree Bank”. The 
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first method (lexicon retrieval) takes an unvocalized word as its input and tries to find a 

single vocalized match for it in the lexicon. If a match is found then it is considered to be 

the correct vocalized word. If more than one match is returned then the second method 

(bigram) is used. As for the third method, POS tags are used to find the right vocalization. 

The best results achieved by the system were a WER of 12.16% and a DER of 3.78% both 

with case ending. 

Rashwan et al [27], introduced a stochastic hybrid system for automatic Arabic 

vocalization. The hybrid system used two vocalizers, the first was morphological and the 

second was based on full form words. Using an Arabic corpus, a dictionary of full form 

words was built. The input is searched in the dictionary and if found, then all its possible 

vocalization is returned. To determine the most likely path for the sequence of vocalization, 

both n-gram and a lattice search are used. In case if the input was not found, words were 

factorized into their morphological possibilities, then again n-gram and a lattice search is 

performed to disambiguate the possibilities and find the most likely vocalization sequence. 

Testing the hybrid system on the “LDC Arabic Tree Bank” corpus resulted in a 12.5% 

WER and 3.8% DER with case ending. Without case ending, a results of 3.1% WER and 

1.2% DER were achieved. 

Haraty et al [28], designed a vocalization engine "Shakkel" for the restoration of diacritics 

of Arabic text. Corpus of the University of Leeds was used with several modifications 

mainly for POS tagging.  The "Shakkel" engine receives the user input and then tokenizes 

it into words, then assigns a POS tags to the words. After that each word is searched in the 

corpus and a tuple value that corresponds to that word is retrieved. If a word is not found, 

then it will be tagged with "None". When the whole input words are tagged, the list of all 
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POS tags will be reprocessed again to assign tags to the "None" words tag. HMMs and rule 

based approaches were used in the implementation of the system. Metrics such as word 

error rate or accuracy were not used. Instead a program using the "Shakkel" engine was 

implemented using Python. Authors reported that the results were promising. 

Rosenfeld [29], conducted a study on the restoration of both capitalization and diacritics of 

the Portuguese language. The study compared classifications between Naïve Bayes and 

Decision Trees classifier on the letter level. WEKA was used for the classification and both 

the Naïve Bayes and J48 classifiers were used. The data used in the experiments were from 

a recent Portuguese Wikipedia dump taken at the time of the study and it consisted of 

83,610 words. Different window sizes (N) (on each side of the letter) were used in the 

experiments. For diacritics restoration, J48 classifier achieved 97.61% accuracy at (N=3) 

while NaiveBayes scored 95.19% at (N=1). As for the capitalization, an accuracy of 

49.35% using NaiveBayes and 51.67% using J48 were achieved. 

Al-Thwaib [30], carried out a research on Arabic text classification. She used two feature 

selection techniques: text summarization and term frequency. Each technique was applied 

separately on a set of documents. WEKA SVM was used in the classification process to 

predict the class of these documents. Results showed a remarkable increase in accuracy, 

precision and recall but suffered from execution time for the devised method. 

Almuhareb et al [31], worked on Arabic text classification and specifically on poems. Their 

target was to be able to determine and classify a text as a poem or not. Several features 

were selected based on the nature of Arabic poems such as average-line-length, line-

repetition-rate, diacritics-rate…etc. WEKA Decision Trees and Naive Bayes classifiers 
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were used in classification. It was shown that decision tree classifier performed the best 

with 99.81% accuracy using all features proposed.  

Table 5 summarizes the studies done on foreign languages and Table 6 summarizes the 

studies done on Arabic. 

From the surveyed work, we can see that decision trees were used scarcely in the area of 

vocalization and as far as our knowledge, that decision trees have not been used in Arabic 

vocalization. Thus we focused on using decision trees techniques in our work. 
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Table 5: Studies on foreign languages 

Author Approach Languages Corpus Size (words) Accuracy WER DER 

Mihalcea 
[11], 2002 

Learning 
algorithms 

Romanian Custom 3,000,000 
99% at letter 

level 
N/S N/S 

Mihalcea 
et al [12], 

2002 

Learning 
algorithms 

Czech, 
Hungarian, 
Polish and 
Romanian 

Czech, 
Hungarian, 

Polish, 
Romanian 

1,460,000, 
1,720,000 
2,500,00 

and 
3,000,000 

98% at letter 
level 

N/S N/S 

Gal [13], 
2002 

HMMs - 
unigram 

and bigram 
Hebrew 

Westminster 
Hebrew 

Morphologica 
300,000 

68% 
(unigram) 
and 81% 

(bigram) at 
word level 

N/S N/S 

Crandall 
[14], 2005 

Bayesian 
framework, 

HMM 
bigram and 

hybrid of 
both 

Spanish Custom 35,318,775 

99.211% -  
99.0501-

99.2433% (at 
letter level) 

N/S N/S 

MAHER et 
al [18], 
2011 

 

HMMs - 
unigram, 

bigram and 
trigram 

Sindhi Shah Jo Risalo 27,360 Not specified 
0.71

% 
3.21

% 

Gal [32], 
2011 

HMMs - 
unigram 

and bigram 
Hebrew 

Westminster 
Hebrew 

Morphological 
300,000 

80% at word 
level 

N/S N/S 

Rosenfeld 
[29], 2014 

WEKA 
Decision 
Tree & 
Naïve 
Bayes  

Portuguese 
Portuguese 
Wikipedia 

dump 
83,610 

97.61 for DT,  
95.16 for NB 

at letter 
level 

N/S N/S 
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Table 6: Studies on Arabic 

 

Author Approach Corpus 
Size 

(words) 
Accuracy 

WER 
(CE) 

WER 
(WCE) 

DER 
(CE) 

DER 
(WCE) 

Gal [13], 
2002 

HMMs - 
unigram and 

bigram 
MUSHAF 90,000 

74% 
unigram, 

86% 
bigram at 

word 
level 

N/S N/S N/S N/S 

Elshafei  et al 
[15], 2006 

HMMs - 
unigram, 

bigram and 
trigram 

MUSHAF 78,672 N/S 4.1% N/S N/S N/S 

Elshafei  et al 
[16], 2006 

HMMs - 
unigram and 

bigram 
KACST 102,000 N/S 5.5% N/S N/S N/S 

EL-Harby  et 
al [17], 2008 

Unigram 
model and 

HMM bigram 
MUSHAF 87,803 

95.2% at 
word 
level 

N/S N/S N/S N/S 

Khorshed 
[19], 2012 

HMMs Custom 200,000  72.80% 
0.71

% 
N/S 

3.21
% 

N/S 

Hifny [21], 
2012 

Bigram model Tashkeela 
6,149,72

6 
N/S 8.9%  3.4% N/S N/S 

Hifny [22], 
2012 

Bigram model 
with 

smoothing 
techniques 

Tashkeela 
6,149,72

6 
N/S 8.9%  3.4% N/S N/S 

Bebah et al 
[23], 2014 

Morphological 
analysis and 

HMMs 

Tashkeela& 
RDI 

2,463,35
1 

N/S 
21.1
1% 

9.93% 
7.37

%  
3.75% 

Harrat et al 
[24], 2012 

SMT 

Tashkeela 
and LDC 

Arabic Tree 
Bank 

6,000,00
0 and 

340,000   
N/S 

16.2
% 

N/S 
4.1
% 

N/S 

Alghamdi 
and Muzafar 

[25], 2007 

Quad-gram 
model 

KDATAD N/S N/S N/S N/S 
7.64

% 
N/S 

Shaalan et al 
[26], 2009 

Lexicon 
retrieval, 

bigram model 
and SVM 

LDC Arabic 
Tree Bank 

340,000  N/S 
12.1
6% 

31.86
% 

3.78
% 

7.92% 

Rashwan et 
al [27], 2009 

Morphological 
and full form 

words 
vocalizers 

LDC Arabic 
Tree Bank 

340,000 N/S 
12.5

% 
3.1% 

3.8
% 

1.2% 

Haraty et al 
[28], 2013 

HMMs and 
rule based 
approach 

Corpus of 
University 
of Leeds 

N/S N/S N/S N/S N/S N/S 
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2.2 Automatic Diacritics Restoration for Arabic Text at KFUPM 

Shaaban [9], proposed a hybrid system for automatic restoration of Arabic text. Part of his 

work was the development of new comprehensive corpus. The development resulted in a 

"General Corpus". This corpus was a synthesis of both vocalized and unvocalized words 

containing a 1,587,511,592 billion words. According to the author it was the largest and 

most comprehensive corpus up to the date of the study. Vocalized text was extracted which 

resulted in another vocalized corpus that have 30,169,610 million words. 

The other part of the research work was the development of a prototype for diacritics 

restoration and the experimental work related to the development. The experiments he 

conducted used a hybrid approach which combined, rule-based and statistical approaches. 

For the statistical part, a custom N-gram extraction tool was built to better meet the author’s 

needs. The tool built aimed to generate letter-grams, word-grams and POS-grams. It also 

had the option of including non-Arabic words, numbers or punctuation. The tool had the 

capability to deals with POS-grams in a proper manner in case of a word having multiple 

POS tags for the same diacritical form. 

After applying the N-gram extraction and to get the best possible vocalization, a greedy 

algorithm without backtracking was applied for both letter and word grams. The same was 

also applied for the POS with a difference of handling multiple diacritical forms for a single 

POS tag. 

By developing the vocalized corpus, the author was able to infer a set of rules. These 

inferred rules were used in the rule-based part and were divided into three parts as quoted 

by the author [9]: 
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• Diacritics assumed to be missing and not part of the feature set. 

• Diacritics assumed to be missing with the addition of contextual feature such as 

Previous Letter, Previous Word, Next Letter or Next Word. 

• Diacritics are part of the feature set and the current letters diacritic was 

removed. 

The vocalizer system consists of six main components which are: 

• User interface 

• N-gram statistical component 

• Rule-based component 

• The vocalizer component which handles the use of both the n-gram and the rule-

based components. 

• Utilities which include many tools that perform different functionality such as: 

the tokenization of words, a normalizer for diacritization and other tools. 

The vocalizer system starts by receiving input text from the user along with specifying the 

vocalization methods (Statistical or Rule-based) order. The order has major effect on the 

final result. For the evaluation of the system, four systems were considered for comparison. 

The systems were: 1) Arabi NLP [33]  2) Mishkal [34]  3) AraDiac [35] 4) Sakhr [36] 

The results showed that the implemented hybrid system have a DER (case ending) with a 

3.511% which is better than a 6.577% and 11.663% for both Arabi-NLP and Mishkal 

respectively. On the other hand, it was found the author’s system performed worse than 

Sahkr's with a 2.905%. For WER (case-endings) it was shown that the hybrid system 

performed better than the other two systems but not the third respectively. As for the 
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vocalization level, it achieved an 81.672% which outperform the first two but behind the 

third as it has a 99.26% diacritization level. 

2.3 Summary 

In this chapter we have surveyed some of the related studies on vocalization. The studies 

covered both Arabic and non-Arabic languages. Many solutions and techniques have been 

introduced. We have noticed that WEKA was not used much on our target research area.  

Using WEKA will be the primary focus of our thesis. Also, we presented a previous study 

that was done at KFUPM. We will use the built corpus as a bases to our corpus. 
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3 CHAPTER 3  

CORPUS DEVELOPMENT 

In this chapter we explain the normalization process of the previously built corpus 

(SENTENCES3) [9]. We also introduce the MUSHAF corpus as another valid and 

consistent resource. Furthermore, the process of developing a new corpus will be detailed. 

The new corpus in which we called “AKHBAR-2016” corpus will contain only Modern 

Standard Arabic (MSA). The reason for specifying the content to be MSA is because the 

SENTENCES3 corpus had 90% of its content as Classical Text. 

In section 3.1 we enumerate through all the steps that creates a fully vocalized and 

consistent “Tashkeel-2016” corpus depending on the previously prepared SENTENCES3 

corpus. In section 3.2, we present statistics on the “Tashkeel-2016” corpus. Section 3.2, 

introduces the MUSHAF corpus and the adjustments we made to it, while in section 3.4, 

we present some statics on the MUSHAF corpus. Section 3.5 describes the criteria used in 

developing the “AKHBAR-2016” corpus. The process of selecting the target websites for 

data gathering, the tool used for crawling, text extraction and the vocalization process are 

described. Finally, we conclude with summary in section 3.6. 

3.1 “Tashkeel-2016” Corpus 

Our objective from studying this corpus was to ensure that we have a trusted and a 

consistent resource of Arabic text. Upon investigating the corpus we have found many 

inconsistencies. Some of these where: unvocalized words, wrong vocalization, long words, 
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foreign letter, and others. The following subsections explains some of these inconsistencies 

and how they were addressed. 

3.1.1 Unvocalized Words 

In Arabic, some letters tend to be normally unvocalized. However, since we are going to 

use this corpus for classification, then it is important that every letter in a word is explicitly 

vocalized. To ensure that words are fully and consistently vocalized, we automatically add 

diacritics to some of the letters by applying the following rules: 

 If a letter has a "Fatha" diacritic and is followed by an unvocalized letter Alef ("ا"), 

then the letter Alef will be vocalized with "Sukoon". 

 If a letter has a "Kasra" diacritic and is followed by an unvocalized letter Yaa ("ي"), 

then the letter Yaa will be vocalized with "Sukoon". 

 If a letter has a "Fatha" diacritic and is followed by an unvocalized letter Alef-

Maqsora ("ى"), then the letter Alef-Maqsora will be vocalized with "Sukoon". 

 If a letter has "Tanween-Fath" diacritic and is followed by an unvocalized letter 

Alef ("ا"), then the letter Alef will be vocalized with "Sukoon". 

 If a letter has "Tanween-Fath" diacritic and is followed by an unvocalized letter 

Alef-Maqsora ("ى"), then the letter Alef-Maqsora will be vocalized with "Sukoon". 

 If a letter has "Damma" diacritic and is followed by an unvocalized letter Waw 

 then both letters Waw and Alef will be vocalized with ,("ا") then a letter Alef ("و")

"Sukoon". 

 If a letter Alef ("ا") without Hamza ("ء") is appearing at the beginning of a word 

and this letter Alef is followed by a letter Lam ("ل") with “Sukoon” then we put 

“Sukoon” on the letter Alef. 
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3.1.2 Incorrect Vocalization 

This is cleaning position violations of Diacritics. One example was the diacritic “Shadda” 

at the first letter of a word. All starting letters of words were checked for “Shadda” diacritic 

and if found, was removed.  

Furthermore, we encountered diacritics that were scattered around the lines and were not 

placed on any letter.  We searched for all of these diacritics and removed them. Table 7 

shows two words with “Shadda” violations at the first letter. 

Table 7: Examples of “Shadda” violation at the start of the word 

Word 

كَّان    سُّ

 تَّغَيَّرَ 
 

3.1.3 Long Words and Lines 

We identified words that have more than 10 letters excluding diacritics. Upon examination 

of these words, we found that they were a combination of two words or more concatenated 

together. We removed all lines containing these words.  Table 8 shows two examples of 

long words. 

Table 8: Long words 

Word 

ت ب    الَ بيَاَناَت ا ك 

ر ي ب  ا تَّد 
ن يُّالَ  لتَّعَاوُّ  
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We also noticed that some lines were very long in term of words, other lines contain 

multiple lines (more than one full-stop mark). To address the issue, we decided that each 

line should contain a number of words between eight and twenty. The normalization was 

done by applying the following set of rules in the same order (only one rule is applied per 

line): 

 Check for multiple full-stop marks. If found the line is split by the full-stop mark. 

 Count the number of words in a line and if they exceeds twenty words, then we 

look for several punctuation marks to split the line by them. Table 9 shows the 

punctuation marks used for splitting. Note that priority for using a mark for splitting 

a line, was given in the same top-down order in Table 9. A study of choosing better 

precedence of punctuation marks may be needed in related future work.  

 The resulted lines were checked again until all lines that match these rules were 

collected and others were rejected.  

3.1.4 Foreign Letters and Words 

Non-Arabic words and letters were found between the Arabic texts. We searched for all 

Non-Arabic letters and removed them. 

3.1.5 Words with Numbers 

Some words were concatenated with numbers. These words were split and a whitespace 

was added between the number and the word. 



26  

 

3.1.6 Punctuation Marks Inconsistences 

We encountered some lines starting with a punctuation mark or a bullet. We removed the 

occurrence of punctuation marks and bullets at the beginning of lines. Also, consecutive 

punctuation marks were found, so we kept only one of these marks.  

After filtering, we traversed the corpus and identified all the lines that contains words that 

were not fully vocalized and removed them. We claim that our corpus has 100% fully 

vocalized text. 

Table 9: Split marks 

Mark 

; 

، 

? 

! 

, 
 

3.2 “Tashkeel-2016” Statistics 

We present in this section some statistics of the updated “Tashkeel-2016” Corpus.  

Table 10 shows the corpus the number of times a diacritic occurs. Table 11 and Table 12 

show letters - diacritics distributions in the updated “Tashkeel-2016” Corpus. The tables 

show the occurrence percentage for a letter and all its possible diacritics.  
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Table 10: “Tashkeel-2016” diacritics frequencies 

 

 

 

 

 

 

 

 

 

 

Table 11: “Tashkeel-2016” Letters - diacritics distribution part1 

Letter 
Diacritic 

 ََ    َ    َ    َ    َ    َ    َ  

 %13.439 %13.874 %4.169 %0.002 %30.030 %13.104 %25.382 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 %100.000 آ

 %0.048 %0.077 %0.094 %3.905 %0.095 %5.724 %90.055 أ

 %0.259 %0.173 %0.322 %44.471 %0.133 %26.173 %28.471 ؤ

 %0.032 %0.000 %0.000 %0.000 %99.968 %0.000 %0.000 إ

 %0.452 %0.299 %9.506 %5.110 %70.952 %4.345 %9.336 ئ

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ا

 %1.474 %0.993 %1.055 %8.772 %39.814 %9.119 %35.997 ب

 %14.363 %12.308 %12.360 %0.005 %32.087 %12.970 %15.908 ة

 %1.103 %0.478 %0.292 %11.475 %14.829 %13.694 %53.470 ت

 %1.581 %1.356 %1.595 %14.507 %13.659 %27.959 %38.430 ث

 %0.421 %0.327 %0.268 %15.280 %18.081 %19.023 %41.618 ج

 %0.936 %0.866 %0.563 %17.232 %15.569 %9.656 %51.769 ح

 %0.469 %0.404 %0.278 %22.860 %14.036 %13.452 %47.090 خ

 %4.886 %2.911 %2.506 %12.099 %19.740 %12.506 %34.814 د

 %1.157 %0.169 %0.308 %9.051 %10.863 %5.937 %70.577 ذ

 %3.392 %2.250 %2.026 %11.955 %22.402 %12.472 %40.235 ر

 %1.017 %1.516 %0.923 %10.528 %23.081 %13.962 %46.010 ز

 %1.569 %0.840 %0.760 %28.703 %15.481 %8.644 %42.397 س

 %1.232 %0.457 %0.408 %25.717 %9.453 %6.666 %55.272 ش

 %0.661 %0.567 %0.572 %21.235 %20.330 %9.386 %42.025 ص

 %3.776 %1.578 %5.848 %9.653 %25.486 %13.272 %38.431 ض

Diacritic Frequency 

  َ  4742398 

  َ  1910834 

  َ  1270679 

  َ  3800880 

  َ  107358 

  َ  147140 

  َ  112266 

  َ  َ  307745 

  َ  َ  73974 

  َ  َ  43974 

  َ  َ  6662 

  َ  َ  9074 

  َ  َ  7732 
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Letter 
Diacritic 

 ََ    َ    َ    َ    َ    َ    َ  

 %1.751 %1.115 %0.867 %19.773 %16.902 %10.242 %45.763 ط

 %1.587 %0.787 %0.912 %12.798 %16.697 %18.077 %46.855 ظ

 %1.058 %0.948 %1.167 %16.572 %12.184 %8.834 %59.136 ع

 %0.328 %0.189 %0.277 %11.736 %7.260 %7.921 %72.171 غ

 %0.910 %0.857 %0.785 %7.374 %30.587 %5.254 %52.592 ف

 %0.809 %0.938 %0.786 %9.735 %13.644 %11.080 %59.590 ق

 %0.789 %0.795 %0.342 %8.028 %9.839 %19.606 %58.465 ك

 %0.925 %0.903 %0.753 %30.754 %17.020 %6.131 %39.060 ل

 %1.304 %0.914 %0.800 %15.887 %20.078 %15.784 %39.303 م

 %1.173 %0.705 %0.737 %37.109 %10.413 %4.792 %31.694 ن

 %0.236 %0.203 %0.102 %2.978 %31.201 %45.634 %19.495 ه

 %0.054 %0.029 %0.053 %37.753 %1.603 %1.372 %57.428 و

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.00 ى

 %0.042 %0.040 %0.230 %56.246 %0.477 %8.480 %27.246 ي

 

Table 12: “TASHKEEL-2016” letters - diacritics distribution part2 

Letter 
Diacritic 

  َ  َ    َ  َ    َ  َ   ََ  َ    َ  َ    َ  َ  
 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.000 %0.001 %0.000 %0.000 %0.000 أ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ؤ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 إ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ئ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ا

 %0.756 %0.559 %1.358 %0.030 %0.037 %0.037 ب

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ة

 %0.244 %0.120 %4.233 %0.034 %0.011 %0.017 ت

 %0.397 %0.067 %0.417 %0.013 %0.013 %0.005 ث

 %1.220 %0.529 %3.026 %0.128 %0.028 %0.051 ج

 %0.351 %1.354 %1.694 %0.004 %0.002 %0.003 ح

 %0.487 %0.071 %0.846 %0.007 %0.001 %0.000 خ

 %1.769 %1.253 %6.995 %0.167 %0.134 %0.219 د

 %0.572 %0.134 %1.156 %0.013 %0.047 %0.016 ذ

 %1.029 %0.668 %3.017 %0.198 %0.211 %0.145 ر

 %0.553 %0.293 %1.997 %0.080 %0.017 %0.024 ز

 %0.514 %0.155 %0.895 %0.013 %0.005 %0.024 س

 %0.235 %0.059 %0.454 %0.019 %0.019 %0.009 ش

 %0.665 %0.803 %3.120 %0.162 %0.230 %0.244 ص

 %0.348 %0.129 %1.440 %0.006 %0.016 %0.018 ض

 %0.564 %0.689 %2.245 %0.028 %0.016 %0.044 ط

 %0.771 %0.327 %0.841 %0.112 %0.133 %0.104 ظ
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Letter 
Diacritic 

  َ  َ    َ  َ    َ  َ   ََ  َ    َ  َ    َ  َ  
 %0.013 %0.004 %0.083 %0.000 %0.000 %0.000 ع

 %0.034 %0.003 %0.082 %0.000 %0.000 %0.000 غ

 %0.379 %0.086 %1.111 %0.031 %0.012 %0.023 ف

 %1.028 %0.728 %1.164 %0.174 %0.195 %0.129 ق

 %0.510 %0.138 %1.414 %0.040 %0.013 %0.019 ك

 %1.107 %0.762 %2.428 %0.075 %0.046 %0.037 ل

 %0.596 %0.288 %4.897 %0.075 %0.037 %0.035 م

 %0.608 %0.150 %12.545 %0.026 %0.016 %0.031 ن

 %0.027 %0.021 %0.104 %0.000 %0.000 %0.000 ه

 %0.279 %0.079 %1.303 %0.018 %0.015 %0.014 و

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ى

 %1.884 %0.975 %3.193 %0.446 %0.423 %0.318 ي

 

3.3 MUSHAF Corpus 

The motive behind working on the MUSHAF corpus is because we are sure that the corpus 

is accurately diacritized. The text of MUSHAF can be acquired at [10]. The website 

provided several versions of the MUSHAF text from simple text to Uthmani text. At the 

current of accessing it, the site also provided the option of downloading the MUSHAF in 

different file formats. When downloading the MUSHAF, the user is given the option to 

include the following in the MUSHAF text: 

 Pause marks. 

 Sajdah signs (۩). 

 El-hizb signs (۞).  

 Superscript alefs (like in   إ لى). 

 The version we have chosen was the simple version in text format. We excluded all the 

options mentioned above, as the inclusion of these characters is beyond our work. 
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As the simple text includes the diacritics reflecting TAJWEED rules, we needed to filter 

these to reflect MSA writing. We analyzed the corpus and made some adjustments to the 

text: 

 Some words first letters had “Shadda” diacritic which reflect TAJWEED rules. 

Thus we removed the “Shadda” in that case. 

 We found that some words were not fully vocalized as some letters were without 

diacritics reflecting TAJWEED rules. We generated a list of the target words and 

letters and based on our analysis we decided to vocalize all unvocalized letters with 

“Sukoon”. This processes included the unvocalized letters due to “Edgham” (إدغام), 

“Ekhfaa” (إخفاء), and "Eqlab" (إقلاب). 

 We generated a list of all unvocalized words and letters, then we analyzed the list 

and decided to vocalize all remaining unvocalized letters with “Sukoon”. 

 Due to the fact that the version of the corpus we downloaded was written as a 

simple text and not in Uthmani writing, we found six cases that needed to be fixed. 

Addressing these cases were also essential so that the corpus would be in line with 

Quran morphology corpus which was used for the MUSHAF POS tagger in which 

will be explained in the next chapter 4.3.3.2). The cases were: 

o All words that start with (  َيا) were followed by a space. This does not match 

the original writing in MUSHAF. i.e. (  َياَ  أيَُّها). To fix this the whitespace is 

removed from any word that is (  َيا) followed by a whitespace. 

o All words that start with (  َها) were followed by a space. This does not match 

the original writing in MUSHAF. i.e. (  هاَ  أنَ ت م). To fix this the whitespace is 

removed from any word that starts by (  َها) and followed by a whitespace. 
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o All words that start with (  َوَيا) were followed by a space. This does not match 

the original writing in MUSHAF. i.e. (  وَياَ  آ دَم). To fix this the whitespace is 

removed from any word that starts by any (  َوَيا) and followed by a 

whitespace. 

o Removed whitespace from ( َّياَ ا ب نَ أ م). 

o Removed whitespace from ( َي ن  .(إ ل  ياَ س 

o Removed white space from ( أنَ  لوَ  وَ  ) 

After fixing all the issues mentioned above, we indexed the corpus. The indexing was done 

on each line and not by Sora. We added an index number for each line followed by a 

character “|”.The indexing was done because it was necessary for using the MUSHAF POS 

tagger. 

3.4 Some Statistics on the MUSHAF Corpus 

We present in this section some statistics of the MUSHAF’s Corpus. 

Table 13 shows the frequency of each diacritic in the corpus. 
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Table 13: MUSHAF diacritics frequencies 

 

 

 

 

 

 

 

Table 14 and Table 15 show letters - diacritics distribution. They show the occurrence 

percentage for each letter and all its possible diacritics. 

Table 14: MUSHAF letters - diacritics distribution part1 

Letter 
Diacritic 

 ََ    َ    َ    َ    َ    َ    َ  

 %14.639 %3.359 %5.513 %0.000 %17.934 %20.722 %37.833 ء

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.033 %0.044 %5.582 %0.000 %9.628 %84.713 أ

 %0.000 %0.297 %0.446 %77.860 %0.149 %16.345 %4.903 ؤ

 %0.176 %0.000 %0.000 %0.000 %99.824 %0.000 %0.000 إ

 %0.423 %0.000 %7.445 %10.237 %64.975 %7.614 %9.306 ئ

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ا

 %1.297 %1.680 %1.897 %9.956 %35.550 %9.181 %29.319 ب

 %16.254 %15.102 %21.630 %0.000 %21.800 %10.452 %14.761 ة

 %1.749 %0.466 %0.437 %6.644 %16.302 %20.751 %47.006 ت

 %0.990 %0.141 %1.202 %16.054 %11.174 %35.078 %34.441 ث

 %0.784 %0.693 %1.296 %19.837 %14.652 %12.662 %46.518 ج

 %0.845 %0.821 %1.884 %24.444 %16.570 %9.396 %45.797 ح

 %0.040 %0.200 %0.160 %21.986 %16.139 %7.809 %51.822 خ

 %2.270 %2.320 %5.358 %16.875 %20.915 %21.666 %23.736 د

 %1.480 %0.020 %0.831 %9.874 %36.740 %6.427 %38.909 ذ

 %1.871 %3.564 %4.684 %14.722 %17.504 %17.028 %36.999 ر

Diacritic Class Value 

  َ  111915 

  َ  43551 

  َ  36216 

  َ  117087 

  َ  3472 

  َ  2542 

  َ  2385 

  َ  َ  9523 

  َ  َ  2419 

  َ  َ  1104 

  َ  َ  270 

  َ  َ  91 

  َ  َ  134 
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Letter 
Diacritic 

 ََ    َ    َ    َ    َ    َ    َ  

 %0.688 %1.751 %1.438 %12.320 %27.142 %12.070 %37.273 ز

 %0.948 %0.516 %0.532 %21.790 %15.452 %13.789 %45.509 س

 %0.188 %0.047 %0.282 %19.492 %9.981 %7.439 %59.840 ش

 %0.483 %0.241 %0.338 %18.967 %22.490 %9.749 %44.788 ص

 %3.677 %1.008 %1.720 %13.879 %31.435 %13.938 %31.969 ض

 %2.907 %1.257 %1.964 %11.783 %21.838 %9.662 %46.976 ط

 %0.821 %1.055 %1.407 %10.434 %19.578 %24.150 %41.266 ظ

 %0.298 %0.734 %1.329 %21.414 %10.494 %9.899 %55.736 ع

 %0.328 %0.491 %0.491 %28.911 %5.487 %11.712 %52.580 غ

 %0.412 %0.583 %0.903 %7.465 %28.810 %8.643 %51.446 ف

 %0.810 %0.611 %1.351 %7.378 %11.715 %22.633 %50.796 ق

 %0.095 %0.229 %0.200 %6.192 %8.164 %38.220 %44.908 ك

 %0.479 %0.382 %0.979 %33.589 %11.550 %6.172 %37.925 ل

 %1.231 %1.679 %1.227 %28.218 %19.488 %14.206 %29.991 م

 %0.785 %0.524 %0.693 %26.142 %6.909 %6.975 %45.985 ن

 %0.114 %0.229 %0.222 %3.845 %27.771 %45.926 %21.623 ه

 %0.000 %0.020 %0.125 %50.296 %0.592 %0.512 %47.423 و

 %0.000 %0.000 %0.000 %100.000 %0.000 %0.000 %0.000 ى

 %0.000 %0.036 %0.086 %59.833 %0.332 %7.814 %26.983 ي

 

Table 15: MUSHAF letters - diacritics distribution part2 

Letter 
Diacritic 

  َ  َ    َ  َ    َ  َ   ََ  َ    َ  َ    َ  َ  
 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ء

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 آ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 أ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ؤ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 إ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ئ

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ا

 %6.353 %2.132 %2.524 %0.009 %0.009 %0.096 ب

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ة

 %0.152 %0.086 %6.407 %0.000 %0.000 %0.000 ت

 %0.141 %0.071 %0.636 %0.000 %0.000 %0.071 ث

 %1.055 %0.452 %1.990 %0.030 %0.000 %0.030 ج

 %0.048 %0.000 %0.193 %0.000 %0.000 %0.000 ح

 %0.320 %0.000 %1.522 %0.000 %0.000 %0.000 خ

 %1.168 %2.003 %3.388 %0.017 %0.017 %0.267 د

 %2.676 %0.020 %3.021 %0.000 %0.000 %0.000 ذ

 %0.863 %0.669 %1.637 %0.097 %0.145 %0.218 ر

 %2.251 %0.500 %4.378 %0.000 %0.000 %0.188 ز
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Letter 
Diacritic 

  َ  َ    َ  َ    َ  َ   ََ  َ    َ  َ    َ  َ  
 %0.200 %0.283 %0.965 %0.000 %0.000 %0.017 س

 %2.024 %0.047 %0.659 %0.000 %0.000 %0.000 ش

 %0.724 %0.627 %1.593 %0.000 %0.000 %0.000 ص

 %0.119 %0.652 %1.601 %0.000 %0.000 %0.000 ض

 %0.628 %0.079 %2.907 %0.000 %0.000 %0.000 ط

 %0.469 %0.000 %0.117 %0.234 %0.000 %0.469 ظ

 %0.021 %0.021 %0.043 %0.000 %0.000 %0.011 ع

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 غ

 %0.309 %0.091 %1.212 %0.034 %0.000 %0.091 ف

 %1.820 %1.024 %1.251 %0.114 %0.242 %0.256 ق

 %0.419 %0.029 %1.372 %0.133 %0.010 %0.029 ك

 %0.775 %0.456 %7.499 %0.045 %0.089 %0.060 ل

 %0.161 %0.082 %3.602 %0.007 %0.011 %0.097 م

 %0.814 %0.180 %10.957 %0.000 %0.022 %0.015 ن

 %0.088 %0.000 %0.182 %0.000 %0.000 %0.000 ه

 %0.125 %0.012 %0.709 %0.012 %0.093 %0.081 و

 %0.000 %0.000 %0.000 %0.000 %0.000 %0.000 ى

 %1.779 %1.120 %1.288 %0.123 %0.137 %0.469 ي

 

3.5 The “AKHBAR-2016” Corpus 

The first step in developing the corpus is to choose the target domains to be crawled. Since 

we already decided that we want only MSA text, we have chosen to go with news websites. 

News websites cover several domains as they do not only contain news, but also sport, 

art…etc.  

To select the websites to crawl, we tried to be subjective in the selection process. We used 

Alexa [37], a website ranking system based on traffic metrics. We searched through Alexa 

to get Arabic news websites that have the highest global ranking. Table 16 shows the list 

of websites selected with their ranking at the time they were accessed. 
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Table 16: Crawled websites list 

# Website Url Rank 
Last 

Accessed 

1 
BBC News - 

Arabic 
http://www.bbc.com/arabic/       107 

September, 

2015 

2 Alwakeel News http://www.alwakeelnews.com/ 3,323 
September, 

2015 

3 Saraya News http://www.sarayanews.com/ 4,449 
September, 

2015 

4 
Arabian Business 

- Arabic 
http://www.arabic.arabianbusiness.com/ 10,407 

September, 

2015 

 

After identifying the list of websites to be crawled, a tool was needed for the crawling 

process. The tool we used in which we have found to be efficient and flexible is called 

WinHTTrack-Website-Copier [38]. The tool can download a website and built the same 

website structure allowing you to navigate offline. In crawling the websites, we limited the 

files to be downloaded to HTML files by specifying the files extensions. Also, we found 

that some of the navigated URLs are irrelevant so we prevented the crawling of these URLs 

by specifying certain query parameters. 

3.5.1 Text Extraction 

While there are several tools for text extraction, we decided to build our own tool. One of 

the main reasons that lead us to this decision was to avoid extracting text that would make 

the corpus inconsistent in term of content. Since we are dealing with news websites then it 

is expected that each page could have a comment section. The comment section could 

contain slang Arabic which is called “Aamieh”. Extracting such text will cause problems 

since many of the slang words are not available in Arabic dictionaries. Also the text could 

contain content from advertisements or any kind of unrelated content.  

http://www.bbc.com/arabic/
http://www.alwakeelnews.com/
http://www.sarayanews.com/
http://www.arabic.arabianbusiness.com/
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To extract specific portions of the text from the crawled HTML pages, we faced several 

challenges. Some of these challenges were: 

1. We needed to identify the HTML tag that holds the news details. 

2. The identified HTML tag could change if the website went through some updates. 

Since the amount of crawled data was large, it covered around one to three years 

of content. Thus we needed to check a range of the crawled pages to make sure 

that if there were any changes to be taken into consideration. 

3. Each crawled website used a different HTML tag for its news description. Hence, 

we needed to identify the tag for each website. 

After the identification of the target HTML tags for each website, the tool was built to 

iterate through all the crawled HTML pages and extract the text. To ensure the consistency 

of the extracted text, the text went through several filtration processes which are explained 

in the following subsections. 

3.5.1.1 Foreign Words and Letters 

We removed HTML tags in the text. We found out that sometime tags that make the text 

bold or italic or tags that change the font size were injected inside the text. Also, we took 

out escape words, extra spaces between words, symbols and foreign letters (Non-Arabic).  

Furthermore, we replaced Arabic letters in different fonts or formats with standard format 

letters, the reason for replacing these letters is that they were saved in different Unicode 

presentations (using the Unicode of the shape of the letter). This assures that the text is in 

standard Unicode. Similarly, Arabic numbers were replaced with English numbers for the 

same reason. 
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3.5.1.2  Punctuation Marks 

The full-stop punctuation mark (.) is supposed to be connected to the last letter in a 

sentence, but this was not always the case as we found some lines having space(s) before 

the (.) mark. We removed all the spaces and connected the mark with the last word. 

Furthermore, we handled space issues with parentheses brackets, i.e. space inside the 

bracket at the start or end of the bracket or spaces before brackets…etc. 

3.5.1.3 Lines 

We removed any line that have less than 100 characters. We also removed empty and 

duplicate lines. 

Table 17 shows basic statistics on the corpus after extracting text and addressing all 

inconstancies mentioned. As we can see from the statistics that the corpus have a very low 

diacaritziton level. This is expected due to the nature of the domain selected.  

Table 17: Crawled corpus statistics 

Lines Count 278,562 

Words Count 10,579,257 

Unique Words Count 591,318 

Letters Count 50,393,237 

Diacritized Letter Count 122,875 

Diacritization Level 0.2% 

3.5.2 Corpus Vocalization 

To vocalize the corpus, the vocalization steps mentioned in section 3.1.1 were applied. 

After that, best performing models as described in chapter 5.3 were chosen. Both voting 

and N-Gram vocalization were used for the best results possible. The steps to vocalize a 

text file is enumerated in Appendix I. 
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3.6 Summary 

In this chapter, we presented the steps followed in normalizing the SENTENCES3 corpus 

leading to the new fully vocalized “Tashkeel-2016” corpus. We also presented the 

preparation of MUSHAF corpus for text vocalization, the statistics of letters and diacritics 

in the two corpora, and the approach followed in the development of “AKHBAR-2016” 

corpus in term of websites selection, tools for crawling and the process of vocalization. 
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4 CHAPTER 4  

Text Vocalization 

When building a model for classification, we are basically describing a dataset. The dataset 

can be described by the attributes (features) it has. The number of attributes and their types 

varies depending on the nature of the data. Thus extracting features is very important as it 

reflects the characteristics of the data. Feature extraction is the process of creating new 

features or the use of existing ones to come up with new features. If the amount of 

information (features) used to describe a dataset is big, then it would be hard to have a clear 

understanding of the data [39].  

Having too many features may include irrelevant or correlated ones. Irrelevant features are 

considered as noise. Using such features when building a model will most likely increase 

the size of the model. Thus, more computational power will be needed in building the 

model. Correlated features on the other hand, are several attributes that are trying to 

describe the same thing. As a consequence, they may contribute nothing or they may end 

up reducing the predictive power of the built model.  

Feature selection is the process of extracting an optimal number of features that are not 

redundant nor correlated but are descriptive and accurate [40]. This would reduce the 

number of features and as a consequence could reduce the model size and the time needed 

to build the model. It may also increase the model accuracy [41]. 
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While features are an essential and critical part of classifications, other parts are important 

as well.  

Figure 2 shows the proposed vocalization system architecture. The system consists of 

different modules: Input, Settings, Instant Diacritizer, Data Preparation, and Feature 

Extraction, Post-processing, and Output modules. The system works as follows: first, an 

input text that is line formatted is provided to be vocalized. Several settings are set and 

given to the diacritizer, along with the input. The instant diacritizer delegates the input and 

the required settings to the data preparation module. The data preparation module sends 

the input to the feature extraction module. The features will be extracted and then sent 

back. Afterward, the training and testing files will be generated. These files, will be used 

for classifications. The vocalized text will be built from the result of the classifications. If 

post-processing option was selected, then the vocalized text will go through extra 

processing to enhance its vocalization.   
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The remaining of this chapter presents some technical details related to the vocalizer and 

its modules. In section 4.1 WEKA data mining software is introduced. In section 4.2, we 

describe the features we extracted. Section4.3 presents the modules of the vocalization 

system. The selection process of the best set of features is discussed in section 4.4. 

Section 4.5 introduces the post-processing used to enhance vocalization. Some impletion 
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Figure 2 Vocalization System Architecture 
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issues is discussed in Section 4.6. Finally, the summary of the chapter is presented in 

section4.7. 

4.1 WEKA Data Mining Software 

WEKA [42] is an open source data mining tool t developed in Java programming language. 

It contains a vast number of classification algorithms. It also contains tools for data 

processing, regression, clustering…etc. it is considered a suitable environment for the 

development of new classifiers [42]. 

WEKA can be used in different ways. It can be used from either the interface or command 

lines. Furthermore, it can be used by importing its library, then accessing its functionality 

through coding. Our main interest in WEKA is the use of a Decision Trees (DT) classifier 

called the J48. The next subsection will introduce the classifier. 

4.1.1 J48 Decision Tree Classifier 

The J48 classifier is an implementation of the open source C4.8 algorithm [43] which is 

also an improvement of the ID.3 algorithm [44]. The idea of the ID.3 algorithm is to 

generate a DT from a training dataset (S) that contains instances that are already classified 

(their classes are already known) 

𝑆 =  𝑠1, 𝑠2, 𝑠3, …  

Each classified instance 𝑆𝑖 contains a set of attributes. 

 𝑠𝑖 = {𝑎𝑖,1, 𝑎𝑖,2, 𝑎𝑖,3, … } 

The algorithm iterates through each unused attribute for all 𝑆 and calculates its information 

gain 𝐼𝐺(𝑎), and then the attribute with the highest information gain is chosen to split the 
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dataset into smaller subsets. After that, unused attributes will be iterated in the subsets, 

splitting them into more subsets. The same process will keep recurring until all the 

attributes are traversed and the DT is created. 

C4.8 uses the same concept but with some improvements that include the ability to handle 

discrete and continuous attributes and the use of missing value attribute which indicates 

that the data haven’t been used in forming the DT.  

4.2 Features Extraction 

Features extraction is the process of creating and coming up with new features. As 

mentioned earlier, features are critical in the classification process. Although we 

experimented with different types of features, the created features were based on the letter 

level. The following subsections lists all the features we extracted. 

4.2.1 Character 

Character represents the base feature in which all other features are related to. 

4.2.2 Position 

Position indicates whether the letter is at the beginning of the word, internal or at the end 

of the word. 

4.2.3 Connection 

Connection feature indicates the letter connection with its adjacent letters. A letter can be 

left connected, right connected, left-right connected or it can be neither (isolated). 
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4.2.4 Letter Position 

Letter Position indicates the index of the letter in a word. For example, a four letters word 

means that it has four indices: first, second, third and fourth. If the letter is the second one 

in the word its index is 2. 

4.2.5 Current Word Length, Previous Word Length, and Next Word Length 

These three features indicate the number of letters in current word, previous word and next 

words, respectively. 

4.2.6 Word’s First Letter, Second Letter, Before Last Letter, and Last Letter 

These four features indicate the letter being either first, second, before last letter or if it is 

the last letter. When a word consists of two letters, the second letter is only considered last. 

4.2.7 Next Word First Letter and Next Word Last Letter 

These two features indicate the next word first and last letters. 

4.2.8 Previous Word First Letter and Previous Word Last Letter 

These two features indicate the previous word first and last letters. 

4.2.9 Next Letter and Next-Next Letter 

These two features indicate the next and the next-next letters of the current letter being 

traversed, i.e. in a word of three letters and while the pointer points to the first letter, the 

next letter would be the second letter and the next-next letter would be the third letter. 

4.2.10  Previous and Previous-Previous Letter 

These two features indicate the previous letter and the letter before the previous letter of 

the current letter being traversed, i.e. in a word of three letters and while the pointer points 
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to the third (last) letter, the previous letter would be the second and the previous-previous 

would be the first letter. 

4.2.11 Current Word Part of Speech Tag (POS), Previous Word POS Tag, and 

Next Word POS Tag 

These three features were implemented using the Stanford POS tagger [45] for normal text 

and the MUSHAF Morphology Tagger [46] for MUSHAF text. Both taggers will be 

introduced later in this chapter. See sections (4.3.3.1 and 4.3.3.2). 

4.2.12 Features Sum 

Feature Sum is the summation of the used features. It sums all numeric representations of 

selected features into a single number. 

As a general note on related features, when deciding the previous and the next words to 

extract features from, if the next word starts with a non-letter or the previous word ends 

with a non-letter, then they are considered null. 

To extract the needed features from a text, we had to develop our own system as there are 

no systems available to automate this process. The next section will present the modules/ 

tools we have developed and describe how each works. Also, we will list the third party 

tools we have used and integrated with our tools.  

4.3 Modules 

The tools we developed were for feature extraction, data preparation and real time 

vocalization. The next subsections describes briefly each developed tool and how it 

operates. 
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4.3.1 Characters – Diacritics Generator Module 

This tool main purpose is to generate three lists: 

1. All Arabic letters without any diacritics. 

2. All diacritics. 

3. Every possible combination of Arabic letters and diacritics. 

The lists have been generated by iterating through all Arabic letters and diacritics Unicode 

representations. The generated lists contained some letters with diacritics that could never 

occur in Arabic and thus were filtered out. These generated lists were used in all the 

modules we have developed.  

4.3.2 Feature Extraction Module 

Most of machine learning tools require their input to be converted into discreet sequences. 

Since we were working with WEKA, the same concept applies. To extract features from 

Arabic text, we developed a module to handle the conversion process. Before starting the 

development we determined all the characters that we may encounter in the text besides 

Arabic letters, i.e. punctuation marks, numbers, special characters…etc. Other characters 

that occurs without being specified were considered as a foreign characters and were 
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ignored. All these characters were added to the characters list generated earlier (See 

Section 4.3.1). Figure 3 shows an overview of the process of this module. 

The following steps illustrate in details how the module operate: 

First, the characters list is used. For each character inside the list, a unique numeric code is 

assigned. The same applies for the diacritics list. Table 18 shows an example of four Arabic 

letters with their assigned numeric codes. 

Table 18: Characters numeric 

Character Numeric 

Code 

 105 ب

 136 ت

 151 ث

 166 ج

 

Second, we determine the set of features to be extracted from the input text on the letter 

level (for characters). Each extracted feature from a character is mapped to the unique 
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Figure 3 Feature extraction module 
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numeric code that was assigned for each character. Numeric codes will be converted into 

binary based on a specific number of bits determined for each feature.  

Third, after the extraction of all features for a single character, all the extracted binary 

codes are accumulated (appended) together to form a single unique numeric number. Due 

to the large numbers resulted (high number of bits) and in case we increased the number of 

features, we used Big Integers which are integers that have no boundaries. The result will 

be a sequence of numeric numbers such that each number represents a set of features for a 

single character. 

Fourth, the output will be used as input to another module to format the data as required 

by WEKA. We can also reverse back the sequence of numbers into their original text.  

Table 19 shows an example of features extraction for the word “ ََذَهب”. Each numeric 

sequence represent a letter with all its defined features. This example assumes nine features 

for each letter. 

Table 19: Features extraction for the word “  ه ب  ”ذ 

Word Feature Extraction Result (Numeric Sequence) 

ه ب     35732536197735738788641 16685102005727510411985 ذ 

7860676838263722619841 

 

4.3.3 POS Tagger Module 

The POS tagger module consists of two taggers. The Stanford POS tagger and the 

MUSHAF POS tagger. The next two subsection will describe each one respectively. 
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4.3.3.1 Stanford POS Tagger 

A part of speech (POS) tagger is a software that is used to tag words with their part of 

speech such as a verb, a noun, an adjective… etc. The Stanford POS tagger is a java 

implemented software [45] that has been developed, enhanced and improved by several 

researchers [47]. The tagger supports a variety of languages such as English, Arabic and 

French…etc. Also, the software is available in different programming languages such as 

C#, F# or Ruby…etc. 

To use the Stanford POS tagger, we have downloaded the C# version of the software. Since 

the software is implemented in java, a Dynamic Link Library (DLL) was already complied 

and used in the project. The DLL used was the result of conversion of the Java Archive 

(JAR) file to DLL assembly using IKVM [48] library. We created a separate tool and 

referenced Stanford assembly and the IKVM assemblies. The IKVM assemblies were 

needed because functions calls in Stanford library requires java objects. 

The tool we developed can tag sentences on the fly and can also tag a text file. In tagging 

we added two options which are tagging with/without vocalization. The reason for 

implementing these two features is because we noticed that tagging results for unvocalized 

words were better than vocalized words. 

The first step of the integration was to determine all possible tags that the tagger uses. 

Table 20 and Table 21 show a list of all tags that Stanford tagger uses along with their 

definitions. After determining these tags, a unique number was assigned to each tag. These 

unique numbers were used in forming the related features. 
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Figure 4 shows an example for tagging the sentence “ المدرسة إلىذهب أحمد  ” using the tool. 

 

Table 20: Stanford tags list – part 1 

Tag Definition 

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

DTJJ Determiner + Adjective 

DTJJR Determiner + Adjective, comparative 

DTNN Determiner + Noun, singular or mass 

DTNNP Determiner + Proper noun, singular 

DTNNPS Determiner + Proper noun, plural 

DTNNS Determiner + Noun, plural 

FW Foreign word 

IN Preposition or subordinating conjunction 

JJ Adjective 

NN Noun, singular or mass 

NNP Proper noun, singular 

NNPS Proper noun, plural 

NNS Noun, plural 

NOUN Noun 

 

Figure 4 Tagging example using Stanford Tagger tool 
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Tag Definition 

PRP Personal pronoun 

PRP$ Possessive pronoun 

PUNC Punctuation 

RB Adverb 

RP Particle 

 

Table 21: Stanford tags list - part 2 

Tag Definition 

UH Interjection 

VBD Verb, past tense 

VBG Verb, gerund or present participle 

VBN Verb, past participle 

VBP Verb, non-3rd person singular present 

VN Verbal noun 

WP Wh-pronoun 

WRB Wh-adverb 

, Punctuation 

. Punctuation 

: Punctuation 

 

4.3.3.2 MUSHAF POS Tagger 

The development of a POS tagger for MUSHAF was inspired by a project that many people 

contributed to. The origin of the project is an open source project [46] named “Quranic 

Arabic Corpus”, which was started by the University of Leeds. The project included “POS 

tagging, morphological segmentation and a formal representation of the Quranic syntax 

using dependency graphs” [46].  

The corpus includes each word in the MUSHAF mapped from Arabic to English via the 

“Buckwalter Morphological Analyzer”, each word have its tag and also a set of features 

that specify the word’s properties. Each word is indexed by the chapter and verse number. 

Table 22 and Table 23 show a list of all tags used by the Quran Morphological corpus.  
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Table 22: Quran Morphological corpus tags list - part 1 

Tag Definition 

N Noun 

PN Proper noun 

ADJ Adjective 

IMPN Imperative verbal noun 

PRON Personal pronoun 

DEM Demonstrative pronoun 

REL Relative pronoun 

T Time adverb 

LOC Location adverb 

V Verb 

P Preposition 

EMPH Emphatic lām prefix 

IMPV Imperative lām prefix 

PRP Purpose lām prefix 

CONJ Coordinating conjunction 

SUB Subordinating conjunction 

ACC Accusative particle 

AMD Amendment particle 

ANS Answer particle 

AVR Aversion particle 

CAUS Particle of cause 

CERT Particle of certainty 

 

Table 23: Quran Morphological corpus tags list - part 2 

Tag Definition 
CIRC Circumstantial particle 
COM Comitative particle 

COND Conditional particle 
EQ Equalization particle 

EXH Exhortation particle 
EXL Explanation particle 
EXP Exceptive particle 
FUT Future particle 
INC Inceptive particle 
INT Particle of interpretation 

INTG Interrogative particle 
NEG Negative particle 

PREV Preventive particle 
PRO Prohibition particle 
REM Resumption particle 

http://corpus.quran.com/documentation/adjective.jsp
http://corpus.quran.com/documentation/subordinate.jsp
http://corpus.quran.com/documentation/verb.jsp
http://corpus.quran.com/documentation/prepositionphrase.jsp
http://corpus.quran.com/documentation/imperative.jsp
http://corpus.quran.com/documentation/mood.jsp
http://corpus.quran.com/documentation/conjunction.jsp
http://corpus.quran.com/documentation/subordinate.jsp
http://corpus.quran.com/documentation/particleinna.jsp
http://corpus.quran.com/documentation/particlefa.jsp
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Tag Definition 
RES Restriction particle 
RET Retraction particle 

RSLT Result particle 
SUP Supplemental particle 
SUR Surprise particle 
VOC Vocative particle 
INL Quranic initials 

 

The version of the Morphological corpus we used was the enhanced version. We used the 

MUSHAF corpus we have and tagged the whole corpus. This resulted in a fully tagged 

MUSHAF corpus. We then started developing a tool for the goal of tagging only MUSHAF 

text. Both the tagged corpus and text corpus were indexed so that we can retrieve either the 

tag or the text. Figure 5 shows an example of tagging a verse through the tool. 

 

Figure 5 MUSHAF POS tagging example 
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4.3.4 Data Preparation Module 

The purpose of the data preparation module is to provide a proper input to WEKA learning 

scheme. WEKA’s most common files formats are comma separated vector (CSV) format 

and Attribute Relation File Format (ARFF). We choose the ARFF format since it is the 

native format used by WEKA. This module integrates with the feature extraction module 

discussed earlier and uses its output for the creation of ARFF files. Figure 6 shows how 

the module works in order to generate the ARFF files. 

 

The following steps explain how the input files for WEKA are prepared: 

First, settings which include training and testing ratios, window size and features are 

specified. The window size refers to the number of characters traversed to extract features 
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Figure 6 Data preparation module 
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for a single character. For example, a window size of three, means that we are going to 

extract the features for the first, second and then the third character. All of these will 

represent the features of the characters diacritic.  

Second, the input (Arabic text) is selected. The input has to be line formatted. The data 

selection for training and testing is in term of lines. This means that the ratio of training 

and testing will split the input by lines and not words. We used lines instead of words 

because choosing words may breaks the natural aspect of the language. Selection of data 

can be either random or static. For random selection, lines are selected randomly based on 

the training and testing ratios. In static selection, selected lines for training and testing are 

the same during the same cycle of training and testing. 

Third, the input will go through feature extraction. When the extraction process is done, 

the results will be processed again. Each generated numeric number (similar to Table 19) 

encapsulates several features. All features will be extracted for all the generated numeric 

sequences. Then, the output will be written into an ARFF files. An ARFF file format is 

broken down into two sections: 

1. Header section, in which the “@Attribute” tags are specified. Each tag corresponds 

to a feature. 

2. Data section, which includes comma separated values. The number of values 

corresponds to the number of attributes used in the header.  
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Figure 7 shows an example of ARFF file. 

When an attribute is flagged with the “class” property, it means that this attribute will be 

the target for classification and since we are predicting diacritics, all diacritics were 

specified as possible values for predication.  

Table 24 lists all diacritics and their corresponding class values. These values are used in 

the ARFF file. The last two class values correspond to a new line and no diacritic 

respectively. The new line class value was added at a later stage because it was needed to 

construct the output and its diacritics. As for the no diacritic class, it was needed for 

punctuation marks and special characters that have no diacritic. 

 

Figure 7 An ARFF file example 
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There are two things to note here. First, when selecting a window size larger than one, the 

features generated will be different as opposed to selecting a window size of one.  Let us 

assume a word of three letters and a window size of two was chosen for generating training 

and testing features. The features will be generated in the following manner: 

1. The first and the second letter features would be generated and for both, the class 

value would be the diacritic of the first letter. 

2. The second and the third letter features would be generated and for both, the class 

value would be the diacritic of the second letter. 

3. Since the third letter has no next letter, then it will be represented by a null character 

feature that we define. The class value will be the diacritic of the third letter its class 

value will be the diacritic of the letter. 

Second thing to note is that when generating training and testing files using vocalized data, 

the output for the classification is already known and is included in the testing file. WEKA 

ignores the classification in the testing file while performing predictions and then uses these 

values later to determine the accuracy rate. When generating only testing files from 

unvocalized data, then question marks (?) are used for the classification output since real 

values are unknown and we want to predict them. The question mark is also referred to as 

missing value.  

Table 25 shows an example of both cases. The last value for both letters is the class value. 
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Table 24: Diacritics and their class values 

 

 

 

 

 

 

 

 

 

Table 25: ARFF format for known classification value and for “to be predicated” 

value 

Mode Letter Feature Extraction ARFF Format 

Training and Testing  َ1 ,3 ,1 ,2 ,1 ,264 994509390599649 ذ 

Testing 3 ,1 ,2 ,1 ,264 212982943996929 ه, ? 

 

4.3.5 Instant Diacritizer and Trainer Module 

This module has three main functionalities:  

1. Instantly diacritize text using decision trees models.  

2. Automate the process of training and testing. 

3. Build incremental classification models.  

We have integrated the instant diacritizer module with the feature extraction and data 

preparation modules.  

Diacritic Class Value 

  َ  Fatha 

  َ  Kasra 

  َ  Damma 

  َ  Sukoon 

  َ  Tanween-Fath 

  َ  Tanween-Kasr 

  َ  Tanween-Damm 

  َ  َ  Shadda-Fatha 

  َ  َ  Shadda-Kasra 

  َ  َ  Shadda-Damma 

  َ  َ  Shadda-Tanween-Fath 

  َ  َ  Shadda-Tanween-Kasr 

  َ  َ  Shadda-Tanween-Damm 

- N/A 

- NewLine 
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The next subsections present the functionality of the instance diacritizer.  

Figure 8 shows how the module operates in training and testing mode, while Figure 9 

shows how it operates using testing mode only. 
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Figure 8 Instant diacritizer training and testing 
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4.3.5.1 Instant Diacritizer (Testing) 

The process of instant Diacritization needs to go into four procedures. These procedures 

are: 

First, since we want our text to be diacritized, testing mode is set by default. Also, the ratio 

of training and testing is set to 0 and 100 respectively. It is important to note that same used 

parameters (window size, features and class index) generating the training file must be used 

for the testing file as choosing different settings will result in incompatibility between the 

files.  

Second, the built model(s) has/ have to be selected and then loaded. If more than on model 

is loaded, then voting will be triggered, voting will be explained in the following 

subsection. Once loading finishes, the user enters the text to be vocalize. 

Input Lines
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Output
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Models = 1
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Figure 9 Instant diacritizer testing 
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Third, before vocalizing the text, two options are provided. The first option is to normalize 

the output and remove the “Sukoon” diacritic based on specific rules. The second option, 

is to apply an extra layer of vocalization on top of WEKA by using n-gram models. We 

call both of these options post-processing since they are done after classification. Both of 

these options will be detailed at the end of this chapter. 

Fourth, the system will automatically generate a testing file and classifies its contents 

against the loaded model(s) and process the output if post-processing option was selected.  

4.3.5.1.1 Voting 

Voting technique is activated when more than one model is loaded. One of the motives 

behind implementing such technique is the inability to train the whole database at once. 

Moreover, using more than one model for prediction at the same time means that these 

models learned from different information. The voting technique simply works by loading 

more than one model such that all participate in making the final predictions by majority. 

Note this is done to each instance being predicted.   

Figure 10 gives an overview of how does voting work. 
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Table 26 shows an example of vocalizing the letter “أ” from the word “أحمد”. The ID column 

represents the letter number assigned from the character list. Four models are used in the 

prediction. The result of the voting will the diacritic “Fatha” by majority as it has 3 votes 

out of 4. 

 

 

 

Input Lines

Classification Models

Model 1

Predication Selection 
By Majority

Output

Model 2

Model 3

Model N

Generate Predictions

Model 1 - Predications

Model 2 - Predications

Model 3 - Predications

Model N - Predications

  

Figure 10 Voting 
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Table 26: Voting example 

Model Letter ID Predicted 

M1 91 أ Fatha 

M2 91 أ Fatha 

M3 91 أ Damma 

M4 91 أ Fatha 

  

4.3.5.2 Trainer for Training and Testing 

As stated earlier, the purpose of the trainer module is to automate the process of training 

and testing. The automation process is done in the following manner: 

First, other than the previously mentioned settings, the mode and classifier are to be set. 

There are three options for the mode: 1) testing, 2) building model, and 3) building model 

and testing. In “building” mode each trained model is saved. As for the classifier option, a 

set of classifiers are listed to select from. All available classifiers are incremental learners 

except for the J48 classifier. In our extensively pursued experiments, we have found that 

J48 classifier performs the best for Arabic text vocalization.     

Second, the input file (line formatted) has to be selected. If an incremental classifier was 

chosen and the input file size exceeds 4MB then the file will be split into smaller chunks. 

Third, based on the selected mode, the process of training and testing will commence, and 

for each input file(s), the classification results will be recorded and logged.  

We want to note that in testing mode, if the text entered was partially diacritized, then all 

the diacritics are left untouched and only the letters without diacritics are predicated. 
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4.4 Feature Selection 

As mentioned in the beginning of this chapter, feature selection is the process of extracting 

an optimal or sub-optimal subset of features from a set of features. 

The main goal behind performing feature selection is to meet one or more of the following 

[49]: 

1. Select an optimal or a sub-optimal subset of features that could increase the 

predictive power of the model. 

2. Reduce the computational requirements and time needed to build and test a model. 

3. Identify a subset of features that are related to the domain of the problem being 

worked on. 

The basic process of feature selection can be summarized as follow [50]: 

1. Generation, in which different subsets of features will be generated for evaluation. 

2. Evaluation, in which the subsets generated will be evaluated and the best 

performing subset will be selected. 

3. Stopping criterion, which represent the condition(s) for stopping the feature 

selection process. A condition could be based on either the generation or evaluation 

step. It could be a specific number of generated subsets or a number of iterations. 

4. Validation, which represents testing the resulted subset. This step is not considered 

part of the process when we want to vocalize text in real time without having its 

ground truth vocalized text. 

Feature selection techniques can be categorized into two groups which are filter method 

and wrapper method [51]. The filter method produces a subset of features based on the data 
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properties and characteristics without using any learning scheme, while the wrapper 

method applies a learning scheme (classifier) to find the best subset. 

WEKA provides a feature called “Attribute Selection” [42] . The process of attribute 

(feature) selection is composed of two parts: 

1. Attribute evaluator, in which features are assessed and evaluated. 

2. Search method, in which the space of attributes is searched.  

Feature selection in WEKA can be either supervised or unsupervised [42] . Supervised 

feature selection uses features correlation with the class value when evaluating the features, 

while the other uses the distribution or the variance of the data for evaluation. We will be 

using supervised feature selection since we know that our features are correlated with the 

class value. 

The attribute evaluator in WEKA, implements nine evaluators; seven of them are used for 

ranking individual features, while the remaining two evaluators identify the best features 

subsets. These two evaluators are:  

1. Correlation-based feature subset (CFS) evaluation. It evaluates features based on 

their accuracy in prediction and prefers the features with the high correlation with 

the class and low correlation between other features. 

2. Wrapper subset evaluator. It evaluates features by using a classifier in which a 

model will be generated for each subset of features searched, and the evaluation 

will be based on a specific measurement criteria which can be accuracy, recall, f-

measure, and others. 
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Using the wrapper evaluator has an advantage on the other evaluators. Studies showed [52] 

[53] that by using the wrapper evaluator, the extracted features will be optimized for the 

used classifier with the wrapper. As a consequence this should yield a better result on 

classification. Since our work is based on using the decision tree classifier J48, we are 

going to use the same classifier with the wrapper. 

The feature extraction done was broken into two phases. The first phase was done at an 

early stage of our work, so it covered only the first ten features mentioned earlier, while 

the second phase covers all features. Details of the work done is explained in the next two 

subsections.  

4.4.1 Feature Extraction Phase 1 

This phase was implemented before finishing the process of feature extraction. We decided 

that we are going to perform feature selection even though we still had ideas for other 

features. This decision was chosen to evaluate the features we had at that time and to 

identify the best performing features. 

To determine the best set of features and the best sliding window size, we conducted many 

experiments. In those experiments, the space of possible features was explored using the 

hill climbing algorithm in which we started from the most basic feature “Character” until 

we traversed through all features. Table 27 shows all the combinations of features that were 

generated and tested. 

The text lines used for training and testing were selected from “Tashkeel-2016” corpus. 

We created a validation dataset for this purpose. The set consisted of 500 lines. In 

generating the training and testing sets, a ratio of 80/20 was used respectively. The 
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generation of the sets were not random as the first 400 lines were always taken for training 

and the reminder 100 lines were taken for testing. The reason for this is to eliminate any 

factor that could manipulate the prediction results. This minimizes the possibility of 

choosing the wrong features subset. In the pursed experiments we have covered six sliding 

window sizes (from one to six). 

Table 27 shows the features space to be searched for feature selection. The table shows a 

list of feature sets with a code assigned to each set. 

To perform these experiments, we used our developed module “Instant Diacritizer and 

Trainer” which we introduced earlier (See4.3.5). Figure 11, Figure 12, Figure 13, Figure 

14, Figure 15, and Figure 16 show the results of the experiments in terms of features tested 

and their accuracy rates using different sliding window sizes. Each one of these five figure 

represents the results for a single sliding window size. Figure 17 shows the performance of 

all features across all used sliding window sizes. 
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Table 27: Features space for feature selection. 

# Features 

F1 Character + Position 

F2 Character + Connection 

F3 Character + LetterPosition 

F4 Character + WordFirstLetter 

F5 Character + CurrentWordLength 

F6 Character + NextWordLength 

F7 Character + PreviousWordLength 

F8 Character + WordSecondLetter 

F9 Character + WordBeforeLastLetter 

F10 Character + WordLastLetter 

F11 Character + Position + Connection 

F12 Character + Position + LetterPosition 

F13 Character + Position + WordFirstLetter 

F14 Character + Position + CurrentWordLength 

F15 Character + Position + NextWordLength 

F16 Character + Position + PreviousWordLength 

F17 Character + Position + WordSecondLetter 

F18 Character + Position + CurrentWordBeforeLastLetter 

F19 Character + Position + WordBeforeLastLetter 

F20 Character + Position + WordLastLetter 

F21 Character + Position + Connection + WordFirstLetter 

F22 Character + Position + Connection + CurrentWordLength 

F23 Character + Position + Connection + NextWordLength 

F24 Character + Position + Connection + PreviousWordLength 

F25 Character + Position + Connection + WordSecondLetter 

F26 Character + Position + Connection + WordBeforeLastLetter 

F27 Character + Position + Connection + WordLastLetter 

F28 Character + Position + Connection + LetterPosition + WordFirstLetter 

F29 Character + Position + Connection + LetterPosition + CurrentWordLength 

F30 Character + Position + Connection + LetterPosition + NextWordLength 

F31 Character + Position + Connection + LetterPosition + PreviousWordLength 

F32 Character + Position + Connection + LetterPosition + WordSecondLetter 

F33 Character + Position + Connection + LetterPosition + WordBeforeLastLetter 

F34 Character + Position + Connection + LetterPosition + WordLastLetter 

F35 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength 

F36 Character + Position + Connection + LetterPosition + WordFirstLetter + NextWordLength 

F37 Character + Position + Connection + LetterPosition + WordFirstLetter + PreviousWordLength 

F38 Character + Position + Connection + LetterPosition + WordFirstLetter + WordSecondLetter 

F39 Character + Position + Connection + LetterPosition + WordFirstLetter + WordBeforeLastLetter 

F40 Character + Position + Connection + LetterPosition + WordFirstLetter + WordLastLetter 

F41 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength 

F42 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
PreviousWordLength 

F43 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
WordSecondLetter 
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Figure 11 Accuracy for sliding window of size 1 
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Window Size 1

F44 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
WordBeforeLastLetter 

F45 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
WordLastLetter 

F46 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength 

F47 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + WordSecondLetter 

F48 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + WordBeforeLastLetter 

F49 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + WordLastLetter 

F50 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordSecondLetter 

F51 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordBeforeLastLetter 

F52 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordLastLetter 

F53 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordSecondLetter + WordBeforeLastLetter 

F54 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordSecondLetter + WordLastLetter 

F55 Character + Position + Connection + LetterPosition + WordFirstLetter + CurrentWordLength + 
NextWordLength + PreviousWordLength + WordSecondLetter + WordBeforeLastLetter + 
WordLastLetter 
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Figure 12 Accuracy for sliding window of size 2 

 

 
 

Figure 13 Accuracy for sliding window of size 3 
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Figure 14 Accuracy for sliding window of size 4 

 

 
 

Figure 15 Accuracy for sliding window of size 5 
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Figure 16 Accuracy for sliding window of size 6 
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Figure 17 Accuracy for all used sliding window sizes 

 

From the results we conclude the following: 

 The fluctuation in the line represent features either doing good or bad.  

 Increasing the window size would not necessarily increase classification results.  

 The lowest classification was resulted from features set F6 with window size one. 

It scored 52.351%. 

 The highest classification was achieved by features set F39 scoring 77.114% using 

window of size three. The Feature set F39 has the features: Character, Position, 

Connection, LetterPosition, WordFirstLetter, and WordBeforeLastLetter. 
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4.4.2 Feature Extraction Phase 2 

After completing the process of feature extraction, we came up with 23 features, excluding 

the diacritic since it represents the class value for prediction. In this phase we used WEKA 

from its interface to perform the feature selection. The features evaluator we used was the 

wrapper along with the J48 classifier as a learning scheme. As for the search method, we 

used the Greedy Stepwise search. WEKA provides another native method which is the 

Best-First search. The reason for choosing the Greedy Stepwise is due to the time taken in 

searching the features space. The Greedy Stepwise implementation provides a critical 

feature, the user can specify the number of CPU cores to use which reduces computation 

time greatly.  

One key difference between the feature selection in this phase and the feature selection in 

phase I, is that a feature significance was determined by using it in all sliding window sizes. 

For example, assume that we have a set of features and we want to test a newly created 

feature “X” across different sliding window sizes. We tested this feature against a sliding 

window of size two and found that the feature did not perform well. The issue here is that 

our conclusion could be wrong because we assumed that the “X0” (Window 1) and “X1” 

(Window 2) are bad while may be if one of them was tested alone, accuracy may get better. 

The dataset we used, was the same validation dataset used before. Similar settings to the 

previous feature selection were used.  

Table 28 shows the results of feature selection per sliding window size. We can see from 

the results that a sliding window with width one scored the lowest while the highest results 

were scored by sliding window with widths three, four, five and six. Furthermore, we can 
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notice that in sliding windows with sizes three, four, five and six, the widening of the 

sliding window has no effect on accuracy. Also the selected features remained unchanged. 

Comparing these results with the previous results of feature selection, we can see that the 

accuracies here dominate all the results from the previous phase. Hence we choose the 

features subset with sliding window of size three to be our optimal subset.  

Table 28: Wrapper feature selection per window 

4.5 Post-processing 

To further enhance the vocalization, another step was added after classification. Basically 

what will happen is that at first, the best features subset will be used to generate a model 

using the decision tree classifier, then the model will be used for text vocalization. After 

text vocalizing, post-processing will occur. Post-processing consist of two parts in which 

will be described in the following subsections. The aim of the first part (N-Gram 

Vocalization) is to enhance vocalization while the second part aim (“Sukoon” Diacritic 

Window 
Size 

Accuracy Features 

1 80.3% 
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + NextNextLetter0 + PreviousLetter0 + 
WordPOS0 

2 80.4% 
Character0 + Position0 + Connection0 + LetterPosition0 +CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + NextNextLetter0 + PreviousLetter0 + 
WordPOS0 + Character1 + Position1 + WordBeforeLastLetter1 + WordPOS1 

3 0.783% 

Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 + 
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2 

4 80.5% 
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 + 
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2 

5 80.5% 
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 + 
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2 

6 80.5% 
Character0 + Connection0 + LetterPosition0 + CurrentWordLength0 + 
WordBeforeLastLetter0 + NextLetter0 + PreviousLetter0 + WordPOS0 + 
LetterPosition1 + PreviousLetter1 + Character2 + Position2 + LetterPosition2 
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Normalization) is to make the output text more consistent. Figure 18 shows how post-

processing works. 

 

 

4.5.1 N-Gram Vocalization 

To enhance the vocalization, n-gram models were constructed for this goal. Three n-gram 

models were created, bi-grams, tri-grams and quad-grams models. We used the 

SENTNCES3 corpus in building these models. The n-gram model format used is the word 

vocalized without its cased ending and a list of its previous unvocalized words along with 

the frequency of each possible case. When vocalizing a word in a sentence, the word and 

its previous words are collected based on the n-gram size and then all of their diacritics 

will be striped. After that a search through each model is initiated starting from the highest 

n-gran model. If a match is found, then the word is vocalized with the matched word while 

keeping the original diacritic of the word case ending. If no match is found, then searching 

through lower n-grams models takes place. Note that in the construction of the models, 

while traversing words, if we find that the current token we are traversing starts with a 

punctuation mark such i.e. “(“ or “]” …etc, Then we consider this word as the first word 

of a sentence. Similarly, if while going over the previous words, we encounter a word that 

Vocalized Text Process Text Processed Text

Remove Sukon NGram Vocalization

 

Figure 18 Post-processing 
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ends with a punctuation mark, then we stop looking for any words behind that word. This 

feature was added to Instant Diacritizer tool explained before. 

4.5.2 “Sukoon” Diacritic Normalization 

In the corpus development chapter, we detailed the process followed in making sure that 

the corpus is fully vocalized. One of the main things we did, was applying "Sukoon" 

diacritic to all unvocalized letters. Although, this step is necessary for classification, the 

appearance of "Sukoon" on some letters does not look natural in Arabic, e.g. با ل طا ل) ). So 

to make the vocalization output more consistent, we removed the “Sukoon” diacritic. The 

removal was done by reversing the rules used in applying the “Sukoon” diacritic. The rules 

used in the removal are: 

1. If letter "ا" vocalized with "Sukoon" is followed by letter "ل" vocalized with 

"Sukoon" at the start of a word, then we remove "Sukoon" from both letters. 

2. If a letter "ا" vocalized with "Sukoon", then we remove the "Sukoon". 

3. If a letter has a "Kasra" diacritic and is followed by a letter "ي" vocalized with 

"Sukoon", then we remove the "Sukoon" from the letter "ي". 

4. If a letter has a "Fatha" diacritic and is followed by a letter "ى" vocalized with 

"Sukoon", then we remove the "Sukoon" from the letter "ى". 

5. If a letter has a "Tanween-Fath" diacritic and is followed by a letter "ى" or "ا" 

vocalized with "Sukoon", then we remove "Sukoon" from either letters. 

6. If a letter has a "Damma" diacritic and is followed by letter "و" and/or "ا" vocalized 

with "Sukoon", we remove "Sukoon" from either or both letters. 



78  

 

4.6 Implementation Issues 

This section discusses some implementation issues related to this research work. 

4.6.1 Features Combinations 

One of the implementation issues we had to deal with was the time consumption of the 

searching process to find the best set of features using WEKA the search algprithms 

provided through WEKA, namely, the Best-First search and the Greedy-Stepwise search. 

. While both algorithms try to find the best set features, one critical feature was available 

in the Greedy-Stepwise and not in the other algorithm. The feature was to be able to set the 

number of CPU cores. Although using this feature decreased the search time by ¾, the 

process of finding the best set of features took over 24 hours on a HPC machine. The HPC 

machine we used had two CPU’s and 45 GB of RAM. 

4.6.2 Experiments 

 In our work, we conducted hundreds of experiments. Some implementation issues related 

to these experiments were: 

1. We wanted to make the process of experimentation automated. This led us to 

develop our own tools. 

2. The tools developed integrate with WEKA, which is built on Java, while the 

programming language we used was C#, we had to convert the Java library into a 

DLL in order to use it. 

3. To conduct the experiments we used the same HPC machine used before, and even 

though, the experiments we did took days to finish. 
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4.7 Summary 

In this chapter, we discussed features extraction and selection. We listed all features we 

were produced. We also introduced the modules we have developed to automate text 

diacritization. Feature selection process was divided into two phases, one that was done at 

an early stage and the second phase was pursued after completing extracting all considered 

features. An optimal features subset was chosen and discussed, and finally we highlighted 

the major implementation issues we faced during our work 
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5 CHAPTER 5  

EVALUATION 

The evaluation phase of any implemented system is critical as it defines the boundary 

between success and failure. In this chapter, we discuss the used evaluation metrics in 

Section 5.1. In Section 5.2, we discuss the experiments we performed using the best 

reached settings along with the results. Section 5.3 presents applying performance tuning 

to possibly enhance the vocalization accuracy. . Comparing our work with some other 

related work is presented in Section5.4. Finally, Section 5.5 is the summary of the chapter. 

5.1 Performance Metrics 

There are many metrics that can be used to measure the performance of a diacritizer. We 

choose common metrics that researchers often apply with the addition of specific metrics 

that WEKA provides. The metrics are: 

 Diacritics Error Rate (DER) 

 Word Error Rate (WER) 

 Accuracy 

 KAPPA 

 Receiving Operating Characteristics Curve (ROC) 

In the next subsections, a brief description of each metric will be given along with their 

calculation methods. 
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5.1.1 Diacritic Error Rate (DER) 

Diacritic Error Rate is the ratio of wrongly diacritized letters to the total number of letters 

[54], as denoted by Equation 1 

𝐷𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑧𝑒𝑑 𝑙𝑒𝑡𝑡𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑡𝑡𝑒𝑟𝑠
 

Equation 1: Diacritic-error rate (DER) 

 

5.1.2 Word Error Rate (WER) 

Word Error Rate is the ratio of wrongly diacritized words to the total number of words as 

denoted by Equation 2. 

𝑊𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑧𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
 

Equation 2: Word error rate (WER) 

5.1.3 Accuracy 

The accuracy represents the ratio of correctly classified instances. Equation 3 shows how 

accuracy is calculated. 

𝐴𝑈𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
 

Equation 3: Accuracy (AUC) 

 

 

5.1.4 KAPPA 

KAPPA measures the chance of agreement between what have been classified and the 

actual results of the classification. It means that it estimates the degree of whether the 
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classification was done by chance or not. A KAPPA value of zero would mean that a 

classifier is classifying instances completely by chance (random). A value greater than zero 

indicates that a classifier is doing better than chance. A value of one, means that the 

classifier is sure of what the classification result would be. Note that the classifier being 

sure of the result, does not mean that the classification would be right. This can be 

represented as “I have learned” versus “I am sure of what I have learned”. To explain it in 

a more easy way, assume that a student has been asked a question. The student answers the 

question and he is sure of his answer, but the problem is that his answer might be wrong. 

5.1.5 Receiving Operating Characteristics Curve (ROC) 

The ROC measures the model predictive ability. i.e., a model ability to separate classes 

and distinguish them. A model with a ROC value of 50% means that its prediction is 

random, much like a coin toss, while a higher value indicates a better prediction. Based on 

a point system, we can say that for example an ROC of 90%, means that its ability to 

distinguish between classes is excellent, as opposed to 50% which is actually failing in 

distinction. 

5.2 Experiments 

After determining the best settings (features and sliding window size) through feature 

selection, we pursued more experiments to obtain higher classification accuracy and good 

models to be used for vocalization. In these experiments, both the “TASHKEEL-2016” 

and the MUSHAF corpus were used. The following subsections describes the experiments 

done on each corpus. 
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5.2.1 Experiments with “TASHKEEL-2016” Corpus 

As a start, we tried training the whole corpus but the generated training file was big for 

used tool and resources to handle. As a consequence, we had to split the corpus to smaller 

chunks. To split the corpus, we first decided on the sizes of the training sets in terms of 

lines per file. We have chosen sizes ranging from 1000 to 15000 lines. For each size, the 

whole corpus was used to generate the datasets. E.g. for a 1000 lines size, about 300 sets 

were generated. The generation of the lines in the datasets, were random. Since the corpus 

covers different domains of text, ignoring random generation for the data may result in 

training sets that covers only a specific domain. Thus, we used random generation 

expecting that our training data would be diverse.  

Table 29 shows the highest results achieved for each lines size. Note that for these results 

we did not measure DER and WER because when we generated the training files for 

WEKA, we ignored both new lines and spaces between words, so it was not possible to 

reconstruct the output and calculate these metrics. Figure 19, Figure 20, and Figure 21 

show the results in term of size, accuracy, KAPPA and ROC respectively. 

We notice from the results the gradual increase in all metrics as the number of lines 

increases. The highest accuracy and KAPPA achieved were with a dataset of 14000 lines, 

while the highest ROC was scored by a dataset of 15000 lines. In general we can conclude 

the bigger that data, the better the results. The highest accuracy and KAPPA achieved were 

86.68% and 81.77% respectively, while the highest ROC achieved was 96.3%. The highest 

KAPPA achieved implies that the model has a good precision (reliability). Similarly, the 

highest ROC indicates that the model predictions is not random and can distinguish 

between classes very well. 
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Table 29: “TASHKEEL-2016” Experimental Results 

Lines Size Accuracy KAPPA Average ROC 

1000 81.60% 74.70% 92.60% 

2000 82.95% 76.51% 93.70% 

3000 83.96% 77.88% 94.30% 

4000 84.57% 78.76% 94.70% 

5000 85.06% 79.40% 95.10% 

6000 85.24% 79.69% 95.50% 

7000 85.57% 80.13% 95.60% 

8000 85.71% 80.36% 95.80% 

9000 85.98% 80.75% 95.90% 

10000 86.13% 80.92% 96.10% 

11000 86.25% 81.09% 96.10% 

12000 86.52% 81.46% 96.30% 

13000 86.55% 81.47% 96.30% 

14000 86.72% 81.77% 96.30% 

15000 86.69% 81.71% 96.40% 

 

 

 

Figure 19 “TASHKEEL-2016” experimental results: Size vs Accuracy 
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Figure 20 “TASHKEEL-2016” experimental results: Size vs KAPPA 

 

 

 

Figure 21 “TASHKEEL-2016” experimental results: Size vs ROC 
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To understand the results better, we take a closer look at the ROC values generated for 

each class using the best models of 14000 and 15000 lines. Table 30 shows the ROC values 

for each class per each dataset. Figure 22 shows a comparison between the resulted ROC 

values. While the difference between the results is not high, we can see that the class 

“Shadda-Tanween-Kasr” scored the lowest value while the class “Sukoon” scored the 

highest value. This denotes that the model cannot distinguish very well when it comes to 

certain diacritics. The reason behind this is that the diacritics distribution in the data in 

general and in Arabic in specific is not balanced. In Arabic, the percentage of occurrence 

of the diacritics “Fatha” and “Kasra” is higher than diacritic “Shadda-Damma”. Due to the 

lack of enough instances of such diacritics, the model could not train very well on those 

cases. 

Table 30: ROC values for each class in 14000 and 15000 lines 

# Class Value ROC 

- - 14000 Lines 15000 Lines 

1 Fatha 95.90% 96.00% 

2 Kasra 95.60% 95.80% 

3 Damma 94.40% 94.10% 

4 Sukoon 98.80% 98.80% 

5 Tanween-Fath 97.10% 97.10% 

6 Tanween-Kasr 90.00% 90.50% 

7 Tanween-Damm 88.70% 88.00% 

8 Shadda-Fatha 94.40% 95.40% 

9 Shadda-Kasra 89.00% 87.60% 

10 Shadda-Damma 87.30% 87.30% 

11 Shadda-Tanween-Fath 97.70% 94.80% 

12 Shadda-Tanween-Kasr 81.00% 82.10% 

13 Shadda-Tanween-Damm 87.80% 88.70% 
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Figure 22 14000 and 15000 lines datasets ROC comparison for each class  

 

5.2.2 Experiments with MUSHAF Corpus 

Since the size of the MUSHAF corpus is very small compared to the “TASHKEEL-2016” 

corpus, we used the whole corpus for training and testing. Note that when extracting 

features from the text, the POS features were generated through the MUSHAF POS tagger. 

Table 31 shows the results of the experiments. The ROC result for each class value is 

presented in Figure 23, while Table 32 shows the detailed results. The MUSHAF model 

results dominate the results achieved from “TASHKEEL-2016” with significance. 

Furthermore, we notice that the ROC values are much higher than what have been achieved 

before, with the exception of the “Shadda-Tanween-Kasr” which is the same class that the 

previous models suffered from. The lowest ROC value achieved by the highest model for 

the same class was 82.1% for MUSHAF as opposed to 74.8% for the “TASHKEEL-2016”.   
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Table 31: MUSHAF experimental results 

Accuracy KAPPA Average ROC 

90.72% 87.29% 96.8% 

 

Table 32: MUSHAF ROC value for each class 

# Class Value ROC 
1 Fatha 96.50% 

2 Kasra 95.80% 

3 Damma 94.80% 

4 Sukoon 98.80% 

5 Tanween-Fath 98.30% 

6 Tanween-Kasr 92.10% 

7 Tanween-Damm 92.20% 

8 Shadda-Fatha 95.50% 

9 Shadda-Kasra 90.60% 

10 Shadda-Damma 90.50% 

11 Shadda-Tanween-Fath 97.90% 

12 Shadda-Tanween-Kasr 74.80% 

13 Shadda-Tanween-Damm 93.70% 

 

 

Figure 23 MUSHAF experimental results: Class vs ROC 
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Trying to achieve better results than what we currently have, we pursued tuning to optimize 

the J48 classifier parameters. The next subsection describes the tuning process of the 

classifier. 

5.3 Performance Tuning 

Tuning the classifier for better performance depends on how the classifier actually works.  

The J48 decision tree classifier uses a technique called pruning while building the decision 

trees. Pruning means reducing the size of the resulting decision tree by removing parts that 

are not contributing much in the classification. This reduces the complexity of the tree and 

as a consequence may improve the accuracy. While the J48 classifier provides several 

options for controlling the pruning process, most studies [55] [56] that conducted 

performance tuning focused throughout their work on the “confidence factor” parameter. 

The confidence factor controls the level of pruning and allows a range of values from 0 - 

1.  Choosing a low confidence value close to zero results in an aggressive pruning. While 

increasing the confidence value to its upper bound results in a minimal pruning. 

To tune the classifier, we pursued 10 experiments in which we tested various confidence 

values. We started at 0.05 with a step size of 0.05 and keep incrementing until we reach 

0.5 confidence value. We used the best dataset achieved from “TASHKEEL-2016” and the 

MUSHAF corpora. 

Figure 24, Figure 25 and Figure 26 show the results of performance turning for accuracy, 

KAPPA and ROC respectively. Figure 27 Figure 28, and Figure 29 show the results for 

MUSHAF for the same metrics respectively. Table 33 shows the detailed results for both 

corpora.  
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From the results, we notice the following: 

 An aggressive pruning using a CF of 0.05 hindered the accuracy performance, 

while the ROC value increased. 

 A minimal pruning using a CF of 0.5 hindered both accuracy and ROC for the 

“TASHKEEL-2016” while the contrary happened for the MUSHAF. 

 For the “TASHKEEL-2016”, the highest score achieved was with a CF of 0.3 and 

0.35. It scored an 86.72% for both CF values which is an increase of 0.01% over 

the base result. As for the MUSHAF the highest result was achieved by using a CF 

of 0.3 to 0.45 with a score of 90.75% compared to 90.72% before tuning. 

 We see that the relation between the level of pruning and the ROC value is linear. 

A high level of pruning achieved the highest score, and while lowering the 

pruning level, the ROC values decrease gradually. 

 

Figure 24 “TASHKEEL-2016” performance tuning results: CF vs Accuracy 
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Figure 25 “TASHKEEL-2016” performance tuning results: CF vs KAPPA 

 

 

Figure 26 “TASHKEEL-2016” performance tuning results: CF vs ROC 
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Figure 27 MUSHAF performance tuning results: CF vs Accuracy 

 

 

Figure 28 MUSHAF performance tuning results: CF vs KAPPA 
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Figure 29 MUSHAF performance tuning results: CF vs ROC 

 

Table 33: J48 classifier performance turning results 

 “Tashkeel-2016”  MUSHAF 

CF Accuracy KAPPA Avg ROC  Accuracy KAPPA Avg ROC 

0.05 86.15% 80.95% 97.00% 90.37% 86.80% 97.20% 

0.1 86.45% 81.39% 96.80% 90.47% 86.94% 97.10% 

0.15 86.56% 81.55% 96.70% 90.51% 87.01% 97.00% 

0.2 86.62% 81.64% 96.50% 90.62% 87.16% 97.00% 

0.25 86.71% 81.77% 96.30% 90.72% 87.29% 96.80% 

0.3 86.72% 81.79% 96.20% 90.75% 87.34% 96.80% 

0.35 86.72% 81.79% 96.10% 90.75% 87.34% 96.80% 

0.4 86.68% 81.74% 96.00% 90.75% 87.34% 96.80% 

0.45 86.62% 81.65% 95.90% 90.75% 87.35% 96.80% 

0.5 86.57% 81.59% 95.90% 90.74% 87.33% 96.70% 

 

To calculate DER and WER, we used the best datasets from the previous experiments along 

with the best settings from performance tuning. Table 34 shows the results. 
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Table 34: “TASHKEEL-2016” and MUSHAF DER and WER results 

Model 
DER without case 

ending 
DER 

WER without case 

ending 
WER 

“TASHKEEL-

2016” 
7% 13% 20% 37% 

MUSHAF 6% 9% 18% 28% 

 

We see from the results that the MUSHAF dataset performed better than the dataset from 

the “TASHKEEL-2016”. The highest results achieved was a 6% and 9% for DER (without 

case ending) and DER respectively. Also, a result of 18% and 28% was achieved for both 

the WER (without case ending) and WER respectively. 

5.4 Comparison 

To validate our work, we considered comparing our work with other researchers’ work. 

The problem was that the majority of reported related researches were either not available 

or licensed. We had access to only one research by Shaaban [9]. We used his testing set, 

and produced a fully vocalized and consistent subset. The test set we used will be made 

available public. 

Table 35 shows the comparison results between both systems. One thing to note about 

Shabban’s system, is that the level of vocalization is around 81%, while in our system it is 

100%. Thus to make the comparison fair, we considered each undiacritized letter as a 

misclassified letter. We can see from the results that our systems performs better. 

Table 35: Systems comparison 

System DER1 DER2 WER1 WER2 

Shabban 36.28% 36.28% 78.37% 78.37% 

Our System 9.8% 9.76% 30.81% 30.81% 
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5.5 Summary 

In this chapter, we introduced the most commonly evaluation metrics that researchers use 

to test their vocalization systems. A set of experiments were conducted to determine the 

best classification rate and the best models. Performance tuning was performed to enhance 

the vocalization results. 
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6 CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Restoring diacritics of unvocalized text is an active research area. Several studies have 

been pursued with different languages and different approaches. However using decision 

trees for vocalization have been not been explored thoroughly. We showed in this thesis 

that using decision trees classifier (J48) is effective in the area of Arabic text vocalization. 

In this thesis we developed a corpus that contains only MSA text, and due to the nature of 

the domain selected in developing the corpus, we had to vocalize it using our own built 

vocalizer. We also refined the “TASHKEEL-2016” and the MUSHAF corpora. 

Through the development process of the automatic vocalizer, we conducted feature 

extraction and produced 23 features. These features were later reduced to 13 features using 

feature selection. Feature selection was used through the wrapper evaluator within WEKA 

which employed the J48 classifier as its learning scheme. Stanford and MUSHAF POS 

taggers were used in POS features. Furthermore, to enhance the vocalization, voting and 

n-gram models were introduced.  

For the evaluation we used several metrics such as DER, WER, KAPPA and others. We 

evaluated our experiments based on these metrics. We tuned the used parameters of the 

classifier for possible better results. The highest result achieved was with the MUSHAF 

corpus. Results of 6% and 9% for DER (without case ending) and DER were achieved 
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respectively. Also, Results of 18% and 28% were achieved for both the WER (without case 

ending) and WER respectively. 

Finally, we compared our work with a previous work [9]. The comparison showed that our 

vocalizer performed better.  

6.2 Future work 

The features we came up with did not consider partially diacritized text. Thus, a possible 

alternative approach would be to come up with features selected particularly for partially 

diacritized text. 

As the “AKHBAR-2016” corpus we developed was diacritized using our developed 

system, the corpus needs to be validated to make sure that the diacritized content is more 

accurate. 

Another future work would be to use the corpus we have to build a minimal corpus. The 

minimal corpus would cover different linguistic cases, letters with all their possible shapes 

or letters with all their possible diacritics…etc. 
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Appendix I How to Vocalize a Text File 

To vocalize a text file, the following steps needs to be followed: 

1. Run the Instant Diacritizer application. Figure 30 shows the Instant diacritizer main 

screen. 

2. Assuming that we do not have any models, we need to generate models for 

classification. If you already have any model, you can skip to step 8. 

 

 

Figure 30 Instant Diacritizer Main Screen 

 

3. Click on the menu button located on the upper left of the screen. Then click on the 

“Settings” menu item. This will open up a new window which contains all the 

settings for building classification models. Figure 31 shows the settings screen. 
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Figure 31 Instant Diacritizer Settings Screen 

 

4. Make sure that the settings are set exactly as shown in Figure 31. After that, click 

on the “Save” button. 

5. In the main screen, click on the menu button again. Then click “Trainer & Tester” 

menu item. Figure 32 shows the Trainer & Tester screen. 

 

 

Figure 32 Trainer & Tester Screen 
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6. Make sure that the Classifier “J48” is selected. Click on the browse button for the 

input file. For building models, the input file must be a vocalized text file so that it 

can be used for Training. After choosing the appropriate input file, click on the Start 

button to start the training process. 

7. After the training process finishes, a log will be inserted in the “Training Log” and 

process progress bar will be full. The models built will be located in a folder named 

“Model” which can be found in application root directory. After that, close the 

“Trainer” screen. 

8. In the main screen, click on the browse button and select all the models built in the 

previous steps. Then click on the “Load” button. Upon clicking the “Load” button, 

the screen will be disabled until the loading process is finished.  

9. After loading is finished, check both options: 

a. Post-Processing Remove Sukoon (Sukon). 

b. Post-Processing Vocalization. 

10. Go to the file vocalization tab. Figure 33 shows the file vocalization tap. 
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Figure 33 Instant Diacritizer Main Screen - File Vocalization Tap 

 

11. Click on the “Browse” button for the input file, and select the input file you want 

to vocalize. Also, click on the “Browse” button for the output file name and 

location. 

12. Click on the “Vocalize” button, and wait for the vocalization process to finish. 
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Experience  

2016-now SSS Process, Amman, Jordan 

“Senior Software Engineer” 

 Developing ASP.Net applications using MVC technology under 

C# using Visual Studio 2015. 

 Database development using SQL 2015. 
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3/2016-

6/2016 

OrderMe, Dahran, Saudi Arabia 

“Senior Software Developer” 

 Integration and customization of an open source Java project 

“JSprit” for solving vehicle routing problem 

 

6/2012-

7/2013 

Safat Enterprise Solutions, Kuwait 

“Senior Software Developer” 

 Developing ASP.Net and Windows applications using third 

party component “DevExpress” under C#. 

 Database development using SQL 2008, 2012. 

 Design and Development of Crystal Reports. 

 Worked in the following projects: 

o MyApp – National Bank of Kuwait (NBK). 

o Operation Document Flow – Kuwait Financial House 

(KFH). 

 

12/2011-

6/2012 

CrownIT, Amman, Jordan 

“Software Developer” 

 Developing ASP.Net Applications under C#. 

 Worked on Ajax, JQuery, JavaScript, JSON, and XML. 

 Tuning of SMPP application. 

 Integration and customization of open source projects with 

existing applications, such as Blogs, Forums, Wikipedia, etc. 

 Database development using SQL2008. 

 Worked in the following projects: 
o www.icn.com 

o www.fxpulp.com 

 

10/2010-

11/2011 

HyperExecution, Amman, Jordan 

“Software Developer” 

 Developing ASP.Net and Windows Applications under C# using 

Visual Studio 2005, 2008. 

 Worked on Ajax and Javascript. 

 Developing Windows Mobile Application - Windows Mobile 6.0 

using C#. 

 Database development using SQL2005, SQL2008. 

 Design and development of Crystal Report. 

 Worked in the following projects: 
o www.hiwash.com 

o www.hiwashportal.com 

o (Hammurabi) Law firm application. 

 

 

 

 

http://www.fxpulp.com/
http://www.hiwash.com/
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Programming Languages & Computer Skills 

Programming Languages 

 ASP.Net 

 ADO.Net 

 C#.Net 

 VB.Net 

 SQL Server 2005 ,2008, 2012 :- 

- Database design and implementation. 

- Relations and constrains.  

- Queries and procedures. 

 

Web Design Skills 

 Scripting: HTML, CSS, JQuery, JavaScript and Json. 

 

Operating System& Maintenance Skills 

 Microsoft Windows (98, XP, Vista , 7, 8, 10) 

 Experience in troubleshooting all problems in windows 

 Microsoft Office 2003, 2007, 2010  

      (Very Good at Word, Good PowerPoint, Excel and Access)  

 Experience in troubleshooting and maintaining PC Hardware 

 Experience in troubleshooting and maintaining windows applications 

 Ability to get familiar with applications quickly 

 

Graphic Design Skills  

 Adobe Photoshop  

 Microsoft Expression Design 


