

iii

© Haris Mumtaz

2016

iv

DEDICATION

To my family,

especially my parents

v

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor Dr. Mohammed Alshayeb for his

limitless support throughout the course of my research work. Whenever I faced a blind alley

in my research, he guided me out and steered me to the right direction. The most important

ingredient of the successful and timely completion of this thesis was his prompt feedback.

His contributions were not just confined to the technical assessment but also assisted me in

the writing of this thesis. His dedication has contributed significantly to the successful and

timely completion of this thesis.

I would also like to thank my thesis committee members: Dr. Mahmood Niazi and Dr.

Sajjad Mahmood. They have contributed significantly in the refinement of this thesis. Their

critical evaluation has enhanced the quality of my work to a great degree. I am greatly

indebted for their valuable comments on my thesis.

I would not do justice to my work if I do not acknowledge the incomparable support that I

receive from my family. I must express my profound gratitude to my parents and my wife.

They certainly have supported me with continuous encouragement throughout the course

of my research. This accomplishment would not have been possible without them. I also

would like to thank all of my friends especially Ahsan Javed, Abdullah Hejazi, Sajid Anwar,

Taha Nasir, Abdullah Siddique and Mohsin Javed for the unforgettable memories.

Finally, I would like to thank Department of Information and Computer Science at King

Fahd University of Petroleum and Minerals for providing me the opportunity to complete

my master studies and Ministry of Education, Saudi Arabia for the generous funding.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. V

TABLE OF CONTENTS .. VI

LIST OF TABLES .. IX

LIST OF FIGURES .. X

LIST OF ABBREVIATIONS ... XI

ABSTRACT .. XII

VIX ... ملخص الرسالة

CHAPTER 1 INTRODUCTION... 15

1.1 Problem Statement .. 16

1.2 Motivation ... 16

1.3 Research Objectives and Questions .. 17

1.4 Research Methodology .. 18

1.5 Research Contribution ... 19

1.6 Thesis Outline .. 19

CHAPTER 2 BACKGROUND ... 20

2.1 Unified Modeling Language (UML .. 20

2.2 Security Attributes ... 24

2.3 Software Metrics ... 25

2.4 Refactoring .. 27

2.4.1 Refactoring Process .. 27

2.4.2 Refactoring Tools ... 30

2.4.3 Commonly Applied Refactoring Strategies ... 31

CHAPTER 3 RELATED WORK ... 34

3.1 Code Bad Smells ... 34

3.2 Model Bad Smells ... 36

3.3 Security Aspects in Software Development .. 39

3.4 Bad Smells Detection Techniques and Tools .. 43

3.4.1 Software Metrics Based .. 44

3.4.2 Design Patterns Based .. 47

3.4.3 Rule Based .. 49

3.4.4 Detection Tools .. 52

CHAPTER 4 RESEARCH METHODOLOGY .. 53

4.1 Research Methodology Overview ... 53

4.2 Filtration of Security Bad Smells .. 55

4.3 Detection Approach ... 56

4.3.1 Approach Overview ... 57

4.3.2 GA adaptation to Detection Approach ... 57

4.4 Correction Approach ... 62

vii

4.5 Behavioral Consistency ... 62

4.6 Security Improvement Validation ... 63

CHAPTER 5 MODEL REFACTORING TO SECURITY ... 64

5.1 Experimental Goals ... 64

5.2 Experimental Design for Use Case Diagrams ... 65

5.2.1 Experimental Materials .. 65

5.2.2 Variables ... 73

5.2.3 Proposed Hypotheses ... 74

5.2.4 Experimental Tasks .. 76

5.2.5 Results .. 80

5.2.6 Hypotheses Testing .. 86

5.3 Experimental Design for Sequence Diagrams ... 87

5.3.1 Experimental Materials .. 87

5.3.2 Variables ... 98

5.3.3 Proposed Hypotheses ... 98

5.3.4 Experimental Tasks .. 100

5.3.5 Results .. 102

5.3.6 Hypotheses Testing .. 109

5.4 Experimental Design for Class Diagrams ... 110

5.4.1 Experimental Materials .. 110

5.4.2 Variables ... 111

5.4.3 Proposed Hypotheses ... 112

5.4.4 Experimental Tasks .. 114

5.4.5 Results .. 115

5.4.6 Hypotheses Testing .. 117

5.5 Summary of Hypotheses ... 118

5.6 Supplementary Experiments .. 119

5.6.1 Supplementary Experiments with Simple Replication Datasets 120

5.6.2 Supplementary Experiments with Varied Replication Datasets 122

5.7 Customization Guidelines for Proposed Detection Approach 125

CHAPTER 6 ANALYSIS AND DISCUSSION ... 127

6.1 Security Bad Smells .. 127

6.2 Consistency of Results .. 129

6.3 Variations in Quality Metrics .. 130

6.4 Impact of Applied Refactoring on Quality Attributes ... 130

6.4.1 Impact in Use Case Diagrams .. 131

6.4.2 Impact in Sequence Diagrams .. 131

6.4.3 Impact in Class Diagrams ... 132

CHAPTER 7 THREATS TO VALIDITY .. 134

7.1 Construct Validity ... 134

viii

7.2 Conclusion Validity ... 135

7.3 Internal Validity .. 135

7.4 External Validity ... 136

CHAPTER 8 CONCLUSION AND FUTURE WORK .. 137

APPENDIX A: Code and Model Refactoring ... 139

APPENDIX B: Opdyke’s Identified Refactoring ... 142

APPENDIX C: Taxonomy of Security Bad Smells .. 143

APPENDIX D: Quality Metrics Values Pre and Post Refactoring 144

REFERENCES .. 148

VITAE ... 154

ix

LIST OF TABLES

Table 1. Refactoring tools ... 31

Table 2. Classification of design smells .. 36

Table 3. Use cases anti-patterns and corresponding refactoring techniques 38

Table 4. Class level security metrics ... 42

Table 5. Software metrics incorporated in metrics based detection techniques 45

Table 6. Summarization of surveyed detection techniques ... 51

Table 7. Tools for automated detection of bad smells .. 52

Table 8. Investigated security bad smells in each model .. 56

Table 9. Statistics of investigated use case diagrams .. 66

Table 10. Applied refactoring in ATM system ... 82

Table 11. Applied refactoring in HR system ... 83

Table 12. Applied refactoring in restaurant system .. 85

Table 13. Applied refactoring in travel agency system ... 86

Table 14. Applied refactoring in airline reservation system ... 103

Table 15. Applied refactoring in hotel management system ... 103

Table 16. Applied refactoring in library management system .. 105

Table 17. Applied refactoring in online movie ticketing system 107

Table 18. Applied refactoring in school management system .. 108

Table 19. Statistics of analyzed projects ... 111

Table 20. Summarization of hypotheses ... 119

Table 21. Statistics of simple replicated datasets .. 121

Table 22. Statistics of replicated datasets with variations ... 123

x

LIST OF FIGURES

Figure 1. Class diagram overview ... 22

Figure 2. Sequence diagram overview .. 23

Figure 3. Use case diagram overview ... 24

Figure 4. Research methodology overview ... 54

Figure 5. A high-level GA adaptation for detection .. 59

Figure 6. Individual representation ... 60

Figure 7. Use case diagram of ATM system ... 67

Figure 8. Use case diagram of HR system .. 69

Figure 9. Use case diagram of restaurant system .. 71

Figure 10. Use case diagram of travel agency system .. 73

Figure 11. Abridged XML of ATM system .. 78

Figure 12. Best solution generated for use case diagrams .. 81

Figure 13. Refactored use case diagram of ATM system ... 82

Figure 14. Refactored use case diagram of HR system ... 83

Figure 15. Refactored use case diagram of restaurant system .. 84

Figure 16. Refactored use case diagram of travel agency system 85

Figure 17. Sequence diagram of airline reservation system .. 89

Figure 18. Sequence diagram of hotel management system ... 91

Figure 19. Sequence diagram of library management system ... 93

Figure 20. Sequence diagram of online movie ticketing system 95

Figure 21. Sequence diagram of school management system ... 97

Figure 22. Best solution generated for sequence diagrams ... 103

Figure 23. Refactored sequence diagram of airline reservation system 104

Figure 24. Refactored sequence diagram of hotel management system 105

Figure 25. Refactored sequence diagram of library management system 106

Figure 26. Refactored sequence diagram of online movie ticketing system 107

Figure 27. Refactored sequence diagram of school management system 108

Figure 28. Best solution generated for class diagrams .. 116

Figure 29. Best solution for sequence diagrams (simple replication) 121

Figure 30. Best solution for class diagrams (simple replication) 122

Figure 31. Best solution for sequence diagrams (varied replication) 124

Figure 32. Best solution for class diagrams (varied replication) 125

xi

LIST OF ABBREVIATIONS

UML : Unified Modeling Language

GA : Genetic Algorithm

XMI : XML Metadata Interchange

XML : Extensible Markup Language

OCL : Object Constraint Language

CBO : Coupling Between Objects

RFC : Response For a Class

LCOM : Lack of Cohesion of Methods

WMC : Weighted Methods per Class

NOM : Number of Methods

DIT : Depth In Inheritance

NOC : Number Of Children

KLOC : Kilo Lines Of Code

NAttr : Number of Attributes

NAss : Number Of Associations

NInvoc : Number of Invocations

NRec : Number of Received messages

NOps : Number of operations

RPubAttr : Ratio of Public Attributes

RPriAttr : Ratio of Private Attributes

RProAttr : Ratio of Protected Attributes

RPriOps : Ratio of Private Operations

RProOps : Ratio of Protected Operations

EC : External Coupling

IC : Internal Coupling

xii

 ABSTRACT

Full Name : Haris Mumtaz

Thesis Title : Software Security Improvement through the Application of UML

Model Refactoring

Major Field : Software Engineering

Date of Degree : October 2016

Software bad smells tend to have a negative impact on software quality by degrading a

number of software quality attributes. It is imperative to detect and correct bad smells from

analysis and design models to avoid their propagation to later stages of software

development. Security is a vital quality attribute because of the critical nature of

applications these days. In recent years, research related to secure software development

has been observed as an uprising trend, however, there is a scarcity of corpus in

investigating security bad smells and impact of refactoring on improving the software

security. The main objective of this research is to vanquish the problem of security in UML

models through the application of automated model refactoring. The fulfillment of the main

objective is accomplished through multiple activities, which includes; proposing a detection

technique, proposing a correction technique, empirical evaluation of proposed techniques

and assessment of security improvement in UML models as a result of refactoring. The

detection of security bad smells is achieved through the adaptation of a genetic algorithm,

while correction is accomplished by model transformation approach. For the purpose of

evaluation, our study focuses on three UML models (use case diagram, sequence diagram

and class diagram). The assessment of security improvement is accomplished through

statistical analysis of quality metrics. The empirical validations of proposed approaches are

performed through multiple case studies of investigated UML models. The results show

xiii

significant detection recall and correction efficacy of our proposed detection and correction

approaches respectively. Besides automatic detection and correction, the identification and

refactoring of security bad smells are validated manually as well. The manual assessment

of investigated models; and statistical analyses of quality metrics allow us to conclude the

significant improvement in security quality of investigated UML models as a result of

refactoring.

xiv

 ملخص الرسالة

 ممتاز حارث الاسم الكامل:

 تحسين أمن البرمجيات من خلال تطبيق إعادة هيكلة البرمجيات لنماذج لغة النمذجة الموحدة الرسالة:عنوان

 هندسة البرمجيات التخصص:

 6102أكتوبر تاريخ الدرجة العلمية:

 للروائح الكريهة للبرمجيات تأثير سلبي على جودة البرمجيات عن طريق تأثيرها على عناصر جودة البرمجيات. لا بد

من كشف وتصيحي الروائح الكريهة للبرمجيات في نماذج التحليل والتصميم لتجنب انتشارها إلى مراحل لاحقة من

تطوير البرمجيات. امن البرمجيات سمة مهمة في جودة البرمجيات بسبب الطبيعة الحرجة للتطبيقات في هذه الأيام. في

ن تطوير البرمجيات، ومع ذلك، هناك عدد قلقل من البحوث السنوات الأخيرة، لوحظ تزايد البحوث ذات الصلة لضما

التي تعالج تأثير الروائح الكريهة للبرمجيات على امن البرمجيات. الهدف الرئيسي من هذا البحث هو إيجاد حل لمشكلة

 الهدف الأمن في نماذج لغة النمذجة الموحدة من خلال تطبيق إعادة هيكلية البرمجيات بشكل آلي. ويتم تحقيق هذا

الرئيسي من خلال أنشطة متعددة، والتي تشمل؛ اقتراح تقنية لكشف عن الروائح الكريهة للبرمجيات، واقتراح طريقة

لتصحيح الروائح الكريهة للبرمجيات والتقييم التطبيقي لهذه الطرق المقترحة وتقييم التحسن الأمني في نماذج لغة النمذجة

جيات. ويتحقق الكشف عن الروائح الأمنية السيئة للبرمجيات من خلال تطويع الموحدة نتيجة لإعادة هيكلة البرم

الخوارزمية الجينية، بينما يتم إنجاز التصحيح من قبل نهج نموذج التحول. لغرض التقييم تركز دراستنا على ثلاثة نماذج

از تقييم التحسن الأمني من خلال من لغة النمذجة الموحدة وهي حالة الاستخدام، وتسلسل الرسم وفئة الرسم. ويتم إنج

التحليل الإحصائي لمقاييس الجودة. يتم تنفيذ عمليات التحقق التجريبية للنهج المقترح من خلال دراسات لنماذج ممثلة

بلغة النمذجة الموحدة. أظهرت النتائج قدرة عالية على الكشف وتصحيح الروائح الكريهة للبرمجيات. إلى جانب الكشف

لتلقائي، تم التأكد من إعادة الهيكلة للروائح الأمنية السيئة يدويا كذلك. التقييم والتحليلات الإحصائية لمقاييس والتصحيح ا

 .الجودة تأكد لنا وجود تحسن كبير في جودة أمن نماذج لغة النمذجة الموحدة لتحقيق إعادة هيكلة البرمجيات

15

1 CHAPTER 1

INTRODUCTION

Unified Modeling Language (UML) is a widely used analysis and design language because

of its supportability towards a number of software quality attributes [1]. It allows the

designers to develop analysis and design models ensuring important quality attributes. A

number of quality attributes related to software modeling have been reported in the

literature, such as modularity, reusability, modifiability, testability, security etc. [2].

Software models (such as use case diagrams, sequence diagrams and class diagrams etc.)

have been rigorously analyzed by researchers to ensure the presence of these quality

attributes. The quality attributes may suffer if poor analysis and design decisions are taken

during software development. The poor design and implementation decisions are

commonly referred as ‘bad smells’, and necessary measure taken to remove the bad smells

is called ‘refactoring’ [3].

The bad smells are usually categorized as code and model bad smells. Model bad smells

mainly focus on analysis and design defects, which may hinder in later stages of software

development. On the other hand, code bad smells are only confined to common

inappropriate implementation practices [4]. The most beneficial extraction from the studies

of bad smells and related refactoring strategies is the improvement of software quality. The

end objective of each study in the context of refactoring is to enhance the commonly

reported quality attributes. A number of studies have developed automated detection and

16

correction techniques and tools for code bad smells [5]. A comparatively fewer number of

studies have worked on automated detection of bad smells and related refactoring

opportunities for software models [6].

1.1. Problem Statement

A decent corpus has focused on improvement of a variety of software quality attributes

through model refactoring [7-9]. However, there is a scarcity of literature on the impact of

model refactoring on security quality of a software. Security has a significant importance

because of the nature of applications these days. Secure software development is a widely

researched domain and it seems to have its pace enhanced in recent years [10, 11]. Detection

of security bad smells becomes an essential task in this regard. Finding security related

smells in models is not sufficient as it does not fully fortify the problem. For eradication of

security smells, recognition of appropriate refactoring techniques must be obliged. To the

best of our knowledge, refactoring opportunities suggested in the literature, unfortunately,

do not focus on security aspects from both software analysis and design perspectives [11-

13].

1.2. Motivation

A rigorous literature review on the studies related to model smells, detection strategies and

refactoring techniques has allowed us to identify few gaps, which motivate us to work in

this area. The related literature has not yet studied the model smells from a security point

of view. The literature studies mostly focus on proposing more bad smells or studying the

impact of existing bad smells on the quality of source code and UML models. The literature

studies are also leaned towards detection and refactoring of bad smells in class diagrams.

17

Another concern to be noticed is the lack of work on use case diagram and sequence

diagram in the context of refactoring. Few studies address the issues related to refactoring

in use case diagram and sequence diagram [14-16]. The researchers have not yet addressed

detection and refactoring of bad smells from a security perspective. These significant gaps

in the literature stimulate our motivation to study bad smells from a security perspective

and include other models such as use case diagram and sequence diagram as well. To the

best of our knowledge, no study exists whose objective is to provide automated detection

and refactoring approaches for security bad smells in software models. This further

motivates us to investigate model security bad smells and propose automated detection and

refactoring techniques to identify and eradicate security bad smells from software models.

1.3. Research Objectives and Questions

The main goal of this research is to improve the security of software models through the

application of refactoring. The achievement of this goal can be broken down into multiple

sub-objectives. The sub-objectives of this research include:

 Propose a detection technique to identify security bad smells in UML models.

 Propose a correction technique to eradicate security bad smells in UML models.

 Empirical assessment of security improvements in UML models as a result of

refactoring.

This research aims to cover all three views of UML. One model is selected from each UML

aspect i.e. class diagram from structural; sequence diagram from behavioral; and use case

diagram from functional [1]. Our research aims to address the following laid research

questions:

18

RQ1: To what extent can our proposed detection approach detect security bad smells in

UML models?

RQ2: To what extent can our proposed correction approach rectify security bad smells in

UML models?

RQ3: To what extent can refactor to security bad smells improve security aspects of UML

models?

1.4. Research Methodology

In order to address RQ1 and RQ2 specified in the previous section, we propose detection

and correction approaches respectively. The detection approach uses the concept of Genetic

Algorithm (GA) to identify security bad smells in studied UML models. A potential solution

is formed by creating a set of rules measuring for security bad smells using quality metrics.

The approach does not require any manual expression of detection rules because they are

based on existing security bad smells examples. The use of examples also does not require

specification of quality metrics thresholds. The best solution is yielded through selection,

crossover and mutation operations of GA process. The correction solution is based on model

transformation using XMI. The XML representation of a corresponding model is refactored

to remove security bad smells. The refactored XML is then exported to the corresponding

UML model. RQ3 is answered through manual analysis of investigated case studies of UML

models and statistical analysis of software quality metrics. The comparison of software

metrics values before and after refactoring allow a definite conclusion on significant

security improvement in software models.

19

1.5. Research Contribution

The major contributions to the research and professional community are listed below:

 Taxonomy of security bad smells.

 Catalog of refactoring to security for analysis and design models (class, use case

and sequence diagrams).

 A method for the automatic detection of security bad smells for analysis and

design models (class, use case and sequence diagrams).

 A method for the automatic refactoring to security for the analysis and design

models (class, use case and sequence diagrams).

 Empirical evaluation of security improvements in analysis and design models

(class, use case and sequence diagrams).

1.6. Thesis Outline

The rest of this thesis is structured as follows: chapter 2 provides preliminary background

on some key concepts. It presents illustration on UML, software models security attributes,

metrics and refactoring. Chapter 3 provides a detailed description of related work. Chapter

4 encompasses our research methodology. Chapter 5 encapsulates the application of the

proposed detection and correction approaches on multiple case studies of considered UML

models. It also describes the validation of proposed approaches through case studies. Since

this chapter provides explanations of our experiments, it follows the guidelines provided by

Jedlitschka et.al on reporting empirical studies in software engineering [17]. Chapter 6

analyses and discusses the implications of our acquired results. Chapter 7 presents posed

threats to validity and finally, Chapter 8 concludes the thesis and directs future work.

20

2 CHAPTER 2

BACKGROUND

This chapter provides a preliminary background on the important concepts and aspects

expected in our research domain. Following sections shed light on UML, security attributes

in software design, software metrics and refactoring. The focus of our research is the class

diagram, sequence diagram and use case diagram of UML, so the explanation of each model

is provided accordingly.

2.1. Unified Modeling Language (UML)

The Object Oriented paradigm has collected popularity since the last two decades because

of its conceptual modeling nature. UML was introduced to provide software modeling

standard [1]. The benefit of developing a standard language was to bring developers from

all over the world to a single software modeling platform. UML uses graphical notations to

design software systems [18]. The language keeps on evolving since the time it is proposed

and currently, UML 2.0 is in use for software modeling [19]. UML can be viewed from

three different perspectives: structural, behavioral and functional [1]. The models lie in each

classification are as follows:

Structural View: Class diagram, object diagram, package diagram, deployment diagram,

composite structure diagram and component diagram.

Behavioral View: Sequence diagram, communication diagram, timing diagram and

interaction view diagram.

21

Functional View: Activity diagram, use case diagram and state machine diagram.

It can be noticed that each view has many models and covering all the models is beyond the

scope of our research. Our work covers all three views by selecting one model from each

view. Since class diagram, sequence diagram and use case diagram are the most widely

applied models for software modeling [6, 10], our thesis research is confined to these three

models. A brief description of each model is provided underneath.

Class Diagram: Class diagram provides a static structure of objects sharing attributes and

procedures. It depicts a conceptual design, which later, is translated to implementation. The

class diagram also shows relationships with other classes. The relationships are usually

association, aggregation and generalization. The example, in Figure 1, illustrates the basic

components of class diagram. The example presents a structural view of online purchasing

of goods. Although the presented example is self-explanatory but to further ease the

understanding, brief illustration is provided. ‘Customer’ and ‘Item’ are distinctive entities

formulating the structure of class diagram, so they are represented as classes. The ‘Item’

class has two attributes: ‘shippingWeight’ and ‘description’, and two procedures:

‘getPriceforQuantity’ and ‘getWeight’. ‘Customer’ and ‘Order’ classes show association

relationship as well and it can be noticed that it can be bidirectional or unidirectional. The

association relationship also caters with a cardinality of relationship, for example, an

association relationship can be one to one; one to many; or many to many, depending on

the relationship between classes. The classes ‘Order’ and ‘OrderDetail’ share a relationship

of aggregation. The aggregation relationship is understandable by its literal meaning. In the

example, one or many order details will aggregate to a single order. The customer can make

22

payment in multiple ways i.e. via check, cash and credit card. These three payment modes

can be generalized to make an abstract class.

Figure 1. Class diagram overview [20]

Sequence Diagram: UML sequence diagram models the flow of logic within a system in a

visual manner, and is commonly used for both design and analysis purposes [21]. It

normally represents the series of messages sent to and fro objects over time. The main

purpose of a sequence diagram is to represent usage scenarios and explore the complex

operational and procedural logics [21]. A small example, in Figure 2, illustrates working of

the sequence diagram. In the figure, ‘Student’ is representing a class with ‘aStudent’ an

instance of it. The instances of ‘Seminar’ and ‘Course’ classes are kept anonymous because

they do not need to be referenced in the diagram. The ‘Student’ is sending messages to

‘Seminar’ by making function calls, similarly, ‘Seminar’ and ‘Course’ classes. The dashed

lines known as object lifelines represent the life span of the object over time. The thin boxes

23

on objects lifelines are activation boxes, representing the object’s active time during a

communication with other classes [21].

Figure 2. Sequence diagram overview [21]

Use Case Diagram: The primary objective of use case modeling is to elicit functional

requirements of a system. A use case diagram provides a graphical representation of how

actors interact with the system [22]. It has entities like actors, use cases and relationships.

An actor accomplishes a service through a use case. The construction of use case models

can be done in multiple ways i.e. informal, semi-structured, or fully structured [23]. Use

case diagram, in Figure 3, shows a functional view of hospital's reception. The

‘Receptionist’ is represented as an actor because he/she is supposed to interact with the

system and accomplish certain duties. He/she performs many tasks including scheduling

appointments, admission to hospital, collecting patient’s information etc. Some tasks can

only be accomplished by performing sub-tasks, for example, ‘InPatient Hospital

Admission’ includes ‘Bed Allotment’. The extends relationship is an optional task

performed as an extension to another task.

24

Figure 3. Use case diagram overview [22]

2.2. Security Attributes

A number of software quality attributes have been reported in literature such as

performance, scalability, modifiability, security, availability, integration, portability and

testability [2]. Many researchers have studied the measurement of quality attributes in

object-oriented code using different techniques [24-26]. Object-oriented metrics is a

renowned method for measuring software quality attributes. Security is one of the important

quality characteristics in software models. The most commonly reported security attributes

are: confidentiality, integrity and availability [2, 10, 27, 28].

According to Whitman, information security is to protect the information in terms of its

confidentiality, integrity and availability in all means: storage, processing and transmission

[28]. Confidentiality, integrity and availability are major ingredients for ensuring security.

25

When information is protected from unauthorized access, it means confidentiality is

ensured [28]. The integrity of information is compromised when information is exposed to

damage, corruption or any kind of disruption [28]. The violation of confidentiality and

integrity leads to critical problems such as reliability, consistency, completeness and

correctness [29]. The third major security attribute is availability, which means that data

and services are available to authorized users at all the times [28].

Jürgen listed some important security characteristics including fair exchange, non-

repudiation, role-based access control, secure communication link, secrecy and integrity,

authenticity, freshness, secure information flow, guarded access [10]. Gorton pointed some

security requirements that a software system should encapsulate. The security requirements

include authentication, authorization, encryption, integrity and non-repudiation [2].

2.3. Software Metrics

Software metrics provide a quantitative measurement of different software artifacts [30].

The common use of software metrics mainly lies in software design and implementation.

Several metrics have been proposed in software engineering. The reported object-oriented

metrics are majorly segregated into four groups: coupling, cohesion, complexity and

inheritance. The brief illustrations of each group and related metrics are presented below:

Coupling: It measures the interdependency between classes or objects. The inter-linking

can be in the form of variable usage or method usage. The typical metrics used for

measuring coupling are CBO (Coupling Between Objects) and RFC (Response For a Class).

CBO is the count of number of classes that a class is coupled with [31]. It is desirable to

have CBO value to be minimum because higher value leads to maintenance issues. RFC is

26

the count for number of methods called by each method in a class and set of methods defined

by that class [31]. The greater the number of methods, the more the RFC value.

Cohesion: It deals with the concept of separation of concerns for a class. It measures how

strongly cohesive the components of a class are. It enforces the use of local attributes by

local methods. LCOM (Lack of Cohesion of Methods) is a commonly used metric for

measuring cohesion. It counts the number of method pairs whose similarity is zero, minus

the count of method pairs whose similarity is not zero [31].

Complexity: It measures the simplicity of a design. There are many metrics reported in the

literature to measure complexity. WMC (Weighted Method per Class) computes

complexity by taking the summation of local complexity of each method [31]. NAtt

(Number of Attributes) measures complexity by counting total number of attributes of a

class [31]. The greater the number of attributes, the more the complexity. Lastly, NOM

(Number Of Methods) calculates complexity by counting total number of methods of a class

[31]. Similar to NAtt, the more the NOM, the more complex a design would be.

Inheritance: It is measured by two metrics DIT (Depth of Inheritance) and NOC (Number

Of Children). DIT is the depth in the inheritance tree and NOC is the number of children of

a class [31]. The greater the counts for these two metrics, the more difficult it is to maintain

a design.

The use of software metrics in the context of refactoring is extremely imperative as they

assist in evaluating the quality improvement as result of refactoring. Although quality

assessment is an imperative activity in the refactoring process but few literature studies

focused on it [6]. Enckevort used Fan-in and Fan-out in addition to C&K metrics to

27

quantify model quality [32]. They used metrics values pre and post refactoring to analyze

the impact of them on software quality. Moghadam and Cinnéide made use of cohesion

metrics proposed by Al Dallal and Briand [33, 34]. The cohesion metrics belonged to

method cohesion and class cohesion. Jensen and Cheng applied QMOOD metric suite to

analyze the quality of software as a result of refactoring. QMOOD suite consists of 11

metrics and is proposed by Bansiya and Davis [35].

2.4. Refactoring

Software refactoring means that software design or code is transformed in such a way that

it improves software quality while preserving its behavior [3]. Opdyke introduced the

concept of software refactoring and proposed design and implementation level refactoring

[36]. The list is compiled in Appendix B of this thesis.

2.4.1. Refactoring Process

Refactoring process is conducted in a series of steps. Refactoring for both code and model

can be executed in an almost similar fashion. The whole process is suggested by Wake and

William [4], and later extended by Mens et.al [37]. Mainly refactoring process includes

following steps:

Step 1: Identification of part of software that requires refactoring

Step 2: Selection of appropriate refactoring

Step 3: Check for behavior preservation

Step 4: Apply refactoring

Step 5: Analyze the effect of refactoring in terms of improvement of quality.

Step 6: Ensure consistency between refactored different software artifacts.

28

The details related to step 1 and 2 are provided in related work. The explanations for

detection techniques provide a detailed discussion on step 1 and 2. The third step involves

code or model behavioral preservation, whose goal is to resist any changes, which may lead

to a change in behavior. This step of refactoring process is usually achieved by defining pre

and post conditions of refactoring [36, 38]. Opdyke used the assistance of preconditions to

ensure behavioral preservation before refactoring [36]. Preconditions allow modelers to

ensure that output result will be same regardless of refactoring. The only seeable drawback

of imposing preconditions is its additional overhead to the refactoring process. Roberts et.al

extended the refactoring procedure, to verify behavioral preservation, with post-conditions

[38]. The rationale of using post-conditions instead of precondition was the belief of

delaying the refactoring process, because verifying behavioral preservation before

refactoring will delay the actual application of refactoring. Delaying the verification goal

after refactoring application would also allow modelers to evaluate the effectiveness of

refactoring techniques in the eradication of bad smells.

Post refactoring application leads to step 5, where quality assessment is performed. The

goal of refactoring is to improve the quality. The assessment is usually accomplished

through the use of quality metrics because of their objective nature. Utilizing metrics to

evaluate quality is not sufficient, proposing appropriate models to effectively apply the

metrics are equally imperative. In this regard, few studies presented quality models that use

software metrics to make quality assessments. Lange and Chaudron proposed a model to

assess quality change in software as a result of refactoring [39]. Their model uses C&K

metrics to judge the quality change. Jalbani et.al provided a quality engineering

methodology for UML models [40]. Their approach consisted of two basic parts: quality

29

assessment and improvement. The quality model constructed through quality assessment

included metrics proposed by Lange and Chaudron [39]. The second part of quality

improvement focuses on model smell detection and refactoring. Yue et.al also presented a

quality measurement approach that defines quality metrics at the meta-model level [41].

The last step in refactoring process deals with consistency issues in refactored artifact and

other software artifacts. For example, if bad smells are identified in code and dealt with

refactoring, the relevant modifications in the class diagram should also be accompanied.

The dependency among software development phases urges the need to consider

consistency while refactoring any artifact. Spanoudakis and Zisman categorized

consistency into two types: vertical consistency and horizontal consistency [42]. Vertical

consistency is concerned with changes in a single model, while, horizontal consistency

deals with ensuring consistency between different UML models. Massoni presented some

approaches to handling code and model consistency [43]. The three proposed techniques

are; Simple forward engineering, Successive reverse engineering and Round-trip

engineering. Simple forward engineering happens when models are usually discarded once

implementation stage finishes so source code modifications would not create consistency

issues [43]. The use of reverse engineering from source to the model can overcome

inconsistency issues [43]. Once implementation stage is finalized and stable, the model can

be refactored accordingly, and is called round-trip engineering [43].

Since the consistency mechanisms rely on restructuring model according to code

modifications, Bottoni et.al proposed a reverse engineering approach based on coordinated

graph transformation scheme [44]. Type graphs and flow graph are used to represent model

and code respectively, while interface graph represents common interface parts between

30

model and code. Common interface parts are represented using an interface graph.

Refactoring is applied based on common interface changes. This manner, modification

made at code level are reflected at the model level. However, the applicability of this

approach is confined to an abstract level, meaning, it cannot be applied to changes made in

method bodies. To cater this concern, Van Gorp et.al presented source consistent

refactoring [45]. They provided an extended meta-model called GrammyUML [45].

GrammyUML allows modelers to deal with method level details. The studies highlighted

so far in this paragraph focus on vertical consistency. The importance of horizontal

consistency cannot be overlooked. Bottoni et.al alongside vertical consistency, applied the

concept of coordinated graph transformation to horizontal consistency [44]. Tsiolakis coped

with horizontal consistency by the application of attributed graph grammar [46]. They

evaluated their approach on class diagrams and sequence diagrams.

2.4.2. Refactoring Tools

Application of the refactoring to source code and models can be achieved in a fully-

automated manner, semi-automated manner or manually. Many refactoring tools have been

developed for code refactoring. Table 1 lists down few refactoring tools alongside the

targeted bad smells. Some other refactoring tools, targeting only models smells, are also

found in the literature [47-49].

31

Table 1. Refactoring tools

Sr.

No.

Tool Targeted Bad Smells

1 InterlliJ

IDEA [50]

Rename and Move Program Entities, Change Method Signature, Extract Method,

Inline Method, Introduce Variable, Introduce Field, Inline Local Variable, Extract

Interface, Extract Superclass, Encapsulate Fields, Pull Up Members, Push Down

Members and Replace Inheritance with Delegation.

2 RefactorIt

[51]

Rename, Move Class, Move Method, Encapsulate Field, Create Factory Method,

Extract Method, Extract Superclass/Interface, Minimize Access Rights, Clean

Imports, Create Constructor and Pull Up/Push Down Members.

3 JRefactory

[52]

Move Class, Rename Class, Add an Abstract Superclass, Remove Class, Push

Up Field, Pull Down Field and Move Method.

4 jFactor [53] Extract Method, Rename Method Variables, Introduce Explaining Variable, Inline

Temp, Inline Method, Rename Method, Pull Up/Push Down Method, Rename

Field, Pull Up/Push Down Field, Encapsulate Field and Extract

Superclass/Interface.

2.4.3. Commonly Applied Refactoring Strategies

Many refactoring strategies have been reported in the literature, but those applied in this

research are briefly explained in this section. However, the comprehensive list of all

refactoring strategies is provided in Appendix A. The refactoring strategies are collected

from multiple resources [3, 29, 54, 55]. They are categorized as code, models or both. The

categorization is based on the applicability of refactoring strategies at design and

implementation levels. The refactoring strategies for the class diagram and sequence

diagram are generally the same, while use case diagram has their dedicated refactoring

strategies. The rationale behind is the use of classes and their interactions in class and

sequence diagram. On the other hand, use case diagram expresses functional requirements

using use cases and actors. The refactoring strategies for use case diagram are discussed in

section 3.2. The refactoring strategies considered in this research, for class and sequence

diagrams, are briefly explained below:

32

Move method: This means moving a method from a class to another class that uses this

method more. That method in the class can be turned into a delegation or can be completely

removed. The corresponding bad smell for this type of refactoring is ‘broken

modularization’ i.e. a method uses more features of another class than the class it belongs

to. This bad smell exploits the common object oriented design principle of modularization.

Although modularization is introduced by distributing the methods across multiple classes

but the separation of concerns is not ensured. The move method refactoring allows the

method to move to the class where it is mostly required. This way modularization and

separation of concerns are complemented.

Extract Class: This means moving cohesive methods and related attributes from an existing

class to a new class. This type of refactoring handles the modularization of a design. This

type of refactoring copes with the bad smell of missing modularization. This bad smell also

violates the separation of concerns principle in software design. In other words, a class is

overburdened by many responsibilities. This way high coupling is also induced. In order to

cope with all these design principles violations, extract class refactoring is applied. The

refactoring readjusts the design with the objective of having better modularization,

separation of concerns and coupling.

Remove class: This means removing a class which is contributing nothing to a design. Such

a class becomes useless and it is pointless to show it in the design. The idle class may incur

inappropriate behavior in the case where it is accidently invoked. So, removing such class

also increases the reliability of a design.

33

Encapsulate class: This means converting the access modifiers of a class from public to

private. These public attributes allow the outside classes to obtain unguarded access to

them. The unauthorized access can be restricted by properly encapsulating the class. The

unauthorized access leads to inappropriate use of data by other classes, which contradicts

with the concept of data confidentiality, integrity and reliability. Encapsulate class

refactoring restricts these violations and enforces other class to communicate with the

encapsulated class appropriately. The communication is achieved through getter and setter

methods.

34

3 CHAPTER 3

RELATED WORK

This chapter provides a detailed discussion on studies related to our research. The

illustration is presented in separate sections to ease the understanding and readability. This

chapter covers the bad smells (code and model), security aspects of software development

and existing bad smells detection techniques and tools.

3.1. Code Bad Smells

Fowler et.al suggested that code bad smells give a good indication of code issues and can

be resolved by refactoring them [3]. They initially introduced 22 code smells and the

number keeps on increasing since then. A comprehensive list of bad smells is available

online [54]. According to Fowler et.al, Duplicated Code is widely investigated and

frequently occurred bad smell in source codes [3]. The other widely studied bad smells are

Feature Envy, Refused Bequest, Data Class, Long Method and Large Class [5]. The rest

from the initial 22 bad smells are investigated rarely [5].

They initially referred listed smells as code bad smells but some of the listed bad smells are

applicable to models as well. For example, ‘Shotgun Surgery’ is one of the presented bad

smells and can be seen as both code bad smell and model bad smell [3]. Shotgun surgery

occurs when classes are too much coupled, making a change in one class creates a ripple

effect for other dependent classes. The appropriate refactoring suggested for this bad smell

is to reduce the coupling between classes. Some studies aim to propose methods to detect

35

code bad smells [37, 56]. Munro used software metrics to identify code bad smells [56],

whereas, Mens and Tourwé applied logic meta programming to find code bad smells [37].

Cushman and Rosenberg suggested that objective methods should be used in combination

with subjective methods because some attributes cannot be quantified and subjective

methods can help in capturing software properties [57]. So the studies incorporating

software metrics can extend the approaches to capture attributes through subjective

methods.

Few studies investigated the impact of bad smells on code and models. Shatnawi and Li

investigated the correlation of bad smells with software faults and their severity levels [58].

They found large class, large method and shotgun surgery to be significantly correlated with

software faults. Their results indicated some bad smells like, data class, feature envy and

refused bequest are not significantly associated with software faults. Monden et.al studied

the effect of duplicated code on software reliability and maintainability [59]. They found

that duplicated code reduces maintainability and reliability of a software. Kapser and

Godfrey aimed to find different patterns via which duplicated code can be identified [60].

They identified 11 different duplicated code patterns. Domain experts were invited to judge

the harmfulness of each pattern. The experts suggested that not all duplicated codes are

harmful and would not require refactoring. One study targeted bad smells in an order to

reduce the risk and improve the effectiveness of refactoring [61]. To obtain a further deep

insight, there are few well-reported literature surveys on code and design bad smells [5, 37,

62].

36

3.2. Model Bad Smells

At the design level, many code smells can be traced back to the class diagram, thus can be

referred as model smells. For example, in a data class, if data members are public, they are

exposed to other classes. These public data members can be seen in the class diagram.

Suryanarayana et.al classified design smells into four main categories: Abstraction,

Encapsulation, Modularization and Hierarchy [29]. The classification with corresponding

design smells is listed in Table 2. In each classification, a number of design smells are

reported. For example, in abstraction, there is a design smell, ‘missing abstraction’, which

emphasis on a compromise on the integrity of data. Similarly, in ‘deficient encapsulation’,

the attributes of a class are likely to be exposed to outside classes. They also suggested

some appropriate set of refactoring opportunities for each design smells and also their

impact on quality attributes.

Table 2. Classification of design smells [29]

Classification Design Smells

Abstraction Missing, Imperative, Incomplete, Multifaceted, Unnecessary, Unutilized, Duplicate

Encapsulation Deficient, Leaky, Missing, Unexploited

Modularization Broken, Insufficient, Cyclically Dependent, Hub-like

Hierarchy Missing, unnecessary, Unfactored, Wide, Speculative, Deep, Rebellious, Broken,

Multipath, Cyclic

The design bad smells that are considered in this research are briefly described below:

Missing Hierarchy: A hierarchy should have been created to avoid unexpected hierarchical

behavior and encapsulate expected variations. This design smell can be removed by creating

a connection with appropriate hierarchy interface.

Missing Modularization: This type of design smell arises when a class or component is not

decomposed. In other words, the component lacks in the separation of concerns. The

37

appropriate refactoring strategy for removing this design smell is ‘Extract Class’. This way

the cohesive attributes and methods are moved to a new class, which leaves old class

properly modularized.

Broken Modularization: This bad smell happens when the data and related procedures are

split across abstractions. This allows unauthorized access of data across classes or

components. The related refactoring to eradicate this design smell is move method(s) and

attribute(s). This way the data and related procedures are moved to the class(es) or

components, where they actually belong.

Unutilized Abstraction: This design smell occurs when an unused abstraction is

accidentally invoked. It may result in runtime problems, affecting the reliability of a design.

This type of design smell can be erased by the application of remove abstraction refactoring.

Removal of unutilized abstraction motivates correct invocation of objects, which result in

the reliable execution of a software.

Deficient Encapsulation: This design smell provides direct access of class’s data to outside

classes, compromising the confidentiality and integrity of a design. This type of design

smell is extremely critical for data classes. The viable refactoring for this smell is to

properly encapsulate the class.

Bad smells in the sequence diagram are studied in the context of abovementioned class

diagram bad smells. Bad smells which belong to class diagram are applicable to a sequence

diagram. For example, broken modularization is one of the bad smells usually experienced

in the class diagram, can also be applied to a sequence diagram. The calling of methods

between classes identifies how much classes are delved into each other, intimating the

38

presence of broken modularization. The rectification procedure is also similar to the class

diagram. If the bad smells are removed at the class level, they are automatically removed

from the sequence diagram. Following the same broken modularization example, the

methods are moved to remove the bad smells in classes, meaning, less calling of methods,

eventually, fewer calls are observed in corresponding sequence diagrams.

Few studies have addressed the issue of bad smells in use case diagram and its description

[14-16, 63]. Generally, defects in use cases are referred to as anti-patterns instead of bad

smells. In our research, we are treating anti-patterns in use cases as bad smells. The major

contribution to study anti-patterns in use case diagram is provided by El-Attar and Miller

[14-16]. Their objective was to improve the quality of use case diagram and its description.

They utilized anti-patterns to identify defects in use cases and refactor them to improve the

quality of use cases. Their study influenced use cases quality in terms of correctness,

consistency, analytical ability and understandability. Table 3 depicts the investigated use

cases anti-patterns and their respective refactoring strategies.

Table 3. Use cases anti-patterns and corresponding refactoring techniques [14-16]

Anti-pattern Refactoring

Accessing a generalized concrete use case Concrete to Abstract, Drop Actor-

Generalized UC Association

Accessing an extension use case [missing hierarchy] Drop Actor-Extension UC Association

Using extension/inclusion use cases to implement

an abstract use case

Abstract Extended UC to Concrete,

Inclusion to Generalization

Functional Decomposition: using the include relationship

[broken modularization]

Drop Functional Decomposition having

Inclusion

Functional Decomposition: using the extend relationship

[missing modularization]

Split Extension UC

Multiple generalizations of a use case Generalization to Include

Use cases containing common and exceptional functionality Drop Inclusion, Drop Extension

Multiple actors associated with one use case Generalize Actors, Split UCs

An association between two actors Drop Actor-Actor Association

An association between use cases Drop UC-UC Association

An unassociated use case Drop Unassociated UC

Two actors with the same name Rename Actor

An actor associated with an unimplemented abstract use case Abstract to Concrete, Add Concrete UC

39

It can be observed from the discussion provided in this section that the related literature has

not yet studied the code and model smells from a security point of view. The literature

studies mostly focus on proposing more bad smells or studying the impact of existing bad

smells on the quality of source code and UML models. Some researchers are conducting

studies to compare different bad smells in order to rank bad smells, in terms of the degree

to which they negatively impact software quality attributes. Another concern to be noticed

is the lack of work on proposing bad smells in use case diagram and sequence diagram. The

class diagram has been the center of gravity for most the researchers to study bad smells

and their impacts on software quality. These gaps in the literature stimulate our motivation

to study bad smells from a security perspective and include other models such as use case

diagram and sequence diagram as well.

3.3. Security Aspects in Software Development

This section provides a detailed description of methodologies aiming to solve the problem

of security in terms of information systems modeling and development. This section also

summarizes the security metrics, related to code and models, proposed in the literature.

Vivas et.al used the guidance of business model to take system development decisions [64].

The role of basic security components motivated them to study the business perspective of

technology development. The purpose of integrating UML with security was to provide a

standard modeling language incorporating security characteristics. Use cases were used to

elicit security requirements and then they are injected to the functional specification. The

process is iterated multiple times to ensure the presence of maximum security requirements.

The final specification can then be used in proceeding stages of development. Jurgens aimed

40

to specify security requirements to ensure confidentiality and integrity in UML [10]. The

basic purpose was to propose an extension to help develop secure systems. Types of attacks

were modeled by analyzing the behavior of attackers. Their study covered UML diagrams

including state chart diagram, sequence diagram, deployment diagram.

Siponen and Baskerville provided a new paradigm to software developers to securely

develop information systems [65]. To discover security design patterns, the author used

analytical process having multiple phases. The first phase focused on finding common

objects in software development and security development. The second stage included

identification of security constraints, abuse cases and scenarios, and policies. In the final

phase, the author gathered expert views on proposed patterns. After the consultation phase,

the six elements were added to the meta-model.

Artelsmair et.al worked on the integration of security concerns with software modeling [66].

Security policies define rules and practices to manage and protect sensitive data. First, they

showed how the defined rules and practices can be integrated into the modeling process.

Secondly, they identified security requirement and corresponding security mechanism.

They applied use cases to cater security requirements for modeling purpose. Fernandez

emphasized on the application of security principles at every development stage [67]. At

requirements stage, use cases can be used to express security requirements. Design stage

can incorporate security concerns pointed in requirements stage. The defined security

constraints can later be implemented at implementation phase. The inclusion of audit at the

end of each stage further strengthens the security aspects.

41

The software metrics discussed in the background section of this thesis cover multiple

quality attributes, applicable at design and implementation levels. Alshammari et.al

presented security metrics that are restricted only to class diagram [11, 12]. They presented

security metrics from five different perspectives: composition, coupling, extensibility,

inheritance and design size. Each category further provides a set of metrics that address the

security concern in software design. The presented metrics aimed at security concerns for

class diagram only. The focus of class level security metrics is mainly from an accessibility

point of view, for example, data accessibility, operation accessibility etc. The reported

security metrics by Alshammari et.al [11, 12] are summarized in Table 4, with brief

elaboration.

42

Table 4. Class level security metrics

Security Metrics Description

Composite-Part

Critical Classes

The ratio of the number of critical composed-part classes to the total number

of critical classes in a design.

Critical Classes

Coupling

The ratio of the number of all classes’ links with classified attributes to

the total number of possible links with classified attributes in a given design.

Critical Classes

Extensibility

The ratio of the number of the non-finalized critical classes in a design to the

total number of critical classes in that design.

Classified Methods

Extensibility

The ratio of the number of the non-finalized classified methods in a design to

the total number of classified methods in that design.

Critical Superclasses

Proportion

The ratio of the number of critical superclasses to the total number of critical

classes in an inheritance hierarchy.

Critical Superclasses

Inheritance

The ratio of the sum of classes which may inherit from each critical superclass

to the number of possible inheritances from all critical classes in a class

hierarchy.

Classified Methods

Inheritance

The ratio of the number of classified methods which can be inherited in a

hierarchy to the total number of classified methods in that hierarchy.

Classified Attributes

Inheritance

The ratio of the number of classified attributes which can be inherited in a

hierarchy to the total number of classified attributes in that hierarchy.

Critical Design

Proportion

The ratio of a number of critical classes to the total number of classes in a

design.

Classified Instance

Data Accessibility

The ratio of the number of classified instance public attributes to the number

of classified attributes in a class.

Classified Class

Data Accessibility

The ratio of the number of classified class public attributes to the number of

classified attributes in a class.

Classified Operation

Accessibility

The ratio of the number of classified public methods to the number of

classified methods in a class.

Classified Methods

Weight

The ratio of the number of classified methods to the total number of methods

in a given class.

Classified Mutator

Attribute Interactions

The ratio of the number of mutators which may interact with classified

attributes to the number of mutators which could interact with classified

attributes.

Classified Accessor

Attribute Interactions

The ratio of the number of accessors which may interact with classified

attributes to the possible maximum number of accessors which could have

access to classified attributes.

Classified Attributes

Interaction Weight

The ratio of the number of all methods which may interact with classified

attributes to the total number of all methods which could have access to all

attributes.

Another study with the purpose of proposing security metrics is conducted by Chowdhury

et.al [68]. Their study aimed to provide security metrics for source code, including, stall

ratio, coupling corruption propagation and critical element ratio. Stall ratio is computed as

a ratio of a number of non-progressive statements in a loop to total lines in the loop [68].

This explains the hurdles which some statements may create to accomplish a program’s

goal. The second metric is coupling corruption propagation, which is calculated as the

43

number of child methods instantiated with the parameters based on the parameters of

original instantiation [68]. In object-oriented systems, some objects need to be instantiated

at a specific time, and if not, they may destabilize the whole running process. This aspect

of object invocation is named as critical element ratio and is computed as a ratio of critical

data elements in an object to total elements in the object [68].

It can be observed that a handful collection of security metrics is obtained from the

literature. The applicability of security metrics, listed in Table 4, is limited to class diagram

only. Since our research aims to cover use case diagram and sequence diagram as well, the

security aspects are to be covered by security attributes and requirements.

3.4. Bad Smells Detection Techniques and Tools

This section provides a detailed discussion on the detection techniques and tool support

provided for different bad smells. The illustration of automatic, semi-automatic and manual

detection approaches is provided in forthcoming sections. To completely eradicate the

validity threat posed by manual detection, our work is focused on automated detection of

bad smells. The fatigue and inefficient consumption of time also motivated us to execute

our methodology automatically.

Bad smells can be detected by analyzing source code statically or dynamically. Static

analysis is feasible because it does not require execution of code. Static analysis can be

conducted by textual analysis or graphical analysis. A textual analysis of code vastly

depends on granularity, for example, token level, character level, line level and method

level. There are many detection mechanisms that can be used to detect bad smells and in

this regard, one classification of detection technique is provided by Bhalla [69]. The

44

techniques are classified into five classes: code auditing, software metrics, abstract syntax

tree, software visualization and anti-patterns. Code auditing statically analyzes the code and

check for anomalies. The classification which we consider in our research is presented by

Misbhauddin and Alshayeb [6]. They classified three detection strategies namely: design

patterns, software metrics and pre-defined rules [6]. The elaboration of detection techniques

in terms of this classification is presented in the following sections.

3.4.1. Software Metrics Based

Software metrics provide statistical information about software artifacts by capturing the

key attributes of them. The most famous object-oriented metrics reported in the literature

are proposed by Chidamber and Kemerer [31]. The software metrics usually cannot be

directly applied to UML models, hence models are first transformed into XML and then

XML representation is parsed to measure software metrics. If the measured metrics values

are not in acceptable range, it is considered as a bad smell. Hence, the major concern in

metrics based techniques is the acceptable threshold values. Table 5 lists the studies which

incorporated software metrics. Each study shows the consideration of metrics from different

categories i.e. coupling, cohesion, complexity and inheritance. It can be observed that all

classifications are studied evenly in the literature.

45

Table 5. Software metrics incorporated in metrics based bad smell detection techniques

Author(s)

Metrics Classification

Coupling Cohesion Complexity Inheritance

Arendt and Taentzer [70]

Fourati et.al [71]

Moha et.al [72]

Ghannem et.al [7]

Van Gorp et.al [73]

Ruhroth et.al [74]

Saeki and kaiya [75]

Mohamed et.al [76]

Jensen and Cheng [77]

Enckevort [32]

Kempen et.al [78]

Arendt and Taentzer used model metrics and model smells to propose a detection process

[63]. They presented an integration study of two tools, EMF Smell and EMF Refactor. The

integration allows automatic detection and removal of model smells by applying suggested

refactoring in class diagram and use case diagram. The goal of EMF Smell is to identify

model smell against meta-model, presenting them in an understandable view. EMF Refactor

consists of three main components: code generation module, refactoring application module

and EMF model refactoring suite.

Fourati et.al proposed an approach to identify anti-patterns at the structural and the

behavioral levels through the use of quality metrics [71]. The structural and behavioral level

models considered in their study were class diagram and sequence diagram respectively.

The basic purpose of incorporating sequence diagram was to compensate the loss of

information, when moving from the source code to the design. The approach carries few

steps. First, the relationship between bad smells and metrics is unveiled. Detection is done

by transforming class diagram using XMI and then the software metrics are used to identify

whether diagrams carry bad smells or not. Kempen et.al also worked on the preservation of

46

model behavior as a result of refactoring [78]. They used the class diagram for model

transformation purpose and state chart diagram to preserve behavior. They examined

metrics specific to a design and suggested refactoring accordingly. Van Gorp et.al pointed

out the problem of many UML tools about maintaining consistency, while refactoring

model or source code [45]. They proposed an extended UML meta-model to rectify the

consistency problem. They accomplished it by stating pre and post conditions to help verify

refactoring, verify behavioral preservation and automatic triggering of bad smells

refactoring.

Moha et.al provided a method that assists in specification and detection of bad smells at the

class level and developed a detection technique that automatically executes their method

[72]. A classification in terms of metrics relation with bad smells is provided as follows:

Blob: controller class, controller method, low cohesion, large class, data class; Swiss army

knife: multiple interface; Functional decomposition: private field, class one method,

procedural names, no inheritance, no polymorphism; Spaghetti code: use global variable,

no parameter, long method, no inheritance, procedural names, no polymorphism.

Saeki and kaiya proposed an integrated technique of software metrics and model driven

development [75]. They specified meta-model for a class diagram to specify constraints. To

be more precise, their focus was on following aspects: 1) Utilization of meta-modeling to

propose model metrics; 2) Proposition of semantic model metrics, and 3) Specification

method for the model transformation metrics. Mohamed et.al also presented an extended

meta-model of UML to assist model driven refactoring [76]. Their approach allows

automated detection of bad smells in class and sequence diagrams by the use of model

metrics and design smells. They performed domain analysis to propose UML extended

47

meta-model to achieve their objective. Once the design smells are identified, the proposed

meta-model is applied to cater possible refactoring. Refactoring tags are assigned to the

source model, indicating the need of restructuring. Before appropriate refactoring is

applied, the user validates the refactoring tags.

Enckevort established a prototype that detects different aspects of model features to identify

model improvement opportunities [32]. The prototype is based on model metrics, syntactic

and semantic rules. Their established prototype is applied to class level design issues.

Ruhroth et.al made use of quality cycle with repeated steps of detecting and refactoring bad

smells at the class level [74]. They applied quality cycle in the domain of software models.

Ghannem et.al proposed an approach to automatically detect class level refactoring

opportunities by the application of the genetic algorithm [7]. Their approach exploits class

diagram defects and search based technique to create rules that find defects in models.

3.4.2. Design Patterns Based

Anti-patterns, which is opposite of design patterns, is another technique used for bad smells

detection purpose. Design patterns provide good solutions of defects in software

development, on the other hand, anti-patterns indicate bad solutions to problems. They

allow developers to identify common design and implementation problems and provide an

appropriate solution. Improving design quality attribute in models by incorporating pattern

into a design is called pattern based model refactoring [79]. The refactoring procedure based

on patterns involves three stages: the setting of the source, setting of target model and

applying transformation [79]. The part of software artifact which needs refactoring is first

selected, then based on a design pattern, a target model is set. The selected portion of artifact

48

is transformed in accordance with the defined target model. Bouhours et.al proposed an

inspection procedure to detect bad smells in class diagram through the use of design patterns

[80]. They introduced the term ‘spoiled pattern’, which provide inadequate solutions for

any problem. To find parts of a model, substitutable with design patterns, their method

parses the model to identify the parts which have the possibility of having bad design

practices.

Kim defined design pattern consisting of three components: problem models, solution

models and transformation models [81]. The transformation model describes how problem

specification can be transformed to a solution specification. A problem specification is

assessed against a specific design pattern for its applicability on that problem. If the pattern

specification matches with problem specification, the corresponding transformation model

is applied. They provided refactoring specifications for Abstract Factory pattern, Adapter

pattern and Observer pattern.

Moghadam and Cinneide presented a refactoring approach considering program’s design

and source code [34]. The developer creates the desired design for a particular program,

then the code is modified to complement the desired design. Their approach improves

source code having better design attributes without affecting the behavior. Jensen and

Cheng applied design patterns to cope with class level bad smells [77]. The proposed

approach applied genetic algorithm and software metrics to identify the suitable refactoring

that can be applied to design smells. Their automated approach was able to generate

refactoring based on software metrics. Song et.al proposed a new notation to specify pattern

solution called Role Models [79]. They emphasized on the use of Role Models on pattern

49

based refactoring for the class diagram. The abstract factory was considered to describe the

working of their technique.

3.4.3. Rule Based

Rule-based techniques ensure the use of a specific template or standard rules to develop

software artifacts. If a software artifact is not created using a predefined standard, it is

suspected to have bad smells. For example, El-Attar and Miller provided a template to

specify use cases and relevant descriptions [14]. They reported that their proposed template

enhances consistency in use case diagram and their descriptions. They presented a semi-

automated technique based on anti-patterns to provide remedies for common quality

problems in use case diagram. The technique provides a framework to define anti-patterns.

They claimed that application of their proposed technique would transform use case model

into a more accurate representation of functional requirements. They also provided a

repository of anti-patterns, containing 26 domain independent anti-patterns. Using the same

taxonomy of anti-patterns, Khan and El-Attar proposed a technique to refactor the specified

anti-patterns [16]. They used model transformation approach using OCL to detect and

refactor use case diagrams. Rui and bulter described the application of refactoring on use

cases [82]. They formulated a meta-model for use case diagram. The extended use case

meta-model includes Inclusion, extension, generalization, precedence, similarity and

equivalence.

Dobrzanski and Kuzniarz presented an approach to systematically specify bad smells and

associated refactoring in class and sequence diagrams [83]. A template is used which

includes information: name of refactoring, origin, trigger element, goal, reasons, bad smell,

50

pre and post conditions. They considered UML models built in TAU CASE tool. Llano and

Pooley studied the specification and correction of anti-patterns related to the class diagram

[84]. They defined the UML-based specification of anti-patterns and corrected them via

application of design transformations. Sunye et.al worked on the application of certain rules

to ensure the preservation of design behavior after the application of refactoring techniques

[85]. They presented a few refactoring opportunities with the objective of understanding

how they can be used to preserve behavior in class diagrams. Boger et.al presented a

browser for refactoring which is integrated with UML modeling [47]. The applicability of

their approach is validated on class diagrams.

Few observations can be made from the explanations of presented detection techniques.

Table 6 summarizes all the surveyed detection strategies and provides a comprehensive

overview of model sources incorporated in each study, alongside detected bad smells and

tool support. The detection of bad smells in class and sequence diagrams is accomplished

via design patterns, software metrics and pre-defined rules. Model smells in use cases are

detected using metrics and pre-defined rules. The class diagram is the most investigated

UML model in the context of model smell detection. The detection of model smells in class

diagram is mostly supported by tools. The major subset of model smells is studied for class

diagrams only. Sequence diagrams are studied in conjunction with class diagram. The

reason is the similar type of model smells for both diagrams and the way they are detected.

It can be observed that literature studies are leaned towards detection and refactoring of bad

smells in class diagrams. Few studies address the issues related to refactoring in use case

diagram and sequence diagram. The researchers have also not yet addressed detection and

refactoring of bad smells from a security perspective.

51

Table 6. Summarization of surveyed detection techniques

Author(s) Technique Model Bad Smells Tool

Arendt and

Taentzer [70]

Metrics

based

Class, use

cases

Missing abstraction, long parameter list, unused use

case, unassociated classes, two subclasses with

same field, data clumps.

Yes

Fourati et.al

[71]

Metrics

based

Class,

sequence

Blob, lava flow, functional decomposition,

poltergeists, swiss army knife.

No

Dobrzanski

and Kuzniarz

[83]

Rule

based

Class,

sequence

Middle man, same methods in subclasses, unused

operation, inappropriate method signature.

Yes

Moghadam

and Cinneide

[34]

Design

pattern

Class Unnecessary hierarchy, missing abstraction,

excessive delegations, field/method is used by some

subclasses, same fields/methods names, un-

encapsulated field/method.

Yes

Bouhours et.al

[80]

Design

pattern

Class Not specified. Yes

Moha et.al [72] Metrics

based

Class Blob, functional decomposition, spaghetti code,

swiss army knife.

Yes

Ghannem et.al

[7]

Metrics

based

Class Blob, functional decomposition, data class. No

Van Gorp et.al

[73]

Metrics

based

Class Two subclasses with the same method, un-

fragmented code.

Yes

El-Attar and

Miller [14]

Rule

based

Use cases See Table 3. Yes

Khan and El-

Attar [16]

Rule

based

Use cases See Table 3. No

Ruhroth et.al

[74]

Metrics

based

Class Hidden concurrency, unnecessary behavioral

complexity, low cohesion, strong coupling, refused

bequest.

Yes

Saeki and

kaiya [75]

Metrics

based

Class Not specified. No

Mohamed

et.al [76]

metrics

based

Class,

sequence

Blob. Yes

Jensen and

Cheng [77]

Metrics

based

Class Abstract access, delegation, encapsulated

construction, partial abstraction.

Yes

Boger et.al

[47]

Rule based Class Improper class name, two subclasses with the same

method.

Yes

Enckevort

[32]

Metrics

based

Class God class, cyclic dependency, poor use of

abstraction, encapsulate field, long parameter list,

data class.

Yes

Sunye et.al

[85]

Rule

based

Class Inappropriate method signature, unused

attribute/method/class, feature envy, missing

modularization, unutilized abstraction.

Yes

Rui and bulter

[82]

Rule

based

Use cases Absent use case, unused use case, improper use

case name, moving an element of use case.

No

Kim [81] Design

pattern

Class,

sequence

Not specified. Yes

Kempen et.al

[78]

Metrics

based

Class God class. Yes

Llano and

Pooley [84]

Rule

based

Class God class, poltergeist. No

Song et.al [79] Design

pattern

Class Inheritance smells. No

Ouni et.al [8] Rule based Class Blob, functional decomposition, spaghetti code. No

52

3.4.4. Detection Tools

The effective and commonly used detection tools are collected from the literature. The

summary of identified tools alongside additional information related to bad smells, type,

code linkage and language support is presented in Table 7. Different bad smells can be

collected by applying different tools. iPlasma and inFusion handle a bigger subset of bad

smells in comparison with other detection tools. It can also be noticed that the tools which

support code linkage are offering a fewer subset of bad smells. Some tools require Eclipse

to execute, whereas majority can work standalone. The reason is the wide use of Eclipse as

a development platform. Java, being the most popular object oriented modern language, is

supported by many tools, while few tools support other languages such as C and C++. While

detecting a bad smell from code, few tools even point to the location from where bad smell

is originated, making refactoring easier.

Table 7. Tools for automated detection of bad smells
Tool Smell detection Type Code

linkage

Language

Support

Checkstyle

[86]

Duplicated code, large class, long method, long

parameter list

Eclipse,

standalone

Yes Java

Décor [87] Data class, god/large class, long method, long

parameter list, message chain, refused bequest,

speculative generality, tradition breaker.

Standalone No Java

iPlasma

[88]

Brain class, brain method, data class, duplicated

code, extensive coupling, feature envy, intensive

coupling, refused bequest, shotgun surgery,

tradition breaker

Standalone No C++, Java

inFusion

[89]

Brain class, brain method, data class, data clumps,

duplicated code, extensive coupling, feature envy,

intensive coupling, refused bequest, shotgun

surgery, tradition breaker

Standalone No C, C++,

Java

JDeodorant

[90]

Feature envy, god/large class, long method, switch

statements

Eclipse Yes Java

PMD [91] Dead code, duplicated code, large class, long

method, long parameter list

Eclipse,

standalone

Yes Java

Stench

blossom

[92]

Data clumps, feature envy, large class, long

method, message chains, switch statement, typecast

Eclipse Yes Java

53

4 CHAPTER 4

RESEARCH METHODOLOGY

This chapter highlights the major aspects of our research methodology. The main research

goal that our methodology includes how efficiently our detection and correction approaches

are able to respectively detect and correct security bad smells. Another important research

goal posed for our research methodology is the evaluation of security improvement as a

result of refactoring to security bad smells. Although surveying for security bad smells and

quality metrics are performed, the focus of this section is on filtering the security bad smells

and related refactoring strategies; detection and correction of security bad smells; and

evaluation of security improvement in studied UML models as result of refactoring.

4.1. Research Methodology Overview

Although all the main activities of our implemented research methodology are illustrated in

detail in forthcoming section, the purpose of this section is to provide the reader with a basic

overview of our methodology. To further ease the understandability, the pictorial view of

our research methodology is depicted in Figure 4.

The first activity in research methodology is the filtration of security bad smells. A large

taxonomy of bad smells exists in literature, which can undergo some filtration process to

strain only security bad smells. Once the security bad smells are successfully filtered, they

and related quality metrics are input to the GA for the purpose of detection of the smells.

As a result, the GA yields detection rules. The generated detection rules are applied on

54

UML models to detect existing bad smells in them. The rules use combinations of

conditions to detect bad smells. This accomplishes the detection objective. The next

objective focus on correction of detected security bad smells. The investigated UML models

are transformed using XMI. Considering the detected security bad smells, the refactoring

strategies are applied to XML representations of UML models, which results in the

generation of refactored XML representations. The refactored XML representations are

exported back to corresponding refactored UML models. The refactored UML models are

processed using post refactoring conditions to ensure behavioral preservation. The quality

metrics are computed, before and after refactoring, using XML representations of UML

models. The comparison of quality metrics pre and post refactoring assists in assessing the

quality improvement of UML models from a security perspective. The basic flow of

activities is shown below in Figure 4.

Figure 4. Research Methodology Overview

55

4.2. Filtration of Security Bad Smells

The tagging of existing bad smells as security bad smells is a non-trivial task. It needs to be

assured that bad smells tagged as security bad smells violates one or more security

attributes. The filtering process is eased by the study of Suryanarayana et.al, in which they

classified many design smells [29]. Besides design smells classification, they also identified

the quality attributes each design smell tarnish. They also reported few violations of security

attributes by some design smells. This allows us to filter the model bad smells which violate

security attributes and safely tag them as security bad smells.

The existing catalog of model bad smells is used to analyze which model bad smell is

affecting the security attributes. If a bad smell from existing catalog violates any security

attribute, it is tagged as a security bad smell. For example, missing modularization is a

model bad smell reported by Suryanarayana et.al, and they identified understandability,

changeability, extensibility, reusability, testability and reliability as affected quality

attributes because of the presence of this bad smell [29]. According to the definitions

provided for information security (presented in section 2.2), reliability is one of the security

attributes. Hence, missing modularization can be filtered as a security bad smell. Similarly,

other security bad smells are filtered. This was an example of a security bad smell. The

forthcoming example identifies a bad smell as a non-security bad smell using the same

procedure. According to Suryanarayana et.al, imperative abstraction is a design smell and

impacts understandability, changeability, extensibility, reusability and testability [29].

Since none of these quality attributes are related to security as per the security definitions

(presented in section 2.2), this bad smell is not filtered by our process. In a similar manner,

56

other non-security bad smells are identified. The brief definition of each security bad smell,

along with the security requirements it violates, and appropriate refactoring, are presented

in Appendix C.

In the scope of our research, we are focusing on three security bad smells in each model.

Table 8 lists the security bad smells considered in each model. The brief definition of each

security bad smell, along with the security requirements it violates, and appropriate

refactoring, are presented in Appendix C. All three models have two (missing and broken

modularization) common security bad smells and one different security bad smell. Multiple

instances of same bad smell are ensured to have diversity in our solution.

Table 8. Investigated security bad smells in each model

Use case diagram Sequence diagram Class diagram

Missing hierarchy Missing modularization Missing modularization

Missing modularization Broken modularization Broken modularization

Broken modularization Unutilized abstraction Deficient encapsulation

4.3. Detection Approach

The gaps identified in the literature are addressed by our proposed detection and correction

approaches. The idea of detection approach is inspired by the technique presented by Ouni

et.al [8], with changes lie in GA process, specifically for crossover and mutation operations.

Another distinction lies in the consideration of security bad smells rather than normal class

bad smells. The different set of studied bad smells enforces the use of a different set of

quality metrics. In addition, our major contribution resides in the application of our

approach on use case diagrams and sequence diagrams.

57

4.3.1. Approach Overview

The detection rules are generated using security bad smells examples through the

application of a genetic algorithm. This step takes bad smells examples and quality metrics

as inputs and generates a set of rules. The detection rules use a set of metrics and their

values to detect a specific defect. The quality metrics values are collected automatically

through SDMetrics tool [93], except for sequence diagrams. The set of metrics converging

to a bad smell is used as a rule for the detection of that specific bad smell. The best-fitted

solution, obtained from genetic algorithm application, carries the set of rules which detects

a maximum number of bad smells. For instance, the following rule identifies whether a

given class is a blob or not.

Rule: if (numberOfAttributes > 10 AND numberOfMethods > 20 AND KLOC > 5000) Then

Blob.

In this example, these three metrics measure a class to be a blob or not. If the metrics values

of a given class exceed the values specified in the above rule, the blob is detected.

4.3.2. GA adaptation to Detection Approach

This section demonstrates the application of genetic programming in the context of bad

smells detection. Genetic programming is a heuristic search based approach based on the

Darwinian theory of evolution [94]. It explores the search space to find a best-fitted solution

for a specific problem. The definition of the following elements is necessary to apply

genetic programming to current problem:

 Individual formulation.

 Population creation from individuals.

58

 Fitness function computation to evaluate the fitness of an individual in solving the

problem.

 Selection of individuals for the creation of new population.

 New individual creation through crossover and mutation for the purpose of

exploring search space.

 New population generation.

The abstract view of our applied genetic algorithm is summarized below in Figure 5. The

algorithm takes quality metrics and security bad smells examples as inputs and yields the

best solution that corresponds to a set of detection rules that best detect the bad smells in

models. Lines 1-2 forms the initial population of a genetic algorithm; comprising of

individuals. An individual is represented by a set of rules with corresponding bad smells.

The set of all individuals formulates a population. Lines 4 -13 represents the main genetic

algorithm loop. It explores the search space and constructs new population. The quality of

individuals is evaluated in each iteration. The expression in line 9 saves the individual

carrying best fitness. The new population is generated by selecting the comparatively best-

fitted individuals from existing population and then exposed to crossover and mutation

operations. During crossover, the selected pair of parents produces two new individuals.

The mutation operator ensures solution diversity in both parents and children. The

algorithm terminates when an individual identifies maximum defects present in the given

model. At the end, the algorithm returns the best solution containing rules that are capable

of identifying maximum defects in a model.

59

Input:

Quality metrics

Security bad smells examples

Process:

1. I = set of rules

2. P = set of I

3. M = model

4. repeat

5. for all I in P do

6. detected bad smells = execute_rules(M);

7. fitness (I) = numberOfDetectedBadSmells;

8. end for

9. best_solution = best_fitness(I);

10. P = new_population(P);

11. it = it + 1;

12. until it = max_bad_smells;

13. return best_solution;

Output:

best_solution

Figure 5. A high-level GA adaptation for detection

a) Individual and population representation

An individual is comprised of a set of rules having IF-THEN statements. The expressions

in the rules are a combination of OR and AND logical operators. IF statement executes the

conditions with quality metrics to detect a bad smell and if the IF statement returns true, the

corresponding bad smell exists in the model. Each individual is composed of three rules

with each rule is exploring for a specific bad smell. An instance of an individual

representation containing rules for bad smells detection in the sequence diagram is shown

in Figure 6. If the number of associations (NAss), the number of invocations (NInvoc), the

number of received messages (NRec) and the number of coupled classes (CBO) of a class

in sequence diagram equal or exceed the specified thresholds, then the specified security

bad smell exists in the given sequence diagram. Only the description of the individual

formulation is presented here, the definitions of the quality metrics are presented in chapter

5, while explaining variables.

60

R1: IF (NAss(c) >= 38 AND (NInvoc(c) >= 11 AND NRec(c) >= 19) AND CBO(c) >= 3) THEN missing

modularization(c)

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 0 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken

modularization(c)

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized

abstraction(c)

Figure 6. Individual representation

The number of individuals depends on the number of rules, which further depends on a

number of bad smells. The initial population is formed by the union of all the individuals.

The size of the initial population depends on a number of individuals. To reiterate, the

greater the number of rules, the more the individuals can be formed. So the size of the

population is indirectly contingent upon the quantity of rules.

b) Selection

For the purpose of crossover and mutation, the individuals need to be selected. The selection

is based on the relative fitness of individuals. In each iteration, the fitness value is calculated

for every individual and two-third of the relatively best-fitted individuals are selected. The

rest one-third is discarded in each iteration. The discarded one-third of the population is

regenerated from the selected two-third of the population through crossover and mutation.

c) Crossover

It is understood that an individual is composed of three rules with each rule focusing on a

single bad smell. For a crossover, one of the three rules from an individual is randomly

selected and swapped with the same bad smell rule in another individual. This way two new

individuals are created. For example, if two individuals I1 and I2 are randomly selected for

crossover, R1 in I1 will be swapped with R1 of I2. The swapping leads to the introduction

of two new individuals I1` and I2`. I1` has R1 of I2, and R2 and R3 of I1, whereas, I2` has

R2 and R3 of I2 and R1 of I1. This stipulates new children (I1` and I2`) for having

61

information from both parents (I1 and I2).

d) Mutation

The purpose of mutation is to encompass diversity in solution. In our algorithm, the

mutation is achieved by modifying the value of quality metrics. The algorithm randomly

selects an individual, followed by a rule and then a metric, whose value will be changed.

The modification in the metric value can be in the form of increase or decrease. The decision

of either increasing or decreasing is also randomized. The metric value is either increased

by one or decreased by one depending on the generated random value. For example,

suppose the individual presented in Figure 6 is randomly selected, then R1 and then metric

NInvoc. Random value generation also suggests to increase the metric value, then the

mutation is achieved by adding one to the current value, making it 12.

e) Fitness evaluation

The quality of an individual is only indicated by how well the encapsulated rules have

performed in detecting security bad smells. The definition of our applied fitness function is

simple yet effective. Fitness function calculates the number of detected bad smells against

the existing bad smells in a model. The fitness value of an individual is maximized if the

rules belonging to that individual are able to detect all the defects present in a given model.

If a rule is able to detect a bad smell, a value of one is added to its individual’s fitness and

if the rule is unable to suspect a bad smell, zero is added to the fitness value. The more the

rules, present in the individual, detect bad smells, the greater the fitness value is. The

individuals having relatively greater fitness values are selected for crossover and mutation

operations.

62

4.4. Correction Approach

The correction of security bad smells is achieved through model transformation. The

considered UML models are first transformed using XMI, then quality metrics are extracted

from them. The XML representations of UML model diagrams are corrected based on the

related refactoring of the security bad smells identified in them. XML provides sufficient

information about the transformed model. The information is presented in the form of tags,

which makes information extraction convenient. The detected security bad smells in a UML

model can be traced in the corresponding XML representation. The tags are then modified

manually according to the refactoring techniques for the eradication of the detected smells.

Once the refactoring is successfully applied, the corrected XML representations are

exported back to corresponding UML models. This way, the collected UML models are no

longer hosting security bad smells. The more description about the correction approach,

using a use case diagram as an instance, can be found in section 5.2.4.

4.5. Behavioral Consistency

The consistency approach that we apply in our UML refactoring is post-condition based. It

was mentioned while explaining refactoring process, that consistency can be checked via

pre-conditions or post-conditions or both. In this research, we opt for post-conditions

consistency approach. We formulate some conditions before refactoring and once the

refactoring is performed, the conditions are validated. For instance, in a use case diagram,

where refactoring strategy deletes a use case, it must be checked after refactoring whether

the functionality still exists or not. The use case diagram should be skimmed to ensure the

presence of that functionality. Usually deleting a use case refactoring is performed if the

63

use case is an inclusion use case and is included by a single use case. The inclusion use case

can be removed and the related functionality is assumed to be encapsulated in the included

use case. For this instance, it must be validated that included use case contains the inclusion

use case functionality. The illustrations about how corrections of security bad smells are

validated in terms of behavioral consistency are presented in chapter 5 for each investigated

UML model.

4.6. Security Improvement Validation

The assessment on security improvement in UML models as a result of refactoring is

achieved through statistical analysis of quality metrics. The specified quality metrics are

calculated pre and post refactoring for each UML model, allowing observing the change in

metrics values. It is expected that the metrics values will change as a result of refactoring

but the evidence of how significant the change is, can only be assessed through statistical

analysis. For this purpose, the pair-wise t-test is chosen. The pair-wise t-test is beneficial in

our case because it reflects the significant change in a pair of values. Since we have metrics

values before and after refactoring, it is an appropriate statistical test to execute, which can

conclusively suggest on significant improvement of security as a result of refactoring. The

security improvement validation is performed in chapter 5 for each investigated UML

model.

64

5 CHAPTER 5

MODEL REFACTORING TO SECURITY

The purpose of this chapter is to provide details on the application of our detection and

correction approaches on considered UML models to achieve the goals of this research.

This chapter also explains our experimental setup and presents the obtained results. The

explanations related to experiments are presented accordingly to the guidelines provided by

Jeditschka et.al [17]. Since our work covers multiple UML models (class diagram, sequence

diagram and use case diagram), the illustrations of our approaches are presented separately

for each model.

5.1. Experimental Goals

The main experimental goal is presented below in the form of GQM (Goal Question Metric)

approach [95]. The goal is to:

“Analyze the model refactoring to security bad smells for the purpose of improving software

quality with respect to security”

The achievement of the main goal can be broken down into multiple sub-goals. The sub-

goals include successful detection and correction of security bad smells and to what extent

refactoring can improve the software in terms of security. To reiterate, following are our

research questions and our experiments aim to address them:

RQ1: To what extent can our proposed detection approach detect security bad smells in

65

UML models?

RQ2: To what extent can our proposed correction approach rectify security bad smells in

UML models?

RQ3: To what extent can refactor to security bad smells improve security aspects of UML

models?

The basic mechanisms to answer these research questions are as follows:

For RQ1, existing security bad smells examples along with quality metrics are used to

evaluate the recall of our proposed detection approach.

For RQ2, the correction efficacy is computed in terms of how many security bad smells are

eradicated by our correction approach.

For RQ3, we use the t-test statistical analysis of quality metrics.

5.2. Experimental Design for Use Case Diagrams

This section aims to provide details on our experiment with use case diagrams. The

following subsections describe our experiment in terms of experimental materials,

variables, proposed hypotheses, experimental tasks, results and hypotheses testing.

5.2.1. Experimental Materials

Four use case diagrams belonging to four different systems are used in experiments with

use case diagrams. The investigated use case diagrams can be found online [96]. The

selection of the use case diagrams is achieved through random sampling to avoid any

biasness towards our results. The descriptive statistics about the four investigated use case

66

diagrams are presented in Table 9. The statistics are presented in terms of number of use

cases present in the system, the number of actors interacting with the system, number of

include relationships and number of extends relationships. The numbers of use cases and

actors are evenly balanced in selected use case diagrams.

Table 9. Statistics of investigated use case diagrams

System Use cases Actors Includes Extends

ATM system (Figure 7) 10 3 3 3

HR system (Figure 8) 8 4 3 4

Restaurant system (Figure 9) 13 4 1 10

Travel agency system (Figure 10) 9 5 1 6

As shown earlier in Table 8, the investigated security bad smells in the use case diagram

are missing hierarchy, broken modularization and missing modularization. Multiple

instances (total 27) of these three security bad smells can be seen in investigated use case

diagrams. The multiple instances of same bad smell allow diversity in generated rules,

which contribute to the solution’s effectiveness.

Figure 7 shows the use case diagram of an ATM system [96]. The system provides a variety

of services mainly system maintenance, transaction, login etc. Three actors (Administrator,

Customer and Bank) are interacting with the system. The system offers four types of

transactions: deposit, balance check, withdraw and print receipt having generalization

relationships. Transaction and system maintenance require actor’s login so include

relationships are present. Both these use cases can also lead to the exceptional execution of

‘Bad Pin’ use case. The given ATM system contains three security bad smells, namely,

missing hierarchy, broken modularization and missing modularization. The instances where

these bad smells are present are listed as follows:

Missing hierarchy:

67

UB1: Actor ‘Bank’ is accessing ‘System Reporting’ extension use case.

Missing modularization:

UB2: ‘Bad Pin’ use case is extending two use cases: ‘System Maintenance’ and

‘Transaction’.

Broken modularization:

UB3: ‘System Shutdown’ is included by just one use case ‘System Maintenance’.

Figure 7. Use case diagram of ATM system

68

The use case diagram of human resource system is shown in Figure 8 [96]. It provides

multiple services like update benefits, elect reimbursement from health care, elect stock

purchase and issue purchase invoice. Besides getting benefits, Employee has the option of

electing reimbursement and stock purchase. The stock entity is responsible for electing and

purchasing of stock. The purchase invoice of stock is issued by an HR representative. The

presented HR system contains three security bad smells: missing hierarchy, broken

modularization and missing modularization. The instances where these bad smells occur

are listed as follows:

Missing hierarchy:

UB4: Actor ‘Health Care Dept.’ is accessing ‘Elect Reimbursement from Health Care’

extension use case.

UB5: Actor ‘Stock Entity’ is accessing ‘Elect Stock Purchase’ extension use case.

Missing modularization:

UB6: ‘Elect Stock Purchase’ use case is extending three use cases: ‘Update Benefits’,

‘Provides Stock’ and ‘Issue Purchase Invoice’.

Broken modularization:

UB7: ‘Update Dental Plan’ is included by just one use case ‘Update Benefits’.

UB8: ‘Update Insurance Plan’ is included by just one use case ‘Update Benefits’.

UB9: ‘Update Medical Plan’ is included by just one use case ‘Update Benefits’.

69

Figure 8. Use case diagram of HR system

70

Figure 9 shows the use case diagram of a restaurant system [96]. The main services offered

by the system includes order food, cook food, serve food, eat food and pay for food. The

presented restaurant system contains three security bad smells: missing hierarchy, broken

modularization and missing modularization. The instances where these bad smells occur

are listed as follows:

Missing hierarchy:

UB10: Actor ‘Waiter’ is accessing ‘Order Wine’ extension use case.

UB11: Actor ‘Customer’ is accessing ‘Order Wine’ extension use case.

UB12: Actor ‘Chef’ is accessing ‘Order Wine’ extension use case.

UB13: Actor ‘Waiter’ is accessing ‘Serve Wine’ extension use case.

UB14: Actor ‘Customer’ is accessing ‘Drink Wine’ extension use case.

UB15: Actor ‘Customer’ is accessing ‘Pay for Wine’ extension use case.

UB16: Actor ‘Waiter’ is accessing ‘Pay for Wine’ extension use case.

Missing modularization:

UB17: ‘Chinese’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’.

UB18: ‘Italian’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’.

UB19: ‘Indian’ use case is extending two use cases: ‘Order Food’ and ‘Pay for Food’.

Broken modularization:

UB20: ‘Pay tip’ is included by just one use case ‘Pay for Food’.

71

Figure 9. Use case diagram of restaurant system

72

The use case diagram of a travel agency system is presented in Figure 10 [96]. The system

is responsible for booking and issuance of tickets and tours. The presented travel agency

system carries three security bad smells: missing hierarchy, broken modularization and

missing modularization. The instances where these bad smells occur are listed as follows:

Missing hierarchy:

UB21: Actor ‘Travel Agent’ is accessing ‘Book Airline Tickets’ extension use case.

UB22: Actor ‘Airline Company’ is accessing ‘Book Airline Tickets’ extension use case.

UB23: Actor ‘Client’ is accessing ‘Book Airline Tickets’ extension use case.

UB24: Actor ‘Airline Company’ is accessing ‘Pay for Airline Tickets’ extension use

case.

Missing modularization:

UB25: ‘Book Airline Tickets’ use case is extending two use cases: ‘Book Tour’ and

‘Arrange Tour’.

UB26: ‘Pay Commission’ use case is extending three use cases: ‘Pay Travel Agent’,

‘Pay for Airline Tickets’ and ‘Pay for Tour’.

Broken modularization:

UB27: ‘Pay for Airline Tickets’ is included by just one use case ‘Pay Travel Agent’.

73

Figure 10. Use case diagram of travel agency system

The collection of quality metrics is accomplished through SDMetrics [93]. The construction

of use case diagrams is performed using Enterprise Architect [97]. This tool is also useful

in exportation and importation of use case diagrams to and from XML. Visual Studio [98]

is utilized to implement the genetic algorithm.

5.2.2. Variables

The dependent variable in this experiment is model quality. The independent variables are

security bad smells and quality metrics. During detection, the recall for the security bad

74

smells in investigated use case diagrams is the measure of the independent variable. For

correction, the independent variable is correction efficacy in terms of removal percentage

of security bad smells. The description of instances of security bad smells in investigated

use case diagrams is already provided in section 5.2.1. The other type of independent

variable is quality metrics. This type is for the purpose of quantitative validation of security

improvement. The quality metrics selected for use case diagram are as follows:

 isExtension identifies if a given use case(u) is an extension use case or not.

 numAssMetric is to count the number of association(s) between a use case and

actor(s).

 extendingMetric is calculating a number of use cases, the extension use case is

extending.

 isInclusion means if a use case is included by another use case or not.

 includedMetric counts the number of use cases, an inclusion use case is included

by.

5.2.3. Proposed Hypotheses

The hypotheses are formulated to statistically address the posed research questions.

Following hypotheses are formulated to statistically validate the effectiveness of our

proposed approaches and make statistical judgment on security improvement in use case

diagrams:

Hypothesis 1 (RQ1): The proposed detection technique is able to identify a significant

number of security bad smells in the investigated use case diagrams.

75

Null Hypothesis (H01): The detection approach is unable to identify a significant number

of security bad smells in the investigated use case diagrams as indicated by its recall.

Alternate Hypothesis (H11): The detection approach is able to identify a significant number

of security bad smells in the investigated use case diagrams as indicated by its recall.

The null hypothesis (H01) is rejected in the case, where, the Detection Recall (DR) of

detection technique in terms of identifying the security bad smells in the investigated use

case diagrams is significant. The quantification of formulated hypothesis is necessary for

later testing. The quantification of our hypothesis is presented below in terms of detection

recall:

Null Hypothesis (H01): DR < 80%

Alternate Hypothesis (H11): DR >= 80%

Hypothesis 2 (RQ2): The proposed correction technique is able to remove a significant

number of security bad smells in the investigated use case diagrams.

Null Hypothesis (H02): The correction approach is unable to remove a significant number

of security bad smells in the investigated use case diagrams as indicated by its correction

effectiveness.

Alternate Hypothesis (H12): The correction approach is able to remove a significant number

of security bad smells in the investigated use case diagrams as indicated by its correction

effectiveness.

The null hypothesis (H02) is rejected in the case, where, the Correction Efficacy (CE) of

correction technique in terms of removing the security bad smells in the investigated use

case diagrams is significant. The quantification of formulated hypothesis is necessary for

76

later testing. The quantification of our hypothesis is presented below in terms of correction

efficacy:

Null Hypothesis (H02): CE < 80%

Alternate Hypothesis (H12): CE >= 80%

Hypothesis 3 (RQ3): Refactoring to security bad smells improves the investigated use case

diagrams from a security perspective.

Null Hypothesis (H03): No difference is observed in security quality of the investigated use

case diagrams as a result of refactoring to security bad smells as indicated by quality

metrics.

Alternate Hypothesis (H13): A Significant difference is observed in security quality of the

investigated use case diagrams as a result of refactoring to security bad smells as indicated

by quality metrics.

The null hypothesis (H03) is rejected in the case, where, quality metrics values before

refactoring are not equal to quality metrics values after refactoring. The quantification of

formulated hypothesis is necessary for later testing. The quantification of our hypothesis is

presented below in terms of p-value:

Null Hypothesis (H03): p-value > 0.05

Alternate Hypothesis (H13): p-value < 0.05

5.2.4. Experimental Tasks

Detection: The initial individuals are formed by governing rules from existing security bad

smells in four use case diagrams. The aggregation of individuals creates initial population.

The population undergoes selection, crossover and mutation operations as described in

77

section 4.2.2. Once the genetic algorithm reaches its terminating condition, it yields a

solution carrying best fitness. The selection of quality metrics and formation of the rules

are accomplished through the measurement of metrics before and after refactoring. This

allows us to identify the quality metrics which are affected by the refactoring to a specific

bad smell, and later in the formulation of its rule.

Correction: The corrections in use case diagrams are accomplished by applying relevant

refactoring techniques (mentioned in Table 3) to the identified security bad smells. The

mapping of the listed anti-patterns to security bad smells are based on their descriptions and

violations towards security aspects. The correction approach (described in Section 4.4) uses

model transformation using XMI for refactoring purpose. The studied use case diagrams

are exported to XML using Enterprise Architect. The relevant refactoring is applied by

modifying/adding/deleting the tags in the XML representation. For example, in ATM

system (Figure 7), there exists a security bad smell ‘missing hierarchy’, where actor ‘Bank’

is accessing ‘System Reporting’ extension use case. This smell is eradicated by removing

the association between ‘Bank’ and ‘System Reporting’. The correction is made manually

in XML representation of ATM system. The abridged version is shown in Figure 11. Only

the tags affected from missing hierarchy are presented to ease the understandability. The

first ‘links’ tag is carrying two ‘association’ tags, the second one represents the association

between ‘Bank’ and ‘System Reporting’. This ‘Association’ tag needs to be removed from

XML. The other ‘links’ tag contains ‘UseCase’ and ‘Association’ tags. This association

needs to also be removed because it is adding to missing hierarchy problem. The rest are

the ‘connector’ tags specifying the association’s source and target use case components.

Since the missing hierarchy association has two components involved, so there are two

78

connectors. In succession to other tag removals, both these connectors need to be removed

to completely get rid of missing hierarchy security bad smell in ATM system. The other

security bad smells are removed using similar process through related refactoring

techniques specified in Table 3.

<links>

<Association

xmi:id="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A"start="EAID_0CE06897_6B0D_449c_87

18_113528092FD6" end="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"/>

<Association

xmi:id="EAID_6D15C31C_D6BF_4f70_A445_D453AA6FC964"start="EAID_0CE06897_6B0D_449c_8

718_113528092FD6" end="EAID_E4BBC282_8498_47f7_AF46_36B965BB5007"/>

</links>

<links>

<UseCase

xmi:id="EAID_122D424B_081A_4c7c_A30F_F16D6EBE6080"start="EAID_2016AA29_DDF7_4c6d_95

04_06A32D5B51EC" end="EAID_32ACC616_C186_4ca9_A9E6_027D300B43F3"/>

<Association

xmi:id="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A"start="EAID_0CE06897_6B0D_449c_87

18_113528092FD6" end="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC"/>

</links>

<connector xmi:idref="EAID_02E0767F_B82B_4356_B55C_CA5FB4A2710A">

<source xmi:idref="EAID_0CE06897_6B0D_449c_8718_113528092FD6">

 <model ea_localid="49" type="Actor" name="Bank"/>

 <role visibility="Public" targetScope="instance"/>

 <type aggregation="none" containment="Unspecified"/>

 <constraints/>

 <modifiers isOrdered="false" changeable="none" isNavigable="false"/>

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Unspecified;"/>

 <documentation/>

 <xrefs/>

 <tags/>

</source>

<target xmi:idref="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC">

 <model ea_localid="51" type="UseCase" name="System Reporting"/>

 <role visibility="Public" targetScope="instance"/>

 <type aggregation="none" containment="Unspecified"/>

 <constraints/>

 <modifiers isOrdered="false" changeable="none" isNavigable="true"/>

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Navigable;"/>

 <documentation/>

 <xrefs/>

 <tags/>

</target>

 <model ea_localid="43"/>

 <properties ea_type="Association" direction="Source -> Destination"/>

 <modifiers isRoot="false" isLeaf="false"/>

 <parameterSubstitutions/>

 <documentation/>

79

<appearance linemode="3" linecolor="-1" linewidth="0" seqno="0" headStyle="0" lineStyle="0"/>

 <labels/>

 <extendedProperties virtualInheritance="0"/>

 <style/>

 <xrefs/>

 <tags/>

</connector>

<connector xmi:idref="EAID_122D424B_081A_4c7c_A30F_F16D6EBE6080">

<source xmi:idref="EAID_2016AA29_DDF7_4c6d_9504_06A32D5B51EC">

 <model ea_localid="51" type="UseCase" name="System Reporting"/>

 <role visibility="Public" targetScope="instance"/>

 <type aggregation="none" containment="Unspecified"/>

 <constraints/>

 <modifiers isOrdered="false" changeable="none" isNavigable="false"/>

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Non-Navigable;"/>

 <documentation/>

 <xrefs/>

 <tags/>

</source>

<target xmi:idref="EAID_32ACC616_C186_4ca9_A9E6_027D300B43F3">

 <model ea_localid="50" type="UseCase" name="System Maintenance"/>

 <role visibility="Public" targetScope="instance"/>

 <type aggregation="none" containment="Unspecified"/>

 <constraints/>

 <modifiers isOrdered="false" changeable="none" isNavigable="true"/>

 <style value="Union=0; Derived=0; AllowDuplicates=0; Owned=0; Navigable=Navigable;"/>

 <documentation/>

 <xrefs/>

 <tags/>

</target>

 <model ea_localid="32"/>

<properties ea_type="UseCase" subtype="Extends" stereotype="extend" direction="Source ->

Destination"/>

 <modifiers isRoot="false" isLeaf="false"/>

 <documentation/>

<appearance linemode="3" linecolor="-1" linewidth="0" seqno="0" headStyle="0" lineStyle="0"/>

 <labels mb="
«extend»"/>

 <extendedProperties conditional="
«extend»" virtualInheritance="0"/>

 <style/>

 <xrefs/>

 <tags/>

</connector>

Figure 11. Abridged XML of ATM system

Behavioral consistency: The behavioral consistency of the refactored use case diagrams

with the source use case diagrams is performed by checking post conditions. The presence

of few post conditions is ensured for each security bad smell. The problem of missing

hierarchy is itself an incorrect behavior instance, so the removal of it makes the use case

80

diagram behaviorally sound. In some cases, where an actor is associated only with an

extension use case, the refactoring makes the actor an unassociated entity in the use case

diagram. Since, the actor is involved in the inappropriate execution of a functionality before

refactoring, and becomes an unassociated actor, it can be removed as well. This does not

impact the behavior of a use case diagram because an unassociated actor is not contributing

to the diagram. The refactoring to broken modularization encapsulates the inclusion use

case in the included use case. The post refactoring condition to validate behavioral

consistency is the presence of inclusion functionality. Whenever included use case

executes, the inclusion use case automatically executes. So, moving the functionality of

inclusion use case to the included use case does not change the behavior. The new combined

use case executes both the functionalities (included and inclusion) as one. The refactoring

to missing modularization breaks the extension use case into the number of use cases which

it extends. Before refactoring, the extension use case is extending multiple use cases, which

in fact violates the exceptional behavioral confined for a use case. The breaking of

exceptional functionalities for each extended use case allows correct behavior. The

refactoring does not only ensure the consistency but also it ensures the behavioral

correctness.

5.2.5. Results

Detection: The GA yields a set of rules which represents the best solution. The solution

generated by the execution of GA with use case diagrams is shown in Figure 12. R1 is

measuring for missing hierarchy using two conditional statements having isExtension and

numAssMetric variables. For example, in Figure 7, there exists an association between

‘System Reporting’ extension use case and ‘Bank’ actor, which is an instance of missing

81

hierarchy security bad smell. Similarly, R2 is focusing on detecting missing modularization

bad smell. This rule also uses two conditional statements with variables: isExtension and

extendingMetric. For example, in Figure 7, ‘Bad Pin’ use case is extending two use cases,

which is a clear missing modularization problem. Lastly, R3 is concentrating on broken

modularization. It uses two conditional statements having variables: isInclusion and

includedMetric. For example, in Figure 7, ‘System Shutdown’ use case is included by a use

case. This should be refactored because it is causing broken modularization problem.

R1: IF (isExtension (u) == true AND numAssMetric (u) >= 1) THEN missing hierarchy

R2: IF (isExtension (u) == true AND extendingMetric (u) >= 2) THEN missing modularization

R3: IF (isInclusion (u) == true AND includedMetric (u) == 1) THEN broken modularization

Figure 12. Best solution generated for use case diagrams

The best set of rules is then applied on investigated use case diagrams to evaluate its recall

efficiency. The set of rules governing best solution are able to identify all, 27, security bad

smells present in examined four use case diagrams, meaning, detection approach has 100%

recall. To further confirm this, the detected smells are also validated manually.

Correction: The correction procedure along with the instance of ATM system is provided

in section 5.2.4. The Same procedure is applied to remove security bad smells in other

investigated use case diagrams. Our correction technique is able to remove all security bad

smells in investigated use case diagrams. We are presenting the details about how each

refactoring is applied to the corresponding security bad smell in each investigated use case

diagram in the form of tables. Table 10, 11, 12 and 13 summarizes the refactoring

application to security bad smells in ATM System, Human Resource System, Restaurant

System and Travel Agency System respectively. The resulting use case diagrams of ATM

82

System, Human Resource System, Restaurant System and Travel Agency System after

refactoring application are depicted in Figure 13, 14, 15, 16 respectively. It can be observed

from the refactored diagrams that the identified security bad smells are removed.

Figure 13. Refactored use case diagram of ATM system

Table 10. Applied refactoring in ATM system

Security bad smell ID Applied refactoring

UB1 Drop association between Bank and System Reporting

UB2 Split Bad Pin extension use case into two extension use cases

UB3 Drop System Shutdown inclusion use case

83

Figure 14. Refactored use case diagram of HR system

Table 11. Applied refactoring in HR system

Security bad smell

ID

Applied refactoring

UB4 Drop association between health Care Dept. and Elect Reimbursement from

Health Care

UB5 Drop association between Stock Entity and Elect Stock Purchase

UB6 Split Elect Stock Purchase extension use case into three extension use cases

UB7 Drop Update Dental Plan inclusion use case

UB8 Drop Update Insurance Plan inclusion use case

UB9 Drop Update Medical Plan inclusion use case

84

Figure 15. Refactored use case diagram of restaurant system

85

Table 12. Applied refactoring in restaurant system

Security bad smell ID Applied refactoring

UB10 Drop association between Waiter and Order Wine

UB11 Drop association between Customer and Order Wine

UB12 Drop association between Chef and Order Wine

UB13 Drop association between Waiter and Serve Wine

UB14 Drop association between Customer and Drink Wine

UB15 Drop association between Customer and Pay for Wine

UB16 Drop association between Waiter and Pay for Wine

UB17 Split Chinese extension use case into two extension use cases

UB18 Split Italian extension use case into two extension use cases

UB19 Split Indian extension use case into two extension use cases

UB20 Drop Pay Tip inclusion use case

Figure 16. Refactored use case diagram of travel agency system

86

Table 13. Applied refactoring in travel agency system

Security bad smell ID Applied refactoring

UB21 Drop association between Travel Agent and Book Airline Tickets

UB22 Drop association between Airline Company and Book Airline Tickets

UB23 Drop association between Client and Book Airline Tickets

UB24 Drop association between Airline Company and Pay for Airline Tickets

UB25 Split Book Airline Tickets extension use case into two extension use cases

UB26 Split Pay Commission extension use case into three extension use cases

UB27 Drop Pay for Airline Tickets inclusion use case

5.2.6. Hypotheses Testing

To reiterate, we have formulated three hypothesis addressing our three research questions.

Each hypothesis is numerically validated as follows:

Hypothesis 1 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our

detection approach is measured. The null hypothesis (H01) can be rejected, if DR is

significant. Numerically, it is set that if DR is greater than or equal to 80%, then null

hypothesis (H01) can be rejected. Our detection approach shows a significant DR of 100%

while executing on investigated use case diagrams. The DR is greater than 80%, so null

hypothesis (H01) is rejected. This answers our RQ1 that our proposed detection approach is

able to detect significant number of the security bad smells in use case diagrams.

Hypothesis 2 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our

correction approach is measured. The null hypothesis (H02) can be rejected, if CE is

significant. In numerical terms, if CE is greater than or equal to 80%, the null hypothesis

(H02) can be rejected. Our correction approach shows overwhelming results by yielding a

significant CE of 100% in investigated use case diagrams. The CE is greater than 80%, so

null hypothesis (H01) is rejected. This addresses our RQ2 that our proposed correction

87

approach is able to remove significant number of the security bad smells in use case

diagrams.

Hypothesis 3 (RQ3): Statistical analysis is performed to conclude on the contribution of

refactoring in security improvement of use case diagrams. To statistically analyze whether

security has significantly improved in use case diagrams, we apply pair-wise t-test. The

pair-wise t-test is beneficial in this case as it would be able to identify the differences in

quality metrics as a result of refactoring. The p-value is computed with 95% confidence

using the pair-wise t-test. It is noticed that the computed p-value is 0.0001, which is less

than 0.05. This justifies significant security improvement in investigated use case diagrams

and subsequently, answers our RQ3. In succession to this observation, we can reject our

formulated null hypothesis (H03) with 95% confidence. By rejecting the null hypothesis, the

sub-goal of security improvement in use case diagrams is achieved. For reference, the

quality metrics values pre and post refactoring are provided in Appendix D.

5.3. Experimental Design for Sequence Diagrams

This section aims to provide details on our experiment with sequence diagrams. The

following subsections describe our experiment in terms of experimental materials,

variables, proposed hypotheses, experimental tasks, results and hypotheses testing.

5.3.1. Experimental Materials

Five sequence diagrams belonging to five different systems are used for the detection

purpose. The diagrams are gathered from an online source [96]. The selection of the

sequence diagrams is achieved through random sampling to avoid any biasness towards our

results. As mentioned earlier in Table 8, the investigated security bad smells in sequence

88

diagram are missing modularization, broken modularization and unutilized abstraction.

Multiple instances (total 20) of these three security bad smells can be seen in investigated

sequence diagrams. The multiple instances of same bad smell allow diversity in generated

rules, which contributes to solution effectiveness.

Figure 17 shows the sequence diagram of airline reservation system [96]. The diagram

comprises of five classes having associations among them except ‘Reservation System’

class. This class is assumed to be an unutilized abstract class. The presented airline

reservation system carries three security bad smells: missing modularization, broken

modularization and unutilized abstraction. The instances where these bad smells occur are

listed as follows:

Missing modularization:

SB1: ‘Customer’ class has a lot of associations and in-out calls or messages.

Broken modularization:

SB2: ‘Flight’ class has just one received call.

Unutilized abstraction:

SB3: ‘Reservation System’ is unassociated with any other class.

89

Figure 17. Sequence diagram of airline reservation system

90

Figure 18 shows the sequence diagram of hotel management system [96]. The diagram

comprises of nine classes having associations among them except ‘Staff’ class. This class

is assumed to be an unutilized abstract class. The presented hotel management system

carries three security bad smells: missing modularization, broken modularization and

unutilized abstraction. The instances where these bad smells occur are listed as follows:

Missing modularization:

SB4: ‘Receptionist’ class has a lot of associations and in-out calls or messages.

SB5: ‘Customer’ class has a lot of associations and in-out calls or messages.

Broken modularization:

SB6: ‘Stock’ class has just one received call.

SB7: ‘Food Items’ class has just one received call.

SB8: ‘Room Attendant’ class has just one received call.

Unutilized abstraction:

SB9: ‘Staff’ is unassociated with any other class.

91

Figure 18. Sequence diagram of hotel management system

92

Figure 19 shows the sequence diagram of library management system [96]. The diagram

comprises of six classes having associations among them except ‘Staff’ class. This class is

assumed to be an unutilized abstract class. The presented library management system

carries three security bad smells: missing modularization, broken modularization and

unutilized abstraction. The instances where these bad smells occur are listed as follows:

Missing modularization:

SB10: ‘Librarian’ class has a lot of associations and in-out calls or messages.

SB11: ‘User’ class has a lot of associations and in-out calls or messages.

Broken modularization:

SB12: ‘Manager’ class has just one received call.

Unutilized abstraction:

SB13: ‘Staff’ class is unassociated with any other class.

93

Figure 19. Sequence diagram of library management system

94

Figure 20 shows the sequence diagram of online movie ticketing system [96]. The diagram

comprises of eight classes having associations among them except ‘Visitor’ and ‘Ticket’

classes. These classes are assumed to be unutilized abstract classes. The presented online

movie ticketing system carries three security bad smells: missing modularization, broken

modularization and unutilized abstraction. The instances where these bad smells occur are

listed as follows:

Missing modularization:

SB14: ‘Registered User’ class has a lot of associations and in-out calls or messages.

Broken modularization:

SB15: ‘Cancel Ticket’ class has just one received call.

Unutilized abstraction:

SB16: ‘Visitor’ class is unassociated with any other class.

SB17: ‘Ticket’ class is unassociated with any other class.

95

Figure 20. Sequence diagram of online movie ticketing system

96

Figure 21 shows the sequence diagram of school management system [96]. The diagram

comprises of five classes having associations among them except ‘Employee’ class. This

class is assumed to be an unutilized abstract class. The presented school management

systems system carries three security bad smells: missing modularization, broken

modularization and unutilized abstraction. The instances where these bad smells occur are

listed as follows:

Missing modularization:

SB18: ‘Admin’ class has a lot of associations and in-out calls or messages.

Broken modularization:

SB19: ‘Class’ class has just one received call.

Unutilized abstraction:

SB20: ‘Employee’ class is unassociated with any other class.

97

Figure 21. Sequence diagram of school management system

Although SDMetrics tool provides the metrics values of sequence diagrams, the provided

set of metrics does not contribute to the investigated security bad smells in our research. So

quality metrics in sequence diagrams are calculated manually. The other tools such as

Visual Studio and Enterprise Architect are used in the same manner and for the same

purposes as for use case diagrams.

98

5.3.2. Variables

The dependent and independent variables are the same as described in section 5.2.2. The

independent variable for detection of security bad smells in investigated sequence diagrams

is detection recall. For correction, the independent variable is computed as how many

security bad smells are removed as a result of refactoring. The description of instances of

security bad smells in investigated sequence diagrams is already provided in section 5.3.1.

The other independent variable is quality metrics. The metrics are useful in the quantitative

validation of security improvement. The quality metrics selected for sequence diagram are

as follows:

 NAss is the number of in-out messages or calls, a class exhibits.

 NInvoc is the number of invoked calls of a class.

 NRec is the number of received messages for a class.

 CBO is the number of coupled classes with a class.

5.3.3. Proposed Hypotheses

Following hypotheses are formulated to statistically validate the effectiveness of our

proposed approaches and make statistical judgment on security improvement in sequence

diagrams:

Hypothesis 4 (RQ1): The proposed detection technique is able to identify a significant

number of security bad smells in the investigated sequence diagrams.

Null Hypothesis (H04): The detection approach is unable to identify a significant number

of security bad smells in the investigated sequence diagrams as indicated by its recall.

99

Alternate Hypothesis (H14): The detection approach is able to identify a significant number

of security bad smells in the investigated sequence diagrams as indicated by its recall.

The null hypothesis (H04) is rejected in the case, where, the Detection Recall (DR) of

detection technique in terms of identifying the security bad smells in investigated sequence

diagrams is significant. The quantification of formulated hypothesis is necessary for later

testing. The quantification of our hypothesis is presented below in terms of detection recall:

Null Hypothesis (H04): DR < 80%

Alternate Hypothesis (H14): DR >= 80%

Hypothesis 5 (RQ2): The proposed correction technique is able to remove a significant

number of security bad smells in the investigated sequence diagrams.

Null Hypothesis (H05): The correction approach is unable to remove a significant number

of security bad smells in the investigated sequence diagrams as indicated by its correction

effectiveness.

Alternate Hypothesis (H15): The correction approach is able to remove a significant number

of security bad smells in the investigated sequence diagrams as indicated by its correction

effectiveness.

The null hypothesis (H05) is rejected in the case, where, the Correction Efficacy (CE) of

correction technique in terms of removing the security bad smells in investigated sequence

diagrams is significant. The quantification of formulated hypothesis is necessary for later

testing. The quantification of our hypothesis is presented below in terms of correction

efficacy:

100

Null Hypothesis (H05): CE < 80%

Alternate Hypothesis (H15): CE >= 80%

Hypothesis 6 (RQ3): Refactoring to security bad smells improves the investigated

sequence diagrams from a security perspective.

Null Hypothesis (H06): No difference is observed in security quality of the investigated

sequence diagrams as a result of refactoring to security bad smells as indicated by quality

metrics.

Alternate Hypothesis (H16): A Significant difference is observed in security quality of the

investigated sequence diagrams as a result of refactoring to security bad smells as indicated

by quality metrics.

The null hypothesis (H06) is rejected in the case, where, quality metrics values before

refactoring are not equal to quality metrics values after refactoring. The quantification of

formulated hypothesis is necessary for later testing. The quantification of our hypothesis is

presented below in terms of p-value:

Null Hypothesis (H06): p-value > 0.05

Alternate Hypothesis (H16): p-value < 0.05

5.3.4. Experimental Tasks

Detection: The similar detection process is applied for sequence diagrams as is for use case

diagrams. The initial individuals are formed by governing rules from existing security bad

smells in five sequence diagrams. The aggregation of individuals creates initial population.

The population undergoes selection, crossover and mutation operations as described in

section 4.2.2. Once genetic algorithm reaches its terminating condition, it yields a solution

101

carrying best fitness.

Correction: The corrections in sequence diagrams are achieved by applying relevant

refactoring techniques (mentioned in Appendix C) to identified security bad smells. Once

again, same model transformation procedure (described in Section 4.4) is applied for

correction of sequence diagrams. The investigated sequence diagrams are exported using

XML to cater refactoring by modifying the XML representation. For example, in Airline

Reservation System (Figure 17), there exists a security bad smell ‘unutilized abstraction’,

where ‘Reservation System’ abstract class is not utilized at all. This smell is eradicated by

removing the ‘Reservation System’ abstract class from sequence diagram. This system is

first exported to XML representation and then the tags related to this abstract class are

removed. The other security bad smells are removed using the same process through related

refactoring techniques specified in Appendix C.

Behavioral consistency: Once again, for sequence diagram, the behavioral consistency is

fulfilled using post refactoring conditions. The unutilized abstraction does not contribute to

the sequence diagram, so the refactoring to this bad smell does not introduce any behavioral

consistency issue. The refactoring to broken modularization moves the method to the class

which it needs. Previously, the class is calling it from another class and violates multiple

security attributes. After refactoring, the functionality is moved to the class, which was

calling it from another class, leaving the behavior untouched. The refactoring to missing

modularization decomposes a class into two classes and distributes the relevant

functionalities according to their concerns. The most important post refactoring condition

to fulfill is the presence of all the functionalities after the decomposition. In this case, the

semantics are present and requires the involvement of the designer. Another condition to

102

fulfill is that the interactions of the decomposed class with other classes remain intact. In

other words, the sending and receiving of messages between the refactored class and other

classes should be present as they are supposed to be.

5.3.5. Results

Detection: Once the detection technique is applied on sequence diagrams, it generates the

best solution. The set of rules, representing best solution, yielded by the genetic algorithm

is shown in Figure 22. All three rules are measuring the bad smells by using four conditional

statements having variables: NAss, NInvoc, NRec, and CBO. R1, R2 and R3 are measuring

for missing modularization, broken modularization and unutilized abstraction respectively.

The computation of quality metrics is performed manually due to unavailability of tools.

The considered quality metrics and corresponding mapping of rules to specific bad smells

are extracted from Fourati et.al [71]. If the metrics values of class(c) equal or exceeds the

thresholds provided by these rules, then that class has a corresponding bad smell. The best

solution (shown in Figure 22) is then applied on investigated sequence diagrams to evaluate

its recall effectiveness. The set of rules governing best solution are able to identify 18 out

of 20 security bad smells present in examined five sequence diagrams, meaning, detection

approach has 90% recall. The two undetected security bad smells belong to missing

modularization and are present in Airline Reservation System and Library Management

System. The recall is validated manually as well to confirm the correct detection of security

bad smells. The acquired recall provides sufficient evidence to fulfill our RQ1, that our

proposed detection approach is able to detect a significant number of security bad smells in

sequence diagrams.

103

R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 4) AND CBO(c) >= 3) THEN missing

modularization(c)

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 1 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken

modularization(c)

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized

abstraction(c)

Figure 22. Best solution generated for sequence diagrams

Correction: The correction procedure along with the instance of ATM system is provided

in section 5.2.4. The Same procedure is applied to remove security bad smells in

investigated sequence diagrams. We are presenting the details about how each refactoring

is applied to the corresponding security bad smell in each investigated sequence diagram in

the form of tables. Table 14, 15, 16, 17 and 18 summarizes the refactoring application to

identified security bad smells in sequence diagrams of Airline Reservation System, Hotel

Management System, Library Management System, Online Movie Ticketing System and

School Management System respectively. The sequence diagrams of Airline Reservation

System, Hotel Management System, Library Management System, Online Movie Ticketing

System and School Management System after refactoring application are shown in Figure

23, 24, 25, 26 and 27 respectively. 19 out of 20 security bad smells are eradicated through

our correction approach, making 95% correction effectiveness.

Table 14. Applied refactoring in airline reservation system

Security bad smell ID Applied refactoring

SB1 Extract Visitor class from Customer class and move relevant methods to it

SB2 Move method to Booking System and remove Flight class

SB3 Remove reservation system abstract class

Table 15. Applied refactoring in hotel management system

Security bad smell ID Applied refactoring

SB4 Extract Assistant class from Receptionist class and move relevant methods to

it

SB5 Extract Resident class from Customer class and move relevant methods to it

SB6 Move method to Manager class and remove Stock class

SB7 Move method to Chef class and remove Food Items class

SB8 Move method to Chef class and remove Room Attendant class

SB9 Remove Staff abstract class

104

Figure 23. Refactored sequence diagram of airline reservation system

105

Figure 24. Refactored sequence diagram of hotel management system

Table 16. Applied refactoring in library management system

Security bad smell ID Applied refactoring

SB10 Extract Assistant class from Librarian class and move relevant methods to it

SB11 Extract Premium User class from User class and move relevant methods to it

SB12 Move method to Publisher class and remove Manager class

SB13 Remove Staff abstract class

106

Figure 25. Refactored sequence diagram of library management system

107

Figure 26. Refactored sequence diagram of online movie ticketing system

Table 17. Applied refactoring in online movie ticketing system

Security bad smell ID Applied refactoring

SB14 The smell is automatically removed by refactoring other smells

SB15 Move method to Registered User class and remove Cancel Ticket class

SB16 Remove Visitor abstract class

SB17 Remove Ticket abstract class

108

Figure 27. Refactored sequence diagram of school management system

Table 18. Applied refactoring in school management system

Security bad smell ID Applied refactoring

SB18 Extract Department class from Admin class and move relevant methods to it

SB19 Move method to Admin class and remove Class class

SB20 Remove Employee abstract class

109

5.3.6. Hypotheses Testing

To reiterate, we have formulated three hypotheses to address corresponding three research

questions. Each hypothesis is focusing on a specific research question. The hypotheses are

numerically validated as follows:

Hypothesis 4 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our

detection approach is measured. The null hypothesis (H04) can be rejected, if DR is

significant. Numerically, it is set that if DR is greater than or equal to 80%, then null

hypothesis (H04) can be rejected. While executing on investigated sequence diagrams, our

detection approach shows a significant DR of 90%. The DR is greater than 80%, so null

hypothesis (H04) is rejected. This answers our RQ1, that our proposed detection approach

is able to detect significant number of the security bad smells in sequence diagrams.

Hypothesis 5 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our

correction approach is measured. The null hypothesis (H05) can be rejected, if CE is

significant. In numerical terms, if CE is greater than or equal to 80%, then the null

hypothesis (H05) can be rejected. Our correction approach shows notable results by yielding

a significant CE of 95% in investigated sequence diagrams. The CE is greater than 80%, so

null hypothesis (H05) is rejected. This addresses our RQ2 that our proposed correction

approach is able to remove significant number of the security bad smells in sequence

diagrams.

Hypothesis 6 (RQ3): The pair-wise t-test is performed to statistically analyze the significant

security improvement in sequence diagrams. In our case, the pair-wise t-test is beneficial

110

because it would be able to identify the differences in quality metrics as a result of

refactoring. The p-value is computed with 95% confidence through a pair-wise t-test. The

computed p-value is 0.04, which is less than 0.05. Hence, it can be concluded that security

in investigated sequence diagrams has improved significantly. In succession to this

observation, we can reject our formulated null hypothesis (H06) with 95% confidence. This

accomplishes the sub-goal of security improvement in sequence diagrams and answers our

RQ3. For reference, the quality metrics values pre and post refactoring are provided in

Appendix D.

5.4. Experimental Design for Class Diagrams

This section aims to provide details on our experiment with class diagrams. The following

subsections describe our experiment in terms of experimental materials, variables, proposed

hypotheses, experimental tasks, results and hypotheses testing.

5.4.1. Experimental Materials

Four open source java projects are used for validation of our detection approach. The

projects include JGraphX, Cobertura, GanttProject, JHotDraw. The rationale for selecting

these projects is their frequent consideration for bad smells investigation and refactoring [7,

8, 34, 99]. The projects are collected from online source [100]. Table 19 shows the statistics

of the four selected projects in terms of a number of classes and number of each investigated

security bad smell. JGraphX shows the relatively significant number of security bad smells

in comparison with other projects. Overall, projects give a decent number of security bad

smells instances for detection analysis. Similar to use case diagrams and sequence diagrams,

other tools such as SDMetrics and Visual Studio are utilized. IntelliJIDEA and Eclipse are

111

utilized for automated refactoring in class diagrams. In most of the refactoring, IntelliJIDEA

is used because its effectiveness in handling bad smells.

Table 19. Statistics of analyzed projects

Projects Number of

classes

Security bad smells

Missing

modularization

Broken

modularization

Deficient

encapsulation

JGraphX 294 20 5 8

Cobertura 132 3 4 2

GanttProject 866 5 3 5

JHotDraw 325 2 3 0

5.4.2. Variables

The dependent and independent variables are already described in section 5.2.2. The

independent variable for detection of security bad smells in investigated class diagrams is

detection recall. The measurement of how many security bad smells are removed as a result

of refactoring is the independent variable for correction. The description of instances of

security bad smells in investigated class diagrams is already provided in section 5.4.1.

Quality metrics are useful in the quantitative validation of security improvement. The

quality metrics selected for class diagram are as follows:

 NAttr is the number of attributes per class.

 NOps is the number of operations per class.

 RPubAttr is the ratio of public attributes to total attributes per class.

 RPriAttr is the ratio of private attributes to total attributes per class.

 RProAttr is the ratio of protected operations to total operations per class.

 RPriOps is the ratio of private operations to total operations per class.

 RProOps is the ratio of protected operations to total operations.

 DIT is the depth of inheritance.

112

 NOC is the number of children.

 EC is the number of instances in a class where the class is externally used.

 IC is the number of instances in a class where another class is referred to it.

Although many other quality metrics are computed to reach this set of metrics but only

these are listed because they are directly used in definitions of the rules. For example,

computation of RPubAttr requires a number of public attributes from total attributes, but it

is not listed.

5.4.3. Proposed Hypotheses

Following hypotheses are formulated to statistically validate the effectiveness of our

proposed approaches and make statistical judgment on security improvement in class

diagrams:

Hypothesis 7 (RQ1): The proposed detection technique is able to identify a significant

number of security bad smells in the investigated class diagrams.

Null Hypothesis (H07): The detection approach is unable to identify a significant number

of security bad smells in the investigated class diagrams as indicated by its recall.

Alternate Hypothesis (H17): The detection approach is able to identify a significant number

of security bad smells in the investigated class diagrams as indicated by its recall.

If the Detection Recall (DR) of detection technique in terms of identifying the security bad

smells in investigated class diagrams is significant then the null hypothesis (H07) can be

rejected. For testing purpose, the quantification of our hypothesis is presented below in

terms of detection recall:

Null Hypothesis (H07): DR < 80%

113

Alternate Hypothesis (H17): DR >= 80%

Hypothesis 8 (RQ2): The correction technique is able to remove a significant number of

security bad smells in the investigated class diagrams.

Null Hypothesis (H08): The correction approach is unable to remove a significant number

of security bad smells in the investigated class diagrams as indicated by its correction

effectiveness.

Alternate Hypothesis (H18): The correction approach is able to remove a significant number

of security bad smells in the investigated class diagrams as indicated by its correction

effectiveness.

If the Correction Efficacy (CE) of correction technique in terms of removing the security

bad smells in investigated class diagrams is significant then the null hypothesis (H08) can

be rejected. For testing purpose, the quantification of our hypothesis is presented below in

terms of correction efficacy:

Null Hypothesis (H08): CE < 80%

Alternate Hypothesis (H18): CE >= 80%

Hypothesis 9 (RQ3): Refactoring to security bad smells improves the investigated class

diagrams from a security perspective.

Null Hypothesis (H09): No difference is observed in security quality of the investigated

class diagrams as a result of refactoring to security bad smells as indicated by quality

metrics.

114

Alternate Hypothesis (H19): A Significant difference is observed in security quality of the

investigated class diagrams as a result of refactoring to security bad smells as indicated by

quality metrics.

The null hypothesis (H06) is rejected in the case, where, quality metrics values before

refactoring are not equal to quality metrics values after refactoring. For testing purpose, the

quantification of our hypothesis is presented below in terms of p-value:

Null Hypothesis (H09): p-value > 0.05

Alternate Hypothesis (H19): p-value < 0.05

5.4.4. Experimental Tasks

Detection: Once again, the same process is applied for detection of security bad smells in

class diagrams. The initial individuals are formed by governing rules from security bad

smells existent in investigated class diagrams. The initial population is formed by

aggregating the individuals. The population undergoes selection, crossover and mutation

operations as described in section 4.2.2. Once genetic algorithm reaches its terminating

condition, it yields a solution carrying best fitness.

Correction: The correction of security bad smells in class diagrams is achieved by using

existing refactoring tools. A variety of class level refactoring tools is available, both open

source and commercial. In our case, we preferred IntelliJIDEA tool because of its flexibility

towards different refactoring techniques. Move method and extract class are mainly applied

because of missing modularization and broken modularization security bad smells. These

two refactoring techniques are found effective in eradicating missing modularization, while,

broken modularization is corrected only through move method. This limits the delving of

115

other classes in a given class. Deficient encapsulation is removed by changing access

modifiers from public to private. This restricts outside access of data members of classes,

ensuring security robustness.

Behavioral consistency: The behavioral consistencies, in the cases of broken

modularization and missing modularization, are achieved in a similar manner to the

sequence diagrams. In the case of refactoring to deficient encapsulation, the consistency is

achieved by fulfilling the condition of accessing the data members of classes through setters

and getters. Before refactoring, the data is available publically so can be accessed by any

outside class. After refactoring, the access modifiers are changed to private, making the

access restricted to the outside classes. The access after refactoring is enforced through the

introduction of setters and getters methods. This way the behavior of the refactored class

diagram remains consistent with the original class diagram.

5.4.5. Results

Detection: Once the GA finishes its execution with investigated class diagrams, it generates

a set of rules, which represents the best solution. The best solution yielded by the genetic

algorithm is shown in Figure 28. All three rules are measuring the bad smells by using IF-

THEN conditional statements having quality metrics. R1, R2 and R3 are measuring for

missing modularization, broken modularization and deficient encapsulation respectively.

The gathering of quality metrics is performed automatically through SDMetrics tool except

for the ones with ratios. The quality metrics comprising of ratios are calculated using MS

Excel [101]. The rationales behind considered metrics and subsequent mapping of rules to

specific smells are based on the descriptions provided by Fourati et.al [71] and Ouni et.al

116

[8]. If the metrics values of class(c) do not fulfill the threshold constraints set by these

rules, then that class has corresponding security bad smell. The best solution (shown in

Figure 28) is then applied on investigated java projects to evaluate its recall effectiveness.

The set of rules governing best solution are able to identify 60 out of 60 security bad smells

present in examined class diagrams, meaning, detection approach has 100% recall. This

fulfills our RQ1, that our proposed detection approach is able to detect significant number

of the security bad smells in class diagrams.

R1: IF (NOps(c) >= 21 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 3 OR IC(c) >=3)) THEN

missing modularization(c)

R2: IF (NAttr(c) <= 7 AND NOps(c) <= 11 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN

broken modularization(c)

R3: IF (RPriAttr(c) <= 0.25 AND (RPubAttr(c) >= 0.88 OR RProAttr(c) >= 0.75) AND (RPriOps(c) == 0

OR RProOps(c) == 0)) THEN deficient encapsulation(c)

Figure 28. Best solution generated for class diagrams

Correction: The correction is validated manually as well as by running the existing

detection tools on refactored class diagrams. The detection tools used for correction

validation are InFusion and InCode. If a security bad smell remains in a project after

appropriate refactoring application, it should be detected by the tools. In our experiment,

no security bad smell emerged upon executing these tools on the refactored projects. This

validates successful correction of security bad smells from investigated projects.

Numerically, it means that 100% of the security bad smells are removed from four studied

class diagrams.

117

5.4.6. Hypotheses Testing

To reiterate, we have formulated three hypotheses to address our three laid research

questions. Each hypothesis is focusing on a specific research question. The hypotheses are

numerically validated as follows:

Hypothesis 7 (RQ1): In order to test this hypothesis, the Detection Recall (DR) of our

detection approach is measured. If the DR is significant, the null hypothesis (H07) can be

rejected. The threshold value set while formulating this hypothesis is 80%. This means that

if the DR is greater than or equal to 80%, then null hypothesis (H07) can be rejected. Our

detection approach shows a significant DR of 100% after executing on investigated class

diagrams. Since the DR is greater than 80%, so null hypothesis (H07) is rejected. This fulfills

our RQ1, that our proposed detection approach is able to detect significant number of the

security bad smells in class diagrams.

Hypothesis 8 (RQ2): In order to test this hypothesis, the Correction Efficacy (CE) of our

correction approach is measured. If CE is significant, then the null hypothesis (H08) can be

rejected. Our correction approach shows striking results by yielding a significant CE of

100% in investigated class diagrams. Since, the CE is greater than 80%, so null hypothesis

(H08) is rejected. This addresses our RQ2 that our proposed correction approach is able to

remove significant number of the security bad smells in class diagrams.

Hypothesis 9 (RQ3): The pair-wise t-test is considered because the significant changes in

metrics values (as a result of refactoring) are efficiently catered in it. The p-value will justify

the significant security improvement in class diagrams. The p-value is computed with 95%

confidence through a pair-wise t-test. The computed p-value is 6.44e10-11, which is less

118

than 0.05. Hence, it can confidently be concluded that security in investigated class

diagrams has improved significantly. As a result of this conclusion, we can reject our

formulated null hypothesis (H09) with 95% confidence. This fulfills another sub-goal of

security improvement in class diagrams. For reference, the quality metrics values pre and

post refactoring are provided in Appendix D. The metrics values are presented only for

those classes having bad smells.

5.5. Summary of Hypotheses

At the end, all the hypotheses formulation and testing in our research are summarized in

Table 20. It further eases the reader on comprehending the hypotheses collectively

according to the laid research questions. It can be observed that Detection Recalls (DRs) of

our proposed detection technique reach to their maximum limits in use case diagrams and

class diagrams. This means that the solution generated by the detection approach is

completely reliable in cases of these two diagrams. For sequence diagram, the detection

technique also shows significant results and the reason for the drop of 10% in DR is

discussed later in section 6.4.2. Almost similar results are observed for correction technique

as well. The least p-value in class diagram is because of a number of components that are

affected by security bad smells. Once the refactoring is applied, it leaves a major change in

quality metrics values, making the p-value very small.

119

Table 20. Summary of hypotheses
Research questions UML models Hypotheses formulation Hypotheses testing

RQ1

UC H01: DR < 80%

H11: DR > 80%

DR: 100%

SD H04: DR < 80%

H14: DR > 80%

DR: 90%

CD H07: DR < 80%

H17: DR > 80%

DR: 100%

RQ2

UC H02: CE < 80%

H12: CE > 80%

CE: 100%

SD H05: DR < 80%

H15: DR > 80%

CE: 95%

CD
H08: DR < 80%

H18: DR > 80%

CE: 100%

RQ3

UC H03: p > 0.05

H13: p < 0.05

p: 0.0001

SD H06: p > 0.05

H16: p < 0.05

p: 0.04

CD H09: p > 0.05

H19: p < 0.05

p: 6.44e10-11

UC: Use Case Diagram

SD: Sequence Diagram

CD: Class Diagram

5.6. Supplementary Experiments

The main purpose of supplementary experiments is to gain further confidence in the

detection approach in terms of generated set of rules. Although, experiments for generation

of detection rules are performed with three UML models and results are significant, but to

further increase the confidence in our detection approach, we are performing experiments

with large datasets. The abundance of security bad smells can strengthen the applicability

of generated detection rules because the generation of detection rules rely on them. The

supplementary experiments address this notion and justify on the generalization of detection

120

rules. The supplementary experiments are performed with much bigger data size for three

investigated UML models. This data is artificially generated because of unavailability of

significant size data. The generation of data is performed in two ways: 1) simple replication

2) varied replication.

The large datasets should bring confidence in the generalization of rules and diversity of

security bad smells. Once these datasets are input to the GA, they yield corresponding

detection rules. We need to analyze whether the newly generated solutions are varied from

previous best solution. Another concern to be noticed is the improvement in detection rules

generated by our supplementary experiments. The improvement in detection rules is

assessed by either enhanced detection recalls or refinement of rules in general. The newly

generated rules (for both the replication cases) are applied on the same set of UML models

as described in sections 5.2, 5.3 and 5.4.

5.6.1. Supplementary Experiments with Simple Replication Datasets

In simple replication, the data is produced by replicating the small datasets. For example,

we initiate with existing four use case diagrams, then create the replications of these

diagrams, making the dataset consisting of eight diagrams. The replication procedure halts

when at least 1000 use case diagrams are created. The same process is used for replication

in sequence diagrams and class diagrams. Table 21 shows the statistics of simply replicated

datasets for investigated UML models. It can be seen that data sizes are significantly

enhanced in terms of number of use cases/classes and security bad smells instances. It is

made sure that at least 1000 use cases or classes are incorporated. Since the data sizes are

121

increased, the security bad smells instances are automatically escalated. Dataset created

through varied replication examines the flexibility of our GA as well.

Table 21. Statistics of simple replicated datasets

UML model Number of use cases/classes Security bad smells instances

Use case diagram 1160 638

Sequence diagram 1023 620

Class diagram 22638 840

Use case diagrams: The detection rules remain unchanged after performing the experiment

with use case diagrams dataset. The rationale behind the stabilization of rules is the fewer

number of components. Since the detection rules remain consistent, the Detection Recall

(DR) remains same.

Sequence diagrams: In the case of sequence diagrams, the set of rules generated by our

supplementary experiment with simple replication differs marginally from the best solution

stated in section 5.3.5. Figure 29 states the best-generated solution as a result of our

supplementary experiment. The differences are observed in R1, while R2 and R3 remain

unmodified. The decrease is observed in NInvoc and NRec values. Due to the change in

CBO value, the two missing modularization bad smells, undetected by previous best

solution, are captured. The new best solution incorporates the lack of coupling in the rule

and as a result the DR becomes 100%.

R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 4) AND CBO(c) >= 1) THEN missing

modularization(c)

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 1 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken

modularization(c)

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized

abstraction(c)

Figure 29. Best solution for sequence diagrams (simple replication)

122

Class diagrams: Lastly, the supplementary experiments are executed with class diagrams

having substantial data size. Since detection rules for class diagrams carry comparatively

more number of quality metrics so more variations are expected. Once GA is applied, the

produced best solution from simple replication is shown is Figure 30. Although, the best

solution produced using small data set has significant DR of 100%, the new best solution

seems to be more refined and likely to capture security bad smells more effectively. In R1,

EC quality metric value is altered by a decrease of 1. The decrease in values would enforce

the rule to capture more security bad smells. The new rule is also handling the external

coupling more effectively. No change is observed in R2 because most of the metrics values

are equal to zero, which is already the least value. In R3, there is a marginal decrease in

RPubAttr metric and a marginal increase in RPriAttr. The increase in RPriAttr seems

theoretically more promising as a greater number of deficient encapsulation instances can

be identified. It is certain that new solution comprises of rules which would be able to detect

more security bad smells. This is also supported by the achieved DR of 100%, when applied

on class diagram data set summarized in section 5.4.1.

R1: IF (NOps(c) >= 21 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 2 OR IC(c) >=3)) THEN

missing modularization(c)

R2: IF (NAttr(c) <= 7 AND NOps(c) <= 11 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN

broken modularization(c)

R3: IF (RPriAttr(c) <= 0.27 AND (RPubAttr(c) >= 0.86 OR RProAttr(c) >= 0.75) AND (RPriOps(c) == 0

OR RProOps(c) == 0)) THEN deficient encapsulation(c)

Figure 30. Best solution for class diagrams (simple replication)

5.6.2. Supplementary Experiments with Varied Replication Datasets

Varied replication opts for modifications in quality metrics values during replication. The

reason of replicating with variations is to introduce more distinctive quality metrics values.

For example, we initiate with existing four use case diagrams, then create the replications

123

of these diagrams and modify the metrics values alongside. Now, the new dataset consists

of eight different use case diagrams because of introduction of variations. The replication

procedure halts when at least 1000 use case diagrams are created. Same process is used for

replication in sequence diagrams and class diagrams. The statistics related to varied

replication dataset are shown in Table 22. The datasets sizes are significantly increased in

terms of number of use cases/classes. Since the data sizes are increased, the security bad

smells instances are automatically escalated. Another reason of enhanced bad smells

instances is the introduction of new instances because of variations. Dataset created through

varied replication examines the flexibility of our GA as well.

Table 22. Statistics of replicated datasets with variations

UML model Number of use cases/classes Security bad smells instances

Use case diagram 1280 704

Sequence diagram 1056 640

Class diagram 25872 960

Use case diagrams: While performing the supplementary experiments with varied

replication dataset for use case diagrams, the detection rules remain same. The experiments

with the small dataset, simple replication dataset and varied replication dataset produce

same detection rules. Once again, the rationale behind the stabilization of rules is the fewer

number of components. Since the detection rules remain consistent, the Detection Recall

(DR) remains same.

Sequence diagrams: In the case of the experiment having dataset produced from varied

replication, two quality metrics values are modified in comparison with the best solution

presented in section 5.3.5. Figure 31 states the best-generated solution as a result of our

supplementary experiment with the varied dataset. The varied metrics are CBO and NInvoc

124

of R1. The change in more quality metrics supports the variations in generated dataset.

Similar to simple replication experiment, the best solution generated from varied replication

carries DR of 100%. So we can conclude that the large datasets created from both types of

replication have further refined the generated set of rules. This improvement in results

contributes to strengthening the generalization of these rules.

R1: IF (NAss(c) >= 11 AND (NInvoc(c) >= 4 AND NRec(c) >= 5) AND CBO(c) >= 1) THEN missing

modularization(c)

R2: IF (NAss(c) == 2 AND (NInvoc(c) == 0 OR NRec(c) == 1) AND CBO(c) == 1) THEN broken

modularization(c)

R3: IF (NAss(c) == 0 AND NInvoc(c) == 0 AND NRec(c) == 0 AND CBO(c) == 0) THEN unutilized

abstraction(c)

Figure 31. Best solution for sequence diagrams (varied replication)

Class diagrams: Since detection rules for class diagrams carry comparatively more number

of quality metrics so more variations are expected because of dataset produced from varied

replication. A comparatively greater number of quality metrics are altered in the experiment

with dataset generated from varied replication. The basic rationale behind the greater

alterations lies in the variations inserted during data replication. Once GA is applied, the

produced best solution from the dataset (varied replication) is shown is Figure 32. In R1,

three quality metrics (NOps, EC and IC) are modified. Both external and internal couplings

are readjusted in the new rule. For R2, NAtrr and NOps are altered by a decrease. The

decrease redefines the broken modularization in a more effective way because this bad

smell appreciates the fewer number of attributes and operations. In R3, although three

(RPriAttr, RPubAttr and RProAttr) quality metrics are fixated but a significant decrease in

RPubAttr can be observed. The substantial decrease in RPubAttr is justifiable in a way that

the previous value was too high and would ignore few legitimate security bad smells.

Theoretically, it can be seen that new solution would be able to detect significant security

125

bad smells. This is also supported by the acquired DR of 100%, when applied on class

diagram data set summarized in section 5.4.1.

R1: IF (NOps(c) >= 20 AND (NOC(c) <= 1 OR DIT(c) <= 1) AND (EC(c) >= 2 OR IC(c) >=1)) THEN

missing modularization(c)

R2: IF (NAttr(c) <= 5 AND NOps(c) <= 10 AND (DIT(c) == 0 OR NOC(c) == 0) AND EC(c) == 0) THEN

broken modularization(c)

R3: IF (RPriAttr(c) <= 0.27 AND (RPubAttr(c) >= 0.79 OR RProAttr(c) >= 0.77) AND (RPriOps(c) == 0

OR RProOps(c) == 0)) THEN deficient encapsulation(c)

Figure 32. Best solution for class diagrams (varied replication)

As a conclusion, we can express that the supplementary experiments with large sets of UML

data and security bad smells instances have improved few rules in generated solutions. The

new sets of rules are also a refined form of previously acquired rules from small datasets in

a way that they show a potential of capturing more security bad smells. This aids to more

reliable and generalized set of rules.

5.7. Customization Guidelines for Proposed Detection Approach

This section provides the guidelines to assist the user of our automated detection approach.

This section also aids the researchers on how they can benefit from the approach.

It would require two steps in order to detect security bad smells (considered in this research)

on researchers’ own UML models (use case diagram, sequence diagram and class diagram)

using our generated rules. The first step includes the calculation of metrics values for their

own models. The calculation of quality metrics can be accomplished as described in

sections 5.3.1, 5.3.2 and 5.3.3 for use case diagrams, sequence diagrams and class diagrams

respectively. Once the metrics values are available, in the second step, all it is required is

to apply the rules already generated by our detection approach. The set of rules would detect

security bad smells by comparing their metrics thresholds with the quality metrics values

126

of the models under investigation. This process works if the researchers are interested in

capturing the security bad smells investigated in our research.

Our detection approach is easily extensible if researchers are focusing on capturing other

security bad smells. In order to achieve this objective, the detection approach needs to be

re-executed. Different security bad smells would require a different set of quality metrics

as well. This time, the detection approach forms the initial set of rules for a different set of

security bad smells using a different set of quality metrics. The set of rules will go through

selection, crossover and mutation operations in a similar manner as described in section 4.

Once GA finishes its execution, it will yield a set of rules as the best solution. The generated

set of rules can subsequently be applied to the investigated UML models to detect the

considered security bad smells.

127

6 CHAPTER 6

ANALYSIS AND DISCUSSION

This chapter focuses on the implications of our research. The analysis and discussion justify

many expected propositions. The justifications for the use of security bad smell examples

and their abundance in investigated UML models are presented in this chapter. The

discussion on consideration of quality metrics and their values is provided as well. This

chapter also analyzes the impact of refactoring to security on other quality attributes.

6.1. Security Bad Smells

In our detection approach, the most important ingredient is security bad smells examples

because the formulation of rules mainly depends on it. The quality of the solution is

contingent on the quality of base examples. During individual formulation, the diversity is

ensured by selecting rules wisely. This is depicted during detection validation that the

yielded solution is able to detect a significant number of security bad smells. In addition,

an abundance of investigated security bad smells has allowed us to draw solutions with the

maximum recall.

Bad smells examples are in abundance in online software repositories. Sometimes bad

smells are reported in maintenance directory, if not, they can be identified manually or using

existing tools. The bad smells examples allow catering the actual programming practices in

the detection process. As a result, the yielded rules become more precise and context

128

faithful. The examples also remove the existing contradictions about metrics threshold

values as it solves the subtleness of agreeing on a commonly accepted metrics values. The

rules generation process is executed multiple times using bad smells examples to erase any

uncertainty with respect to the quality of rules.

It can be argued that work overhead exists using security bad smells examples because they

need to be identified before the start of the GA. The rationale for using base examples is to

remove any confusions of quality metrics thresholds. It would have been a major threat to

validity if thresholds would have been used instead of base examples. The consensus upon

quality metrics thresholds would have taken this study to unjustifiable arguments. The use

of base examples is completely justified in our study. Another reason for using base

examples is to incorporate real programming mistakes that lead to security bad smells.

Another consideration is the dependency of our detection approach on the size of base

examples set. Our experiment answers this argument by showing significant results using a

small set of base examples.

Our study is not biased towards a specific security bad smell. It is made sure that each

investigated case study of UML models carries a balanced number of security bad smells.

Only one instance opposes this claim and that is missing modularization bad smell in

JGraphX. This is because of an actual larger number of missing modularization defect in

JGraphX. During rules formulation, it is guaranteed that all investigated diagrams are given

relatively equal weight.

Although it is assured that decent frequency of security bad smells exists in investigated

UML models, however, the number of instances varies among different bad smells. For

129

example, in use case diagrams, missing hierarchy is more abundant than other bad smells.

The reason is the inappropriate associations between actors and use cases. The security bad

smells found in studied sequence diagrams are evenly distributed. In other words, the

frequencies of different types of bad smells are almost equal. In the case of class diagrams,

missing modularization is found plentiful. The rationale behind is the common practice of

exercising less modularization at design and implementation levels. It is mostly practiced

that classes are overburdened and relevant concerns are not separated.

6.2. Consistency of Results

Another concern to discuss here is the consistency of our results. The acquired results are

consistent because our detection approach caters quantitative information using quality

metrics. If the semantics of investigated UML models are also considered, then consistency

would have been an issue to address. In our case, the approach is irrelevant to UML models

semantics so consistency of results is automatically achieved.

In order to improve the consistency of results, we have performed experiments with large

datasets of three investigated UML models. Although experiments with small datasets give

significant results, experiments with large datasets further improve the results in terms of

consistency. The consistency can be observed from the achieved detection recall while

experimenting with large datasets. The experiments also help in the refinement of the

detection rules. The same is confirmed by the detection recall of our detection approach as

well. The experiments with varied replications produce comparatively better detection

rules. The rationale behind is the diversity in the datasets because of the modifications

during replications.

130

The impact of different programming languages and paradigms might affect the results of

our study. Different programming practices and evolution of designs might mildly change

the solution generated by our detection approach. We claim that our approaches are stable.

The generated solution from multiple runs of GA almost yielded solutions with none or

minimal difference in fitness. During correction, the XMI transformations from UML

models remain consistent.

6.3. Variations in Quality Metrics

During validation of security improvement, the changes in quality metrics values are

observed. Though all quality metrics contribute towards the security improvement in a

specific UML model but the impact of metrics may vary depending on the security bad

smell being removed. For instance, the refactoring to missing modularization would bring

significant changes to the metrics values because the class undergoes decomposition. On

the other hand, refactoring broken modularization marginally changes the metrics. Another

important point to discuss is the trend of variation in metrics. It is observed that, while

refactoring, the metrics values tend to decrease. This means that lower values of metrics are

desirable to have a more secure UML model. The investigated security bad smells are also

of nature, when refactored, lean to decrease the metrics values.

6.4. Impact of Applied Refactoring on Quality Attributes

Although we have analyzed the effect of refactoring on security improvement, the UML

models have shown improvements in other quality properties as well. The notable

enhancement in quality is observed in terms of modularity, complexity, reusability and

design size.

131

6.4.1. Impact in Use Case Diagrams

The refactoring to broken modularization in use case diagram reduces the number of

inclusion use cases, which suggests the model is less complex. The refactoring of inclusion

use cases has also reduced the quantity of use cases per actor, which means that the model

size is decreased. The refactoring to missing modularization bad smell introduced

modularity in the use case diagrams. This acknowledges the separation of concerns property

as well. The increased modularity in use case diagrams allowed reduced complexity,

enhanced reusability.

6.4.2. Impact in Sequence Diagrams

The quality improvements in sequence diagrams are also observed in a similar manner. The

issue of unutilized abstraction is resolved through the removal of the abstraction. This not

only decreases the design size but also ensures the correct operational behavior. The

problem of broken modularization is solved by movement of method and removal of the

respective class. The movement of method strengthens the modularization; and removal of

class contributes to the reduction of design size. The overall number of messages are also

reduced. The major reduction in design size comes from the removal of lifelines as result

of refactoring to unutilized abstraction and broken modularization. The refactoring to

missing modularization reduced the number of messages between two classes. The burden

of interactions between two classes is shared by a newly introduced class. This way the

model is modularized, which means less complexity and more reusability. The separation

of concerns is also validated since classes now only deal with what concern them. The two

undetected missing modularization bad smells in sequence diagrams are because of lack of

132

coupling. It is normally perceived that if a component possesses missing modularization, it

exhibits high coupling. But in two cases, the coupling was low regardless of missing

modularization problem. The low coupling restricted the rule from detecting the bad smells.

The generated rules with large datasets handle low coupling and those rules are able to

detect two undetected bad smells in sequence diagrams as well.

6.4.3. Impact in Class Diagrams

Similarly, the quality improvement happened in class diagrams. The three investigated

security bad smells are refactored to improve security, and in connection, other quality

attributes, such as modularity, complexity, design size and reusability, are refined as well.

Broken modularization results in movement of method or methods to the appropriate class.

The modularization is reshaped to achieve better application of modularization concept in

object oriented design. Better modularization also encourages reusability of a design.

Missing modularization violates the imperative object oriented properties such as

separation of concerns, modularity and reusability. Upon refactoring missing

modularization smells, the design becomes more flexible and carries these important

properties. Eradication of missing and broken modularizations reduce the degree of

coupling as well. Deficient encapsulation is a unique security bad smell as it concerns with

only a class itself, meaning the effect of refactoring is confined to the class being refactored.

In other words, the refactoring to this bad smell does not affect other classes. The

uniqueness of deficient encapsulation can also be observed from its weary impact on quality

attributes like modularity, complexity, design size and reusability.

It can be extracted that as a byproduct of the refactoring to security bad smells, many other

133

quality attributes are improved. The quality upgrade is observed in all investigated UML

models. Modularity, complexity, design size and reusability are the quality attributes that

showed quality revamp. In addition, the introduction of these quality attributes eases the

analysis of UML models as well.

134

7 CHAPTER 7

THREATS TO VALIDITY

This chapter reports the validity threats and how they are dealt to minify their impact on

experimental validation of our proposed techniques. The most common classification to

address validity threats is construct validity, conclusion validity, internal validity and

external validity and is adopted to report the validity threats of our research.

7.1. Construct Validity

The most important activity in the experimental process is the correct selection of

independent variables. It needs to be closely judged that selected independent variables are

correlated with the dependent variable. In our experimental validation, the independent

variables i.e. quality metrics are selected based on previous studies and after in-depth

analysis to ensure their effectiveness in measuring the security aspects in UML models.

Even though the mapping of quality metrics is done according to the published literature,

but there still exists feeble possibility that we might have overlooked an imperative metric

for specific bad smell measurement. Another construct validity threat is connected with

security bad smells examples. Some main security bad smells examples might be

overlooked during individual formulation. This threat is reduced by selecting the security

bad smells examples with extreme concentration. It also does not affect the results as much

because of crossover and mutation operations. The suspicions about biasness of

135

experimental outcomes are totally removed by laying no pre-expectations from our

experiments.

7.2. Conclusion Validity

The conclusions drawn as a result of our experiments are based on sufficient subjective and

objective findings. The objectivity of quality metrics has allowed us to reach meaningful

and definite conclusions. The supreme objectivity of quality metrics has encouraged us to

incorporate them in our empirical validation and as expected, they have contributed

significantly to our conclusions. The automated collection of quality metrics for use case

diagrams and class diagrams significantly enhances the accuracy of the computed values

and minifies the conclusion validity threat. For sequence diagrams, the quality metrics are

manually calculated with absolute care, but there is always a threat posed by manual

computation. This threat is minified by computing the quality metrics multiple times. The

replications of datasets are also performed manually so it may cause certain threats to the

conclusion validity. This threat is minimized by making the replication randomly. The

randomization has introduced diversity in the datasets, which is the ultimate objective,

regardless of manual replication.

7.3. Internal validity

The analyzed UML models are not exposed to any treatment except correction to observe

only the influence of refactoring on them. No modifications in treatments are made to

observe findings under similar conditions. The post refactoring states of UML models are

carefully saved for the computation of quality metrics. The import and export of UML

models to and from XML are performed using the same tool to avoid any structural change

136

in XML representations. The modifications in XML representations are performed

manually but it does not really impact the validity because the corresponding exported UML

models are validated with the expected refactored UML models.

7.4. External validity

The external validity usually poses threats to the generalization of results. To mitigate this

threat, a favorable number of models case studies are collected and are a good

representation of actual UML models. The generalization of results is also improved

because validation is also performed with large datasets carrying a significant number of

security bad smells instances. The investigated class diagrams are extracted from Java

projects so the applicability of the results to other object-oriented languages might be

constrained. Some language-dependent aspects may vary while extracting corresponding

class diagrams.

137

8 CHAPTER 8

CONCLUSION AND FUTURE WORK

A number of quality attributes related to software design have been reported in the

literature, such as modularity, reusability, modifiability, testability, security etc. The

majority of the quality attributes have been studied rigorously to assess the impact of

refactoring on the improvement of software quality. However, there is a scarcity of corpus

on investigating the contribution of refactoring in improving security aspects of software

models. It is imperative to analyze software models from a security point of view as well.

In our research, we overcome the problem of security in UML models (class diagram,

sequence diagram and use case diagram) by the application of refactoring. The detection of

security bad smells is achieved through the adaptation of a genetic algorithm, while,

correction is accomplished by model transformation approach. The detection approach uses

security bad smells instances and quality metrics to formulate rules. The best set of rules

generated by GA is used for detection of security bad smells in studied UML models. The

correction approach applies a model transformation using XMI for refactoring of identified

security bad smells in investigated UML models.

The proposed approaches are validated by performing experiments with multiple case

studies of investigated UML models. Our detection approach is able to detect security bad

smells with 100% recall in investigated use case diagrams and class diagrams, and 90%

recall in investigated sequence diagrams. The correction approach also shows extraordinary

138

results by removing 100% security bad smells by refactoring application in investigated use

case diagrams and class diagram, and 95% in investigated sequence diagrams. We also

performed supplementary experiments with large datasets to generate more generalized

detection rules because our detection approach relies heavily on generated rules. The sets

of rules generated by supplementary experiments are improved in terms of detecting more

legitimate security bad smells. Through statistical analysis of quality metrics, we are also

able to conclude on the significant improvement in security quality of investigated UML

models as result of refactoring.

The compelling results delivered by our detection and correction approaches have

encouraged us to extend our work in future. We plan to apply our approaches to other UML

models to gain further confidence on their applicability to other models. We also plan to

apply same approaches with a different set of security bad smells to assess their

appropriateness with other security bad smells. We intend to evaluate our approaches with

projects developed using other programming languages to enhance the generalization of

acquired results for UML class diagrams.

139

Appendix A: Code and Model Refactoring
Sr. No. Bad Smell Code Design Both

1 Add parameter Yes

2 Change bidirectional association to unidirectional Yes

3 Change reference to value Yes

4 Change unidirectional association to bidirectional Yes

5 Change value to reference Yes

6 Collapse Hierarchy Yes

7 Consolidate conditional expression Yes

8 Consolidate duplicate conditional fragments Yes

9 Decompose conditional Yes

10 Duplicate observed data Yes

11 Dynamic method definition Yes

12 Eagerly initialized attribute Yes

13 Encapsulate collection Yes

14 Encapsulate downcast Yes

15 Encapsulate Field Yes

16 Extract Class Yes

17 Extract interface Yes

18 Extract Method Yes

19 Extract Module Yes

20 Extract subclass Yes

21 Extract superclass Yes

22 Extract surrounding method. Yes

23 Extract variable Yes

24 Form template method Yes

25 Hide delegate Yes

26 Hide method Yes

27 Inline class Yes

28 Inline method Yes

29 Inline module Yes

30 Inline temp Yes

31 Introduce assertion Yes

32 Introduce class annotation Yes

33 Introduce expression builder Yes

34 Introduce foreign method Yes

35 Introduce gateway Yes

36 Introduce local extension Yes

37 Introduce named parameter Yes

38 Introduce null object Yes

39 Introduce Parameter object Yes

40 Isolate dynamic receptor Yes

41 Lazily initialized attribute Yes

42 Move eval from runtime to parse time Yes

43 Move field Yes

44 Move method Yes

45 Parameterize method Yes

46 Preserve whole object Yes

47 Pull up constructor body Yes

48 Pull up field Yes

49 Pull up method Yes

50 Push down field Yes

140

51 Push down method Yes

52 Recompose conditional Yes

53 Remove assignment to parameters Yes

54 Remove control flag Yes

55 Remove middle man Yes

56 Remove named parameter Yes

57 Remove parameter Yes

58 Remove setting method Yes

59 Remove unused default parameter Yes

60 Rename method Yes

61 Replace abstract superclass with module Yes

62 Replace array with object Yes

63 Replace conditional with polymorphism Yes

64 Replace constructor with factory method Yes

65 Replace data value with object Yes

66 Replace delegation with hierarchy Yes

67 Replace delegation with inheritance Yes

68 Replace dynamic receptor with dynamic method Yes

69 Replace error code with exception Yes

70 Replace exception with test Yes

71 Replace hash with object Yes

72 Replace inheritance with delegation Yes

73 Replace loop with correction closure method Yes

74 Replace magic number with symbolic constant Yes

75 Replace method with method object Yes

76 Replace nested conditional with guard clauses Yes

77 Replace parameter with explicit method Yes

78 Replace parameter with method Yes

79 Replace record with data class Yes

80 Replace subclass with fields Yes

81 Replace temp with chain Yes

82 Replace temp with query Yes

83 Replace type code with class Yes

84 Replace type code with module extension Yes

85 Replace type code with polymorphism Yes

86 Replace type code with state/strategy Yes

87 Replace type code with subclasses Yes

88 Self-encapsulate field Yes

89 Separate query from modifier Yes

90 Split temporary variable Yes

91 Substitute algorithm Yes

92 Duplicated Code Yes

93 Long Method Yes

94 Large Class Yes

95 Long Parameter List Yes

96 Divergent Change Yes

97 Shotgun Surgery Yes

98 Feature Envy Yes

99 Data Clumps Yes

100 Primitive Obsession Yes

101 Switch Statements Yes

102 Parallel Inheritance hierarchies Yes

103 Lazy Class Yes

141

104 Speculative Generality Yes

105 Temporary Field Yes

106 Message Chain Yes

107 Middle Man Yes

108 Inappropriate Intimacy Yes

108 Alternative classes with Different Interfaces Yes

110 Incomplete Library Class Yes

111 Data class Yes

112 Refused Bequest Yes

113 Comments Yes

114 God class or the Blob Yes

115 Functional Decomposition Yes

116 Poltergeist Yes

117 Swiss army knife Yes

118 Lava flow Yes

119 Spaghetti code Yes

120 Type Checking Yes

121 Poor use of abstraction Yes

122 Hidden concurrency Yes

123 Unnecessary behavioral complexity Yes

124 Too low cohesion Yes

125 Too strong coupling Yes

126 Structural complexity Yes

127 Specialization aggregation Yes

128 Missing Abstraction Yes

129 Imperative Abstraction Yes

130 Incomplete Abstraction Yes

131 Unnecessary Abstraction Yes

132 Unutilized Abstraction. Yes

133 Duplicate Abstraction Yes

134 Deficient Encapsulation Yes

135 Leaky Encapsulation Yes

136 Missing Encapsulation Yes

137 Unexploited Encapsulation. Yes

138 Broken Modularization Yes

139 Insufficient Modularization Yes

140 Cyclically dependent Modularization Yes

141 Hub-like Modularization Yes

142 Missing Hierarchy

143 Unnecessary Hierarchy Yes

144 Unfactored Hierarchy Yes

145 Wide Hierarchy Yes

146 Speculative Hierarchy Yes

147 Deep Hierarchy Yes

148 Rebellious Hierarchy Yes

149 Broken Hierarchy Yes

150 Multipath Hierarchy Yes

151 Cyclic Hierarchy Yes

142

Appendix B: Opdyke’s Identified Refactoring
Sr.

No

Low-Level Refactoring High-Level Refactoring

1 Create empty class Create common superclass

2 Create member variable Function signature compatible

3 Create member function Adding function signatures to superclass

4 Delete unreferenced class Makin function body compatible

5 Delete unreferenced variable Making variables compatible

6 Delete unreferenced functions Migrate variable to superclass

7 Change class name Migrate common code to superclass

8 Change variable name Identify class in-variants

9 Change membership function name Create subclass and assign class in-variants

10 Change type Simplify conditional statements and migrate to

subclass

11 Change access control mode Specialize expressions that create instances

12 Add function argument Check a member as a component

13 Reorder function arguments Add member to a set of component variable

14 Add function body Remove members from set of component variables

15 Delete function body Moving members into component

16 Convert instance variable to pointer Moving members into aggregate

17 Convert variable reference to function

Call

18 Replace Statement list with function

Call

19 Incline function call

20 Change superclass

21 Move member variable to superclass

22 Move member variable to subclass

23 Abstract Access to member variable

24 Convert code segment to function

25 Move class

143

Appendix C: Taxonomy of Security Bad Smells [3, 29, 54, 55]
Bad Smell Description Security Violation Refactoring

Missing

Abstraction

In the absence of an

abstraction, the data and

behavior are spread across

design.

Confidentiality,

Secrecy, Guarded

Access, Integrity,

Insecure Info Flow.

Replace type-code with class.

Incomplete

Abstraction

When an abstraction does not

support complementary or

interrelated methods.

Correctness,

Integrity

Introduce the missing

complementary operation(s)

Multifaceted

Abstraction

When abstraction is assigned

more than one responsibility.

Correctness,

Integrity

Extract class

Unutilized

Abstraction

When an unused abstraction is

accidentally invoked, it may

result in runtime problems.

Integrity,

Reliability

Remove unutilized abstraction.

Duplicate

Abstraction

When two abstractions have

same names, it is confusing

which abstraction to invoke.

Non-repudiation,

Integrity.

Rename abstraction, remove

abstraction.

Deficient

Encapsulation

It provides direct access of

class data to outside classes.

Confidentiality,

Secrecy, Guarded

Access, Integrity.

Encapsulate field

Leaky

Encapsulation

When internal data structures

are leaked, the integrity of

abstraction may be

compromised

Confidentiality,

Secrecy, Guarded

Access, Integrity.

Encapsulate field and methods

(if necessary)

Missing

Encapsulation

when implementation

variations are not

encapsulated

Confidentiality,

Secrecy, Guarded

Access, Integrity.

Encapsulate field and methods

(if necessary)

Broken

Modularization

The data and related

procedures are split across

abstractions

Confidentiality,

Secrecy, Guarded

Access, Integrity.

Move method/Field

Cyclically

dependent

Modularization

Changes to a cyclically

dependent abstraction can lead

to runtime problems across

other abstractions

Integrity Move method or field

Missing

Modularization

when a class is not

decomposed

Reliability,

Correctness

Extract class, Move methods

Rebellious

Hierarchy

when a subtype rejects the

methods provided by its

super-type

Reliability,

Correctness,

Integrity.

Apply move method from the

super-type to the relevant

subtypes

Unnecessary

Hierarchy

When inheritance is applied

unnecessarily for a particular

design context

Integrity, Insecure

Info Flow.

Collapse hierarchy

Missing

Hierarchy

To explicitly manage variation

in hierarchical behavior,

where a hierarchy could have

been created and used to

encapsulate those variations

Reliability,

Integrity

Connection with appropriate

hierarchy interface should be

made

Broken

Hierarchy

When developers are not

aware that the super-type and

subtype do not share an IS-A

relationship

Confidentiality,

Secrecy, Guarded

Access, Insecure

Info Flow,

Integrity.

Replace inheritance with del-

egation

144

Appendix D: Quality Metrics Values Pre and Post Refactoring
Quality Metrics Values for Use Case Diagrams

NumAss Including Included Extended Extending NumAss Including Included Extended Extending

Arrange Tour 2 0 0 1 0 2 0 0 1 0

Book Airline Tickets 3 0 0 0 2 0 0 0 0 1

Book Airline Tickets 2 0 0 0 0 1

Book Tour 1 0 0 1 0 1 0 0 1 0

Deliver Airline Tickets 1 0 0 0 0 1 0 0 0 0

Pay Commission 0 0 0 0 3 0 0 0 0 1

Pay Commission 2 0 0 0 0 1

Pay Commission 3 0 0 0 0 1

Pay for Ariline Tickets 1 0 1 1 1 0 0 0 1 1

Pay Travel Agent 2 1 0 1 0 2 0 0 1 0

Pay for Tour 1 0 0 2 0 1 0 0 2 0

Reserve Seat 1 0 0 0 0 1 0 0 0 0

Elect Reimbursement 1 0 0 0 1 0 0 0 0 1

Elect Stock Purchase 1 0 0 0 3 0 0 0 0 1

Elect Stock Purchase 2 0 0 0 0 1

Elect Stock Purchase 3 0 0 0 0 1

Issue Purchase Invoice 1 0 0 1 0 1 0 0 1 0

Provide Stock 1 0 0 1 0 1 0 0 1 0

Update Benefits 1 3 0 2 0 1 0 0 2 0

Update Dental Plan 0 0 1 0 0

Update Insurance Plan 0 0 1 0 0

Update Medical Plan 0 0 1 0 0

Chinese 0 0 0 0 2 0 0 0 0 1

Chinese 2 0 0 0 0 1

Cook Food 1 0 0 0 0 1 0 0 0 0

Drink Wine 1 0 0 0 1 0 0 0 0 1

Eat Food 1 0 0 1 0 1 0 0 1 0

Indian 0 0 0 0 2 0 0 0 0 1

Indian 2 0 0 0 0 1

Italian 0 0 0 0 2 0 0 0 0 1

Italian 2 0 0 0 0 1

Order Food 3 0 0 4 0 3 0 0 4 0

Order Wine 3 0 0 0 1 0 0 0 0 1

Pay for Wine 2 0 0 0 1 0 0 0 0 1

Pay Tip 0 0 1 0 0

Pay for Food 3 1 0 4 0 3 0 0 4 0

Serve Food 1 0 0 1 0 1 0 0 1 0

Serve Wine 1 0 0 0 1 0 0 0 0 1

Bad Pin 0 0 0 0 2 0 0 0 0 1

Bad Pin 2 0 0 0 0 1

Balance Check 0 0 0 0 0 0 0 0 0 0

Deposit 0 0 0 0 0 0 0 0 0 0

Login 1 0 2 0 0 1 0 2 0 0

Print Receipt 0 0 0 0 0 0 0 0 0 0

System Maintenance 1 1 0 2 0 1 2 0 2 0

System Reporting 1 0 0 0 1 0 0 0 0 1

System Shutdown 0 0 1 0 0

Transaction 1 1 0 1 0 1 1 0 1 0

Withdraw 0 0 0 0 0 0 0 0 0 0

ATM

System Use case
Before refactoring After refactoring

Travel

Agency

HR System

Restaurant

System

145

Quality Metrics Values for Sequence Diagrams

NAss NInvo NRec CBO NAss NInvo NRec CBO

Customer 15 7 8 1 9 4 5 1

Booking System 23 5 3 3 21 5 2 3

Flight 2 0 1 1

Customer DB 6 0 4 1 6 0 4 1

Reservation System 0 0 0 0

Visitor 6 3 3 1

Admin 6 3 3 1 6 3 3 1

Registered User 11 5 6 4 8 3 4 3

Visitor 0 0 0 0

Movies 8 0 4 2 7 1 3 2

Book Ticket 4 0 2 1 4 0 2 1

Payment 3 1 1 1 3 1 1 1

Cancel Ticket 2 0 1 1

Ticket 0 0 0 0

Admin 11 6 5 3 6 3 3 1

Student 12 1 6 2 12 1 6 2

Teacher 9 3 5 2 9 3 5 2

Employee 0 0 0 0

Class 2 0 1 1

Department 3 2 1 1

Librarian 38 11 19 3 26 6 13 2

Books 10 4 5 1 10 4 5 1

User 20 4 10 1 16 3 8 1

Publisher 10 1 5 2 8 0 4 1

Staff 0 0 0 0

Manager 2 0 1 1

Assistant 12 5 6 2

Premiun User 4 1 2 1

Manager 4 1 2 2 2 0 1 1

Stock 2 0 1 1

Receptionist 17 5 9 3 9 3 5 2

Customer 13 5 6 3 7 2 3 2

Chef 4 2 2 3 1 0 1 1

Food Items 2 0 1 1

Room Attendent 2 1 1 1

Room 4 0 2 1 4 0 2 1

Staff 0 0 0 0

Assistant 6 1 3 3

Resident 5 3 2 2

After refactoring
ClassSystem

Airline Reservation

Movie Ticketing

School Management

Library Management

Hotel Management

Before refactoring

146

Quality Metrics Values for Class Diagrams Pre-refactoring

N
u
m

A
tt

r
N

u
m

O
p

s
n
u
m

P
u
b

A
tt

r
N

u
m

P
ri
A

tt
r

n
u
m

P
ro

A
tt

r
N

u
m

P
u
b

O
p

s
n
u
m

P
ri
o

p
s

n
u
m

P
ro

O
p

s
ra

ti
o

P
u
b

A
tt

r
ra

ti
o

P
ri
A

tt
r

ra
ti
o

P
ro

A
tt

r
ra

ti
o

P
u
b

O
p

s
ra

ti
o

P
ri
O

p
s

ra
ti
o

P
ro

O
p

s
N

O
C

D
IT

E
C

_
P

a
r

IC
_

P
a
r

m
x
G

ra
p

h
V

ie
w

7
6

1
0

1
6

6
1

0
0

0
.1

4
0

.8
6

0
1

0
0

0
1

1
0

7
7

m
x
G

ra
p

h
H

a
n
d

le
r

3
2

5
3

3
1

2
8

4
1

0
1

2
0

.0
9

0
.0

3
0

.8
8

0
.7

7
0

0
.2

3
0

1
2

8

m
x
U

ti
ls

3
8

7
2

0
1

8
7

0
0

0
.6

7
0

0
.3

3
1

0
0

0
0

0
3

4

m
x
E

d
g
e
H

a
n
d

le
r

6
3

0
0

0
6

1
4

0
1

6
0

0
1

0
.5

0
0

.5
1

1
0

7

m
x
C

e
ll
S

ta
te

P
re

v
ie

w
6

2
1

0
0

6
1

6
0

5
0

0
1

0
.7

6
0

0
.2

4
0

0
3

1
8

m
x
G

ra
p

h
ic

s
2

D
C

a
n
v
a
s

7
2

2
3

0
4

2
0

0
2

0
.4

3
0

0
.5

7
0

.9
0

0
.1

1
1

6
5

8

m
x
C

o
o

rd
in

a
te

A
s
s
ig

n
m

e
n
t

2
8

3
0

0
1

2
7

1
4

0
1

6
0

0
.0

4
0

.9
6

0
.4

7
0

0
.5

3
0

0
0

2
0

m
x
C

e
ll
E

d
it
o

r
2

5
2

3
3

3
1

9
1

9
0

4
0

.1
2

0
.1

2
0

.7
6

0
.8

3
0

0
.1

7
0

0
0

5

m
x
M

o
v
e
P

re
v
ie

w
1

3
2

4
0

0
1

3
1

9
0

5
0

0
1

0
.7

9
0

0
.2

1
0

1
2

8

m
x
G

ra
p

h
T

ra
n
s
fe

rH
a
n
d

le
r

1
1

2
2

2
1

8
1

7
0

5
0

.1
8

0
.0

9
0

.7
2

0
.7

7
0

0
.2

3
0

0
1

1
3

m
x
C

o
n
n
e
c
ti
o

n
H

a
n
d

le
r

1
9

4
0

1
1

1
7

3
7

0
3

0
.0

5
0

.0
5

0
.9

0
.9

3
0

0
.0

7
0

1
2

1
2

m
x
G

ra
p

h
H

ie
ra

rc
h
y
M

o
d

e
l

8
2

2
4

1
3

1
2

0
1

0
.5

0
.1

2
5

0
.3

7
5

0
.9

2
0

0
.0

8
0

0
1

5
1

1

m
x
G

ra
p

h
O

u
tl
in

e
2

4
2

5
1

1
2

2
2

2
0

3
0

.0
4

0
.0

4
0

.9
2

0
.8

8
0

0
.1

2
0

0
1

3

m
x
S

e
le

c
ti
o

n
C

e
ll
s
H

a
n
d

le
r

1
0

2
2

1
1

8
2

0
0

2
0

.1
0

.1
0

.8
0

.9
0

0
.1

0
0

2
5

m
x
C

e
ll
M

a
rk

e
r

1
4

3
8

2
1

1
1

3
2

0
6

0
.1

4
0

.0
7

0
.7

8
0

.8
4

0
0

.1
6

1
0

5
1

9

m
x
G

ra
p

h
S

tr
u
c
tu

re
3

2
7

0
3

0
2

6
0

1
0

1
0

0
.9

4
0

0
.0

4
0

0
0

2
7

m
x
G

ra
p

h
M

o
d

e
l

8
8

5
0

0
8

7
0

0
1

5
0

0
1

0
.8

2
0

0
.1

8
0

1
0

3
6

m
x
C

e
ll
H

a
n
d

le
r

8
3

2
0

0
8

2
2

0
1

0
0

0
1

0
.6

9
0

0
.3

1
2

0
2

5

B
a
s
ic

G
ra

p
h
E

d
it
o

r
1

3
3

0
0

1
1

2
1

9
0

1
1

0
0

.0
7

0
.9

3
0

.6
3

0
0

.3
7

2
0

1
6

7

m
x
F

a
s
tO

rg
a
n
ic

L
a
y
o

u
t

2
2

2
4

0
0

2
2

2
0

0
4

0
0

1
0

.8
3

0
0

.1
7

0
1

0
3

C
la

s
s
M

a
p

1
2

2
2

0
1

2
0

2
0

0
2

0
1

0
0

.9
0

0
.1

0
0

6
2

In
s
tr

u
m

e
n
tT

a
s
k

1
4

2
1

0
1

4
0

1
6

0
5

0
1

0
0

.7
6

0
0

.2
4

0
1

0
6

H
T

M
L

R
e
p

o
rt

6
2

2
0

6
0

1
2

1
0

0
1

0
0

.0
5

0
.9

5
0

0
0

0
1

3

G
a
n
tt

P
ro

je
c
t

3
0

6
9

0
2

3
7

6
3

0
6

0
0

.7
6

0
.2

4
0

.9
1

0
0

.0
9

0
1

2
0

2
9

T
a
s
k

M
a
n
a
g
e
rI

m
p

l
2

0
6

6
0

2
0

0
4

4
1

6
4

0
1

0
0

.6
7

0
.2

4
0

.0
6

0
0

7
5

7

C
h
a
rt

M
o

d
e
lB

a
s
e

2
8

5
3

1
2

3
4

3
9

6
8

0
.0

4
0

.8
2

0
.1

4
0

.7
4

0
.1

1
0

.1
5

2
0

1
1

2
8

G
a
n
tt

O
p

ti
o

n
s

3
5

7
6

3
3

2
0

6
8

8
0

0
.0

9
0

.9
1

0
0

.8
9

0
.1

1
0

0
1

3
1

9

U
IF

a
c
a
d

e
Im

p
l

2
2

5
5

0
2

2
0

4
1

1
1

3
0

1
0

0
.7

5
0

.2
0

.0
5

0
0

2
2

5

X
M

L
E

le
m

e
n
t

1
5

7
1

2
1

3
0

4
7

0
2

4
0

.1
3

0
.8

7
0

0
.6

6
0

0
.3

4
0

0
1

1
1

D
e
fa

u
lt
D

ra
w

in
g
V

ie
w

1
7

6
6

0
1

7
0

5
2

5
9

0
1

0
0

.7
9

0
.0

7
0

.1
3

0
0

0
2

3

E
d

it
o

rM
e
n
u
B

a
r

1
3

0
1

0
3

0
0

0
1

0
1

0
0

0
0

0
3

m
x
V

m
lC

a
n
v
a
s

1
1

0
0

0
1

1
0

0
0

0
0

1
1

0
0

0
1

0
2

m
x
H

tm
lC

a
n
v
a
s

1
1

0
0

0
1

1
0

0
1

0
0

1
0

.9
0

0
.1

0
1

0
2

S
e
tL

a
b

e
lP

o
s
it
io

n
A

c
ti
o

n
2

2
0

0
2

2
0

0
0

0
1

1
0

0
0

0
0

0

m
x
C

h
il
d

C
h
a
n
g
e
C

o
d

e
c

0
6

0
0

0
6

0
0

0
0

0
1

0
0

0
1

0
8

C
o

d
e
In

s
tr

u
m

e
n
ta

ti
o

n
T

a
s
k

4
8

0
4

0
1

7
0

0
1

0
0

.1
3

0
.8

7
0

0
0

0
7

C
o

b
e
rt

u
ra

5
9

0
7

0
7

2
0

0
1

0
0

.7
8

0
.2

2
0

0
0

0
3

R
e
p

o
rt

M
a
in

1
6

0
1

0
2

4
0

0
1

0
0

.3
3

0
.6

7
0

0
0

0
0

H
T

M
L

R
e
p

o
rt

F
o

rm
a
tS

tr
a
te

g
y

1
2

0
1

0
2

0
0

0
1

0
1

0
0

0
0

0
1

O
v
e
rw

ri
ti
n
g
M

e
rg

e
r

2
6

0
2

0
3

3
0

0
1

0
0

.5
0

.5
0

0
0

0
8

D
a
y
G

ri
d

S
c
e
n
e
B

u
il
d

e
r

4
1

0
0

4
0

2
8

0
0

1
0

0
.2

0
.8

0
0

1
0

5

C
a
le

n
d

a
rS

a
v
e
r

2
2

0
2

0
0

2
0

0
1

0
0

1
0

0
1

0
1

V
e
rt

ic
a
lL

a
y
o

u
te

r
0

2
0

0
0

2
0

0
0

0
0

1
0

0
0

1
0

2

H
o

ri
z
o

n
ta

lL
a
y
o

u
te

r
0

2
0

0
0

2
0

0
0

0
0

1
0

0
0

1
0

2

N
o

d
e
F

ig
u
re

5
1

0
0

5
0

8
1

1
0

1
0

0
.8

0
.1

0
.1

0
3

0
5

m
x
C

o
n
s
ta

n
ts

1
8

8
0

1
8

8
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

m
x
S

w
in

g
C

o
n
s
ta

n
ts

1
7

0
1

7
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

m
x
G

e
o

m
e
tr

y
8

1
9

1
1

6
1

9
0

0
0

.1
2

0
.1

2
0

.7
7

1
0

0
0

2
2

3
1

1

m
x
P

n
g
S

u
g
g
e
s
te

d
P

a
le

tt
e
E

n
tr

y
8

0
7

1
0

0
0

0
0

.8
8

0
.1

2
0

0
0

0
0

0
1

0

P
a
rs

e
E

x
c
e
p

ti
o

n
3

7
0

0
3

7
0

0
0

0
1

1
0

0
0

0
2

0

m
x
Im

a
g
e

4
7

0
1

3
7

0
0

0
0

.2
5

0
.7

7
1

0
0

0
0

0
0

m
x
E

v
e
n
t

5
7

0
5

7
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

m
x
E

d
g
e
S

ty
le

2
9

0
2

9
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

A
b

s
tr

a
c
tC

o
b

e
rt

u
ra

T
e
s
tC

a
s
e

6
7

6
0

0
7

0
0

1
0

0
1

0
0

1
2

0
0

0

O
b

je
c
tM

e
tr

ic
3

2
3

0
0

2
0

0
1

0
0

1
0

0
0

1
0

0

G
P

V
e
rs

io
n

2
3

2
2

3
0

0
2

0
0

1
0

0
1

0
0

0
0

0
0

G
a
n
tt

D
ia

lo
g
In

fo
1

1
1

1
1

0
0

1
0

0
1

0
0

1
0

0
0

0
0

0

C
o

n
n
e
c
to

r
3

4
3

0
0

0
4

0
1

0
0

0
0

1
0

0
0

4

L
o

a
d

D
is

tr
ib

u
ti
o

n
4

1
1

4
0

0
6

5
0

1
0

0
0

.5
5

0
.4

5
0

0
0

2
7

C
u
s
to

m
C

o
lu

m
E

v
e
n
t

8
7

7
0

1
6

1
0

0
.8

8
0

0
.1

2
0

.8
6

0
.1

4
0

0
0

1
3

C
la

s
s

B
e
fo

re
 r

e
fa

c
to

ri
n
g

147

Quality Metrics Values for Class Diagrams Post-refactoring

N
u
m

A
tt

r
N

u
m

O
p

s
n
u
m

P
u
b

A
tt

r
N

u
m

P
ri
A

tt
r

n
u
m

P
ro

A
tt

r
N

u
m

P
u
b

O
p

s
n
u
m

P
ri
o

p
s

n
u
m

P
ro

O
p

s
ra

ti
o

P
u
b

A
tt

r
ra

ti
o

P
ri
A

tt
r

ra
ti
o

P
ro

A
tt

r
ra

ti
o

P
u
b

O
p

s
ra

ti
o

P
ri
O

p
s

ra
ti
o

P
ro

O
p

s
N

O
C

D
IT

E
C

_
P

a
r

IC
_

P
a
r

m
x
G

ra
p

h
V

ie
w

3
1

2
0

1
2

1
0

0
2

0
0

.3
3

0
.6

7
0

.8
3

0
0

.1
7

0
1

0
4

m
x
G

ra
p

h
H

a
n
d

le
r

1
0

1
7

1
0

9
1

3
0

4
0

.1
0

0
.9

0
.7

6
0

0
.2

4
0

1
1

2

m
x
U

ti
ls

3
1

9
2

0
1

1
9

0
0

0
.6

7
0

0
.3

3
1

0
0

0
0

0
7

m
x
E

d
g
e
H

a
n
d

le
r

5
1

9
0

0
5

9
0

1
0

0
0

1
0

.4
7

0
0

.5
3

0
1

0
2

m
x
C

e
ll
S

ta
te

P
re

v
ie

w
6

1
5

0
0

6
1

3
0

2
0

0
1

0
.8

7
0

0
.1

3
0

0
0

8

m
x
G

ra
p

h
ic

s
2

D
C

a
n
v
a
s

6
1

9
2

0
4

1
5

0
4

0
.3

3
0

0
.6

7
0

.7
9

0
0

.2
1

0
1

0
9

m
x
C

o
o

rd
in

a
te

A
s
s
ig

n
m

e
n
t

1
4

1
2

0
1

1
3

1
2

0
0

0
0

.0
7

0
.9

3
1

0
0

0
0

0
1

m
x
C

e
ll
E

d
it
o

r
1

9
1

8
3

3
1

3
1

7
0

1
0

.1
5

0
.1

5
0

.7
0

.9
4

0
0

.0
6

0
0

0
1

m
x
M

o
v
e
P

re
v
ie

w
1

0
1

5
0

0
1

0
1

4
0

1
0

0
1

0
.9

3
0

0
.0

7
0

1
0

2

m
x
G

ra
p

h
T

ra
n
s
fe

rH
a
n
d

le
r

8
1

5
1

1
6

1
3

0
2

0
.1

3
0

.1
3

0
.7

4
0

.8
7

0
0

.1
3

0
0

0
1

m
x
C

o
n
n
e
c
ti
o

n
H

a
n
d

le
r

1
2

1
8

1
1

1
0

1
8

0
0

0
.0

8
0

.0
8

0
.8

4
1

0
0

0
1

0
2

m
x
G

ra
p

h
H

ie
ra

rc
h
y
M

o
d

e
l

6
9

3
1

2
6

0
3

0
.5

0
.1

6
0

.3
3

0
.6

7
0

0
.3

3
0

0
0

5

m
x
G

ra
p

h
O

u
tl
in

e
1

2
1

2
1

1
1

0
1

2
0

0
0

.0
8

0
.0

8
0

.8
4

1
0

0
0

0
0

0

m
x
S

e
le

c
ti
o

n
C

e
ll
s
H

a
n
d

le
r

5
1

0
1

1
3

1
0

0
0

0
.2

0
.2

0
.6

1
0

0
0

0
0

1

m
x
C

e
ll
M

a
rk

e
r

7
1

8
1

1
5

1
5

0
3

0
.1

4
0

.1
4

0
.7

2
0

.8
3

0
0

.1
7

0
0

0
8

m
x
G

ra
p

h
S

tr
u
c
tu

re
2

1
7

0
2

0
1

6
0

1
0

1
0

0
.9

4
0

0
.0

6
0

0
0

1
1

m
x
G

ra
p

h
M

o
d

e
l

2
1

9
0

0
2

1
5

0
4

0
0

1
0

.7
9

0
0

.2
1

0
1

0
5

m
x
C

e
ll
H

a
n
d

le
r

4
1

5
0

0
4

1
2

0
3

0
0

1
0

.8
0

0
.2

0
0

0
1

B
a
s
ic

G
ra

p
h
E

d
it
o

r
6

1
5

0
1

5
1

0
0

5
0

0
.1

6
0

.8
4

0
.6

7
0

0
.3

3
4

0
1

5
3

m
x
F

a
s
tO

rg
a
n
ic

L
a
y
o

u
t

1
5

1
7

0
0

1
5

1
4

0
3

0
0

1
0

.8
2

0
0

.1
8

0
1

0
1

C
la

s
s
M

a
p

3
5

0
3

0
5

0
0

0
1

0
1

0
0

0
0

1
0

In
s
tr

u
m

e
n
tT

a
s
k

5
1

4
0

5
0

1
0

0
4

0
1

0
0

.7
1

0
0

.2
9

0
1

0
0

H
T

M
L

R
e
p

o
rt

3
1

0
0

3
0

1
9

0
0

1
0

0
.1

0
.9

0
0

0
0

4

G
a
n
tt

P
ro

je
c
t

8
1

8
0

6
2

1
7

0
1

0
0

.7
5

0
.2

5
0

.9
4

0
.0

6
0

0
1

5
8

T
a
s
k

M
a
n
a
g
e
rI

m
p

l
6

1
9

0
6

0
1

3
4

2
0

1
0

0
.6

8
0

.2
1

0
.1

1
0

0
2

1
6

C
h
a
rt

M
o

d
e
lB

a
s
e

1
0

1
9

1
8

1
1

4
1

3
0

.1
0

.8
0

.1
0

.7
4

0
.0

5
0

.1
6

2
0

4
1

0

G
a
n
tt

O
p

ti
o

n
s

8
1

9
1

7
0

1
7

2
0

0
.1

3
0

.8
8

0
0

.8
9

0
.1

1
0

0
1

1
4

U
IF

a
c
a
d

e
Im

p
l

7
1

9
0

7
0

1
4

4
1

0
1

0
0

.7
4

0
.2

1
0

.0
5

0
0

1
9

X
M

L
E

le
m

e
n
t

4
1

9
1

3
0

1
3

0
6

0
.2

5
0

.7
5

0
0

.6
8

0
0

.3
2

0
0

1
3

D
e
fa

u
lt
D

ra
w

in
g
V

ie
w

5
1

9
0

5
0

1
5

1
3

0
1

0
0

.7
9

0
.0

5
0

.1
6

0
0

0
6

E
d

it
o

rM
e
n
u
B

a
r

1
2

0
1

0
2

0
0

0
1

0
1

0
0

0
0

0
2

m
x
V

m
lC

a
n
v
a
s

1
9

0
0

1
9

0
0

0
0

1
1

0
0

0
1

0
2

m
x
H

tm
lC

a
n
v
a
s

1
1

0
0

0
1

9
0

1
0

0
1

0
.9

0
0

.1
0

1
0

2

S
e
tL

a
b

e
lP

o
s
it
io

n
A

c
ti
o

n
2

2
0

0
2

2
0

0
0

0
1

1
0

0
0

0
0

0

m
x
C

h
il
d

C
h
a
n
g
e
C

o
d

e
c

0
6

0
0

0
6

0
0

0
0

0
1

0
0

0
1

0
8

C
o

d
e
In

s
tr

u
m

e
n
ta

ti
o

n
T

a
s
k

4
7

0
4

0
0

7
0

0
1

0
0

1
0

0
0

1
5

C
o

b
e
rt

u
ra

7
8

0
7

0
6

2
0

0
1

0
0

.7
5

0
.2

5
0

0
0

0
2

R
e
p

o
rt

M
a
in

1
5

0
1

0
2

3
0

0
1

0
0

.4
0

.6
0

0
0

0
0

H
T

M
L

R
e
p

o
rt

F
o

rm
a
tS

tr
a
te

g
y

1
1

0
1

0
1

0
0

0
1

0
1

0
0

0
0

0
0

O
v
e
rw

ri
ti
n
g
M

e
rg

e
r

2
5

0
2

0
3

2
0

0
1

0
0

.6
0

.4
0

0
0

0
6

D
a
y
G

ri
d

S
c
e
n
e
B

u
il
d

e
r

4
9

0
4

0
2

7
0

0
1

0
0

.2
2

0
.7

8
0

0
1

0
5

C
a
le

n
d

a
rS

a
v
e
r

2
1

0
2

0
0

1
0

0
1

0
0

1
0

0
1

0
0

V
e
rt

ic
a
lL

a
y
o

u
te

r
0

1
0

0
0

1
0

0
0

0
0

1
0

0
0

1
0

0

H
o

ri
z
o

n
ta

lL
a
y
o

u
te

r
0

1
0

0
0

1
0

0
0

0
0

1
0

0
0

1
0

0

N
o

d
e
F

ig
u
re

5
9

0
5

0
7

1
1

0
1

0
0

.7
8

0
.1

1
0

.1
1

0
3

0
5

m
x
C

o
n
s
ta

n
ts

1
8

8
7

0
1

8
8

0
6

0
1

0
1

0
0

.8
6

0
0

.1
4

0
0

0
3

m
x
S

w
in

g
C

o
n
s
ta

n
ts

1
7

2
0

1
7

0
2

0
0

0
1

0
1

0
0

0
0

0
0

m
x
G

e
o

m
e
tr

y
8

2
8

0
8

0
2

6
0

2
0

1
0

0
.9

3
0

0
.0

7
0

2
0

1
4

m
x
P

n
g
S

u
g
g
e
s
te

d
P

a
le

tt
e
E

n
tr

y
8

0
0

8
0

0
0

0
0

1
0

0
0

0
0

0
0

0

P
a
rs

e
E

x
c
e
p

ti
o

n
3

7
0

3
0

7
0

0
0

1
0

1
0

0
0

0
0

0

m
x
Im

a
g
e

4
7

0
4

0
7

0
0

0
1

0
1

0
0

0
0

0
0

m
x
E

v
e
n
t

5
7

0
0

5
7

0
0

0
0

0
1

0
0

0
0

0
0

0
0

m
x
E

d
g
e
S

ty
le

2
9

0
0

2
9

0
0

0
0

0
1

0
0

0
0

0
0

0
0

A
b

s
tr

a
c
tC

o
b

e
rt

u
ra

T
e
s
tC

a
s
e

6
7

0
6

0
7

0
0

0
1

0
1

0
0

1
2

0
0

0

O
b

je
c
tM

e
tr

ic
3

2
0

3
0

2
0

0
0

1
0

1
0

0
0

1
0

0

G
P

V
e
rs

io
n

2
3

2
0

2
3

0
2

0
0

0
1

0
1

0
0

0
0

0
0

G
a
n
tt

D
ia

lo
g
In

fo
1

1
1

0
1

1
0

1
0

0
0

1
0

1
0

0
0

0
0

0

C
o

n
n
e
c
to

r
3

4
0

3
0

4
0

0
0

1
0

1
0

0
0

0
0

4

L
o

a
d

D
is

tr
ib

u
ti
o

n
4

1
1

0
4

0
1

1
0

0
0

1
0

1
0

0
0

0
2

7

C
u
s
to

m
C

o
lu

m
E

v
e
n
t

8
7

0
8

0
7

0
0

0
1

0
1

0
0

0
0

1
3

C
la

s
s

A
ft

e
r

re
fa

c
to

ri
n
g

148

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, "The unified modeling language," Unix Review,

vol. 14, p. 5, 1996.

[2] I. Gorton, Essential software architecture: Springer Science & Business Media, 2006.

[3] M. Fowler, Refactoring: improving the design of existing code: Pearson Education India,

1999.

[4] W. C. Wake, Refactoring workbook: Addison-Wesley Professional, 2004.

[5] M. Zhang, T. Hall, and N. Baddoo, "Code bad smells: a review of current knowledge,"

Journal of Software Maintenance and Evolution: research and practice, vol. 23, pp. 179-

202, 2011.

[6] M. Misbhauddin and M. Alshayeb, "UML model refactoring: a systematic literature

review," Empirical Software Engineering, vol. 20, pp. 206-251, 2013.

[7] A. Ghannem, M. Kessentini, and G. El Boussaidi, "Detecting model refactoring

opportunities using heuristic search," in Proceedings of the 2011 Conference of the Center

for Advanced Studies on Collaborative Research, 2011, pp. 175-187.

[8] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, "Maintainability defects

detection and correction: a multi-objective approach," Automated Software Engineering,

vol. 20, pp. 47-79, 2013.

[9] A. Ghannem, G. El Boussaidi, and M. Kessentini, "On the use of design defect examples to

detect model refactoring opportunities," Software Quality Journal, pp. 1-19, 2013.

[10] J. Jürjens, Secure systems development with UML: Springer Science & Business Media,

2005.

[11] B. Alshammari, C. Fidge, and D. Corney, "Security metrics for object-oriented designs," in

Software Engineering Conference (ASWEC), 2010 21st Australian, 2010, pp. 55-64.

[12] B. Alshammari, C. Fidge, and D. Corney, "Security metrics for object-oriented class

designs," in Quality Software, 2009. QSIC'09. 9th International Conference on, 2009, pp.

11-20.

[13] B. Alshammari, C. Fidge, and D. Corney, "Assessing the impact of refactoring on security-

critical object-oriented designs," in Software Engineering Conference (APSEC), 2010 17th

Asia Pacific, 2010, pp. 186-195.

[14] M. El-Attar and J. Miller, "Improving the quality of use case models using antipatterns,"

Software & Systems Modeling, vol. 9, pp. 141-160, 2010.

[15] M. El-Attar and J. Miller, "Constructing high quality use case models: a systematic review

of current practices," Requirements Engineering, vol. 17, pp. 187-201, 2012.

[16] Y. A. Khan and M. El-Attar, "Using model transformation to refactor use case models based

on antipatterns," Information Systems Frontiers, pp. 1-34, 2014.

149

[17] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, "Reporting experiments in software

engineering," in Guide to advanced empirical software engineering, ed: Springer, 2008, pp.

201-228.

[18] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Manual,

The: Pearson Higher Education, 2004.

[19] O. M. GROUP, "UML 2.0 OCL Specification," ed: OMG Dokument ptc/2005-06-06.

[20] (2016, March, 5). Design and UML class diagram. Available:

http://www.yyu.edu.tr/abis/admin/dosya/5637/files/UML%20Tasar%C4%B1m.pdf

[21] (2016, March, 5). UML 2 Sequence Diagrams: An Agile Introduction. Available:

http://www.agilemodeling.com/artifacts/sequenceDiagram.htm

[22] (2016, March, 5). UML Use Case. Available: http://www.uml-

diagrams.org/examples/hospital-management-use-case-diagram-

example.html?context=uc-examples

[23] R. Hurlbut, "A survey of approaches for describing and formalizing use cases," Expertech,

Ltd, 1997.

[24] N. Bevan, "Measuring usability as quality of use," Software Quality Journal, vol. 4, pp.

115-130, 1995.

[25] M. Genero, J. Olivas, M. Piattini, and F. Romero, "Using metrics to predict OO information

systems maintainability," in Advanced Information Systems Engineering, 2001, pp. 388-

401.

[26] R. Marinescu, "Measurement and quality in object-oriented design," in Software

Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International Conference on,

2005, pp. 701-704.

[27] C. NIST, "Glossary of Key Information Security Terms," ed: National Institute of Standards

and Technology Gaithersburg, MD, 2006.

[28] M. Whitman and H. Mattord, Principles of information security: Cengage Learning, 2011.

[29] G. Suryanarayana, G. Samarthyam, and T. Sharma, "Chapter 2 - Design Smells," in

Refactoring for Software Design Smells, G. Suryanarayana and G. S. Sharma, Eds., ed

Boston: Morgan Kaufmann, 2015, pp. 9-19.

[30] N. Fenton and J. Bieman, Software metrics: a rigorous and practical approach: CRC Press,

2014.

[31] S. R. Chidamber and C. F. Kemerer, "A metrics suite for object oriented design," Software

Engineering, IEEE Transactions on, vol. 20, pp. 476-493, 1994.

[32] T. v. Enckevort, "Refactoring UML models: using openarchitectureware to measure uml

model quality and perform pattern matching on UML models with OCL queries," in

Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented

programming systems languages and applications, 2009, pp. 635-646.

[33] J. Al Dallal and L. C. Briand, "An object-oriented high-level design-based class cohesion

metric," Information and software technology, vol. 52, pp. 1346-1361, 2010.

http://www.yyu.edu.tr/abis/admin/dosya/5637/files/UML%20Tasar%C4%B1m.pdf
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
http://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.html?context=uc-examples
http://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.html?context=uc-examples
http://www.uml-diagrams.org/examples/hospital-management-use-case-diagram-example.html?context=uc-examples

150

[34] I. H. Moghadam and M. O. Cinneide, "Automated refactoring using design differencing,"

in Software maintenance and reengineering (CSMR), 2012 16th European conference on,

2012, pp. 43-52.

[35] J. Bansiya and C. G. Davis, "A hierarchical model for object-oriented design quality

assessment," Software Engineering, IEEE Transactions on, vol. 28, pp. 4-17, 2002.

[36] W. F. Opdyke, "Refactoring object-oriented frameworks," University of Illinois at Urbana-

Champaign, 1992.

[37] T. Mens and T. Tourwé, "A survey of software refactoring," Software Engineering, IEEE

Transactions on, vol. 30, pp. 126-139, 2004.

[38] D. B. Roberts and R. Johnson, Practical analysis for refactoring: University of Illinois at

Urbana-Champaign, 1999.

[39] C. F. Lange and M. R. Chaudron, "Managing model quality in UML-based software

development," in Software Technology and Engineering Practice, 2005. 13th IEEE

International Workshop on, 2005, pp. 7-16.

[40] A. A. Jalbani, J. Grabowski, H. Neukirchen, and B. Zeiss, "Towards an integrated quality

assessment and improvement approach for UML models," in SDL 2009: Design for Motes

and Mobiles, ed: Springer, 2009, pp. 63-81.

[41] T. Yue, S. Ali, and M. Elaasar, "A framework for measuring quality of models: experiences

from a series of controlled experiments," Simula Research Laboratory, Oslo, Norway,

2010.

[42] G. Spanoudakis and A. Zisman, "Inconsistency management in software engineering:

Survey and open research issues," Handbook of software engineering and knowledge

engineering, vol. 1, pp. 329-380, 2001.

[43] T. Massoni, "Introducing Refactoring to Heavyweight Software Processes," Technical

Report, CIn-UFPE, Brasil2003.

[44] P. Bottoni, F. Parisi-Presicce, and G. Taentzer, "Coordinated distributed diagram

transformation for software evolution," Electronic Notes in Theoretical Computer Science,

vol. 72, pp. 59-70, 2003.

[45] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, "Towards automating source-consistent

UML refactorings," in «UML» 2003-The Unified Modeling Language. Modeling

Languages and Applications, ed: Springer, 2003, pp. 144-158.

[46] A. Tsiolakis, "Consistency Analysis of UML Class and Sequence Diagrams based on

Attributed Typed Graphs and their Transformation1," 2000.

[47] M. Boger, T. Sturm, and P. Fragemann, "Refactoring browser for UML," in Objects,

components, architectures, services, and applications for a networked world, ed: Springer,

2002, pp. 366-377.

[48] J. Xu, W. Yu, K. Rui, and G. Butler, "Use case refactoring: a tool and a case study," in

Software Engineering Conference, 2004. 11th Asia-Pacific, 2004, pp. 484-491.

[49] C. Jeanneret, L. Eyer, S. Marković, and T. Baar, "RoclET–refactoring OCL expressions by

transformations," in Software & Systems Engineering and their Applications, 19th

International Conference, ICSSEA 2006, 2006.

151

[50] InterlliJ IDEA. (2016, 23, Feb). Available: http://www.intellij.com/idea

[51] RefactorIt. (2016, 23, Feb). Available: http://www.refactorit.com

[52] JRefactory. (2016, 23, Feb). Available: http://jrefactory.sourceforge.net

[53] jFactor. (2016, 23, Feb). Available: http://www.instantiations.com/jfactor

[54] Martin Fowler. (2016, 24 Feb). Available: http://refactoring.com/

[55] W. H. Brown, R. C. Malveau, and T. J. Mowbray, "AntiPatterns: refactoring software,

architectures, and projects in crisis," 1998.

[56] M. J. Munro, "Product metrics for automatic identification of" bad smell" design problems

in java source-code," in Software Metrics, 2005. 11th IEEE International Symposium, 2005,

pp. 15-15.

[57] W. H. Cushman and D. J. Rosenberg, "Human factors in product design," Advances in

human factors/ergonomics, vol. 14, 1991.

[58] R. Shatnawi and W. Li, "An investigation of bad smells in object-oriented design," in

Information Technology: New Generations, 2006. ITNG 2006. Third International

Conference on, 2006, pp. 161-165.

[59] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto, "Software quality

analysis by code clones in industrial legacy software," in Software Metrics, 2002.

Proceedings. Eighth IEEE Symposium on, 2002, pp. 87-94.

[60] C. J. Kapser and M. W. Godfrey, "“Cloning considered harmful” considered harmful:

patterns of cloning in software," Empirical Software Engineering, vol. 13, pp. 645-692,

2008.

[61] S. Counsell, R. M. Hierons, R. Najjar, G. Loizou, and Y. Hassoun, "The effectiveness of

refactoring, based on a compatibility testing taxonomy and a dependency graph," in Testing:

Academic and Industrial Conference-Practice And Research Techniques, 2006. TAIC

PART 2006. Proceedings, 2006, pp. 181-192.

[62] J. Al Dallal, "Identifying refactoring opportunities in object-oriented code: A systematic

literature review," Information and Software Technology, vol. 58, pp. 231-249, 2015.

[63] T. Arendt and G. Taentzer, "Uml model smells and model refactorings in early software

development phases," Universita ẗ Marburg, 2010.

[64] J. L. Vivas, J. A. Montenegro, and J. López, "Towards a business process-driven framework

for security engineering with the UML," in Information Security, ed: Springer, 2003, pp.

381-395.

[65] M. Siponen and R. Baskerville, "A new paradigm for adding security into IS development

methods," in Advances in information security management & small systems security, ed:

Springer, 2001, pp. 99-111.

[66] C. Artelsmair, W. Essmayr, P. Lang, R. Wagner, and E. Weippl, "CoSMo: an approach

towards conceptual security modeling," in Database and Expert Systems Applications,

2002, pp. 557-566.

http://www.intellij.com/idea
http://www.refactorit.com/
http://jrefactory.sourceforge.net/
http://www.instantiations.com/jfactor
http://refactoring.com/

152

[67] E. B. Fernandez, "A Methodology for Secure Software Design," in Software Engineering

Research and Practice, 2004, pp. 130-136.

[68] I. Chowdhury, B. Chan, and M. Zulkernine, "Security metrics for source code structures,"

in Proceedings of the fourth international workshop on Software engineering for secure

systems, 2008, pp. 57-64.

[69] D. Bhalla and L. B. California State University, Automatic Detection of Bad Smells in Java

Code: California State University, Long Beach, 2009.

[70] T. Arendt, F. Mantz, and G. Taentzer, "EMF refactor: specification and application of

model refactorings within the Eclipse Modeling Framework," in of the BENEVOL

workshop, 2010.

[71] R. Fourati, N. Bouassida, and H. B. Abdallah, "A metric-based approach for anti-pattern

detection in uml designs," in Computer and Information Science 2011, ed: Springer, 2011,

pp. 17-33.

[72] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, "DECOR: A method for the

specification and detection of code and design smells," Software Engineering, IEEE

Transactions on, vol. 36, pp. 20-36, 2010.

[73] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, "Formal UML Support for the semi-

automatic Application of object-oriented Refactorings," in University of Antwerp, 2003.

[74] T. Ruhroth, H. Voigt, and H. Wehrheim, "Measure, diagnose, refactor: A formal quality

cycle for software models," in Software Engineering and Advanced Applications, 2009.

SEAA'09. 35th Euromicro Conference on, 2009, pp. 360-367.

[75] M. Saeki and H. Kaiya, "Model Metrics and Metrics of Model Transformations," in The

First Workshop on Quality in Modeling, 2006, pp. 31-45.

[76] M. Mohamed, M. Romdhani, and K. Ghedira, "M-REFACTOR: A New Approach and Tool

for Model Refactoring," ARPN Journal of Systems and Software (July 2011), 2011.

[77] A. C. Jensen and B. H. Cheng, "On the use of genetic programming for automated

refactoring and the introduction of design patterns," in Proceedings of the 12th annual

conference on Genetic and evolutionary computation, 2010, pp. 1341-1348.

[78] M. Van Kempen, M. Chaudron, D. Kourie, and A. Boake, "Towards proving preservation

of behaviour of refactoring of UML models," in Proceedings of the 2005 annual research

conference of the South African institute of computer scientists and information

technologists on IT research in developing countries, 2005, pp. 252-259.

[79] E. Song, R. B. France, D.-K. Kim, and S. Ghosh, "Using roles for pattern-based model

refactoring," in Proceedings of the Workshop on Critical Systems Development with UML

(CSDUML'02), 2002.

[80] C. Bouhours, H. Leblanc, and C. Percebois, "Bad smells in design and design patterns,"

Journal of Object Technology, vol. 8, pp. 43--63, 2009.

[81] D.-K. Kim, "Software quality improvement via pattern-based model refactoring," in High

Assurance Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, 2008, pp. 293-

302.

153

[82] K. Rui and G. Butler, "Refactoring use case models: the metamodel," in Proceedings of the

26th Australasian computer science conference-Volume 16, 2003, pp. 301-308.

[83] Ł. Dobrzański and L. Kuźniarz, "An approach to refactoring of executable UML models,"

in Proceedings of the 2006 ACM symposium on Applied computing, 2006, pp. 1273-1279.

[84] M. T. Llano and R. Pooley, "UML specification and correction of object-oriented anti-

patterns," in Software Engineering Advances, 2009. ICSEA'09. Fourth International

Conference on, 2009, pp. 39-44.

[85] G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel, "Refactoring UML models," in ≪

UML≫ 2001—The Unified Modeling Language. Modeling Languages, Concepts, and

Tools, ed: Springer, 2001, pp. 134-148.

[86] Checkstyle. (2016, 23, Feb). Available: http://checkstyle.sourceforge.net/

[87] Decor. (2016, 23, Feb). Available: http://www.ptidej.net/download

[88] iPlasma. (2016, 23, Feb). Available: http://loose.upt.ro/iplasma/index.html

[89] inFusion. (2016, 23, Feb). Available: http://www.intooitus.com/inFusion.html

[90] JDeodorant. (2016, 23, 2016). Available: http://www.jdeodorant.com/

[91] PMD. (2016, 23, Feb). Available: http://pmd.sourceforge.net/

[92] Stench Blossom. (2016, 23, Feb). Available:

https://github.com/DeveloperLiberationFront/refactoring-tools/wiki/Stench-Blossom

[93] (2016, 6 June). SDMetrics. Available: http://www.sdmetrics.com/

[94] D. E. Golberg, "Genetic algorithms in search, optimization, and machine learning," Addion

wesley, vol. 1989, p. 102, 1989.

[95] V. R. B.-G. Caldiera and H. D. Rombach, "Goal question metric paradigm," Encyclopedia

of Software Engineering, vol. 1, pp. 528-532, 1994.

[96] Cinergix. (2016, 10 June). Creately. Available: http://creately.com/

[97] S. Systems. Enterprise Architect. Available: http://www.sparxsystems.com/products/ea/

[98] Microsoft. (2010). Visual Studio. Available: https://www.visualstudio.com/

[99] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati Moghadam, "Experimental

assessment of software metrics using automated refactoring," in Proceedings of the ACM-

IEEE international symposium on Empirical software engineering and measurement, 2012,

pp. 49-58.

[100] (2016, 12 July). GitHub. Available: https://github.com/

[101] Microsoft. (14 June). MS Excel. Available: https://products.office.com/en-us/excel

http://checkstyle.sourceforge.net/
http://www.ptidej.net/download
http://loose.upt.ro/iplasma/index.html
http://www.intooitus.com/inFusion.html
http://www.jdeodorant.com/
http://pmd.sourceforge.net/
http://www.sdmetrics.com/
http://creately.com/
http://www.sparxsystems.com/products/ea/
http://www.visualstudio.com/

154

VITAE

Name : Haris Mumtaz

Nationality : Pakistan

Date of Birth : 30/03/1988

 Email : harismumtaz@outlook.com

Address : Islamabad, Pakistan

Academic Background : Haris Mumtaz has acquired his BS in Software

Engineering from Bahria University, Islamabad, Pakistan in 2012.

He has completed his MS in Software Engineering from King Fahd

University of Petroleum and Minerals, Saudi Arabia. His research

interests reside in software quality, software refactoring, software

security, software metrics, anti-patterns and empirical software

engineering.

