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 ABSTRACT 
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Software bad smells tend to have a negative impact on software quality by degrading a 

number of software quality attributes. It is imperative to detect and correct bad smells from 

analysis and design models to avoid their propagation to later stages of software 

development. Security is a vital quality attribute because of the critical nature of 

applications these days. In recent years, research related to secure software development 

has been observed as an uprising trend, however, there is a scarcity of corpus in 

investigating security bad smells and impact of refactoring on improving the software 

security. The main objective of this research is to vanquish the problem of security in UML 

models through the application of automated model refactoring. The fulfillment of the main 

objective is accomplished through multiple activities, which includes; proposing a detection 

technique, proposing a correction technique, empirical evaluation of proposed techniques 

and assessment of security improvement in UML models as a result of refactoring. The 

detection of security bad smells is achieved through the adaptation of a genetic algorithm, 

while correction is accomplished by model transformation approach. For the purpose of 

evaluation, our study focuses on three UML models (use case diagram, sequence diagram 

and class diagram). The assessment of security improvement is accomplished through 

statistical analysis of quality metrics. The empirical validations of proposed approaches are 

performed through multiple case studies of investigated UML models. The results show 
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significant detection recall and correction efficacy of our proposed detection and correction 

approaches respectively. Besides automatic detection and correction, the identification and 

refactoring of security bad smells are validated manually as well. The manual assessment 

of investigated models; and statistical analyses of quality metrics allow us to conclude the 

significant improvement in security quality of investigated UML models as a result of 

refactoring. 
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 ملخص الرسالة
 

 

 ممتاز حارث الاسم الكامل:
 

 تحسين أمن البرمجيات من خلال تطبيق إعادة هيكلة البرمجيات لنماذج لغة النمذجة الموحدة الرسالة:عنوان 

 

 هندسة البرمجيات التخصص:
 

 6102أكتوبر  تاريخ الدرجة العلمية:
 

 للروائح الكريهة للبرمجيات تأثير سلبي على جودة البرمجيات عن طريق تأثيرها على عناصر جودة البرمجيات. لا بد

من كشف وتصيحي الروائح الكريهة للبرمجيات في نماذج التحليل والتصميم لتجنب انتشارها إلى مراحل لاحقة من 

تطوير البرمجيات. امن البرمجيات سمة مهمة في جودة البرمجيات بسبب الطبيعة الحرجة للتطبيقات في هذه الأيام. في 

ن تطوير البرمجيات، ومع ذلك، هناك عدد قلقل من البحوث السنوات الأخيرة، لوحظ تزايد البحوث ذات الصلة لضما

التي تعالج تأثير الروائح الكريهة للبرمجيات على امن البرمجيات. الهدف الرئيسي من هذا البحث هو إيجاد حل لمشكلة 

 الهدف الأمن في نماذج لغة النمذجة الموحدة من خلال تطبيق إعادة هيكلية البرمجيات بشكل آلي. ويتم تحقيق هذا

الرئيسي من خلال أنشطة متعددة، والتي تشمل؛ اقتراح تقنية لكشف عن الروائح الكريهة للبرمجيات، واقتراح طريقة 

لتصحيح الروائح الكريهة للبرمجيات والتقييم التطبيقي لهذه الطرق المقترحة وتقييم التحسن الأمني في نماذج لغة النمذجة 

جيات. ويتحقق الكشف عن الروائح الأمنية السيئة للبرمجيات من خلال تطويع الموحدة نتيجة لإعادة هيكلة البرم

الخوارزمية الجينية، بينما يتم إنجاز التصحيح من قبل نهج نموذج التحول. لغرض التقييم تركز دراستنا على ثلاثة نماذج 

از تقييم التحسن الأمني من خلال من لغة النمذجة الموحدة وهي حالة الاستخدام، وتسلسل الرسم وفئة الرسم. ويتم إنج

التحليل الإحصائي لمقاييس الجودة. يتم تنفيذ عمليات التحقق التجريبية للنهج المقترح من خلال دراسات لنماذج ممثلة 

بلغة النمذجة الموحدة. أظهرت النتائج قدرة عالية على الكشف وتصحيح الروائح الكريهة للبرمجيات. إلى جانب الكشف 

لتلقائي، تم التأكد من إعادة الهيكلة للروائح الأمنية السيئة يدويا كذلك. التقييم والتحليلات الإحصائية لمقاييس والتصحيح ا

 .الجودة تأكد لنا وجود تحسن كبير في جودة أمن نماذج لغة النمذجة الموحدة لتحقيق إعادة هيكلة البرمجيات
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1 CHAPTER 1 

INTRODUCTION 

 
Unified Modeling Language (UML) is a widely used analysis and design language because 

of its supportability towards a number of software quality attributes [1]. It allows the 

designers to develop analysis and design models ensuring important quality attributes. A 

number of quality attributes related to software modeling have been reported in the 

literature, such as modularity, reusability, modifiability, testability, security etc. [2]. 

Software models (such as use case diagrams, sequence diagrams and class diagrams etc.) 

have been rigorously analyzed by researchers to ensure the presence of these quality 

attributes. The quality attributes may suffer if poor analysis and design decisions are taken 

during software development. The poor design and implementation decisions are 

commonly referred as ‘bad smells’, and necessary measure taken to remove the bad smells 

is called ‘refactoring’ [3]. 

The bad smells are usually categorized as code and model bad smells. Model bad smells 

mainly focus on analysis and design defects, which may hinder in later stages of software 

development. On the other hand, code bad smells are only confined to common 

inappropriate implementation practices [4]. The most beneficial extraction from the studies 

of bad smells and related refactoring strategies is the improvement of software quality. The 

end objective of each study in the context of refactoring is to enhance the commonly 

reported quality attributes. A number of studies have developed automated detection and 
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correction techniques and tools for code bad smells [5]. A comparatively fewer number of 

studies have worked on automated detection of bad smells and related refactoring 

opportunities for software models [6]. 

1.1. Problem Statement 

A decent corpus has focused on improvement of a variety of software quality attributes 

through model refactoring [7-9]. However, there is a scarcity of literature on the impact of 

model refactoring on security quality of a software. Security has a significant importance 

because of the nature of applications these days. Secure software development is a widely 

researched domain and it seems to have its pace enhanced in recent years [10, 11]. Detection 

of security bad smells becomes an essential task in this regard. Finding security related 

smells in models is not sufficient as it does not fully fortify the problem. For eradication of 

security smells, recognition of appropriate refactoring techniques must be obliged. To the 

best of our knowledge, refactoring opportunities suggested in the literature, unfortunately, 

do not focus on security aspects from both software analysis and design perspectives [11-

13]. 

1.2. Motivation 

A rigorous literature review on the studies related to model smells, detection strategies and 

refactoring techniques has allowed us to identify few gaps, which motivate us to work in 

this area. The related literature has not yet studied the model smells from a security point 

of view. The literature studies mostly focus on proposing more bad smells or studying the 

impact of existing bad smells on the quality of source code and UML models. The literature 

studies are also leaned towards detection and refactoring of bad smells in class diagrams. 
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Another concern to be noticed is the lack of work on use case diagram and sequence 

diagram in the context of refactoring. Few studies address the issues related to refactoring 

in use case diagram and sequence diagram [14-16]. The researchers have not yet addressed 

detection and refactoring of bad smells from a security perspective. These significant gaps 

in the literature stimulate our motivation to study bad smells from a security perspective 

and include other models such as use case diagram and sequence diagram as well. To the 

best of our knowledge, no study exists whose objective is to provide automated detection 

and refactoring approaches for security bad smells in software models. This further 

motivates us to investigate model security bad smells and propose automated detection and 

refactoring techniques to identify and eradicate security bad smells from software models. 

1.3. Research Objectives and Questions 

The main goal of this research is to improve the security of software models through the 

application of refactoring. The achievement of this goal can be broken down into multiple 

sub-objectives. The sub-objectives of this research include: 

 Propose a detection technique to identify security bad smells in UML models. 

 Propose a correction technique to eradicate security bad smells in UML models. 

 Empirical assessment of security improvements in UML models as a result of 

refactoring.  

This research aims to cover all three views of UML. One model is selected from each UML 

aspect i.e. class diagram from structural; sequence diagram from behavioral; and use case 

diagram from functional [1]. Our research aims to address the following laid research 

questions:  
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RQ1: To what extent can our proposed detection approach detect security bad smells in 

UML models? 

RQ2: To what extent can our proposed correction approach rectify security bad smells in 

UML models? 

RQ3:  To what extent can refactor to security bad smells improve security aspects of UML 

models? 

1.4. Research Methodology 

In order to address RQ1 and RQ2 specified in the previous section, we propose detection 

and correction approaches respectively. The detection approach uses the concept of Genetic 

Algorithm (GA) to identify security bad smells in studied UML models. A potential solution 

is formed by creating a set of rules measuring for security bad smells using quality metrics. 

The approach does not require any manual expression of detection rules because they are 

based on existing security bad smells examples. The use of examples also does not require 

specification of quality metrics thresholds. The best solution is yielded through selection, 

crossover and mutation operations of GA process. The correction solution is based on model 

transformation using XMI. The XML representation of a corresponding model is refactored 

to remove security bad smells. The refactored XML is then exported to the corresponding 

UML model. RQ3 is answered through manual analysis of investigated case studies of UML 

models and statistical analysis of software quality metrics. The comparison of software 

metrics values before and after refactoring allow a definite conclusion on significant 

security improvement in software models. 
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1.5. Research Contribution 

The major contributions to the research and professional community are listed below: 

 Taxonomy of security bad smells. 

 Catalog of refactoring to security for analysis and design models (class, use case 

and sequence diagrams). 

 A method for the automatic detection of security bad smells for analysis and 

design models (class, use case and sequence diagrams). 

 A method for the automatic refactoring to security for the analysis and design 

models (class, use case and sequence diagrams). 

 Empirical evaluation of security improvements in analysis and design models 

(class, use case and sequence diagrams). 

1.6. Thesis Outline 

The rest of this thesis is structured as follows: chapter 2 provides preliminary background 

on some key concepts. It presents illustration on UML, software models security attributes, 

metrics and refactoring. Chapter 3 provides a detailed description of related work. Chapter 

4 encompasses our research methodology. Chapter 5 encapsulates the application of the 

proposed detection and correction approaches on multiple case studies of considered UML 

models. It also describes the validation of proposed approaches through case studies. Since 

this chapter provides explanations of our experiments, it follows the guidelines provided by 

Jedlitschka et.al on reporting empirical studies in software engineering [17]. Chapter 6 

analyses and discusses the implications of our acquired results. Chapter 7 presents posed 

threats to validity and finally, Chapter 8 concludes the thesis and directs future work.  
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2 CHAPTER 2 

BACKGROUND 

This chapter provides a preliminary background on the important concepts and aspects 

expected in our research domain. Following sections shed light on UML, security attributes 

in software design, software metrics and refactoring. The focus of our research is the class 

diagram, sequence diagram and use case diagram of UML, so the explanation of each model 

is provided accordingly. 

2.1. Unified Modeling Language (UML) 

The Object Oriented paradigm has collected popularity since the last two decades because 

of its conceptual modeling nature. UML was introduced to provide software modeling 

standard [1]. The benefit of developing a standard language was to bring developers from 

all over the world to a single software modeling platform. UML uses graphical notations to 

design software systems [18]. The language keeps on evolving since the time it is proposed 

and currently, UML 2.0 is in use for software modeling [19]. UML can be viewed from 

three different perspectives: structural, behavioral and functional [1]. The models lie in each 

classification are as follows: 

Structural View: Class diagram, object diagram, package diagram, deployment diagram, 

composite structure diagram and component diagram.  

Behavioral View: Sequence diagram, communication diagram, timing diagram and 

interaction view diagram. 
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Functional View: Activity diagram, use case diagram and state machine diagram. 

It can be noticed that each view has many models and covering all the models is beyond the 

scope of our research. Our work covers all three views by selecting one model from each 

view. Since class diagram, sequence diagram and use case diagram are the most widely 

applied models for software modeling [6, 10], our thesis research is confined to these three 

models.  A brief description of each model is provided underneath.  

Class Diagram: Class diagram provides a static structure of objects sharing attributes and 

procedures. It depicts a conceptual design, which later, is translated to implementation. The 

class diagram also shows relationships with other classes. The relationships are usually 

association, aggregation and generalization. The example, in Figure 1, illustrates the basic 

components of class diagram. The example presents a structural view of online purchasing 

of goods. Although the presented example is self-explanatory but to further ease the 

understanding, brief illustration is provided. ‘Customer’ and ‘Item’ are distinctive entities 

formulating the structure of class diagram, so they are represented as classes. The ‘Item’ 

class has two attributes: ‘shippingWeight’ and ‘description’, and two procedures: 

‘getPriceforQuantity’ and ‘getWeight’. ‘Customer’ and ‘Order’ classes show association 

relationship as well and it can be noticed that it can be bidirectional or unidirectional. The 

association relationship also caters with a cardinality of relationship, for example, an 

association relationship can be one to one; one to many; or many to many, depending on 

the relationship between classes. The classes ‘Order’ and ‘OrderDetail’ share a relationship 

of aggregation. The aggregation relationship is understandable by its literal meaning. In the 

example, one or many order details will aggregate to a single order. The customer can make 
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payment in multiple ways i.e. via check, cash and credit card. These three payment modes 

can be generalized to make an abstract class.  

Figure 1. Class diagram overview [20] 

Sequence Diagram: UML sequence diagram models the flow of logic within a system in a 

visual manner, and is commonly used for both design and analysis purposes [21]. It 

normally represents the series of messages sent to and fro objects over time. The main 

purpose of a sequence diagram is to represent usage scenarios and explore the complex 

operational and procedural logics [21]. A small example, in Figure 2, illustrates working of 

the sequence diagram. In the figure, ‘Student’ is representing a class with ‘aStudent’ an 

instance of it. The instances of ‘Seminar’ and ‘Course’ classes are kept anonymous because 

they do not need to be referenced in the diagram.  The ‘Student’ is sending messages to 

‘Seminar’ by making function calls, similarly, ‘Seminar’ and ‘Course’ classes. The dashed 

lines known as object lifelines represent the life span of the object over time. The thin boxes 
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on objects lifelines are activation boxes, representing the object’s active time during a 

communication with other classes [21]. 

 
Figure 2. Sequence diagram overview [21] 

Use Case Diagram: The primary objective of use case modeling is to elicit functional 

requirements of a system. A use case diagram provides a graphical representation of how 

actors interact with the system [22]. It has entities like actors, use cases and relationships. 

An actor accomplishes a service through a use case. The construction of use case models 

can be done in multiple ways i.e. informal, semi-structured, or fully structured [23].  Use 

case diagram, in Figure 3, shows a functional view of hospital's reception. The 

‘Receptionist’ is represented as an actor because he/she is supposed to interact with the 

system and accomplish certain duties. He/she performs many tasks including scheduling 

appointments, admission to hospital, collecting patient’s information etc. Some tasks can 

only be accomplished by performing sub-tasks, for example, ‘InPatient Hospital 

Admission’ includes ‘Bed Allotment’. The extends relationship is an optional task 

performed as an extension to another task.  
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Figure 3. Use case diagram overview [22] 

2.2.  Security Attributes 

A number of software quality attributes have been reported in literature such as 

performance, scalability, modifiability, security, availability, integration, portability and 

testability [2]. Many researchers have studied the measurement of quality attributes in 

object-oriented code using different techniques [24-26]. Object-oriented metrics is a 

renowned method for measuring software quality attributes. Security is one of the important 

quality characteristics in software models. The most commonly reported security attributes 

are: confidentiality, integrity and availability [2, 10, 27, 28]. 

According to Whitman, information security is to protect the information in terms of its 

confidentiality, integrity and availability in all means: storage, processing and transmission 

[28]. Confidentiality, integrity and availability are major ingredients for ensuring security. 



25 

 

When information is protected from unauthorized access, it means confidentiality is 

ensured [28]. The integrity of information is compromised when information is exposed to 

damage, corruption or any kind of disruption [28]. The violation of confidentiality and 

integrity leads to critical problems such as reliability, consistency, completeness and 

correctness [29]. The third major security attribute is availability, which means that data 

and services are available to authorized users at all the times [28]. 

Jürgen listed some important security characteristics including fair exchange, non-

repudiation, role-based access control, secure communication link, secrecy and integrity, 

authenticity, freshness, secure information flow, guarded access [10]. Gorton pointed some 

security requirements that a software system should encapsulate. The security requirements 

include authentication, authorization, encryption, integrity and non-repudiation [2].  

2.3. Software Metrics 

Software metrics provide a quantitative measurement of different software artifacts [30]. 

The common use of software metrics mainly lies in software design and implementation. 

Several metrics have been proposed in software engineering. The reported object-oriented 

metrics are majorly segregated into four groups: coupling, cohesion, complexity and 

inheritance. The brief illustrations of each group and related metrics are presented below:   

Coupling: It measures the interdependency between classes or objects. The inter-linking 

can be in the form of variable usage or method usage. The typical metrics used for 

measuring coupling are CBO (Coupling Between Objects) and RFC (Response For a Class). 

CBO is the count of number of classes that a class is coupled with [31]. It is desirable to 

have CBO value to be minimum because higher value leads to maintenance issues. RFC is 
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the count for number of methods called by each method in a class and set of methods defined 

by that class [31]. The greater the number of methods, the more the RFC value. 

Cohesion: It deals with the concept of separation of concerns for a class. It measures how 

strongly cohesive the components of a class are. It enforces the use of local attributes by 

local methods. LCOM (Lack of Cohesion of Methods) is a commonly used metric for 

measuring cohesion. It counts the number of method pairs whose similarity is zero, minus 

the count of method pairs whose similarity is not zero [31]. 

Complexity: It measures the simplicity of a design. There are many metrics reported in the 

literature to measure complexity. WMC (Weighted Method per Class) computes 

complexity by taking the summation of local complexity of each method [31]. NAtt 

(Number of Attributes) measures complexity by counting total number of attributes of a 

class [31]. The greater the number of attributes, the more the complexity. Lastly, NOM 

(Number Of Methods) calculates complexity by counting total number of methods of a class 

[31]. Similar to NAtt, the more the NOM, the more complex a design would be.  

Inheritance: It is measured by two metrics DIT (Depth of Inheritance) and NOC (Number 

Of Children). DIT is the depth in the inheritance tree and NOC is the number of children of 

a class [31]. The greater the counts for these two metrics, the more difficult it is to maintain 

a design. 

The use of software metrics in the context of refactoring is extremely imperative as they 

assist in evaluating the quality improvement as result of refactoring. Although quality 

assessment is an imperative activity in the refactoring process but few literature studies 

focused on it [6].  Enckevort used Fan-in and Fan-out in addition to C&K metrics to 
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quantify model quality [32]. They used metrics values pre and post refactoring to analyze 

the impact of them on software quality. Moghadam and Cinnéide made use of cohesion 

metrics proposed by Al Dallal and Briand [33, 34]. The cohesion metrics belonged to 

method cohesion and class cohesion. Jensen and Cheng applied QMOOD metric suite to 

analyze the quality of software as a result of refactoring. QMOOD suite consists of 11 

metrics and is proposed by Bansiya and Davis [35].  

2.4. Refactoring 

Software refactoring means that software design or code is transformed in such a way that 

it improves software quality while preserving its behavior [3]. Opdyke introduced the 

concept of software refactoring and proposed design and implementation level refactoring 

[36]. The list is compiled in Appendix B of this thesis. 

2.4.1. Refactoring Process 

Refactoring process is conducted in a series of steps. Refactoring for both code and model 

can be executed in an almost similar fashion. The whole process is suggested by Wake and 

William [4], and later extended by Mens et.al [37]. Mainly refactoring process includes 

following steps: 

Step 1: Identification of part of software that requires refactoring 

Step 2: Selection of appropriate refactoring 

Step 3: Check for behavior preservation 

Step 4: Apply refactoring  

Step 5: Analyze the effect of refactoring in terms of improvement of quality. 

Step 6: Ensure consistency between refactored different software artifacts. 



28 

 

The details related to step 1 and 2 are provided in related work. The explanations for 

detection techniques provide a detailed discussion on step 1 and 2. The third step involves 

code or model behavioral preservation, whose goal is to resist any changes, which may lead 

to a change in behavior. This step of refactoring process is usually achieved by defining pre 

and post conditions of refactoring [36, 38]. Opdyke used the assistance of preconditions to 

ensure behavioral preservation before refactoring [36]. Preconditions allow modelers to 

ensure that output result will be same regardless of refactoring. The only seeable drawback 

of imposing preconditions is its additional overhead to the refactoring process. Roberts et.al 

extended the refactoring procedure, to verify behavioral preservation, with post-conditions 

[38]. The rationale of using post-conditions instead of precondition was the belief of 

delaying the refactoring process, because verifying behavioral preservation before 

refactoring will delay the actual application of refactoring. Delaying the verification goal 

after refactoring application would also allow modelers to evaluate the effectiveness of 

refactoring techniques in the eradication of bad smells.  

Post refactoring application leads to step 5, where quality assessment is performed. The 

goal of refactoring is to improve the quality. The assessment is usually accomplished 

through the use of quality metrics because of their objective nature. Utilizing metrics to 

evaluate quality is not sufficient, proposing appropriate models to effectively apply the 

metrics are equally imperative. In this regard, few studies presented quality models that use 

software metrics to make quality assessments. Lange and Chaudron proposed a model to 

assess quality change in software as a result of refactoring [39]. Their model uses C&K 

metrics to judge the quality change. Jalbani et.al provided a quality engineering 

methodology for UML models [40]. Their approach consisted of two basic parts: quality 
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assessment and improvement. The quality model constructed through quality assessment 

included metrics proposed by Lange and Chaudron [39]. The second part of quality 

improvement focuses on model smell detection and refactoring. Yue et.al also presented a 

quality measurement approach that defines quality metrics at the meta-model level [41]. 

The last step in refactoring process deals with consistency issues in refactored artifact and 

other software artifacts. For example, if bad smells are identified in code and dealt with 

refactoring, the relevant modifications in the class diagram should also be accompanied. 

The dependency among software development phases urges the need to consider 

consistency while refactoring any artifact. Spanoudakis and Zisman categorized 

consistency into two types: vertical consistency and horizontal consistency [42]. Vertical 

consistency is concerned with changes in a single model, while, horizontal consistency 

deals with ensuring consistency between different UML models. Massoni presented some 

approaches to handling code and model consistency [43]. The three proposed techniques 

are; Simple forward engineering, Successive reverse engineering and Round-trip 

engineering. Simple forward engineering happens when models are usually discarded once 

implementation stage finishes so source code modifications would not create consistency 

issues [43].  The use of reverse engineering from source to the model can overcome 

inconsistency issues [43]. Once implementation stage is finalized and stable, the model can 

be refactored accordingly, and is called round-trip engineering [43].  

Since the consistency mechanisms rely on restructuring model according to code 

modifications, Bottoni et.al proposed a reverse engineering approach based on coordinated 

graph transformation scheme [44]. Type graphs and flow graph are used to represent model 

and code respectively, while interface graph represents common interface parts between 
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model and code. Common interface parts are represented using an interface graph. 

Refactoring is applied based on common interface changes. This manner, modification 

made at code level are reflected at the model level. However, the applicability of this 

approach is confined to an abstract level, meaning, it cannot be applied to changes made in 

method bodies. To cater this concern, Van Gorp et.al presented source consistent 

refactoring [45]. They provided an extended meta-model called GrammyUML [45]. 

GrammyUML allows modelers to deal with method level details. The studies highlighted 

so far in this paragraph focus on vertical consistency. The importance of horizontal 

consistency cannot be overlooked. Bottoni et.al alongside vertical consistency, applied the 

concept of coordinated graph transformation to horizontal consistency [44]. Tsiolakis coped 

with horizontal consistency by the application of attributed graph grammar [46]. They 

evaluated their approach on class diagrams and sequence diagrams. 

2.4.2. Refactoring Tools 

Application of the refactoring to source code and models can be achieved in a fully-

automated manner, semi-automated manner or manually. Many refactoring tools have been 

developed for code refactoring. Table 1 lists down few refactoring tools alongside the 

targeted bad smells. Some other refactoring tools, targeting only models smells, are also 

found in the literature [47-49]. 
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Table 1. Refactoring tools 

Sr. 

No.  

Tool Targeted Bad Smells 

1 InterlliJ 

IDEA [50] 

Rename and Move Program Entities, Change Method Signature, Extract Method, 

Inline Method, Introduce Variable, Introduce Field, Inline Local Variable, Extract 

Interface, Extract Superclass, Encapsulate Fields, Pull Up Members, Push Down 

Members and Replace Inheritance with Delegation. 

2 RefactorIt 

[51] 

Rename, Move Class, Move Method, Encapsulate Field, Create Factory Method, 

Extract Method, Extract Superclass/Interface, Minimize Access Rights, Clean 

Imports, Create Constructor and Pull Up/Push Down Members. 

3 JRefactory 

[52] 

Move Class, Rename Class, Add an Abstract Superclass, Remove Class, Push 

Up Field, Pull Down Field and Move Method. 

4 jFactor [53] Extract Method, Rename Method Variables, Introduce Explaining Variable, Inline 

Temp, Inline Method, Rename Method, Pull Up/Push Down Method, Rename 

Field, Pull Up/Push Down Field, Encapsulate Field and Extract 

Superclass/Interface. 

 

2.4.3. Commonly Applied Refactoring Strategies 

Many refactoring strategies have been reported in the literature, but those applied in this 

research are briefly explained in this section. However, the comprehensive list of all 

refactoring strategies is provided in Appendix A. The refactoring strategies are collected 

from multiple resources [3, 29, 54, 55]. They are categorized as code, models or both. The 

categorization is based on the applicability of refactoring strategies at design and 

implementation levels. The refactoring strategies for the class diagram and sequence 

diagram are generally the same, while use case diagram has their dedicated refactoring 

strategies. The rationale behind is the use of classes and their interactions in class and 

sequence diagram. On the other hand, use case diagram expresses functional requirements 

using use cases and actors. The refactoring strategies for use case diagram are discussed in 

section 3.2. The refactoring strategies considered in this research, for class and sequence 

diagrams, are briefly explained below:  
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Move method: This means moving a method from a class to another class that uses this 

method more. That method in the class can be turned into a delegation or can be completely 

removed. The corresponding bad smell for this type of refactoring is ‘broken 

modularization’ i.e. a method uses more features of another class than the class it belongs 

to. This bad smell exploits the common object oriented design principle of modularization. 

Although modularization is introduced by distributing the methods across multiple classes 

but the separation of concerns is not ensured. The move method refactoring allows the 

method to move to the class where it is mostly required. This way modularization and 

separation of concerns are complemented.  

Extract Class: This means moving cohesive methods and related attributes from an existing 

class to a new class. This type of refactoring handles the modularization of a design. This 

type of refactoring copes with the bad smell of missing modularization. This bad smell also 

violates the separation of concerns principle in software design. In other words, a class is 

overburdened by many responsibilities. This way high coupling is also induced. In order to 

cope with all these design principles violations, extract class refactoring is applied. The 

refactoring readjusts the design with the objective of having better modularization, 

separation of concerns and coupling.  

Remove class: This means removing a class which is contributing nothing to a design. Such 

a class becomes useless and it is pointless to show it in the design. The idle class may incur 

inappropriate behavior in the case where it is accidently invoked. So, removing such class 

also increases the reliability of a design. 
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Encapsulate class: This means converting the access modifiers of a class from public to 

private. These public attributes allow the outside classes to obtain unguarded access to 

them. The unauthorized access can be restricted by properly encapsulating the class. The 

unauthorized access leads to inappropriate use of data by other classes, which contradicts 

with the concept of data confidentiality, integrity and reliability. Encapsulate class 

refactoring restricts these violations and enforces other class to communicate with the 

encapsulated class appropriately. The communication is achieved through getter and setter 

methods. 
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3 CHAPTER 3 

RELATED WORK 

This chapter provides a detailed discussion on studies related to our research. The 

illustration is presented in separate sections to ease the understanding and readability. This 

chapter covers the bad smells (code and model), security aspects of software development 

and existing bad smells detection techniques and tools. 

3.1.  Code Bad Smells 

Fowler et.al suggested that code bad smells give a good indication of code issues and can 

be resolved by refactoring them [3]. They initially introduced 22 code smells and the 

number keeps on increasing since then. A comprehensive list of bad smells is available 

online [54]. According to Fowler et.al, Duplicated Code is widely investigated and 

frequently occurred bad smell in source codes [3]. The other widely studied bad smells are 

Feature Envy, Refused Bequest, Data Class, Long Method and Large Class [5]. The rest 

from the initial 22 bad smells are investigated rarely [5].  

They initially referred listed smells as code bad smells but some of the listed bad smells are 

applicable to models as well. For example, ‘Shotgun Surgery’ is one of the presented bad 

smells and can be seen as both code bad smell and model bad smell [3]. Shotgun surgery 

occurs when classes are too much coupled, making a change in one class creates a ripple 

effect for other dependent classes. The appropriate refactoring suggested for this bad smell 

is to reduce the coupling between classes. Some studies aim to propose methods to detect 
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code bad smells [37, 56]. Munro used software metrics to identify code bad smells [56], 

whereas, Mens and Tourwé applied logic meta programming to find code bad smells [37]. 

Cushman and Rosenberg suggested that objective methods should be used in combination 

with subjective methods because some attributes cannot be quantified and subjective 

methods can help in capturing software properties [57]. So the studies incorporating 

software metrics can extend the approaches to capture attributes through subjective 

methods.  

Few studies investigated the impact of bad smells on code and models. Shatnawi and Li 

investigated the correlation of bad smells with software faults and their severity levels [58]. 

They found large class, large method and shotgun surgery to be significantly correlated with 

software faults. Their results indicated some bad smells like, data class, feature envy and 

refused bequest are not significantly associated with software faults. Monden et.al studied 

the effect of duplicated code on software reliability and maintainability [59]. They found 

that duplicated code reduces maintainability and reliability of a software. Kapser and 

Godfrey aimed to find different patterns via which duplicated code can be identified [60]. 

They identified 11 different duplicated code patterns. Domain experts were invited to judge 

the harmfulness of each pattern. The experts suggested that not all duplicated codes are 

harmful and would not require refactoring. One study targeted bad smells in an order to 

reduce the risk and improve the effectiveness of refactoring [61]. To obtain a further deep 

insight, there are few well-reported literature surveys on code and design bad smells [5, 37, 

62].  
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3.2. Model Bad Smells 

At the design level, many code smells can be traced back to the class diagram, thus can be 

referred as model smells. For example, in a data class, if data members are public, they are 

exposed to other classes. These public data members can be seen in the class diagram. 

Suryanarayana et.al classified design smells into four main categories: Abstraction, 

Encapsulation, Modularization and Hierarchy [29]. The classification with corresponding 

design smells is listed in Table 2. In each classification, a number of design smells are 

reported. For example, in abstraction, there is a design smell, ‘missing abstraction’, which 

emphasis on a compromise on the integrity of data. Similarly, in ‘deficient encapsulation’, 

the attributes of a class are likely to be exposed to outside classes. They also suggested 

some appropriate set of refactoring opportunities for each design smells and also their 

impact on quality attributes.  

 
Table 2.  Classification of design smells [29] 

Classification Design Smells 

Abstraction Missing, Imperative, Incomplete, Multifaceted, Unnecessary, Unutilized, Duplicate  

Encapsulation Deficient, Leaky, Missing, Unexploited 

Modularization Broken, Insufficient, Cyclically Dependent, Hub-like 

Hierarchy Missing, unnecessary, Unfactored, Wide, Speculative, Deep, Rebellious, Broken, 

Multipath, Cyclic 

 

The design bad smells that are considered in this research are briefly described below: 

Missing Hierarchy: A hierarchy should have been created to avoid unexpected hierarchical 

behavior and encapsulate expected variations. This design smell can be removed by creating 

a connection with appropriate hierarchy interface. 

Missing Modularization: This type of design smell arises when a class or component is not 

decomposed. In other words, the component lacks in the separation of concerns. The 
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appropriate refactoring strategy for removing this design smell is ‘Extract Class’. This way 

the cohesive attributes and methods are moved to a new class, which leaves old class 

properly modularized. 

Broken Modularization: This bad smell happens when the data and related procedures are 

split across abstractions. This allows unauthorized access of data across classes or 

components. The related refactoring to eradicate this design smell is move method(s) and 

attribute(s). This way the data and related procedures are moved to the class(es) or 

components, where they actually belong. 

Unutilized Abstraction: This design smell occurs when an unused abstraction is 

accidentally invoked. It may result in runtime problems, affecting the reliability of a design. 

This type of design smell can be erased by the application of remove abstraction refactoring. 

Removal of unutilized abstraction motivates correct invocation of objects, which result in 

the reliable execution of a software. 

Deficient Encapsulation: This design smell provides direct access of class’s data to outside 

classes, compromising the confidentiality and integrity of a design. This type of design 

smell is extremely critical for data classes. The viable refactoring for this smell is to 

properly encapsulate the class.  

Bad smells in the sequence diagram are studied in the context of abovementioned class 

diagram bad smells. Bad smells which belong to class diagram are applicable to a sequence 

diagram. For example, broken modularization is one of the bad smells usually experienced 

in the class diagram, can also be applied to a sequence diagram. The calling of methods 

between classes identifies how much classes are delved into each other, intimating the 
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presence of broken modularization. The rectification procedure is also similar to the class 

diagram. If the bad smells are removed at the class level, they are automatically removed 

from the sequence diagram. Following the same broken modularization example, the 

methods are moved to remove the bad smells in classes, meaning, less calling of methods, 

eventually, fewer calls are observed in corresponding sequence diagrams. 

Few studies have addressed the issue of bad smells in use case diagram and its description 

[14-16, 63]. Generally, defects in use cases are referred to as anti-patterns instead of bad 

smells. In our research, we are treating anti-patterns in use cases as bad smells. The major 

contribution to study anti-patterns in use case diagram is provided by El-Attar and Miller 

[14-16]. Their objective was to improve the quality of use case diagram and its description. 

They utilized anti-patterns to identify defects in use cases and refactor them to improve the 

quality of use cases. Their study influenced use cases quality in terms of correctness, 

consistency, analytical ability and understandability. Table 3 depicts the investigated use 

cases anti-patterns and their respective refactoring strategies.  

 
Table 3. Use cases anti-patterns and corresponding refactoring techniques [14-16] 

Anti-pattern Refactoring 

Accessing a generalized concrete use case Concrete to Abstract, Drop Actor-

Generalized UC Association 

Accessing an extension use case [missing hierarchy] Drop Actor-Extension UC Association 

Using extension/inclusion use cases to implement 

an abstract use case 

Abstract Extended UC to Concrete, 

Inclusion to Generalization 

Functional Decomposition: using the include relationship 

[broken modularization] 

Drop Functional Decomposition having 

Inclusion 

Functional Decomposition: using the extend relationship 

[missing modularization] 

Split Extension UC 

Multiple generalizations of a use case Generalization to Include 

Use cases containing common and exceptional functionality Drop Inclusion, Drop Extension 

Multiple actors associated with one use case Generalize Actors, Split UCs 

An association between two actors Drop Actor-Actor Association 

An association between use cases Drop UC-UC Association 

An unassociated use case Drop Unassociated UC 

Two actors with the same name Rename Actor 

An actor associated with an unimplemented abstract use case Abstract to Concrete, Add Concrete UC 
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It can be observed from the discussion provided in this section that the related literature has 

not yet studied the code and model smells from a security point of view. The literature 

studies mostly focus on proposing more bad smells or studying the impact of existing bad 

smells on the quality of source code and UML models. Some researchers are conducting 

studies to compare different bad smells in order to rank bad smells, in terms of the degree 

to which they negatively impact software quality attributes. Another concern to be noticed 

is the lack of work on proposing bad smells in use case diagram and sequence diagram. The 

class diagram has been the center of gravity for most the researchers to study bad smells 

and their impacts on software quality. These gaps in the literature stimulate our motivation 

to study bad smells from a security perspective and include other models such as use case 

diagram and sequence diagram as well.  

3.3. Security Aspects in Software Development 

This section provides a detailed description of methodologies aiming to solve the problem 

of security in terms of information systems modeling and development. This section also 

summarizes the security metrics, related to code and models, proposed in the literature. 

Vivas et.al used the guidance of business model to take system development decisions [64]. 

The role of basic security components motivated them to study the business perspective of 

technology development. The purpose of integrating UML with security was to provide a 

standard modeling language incorporating security characteristics. Use cases were used to 

elicit security requirements and then they are injected to the functional specification. The 

process is iterated multiple times to ensure the presence of maximum security requirements. 

The final specification can then be used in proceeding stages of development. Jurgens aimed 
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to specify security requirements to ensure confidentiality and integrity in UML [10]. The 

basic purpose was to propose an extension to help develop secure systems. Types of attacks 

were modeled by analyzing the behavior of attackers. Their study covered UML diagrams 

including state chart diagram, sequence diagram, deployment diagram. 

Siponen and Baskerville provided a new paradigm to software developers to securely 

develop information systems [65]. To discover security design patterns, the author used 

analytical process having multiple phases. The first phase focused on finding common 

objects in software development and security development. The second stage included 

identification of security constraints, abuse cases and scenarios, and policies. In the final 

phase, the author gathered expert views on proposed patterns. After the consultation phase, 

the six elements were added to the meta-model. 

Artelsmair et.al worked on the integration of security concerns with software modeling [66]. 

Security policies define rules and practices to manage and protect sensitive data. First, they 

showed how the defined rules and practices can be integrated into the modeling process. 

Secondly, they identified security requirement and corresponding security mechanism. 

They applied use cases to cater security requirements for modeling purpose. Fernandez 

emphasized on the application of security principles at every development stage [67]. At 

requirements stage, use cases can be used to express security requirements. Design stage 

can incorporate security concerns pointed in requirements stage. The defined security 

constraints can later be implemented at implementation phase. The inclusion of audit at the 

end of each stage further strengthens the security aspects. 
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The software metrics discussed in the background section of this thesis cover multiple 

quality attributes, applicable at design and implementation levels. Alshammari et.al 

presented security metrics that are restricted only to class diagram [11, 12]. They presented 

security metrics from five different perspectives: composition, coupling, extensibility, 

inheritance and design size. Each category further provides a set of metrics that address the 

security concern in software design. The presented metrics aimed at security concerns for 

class diagram only. The focus of class level security metrics is mainly from an accessibility 

point of view, for example, data accessibility, operation accessibility etc. The reported 

security metrics by Alshammari et.al [11, 12] are summarized in Table 4, with brief 

elaboration.  
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Table 4. Class level security metrics 

Security Metrics Description 

Composite-Part  

Critical Classes 

The ratio of the number of critical composed-part classes to the total number 

of critical classes in a design. 

Critical Classes 

Coupling 

The ratio of the number of all classes’ links with classified attributes to 

the total number of possible links with classified attributes in a given design. 

Critical Classes 

Extensibility 

The ratio of the number of the non-finalized critical classes in a design to the 

total number of critical classes in that design. 

Classified Methods 

Extensibility 

The ratio of the number of the non-finalized classified methods in a design to 

the total number of classified methods in that design. 

Critical Superclasses 

Proportion 

The ratio of the number of critical superclasses to the total number of critical 

classes in an inheritance hierarchy. 

Critical Superclasses 

Inheritance 

The ratio of the sum of classes which may inherit from each critical superclass 

to the number of possible inheritances from all critical classes in a class 

hierarchy. 

Classified Methods 

Inheritance  

The ratio of the number of classified methods which can be inherited in a 

hierarchy to the total number of classified methods in that hierarchy. 

Classified Attributes 

Inheritance  

The ratio of the number of classified attributes which can be inherited in a 

hierarchy to the total number of classified attributes in that hierarchy.  

Critical Design 

Proportion  

The ratio of a number of critical classes to the total number of classes in a 

design. 

Classified Instance 

Data Accessibility 

The ratio of the number of classified instance public attributes to the number 

of classified attributes in a class. 

Classified Class 

Data Accessibility 

The ratio of the number of classified class public attributes to the number of 

classified attributes in a class. 

Classified Operation 

Accessibility 

The ratio of the number of classified public methods to the number of 

classified methods in a class. 

Classified Methods 

Weight 

The ratio of the number of classified methods to the total number of methods 

in a given class. 

Classified Mutator 

Attribute Interactions 

The ratio of the number of mutators which may interact with classified 

attributes to the number of mutators which could interact with classified 

attributes. 

Classified Accessor 

Attribute Interactions 

The ratio of the number of accessors which may interact with classified 

attributes to the possible maximum number of accessors which could have 

access to classified attributes. 

Classified Attributes 

Interaction Weight 

The ratio of the number of all methods which may interact with classified 

attributes to the total number of all methods which could have access to all 

attributes. 

 

Another study with the purpose of proposing security metrics is conducted by Chowdhury 

et.al [68]. Their study aimed to provide security metrics for source code, including, stall 

ratio, coupling corruption propagation and critical element ratio. Stall ratio is computed as 

a ratio of a number of non-progressive statements in a loop to total lines in the loop [68]. 

This explains the hurdles which some statements may create to accomplish a program’s 

goal. The second metric is coupling corruption propagation, which is calculated as the 
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number of child methods instantiated with the parameters based on the parameters of 

original instantiation [68]. In object-oriented systems, some objects need to be instantiated 

at a specific time, and if not, they may destabilize the whole running process. This aspect 

of object invocation is named as critical element ratio and is computed as a ratio of critical 

data elements in an object to total elements in the object [68]. 

It can be observed that a handful collection of security metrics is obtained from the 

literature. The applicability of security metrics, listed in Table 4, is limited to class diagram 

only. Since our research aims to cover use case diagram and sequence diagram as well, the 

security aspects are to be covered by security attributes and requirements. 

3.4. Bad Smells Detection Techniques and Tools 

This section provides a detailed discussion on the detection techniques and tool support 

provided for different bad smells. The illustration of automatic, semi-automatic and manual 

detection approaches is provided in forthcoming sections. To completely eradicate the 

validity threat posed by manual detection, our work is focused on automated detection of 

bad smells. The fatigue and inefficient consumption of time also motivated us to execute 

our methodology automatically.  

Bad smells can be detected by analyzing source code statically or dynamically. Static 

analysis is feasible because it does not require execution of code. Static analysis can be 

conducted by textual analysis or graphical analysis. A textual analysis of code vastly 

depends on granularity, for example, token level, character level, line level and method 

level. There are many detection mechanisms that can be used to detect bad smells and in 

this regard, one classification of detection technique is provided by Bhalla [69]. The 
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techniques are classified into five classes: code auditing, software metrics, abstract syntax 

tree, software visualization and anti-patterns. Code auditing statically analyzes the code and 

check for anomalies. The classification which we consider in our research is presented by 

Misbhauddin and Alshayeb [6]. They classified three detection strategies namely: design 

patterns, software metrics and pre-defined rules [6]. The elaboration of detection techniques 

in terms of this classification is presented in the following sections. 

3.4.1. Software Metrics Based 

Software metrics provide statistical information about software artifacts by capturing the 

key attributes of them. The most famous object-oriented metrics reported in the literature 

are proposed by Chidamber and Kemerer [31]. The software metrics usually cannot be 

directly applied to UML models, hence models are first transformed into XML and then 

XML representation is parsed to measure software metrics. If the measured metrics values 

are not in acceptable range, it is considered as a bad smell. Hence, the major concern in 

metrics based techniques is the acceptable threshold values. Table 5 lists the studies which 

incorporated software metrics. Each study shows the consideration of metrics from different 

categories i.e. coupling, cohesion, complexity and inheritance. It can be observed that all 

classifications are studied evenly in the literature. 
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Table 5. Software metrics incorporated in metrics based bad smell detection techniques 

 

Author(s) 

Metrics Classification 

Coupling Cohesion Complexity Inheritance 

Arendt and Taentzer [70]     

Fourati et.al [71]     

Moha et.al [72]     

Ghannem et.al [7]     

Van Gorp et.al [73]     

Ruhroth et.al [74]     

Saeki and kaiya [75]     

Mohamed et.al [76]     

Jensen and Cheng [77]     

Enckevort [32]     

Kempen et.al [78]     

 

Arendt and Taentzer used model metrics and model smells to propose a detection process 

[63]. They presented an integration study of two tools, EMF Smell and EMF Refactor. The 

integration allows automatic detection and removal of model smells by applying suggested 

refactoring in class diagram and use case diagram. The goal of EMF Smell is to identify 

model smell against meta-model, presenting them in an understandable view. EMF Refactor 

consists of three main components: code generation module, refactoring application module 

and EMF model refactoring suite. 

Fourati et.al proposed an approach to identify anti-patterns at the structural and the 

behavioral levels through the use of quality metrics [71]. The structural and behavioral level 

models considered in their study were class diagram and sequence diagram respectively. 

The basic purpose of incorporating sequence diagram was to compensate the loss of 

information, when moving from the source code to the design. The approach carries few 

steps. First, the relationship between bad smells and metrics is unveiled. Detection is done 

by transforming class diagram using XMI and then the software metrics are used to identify 

whether diagrams carry bad smells or not. Kempen et.al also worked on the preservation of 
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model behavior as a result of refactoring [78]. They used the class diagram for model 

transformation purpose and state chart diagram to preserve behavior. They examined 

metrics specific to a design and suggested refactoring accordingly. Van Gorp et.al pointed 

out the problem of many UML tools about maintaining consistency, while refactoring 

model or source code [45]. They proposed an extended UML meta-model to rectify the 

consistency problem. They accomplished it by stating pre and post conditions to help verify 

refactoring, verify behavioral preservation and automatic triggering of bad smells 

refactoring. 

Moha et.al provided a method that assists in specification and detection of bad smells at the 

class level and developed a detection technique that automatically executes their method 

[72]. A classification in terms of metrics relation with bad smells is provided as follows:  

Blob: controller class, controller method, low cohesion, large class, data class; Swiss army 

knife: multiple interface; Functional decomposition: private field, class one method, 

procedural names, no inheritance, no polymorphism; Spaghetti code: use global variable, 

no parameter, long method, no inheritance, procedural names, no polymorphism. 

Saeki and kaiya proposed an integrated technique of software metrics and model driven 

development [75]. They specified meta-model for a class diagram to specify constraints. To 

be more precise, their focus was on following aspects: 1) Utilization of meta-modeling to 

propose model metrics; 2) Proposition of semantic model metrics, and 3) Specification 

method for the model transformation metrics. Mohamed et.al also presented an extended 

meta-model of UML to assist model driven refactoring [76]. Their approach allows 

automated detection of bad smells in class and sequence diagrams by the use of model 

metrics and design smells. They performed domain analysis to propose UML extended 
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meta-model to achieve their objective. Once the design smells are identified, the proposed 

meta-model is applied to cater possible refactoring. Refactoring tags are assigned to the 

source model, indicating the need of restructuring. Before appropriate refactoring is 

applied, the user validates the refactoring tags.  

Enckevort established a prototype that detects different aspects of model features to identify 

model improvement opportunities [32]. The prototype is based on model metrics, syntactic 

and semantic rules. Their established prototype is applied to class level design issues. 

Ruhroth et.al made use of quality cycle with repeated steps of detecting and refactoring bad 

smells at the class level [74]. They applied quality cycle in the domain of software models. 

Ghannem et.al proposed an approach to automatically detect class level refactoring 

opportunities by the application of the genetic algorithm [7]. Their approach exploits class 

diagram defects and search based technique to create rules that find defects in models. 

3.4.2. Design Patterns Based 

Anti-patterns, which is opposite of design patterns, is another technique used for bad smells 

detection purpose. Design patterns provide good solutions of defects in software 

development, on the other hand, anti-patterns indicate bad solutions to problems. They 

allow developers to identify common design and implementation problems and provide an 

appropriate solution. Improving design quality attribute in models by incorporating pattern 

into a design is called pattern based model refactoring [79]. The refactoring procedure based 

on patterns involves three stages: the setting of the source, setting of target model and 

applying transformation [79]. The part of software artifact which needs refactoring is first 

selected, then based on a design pattern, a target model is set. The selected portion of artifact 
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is transformed in accordance with the defined target model. Bouhours et.al proposed an 

inspection procedure to detect bad smells in class diagram through the use of design patterns 

[80]. They introduced the term ‘spoiled pattern’, which provide inadequate solutions for 

any problem. To find parts of a model, substitutable with design patterns, their method 

parses the model to identify the parts which have the possibility of having bad design 

practices. 

Kim defined design pattern consisting of three components: problem models, solution 

models and transformation models [81]. The transformation model describes how problem 

specification can be transformed to a solution specification. A problem specification is 

assessed against a specific design pattern for its applicability on that problem. If the pattern 

specification matches with problem specification, the corresponding transformation model 

is applied. They provided refactoring specifications for Abstract Factory pattern, Adapter 

pattern and Observer pattern. 

Moghadam and Cinneide presented a refactoring approach considering program’s design 

and source code [34]. The developer creates the desired design for a particular program, 

then the code is modified to complement the desired design. Their approach improves 

source code having better design attributes without affecting the behavior. Jensen and 

Cheng applied design patterns to cope with class level bad smells [77]. The proposed 

approach applied genetic algorithm and software metrics to identify the suitable refactoring 

that can be applied to design smells. Their automated approach was able to generate 

refactoring based on software metrics. Song et.al proposed a new notation to specify pattern 

solution called Role Models [79]. They emphasized on the use of Role Models on pattern 
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based refactoring for the class diagram. The abstract factory was considered to describe the 

working of their technique. 

3.4.3. Rule Based 

Rule-based techniques ensure the use of a specific template or standard rules to develop 

software artifacts. If a software artifact is not created using a predefined standard, it is 

suspected to have bad smells. For example, El-Attar and Miller provided a template to 

specify use cases and relevant descriptions [14]. They reported that their proposed template 

enhances consistency in use case diagram and their descriptions. They presented a semi-

automated technique based on anti-patterns to provide remedies for common quality 

problems in use case diagram. The technique provides a framework to define anti-patterns. 

They claimed that application of their proposed technique would transform use case model 

into a more accurate representation of functional requirements. They also provided a 

repository of anti-patterns, containing 26 domain independent anti-patterns. Using the same 

taxonomy of anti-patterns, Khan and El-Attar proposed a technique to refactor the specified 

anti-patterns [16]. They used model transformation approach using OCL to detect and 

refactor use case diagrams. Rui and bulter described the application of refactoring on use 

cases [82]. They formulated a meta-model for use case diagram. The extended use case 

meta-model includes Inclusion, extension, generalization, precedence, similarity and 

equivalence. 

Dobrzanski and Kuzniarz presented an approach to systematically specify bad smells and 

associated refactoring in class and sequence diagrams [83]. A template is used which 

includes information: name of refactoring, origin, trigger element, goal, reasons, bad smell, 
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pre and post conditions. They considered UML models built in TAU CASE tool. Llano and 

Pooley studied the specification and correction of anti-patterns related to the class diagram 

[84]. They defined the UML-based specification of anti-patterns and corrected them via 

application of design transformations. Sunye et.al worked on the application of certain rules 

to ensure the preservation of design behavior after the application of refactoring techniques 

[85]. They presented a few refactoring opportunities with the objective of understanding 

how they can be used to preserve behavior in class diagrams. Boger et.al presented a 

browser for refactoring which is integrated with UML modeling [47]. The applicability of 

their approach is validated on class diagrams. 

Few observations can be made from the explanations of presented detection techniques. 

Table 6 summarizes all the surveyed detection strategies and provides a comprehensive 

overview of model sources incorporated in each study, alongside detected bad smells and 

tool support. The detection of bad smells in class and sequence diagrams is accomplished 

via design patterns, software metrics and pre-defined rules. Model smells in use cases are 

detected using metrics and pre-defined rules. The class diagram is the most investigated 

UML model in the context of model smell detection. The detection of model smells in class 

diagram is mostly supported by tools. The major subset of model smells is studied for class 

diagrams only. Sequence diagrams are studied in conjunction with class diagram. The 

reason is the similar type of model smells for both diagrams and the way they are detected. 

It can be observed that literature studies are leaned towards detection and refactoring of bad 

smells in class diagrams. Few studies address the issues related to refactoring in use case 

diagram and sequence diagram. The researchers have also not yet addressed detection and 

refactoring of bad smells from a security perspective. 
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Table 6. Summarization of surveyed detection techniques 

Author(s) Technique Model Bad Smells Tool 

Arendt and 

Taentzer [70]  

Metrics 

based 

Class, use 

cases 

Missing abstraction, long parameter list, unused use 

case, unassociated classes, two subclasses with 

same field, data clumps. 

Yes 

Fourati et.al 

[71] 

Metrics 

based 

Class, 

sequence 

Blob, lava flow, functional decomposition, 

poltergeists, swiss army knife. 

No 

Dobrzanski 

and Kuzniarz 

[83] 

Rule 

based 

Class, 

sequence 

Middle man, same methods in subclasses, unused 

operation, inappropriate method signature. 

Yes 

Moghadam 

and Cinneide 

[34] 

Design 

pattern 

 

Class  Unnecessary hierarchy, missing abstraction, 

excessive delegations, field/method is used by some 

subclasses, same fields/methods names, un-

encapsulated field/method. 

Yes 

Bouhours et.al 

[80] 

Design 

pattern 

Class  Not specified. Yes 

Moha et.al [72] Metrics 

based 

Class  Blob, functional decomposition, spaghetti code, 

swiss army knife. 

Yes 

Ghannem et.al 

[7] 

Metrics 

based 

Class Blob, functional decomposition, data class. No 

Van Gorp et.al 

[73] 

Metrics 

based 

Class  Two subclasses with the same method, un-

fragmented code. 

Yes 

El-Attar and 

Miller [14] 

Rule  

based 

Use cases See Table 3. Yes 

Khan and El-

Attar [16] 

Rule  

based 

Use cases See Table 3. No 

Ruhroth et.al 

[74]  

Metrics 

based 

Class Hidden concurrency, unnecessary behavioral 

complexity, low cohesion, strong coupling, refused 

bequest. 

Yes 

Saeki and 

kaiya [75] 

Metrics 

based 

Class Not specified. No 

Mohamed 

et.al [76] 

metrics 

based 

Class, 

sequence 

Blob. Yes 

Jensen and 

Cheng [77] 

Metrics 

based 

Class Abstract access, delegation, encapsulated 

construction, partial abstraction. 

Yes 

Boger et.al 

[47] 

Rule based Class Improper class name, two subclasses with the same 

method. 

Yes  

Enckevort  

[32] 

Metrics 

based 

Class God class, cyclic dependency, poor use of 

abstraction, encapsulate field, long parameter list, 

data class. 

Yes 

Sunye et.al 

[85] 

Rule 

based 

Class Inappropriate method signature, unused 

attribute/method/class, feature envy, missing 

modularization, unutilized abstraction. 

Yes 

Rui and bulter 

[82] 

Rule  

based 

Use cases Absent use case, unused use case, improper use 

case name, moving an element of use case. 

No 

Kim [81] Design 

pattern 

Class, 

sequence 

Not specified. Yes 

Kempen et.al 

[78] 

Metrics 

based 

Class God class. Yes 

Llano and 

Pooley [84] 

Rule 

based 

Class God class, poltergeist. No 

Song et.al [79] Design 

pattern  

Class Inheritance smells. No 

Ouni et.al [8] Rule based Class Blob, functional decomposition, spaghetti code. No 
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3.4.4. Detection Tools 

The effective and commonly used detection tools are collected from the literature. The 

summary of identified tools alongside additional information related to bad smells, type, 

code linkage and language support is presented in Table 7. Different bad smells can be 

collected by applying different tools. iPlasma and inFusion handle a bigger subset of bad 

smells in comparison with other detection tools. It can also be noticed that the tools which 

support code linkage are offering a fewer subset of bad smells. Some tools require Eclipse 

to execute, whereas majority can work standalone. The reason is the wide use of Eclipse as 

a development platform. Java, being the most popular object oriented modern language, is 

supported by many tools, while few tools support other languages such as C and C++. While 

detecting a bad smell from code, few tools even point to the location from where bad smell 

is originated, making refactoring easier.  

Table 7. Tools for automated detection of bad smells 
Tool Smell detection Type Code 

linkage 

Language 

Support 

Checkstyle 

[86] 

Duplicated code, large class, long method, long 

parameter list 

Eclipse, 

standalone 

Yes Java 

Décor [87] Data class, god/large class, long method, long 

parameter list, message chain, refused bequest, 

speculative generality, tradition breaker. 

Standalone No Java 

iPlasma 

[88] 

Brain class, brain method, data class, duplicated 

code, extensive coupling, feature envy, intensive 

coupling, refused bequest, shotgun surgery, 

tradition breaker 

Standalone No C++, Java 

inFusion 

[89] 

Brain class, brain method, data class, data clumps, 

duplicated code, extensive coupling, feature envy, 

intensive coupling, refused bequest, shotgun 

surgery, tradition breaker 

Standalone No C, C++, 

Java 

JDeodorant 

[90] 

Feature envy, god/large class, long method, switch 

statements 

Eclipse Yes Java 

PMD [91] Dead code, duplicated code, large class, long 

method, long parameter list 

Eclipse, 

standalone 

Yes Java 

Stench 

blossom 

[92] 

Data clumps, feature envy, large class, long 

method, message chains, switch statement, typecast 

Eclipse Yes Java 
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4 CHAPTER 4 

RESEARCH METHODOLOGY 

This chapter highlights the major aspects of our research methodology. The main research 

goal that our methodology includes how efficiently our detection and correction approaches 

are able to respectively detect and correct security bad smells. Another important research 

goal posed for our research methodology is the evaluation of security improvement as a 

result of refactoring to security bad smells. Although surveying for security bad smells and 

quality metrics are performed, the focus of this section is on filtering the security bad smells 

and related refactoring strategies; detection and correction of security bad smells; and 

evaluation of security improvement in studied UML models as result of refactoring. 

4.1. Research Methodology Overview 

Although all the main activities of our implemented research methodology are illustrated in 

detail in forthcoming section, the purpose of this section is to provide the reader with a basic 

overview of our methodology. To further ease the understandability, the pictorial view of 

our research methodology is depicted in Figure 4. 

The first activity in research methodology is the filtration of security bad smells. A large 

taxonomy of bad smells exists in literature, which can undergo some filtration process to 

strain only security bad smells. Once the security bad smells are successfully filtered, they 

and related quality metrics are input to the GA for the purpose of detection of the smells. 

As a result, the GA yields detection rules. The generated detection rules are applied on 
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UML models to detect existing bad smells in them. The rules use combinations of 

conditions to detect bad smells. This accomplishes the detection objective. The next 

objective focus on correction of detected security bad smells. The investigated UML models 

are transformed using XMI. Considering the detected security bad smells, the refactoring 

strategies are applied to XML representations of UML models, which results in the 

generation of refactored XML representations. The refactored XML representations are 

exported back to corresponding refactored UML models. The refactored UML models are 

processed using post refactoring conditions to ensure behavioral preservation. The quality 

metrics are computed, before and after refactoring, using XML representations of UML 

models. The comparison of quality metrics pre and post refactoring assists in assessing the 

quality improvement of UML models from a security perspective. The basic flow of 

activities is shown below in Figure 4.  

 

Figure 4. Research Methodology Overview 
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4.2. Filtration of Security Bad Smells  

The tagging of existing bad smells as security bad smells is a non-trivial task. It needs to be 

assured that bad smells tagged as security bad smells violates one or more security 

attributes. The filtering process is eased by the study of Suryanarayana et.al, in which they 

classified many design smells [29]. Besides design smells classification, they also identified 

the quality attributes each design smell tarnish. They also reported few violations of security 

attributes by some design smells. This allows us to filter the model bad smells which violate 

security attributes and safely tag them as security bad smells.  

The existing catalog of model bad smells is used to analyze which model bad smell is 

affecting the security attributes. If a bad smell from existing catalog violates any security 

attribute, it is tagged as a security bad smell. For example, missing modularization is a 

model bad smell reported by Suryanarayana et.al, and they identified understandability, 

changeability, extensibility, reusability, testability and reliability as affected quality 

attributes because of the presence of this bad smell [29]. According to the definitions 

provided for information security (presented in section 2.2), reliability is one of the security 

attributes. Hence, missing modularization can be filtered as a security bad smell. Similarly, 

other security bad smells are filtered. This was an example of a security bad smell. The 

forthcoming example identifies a bad smell as a non-security bad smell using the same 

procedure. According to Suryanarayana et.al, imperative abstraction is a design smell and 

impacts understandability, changeability, extensibility, reusability and testability [29]. 

Since none of these quality attributes are related to security as per the security definitions 

(presented in section 2.2), this bad smell is not filtered by our process. In a similar manner, 
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other non-security bad smells are identified. The brief definition of each security bad smell, 

along with the security requirements it violates, and appropriate refactoring, are presented 

in Appendix C. 

In the scope of our research, we are focusing on three security bad smells in each model. 

Table 8 lists the security bad smells considered in each model. The brief definition of each 

security bad smell, along with the security requirements it violates, and appropriate 

refactoring, are presented in Appendix C. All three models have two (missing and broken 

modularization) common security bad smells and one different security bad smell. Multiple 

instances of same bad smell are ensured to have diversity in our solution. 

Table 8. Investigated security bad smells in each model 

Use case diagram Sequence diagram Class diagram 

Missing hierarchy Missing modularization Missing modularization 

Missing modularization Broken modularization Broken modularization 

Broken modularization Unutilized abstraction Deficient encapsulation 

4.3. Detection Approach 

The gaps identified in the literature are addressed by our proposed detection and correction 

approaches. The idea of detection approach is inspired by the technique presented by Ouni 

et.al [8], with changes lie in GA process, specifically for crossover and mutation operations. 

Another distinction lies in the consideration of security bad smells rather than normal class 

bad smells. The different set of studied bad smells enforces the use of a different set of 

quality metrics. In addition, our major contribution resides in the application of our 

approach on use case diagrams and sequence diagrams.  

 

 



57 

 

4.3.1. Approach Overview 

The detection rules are generated using security bad smells examples through the 

application of a genetic algorithm. This step takes bad smells examples and quality metrics 

as inputs and generates a set of rules. The detection rules use a set of metrics and their 

values to detect a specific defect. The quality metrics values are collected automatically 

through SDMetrics tool [93], except for sequence diagrams. The set of metrics converging 

to a bad smell is used as a rule for the detection of that specific bad smell. The best-fitted 

solution, obtained from genetic algorithm application, carries the set of rules which detects 

a maximum number of bad smells. For instance, the following rule identifies whether a 

given class is a blob or not. 

Rule: if (numberOfAttributes > 10 AND numberOfMethods > 20 AND KLOC > 5000) Then 

Blob. 

In this example, these three metrics measure a class to be a blob or not. If the metrics values 

of a given class exceed the values specified in the above rule, the blob is detected.  

4.3.2. GA adaptation to Detection Approach  

This section demonstrates the application of genetic programming in the context of bad 

smells detection. Genetic programming is a heuristic search based approach based on the 

Darwinian theory of evolution [94]. It explores the search space to find a best-fitted solution 

for a specific problem. The definition of the following elements is necessary to apply 

genetic programming to current problem: 

 Individual formulation. 

 Population creation from individuals. 
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 Fitness function computation to evaluate the fitness of an individual in solving the 

problem. 

 Selection of individuals for the creation of new population. 

 New individual creation through crossover and mutation for the purpose of 

exploring search space. 

 New population generation. 

The abstract view of our applied genetic algorithm is summarized below in Figure 5. The 

algorithm takes quality metrics and security bad smells examples as inputs and yields the 

best solution that corresponds to a set of detection rules that best detect the bad smells in 

models. Lines 1-2 forms the initial population of a genetic algorithm; comprising of 

individuals. An individual is represented by a set of rules with corresponding bad smells. 

The set of all individuals formulates a population. Lines 4 -13 represents the main genetic 

algorithm loop. It explores the search space and constructs new population. The quality of 

individuals is evaluated in each iteration. The expression in line 9 saves the individual 

carrying best fitness. The new population is generated by selecting the comparatively best-

fitted individuals from existing population and then exposed to crossover and mutation 

operations. During crossover, the selected pair of parents produces two new individuals. 

The mutation operator ensures solution diversity in both parents and children. The 

algorithm terminates when an individual identifies maximum defects present in the given 

model. At the end, the algorithm returns the best solution containing rules that are capable 

of identifying maximum defects in a model.  
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Input: 

Quality metrics 

Security bad smells examples 

Process: 

1. I = set of rules 

2. P = set of I 

3. M = model 

4. repeat 

5. for all I in P do 

6.  detected bad smells = execute_rules(M); 

7.  fitness (I) = numberOfDetectedBadSmells; 

8. end for 

9.  best_solution = best_fitness(I); 

10.  P = new_population(P); 

11.  it = it + 1; 

12. until it = max_bad_smells; 

13. return best_solution; 

Output: 

best_solution 

Figure 5. A high-level GA adaptation for detection 

a) Individual and population representation 

An individual is comprised of a set of rules having IF-THEN statements. The expressions 

in the rules are a combination of OR and AND logical operators. IF statement executes the 

conditions with quality metrics to detect a bad smell and if the IF statement returns true, the 

corresponding bad smell exists in the model. Each individual is composed of three rules 

with each rule is exploring for a specific bad smell. An instance of an individual 

representation containing rules for bad smells detection in the sequence diagram is shown 

in Figure 6. If the number of associations (NAss), the number of invocations (NInvoc), the 

number of received messages (NRec) and the number of coupled classes (CBO) of a class 

in sequence diagram equal or exceed the specified thresholds, then the specified security 

bad smell exists in the given sequence diagram. Only the description of the individual 

formulation is presented here, the definitions of the quality metrics are presented in chapter 

5, while explaining variables. 
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R1: IF (NAss(c) >= 38 AND (NInvoc(c) >= 11 AND NRec(c) >= 19) AND CBO(c) >= 3) THEN missing 

modularization(c) 

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 0 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken 

modularization(c) 

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized 

abstraction(c) 

Figure 6. Individual representation 

 

The number of individuals depends on the number of rules, which further depends on a 

number of bad smells. The initial population is formed by the union of all the individuals. 

The size of the initial population depends on a number of individuals. To reiterate, the 

greater the number of rules, the more the individuals can be formed. So the size of the 

population is indirectly contingent upon the quantity of rules.   

b) Selection 

For the purpose of crossover and mutation, the individuals need to be selected. The selection 

is based on the relative fitness of individuals. In each iteration, the fitness value is calculated 

for every individual and two-third of the relatively best-fitted individuals are selected. The 

rest one-third is discarded in each iteration. The discarded one-third of the population is 

regenerated from the selected two-third of the population through crossover and mutation. 

c) Crossover  

It is understood that an individual is composed of three rules with each rule focusing on a 

single bad smell. For a crossover, one of the three rules from an individual is randomly 

selected and swapped with the same bad smell rule in another individual. This way two new 

individuals are created. For example, if two individuals I1 and I2 are randomly selected for 

crossover, R1 in I1 will be swapped with R1 of I2. The swapping leads to the introduction 

of two new individuals I1` and I2`. I1` has R1 of I2, and R2 and R3 of I1, whereas, I2` has 

R2 and R3 of I2 and R1 of I1. This stipulates new children (I1` and I2`) for having 
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information from both parents (I1 and I2). 

d) Mutation 

The purpose of mutation is to encompass diversity in solution. In our algorithm, the 

mutation is achieved by modifying the value of quality metrics. The algorithm randomly 

selects an individual, followed by a rule and then a metric, whose value will be changed. 

The modification in the metric value can be in the form of increase or decrease. The decision 

of either increasing or decreasing is also randomized. The metric value is either increased 

by one or decreased by one depending on the generated random value. For example, 

suppose the individual presented in Figure 6 is randomly selected, then R1 and then metric 

NInvoc. Random value generation also suggests to increase the metric value, then the 

mutation is achieved by adding one to the current value, making it 12. 

e) Fitness evaluation 

The quality of an individual is only indicated by how well the encapsulated rules have 

performed in detecting security bad smells. The definition of our applied fitness function is 

simple yet effective. Fitness function calculates the number of detected bad smells against 

the existing bad smells in a model. The fitness value of an individual is maximized if the 

rules belonging to that individual are able to detect all the defects present in a given model. 

If a rule is able to detect a bad smell, a value of one is added to its individual’s fitness and 

if the rule is unable to suspect a bad smell, zero is added to the fitness value. The more the 

rules, present in the individual, detect bad smells, the greater the fitness value is. The 

individuals having relatively greater fitness values are selected for crossover and mutation 

operations. 
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4.4. Correction Approach 

The correction of security bad smells is achieved through model transformation. The 

considered UML models are first transformed using XMI, then quality metrics are extracted 

from them. The XML representations of UML model diagrams are corrected based on the 

related refactoring of the security bad smells identified in them. XML provides sufficient 

information about the transformed model. The information is presented in the form of tags, 

which makes information extraction convenient. The detected security bad smells in a UML 

model can be traced in the corresponding XML representation. The tags are then modified 

manually according to the refactoring techniques for the eradication of the detected smells. 

Once the refactoring is successfully applied, the corrected XML representations are 

exported back to corresponding UML models. This way, the collected UML models are no 

longer hosting security bad smells. The more description about the correction approach, 

using a use case diagram as an instance, can be found in section 5.2.4.  

4.5. Behavioral Consistency 

The consistency approach that we apply in our UML refactoring is post-condition based. It 

was mentioned while explaining refactoring process, that consistency can be checked via 

pre-conditions or post-conditions or both. In this research, we opt for post-conditions 

consistency approach. We formulate some conditions before refactoring and once the 

refactoring is performed, the conditions are validated. For instance, in a use case diagram, 

where refactoring strategy deletes a use case, it must be checked after refactoring whether 

the functionality still exists or not. The use case diagram should be skimmed to ensure the 

presence of that functionality. Usually deleting a use case refactoring is performed if the 
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use case is an inclusion use case and is included by a single use case. The inclusion use case 

can be removed and the related functionality is assumed to be encapsulated in the included 

use case. For this instance, it must be validated that included use case contains the inclusion 

use case functionality. The illustrations about how corrections of security bad smells are 

validated in terms of behavioral consistency are presented in chapter 5 for each investigated 

UML model.  

4.6. Security Improvement Validation 

The assessment on security improvement in UML models as a result of refactoring is 

achieved through statistical analysis of quality metrics. The specified quality metrics are 

calculated pre and post refactoring for each UML model, allowing observing the change in 

metrics values. It is expected that the metrics values will change as a result of refactoring 

but the evidence of how significant the change is, can only be assessed through statistical 

analysis. For this purpose, the pair-wise t-test is chosen. The pair-wise t-test is beneficial in 

our case because it reflects the significant change in a pair of values. Since we have metrics 

values before and after refactoring, it is an appropriate statistical test to execute, which can 

conclusively suggest on significant improvement of security as a result of refactoring. The 

security improvement validation is performed in chapter 5 for each investigated UML 

model.  
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5 CHAPTER 5 

MODEL REFACTORING TO SECURITY 

The purpose of this chapter is to provide details on the application of our detection and 

correction approaches on considered UML models to achieve the goals of this research. 

This chapter also explains our experimental setup and presents the obtained results. The 

explanations related to experiments are presented accordingly to the guidelines provided by 

Jeditschka et.al [17]. Since our work covers multiple UML models (class diagram, sequence 

diagram and use case diagram), the illustrations of our approaches are presented separately 

for each model.  

5.1. Experimental Goals 

The main experimental goal is presented below in the form of GQM (Goal Question Metric) 

approach [95]. The goal is to: 

“Analyze the model refactoring to security bad smells for the purpose of improving software 

quality with respect to security”  

The achievement of the main goal can be broken down into multiple sub-goals. The sub-

goals include successful detection and correction of security bad smells and to what extent 

refactoring can improve the software in terms of security. To reiterate, following are our 

research questions and our experiments aim to address them: 

RQ1: To what extent can our proposed detection approach detect security bad smells in 
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UML models? 

RQ2: To what extent can our proposed correction approach rectify security bad smells in 

UML models? 

RQ3:  To what extent can refactor to security bad smells improve security aspects of UML 

models? 

The basic mechanisms to answer these research questions are as follows:  

For RQ1, existing security bad smells examples along with quality metrics are used to 

evaluate the recall of our proposed detection approach. 

For RQ2, the correction efficacy is computed in terms of how many security bad smells are 

eradicated by our correction approach.  

For RQ3, we use the t-test statistical analysis of quality metrics. 

5.2. Experimental Design for Use Case Diagrams 

This section aims to provide details on our experiment with use case diagrams. The 

following subsections describe our experiment in terms of experimental materials, 

variables, proposed hypotheses, experimental tasks, results and hypotheses testing. 

5.2.1. Experimental Materials 

Four use case diagrams belonging to four different systems are used in experiments with 

use case diagrams. The investigated use case diagrams can be found online [96]. The 

selection of the use case diagrams is achieved through random sampling to avoid any 

biasness towards our results. The descriptive statistics about the four investigated use case 
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diagrams are presented in Table 9. The statistics are presented in terms of number of use 

cases present in the system, the number of actors interacting with the system, number of 

include relationships and number of extends relationships. The numbers of use cases and 

actors are evenly balanced in selected use case diagrams. 

Table 9. Statistics of investigated use case diagrams 

System Use cases Actors Includes  Extends  

ATM system (Figure 7) 10 3 3 3 

HR system (Figure 8) 8 4 3 4 

Restaurant system (Figure 9) 13 4 1 10 

Travel agency system (Figure 10) 9 5 1 6 

As shown earlier in Table 8, the investigated security bad smells in the use case diagram 

are missing hierarchy, broken modularization and missing modularization. Multiple 

instances (total 27) of these three security bad smells can be seen in investigated use case 

diagrams. The multiple instances of same bad smell allow diversity in generated rules, 

which contribute to the solution’s effectiveness. 

Figure 7 shows the use case diagram of an ATM system [96]. The system provides a variety 

of services mainly system maintenance, transaction, login etc. Three actors (Administrator, 

Customer and Bank) are interacting with the system. The system offers four types of 

transactions: deposit, balance check, withdraw and print receipt having generalization 

relationships. Transaction and system maintenance require actor’s login so include 

relationships are present. Both these use cases can also lead to the exceptional execution of 

‘Bad Pin’ use case. The given ATM system contains three security bad smells, namely, 

missing hierarchy, broken modularization and missing modularization. The instances where 

these bad smells are present are listed as follows: 

Missing hierarchy:  
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UB1: Actor ‘Bank’ is accessing ‘System Reporting’ extension use case. 

Missing modularization:  

UB2: ‘Bad Pin’ use case is extending two use cases: ‘System Maintenance’ and 

‘Transaction’. 

Broken modularization:  

UB3: ‘System Shutdown’ is included by just one use case ‘System Maintenance’. 

 

 

Figure 7. Use case diagram of ATM system 
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The use case diagram of human resource system is shown in Figure 8 [96]. It provides 

multiple services like update benefits, elect reimbursement from health care, elect stock 

purchase and issue purchase invoice. Besides getting benefits, Employee has the option of 

electing reimbursement and stock purchase. The stock entity is responsible for electing and 

purchasing of stock. The purchase invoice of stock is issued by an HR representative.  The 

presented HR system contains three security bad smells: missing hierarchy, broken 

modularization and missing modularization. The instances where these bad smells occur 

are listed as follows: 

Missing hierarchy:  

UB4: Actor ‘Health Care Dept.’ is accessing ‘Elect Reimbursement from Health Care’ 

extension use case. 

UB5: Actor ‘Stock Entity’ is accessing ‘Elect Stock Purchase’ extension use case. 

Missing modularization:  

UB6: ‘Elect Stock Purchase’ use case is extending three use cases: ‘Update Benefits’, 

‘Provides Stock’ and ‘Issue Purchase Invoice’. 

Broken modularization:  

UB7: ‘Update Dental Plan’ is included by just one use case ‘Update Benefits’. 

UB8: ‘Update Insurance Plan’ is included by just one use case ‘Update Benefits’. 

UB9: ‘Update Medical Plan’ is included by just one use case ‘Update Benefits’. 
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Figure 8. Use case diagram of HR system 
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Figure 9 shows the use case diagram of a restaurant system [96]. The main services offered 

by the system includes order food, cook food, serve food, eat food and pay for food. The 

presented restaurant system contains three security bad smells: missing hierarchy, broken 

modularization and missing modularization. The instances where these bad smells occur 

are listed as follows: 

Missing hierarchy:  

UB10: Actor ‘Waiter’ is accessing ‘Order Wine’ extension use case. 

UB11: Actor ‘Customer’ is accessing ‘Order Wine’ extension use case. 

UB12: Actor ‘Chef’ is accessing ‘Order Wine’ extension use case. 

UB13: Actor ‘Waiter’ is accessing ‘Serve Wine’ extension use case. 

UB14: Actor ‘Customer’ is accessing ‘Drink Wine’ extension use case. 

UB15: Actor ‘Customer’ is accessing ‘Pay for Wine’ extension use case. 

UB16: Actor ‘Waiter’ is accessing ‘Pay for Wine’ extension use case. 

Missing modularization:  

UB17: ‘Chinese’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’. 

UB18: ‘Italian’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’. 

UB19: ‘Indian’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’. 

Broken modularization:  

UB20: ‘Pay tip’ is included by just one use case ‘Pay for Food’. 
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Figure 9. Use case diagram of restaurant system 
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The use case diagram of a travel agency system is presented in Figure 10 [96]. The system 

is responsible for booking and issuance of tickets and tours. The presented travel agency 

system carries three security bad smells: missing hierarchy, broken modularization and 

missing modularization. The instances where these bad smells occur are listed as follows: 

Missing hierarchy:  

UB21: Actor ‘Travel Agent’ is accessing ‘Book Airline Tickets’ extension use case. 

UB22: Actor ‘Airline Company’ is accessing ‘Book Airline Tickets’ extension use case. 

UB23: Actor ‘Client’ is accessing ‘Book Airline Tickets’ extension use case. 

UB24: Actor ‘Airline Company’ is accessing ‘Pay for Airline Tickets’ extension use 

case. 

Missing modularization:  

UB25: ‘Book Airline Tickets’ use case is extending two use cases: ‘Book Tour’ and 

‘Arrange Tour’. 

UB26: ‘Pay Commission’ use case is extending three use cases: ‘Pay Travel Agent’, 

‘Pay for Airline Tickets’ and ‘Pay for Tour’. 

Broken modularization:  

UB27: ‘Pay for Airline Tickets’ is included by just one use case ‘Pay Travel Agent’. 
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Figure 10. Use case diagram of travel agency system 

The collection of quality metrics is accomplished through SDMetrics [93]. The construction 

of use case diagrams is performed using Enterprise Architect [97]. This tool is also useful 

in exportation and importation of use case diagrams to and from XML. Visual Studio [98] 

is utilized to implement the genetic algorithm.  

5.2.2. Variables 

The dependent variable in this experiment is model quality. The independent variables are 

security bad smells and quality metrics. During detection, the recall for the security bad 
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smells in investigated use case diagrams is the measure of the independent variable. For 

correction, the independent variable is correction efficacy in terms of removal percentage 

of security bad smells. The description of instances of security bad smells in investigated 

use case diagrams is already provided in section 5.2.1. The other type of independent 

variable is quality metrics. This type is for the purpose of quantitative validation of security 

improvement. The quality metrics selected for use case diagram are as follows: 

 isExtension identifies if a given use case(u) is an extension use case or not.  

 numAssMetric is to count the number of association(s) between a use case and 

actor(s). 

 extendingMetric is calculating a number of use cases, the extension use case is 

extending. 

 isInclusion means if a use case is included by another use case or not. 

 includedMetric counts the number of use cases, an inclusion use case is included 

by. 

5.2.3. Proposed Hypotheses 

The hypotheses are formulated to statistically address the posed research questions. 

Following hypotheses are formulated to statistically validate the effectiveness of our 

proposed approaches and make statistical judgment on security improvement in use case 

diagrams: 

Hypothesis 1 (RQ1): The proposed detection technique is able to identify a significant 

number of security bad smells in the investigated use case diagrams. 
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Null Hypothesis (H01): The detection approach is unable to identify a significant number 

of security bad smells in the investigated use case diagrams as indicated by its recall. 

Alternate Hypothesis (H11): The detection approach is able to identify a significant number 

of security bad smells in the investigated use case diagrams as indicated by its recall. 

The null hypothesis (H01) is rejected in the case, where, the Detection Recall (DR) of 

detection technique in terms of identifying the security bad smells in the investigated use 

case diagrams is significant. The quantification of formulated hypothesis is necessary for 

later testing. The quantification of our hypothesis is presented below in terms of detection 

recall: 

Null Hypothesis (H01): DR < 80% 

Alternate Hypothesis (H11): DR >= 80% 

Hypothesis 2 (RQ2): The proposed correction technique is able to remove a significant 

number of security bad smells in the investigated use case diagrams. 

Null Hypothesis (H02): The correction approach is unable to remove a significant number 

of security bad smells in the investigated use case diagrams as indicated by its correction 

effectiveness. 

Alternate Hypothesis (H12): The correction approach is able to remove a significant number 

of security bad smells in the investigated use case diagrams as indicated by its correction 

effectiveness. 

The null hypothesis (H02) is rejected in the case, where, the Correction Efficacy (CE) of 

correction technique in terms of removing the security bad smells in the investigated use 

case diagrams is significant. The quantification of formulated hypothesis is necessary for 



76 

 

later testing. The quantification of our hypothesis is presented below in terms of correction 

efficacy: 

Null Hypothesis (H02): CE < 80% 

Alternate Hypothesis (H12): CE >= 80% 

Hypothesis 3 (RQ3): Refactoring to security bad smells improves the investigated use case 

diagrams from a security perspective.  

Null Hypothesis (H03): No difference is observed in security quality of the investigated use 

case diagrams as a result of refactoring to security bad smells as indicated by quality 

metrics. 

Alternate Hypothesis (H13): A Significant difference is observed in security quality of the 

investigated use case diagrams as a result of refactoring to security bad smells as indicated 

by quality metrics.  

The null hypothesis (H03) is rejected in the case, where, quality metrics values before 

refactoring are not equal to quality metrics values after refactoring. The quantification of 

formulated hypothesis is necessary for later testing. The quantification of our hypothesis is 

presented below in terms of p-value: 

Null Hypothesis (H03): p-value > 0.05 

Alternate Hypothesis (H13): p-value < 0.05 

5.2.4. Experimental Tasks 

Detection: The initial individuals are formed by governing rules from existing security bad 

smells in four use case diagrams. The aggregation of individuals creates initial population. 

The population undergoes selection, crossover and mutation operations as described in 



77 

 

section 4.2.2. Once the genetic algorithm reaches its terminating condition, it yields a 

solution carrying best fitness. The selection of quality metrics and formation of the rules 

are accomplished through the measurement of metrics before and after refactoring. This 

allows us to identify the quality metrics which are affected by the refactoring to a specific 

bad smell, and later in the formulation of its rule. 

Correction: The corrections in use case diagrams are accomplished by applying relevant 

refactoring techniques (mentioned in Table 3) to the identified security bad smells. The 

mapping of the listed anti-patterns to security bad smells are based on their descriptions and 

violations towards security aspects. The correction approach (described in Section 4.4) uses 

model transformation using XMI for refactoring purpose. The studied use case diagrams 

are exported to XML using Enterprise Architect. The relevant refactoring is applied by 

modifying/adding/deleting the tags in the XML representation. For example, in ATM 

system (Figure 7), there exists a security bad smell ‘missing hierarchy’, where actor ‘Bank’ 

is accessing ‘System Reporting’ extension use case. This smell is eradicated by removing 

the association between ‘Bank’ and ‘System Reporting’. The correction is made manually 

in XML representation of ATM system. The abridged version is shown in Figure 11. Only 

the tags affected from missing hierarchy are presented to ease the understandability. The 

first ‘links’ tag is carrying two ‘association’ tags, the second one represents the association 

between ‘Bank’ and ‘System Reporting’. This ‘Association’ tag needs to be removed from 

XML. The other ‘links’ tag contains ‘UseCase’ and ‘Association’ tags. This association 

needs to also be removed because it is adding to missing hierarchy problem. The rest are 

the ‘connector’ tags specifying the association’s source and target use case components. 

Since the missing hierarchy association has two components involved, so there are two 
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connectors. In succession to other tag removals, both these connectors need to be removed 

to completely get rid of missing hierarchy security bad smell in ATM system. The other 

security bad smells are removed using similar process through related refactoring 

techniques specified in Table 3.  

 

<links> 

<Association 

xmi:id="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A"start="EAID_0CE06897_6B0D_449c_87

18_113528092FD6" end="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"/> 

<Association 

xmi:id="EAID_6D15C31C_D6BF_4f70_A445_D453AA6FC964"start="EAID_0CE06897_6B0D_449c_8

718_113528092FD6" end="EAID_E4BBC282_8498_47f7_AF46_36B965BB5007"/> 

</links> 

<links> 

<UseCase 

xmi:id="EAID_122D424B_081A_4c7c_A30F_F16D6EBE6080"start="EAID_2016AA29_DDF7_4c6d_95

04_06A32D5B51EC" end="EAID_32ACC616_C186_4ca9_A9E6_027D300B43F3"/> 

<Association 

xmi:id="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A"start="EAID_0CE06897_6B0D_449c_87

18_113528092FD6" end="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"/> 

</links> 

<connector xmi:idref="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A"> 

<source xmi:idref="EAID_0CE06897_6B0D_449c_8718_113528092FD6"> 

 <model ea_localid="49" type="Actor" name="Bank"/> 

 <role visibility="Public" targetScope="instance"/> 

 <type aggregation="none" containment="Unspecified"/> 

 <constraints/> 

 <modifiers isOrdered="false" changeable="none" isNavigable="false"/> 

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Unspecified;"/> 

 <documentation/> 

 <xrefs/> 

 <tags/> 

</source> 

<target xmi:idref="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"> 

 <model ea_localid="51" type="UseCase" name="System Reporting"/> 

 <role visibility="Public" targetScope="instance"/> 

 <type aggregation="none" containment="Unspecified"/> 

 <constraints/> 

 <modifiers isOrdered="false" changeable="none" isNavigable="true"/> 

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Navigable;"/> 

 <documentation/> 

 <xrefs/> 

 <tags/> 

</target> 

 <model ea_localid="43"/> 

 <properties ea_type="Association" direction="Source -&gt; Destination"/> 

 <modifiers isRoot="false" isLeaf="false"/> 

 <parameterSubstitutions/> 

 <documentation/> 
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<appearance linemode="3" linecolor="-1" linewidth="0" seqno="0" headStyle="0" lineStyle="0"/> 

 <labels/> 

 <extendedProperties virtualInheritance="0"/> 

 <style/> 

 <xrefs/> 

 <tags/> 

</connector> 

<connector xmi:idref="EAID_122D424B_081A_4c7c_A30F_F16D6EBE6080"> 

<source xmi:idref="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"> 

 <model ea_localid="51" type="UseCase" name="System Reporting"/> 

 <role visibility="Public" targetScope="instance"/> 

 <type aggregation="none" containment="Unspecified"/> 

 <constraints/> 

 <modifiers isOrdered="false" changeable="none" isNavigable="false"/> 

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Non-Navigable;"/> 

 <documentation/> 

 <xrefs/> 

 <tags/> 

</source> 

<target xmi:idref="EAID_32ACC616_C186_4ca9_A9E6_027D300B43F3"> 

 <model ea_localid="50" type="UseCase" name="System Maintenance"/> 

 <role visibility="Public" targetScope="instance"/> 

 <type aggregation="none" containment="Unspecified"/> 

 <constraints/> 

 <modifiers isOrdered="false" changeable="none" isNavigable="true"/> 

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Navigable;"/> 

 <documentation/> 

 <xrefs/> 

 <tags/> 

</target> 

 <model ea_localid="32"/> 

<properties ea_type="UseCase" subtype="Extends" stereotype="extend" direction="Source -&gt; 

Destination"/> 

 <modifiers isRoot="false" isLeaf="false"/> 

 <documentation/> 

<appearance linemode="3" linecolor="-1" linewidth="0" seqno="0" headStyle="0" lineStyle="0"/> 

 <labels mb=" &#xA;«extend»"/> 

 <extendedProperties conditional=" &#xA;«extend»" virtualInheritance="0"/> 

 <style/> 

 <xrefs/> 

 <tags/> 

</connector> 

Figure 11. Abridged XML of ATM system 

Behavioral consistency: The behavioral consistency of the refactored use case diagrams 

with the source use case diagrams is performed by checking post conditions. The presence 

of few post conditions is ensured for each security bad smell. The problem of missing 

hierarchy is itself an incorrect behavior instance, so the removal of it makes the use case 



80 

 

diagram behaviorally sound. In some cases, where an actor is associated only with an 

extension use case, the refactoring makes the actor an unassociated entity in the use case 

diagram. Since, the actor is involved in the inappropriate execution of a functionality before 

refactoring, and becomes an unassociated actor, it can be removed as well. This does not 

impact the behavior of a use case diagram because an unassociated actor is not contributing 

to the diagram. The refactoring to broken modularization encapsulates the inclusion use 

case in the included use case. The post refactoring condition to validate behavioral 

consistency is the presence of inclusion functionality. Whenever included use case 

executes, the inclusion use case automatically executes. So, moving the functionality of 

inclusion use case to the included use case does not change the behavior. The new combined 

use case executes both the functionalities (included and inclusion) as one. The refactoring 

to missing modularization breaks the extension use case into the number of use cases which 

it extends. Before refactoring, the extension use case is extending multiple use cases, which 

in fact violates the exceptional behavioral confined for a use case. The breaking of 

exceptional functionalities for each extended use case allows correct behavior. The 

refactoring does not only ensure the consistency but also it ensures the behavioral 

correctness. 

5.2.5. Results 

Detection: The GA yields a set of rules which represents the best solution. The solution 

generated by the execution of GA with use case diagrams is shown in Figure 12. R1 is 

measuring for missing hierarchy using two conditional statements having isExtension and 

numAssMetric variables. For example, in Figure 7, there exists an association between 

‘System Reporting’ extension use case and ‘Bank’ actor, which is an instance of missing 
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hierarchy security bad smell. Similarly, R2 is focusing on detecting missing modularization 

bad smell. This rule also uses two conditional statements with variables: isExtension and 

extendingMetric. For example, in Figure 7, ‘Bad Pin’ use case is extending two use cases, 

which is a clear missing modularization problem. Lastly, R3 is concentrating on broken 

modularization. It uses two conditional statements having variables: isInclusion and 

includedMetric. For example, in Figure 7, ‘System Shutdown’ use case is included by a use 

case. This should be refactored because it is causing broken modularization problem.  

R1: IF (isExtension (u) == true AND numAssMetric (u) >= 1) THEN missing hierarchy 

R2: IF (isExtension (u) == true AND extendingMetric (u) >= 2) THEN missing modularization 

R3: IF (isInclusion (u) == true AND includedMetric (u) == 1) THEN broken modularization 

Figure 12. Best solution generated for use case diagrams 

The best set of rules is then applied on investigated use case diagrams to evaluate its recall 

efficiency. The set of rules governing best solution are able to identify all, 27, security bad 

smells present in examined four use case diagrams, meaning, detection approach has 100% 

recall. To further confirm this, the detected smells are also validated manually.  

Correction: The correction procedure along with the instance of ATM system is provided 

in section 5.2.4. The Same procedure is applied to remove security bad smells in other 

investigated use case diagrams. Our correction technique is able to remove all security bad 

smells in investigated use case diagrams. We are presenting the details about how each 

refactoring is applied to the corresponding security bad smell in each investigated use case 

diagram in the form of tables. Table 10, 11, 12 and 13 summarizes the refactoring 

application to security bad smells in ATM System, Human Resource System, Restaurant 

System and Travel Agency System respectively. The resulting use case diagrams of ATM 
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System, Human Resource System, Restaurant System and Travel Agency System after 

refactoring application are depicted in Figure 13, 14, 15, 16 respectively. It can be observed 

from the refactored diagrams that the identified security bad smells are removed. 

 

Figure 13. Refactored use case diagram of ATM system 

 

 

Table 10. Applied refactoring in ATM system  

Security bad smell ID Applied refactoring 

UB1 Drop association between Bank and System Reporting 

UB2 Split Bad Pin extension use case into two extension use cases 

UB3 Drop System Shutdown inclusion use case 
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Figure 14. Refactored use case diagram of HR system 

 

Table 11. Applied refactoring in HR system  

Security bad smell 

ID 

Applied refactoring 

UB4 Drop association between health Care Dept. and Elect Reimbursement from 

Health Care 

UB5 Drop association between Stock Entity and Elect Stock Purchase 

UB6 Split Elect Stock Purchase extension use case into three extension use cases 

UB7 Drop Update Dental Plan inclusion use case 

UB8 Drop Update Insurance Plan inclusion use case 

UB9 Drop Update Medical Plan inclusion use case 
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Figure 15. Refactored use case diagram of restaurant system 
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Table 12. Applied refactoring in restaurant system  

Security bad smell ID Applied refactoring 

UB10 Drop association between Waiter and Order Wine 

UB11 Drop association between Customer and Order Wine 

UB12 Drop association between Chef and Order Wine 

UB13 Drop association between Waiter and Serve Wine 

UB14 Drop association between Customer and Drink Wine 

UB15 Drop association between Customer and Pay for Wine 

UB16 Drop association between Waiter and Pay for Wine 

UB17 Split Chinese extension use case into two extension use cases 

UB18 Split Italian extension use case into two extension use cases 

UB19 Split Indian extension use case into two extension use cases 

UB20 Drop Pay Tip inclusion use case 

 

 

 

Figure 16. Refactored use case diagram of travel agency system 
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Table 13. Applied refactoring in travel agency system  

Security bad smell ID Applied refactoring 

UB21 Drop association between Travel Agent and Book Airline Tickets 

UB22 Drop association between Airline Company and Book Airline Tickets 

UB23 Drop association between Client and Book Airline Tickets 

UB24 Drop association between Airline Company and Pay for Airline Tickets 

UB25 Split Book Airline Tickets extension use case into two extension use cases 

UB26 Split Pay Commission extension use case into three extension use cases 

UB27 Drop Pay for Airline Tickets inclusion use case 

 

5.2.6. Hypotheses Testing 

To reiterate, we have formulated three hypothesis addressing our three research questions. 

Each hypothesis is numerically validated as follows:  

Hypothesis 1 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our 

detection approach is measured. The null hypothesis (H01) can be rejected, if DR is 

significant. Numerically, it is set that if DR is greater than or equal to 80%, then null 

hypothesis (H01) can be rejected. Our detection approach shows a significant DR of 100% 

while executing on investigated use case diagrams. The DR is greater than 80%, so null 

hypothesis (H01) is rejected. This answers our RQ1 that our proposed detection approach is 

able to detect significant number of the security bad smells in use case diagrams. 

Hypothesis 2 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our 

correction approach is measured. The null hypothesis (H02) can be rejected, if CE is 

significant. In numerical terms, if CE is greater than or equal to 80%, the null hypothesis 

(H02) can be rejected. Our correction approach shows overwhelming results by yielding a 

significant CE of 100% in investigated use case diagrams. The CE is greater than 80%, so 

null hypothesis (H01) is rejected.  This addresses our RQ2 that our proposed correction 
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approach is able to remove significant number of the security bad smells in use case 

diagrams. 

Hypothesis 3 (RQ3): Statistical analysis is performed to conclude on the contribution of 

refactoring in security improvement of use case diagrams. To statistically analyze whether 

security has significantly improved in use case diagrams, we apply pair-wise t-test. The 

pair-wise t-test is beneficial in this case as it would be able to identify the differences in 

quality metrics as a result of refactoring. The p-value is computed with 95% confidence 

using the pair-wise t-test. It is noticed that the computed p-value is 0.0001, which is less 

than 0.05. This justifies significant security improvement in investigated use case diagrams 

and subsequently, answers our RQ3. In succession to this observation, we can reject our 

formulated null hypothesis (H03) with 95% confidence. By rejecting the null hypothesis, the 

sub-goal of security improvement in use case diagrams is achieved. For reference, the 

quality metrics values pre and post refactoring are provided in Appendix D. 

5.3. Experimental Design for Sequence Diagrams 

This section aims to provide details on our experiment with sequence diagrams. The 

following subsections describe our experiment in terms of experimental materials, 

variables, proposed hypotheses, experimental tasks, results and hypotheses testing. 

5.3.1. Experimental Materials 

Five sequence diagrams belonging to five different systems are used for the detection 

purpose. The diagrams are gathered from an online source [96]. The selection of the 

sequence diagrams is achieved through random sampling to avoid any biasness towards our 

results. As mentioned earlier in Table 8, the investigated security bad smells in sequence 
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diagram are missing modularization, broken modularization and unutilized abstraction. 

Multiple instances (total 20) of these three security bad smells can be seen in investigated 

sequence diagrams. The multiple instances of same bad smell allow diversity in generated 

rules, which contributes to solution effectiveness. 

Figure 17 shows the sequence diagram of airline reservation system [96]. The diagram 

comprises of five classes having associations among them except ‘Reservation System’ 

class. This class is assumed to be an unutilized abstract class. The presented airline 

reservation system carries three security bad smells: missing modularization, broken 

modularization and unutilized abstraction. The instances where these bad smells occur are 

listed as follows: 

Missing modularization:  

SB1: ‘Customer’ class has a lot of associations and in-out calls or messages. 

Broken modularization:  

SB2: ‘Flight’ class has just one received call. 

Unutilized abstraction:  

SB3: ‘Reservation System’ is unassociated with any other class. 
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Figure 17. Sequence diagram of airline reservation system 
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Figure 18 shows the sequence diagram of hotel management system [96]. The diagram 

comprises of nine classes having associations among them except ‘Staff’ class. This class 

is assumed to be an unutilized abstract class. The presented hotel management system 

carries three security bad smells: missing modularization, broken modularization and 

unutilized abstraction. The instances where these bad smells occur are listed as follows: 

Missing modularization:  

SB4: ‘Receptionist’ class has a lot of associations and in-out calls or messages. 

SB5: ‘Customer’ class has a lot of associations and in-out calls or messages. 

Broken modularization:  

SB6: ‘Stock’ class has just one received call. 

SB7: ‘Food Items’ class has just one received call. 

SB8: ‘Room Attendant’ class has just one received call. 

Unutilized abstraction:  

SB9: ‘Staff’ is unassociated with any other class. 
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Figure 18. Sequence diagram of hotel management system 
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Figure 19 shows the sequence diagram of library management system [96]. The diagram 

comprises of six classes having associations among them except ‘Staff’ class. This class is 

assumed to be an unutilized abstract class. The presented library management system 

carries three security bad smells: missing modularization, broken modularization and 

unutilized abstraction. The instances where these bad smells occur are listed as follows: 

Missing modularization:  

SB10: ‘Librarian’ class has a lot of associations and in-out calls or messages. 

SB11: ‘User’ class has a lot of associations and in-out calls or messages. 

Broken modularization:  

SB12: ‘Manager’ class has just one received call. 

Unutilized abstraction:  

SB13: ‘Staff’ class is unassociated with any other class. 
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Figure 19. Sequence diagram of library management system 
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Figure 20 shows the sequence diagram of online movie ticketing system [96]. The diagram 

comprises of eight classes having associations among them except ‘Visitor’ and ‘Ticket’ 

classes. These classes are assumed to be unutilized abstract classes. The presented online 

movie ticketing system carries three security bad smells: missing modularization, broken 

modularization and unutilized abstraction. The instances where these bad smells occur are 

listed as follows: 

Missing modularization:  

SB14: ‘Registered User’ class has a lot of associations and in-out calls or messages. 

Broken modularization:  

SB15: ‘Cancel Ticket’ class has just one received call. 

Unutilized abstraction:  

SB16: ‘Visitor’ class is unassociated with any other class. 

SB17: ‘Ticket’ class is unassociated with any other class. 
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Figure 20. Sequence diagram of online movie ticketing system 
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Figure 21 shows the sequence diagram of school management system [96]. The diagram 

comprises of five classes having associations among them except ‘Employee’ class. This 

class is assumed to be an unutilized abstract class. The presented school management 

systems system carries three security bad smells: missing modularization, broken 

modularization and unutilized abstraction. The instances where these bad smells occur are 

listed as follows: 

Missing modularization:  

SB18: ‘Admin’ class has a lot of associations and in-out calls or messages. 

Broken modularization:  

SB19: ‘Class’ class has just one received call. 

Unutilized abstraction:  

SB20: ‘Employee’ class is unassociated with any other class. 
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Figure 21. Sequence diagram of school management system 

Although SDMetrics tool provides the metrics values of sequence diagrams, the provided 

set of metrics does not contribute to the investigated security bad smells in our research. So 

quality metrics in sequence diagrams are calculated manually. The other tools such as 

Visual Studio and Enterprise Architect are used in the same manner and for the same 

purposes as for use case diagrams. 
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5.3.2. Variables 

The dependent and independent variables are the same as described in section 5.2.2. The 

independent variable for detection of security bad smells in investigated sequence diagrams 

is detection recall. For correction, the independent variable is computed as how many 

security bad smells are removed as a result of refactoring. The description of instances of 

security bad smells in investigated sequence diagrams is already provided in section 5.3.1. 

The other independent variable is quality metrics. The metrics are useful in the quantitative 

validation of security improvement. The quality metrics selected for sequence diagram are 

as follows: 

 NAss is the number of in-out messages or calls, a class exhibits. 

 NInvoc is the number of invoked calls of a class. 

 NRec is the number of received messages for a class. 

 CBO is the number of coupled classes with a class. 

 

5.3.3. Proposed Hypotheses 

Following hypotheses are formulated to statistically validate the effectiveness of our 

proposed approaches and make statistical judgment on security improvement in sequence 

diagrams: 

Hypothesis 4 (RQ1): The proposed detection technique is able to identify a significant 

number of security bad smells in the investigated sequence diagrams. 

Null Hypothesis (H04): The detection approach is unable to identify a significant number 

of security bad smells in the investigated sequence diagrams as indicated by its recall. 
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Alternate Hypothesis (H14): The detection approach is able to identify a significant number 

of security bad smells in the investigated sequence diagrams as indicated by its recall. 

The null hypothesis (H04) is rejected in the case, where, the Detection Recall (DR) of 

detection technique in terms of identifying the security bad smells in investigated sequence 

diagrams is significant. The quantification of formulated hypothesis is necessary for later 

testing. The quantification of our hypothesis is presented below in terms of detection recall: 

Null Hypothesis (H04): DR < 80% 

Alternate Hypothesis (H14): DR >= 80% 

Hypothesis 5 (RQ2): The proposed correction technique is able to remove a significant 

number of security bad smells in the investigated sequence diagrams. 

Null Hypothesis (H05): The correction approach is unable to remove a significant number 

of security bad smells in the investigated sequence diagrams as indicated by its correction 

effectiveness. 

Alternate Hypothesis (H15): The correction approach is able to remove a significant number 

of security bad smells in the investigated sequence diagrams as indicated by its correction 

effectiveness. 

The null hypothesis (H05) is rejected in the case, where, the Correction Efficacy (CE) of 

correction technique in terms of removing the security bad smells in investigated sequence 

diagrams is significant. The quantification of formulated hypothesis is necessary for later 

testing. The quantification of our hypothesis is presented below in terms of correction 

efficacy: 
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Null Hypothesis (H05): CE < 80% 

Alternate Hypothesis (H15): CE >= 80% 

Hypothesis 6 (RQ3): Refactoring to security bad smells improves the investigated 

sequence diagrams from a security perspective.  

Null Hypothesis (H06): No difference is observed in security quality of the investigated 

sequence diagrams as a result of refactoring to security bad smells as indicated by quality 

metrics. 

Alternate Hypothesis (H16): A Significant difference is observed in security quality of the 

investigated sequence diagrams as a result of refactoring to security bad smells as indicated 

by quality metrics.  

The null hypothesis (H06) is rejected in the case, where, quality metrics values before 

refactoring are not equal to quality metrics values after refactoring. The quantification of 

formulated hypothesis is necessary for later testing. The quantification of our hypothesis is 

presented below in terms of p-value: 

Null Hypothesis (H06): p-value > 0.05 

Alternate Hypothesis (H16): p-value < 0.05 

5.3.4. Experimental Tasks 

Detection: The similar detection process is applied for sequence diagrams as is for use case 

diagrams. The initial individuals are formed by governing rules from existing security bad 

smells in five sequence diagrams. The aggregation of individuals creates initial population. 

The population undergoes selection, crossover and mutation operations as described in 

section 4.2.2. Once genetic algorithm reaches its terminating condition, it yields a solution 
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carrying best fitness.  

Correction: The corrections in sequence diagrams are achieved by applying relevant 

refactoring techniques (mentioned in Appendix C) to identified security bad smells. Once 

again, same model transformation procedure (described in Section 4.4) is applied for 

correction of sequence diagrams. The investigated sequence diagrams are exported using 

XML to cater refactoring by modifying the XML representation. For example, in Airline 

Reservation System (Figure 17), there exists a security bad smell ‘unutilized abstraction’, 

where ‘Reservation System’ abstract class is not utilized at all. This smell is eradicated by 

removing the ‘Reservation System’ abstract class from sequence diagram. This system is 

first exported to XML representation and then the tags related to this abstract class are 

removed. The other security bad smells are removed using the same process through related 

refactoring techniques specified in Appendix C. 

Behavioral consistency: Once again, for sequence diagram, the behavioral consistency is 

fulfilled using post refactoring conditions. The unutilized abstraction does not contribute to 

the sequence diagram, so the refactoring to this bad smell does not introduce any behavioral 

consistency issue. The refactoring to broken modularization moves the method to the class 

which it needs. Previously, the class is calling it from another class and violates multiple 

security attributes. After refactoring, the functionality is moved to the class, which was 

calling it from another class, leaving the behavior untouched. The refactoring to missing 

modularization decomposes a class into two classes and distributes the relevant 

functionalities according to their concerns. The most important post refactoring condition 

to fulfill is the presence of all the functionalities after the decomposition. In this case, the 

semantics are present and requires the involvement of the designer. Another condition to 
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fulfill is that the interactions of the decomposed class with other classes remain intact. In 

other words, the sending and receiving of messages between the refactored class and other 

classes should be present as they are supposed to be. 

5.3.5. Results 

Detection: Once the detection technique is applied on sequence diagrams, it generates the 

best solution. The set of rules, representing best solution, yielded by the genetic algorithm 

is shown in Figure 22. All three rules are measuring the bad smells by using four conditional 

statements having variables: NAss, NInvoc, NRec, and CBO. R1, R2 and R3 are measuring 

for missing modularization, broken modularization and unutilized abstraction respectively. 

The computation of quality metrics is performed manually due to unavailability of tools. 

The considered quality metrics and corresponding mapping of rules to specific bad smells 

are extracted from Fourati et.al [71]. If the metrics values of class(c) equal or exceeds the 

thresholds provided by these rules, then that class has a corresponding bad smell. The best 

solution (shown in Figure 22) is then applied on investigated sequence diagrams to evaluate 

its recall effectiveness. The set of rules governing best solution are able to identify 18 out 

of 20 security bad smells present in examined five sequence diagrams, meaning, detection 

approach has 90% recall. The two undetected security bad smells belong to missing 

modularization and are present in Airline Reservation System and Library Management 

System. The recall is validated manually as well to confirm the correct detection of security 

bad smells. The acquired recall provides sufficient evidence to fulfill our RQ1, that our 

proposed detection approach is able to detect a significant number of security bad smells in 

sequence diagrams.  
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R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 4) AND CBO(c) >= 3) THEN missing 

modularization(c) 

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 1 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken 

modularization(c) 

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized 

abstraction(c) 

Figure 22. Best solution generated for sequence diagrams 

 

Correction: The correction procedure along with the instance of ATM system is provided 

in section 5.2.4. The Same procedure is applied to remove security bad smells in 

investigated sequence diagrams. We are presenting the details about how each refactoring 

is applied to the corresponding security bad smell in each investigated sequence diagram in 

the form of tables. Table 14, 15, 16, 17 and 18 summarizes the refactoring application to 

identified security bad smells in sequence diagrams of Airline Reservation System, Hotel 

Management System, Library Management System, Online Movie Ticketing System and 

School Management System respectively. The sequence diagrams of Airline Reservation 

System, Hotel Management System, Library Management System, Online Movie Ticketing 

System and School Management System after refactoring application are shown in Figure 

23, 24, 25, 26 and 27 respectively. 19 out of 20 security bad smells are eradicated through 

our correction approach, making 95% correction effectiveness.  

Table 14. Applied refactoring in airline reservation system  

Security bad smell ID Applied refactoring 

SB1 Extract Visitor class from Customer class and move relevant methods to it 

SB2 Move method to Booking System and remove Flight class 

SB3 Remove reservation system abstract class 

 

Table 15. Applied refactoring in hotel management system  

Security bad smell ID Applied refactoring 

SB4 Extract Assistant class from Receptionist class and move relevant methods to 

it 

SB5 Extract Resident class from Customer class and move relevant methods to it 

SB6 Move method to Manager class and remove Stock class 

SB7 Move method to Chef class and remove Food Items class 

SB8 Move method to Chef class and remove Room Attendant class 

SB9 Remove Staff abstract class 
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Figure 23. Refactored sequence diagram of airline reservation system 
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Figure 24. Refactored sequence diagram of hotel management system 

 

Table 16. Applied refactoring in library management system  

Security bad smell ID Applied refactoring 

SB10 Extract Assistant class from Librarian class and move relevant methods to it 

SB11 Extract Premium User class from User class and move relevant methods to it 

SB12 Move method to Publisher class and remove Manager class 

SB13 Remove Staff abstract class 
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Figure 25. Refactored sequence diagram of library management system 
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Figure 26. Refactored sequence diagram of online movie ticketing system 

Table 17. Applied refactoring in online movie ticketing system  

Security bad smell ID Applied refactoring 

SB14 The smell is automatically removed by refactoring other smells 

SB15 Move method to Registered User class and remove Cancel Ticket class 

SB16 Remove Visitor abstract class 

SB17 Remove Ticket abstract class 
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Figure 27. Refactored sequence diagram of school management system 

 

Table 18. Applied refactoring in school management system  

Security bad smell ID Applied refactoring 

SB18 Extract Department class from Admin class and move relevant methods to it 

SB19 Move method to Admin class and remove Class class 

SB20 Remove Employee abstract class 
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5.3.6. Hypotheses Testing 

To reiterate, we have formulated three hypotheses to address corresponding three research 

questions. Each hypothesis is focusing on a specific research question. The hypotheses are 

numerically validated as follows:  

Hypothesis 4 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our 

detection approach is measured. The null hypothesis (H04) can be rejected, if DR is 

significant. Numerically, it is set that if DR is greater than or equal to 80%, then null 

hypothesis (H04) can be rejected. While executing on investigated sequence diagrams, our 

detection approach shows a significant DR of 90%. The DR is greater than 80%, so null 

hypothesis (H04) is rejected. This answers our RQ1, that our proposed detection approach 

is able to detect significant number of the security bad smells in sequence diagrams. 

Hypothesis 5 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our 

correction approach is measured. The null hypothesis (H05) can be rejected, if CE is 

significant. In numerical terms, if CE is greater than or equal to 80%, then the null 

hypothesis (H05) can be rejected. Our correction approach shows notable results by yielding 

a significant CE of 95% in investigated sequence diagrams. The CE is greater than 80%, so 

null hypothesis (H05) is rejected. This addresses our RQ2 that our proposed correction 

approach is able to remove significant number of the security bad smells in sequence 

diagrams. 

Hypothesis 6 (RQ3): The pair-wise t-test is performed to statistically analyze the significant 

security improvement in sequence diagrams. In our case, the pair-wise t-test is beneficial 
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because it would be able to identify the differences in quality metrics as a result of 

refactoring. The p-value is computed with 95% confidence through a pair-wise t-test. The 

computed p-value is 0.04, which is less than 0.05. Hence, it can be concluded that security 

in investigated sequence diagrams has improved significantly. In succession to this 

observation, we can reject our formulated null hypothesis (H06) with 95% confidence. This 

accomplishes the sub-goal of security improvement in sequence diagrams and answers our 

RQ3. For reference, the quality metrics values pre and post refactoring are provided in 

Appendix D. 

5.4. Experimental Design for Class Diagrams 

This section aims to provide details on our experiment with class diagrams. The following 

subsections describe our experiment in terms of experimental materials, variables, proposed 

hypotheses, experimental tasks, results and hypotheses testing. 

5.4.1. Experimental Materials 

Four open source java projects are used for validation of our detection approach. The 

projects include JGraphX, Cobertura, GanttProject, JHotDraw. The rationale for selecting 

these projects is their frequent consideration for bad smells investigation and refactoring [7, 

8, 34, 99].  The projects are collected from online source [100]. Table 19 shows the statistics 

of the four selected projects in terms of a number of classes and number of each investigated 

security bad smell. JGraphX shows the relatively significant number of security bad smells 

in comparison with other projects. Overall, projects give a decent number of security bad 

smells instances for detection analysis. Similar to use case diagrams and sequence diagrams, 

other tools such as SDMetrics and Visual Studio are utilized. IntelliJIDEA and Eclipse are 
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utilized for automated refactoring in class diagrams. In most of the refactoring, IntelliJIDEA 

is used because its effectiveness in handling bad smells. 

Table 19. Statistics of analyzed projects 

Projects Number of 

classes 

Security bad smells 

Missing 

modularization 

Broken 

modularization 

Deficient 

encapsulation 

JGraphX 294 20 5 8 

Cobertura 132 3 4 2 

GanttProject 866 5 3 5 

JHotDraw 325 2 3 0 

 

5.4.2. Variables 

The dependent and independent variables are already described in section 5.2.2. The 

independent variable for detection of security bad smells in investigated class diagrams is 

detection recall. The measurement of how many security bad smells are removed as a result 

of refactoring is the independent variable for correction. The description of instances of 

security bad smells in investigated class diagrams is already provided in section 5.4.1. 

Quality metrics are useful in the quantitative validation of security improvement. The 

quality metrics selected for class diagram are as follows: 

 NAttr is the number of attributes per class. 

 NOps is the number of operations per class. 

 RPubAttr is the ratio of public attributes to total attributes per class. 

 RPriAttr is the ratio of private attributes to total attributes per class. 

 RProAttr is the ratio of protected operations to total operations per class. 

 RPriOps is the ratio of private operations to total operations per class. 

 RProOps is the ratio of protected operations to total operations. 

 DIT is the depth of inheritance. 



112 

 

 NOC is the number of children. 

 EC is the number of instances in a class where the class is externally used. 

 IC is the number of instances in a class where another class is referred to it. 

Although many other quality metrics are computed to reach this set of metrics but only 

these are listed because they are directly used in definitions of the rules. For example, 

computation of RPubAttr requires a number of public attributes from total attributes, but it 

is not listed. 

5.4.3. Proposed Hypotheses 

Following hypotheses are formulated to statistically validate the effectiveness of our 

proposed approaches and make statistical judgment on security improvement in class 

diagrams: 

Hypothesis 7 (RQ1): The proposed detection technique is able to identify a significant 

number of security bad smells in the investigated class diagrams. 

Null Hypothesis (H07): The detection approach is unable to identify a significant number 

of security bad smells in the investigated class diagrams as indicated by its recall. 

Alternate Hypothesis (H17): The detection approach is able to identify a significant number 

of security bad smells in the investigated class diagrams as indicated by its recall. 

If the Detection Recall (DR) of detection technique in terms of identifying the security bad 

smells in investigated class diagrams is significant then the null hypothesis (H07) can be 

rejected. For testing purpose, the quantification of our hypothesis is presented below in 

terms of detection recall: 

Null Hypothesis (H07): DR < 80% 
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Alternate Hypothesis (H17): DR >= 80% 

Hypothesis 8 (RQ2): The correction technique is able to remove a significant number of 

security bad smells in the investigated class diagrams. 

Null Hypothesis (H08): The correction approach is unable to remove a significant number 

of security bad smells in the investigated class diagrams as indicated by its correction 

effectiveness. 

Alternate Hypothesis (H18): The correction approach is able to remove a significant number 

of security bad smells in the investigated class diagrams as indicated by its correction 

effectiveness. 

If the Correction Efficacy (CE) of correction technique in terms of removing the security 

bad smells in investigated class diagrams is significant then the null hypothesis (H08) can 

be rejected. For testing purpose, the quantification of our hypothesis is presented below in 

terms of correction efficacy: 

Null Hypothesis (H08): CE < 80% 

Alternate Hypothesis (H18): CE >= 80% 

Hypothesis 9 (RQ3): Refactoring to security bad smells improves the investigated class 

diagrams from a security perspective.  

Null Hypothesis (H09): No difference is observed in security quality of the investigated 

class diagrams as a result of refactoring to security bad smells as indicated by quality 

metrics. 
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Alternate Hypothesis (H19): A Significant difference is observed in security quality of the 

investigated class diagrams as a result of refactoring to security bad smells as indicated by 

quality metrics.  

The null hypothesis (H06) is rejected in the case, where, quality metrics values before 

refactoring are not equal to quality metrics values after refactoring. For testing purpose, the 

quantification of our hypothesis is presented below in terms of p-value: 

Null Hypothesis (H09): p-value > 0.05 

Alternate Hypothesis (H19): p-value < 0.05 

5.4.4. Experimental Tasks 

Detection: Once again, the same process is applied for detection of security bad smells in 

class diagrams. The initial individuals are formed by governing rules from security bad 

smells existent in investigated class diagrams. The initial population is formed by 

aggregating the individuals. The population undergoes selection, crossover and mutation 

operations as described in section 4.2.2. Once genetic algorithm reaches its terminating 

condition, it yields a solution carrying best fitness.  

Correction: The correction of security bad smells in class diagrams is achieved by using 

existing refactoring tools. A variety of class level refactoring tools is available, both open 

source and commercial. In our case, we preferred IntelliJIDEA tool because of its flexibility 

towards different refactoring techniques. Move method and extract class are mainly applied 

because of missing modularization and broken modularization security bad smells. These 

two refactoring techniques are found effective in eradicating missing modularization, while, 

broken modularization is corrected only through move method. This limits the delving of 
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other classes in a given class. Deficient encapsulation is removed by changing access 

modifiers from public to private. This restricts outside access of data members of classes, 

ensuring security robustness. 

Behavioral consistency: The behavioral consistencies, in the cases of broken 

modularization and missing modularization, are achieved in a similar manner to the 

sequence diagrams. In the case of refactoring to deficient encapsulation, the consistency is 

achieved by fulfilling the condition of accessing the data members of classes through setters 

and getters. Before refactoring, the data is available publically so can be accessed by any 

outside class. After refactoring, the access modifiers are changed to private, making the 

access restricted to the outside classes. The access after refactoring is enforced through the 

introduction of setters and getters methods. This way the behavior of the refactored class 

diagram remains consistent with the original class diagram.   

5.4.5. Results 

Detection: Once the GA finishes its execution with investigated class diagrams, it generates 

a set of rules, which represents the best solution. The best solution yielded by the genetic 

algorithm is shown in Figure 28. All three rules are measuring the bad smells by using IF-

THEN conditional statements having quality metrics. R1, R2 and R3 are measuring for 

missing modularization, broken modularization and deficient encapsulation respectively. 

The gathering of quality metrics is performed automatically through SDMetrics tool except 

for the ones with ratios. The quality metrics comprising of ratios are calculated using MS 

Excel [101]. The rationales behind considered metrics and subsequent mapping of rules to 

specific smells are based on the descriptions provided by Fourati et.al [71] and Ouni et.al 
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[8].  If the metrics values of class(c) do not fulfill the threshold constraints set by these 

rules, then that class has corresponding security bad smell. The best solution (shown in 

Figure 28) is then applied on investigated java projects to evaluate its recall effectiveness. 

The set of rules governing best solution are able to identify 60 out of 60 security bad smells 

present in examined class diagrams, meaning, detection approach has 100% recall. This 

fulfills our RQ1, that our proposed detection approach is able to detect significant number 

of the security bad smells in class diagrams.  

R1: IF (NOps(c) >= 21 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 3 OR IC(c) >=3)) THEN 

missing modularization(c) 

R2: IF (NAttr(c) <= 7 AND NOps(c) <= 11 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN 

broken modularization(c) 

R3: IF (RPriAttr(c) <= 0.25 AND (RPubAttr(c) >= 0.88 OR RProAttr(c) >= 0.75) AND (RPriOps(c) == 0 

OR RProOps(c) == 0)) THEN deficient encapsulation(c) 

Figure 28. Best solution generated for class diagrams 

Correction: The correction is validated manually as well as by running the existing 

detection tools on refactored class diagrams. The detection tools used for correction 

validation are InFusion and InCode. If a security bad smell remains in a project after 

appropriate refactoring application, it should be detected by the tools. In our experiment, 

no security bad smell emerged upon executing these tools on the refactored projects. This 

validates successful correction of security bad smells from investigated projects. 

Numerically, it means that 100% of the security bad smells are removed from four studied 

class diagrams.  
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5.4.6. Hypotheses Testing 

To reiterate, we have formulated three hypotheses to address our three laid research 

questions. Each hypothesis is focusing on a specific research question. The hypotheses are 

numerically validated as follows:  

Hypothesis 7 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our 

detection approach is measured. If the DR is significant, the null hypothesis (H07) can be 

rejected. The threshold value set while formulating this hypothesis is 80%. This means that 

if the DR is greater than or equal to 80%, then null hypothesis (H07) can be rejected. Our 

detection approach shows a significant DR of 100% after executing on investigated class 

diagrams. Since the DR is greater than 80%, so null hypothesis (H07) is rejected. This fulfills 

our RQ1, that our proposed detection approach is able to detect significant number of the 

security bad smells in class diagrams. 

Hypothesis 8 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our 

correction approach is measured. If CE is significant, then the null hypothesis (H08) can be 

rejected. Our correction approach shows striking results by yielding a significant CE of 

100% in investigated class diagrams. Since, the CE is greater than 80%, so null hypothesis 

(H08) is rejected. This addresses our RQ2 that our proposed correction approach is able to 

remove significant number of the security bad smells in class diagrams. 

Hypothesis 9 (RQ3): The pair-wise t-test is considered because the significant changes in 

metrics values (as a result of refactoring) are efficiently catered in it. The p-value will justify 

the significant security improvement in class diagrams. The p-value is computed with 95% 

confidence through a pair-wise t-test. The computed p-value is 6.44e10-11, which is less 
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than 0.05. Hence, it can confidently be concluded that security in investigated class 

diagrams has improved significantly. As a result of this conclusion, we can reject our 

formulated null hypothesis (H09) with 95% confidence. This fulfills another sub-goal of 

security improvement in class diagrams. For reference, the quality metrics values pre and 

post refactoring are provided in Appendix D. The metrics values are presented only for 

those classes having bad smells. 

5.5. Summary of Hypotheses 

At the end, all the hypotheses formulation and testing in our research are summarized in 

Table 20. It further eases the reader on comprehending the hypotheses collectively 

according to the laid research questions. It can be observed that Detection Recalls (DRs) of 

our proposed detection technique reach to their maximum limits in use case diagrams and 

class diagrams. This means that the solution generated by the detection approach is 

completely reliable in cases of these two diagrams. For sequence diagram, the detection 

technique also shows significant results and the reason for the drop of 10% in DR is 

discussed later in section 6.4.2. Almost similar results are observed for correction technique 

as well. The least p-value in class diagram is because of a number of components that are 

affected by security bad smells. Once the refactoring is applied, it leaves a major change in 

quality metrics values, making the p-value very small. 
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Table 20. Summary of hypotheses 
Research questions UML models Hypotheses formulation Hypotheses testing 

RQ1 

UC H01: DR < 80% 

H11: DR > 80% 

DR: 100% 

SD H04: DR < 80% 

H14: DR > 80% 

DR: 90% 

CD H07: DR < 80% 

H17: DR > 80% 

DR: 100% 

RQ2 

UC H02: CE < 80% 

H12: CE > 80% 

CE: 100% 

SD H05: DR < 80% 

H15: DR > 80% 

CE: 95% 

CD 
H08: DR < 80% 

H18: DR > 80% 

CE: 100% 

RQ3 

UC H03: p > 0.05 

H13: p < 0.05 

p: 0.0001 

SD H06: p > 0.05 

H16: p < 0.05 

p: 0.04 

CD H09: p > 0.05 

H19: p < 0.05 

p: 6.44e10-11 

UC: Use Case Diagram 

SD: Sequence Diagram 

CD: Class Diagram 

5.6. Supplementary Experiments 

The main purpose of supplementary experiments is to gain further confidence in the 

detection approach in terms of generated set of rules. Although, experiments for generation 

of detection rules are performed with three UML models and results are significant, but to 

further increase the confidence in our detection approach, we are performing experiments 

with large datasets. The abundance of security bad smells can strengthen the applicability 

of generated detection rules because the generation of detection rules rely on them. The 

supplementary experiments address this notion and justify on the generalization of detection 
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rules. The supplementary experiments are performed with much bigger data size for three 

investigated UML models. This data is artificially generated because of unavailability of 

significant size data. The generation of data is performed in two ways: 1) simple replication 

2) varied replication.  

The large datasets should bring confidence in the generalization of rules and diversity of 

security bad smells. Once these datasets are input to the GA, they yield corresponding 

detection rules. We need to analyze whether the newly generated solutions are varied from 

previous best solution. Another concern to be noticed is the improvement in detection rules 

generated by our supplementary experiments. The improvement in detection rules is 

assessed by either enhanced detection recalls or refinement of rules in general. The newly 

generated rules (for both the replication cases) are applied on the same set of UML models 

as described in sections 5.2, 5.3 and 5.4.  

5.6.1. Supplementary Experiments with Simple Replication Datasets 

In simple replication, the data is produced by replicating the small datasets. For example, 

we initiate with existing four use case diagrams, then create the replications of these 

diagrams, making the dataset consisting of eight diagrams. The replication procedure halts 

when at least 1000 use case diagrams are created. The same process is used for replication 

in sequence diagrams and class diagrams. Table 21 shows the statistics of simply replicated 

datasets for investigated UML models. It can be seen that data sizes are significantly 

enhanced in terms of number of use cases/classes and security bad smells instances. It is 

made sure that at least 1000 use cases or classes are incorporated. Since the data sizes are 
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increased, the security bad smells instances are automatically escalated. Dataset created 

through varied replication examines the flexibility of our GA as well. 

Table 21. Statistics of simple replicated datasets 

UML model Number of use cases/classes Security bad smells instances 

Use case diagram 1160 638 

Sequence diagram 1023 620 

Class diagram 22638 840 

 

Use case diagrams: The detection rules remain unchanged after performing the experiment 

with use case diagrams dataset. The rationale behind the stabilization of rules is the fewer 

number of components. Since the detection rules remain consistent, the Detection Recall 

(DR) remains same.  

Sequence diagrams: In the case of sequence diagrams, the set of rules generated by our 

supplementary experiment with simple replication differs marginally from the best solution 

stated in section 5.3.5. Figure 29 states the best-generated solution as a result of our 

supplementary experiment. The differences are observed in R1, while R2 and R3 remain 

unmodified. The decrease is observed in NInvoc and NRec values. Due to the change in 

CBO value, the two missing modularization bad smells, undetected by previous best 

solution, are captured. The new best solution incorporates the lack of coupling in the rule 

and as a result the DR becomes 100%.  

R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 4) AND CBO(c) >= 1) THEN missing 

modularization(c) 

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 1 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken 

modularization(c) 

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized 

abstraction(c) 

Figure 29. Best solution for sequence diagrams (simple replication) 
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Class diagrams: Lastly, the supplementary experiments are executed with class diagrams 

having substantial data size. Since detection rules for class diagrams carry comparatively 

more number of quality metrics so more variations are expected. Once GA is applied, the 

produced best solution from simple replication is shown is Figure 30. Although, the best 

solution produced using small data set has significant DR of 100%, the new best solution 

seems to be more refined and likely to capture security bad smells more effectively. In R1, 

EC quality metric value is altered by a decrease of 1. The decrease in values would enforce 

the rule to capture more security bad smells. The new rule is also handling the external 

coupling more effectively. No change is observed in R2 because most of the metrics values 

are equal to zero, which is already the least value. In R3, there is a marginal decrease in 

RPubAttr metric and a marginal increase in RPriAttr. The increase in RPriAttr seems 

theoretically more promising as a greater number of deficient encapsulation instances can 

be identified. It is certain that new solution comprises of rules which would be able to detect 

more security bad smells. This is also supported by the achieved DR of 100%, when applied 

on class diagram data set summarized in section 5.4.1. 

R1: IF (NOps(c) >= 21 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 2 OR IC(c) >=3)) THEN 

missing modularization(c) 

R2: IF (NAttr(c) <= 7 AND NOps(c) <= 11 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN 

broken modularization(c) 

R3: IF (RPriAttr(c) <= 0.27 AND (RPubAttr(c) >= 0.86 OR RProAttr(c) >= 0.75) AND (RPriOps(c) == 0 

OR RProOps(c) == 0)) THEN deficient encapsulation(c) 

Figure 30. Best solution for class diagrams (simple replication) 

5.6.2. Supplementary Experiments with Varied Replication Datasets 

Varied replication opts for modifications in quality metrics values during replication. The 

reason of replicating with variations is to introduce more distinctive quality metrics values. 

For example, we initiate with existing four use case diagrams, then create the replications 
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of these diagrams and modify the metrics values alongside. Now, the new dataset consists 

of eight different use case diagrams because of introduction of variations. The replication 

procedure halts when at least 1000 use case diagrams are created. Same process is used for 

replication in sequence diagrams and class diagrams.  The statistics related to varied 

replication dataset are shown in Table 22. The datasets sizes are significantly increased in 

terms of number of use cases/classes. Since the data sizes are increased, the security bad 

smells instances are automatically escalated. Another reason of enhanced bad smells 

instances is the introduction of new instances because of variations. Dataset created through 

varied replication examines the flexibility of our GA as well. 

Table 22. Statistics of replicated datasets with variations 

UML model Number of use cases/classes Security bad smells instances 

Use case diagram 1280 704 

Sequence diagram 1056 640 

Class diagram 25872 960 

 

Use case diagrams: While performing the supplementary experiments with varied 

replication dataset for use case diagrams, the detection rules remain same. The experiments 

with the small dataset, simple replication dataset and varied replication dataset produce 

same detection rules. Once again, the rationale behind the stabilization of rules is the fewer 

number of components. Since the detection rules remain consistent, the Detection Recall 

(DR) remains same.  

Sequence diagrams: In the case of the experiment having dataset produced from varied 

replication, two quality metrics values are modified in comparison with the best solution 

presented in section 5.3.5. Figure 31 states the best-generated solution as a result of our 

supplementary experiment with the varied dataset. The varied metrics are CBO and NInvoc 
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of R1. The change in more quality metrics supports the variations in generated dataset. 

Similar to simple replication experiment, the best solution generated from varied replication 

carries DR of 100%. So we can conclude that the large datasets created from both types of 

replication have further refined the generated set of rules. This improvement in results 

contributes to strengthening the generalization of these rules. 

R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 5) AND CBO(c) >= 1) THEN missing 

modularization(c) 

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 0 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken 

modularization(c) 

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized 

abstraction(c) 

Figure 31. Best solution for sequence diagrams (varied replication) 

 

Class diagrams: Since detection rules for class diagrams carry comparatively more number 

of quality metrics so more variations are expected because of dataset produced from varied 

replication. A comparatively greater number of quality metrics are altered in the experiment 

with dataset generated from varied replication. The basic rationale behind the greater 

alterations lies in the variations inserted during data replication. Once GA is applied, the 

produced best solution from the dataset (varied replication) is shown is Figure 32. In R1, 

three quality metrics (NOps, EC and IC) are modified. Both external and internal couplings 

are readjusted in the new rule. For R2, NAtrr and NOps are altered by a decrease. The 

decrease redefines the broken modularization in a more effective way because this bad 

smell appreciates the fewer number of attributes and operations. In R3, although three 

(RPriAttr, RPubAttr and RProAttr) quality metrics are fixated but a significant decrease in 

RPubAttr can be observed. The substantial decrease in RPubAttr is justifiable in a way that 

the previous value was too high and would ignore few legitimate security bad smells. 

Theoretically, it can be seen that new solution would be able to detect significant security 
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bad smells. This is also supported by the acquired DR of 100%, when applied on class 

diagram data set summarized in section 5.4.1. 

R1: IF (NOps(c) >= 20 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 2 OR IC(c) >=1)) THEN 

missing modularization(c) 

R2: IF (NAttr(c) <= 5 AND NOps(c) <= 10 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN 

broken modularization(c) 

R3: IF (RPriAttr(c) <= 0.27 AND (RPubAttr(c) >= 0.79 OR RProAttr(c) >= 0.77) AND (RPriOps(c) == 0 

OR RProOps(c) == 0)) THEN deficient encapsulation(c) 

Figure 32. Best solution for class diagrams (varied replication) 

 

As a conclusion, we can express that the supplementary experiments with large sets of UML 

data and security bad smells instances have improved few rules in generated solutions. The 

new sets of rules are also a refined form of previously acquired rules from small datasets in 

a way that they show a potential of capturing more security bad smells. This aids to more 

reliable and generalized set of rules.   

5.7. Customization Guidelines for Proposed Detection Approach 

This section provides the guidelines to assist the user of our automated detection approach. 

This section also aids the researchers on how they can benefit from the approach.  

It would require two steps in order to detect security bad smells (considered in this research) 

on researchers’ own UML models (use case diagram, sequence diagram and class diagram) 

using our generated rules. The first step includes the calculation of metrics values for their 

own models. The calculation of quality metrics can be accomplished as described in 

sections 5.3.1, 5.3.2 and 5.3.3 for use case diagrams, sequence diagrams and class diagrams 

respectively. Once the metrics values are available, in the second step, all it is required is 

to apply the rules already generated by our detection approach. The set of rules would detect 

security bad smells by comparing their metrics thresholds with the quality metrics values 
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of the models under investigation. This process works if the researchers are interested in 

capturing the security bad smells investigated in our research.  

Our detection approach is easily extensible if researchers are focusing on capturing other 

security bad smells. In order to achieve this objective, the detection approach needs to be 

re-executed. Different security bad smells would require a different set of quality metrics 

as well. This time, the detection approach forms the initial set of rules for a different set of 

security bad smells using a different set of quality metrics. The set of rules will go through 

selection, crossover and mutation operations in a similar manner as described in section 4. 

Once GA finishes its execution, it will yield a set of rules as the best solution. The generated 

set of rules can subsequently be applied to the investigated UML models to detect the 

considered security bad smells.  

 

 

 

 

 

 

 

 



127 

 

6 CHAPTER 6 

ANALYSIS AND DISCUSSION 

 

This chapter focuses on the implications of our research. The analysis and discussion justify 

many expected propositions. The justifications for the use of security bad smell examples 

and their abundance in investigated UML models are presented in this chapter. The 

discussion on consideration of quality metrics and their values is provided as well. This 

chapter also analyzes the impact of refactoring to security on other quality attributes. 

6.1. Security Bad Smells 

In our detection approach, the most important ingredient is security bad smells examples 

because the formulation of rules mainly depends on it. The quality of the solution is 

contingent on the quality of base examples. During individual formulation, the diversity is 

ensured by selecting rules wisely. This is depicted during detection validation that the 

yielded solution is able to detect a significant number of security bad smells. In addition, 

an abundance of investigated security bad smells has allowed us to draw solutions with the 

maximum recall.  

Bad smells examples are in abundance in online software repositories. Sometimes bad 

smells are reported in maintenance directory, if not, they can be identified manually or using 

existing tools. The bad smells examples allow catering the actual programming practices in 

the detection process. As a result, the yielded rules become more precise and context 
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faithful. The examples also remove the existing contradictions about metrics threshold 

values as it solves the subtleness of agreeing on a commonly accepted metrics values. The 

rules generation process is executed multiple times using bad smells examples to erase any 

uncertainty with respect to the quality of rules. 

It can be argued that work overhead exists using security bad smells examples because they 

need to be identified before the start of the GA. The rationale for using base examples is to 

remove any confusions of quality metrics thresholds. It would have been a major threat to 

validity if thresholds would have been used instead of base examples. The consensus upon 

quality metrics thresholds would have taken this study to unjustifiable arguments. The use 

of base examples is completely justified in our study. Another reason for using base 

examples is to incorporate real programming mistakes that lead to security bad smells. 

Another consideration is the dependency of our detection approach on the size of base 

examples set. Our experiment answers this argument by showing significant results using a 

small set of base examples.  

Our study is not biased towards a specific security bad smell. It is made sure that each 

investigated case study of UML models carries a balanced number of security bad smells. 

Only one instance opposes this claim and that is missing modularization bad smell in 

JGraphX. This is because of an actual larger number of missing modularization defect in 

JGraphX. During rules formulation, it is guaranteed that all investigated diagrams are given 

relatively equal weight.   

Although it is assured that decent frequency of security bad smells exists in investigated 

UML models, however, the number of instances varies among different bad smells. For 
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example, in use case diagrams, missing hierarchy is more abundant than other bad smells. 

The reason is the inappropriate associations between actors and use cases. The security bad 

smells found in studied sequence diagrams are evenly distributed. In other words, the 

frequencies of different types of bad smells are almost equal. In the case of class diagrams, 

missing modularization is found plentiful. The rationale behind is the common practice of 

exercising less modularization at design and implementation levels. It is mostly practiced 

that classes are overburdened and relevant concerns are not separated.    

6.2. Consistency of Results 

Another concern to discuss here is the consistency of our results. The acquired results are 

consistent because our detection approach caters quantitative information using quality 

metrics. If the semantics of investigated UML models are also considered, then consistency 

would have been an issue to address. In our case, the approach is irrelevant to UML models 

semantics so consistency of results is automatically achieved. 

In order to improve the consistency of results, we have performed experiments with large 

datasets of three investigated UML models. Although experiments with small datasets give 

significant results, experiments with large datasets further improve the results in terms of 

consistency. The consistency can be observed from the achieved detection recall while 

experimenting with large datasets. The experiments also help in the refinement of the 

detection rules. The same is confirmed by the detection recall of our detection approach as 

well. The experiments with varied replications produce comparatively better detection 

rules. The rationale behind is the diversity in the datasets because of the modifications 

during replications.   
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The impact of different programming languages and paradigms might affect the results of 

our study. Different programming practices and evolution of designs might mildly change 

the solution generated by our detection approach. We claim that our approaches are stable. 

The generated solution from multiple runs of GA almost yielded solutions with none or 

minimal difference in fitness. During correction, the XMI transformations from UML 

models remain consistent.  

6.3. Variations in Quality Metrics 

During validation of security improvement, the changes in quality metrics values are 

observed. Though all quality metrics contribute towards the security improvement in a 

specific UML model but the impact of metrics may vary depending on the security bad 

smell being removed. For instance, the refactoring to missing modularization would bring 

significant changes to the metrics values because the class undergoes decomposition. On 

the other hand, refactoring broken modularization marginally changes the metrics. Another 

important point to discuss is the trend of variation in metrics. It is observed that, while 

refactoring, the metrics values tend to decrease. This means that lower values of metrics are 

desirable to have a more secure UML model. The investigated security bad smells are also 

of nature, when refactored, lean to decrease the metrics values. 

6.4. Impact of Applied Refactoring on Quality Attributes 

Although we have analyzed the effect of refactoring on security improvement, the UML 

models have shown improvements in other quality properties as well. The notable 

enhancement in quality is observed in terms of modularity, complexity, reusability and 

design size. 
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6.4.1. Impact in Use Case Diagrams 

The refactoring to broken modularization in use case diagram reduces the number of 

inclusion use cases, which suggests the model is less complex. The refactoring of inclusion 

use cases has also reduced the quantity of use cases per actor, which means that the model 

size is decreased. The refactoring to missing modularization bad smell introduced 

modularity in the use case diagrams. This acknowledges the separation of concerns property 

as well. The increased modularity in use case diagrams allowed reduced complexity, 

enhanced reusability. 

6.4.2. Impact in Sequence Diagrams 

The quality improvements in sequence diagrams are also observed in a similar manner. The 

issue of unutilized abstraction is resolved through the removal of the abstraction. This not 

only decreases the design size but also ensures the correct operational behavior. The 

problem of broken modularization is solved by movement of method and removal of the 

respective class. The movement of method strengthens the modularization; and removal of 

class contributes to the reduction of design size. The overall number of messages are also 

reduced. The major reduction in design size comes from the removal of lifelines as result 

of refactoring to unutilized abstraction and broken modularization. The refactoring to 

missing modularization reduced the number of messages between two classes. The burden 

of interactions between two classes is shared by a newly introduced class. This way the 

model is modularized, which means less complexity and more reusability. The separation 

of concerns is also validated since classes now only deal with what concern them. The two 

undetected missing modularization bad smells in sequence diagrams are because of lack of 
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coupling. It is normally perceived that if a component possesses missing modularization, it 

exhibits high coupling. But in two cases, the coupling was low regardless of missing 

modularization problem. The low coupling restricted the rule from detecting the bad smells. 

The generated rules with large datasets handle low coupling and those rules are able to 

detect two undetected bad smells in sequence diagrams as well. 

6.4.3. Impact in Class Diagrams 

Similarly, the quality improvement happened in class diagrams. The three investigated 

security bad smells are refactored to improve security, and in connection, other quality 

attributes, such as modularity, complexity, design size and reusability, are refined as well. 

Broken modularization results in movement of method or methods to the appropriate class. 

The modularization is reshaped to achieve better application of modularization concept in 

object oriented design. Better modularization also encourages reusability of a design. 

Missing modularization violates the imperative object oriented properties such as 

separation of concerns, modularity and reusability. Upon refactoring missing 

modularization smells, the design becomes more flexible and carries these important 

properties. Eradication of missing and broken modularizations reduce the degree of 

coupling as well. Deficient encapsulation is a unique security bad smell as it concerns with 

only a class itself, meaning the effect of refactoring is confined to the class being refactored. 

In other words, the refactoring to this bad smell does not affect other classes. The 

uniqueness of deficient encapsulation can also be observed from its weary impact on quality 

attributes like modularity, complexity, design size and reusability.  

It can be extracted that as a byproduct of the refactoring to security bad smells, many other 
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quality attributes are improved. The quality upgrade is observed in all investigated UML 

models. Modularity, complexity, design size and reusability are the quality attributes that 

showed quality revamp. In addition, the introduction of these quality attributes eases the 

analysis of UML models as well.  
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7 CHAPTER 7 

THREATS TO VALIDITY 

This chapter reports the validity threats and how they are dealt to minify their impact on 

experimental validation of our proposed techniques. The most common classification to 

address validity threats is construct validity, conclusion validity, internal validity and 

external validity and is adopted to report the validity threats of our research. 

7.1. Construct Validity 

The most important activity in the experimental process is the correct selection of 

independent variables. It needs to be closely judged that selected independent variables are 

correlated with the dependent variable. In our experimental validation, the independent 

variables i.e. quality metrics are selected based on previous studies and after in-depth 

analysis to ensure their effectiveness in measuring the security aspects in UML models. 

Even though the mapping of quality metrics is done according to the published literature, 

but there still exists feeble possibility that we might have overlooked an imperative metric 

for specific bad smell measurement. Another construct validity threat is connected with 

security bad smells examples. Some main security bad smells examples might be 

overlooked during individual formulation. This threat is reduced by selecting the security 

bad smells examples with extreme concentration. It also does not affect the results as much 

because of crossover and mutation operations. The suspicions about biasness of 
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experimental outcomes are totally removed by laying no pre-expectations from our 

experiments. 

7.2. Conclusion Validity 

The conclusions drawn as a result of our experiments are based on sufficient subjective and 

objective findings. The objectivity of quality metrics has allowed us to reach meaningful 

and definite conclusions. The supreme objectivity of quality metrics has encouraged us to 

incorporate them in our empirical validation and as expected, they have contributed 

significantly to our conclusions. The automated collection of quality metrics for use case 

diagrams and class diagrams significantly enhances the accuracy of the computed values 

and minifies the conclusion validity threat. For sequence diagrams, the quality metrics are 

manually calculated with absolute care, but there is always a threat posed by manual 

computation. This threat is minified by computing the quality metrics multiple times. The 

replications of datasets are also performed manually so it may cause certain threats to the 

conclusion validity. This threat is minimized by making the replication randomly. The 

randomization has introduced diversity in the datasets, which is the ultimate objective, 

regardless of manual replication. 

7.3. Internal validity 

The analyzed UML models are not exposed to any treatment except correction to observe 

only the influence of refactoring on them. No modifications in treatments are made to 

observe findings under similar conditions. The post refactoring states of UML models are 

carefully saved for the computation of quality metrics. The import and export of UML 

models to and from XML are performed using the same tool to avoid any structural change 
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in XML representations. The modifications in XML representations are performed 

manually but it does not really impact the validity because the corresponding exported UML 

models are validated with the expected refactored UML models.  

7.4. External validity 

The external validity usually poses threats to the generalization of results. To mitigate this 

threat, a favorable number of models case studies are collected and are a good 

representation of actual UML models. The generalization of results is also improved 

because validation is also performed with large datasets carrying a significant number of 

security bad smells instances. The investigated class diagrams are extracted from Java 

projects so the applicability of the results to other object-oriented languages might be 

constrained. Some language-dependent aspects may vary while extracting corresponding 

class diagrams. 
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8 CHAPTER 8 

CONCLUSION AND FUTURE WORK 

A number of quality attributes related to software design have been reported in the 

literature, such as modularity, reusability, modifiability, testability, security etc. The 

majority of the quality attributes have been studied rigorously to assess the impact of 

refactoring on the improvement of software quality. However, there is a scarcity of corpus 

on investigating the contribution of refactoring in improving security aspects of software 

models. It is imperative to analyze software models from a security point of view as well.  

In our research, we overcome the problem of security in UML models (class diagram, 

sequence diagram and use case diagram) by the application of refactoring. The detection of 

security bad smells is achieved through the adaptation of a genetic algorithm, while, 

correction is accomplished by model transformation approach. The detection approach uses 

security bad smells instances and quality metrics to formulate rules. The best set of rules 

generated by GA is used for detection of security bad smells in studied UML models. The 

correction approach applies a model transformation using XMI for refactoring of identified 

security bad smells in investigated UML models.   

The proposed approaches are validated by performing experiments with multiple case 

studies of investigated UML models. Our detection approach is able to detect security bad 

smells with 100% recall in investigated use case diagrams and class diagrams, and 90% 

recall in investigated sequence diagrams. The correction approach also shows extraordinary 
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results by removing 100% security bad smells by refactoring application in investigated use 

case diagrams and class diagram, and 95% in investigated sequence diagrams. We also 

performed supplementary experiments with large datasets to generate more generalized 

detection rules because our detection approach relies heavily on generated rules. The sets 

of rules generated by supplementary experiments are improved in terms of detecting more 

legitimate security bad smells. Through statistical analysis of quality metrics, we are also 

able to conclude on the significant improvement in security quality of investigated UML 

models as result of refactoring.  

The compelling results delivered by our detection and correction approaches have 

encouraged us to extend our work in future. We plan to apply our approaches to other UML 

models to gain further confidence on their applicability to other models. We also plan to 

apply same approaches with a different set of security bad smells to assess their 

appropriateness with other security bad smells. We intend to evaluate our approaches with 

projects developed using other programming languages to enhance the generalization of 

acquired results for UML class diagrams.  
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Appendix A: Code and Model Refactoring 
Sr. No. Bad Smell Code Design Both 

1 Add parameter   Yes 

2 Change bidirectional association to unidirectional   Yes 

3 Change reference to value Yes   

4 Change unidirectional association to bidirectional   Yes 

5 Change value to reference Yes   

6 Collapse Hierarchy   Yes 

7 Consolidate conditional expression Yes   

8 Consolidate duplicate conditional fragments Yes   

9 Decompose conditional Yes   

10 Duplicate observed data   Yes 

11 Dynamic method definition  Yes  

12 Eagerly initialized attribute Yes   

13 Encapsulate collection  Yes  

14 Encapsulate downcast Yes   

15 Encapsulate Field Yes   

16 Extract Class   Yes 

17 Extract interface   Yes 

18 Extract Method   Yes 

19 Extract Module Yes   

20 Extract subclass   Yes 

21 Extract superclass   Yes 

22 Extract surrounding method. Yes   

23 Extract variable Yes   

24 Form template method   Yes 

25 Hide delegate   Yes 

26 Hide method   Yes 

27 Inline class   Yes 

28 Inline method Yes   

29 Inline module Yes   

30 Inline temp Yes   

31 Introduce assertion Yes   

32 Introduce class annotation Yes   

33 Introduce expression builder   Yes 

34 Introduce foreign method   Yes 

35 Introduce gateway   Yes 

36 Introduce local extension   Yes 

37 Introduce named parameter Yes   

38 Introduce null object   Yes 

39 Introduce Parameter object   Yes 

40 Isolate dynamic receptor   Yes 

41 Lazily initialized attribute Yes   

42 Move eval from runtime to parse time Yes   

43 Move field   Yes 

44 Move method   Yes 

45 Parameterize method   Yes 

46 Preserve whole object  Yes  

47 Pull up constructor body Yes   

48 Pull up field   Yes 

49 Pull up method   Yes 

50 Push down field   Yes 
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51 Push down method   Yes 

52 Recompose conditional Yes   

53 Remove assignment to parameters Yes   

54 Remove control flag Yes   

55 Remove middle man   Yes 

56 Remove named parameter Yes   

57 Remove parameter   Yes 

58 Remove setting method   Yes 

59 Remove unused default parameter Yes   

60 Rename method   Yes 

61 Replace abstract superclass with module   Yes 

62 Replace array with object Yes   

63 Replace conditional with polymorphism Yes   

64 Replace constructor with factory method Yes   

65 Replace data value with object   Yes 

66 Replace delegation with hierarchy   Yes 

67 Replace delegation with inheritance   Yes 

68 Replace dynamic receptor with dynamic method Yes   

69 Replace error code with exception Yes   

70 Replace exception with test Yes   

71 Replace hash with object Yes   

72 Replace inheritance with delegation   Yes 

73 Replace loop with correction closure method Yes   

74 Replace magic number with symbolic constant Yes   

75 Replace method with method object  Yes   

76 Replace nested conditional with guard clauses Yes   

77 Replace parameter with explicit method Yes   

78 Replace parameter with method Yes   

79 Replace record with data class   Yes 

80 Replace subclass with fields   Yes 

81 Replace temp with chain Yes   

82 Replace temp with query Yes   

83 Replace type code with class   Yes 

84 Replace type code with module extension Yes   

85 Replace type code with polymorphism   Yes 

86 Replace type code with state/strategy   Yes 

87 Replace type code with subclasses   Yes 

88 Self-encapsulate field Yes   

89 Separate query from modifier   Yes 

90 Split temporary variable Yes   

91 Substitute algorithm Yes   

92 Duplicated Code Yes   

93 Long Method Yes   

94 Large Class   Yes 

95 Long Parameter List   Yes 

96 Divergent Change Yes   

97 Shotgun Surgery   Yes 

98 Feature Envy   Yes 

99 Data Clumps   Yes 

100 Primitive Obsession Yes   

101 Switch Statements  Yes   

102 Parallel Inheritance hierarchies   Yes 

103 Lazy Class   Yes 
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104 Speculative Generality Yes   

105 Temporary Field Yes   

106 Message Chain   Yes 

107 Middle Man   Yes 

108 Inappropriate Intimacy   Yes 

108 Alternative classes with Different Interfaces Yes   

110 Incomplete Library Class Yes   

111 Data class   Yes 

112 Refused Bequest   Yes 

113 Comments Yes   

114 God class or the Blob   Yes 

115 Functional Decomposition   Yes 

116 Poltergeist   Yes 

117 Swiss army knife   Yes 

118 Lava flow Yes   

119 Spaghetti code Yes   

120 Type Checking Yes   

121 Poor use of abstraction  Yes  

122 Hidden concurrency  Yes  

123 Unnecessary behavioral complexity  Yes  

124 Too low cohesion  Yes  

125 Too strong coupling  Yes  

126 Structural complexity  Yes  

127 Specialization aggregation  Yes  

128 Missing Abstraction   Yes 

129 Imperative Abstraction   Yes 

130 Incomplete Abstraction   Yes 

131 Unnecessary Abstraction   Yes 

132 Unutilized Abstraction.   Yes 

133 Duplicate Abstraction   Yes 

134 Deficient Encapsulation   Yes 

135 Leaky Encapsulation   Yes 

136 Missing Encapsulation   Yes 

137 Unexploited Encapsulation. Yes   

138 Broken Modularization   Yes 

139 Insufficient Modularization   Yes 

140 Cyclically dependent Modularization    Yes 

141 Hub-like Modularization   Yes 

142 Missing Hierarchy    

143 Unnecessary Hierarchy  Yes  

144 Unfactored Hierarchy   Yes 

145 Wide Hierarchy   Yes 

146 Speculative Hierarchy   Yes 

147 Deep Hierarchy   Yes 

148 Rebellious Hierarchy   Yes 

149 Broken Hierarchy   Yes 

150 Multipath Hierarchy   Yes 

151 Cyclic Hierarchy   Yes 
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Appendix B: Opdyke’s Identified Refactoring 
Sr. 

No 

Low-Level Refactoring High-Level Refactoring 

1 Create empty class Create common superclass 

2 Create member variable Function signature compatible 

3 Create member function Adding function signatures to superclass 

4 Delete unreferenced class Makin function body compatible 

5 Delete unreferenced variable Making variables compatible 

6 Delete unreferenced functions Migrate variable to superclass 

7 Change class name Migrate common code to superclass 

8 Change variable name Identify class in-variants 

9 Change membership function name Create subclass and assign class in-variants 

10 Change type Simplify conditional statements and migrate to 

subclass 

11 Change access control mode Specialize expressions that create instances 

12 Add function argument Check a member as a component 

13 Reorder function arguments Add member to a set of component variable 

14 Add function body Remove members from set of component variables 

15 Delete function body Moving members into component 

16 Convert instance variable to pointer Moving members into aggregate 

17 Convert variable reference to function 

Call 

 

18 Replace Statement list with function 

Call 

 

19 Incline function call  

20 Change superclass  

21 Move member variable to superclass  

22 Move member variable to subclass  

23 Abstract Access to member variable  

24 Convert code segment to function  

25 Move class  
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Appendix C: Taxonomy of Security Bad Smells [3, 29, 54, 55] 
Bad Smell Description Security Violation Refactoring 

Missing 

Abstraction 

In the absence of an 

abstraction, the data and 

behavior are spread across 

design. 

Confidentiality, 

Secrecy, Guarded 

Access, Integrity, 

Insecure Info Flow. 

Replace type-code with class. 

Incomplete 

Abstraction 

When an abstraction does not 

support complementary or 

interrelated methods. 

Correctness, 

Integrity 

Introduce the missing 

complementary operation(s) 

Multifaceted 

Abstraction 

When abstraction is assigned 

more than one responsibility. 

Correctness, 

Integrity 

Extract class 

Unutilized 

Abstraction 

When an unused abstraction is 

accidentally invoked, it may 

result in runtime problems. 

Integrity, 

Reliability 

Remove unutilized abstraction. 

Duplicate 

Abstraction 

When two abstractions have 

same names, it is confusing 

which abstraction to invoke. 

Non-repudiation, 

Integrity. 

Rename abstraction, remove 

abstraction. 

Deficient 

Encapsulation 

It provides direct access of 

class data to outside classes. 

Confidentiality, 

Secrecy, Guarded 

Access, Integrity. 

Encapsulate field  

Leaky 

Encapsulation 

When internal data structures 

are leaked, the integrity of 

abstraction may be 

compromised 

Confidentiality, 

Secrecy, Guarded 

Access, Integrity. 

Encapsulate field and methods 

(if necessary) 

Missing 

Encapsulation 

when implementation 

variations are not 

encapsulated 

Confidentiality, 

Secrecy, Guarded 

Access, Integrity. 

Encapsulate field and methods 

(if necessary) 

Broken 

Modularization 

The data and related 

procedures are split across 

abstractions 

Confidentiality, 

Secrecy, Guarded 

Access, Integrity. 

Move method/Field 

Cyclically 

dependent 

Modularization 

Changes to a cyclically 

dependent abstraction can lead 

to runtime problems across 

other abstractions 

Integrity Move method or field 

Missing 

Modularization 

when a class is not 

decomposed 

Reliability, 

Correctness 

Extract class, Move methods 

Rebellious 

Hierarchy 

when a subtype rejects the 

methods provided by its 

super-type 

Reliability, 

Correctness, 

Integrity. 

Apply move method from the 

super-type to the relevant 

subtypes 

Unnecessary 

Hierarchy 

When inheritance is applied 

unnecessarily for a particular 

design context 

Integrity, Insecure 

Info Flow. 

Collapse hierarchy 

Missing 

Hierarchy 

To explicitly manage variation 

in hierarchical behavior, 

where a hierarchy could have 

been created and used to 

encapsulate those variations 

Reliability, 

Integrity 

Connection with appropriate 

hierarchy interface should be 

made 

Broken 

Hierarchy 

When developers are not 

aware that the super-type and 

subtype do not share an IS-A 

relationship 

Confidentiality, 

Secrecy, Guarded 

Access, Insecure 

Info Flow, 

Integrity. 

Replace inheritance with del-

egation  
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Appendix D: Quality Metrics Values Pre and Post Refactoring 
Quality Metrics Values for Use Case Diagrams

 

NumAss Including Included Extended Extending NumAss Including Included Extended Extending

Arrange Tour 2 0 0 1 0 2 0 0 1 0

Book Airline Tickets 3 0 0 0 2 0 0 0 0 1

Book Airline Tickets 2 0 0 0 0 1

Book Tour 1 0 0 1 0 1 0 0 1 0

Deliver Airline Tickets 1 0 0 0 0 1 0 0 0 0

Pay Commission 0 0 0 0 3 0 0 0 0 1

Pay Commission 2 0 0 0 0 1

Pay Commission 3 0 0 0 0 1

Pay for Ariline Tickets 1 0 1 1 1 0 0 0 1 1

Pay Travel Agent 2 1 0 1 0 2 0 0 1 0

Pay for Tour 1 0 0 2 0 1 0 0 2 0

Reserve Seat 1 0 0 0 0 1 0 0 0 0

Elect Reimbursement 1 0 0 0 1 0 0 0 0 1

Elect Stock Purchase 1 0 0 0 3 0 0 0 0 1

Elect Stock Purchase 2 0 0 0 0 1

Elect Stock Purchase 3 0 0 0 0 1

Issue Purchase Invoice 1 0 0 1 0 1 0 0 1 0

Provide Stock 1 0 0 1 0 1 0 0 1 0

Update Benefits 1 3 0 2 0 1 0 0 2 0

Update Dental Plan 0 0 1 0 0

Update Insurance Plan 0 0 1 0 0

Update Medical Plan 0 0 1 0 0

Chinese 0 0 0 0 2 0 0 0 0 1

Chinese 2 0 0 0 0 1

Cook Food 1 0 0 0 0 1 0 0 0 0

Drink Wine 1 0 0 0 1 0 0 0 0 1

Eat Food 1 0 0 1 0 1 0 0 1 0

Indian 0 0 0 0 2 0 0 0 0 1

Indian 2 0 0 0 0 1

Italian 0 0 0 0 2 0 0 0 0 1

Italian 2 0 0 0 0 1

Order Food 3 0 0 4 0 3 0 0 4 0

Order Wine 3 0 0 0 1 0 0 0 0 1

Pay for Wine 2 0 0 0 1 0 0 0 0 1

Pay Tip 0 0 1 0 0

Pay for Food 3 1 0 4 0 3 0 0 4 0

Serve Food 1 0 0 1 0 1 0 0 1 0

Serve Wine 1 0 0 0 1 0 0 0 0 1

Bad Pin 0 0 0 0 2 0 0 0 0 1

Bad Pin 2 0 0 0 0 1

Balance Check 0 0 0 0 0 0 0 0 0 0

Deposit 0 0 0 0 0 0 0 0 0 0

Login 1 0 2 0 0 1 0 2 0 0

Print Receipt 0 0 0 0 0 0 0 0 0 0

System Maintenance 1 1 0 2 0 1 2 0 2 0

System Reporting 1 0 0 0 1 0 0 0 0 1

System Shutdown 0 0 1 0 0

Transaction 1 1 0 1 0 1 1 0 1 0

Withdraw 0 0 0 0 0 0 0 0 0 0

ATM

System Use case
Before refactoring After refactoring

Travel 

Agency

HR System

Restaurant 

System
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Quality Metrics Values for Sequence Diagrams

 

 

NAss NInvo NRec CBO NAss NInvo NRec CBO

Customer 15 7 8 1 9 4 5 1

Booking System 23 5 3 3 21 5 2 3

Flight 2 0 1 1

Customer DB 6 0 4 1 6 0 4 1

Reservation System 0 0 0 0

Visitor 6 3 3 1

Admin 6 3 3 1 6 3 3 1

Registered User 11 5 6 4 8 3 4 3

Visitor 0 0 0 0

Movies 8 0 4 2 7 1 3 2

Book Ticket 4 0 2 1 4 0 2 1

Payment 3 1 1 1 3 1 1 1

Cancel Ticket 2 0 1 1

Ticket 0 0 0 0

Admin 11 6 5 3 6 3 3 1

Student 12 1 6 2 12 1 6 2

Teacher 9 3 5 2 9 3 5 2

Employee 0 0 0 0

Class 2 0 1 1

Department 3 2 1 1

Librarian 38 11 19 3 26 6 13 2

Books 10 4 5 1 10 4 5 1

User 20 4 10 1 16 3 8 1

Publisher 10 1 5 2 8 0 4 1

Staff 0 0 0 0

Manager 2 0 1 1

Assistant 12 5 6 2

Premiun User 4 1 2 1

Manager 4 1 2 2 2 0 1 1

Stock 2 0 1 1

Receptionist 17 5 9 3 9 3 5 2

Customer 13 5 6 3 7 2 3 2

Chef 4 2 2 3 1 0 1 1

Food Items 2 0 1 1

Room Attendent 2 1 1 1

Room 4 0 2 1 4 0 2 1

Staff 0 0 0 0

Assistant 6 1 3 3

Resident 5 3 2 2

After refactoring
ClassSystem

Airline Reservation

Movie Ticketing

School Management

Library Management

Hotel Management

Before refactoring
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Quality Metrics Values for Class Diagrams Pre-refactoring 
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