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F (xij) The cumulative distribution function (c.d.f) of the random de-

mand; xij.

xvi



Fŷ (xŷj) The c.d.f of the total random demand; xŷj, for the market selec-

tion vector ŷ.
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Stochastic Nature

MAJOR FIELD: Industrial and Systems Engineering

DATE OF DEGREE: May 2016

Traditional approaches of supply chain planning consider planning problems un-

der the assumption that all demand sources should be satisfied. However, in the

real world, firms have limited resources, therefore, planning approaches must take

the capacity of these resources into consideration and select the optimal set of de-

mands to satisfy. This dissertation investigates the impact of the risk preferences

of the decision maker and the lack of demand information on the performance

of inventory and demand selection problems. We focus on the multi-product

multi-market newsvendor problem, termed as Multi-Product Selective Newsven-

dor Problem (MPSNVP). The dissertation studies variety of versions of the MP-

SNVP under different risk preferences of the decision makers and deficiency of the

demand information.
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In the first part of the dissertation, we study the risk-neutral MPSNVP for flexible

market entry, full market entry and partial market entry cases of the MPSNVP.

We analyze and formulate the mathematical models for each case of the risk-

neutral MPSNVP, in order to maximize the expected profit. In addition, we

incorporate service level constraints on the probability of satisfying the demand

of each product. Under the assumption of independent normally distributed de-

mands, the mathematical models for the above cases, with and without service

level criteria, result in Integer Nonlinear Programs (NIP). We propose polynomial

optimal solution algorithms as well as efficient heuristics for solving the obtained

models.

In the second part of the dissertation, we consider the CVaR risk-averse MPSNVP

for the above cases, i.e. flexible market entry, full market entry and partial mar-

ket entry cases. Similar to the risk-neutral MPSNVP, the obtained mathematical

models are NIP. We propose the optimal solution algorithms to solve these mod-

els in polynomial time. We deduce that the risk-averse decision maker orders less

quantity of each product than the risk-neutral decision maker does. Then, we

reformulate the NIP as Conic Quadratic Mixed Integer Programs (CQMIP), and

compare the performance of the proposed solution algorithms with the perfor-

mance of the state-of-the-art commercial solvers. The comparison demonstrates

that the proposed solution algorithms outperform the commercial solvers in terms

of the computational time and the solution quality.

In the third part of the dissertation, we study the MPSNVP when the demand

xix



distribution at some markets is only partially specified. The demand uncertainty

is characterized by an uncertainty set. We study the MPSNVP cases under differ-

ent kinds of uncertainty set including; box, ellipsoidal, polyhedral uncertainty set

and combinations of these sets. The robust counterpart models under these uncer-

tainty sets are obtained and solution algorithms are proposed. The computational

results and discussion are provided.
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 الةــص الرسخمل

 الـد عبدالعـال محمـد عبدالعـمحم : مــالاس

 العشوائيةن ذات الطبيعة وزوعدم التأكد في مسائل المخ ةن المخاطر: ع الةـن الرسواعن

  صنـــاعيـــةال ةـــهندسال  :صصخالت

 2016مايو :  رجخ التخـتاري

 عن المتاحة المعلومات ونقص القرار صناع لدى  المخاطرة أفضلية تأثير استقصاء الرسالة هذه في يتم

 بائع مسائل على التركيز الأطروحة هذه في يتم. سواقالأ واختيار نوزالمخ أداء على الاسواق في الطلب

 أفضلية اعتبار مع المسائل تلك من متعددة أشكال دراسة يتم حيث والأسواق المنتجات متعددة الصحف

 .سواقالأ في الطلب عن المتاحة المعلومات ونقص القرار صناع لدى  المخاطرة

 المنتجات متعددة الصحف بائع لمسائل ةللمخاطر المتعادلة النزعة بدراسة الرسالة هذه من الأول الجزء يهتم

 للأسواق الكلى الدخول و للأسواق المرن الدخول حالات اعتبار مع المسائل تلك دراسة يتم. والأسواق

 تعظيم يتيح بما الحالات تلك من لكل   الرياضية النماذج وصياغة تحليل يتم .للأسواق الجزئي الدخول وأخيرًا

شروط مستوى الخدمة لاحتمالية الوفاء بالطلب على كل منتج. وبالإضافة إلى ذلك فقد تم دمج  .المتوقع الربح

 يتوزع توزيعًا طبيعياً مستقلً  يتم صياغة النماذج الرياضية للحالات سالفة الذكر مع الفرض بأن الطلب

ونتيجة لذلك فإن النماذج المتحصلة تكون نماذج صحيحة لاخطية. يتم اقتراح طرق للحصول على الحلول 

 .المثلى وكذلك يتم اقتراح طرق للحصول على حلول استرشادية

 بقة الذكر من مسائلالحالات سامع  ةدراسة نزعة تجنب المخاطرتطبيق  الرسالةيتم في الجزء الثاني من هذه 

كمقياس لتجنب  ةيتم اعتبار القيمة المشروطة عند المخاطر. والأسواق المنتجات متعددة الصحف بائع

للحالات النماذج الرياضية المتحصلة  فإن ةللمخاطر المتعادلة . وعلى غرار النتائج لدراسة النزعةةالمخاطر

. يتم اقتراح طرق للحصول على الحلول المثلى. لاخطيةنماذج صحيحة هي أيضاً  ةنزعة تجنب المخاطرمع 



xxii 

 

مخروطية تربيعية ويتم مقارنة إعادة صياغة النماذج الصحيحة اللخطية كنماذج صحية مختلطة  يتم أيضًا

أداء طرق الحلول المقترحة مع أداء أفضل البرامج التجارية المتاحة لحل تلك النماذج. تبين النتائج أن صانع 

عليه أن يقوم بطلب كميات من كل منتج أقل مما لو كانت نزعته متعادلة  ةعة تجنب المخاطرالقرار ذو نز

 .ةبالنسبة للمخاطر

عندما تكون  والأسواق المنتجات متعددة الصحف بائع مسائلبدراسة  الرسالةيهتم الجزء الثالث من هذه 

. عدم التأكد حيال الطلب السوقي يتم توصيفه وافية أو متكاملةالمعلومات المتاح عن الطلب في الأسواق غير 

شكل وحجم فئة عدم التأكد للطلب السوقي. يتم دراسة عن طريق فئة عدم التأكد. يقوم صانع القرار بتحديد 

مع اعتبار فئة عدم التأكد مستطيلة الشكل ثم بيضاوية الشكل  والأسواق المنتجات متعددة الصحف بائع مسائل

اعتبار فئة عدم التأكد مزيج من تلك الفئات. يتم صياغة النظائر المتينة للنماذج مع  يرًاوأخ ثم متعددة السطوح

    اعتبار فئات عدم التأكد المختلفة ويتم طرح طرق الحلول لها. يتم عرض ومناقشة النتائج الحسابية. 



CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

Today’s competitive world emphasizes the development of powerful paradigms and

tools to manage the entire supply chain. Inventory management aspects are cru-

cial issues in supply chain management. Several literature reviews were conducted

to discuss the coordination of supply chain activities and flexibility in responding

to changing market conditions [1, 2, 3].

Traditional models of supply chain planning used to treat planning decisions sep-

arately. Those models do not optimize the entire supply chain, because of the

conflict between planning decisions, and the drastic changes in the dynamic busi-

ness environment. One can notice a proliferation of recent research trend on

integrating different planning decision. A crucial topic in supply chain planning

is inventory planning.

Based on the available information about the demand nature; the inventory sys-
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tems are classified into three main types:

� Deterministic systems: when there is precise information about the demand

size before the demand size is realized.

� Stochastic systems: when the demand is uncertain and random in nature,

but there is enough data and information to characterize a suitable demand

probability distribution.

� Uncertain systems: when the demand is uncertain and random in nature,

but the available demand data and information is not enough to character-

ize a suitable demand probability distribution; this is due to imprecision,

vagueness, or ambiguity of the available information.

The inventory decision making process differs based on the inventory system:

� For deterministic systems ”Under Certainty Decision Making Process”: the

decision maker has a complete knowledge of the demand states and he

knows exactly the demand behavior; so that, the decision problem is simple.

The most common example of this situation is the economic order quantity

(EOQ) model for deterministic demand.

� For stochastic systems ”Under Risk Decision Making Process”: the decision

maker has partial information about the demand states. The available in-

formation is expressed in terms of demand probability distributions, which

enable decision maker to determine; for instance, the maximum expecta-

tion of profit or incorporating other decision maker’s preferences; such as

2



risk-averse and risk-seeking preferences.

� For uncertainty systems ”Under Uncertainty Decision Making Process”: the

decision maker has very little information about the demand states; such

that, the demand probability distributions are not known. The known in-

formation in such situation might be demand mean and/or variance and/or

the maximum and/or minimum demand amount. The best inventory control

policy for these cases can be determined based on some suitable criterion

such as minimax or maximax, or based on an appropriate approach like

robust optimization techniques.

One of the most rigorously studied problems in the inventory management area is

the well-known Newsvendor Problem (NVP). The decision maker of the classical

NVP has to decide on the order quantity to be procured, in order to maximize

(minimize) the total expected profit (cost). The procurement decision has to be

taken prior to the realization of the actual demand. Upon demand realization,

either leftover inventory or stock-out will occur at the end of the selling period.

The decision maker should consider both of these possibilities during the decision-

making process.

Another stream of literature that is closely related to inventory planning prob-

lems is the demand or market selection problems. This type of problems considers

demands characteristics, and allows the supplier to select the markets to serve.

Related papers on deterministic demand selection models and their variants in-

clude [4, 5, 6, 7]. For stochastic demand selection, see [8, 9, 10, 11, 12].
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Taaffe et al. [8] introduced an integrated problem of the classical newsvendor

problem and the demand selection decision in a single problem termed as the Se-

lective Newsvendor Problem (SNVP). The SNVP is concerned with a firm sells

a single product in a set of potential markets. The decision maker of the SNVP

has to decide on the markets to cover and the order quantity to procure from an

overseas supplier.

Consequently, a stream of studies discussing the SNVP were conducted including

[13, 14, 9, 12, 10, 15, 16]. To the best of our knowledge, Strinka et al. [16] is the

only published work that studied the MPSNVP. The authors presented several

versions of the MPSNVP where most of them are solved employing the same so-

lution procedure presented in [8]. They studied the direct extension to the work

in [8] as well as the case they called ’General Case’. However, for the general case,

the authors proposed a solution algorithm to obtain the optimal solution to the

general case. The proposed solution algorithm runs in exponential time in the

number of products. They also proposed a set of heuristics to solve the general

case model.

However, Strinka et al. [16] studied some versions of the multi-product SNVP

and proposed solution algorithms, still no polynomial optimal solution is avail-

able for this very practical problem. In addition to that, more general cases of the

MPSNVP should be discussed. Another important issue to address is the market

demand information availability and quality and its effect on market selection de-

cisions. The study in this dissertation is really motivated by these clear gaps in
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the SNVP literature. Table 1.1 shows a comparison of the focus of the dissertation

and the SNVP literature. Next section presents the problem statement and the

MPSNVP to be studied in this dissertation.
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Table 1.1: A comparison of the focus of the dissertation with SNVP literature.

Reference
Single

product SNVP

MPSNVP Risk-neutral
SNVP

Risk-averse
SNVP

Robust
SNVP

Service level
constraints

Flexible Full Partial

[8] ? ?

[9] ? ?

[14] ? ?

[12] ? ?

[13] ? ?

[15] ? ? ?

[10] ? ?

[16] ? ? ?

This Dissertation ? ? ? ? ? ? ?
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1.2 Problem Statement

This dissertation presents the SNVP with several products, termed as the Multi-

Product Selective Newsvendor Problem (MPSNVP). The MPSNVP is concerned

with a firm who sells several products in several markets or to several groups of

customers. The decision maker of the firm selects the most profitable markets to

serve, and determines the optimal order quantities of each product to be purchased

from an external supplier. It is assumed that the realized demand of each product

is always satisfied: either from the procured quantity or expedited from a local

supplier at a higher purchasing cost. We discuss three cases of the MPSNVP:

� Flexible market entry: the firm has the ability to sell one or more products in

the selected market. The firm pays a single cost per period for introducing

a particular product into the selected market, this cost may consists of

transportation, taxes, advertising and inventory maintaining costs.

� Full market entry: the firm sells the entire set of products in the selected

market. The firm pays a single cost per period for introducing the entire set

of products into the selected market, the cost might include transportation,

taxes, advertising and inventory maintaining costs.

� Partial market entry: the firm pays an initial fixed cost, such as taxes costs,

to enter the market and then it has the ability to sell any number of products

in the selected market. The firm has to pay an additional cost for introduc-

ing a particular product into the selected market; the additional cost may
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include transportation, advertising and inventory maintaining costs.

For each of the above mentioned MPSNVP we will develop the mathematical

modeling and propose the solution algorithms. We will study the risk-neutral,

service level constrained, risk-averse MPSNVP as well as the robust MPSNVP.

1.3 Dissertation Outline

The reminder of this dissertation is organized as follows. In Chapter 2, we develop

mathematical modeling for risk-neutral flexible, full and partial market entry MP-

SNVP. In addition, we incorporate service level constraints with each case. The

mathematical manipulation for these cases results in binary nonlinear programs.

We propose solution approaches that takes advantage of the special structure of

the mathematical models. The proposed solution algorithms guarantee optimal

solutions. In addition, we propose efficient heuristic algorithms.

Chapter 3 considers the risk-averse MPSNVP. The mathematical models for the

risk-averse flexible, full and partial market entry cases are developed. The objec-

tive is to maximize profit under Conditional Value-at-Risk (CVaR) criterion. The

obtained mathematical models have the same structures of the models studied in

Chapter 2. Therefore, the solution approaches for the CVaR risk-averse case are

similar to those for the risk-neutral case. In addition, we reformulate the math-

ematical models into Conic Quadratic Mixed Integer Programs (CQMIPs), and

compare the performance of the proposed algorithms with that of the commercial

solvers of NIP and CQMIP.
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The demand uncertainty is the focus of Chapters 4, 5 and 6. In these three chap-

ters, we discuss robust optimization approaches under box, ellipsoidal, polyhedral

uncertainty sets and combinations of these uncertainty sets. The flexible, full and

partial market entry MPSNVP under demand uncertainty are studied in Chapter

4, 5 and 6, respectively. The robust counterpart approach in most of the discussed

cases results in Integer Linear Programs (ILP), which can be solved easily and

efficiently with commercial solvers. For the cases where the robust counterpart

approach results in NIP, we propose solution approaches that are either similar to

the solution approaches presented in Chapter 1 or based on the reformulation the

NIP into CQMIP. In addition, we provide discussion of computational results.

Finally, Chapter 7 provides some concluding remarks and some directions of po-

tential future extensions.
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CHAPTER 2

MULTI-PRODUCT SELECTIVE

NEWSVENDOR PROBLEM

WITH SERVICE LEVEL

CONSTRAINTS

2.1 Introduction

As indicated in Chapter 1, Taaffe et al. [8] is the first study that integrated

the classical newsvendor problem and the problem of market selection in a single

problem known as the Selective Newsvendor Problem (SNVP). Consequently, the

SNVP considers a firm that aims at maximizing its expected profit from selling a

single product in a set of potential markets. The decision maker of the SNVP has

to identify the optimal quantity to be manufactured or purchased from a supplier,
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as well as select the set markets to serve.

Practically, companies with newsvendor- structures such as sports, fashion, dairy,

bakery, etc., sell more than one type of product. Lau and Lau [17] called these

types of companies the Newsstand Problem (NSP). In this dissertation we present

the SNVP with several products, termed as the Multi-Product Selective Newsven-

dor Problem (MPSNVP). The MPSNVP is concerned with a firm who sells several

products in several markets or to several groups of customers. The decision maker

of the firm selects the most profitable markets to serve, and determines the opti-

mal order quantities of each product to be purchased from an external supplier.

It is assumed that the realized demand of each product is always satisfied: either

from the procured quantity or expedited from a local supplier at a higher pur-

chasing cost. We discuss the three cases of the MPSNVP presented in Chapter

1:

1. Flexible market entry.

2. Full market entry.

3. Partial market entry.

In this chapter, we develop the mathematical models of the above three cases

under profit risk-neutral preferences; i.e. the expected value of the profit, and

propose polynomial optimal solution algorithms.
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2.2 Literature Review

The NVP has received extensive interest over the past 50 years. Interested readers

may refer to [18, 19] for a comprehensive review. The popularity of the NVP is due

to its applicability in manufacturing and retailing industries. Service industries

such as air transportation and hotels, and manufacturing industries such as dairy,

sports, fashion, and electronic devices are typical newsvendor model examples.

Typically, products with short life cycles aptly fit the NVP assumptions. The

following literature review is organized into two parts: the SNVP literature, and

the Multi-Products Newsvendor Problem (MPNVP) literature.

Taaffe et al. [8] introduced a new version of the newsvendor problem, known as

the Selective Newsvendor Problem (SNVP). The SNVP considers a firm that sells

a single product in a set of possible markets. The decision maker (newsvendor)

is responsible for making decisions in order to cover the demand of some selected

markets from a set of potential markets. The demand of the markets is assumed

to be satisfied without backordering. In the case of inventory shortage, the firm

subcontracts the shortage quantity from a local supplier. The modeling of this

problem relies on the benefit of risk pooling effect by gathering the demand of

multiple markets and ordering a single order quantity. Eppen [20] and Chen and

Lin [21] studied and displayed the risk pooling effect and its benefits in inventory

management. The obtained mathematical model of the problem boils down to an

Integer Nonlinear Program (INLP). The authors presented an optimal algorithm

to solve the problem.
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Taaffe et al. [14] extended the SNVP model, where the demand follows a discrete

probability distribution with all-or-nothing orders in single and multiple periods.

A two-stage Stochastic Integer Program (SIP) model was developed, and then

the authors proposed a tailored cutting plane algorithm based on the L-shaped

method for solving the SIP.

Bakal et al. [9] provided a study of the market selection decisions and the accom-

panying implications on pricing policies of a firm offering a single product. The

authors studied different pricing strategies for both Economic Order Quantity

(EOQ) model and newsvendor model. For the newsvendor model they utilized

the same solution procedure presented in [8].

Several studies were performed to incorporate risk aversion concepts into the

SNVP models [13, 12, 15]. Furthermore, the application of robust optimization

techniques in the case of limited information on the probability distribution of the

markets’ demand in the SNVP was studied in [10].

The second part of the literature review is concerned with the MPNVP. To the best

of our knowledge, the first study of the MPNVP with constraints was conducted

by Hadley and Whitin [22]. The authors presented a dynamic programming and

Lagrange multipliers-based method to solve the model.

Lau and Lau [17] considered the Newsstand Problem, which is an MPNVP with

multiple capacity constraints such as budget constraints, storage constraints, pro-

duction constraints, etc. The authors presented the model formulation and devel-

oped a heuristic solution procedure for the problem. They are credited for noting
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that the optimal order quantity may assume a negative value if the non-negativity

constraints are ignored. This is likely to happen when the number of products is

large, with a tight budget constraint.

Abdel-Malek et al. [23] investigated the MPNVP with a budget constraint. They

provided an exact solution to the MPNVP when the demand is uniformly dis-

tributed. The authors provided an approximate solution with a known level of

error when the demand is exponentially distributed. For any general demand dis-

tribution, they came up with an iterative algorithm for solving the MPNVP. The

iterative algorithm is called the Generic Iterative Method (GIM). The beauty of

the GIM is that it gives the absolute gap within iterations.

Areeratchakul and Abdel-Malek [24] presented a simple approximate solution to

the MPNVP with constraints. The proposed solution is based on quadratic pro-

gramming and triangular representation of the area under the cumulative demand

distribution curve. The authors obtained an exact solution to the case of uni-

formly distributed demand. Moreover, they provided an approximate solution to

any other demand distribution.

Taleizadeh et al. [25, 26] provided genetic algorithms for solving the MPNVP with

multi-constraints. They also considered total and incremental quantity discounts.

Zhang et al. [27] studied the MPNVP with budget constraints. They presented

a bi-section search to obtain the optimal marginal budget benefit value of the

products. The proposed solution produces an optimal or a near-optimal solution

to the case of continuous demand distributions. However, it produces an approx-
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imate solution to the case of discrete demand distributions.

Recently, other papers also studied variations of the multi-product newsven-

dor problem with capacity and/or budget constraints and demand uncertainties

[28, 29, 30, 31].

Strinka et al. [16] studied some versions of the multi-product SNVP and proposed

solution algorithms that are exponential in the number of products.

In this chapter, we discuss the mathematical modeling of different cases of the

MPSNVP. In addition, we propose a polynomial optimal solution to these mod-

els.

2.3 MPSNVP Mathematical Modeling

The following two questions are of critical importance for the decision maker of

the SNVP:

1. What are the markets that the firm should select in order to maximize its

profit?

2. What is the optimal total quantity to be procured from the external sup-

plier?

The above two questions are generalized in this chapter by considering the case

of marketing several products instead of a single product. This generalization

is the main theme of the MPSNVP. We will consider the following three cases

of MPSNVP: flexible, full and partial market entry. In this section, we develop

15



the mathematical models of the above three cases with and without service level

constraints.

Throughout this dissertation, we assume that rij > ej > cj > vj, to avoid trivial

solutions.

2.3.1 Case 1: MPSNVP with Flexible Market Entry

A product j is allowed to individually enter market i with an entry cost Sij (paid

once during the period). The profit P (Qj, yij) depends on the realized demand

and the ending inventory level, either a surplus or a shortage. The function

P (Qj, yij) is expressed as follows:

P (Qj, yij) =



∑
j∈J

∑
i∈I

[rijxij − Sij] yij +
∑
j∈J

[
vj

(
Qj −

∑
i∈I
xijyij

)
− cjQj

]
,

for Qj ≥
∑
i∈I
xijyij,∑

j∈J

∑
i∈I

[rijxij − Sij] yij −
∑
j∈J

[
ej

(∑
i∈I
xijyij −Qj

)
+ cjQj

]
,

for Qj <
∑
i∈I
xijyij.

(2.1)

For any product j, the expected total demand per period for a given set of markets

is:

E

[∑
i∈I

xijyij

]
=
∑
i∈I

yijE [xij] =
∑
i∈I

µijyij.
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Market demands during a period are assumed to be statistically independent, and

since y2
ij = yij the variance of the total demand is represented as:

V ar

[∑
i∈I

xijyij

]
=
∑
i∈I

σ2
ijyij.

Then, the expected profit becomes:

E [P (Qj, yij)] =
∑
j∈J

∑
i∈I

[rijµij − Sij] yij +
∑
j∈J

Qj (vj − cj)−
∑
j∈J

∑
i∈I

vjµijyij

−
∑
j∈J

(ej − vj)
∫ ∞
∑
i∈I

xijyij=Qj

(∑
i∈I

xijyij −Qj

)
dF (x1j, · · · , xmj) .

(2.2)

Maximizing the above profit function results in a stochastic mixed integer non-

linear program, that is, involving stochastic variables with continuous probability

distributions. Indeed, exact evaluation of this type of model is, in general, ex-

tremely difficult or even impossible [32, 33, 34]. The tractability of the model

cannot be retrieved unless the integral term is further simplified. Given the vec-

tor ŷ, which specifies the selected markets, it is straightforward to show that the

expected profit function E [P (Qj, yij)] for any product j, is concave over Qj ≥ 0.

In this case, E [P (Qj, yij)] becomes a sum of separable NVP, where each NVP is

formulated as

Qŷj (vj − cj)−
(
ej − vj

)∫ ∞
xŷj=Qŷj

(xŷj −Qŷj) fŷ (xŷj) dxŷj ∀ j ∈ J.
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The optimal order quantity Q∗ŷj that maximizes the above function (reduced prob-

lem) is well known, and is given by:

Q∗ŷj = F−1
ŷ

(
ej − cj
ej − vj

)
, (2.3)

where F−1
ŷ is the inverse of Fŷ. The function E [P (Qj, yij)] can be expressed as:

E [P (Qj, yij)] =
∑
j∈J

∑
i∈I

[(rij − vj)µij − Sij] yij −
∑
j∈J

Q∗ŷj (cj − vj)

−
∑
j∈J

(
ej − vj

)
Λŷj

(
Q∗ŷj

)
,

where Λŷj

(
Q∗ŷj

)
, is the loss function for the order quantity Q∗ŷj and market

selection vector ŷ:

Λŷj (Qŷj) =

∫ ∞
xŷj=Qŷj

(xŷj −Qŷj) fŷ (xŷj) dxŷj. (2.4)

For any product j, if the demand of each market is normally distributed with a

negligible probability of negative demands, the loss function can be expressed as:

Λŷj

(
Q∗ŷj

)
=

√∑
i∈I

σ2
ijyijL (z (ρj)) , (2.5)

where, ρj =
ej−cj
ej−vj , L (z (ρj)) is the standard normal loss function, and

z (ρj) =

Q∗ŷj −
∑
i∈I
µijyij√∑

i∈I
σ2
ijyij

= Φ−1 (ρj) .
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Now, the optimal order quantity, Q∗ŷj, for product j can be written as:

Q∗ŷj =
∑
i∈I

µijyij + z (ρj)

√∑
i∈I

σ2
ijyij, (2.6)

and the expected profit function, E [P (Qj, yij)], can be expressed as:

E
[
P
(
Φ−1 (ρj) , yij

)]
=
∑
j∈J

∑
i∈I

[(rij − cj)µij − Sij]yij

−
∑
j∈J

(cj − vj) Φ−1 (ρj)

√∑
i∈I

σ2
ijyij

−
∑
j∈J

(
ej − vj

)
L
(
Φ−1 (ρj)

)√∑
i∈I

σ2
ijyij.

Let πij and K (ρj) be defined as:

πij = (rij − cj)µij − Sij,

K (ρj) = (cj − vj) Φ−1 (ρj) +
(
ej − vj

)
L
(
Φ−1 (ρj)

)
.

Using the above definitions, the expected profit function, E [P (Qj, yij)], becomes:

E
[
P
(
Φ−1 (ρj) , yij

)]
=
∑
j∈J

∑
i∈I

πijyij −K (ρj)

√∑
i∈I

σ2
ijyij


In addition to that, for any product j, a target service level, αj ∈ (0, 1), can

be introduced to penalize shortages. The target service level in our case can be

considered as the condition that the probability of satisfying the demand with

current levels of inventory is at least α. This will minimize the probability of
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expediting for excess demand. We already know that the optimal order quantity

for the reduced unconstrained problem is Qŷj = F−1
ŷ (ρj). If the service level

constraint is satisfied for product j; i.e., F−1
ŷ (ρj) ≥ F−1

ŷ (αj), or equivalently,

ρj ≥ αj, for all j = 1, . . . , p, then the optimal solution of the reduced problem

remains optimal, with respect to the service level constraint. On the other hand,

for any product j, if ρj < αj, then the service level constraint is violated. For

such a scenario, the optimal order quantity becomes Qŷj = F−1
ŷ (αj). The service

level constraints can be implemented as:

Fŷ (Qŷj) ≥ γj

where γj = max{ρj, αj}. To maximize the expected profit of the firm the following

model of Case 1 should be solved:

Problem I:

Max
∑
j∈J

∑
i∈I

πijyij −K (γj)

√∑
i∈I

σ2
ijyij

,
s.t.

yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

(2.7)

The final model is a binary integer nonlinear program involving only the market

selection variables. The above model can be considered as a summation of p

independent SNVP.
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2.3.2 Solution Algorithm to Case 1

The solution approach is based on the following theorem:

Theorem 1: Let

F1 := max
w

∑
i∈I

aiwi −
√∑

i∈I

biwi

∣∣∣∣∣∣ wi ∈ {0, 1} , ai ∈ R, bi > 0 ∀ i ∈ I

 .

Assume, without loss of generality, that ai and bi are indexed, such that:

a1

b1

≥ a2

b2

≥ . . . ≥ an
bn
.

Let

G1 (r) =
r∑
i=1

ai −

√√√√ r∑
i=1

bi.

If bi ≥ 0, then z∗ = max
1≤r≤n

{G1 (r)} is the optimal solution value of F1, and the

optimal solution vector of F1 is given as:

wi
∗ =


1 ∀ i ≤ r,

0 ∀ i > r.

Proof : See [35]; Theorem 4.2. �

In Problem I given by (2.7), the coefficient of the nonlinear term in the objective

function is a squared value, and hence it is always positive. Therefore, we can

directly apply Theorem 1 to solve the model; the only thing that we need is to

sort the variables in a non-increasing order.
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This approach was used for solving the SNVP in Taaffe et al. [8]. It is similar to

the approach used in Shen et al. [35]. For each product j, the markets are sorted

in a non-increasing order of the ratio of the expected Revenue to the Demand

Uncertainty (RDU). The RDU is the ratio of the linear coefficient of yij to the

nonlinear coefficient of yij in the objective function.

The sorting rule for each product is as follows:

R1 :
π[1]j

σ2
[1]j

≥
π[2]j

σ2
[2]j

≥ · · · ≥
π[m]j

σ2
[m]j

, j ∈ J. (2.8)

The objective function of each product should be calculated for each set of the

markets following the sequence in rule R1. The set of the markets that has the

maximum expected total profit is the optimal selected markets set. The necessary

condition of optimal solution to the above problem states that if yk = 1, then

yi = 1, i = 1, 2, . . . , k−1 (see Theorem 1). The solution procedure is summarized

in the following algorithm:

Algorithm I :

Step 1: for every product j, sort the markets in the non-increasing order of the

RDU ratio R1 presented in (2.8).

Step 2: evaluate Gj(k) for k = 1, . . . , m, defined as follows:

Gj (k) =
k∑
i=1

π[i]j −K (γj)

√√√√ k∑
i=1

σ2
[i]j, k = 1, . . . , m, ∀ j ∈ J.
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Step 3: Identify k for each j ∈ J , such that Gj

(
k
)
≥ Gj (k) , k = 1, . . . , m.

Fix y∗ij = 1 for the optimal set of markets K∗, where K∗ =
{

[1] , [2] , . . . ,
[
k
]}

corresponds to the maximum (global optimal) Gj

(
k
)

for each product j, y∗ij = 0

otherwise.

Using Algorithm I, we obtain p sequences; each one of them can be considered as

a separate SNVP problem. The sorting sequences reduce the number of possible

market selection combinations or candidate solutions for each product from 2m to

only m + 1 possible sequences, and the computational time complexity becomes

O (p(m log m)).

2.3.3 Case 2: MPSNVP with Full Markets Entry

For this case, if any market i is selected, then a single fixed market entry cost, Si,

is incurred. The profit, P (Qj, Yi), can be expressed as:

P (Qj, Yi) =



∑
i∈I

(∑
j∈J

(rijxij)− Si

)
Yi+

∑
j∈J

[
vj

(
Qj −

∑
i∈I
xijYi

)
− cjQj

]
,

for Qj ≥
∑
i∈I
xijYi,∑

i∈I

(∑
j∈J

(rijxij)− Si

)
Yi −

∑
j∈J

[
ej

(∑
i∈I
xijYi −Qj

)
+ cjQj

]
,

for Qj <
∑
i∈I
xijYi.

(2.9)
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Following the same modeling procedure in Case 1, the total expected profit,

E [P (Qj, Yi)], can be expressed as:

E [P (Qj, Yi)] =
∑
i∈I

(∑
j∈J

(rijµij)− Si

)
Yi −

∑
j∈J

(
Qj (cj − vj) + vj

∑
i∈I

µijYi

)

−
∑
j∈J

(
ej − vj

)∫ ∞
xŷj=Qj

(xŷj −Qj) fŷ (xŷj) dxŷj.

(2.10)

Substituting the loss function Λŷj (Qj) from (2.4), and the optimal order quantity

Q∗ŷj from (2.3), in the above function, yields:

E [P (Qj, Yi)] =
∑
i∈I

(∑
j∈J

(rijµij)− Si

)
Yi −

∑
j∈J

(
Q∗ŷj (cj − vj) + vj

∑
i∈I

µijYi

)

−
∑
j∈J

(
ej − vj

)
Λŷj

(
Q∗ŷj

)
.

If the demand is normally distributed, then the loss function Λŷj (Qj) is given by

Equation (2.5), and the optimal order quantity, Q∗ŷj is given by Equation (2.6).

The expected profit for the normally distributed demand can be written as:

E
[
P
(
Φ−1 (ρj) , Yi

)]
=
∑
i∈I

(∑
j∈J

((rij − cj)µij)− Si

)
Yi

−
∑
j∈J

(cj − vj) Φ−1 (ρj)

√∑
i∈I

σ2
ijYi

−
∑
j∈J

(
ej − vj

)
L
(
Φ−1 (ρj)

)√∑
i∈I

σ2
ijYi.
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Defining πi and K (ρj)as:

πi =
∑
j∈J

((rij − cj)µij)− Si,

K (ρj) = (cj − vj) Φ−1 (ρj) +
(
ej − vj

)
L
(
Φ−1 (ρj)

)
.

Using the above definitions, the expected profit function, E [P (Qj, Yi)], becomes:

E
[
P
(
Φ−1 (ρj) , Yi

)]
=
∑
i∈I

πiYi −
∑
j∈J

K (ρj)

√∑
i∈I

σ2
ijYi.

If there is a target service level, αj ∈ (0, 1), for product j, following a similar

argument as in Case 1, this service level constraint can be implemented as:

Fŷ (Qŷj) ≥ γj

where γj = max{ρj, αj}. To maximize the expected profit of the firm the following

model of Case 2 should be solved:

Problem II:

Max
∑
i∈I

πiYi −
∑
j∈J

K (γj)

√∑
i∈I

σ2
ijYi,

s.t.

Yi ∈ {0, 1} , ∀ i ∈ I.

(2.11)

Similar to Problem I, Problem II is a binary integer nonlinear program involving

the market selection variables.
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2.3.4 Solution Algorithm to Case 2

The solution approach is based on the following theoritical analysis:

Lemma 1: Let f (x) : X → R, X ⊂ R be a strictly concave function. For any

scalars a, b, c where b, c > 0 and a, a+b, a+c, a+b+c ∈ X, we have;

f (a+ b)− f (a) > f (a+ b+ c)− f (a+ c) . (2.12)

Proof : Without loss of generality, assume that b > c, hence

f (a+ c) = f

(
a
b− c
b

+ (a+ b)
c

b

)
>
b− c
b

f (a) +
c

b
f (a+ b) .

Re-arranging terms we get:

f (a+ b)− f (a)

b
>
f (a+ b)− f (a+ c)

b− c
. (2.13)

Similarly,

f (a+ b) = f

(
(a+ c)

c

b
+ (a+ b+ c)

b− c
b

)
>
c

b
f (a+ c) +

b− c
b

f (a+ b+ c) .

Re-arranging terms we get

f (a+ b)− f (a+ c)

b− c
>
f (a+ b+ c)− f (a+ c)

b
. (2.14)

Inequality (2.12) follows immediately from (2.13) and (2.14).
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If b = c, then we have

f (a+ b) = f

(
1

2
a+

1

2
(a+ b+ c)

)
>

1

2
f (a) +

1

2
f (a+ b+ c) ,

2f (a+ b) > f (a) + f (a+ b+ c) .

Re-arranging the terms yields inequality (2.12). �

Theorem 2: Let

F2 : = max
w

∑
i∈I

aiwi −
∑
j∈J

√∑
i∈I

bijwi

s. t.

ai ∈ R, i ∈ I,

bij > 0, ∀ j ∈ J, ∀ i ∈ I,

wi ∈ {0, 1} , i ∈ I.

Let G2 (I) =
∑
i∈I
ai −

∑
j∈J

√∑
i∈I
bij, and G2 (I\r) =

∑
i∈I\r

ai −
∑
j∈J

√ ∑
i∈I\r

bij.

1. If ar ≤ 0 for some r ∈ I, then wr
∗ = 0,

2. If ar > 0 for some r ∈ I, and G2 (I) ≤ G2 (I\r), then wr
∗ = 0,

3. If ar > 0 for some r ∈ I, and G2 (r) = ar −
∑
j∈J

√
brj > 0, then wr

∗ = 1.

Proof :

1. Property 1 follows immediately. Since bij ≥ 0 ∀ i ∈ I and j ∈ J , if ar ≤ 0,

then for any solution w with wr = 1, the objective function value is strictly
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smaller than that of the solution obtained from w by setting wr
∗ = 0.

2. For proving Property 2 we write the following: Let w∗ be the optimal so-

lution to F2. Let ∆∗ = {i | wi∗ = 1 for some i ∈ I } be the optimal set of

indices, then G2 (∆∗) ≥ G2 (∆) ∀ ∆ ⊆ I. If G2 (I) ≤ G2 (I\r) for some r ∈

R ⊆ I, we need to prove that ∆∗ ∩R = ∅.

a) By contradiction, assume that ∆∗ = {∆1 ∪ r1} ∀ r1 ∈ R, then

G2 (∆1 ∪ r1) ≥ G2 (∆) ∀ ∆ ⊆ I, it must be true for ∆ = ∆1, then

∑
i∈∆1

ai + ar1 −
∑
j∈J

√∑
i∈∆1

bij + br1j ≥
∑
i∈∆1

ai −
∑
j∈J

√∑
i∈∆1

bij,

Hence,

ar1 ≥
∑
j∈J

√∑
i∈∆1

bij + br1j −
√∑

i∈∆1

bij

. (2.15)

given G2 (I) ≤ G2 (I\r1):

∑
i∈∆1

ai + ar1 +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj

≤
∑
i∈∆1

ai +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij +
∑
n∈∆2

bnj,

Then,

ar1 ≤
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

.
(2.16)
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From (2.15) and (2.16):

∑
j∈J

√∑
i∈∆1

bij + br1j −
√∑

i∈∆1

bij

 ≤ ar1

≤
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

.
(2.17)

From Lemma 1, and since the square-root function is a strictly increas-

ing concave function, then

√∑
i∈∆1

bij + br1j −
√∑

i∈∆1

bij

>

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj,

therefore (2.17) doesn’t hold.

b) Similarly, by contradiction, assume that ∆∗ = {∆1 ∪ r1 ∪ r2} for some

{r1, r2} ∈ R, then G2 (∆1 ∪ r1 ∪ r2) ≥ G2 (∆) ∀ ∆ ⊆ I, it must be true

for ∆ = ∆1, then

∑
i∈∆1

ai + ar1 + ar2 −
∑
j∈J

√∑
i∈∆1

bij + br1j + br2j ≥
∑
i∈∆1

ai−
∑
j∈J

√∑
i∈∆1

bij,

ar1 + ar2 ≥
∑
j∈J

√∑
i∈∆1

bij + br1j + br2j −
√∑

i∈∆1

bij

. (2.18)
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given G2 (I) ≤ G2 (I\r1):

∑
i∈∆1

ai + ar1 +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj

≤
∑
i∈∆1

ai +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij +
∑
n∈∆2

bnj,

ar1 ≤
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

.
(2.19)

Also, given G2 (I) ≤ G2 (I\r2):

∑
i∈∆1

ai + ar2 +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij + br2j +
∑
n∈∆2

bnj

≤
∑
i∈∆1

ai +
∑
n∈∆2

an −
∑
j∈J

√∑
i∈∆1

bij +
∑
n∈∆2

bnj,

ar2 ≤
∑
j∈J

√∑
i∈∆1

bij + br2j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

.
(2.20)

From (2.18), (2.19) and (2.20):

∑
j∈J

√∑
i∈∆1

bij + br1j + br2j −
√∑

i∈∆1

bij

 ≤ ar1 + ar2

≤
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj


+
∑
j∈J

√∑
i∈∆1

bij + br2j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

,
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Then,

∑
j∈J

√∑
i∈∆1

bij + br1j + br2j −
√∑

i∈∆1

bij + br1j


+
∑
j∈J

√∑
i∈∆1

bij + br1j −
√∑

i∈∆1

bij

 ≤ ar1 + ar2

≤
∑
j∈J

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj


+
∑
j∈J

√∑
i∈∆1

bij + br2j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj

.

(2.21)

From Lemma 1, and since the square-root function is a strictly increas-

ing concave function,

√∑
i∈∆1

bij + br1j + br2j −
√∑

i∈∆1

bij + br1j

>

√∑
i∈∆1

bij + br2j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj, ∀ j ∈ J,

√∑
i∈∆1

bij + br1j −
√∑

i∈∆1

bij

>

√∑
i∈∆1

bij + br1j +
∑
n∈∆2

bnj −
√∑

i∈∆1

bij +
∑
n∈∆2

bnj, ∀ j ∈ J,

therefore Equation (2.21) doesn’t hold.

Following the same procedure in (a) and (b), we can show that

∆∗ ∩ R = ∅, if G2 (I) ≤ G2 (I\r) for some r ∈ R ⊆ I.

3. Let ∆∗ be the set optimal of indices, i.e., G2 (∆∗) = F2. Let r be such that
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ar> 0 and G2 (r) =ar−
∑

j∈J
√
brj> 0. If r ∈ ∆∗, then the proof is complete.

If r /∈ ∆∗, then consider the following:

G2 (∆∗∪r )−G2 (∆∗) =ar−

∑
j∈J

√
brj+

∑
i∈∆∗

bij−
∑
j∈J

√∑
i∈∆∗

bij


>
∑
j∈J

√
brj−

∑
j∈J

√
brj+

∑
i∈∆∗

bij−
∑
j∈J

√∑
i∈∆∗

bij


=
∑
j∈J

√
brj+

∑
j∈J

√∑
i∈∆∗

bij−
∑
j∈J

√
brj+

∑
i∈∆∗

bij > 0

The relation follows from the assumption that G2 (r) =ar−
∑
j∈J

√
brj> 0 and

Lemma 1. The above inequality, i.e., G2 (∆∗∪r )−G2 (∆∗)> 0 is a contra-

diction to the statement that ∆∗ is the set of optimal indices. The contra-

diction occurred due to the false assumption that r /∈ ∆∗. Thus, r ∈ ∆∗,

where ∆∗ is the set of optimal indices. �

The solution procedure for the MPSNVP with full market entry is based on the

properties of the model structure and the properties from Theorem 2. To obtain

the optimal solution to Problem II given by (2.11), we can apply the following

solution procedure:

Algorithm II :

The following two algorithms are equivalently proposed to obtain the optimal

solution to Problem II:

Forward Algorithm:

Step 1: calculate the marginal profit, Pi, for each market i, defined as:
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Pi = πi −
∑

j∈J K(γj)σij, ∀ i ∈ I,

Step 2: set k = 0

� If Pi ≥ 0 for some i ∈ I, then let Lk = {i | Pi > 0, i ∈ I}, if Lk = I, then

go to Step 6, otherwise go to Step 3.

� If Pi < 0 ∀ i ∈ I, then let Lk =

{
r | Pr = max

i∈I
Pi

}
, and go to Step 3.

Step 3: calculate:

G(Lk) =
∑
i∈Lk

πi −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij.

Step 4: for each market r ∈ I \ Lk calculate:

G(Lk ∪ r) =
∑
i∈Lk

πi + πr −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij + σ2

rj, ∀ r ∈ I \ Lk.

Step 5: for each market r ∈ I \ Lk calculate

� If G(Lk ∪ r) ≥ G(Lk) for some r ∈ I \ Lk, then let U =

{r | G(Lk ∪ r) ≥ G(Lk), r ∈ I \ Lk}, and update k = k + 1 and Lk =

Lk ∪ U , if Lk = I, then go to Step 6, otherwise go to Step 4.

� If G(Lk ∪ r) < G(Lk) ∀r ∈ I \ Lk, then let r̄ ={
r̄ | G(Lk ∪ r̄) = max

r∈I\Lk
G(Lk ∪ r)

}
, and update k = k+1 and Lk = Lk ∪ r̄,

if Lk = I, then go to Step 6, otherwise go to Step 4.
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Step 6: calculate:

G(Lk) =
∑
i∈Lk

πi −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij.

Step 7: The optimal solution is Y∗i = 1 ∀ i ∈ L∗, where L∗ is the set of optimal

selected markets and it is defined as L∗ =
{
L | G(L) = max

k
G(Lk)

}
, Y∗i = 0

otherwise.

Backward Algorithm:

Step 1: set k = 0 and Lk = I.

Step 2: calculate

G(Lk) =
∑
i∈Lk

πi −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij.

Step 3: for each market r, where r ∈ Lk, calculate:

G(Lk \ r) =
∑
i∈Lk\r

πi −
∑
j∈J

K (γj)

√ ∑
i∈Lk\r

σ2
ij.

� If G(Lk \ r) ≥ G(Lk) for some r ∈ Lk, then let U =

{r | G(Lk \ r) ≥ G(Lk), r ∈ Lk}, and update k = k+ 1 and Lk = Lk \U , if

Lk = ∅ then set G(Lk) = 0 and go to Step 4, otherwise go to Step 2.

� If G(Lk \ r) < G(Lk) ∀ r ∈ Lk, then let r̄ ={
r̄ | G(Lk \ r̄) = max

r∈Lk
G(Lk \ r)

}
, and update k = k + 1 and Lk = Lk \ r̄,

if Lk = ∅ then set G(Lk) = 0 and go to Step 4, otherwise go to Step 2.

Step 4: The optimal solution is Y∗i = 1 ∀ i ∈ L∗, where L∗ is the set of optimal
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selected markets and it is defined as L∗ =
{
L | G(L) = max

k
G(Lk)

}
, Y∗i = 0

otherwise.

The forward algorithm as well as the backward algorithm reduces the number of al-

ternatives from 2m to m+1, therefore the proposed algorithm obtains the optimal

solution in polynomial time with computational complexity O((m+ 1)m logm).

Heuristic I for solving Problem II :

We can further reduce the required computational time for solving the full market

entry MPSNVP, Problem II shown in (2.11), by applying the following heuristic:

Step 1: sort the markets in a non-increasing order of the RDU ratio; RHI ,∑
j∈J

πij∑
j∈J

K2(γj)σ2
ij
, ∀ i ∈ I:

RHI :

∑
j∈J

π[1]j∑
j∈J

K2 (γj)σ2
[1]j

≥

∑
j∈J

π[2]j∑
j∈J

K2 (γj)σ2
[2]j

≥ · · · ≥

∑
j∈J

π[m]j∑
j∈J

K2 (γj)σ2
[m]j

. (2.22)

Step 2: following the sequence obtained from RHI , calculate the objective function

values, G (k), of Problem II as defined below

G (k) =
k∑
i=1

π[i] −
∑
j∈J

K (γj)

√√√√ k∑
i=1

σ2
[i]j, k = 1, . . . , m,

Identify k such that G
(
k
)
≥ G (k) , k = 1, . . . , m. Fix Y∗i = 1 for the selected

set of markets K∗, where K∗ =
{

[1] , [2] , . . . ,
[
k
]}

corresponds to the maximum

G
(
k
)
, Y∗i = 0 otherwise.

The number of possible market selection combinations or candidate solutions

based on the above heuristic is reduced 2m to m+ 1 and the computational time
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complexity is O (m logm).

2.3.5 Case 3: MPSNVP with Partial Markets Entry

This is the general case that generalized Case 1 and Case 2. For this case, if any

market i is selected, then a fixed market entry cost per period, si, is incurred, and

if a product j is selected to be sold in market i, then an additional cost per period,

sij, is paid for introducing product j in market i. The profit, P (Qj, yij,Yi), for

the partial market entry case can be expressed as:

P (Qj, yij,Yi) =



∑
i∈I

(∑
j∈J

((rijxij − sij) yij)− si

)
Yi

+
∑
j∈J

(
vj

(
Qj −

∑
i∈I
xijyij

)
− cjQj

)
,

for Qj ≥
∑
i∈I
xijyij,∑

i∈I

(∑
j∈J

((rijxij − sij) yij)− si

)
Yi

−
∑
j∈J

(
ej

(∑
i∈I
xijyij −Qj

)
+ cjQj

)
,

for Qj <
∑
i∈I
xijyij.

(2.23)

Notice that, if the firm sells any product j in any market i, then both variables yij

and Yi are 1, however if the firm decides to enter market i this does not necessarily

mean that the firm will sell product j in that market. We can now conclude that

the following constraints control the relation between yij and Yi:

Yi ≥ yij, ∀j ∈ J, ∀ i ∈ I.
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Now, following the same modeling procedure in Cases 1 and 2, the total expected

profit function, E [P (Qj, yij, Yi)], can be expressed as:

E [P (Qj, yij,Yi)] =
∑
i∈I

(∑
j∈J

((rijµij − sij) yij)− si

)
Yi

−
∑
j∈J

Qj (cj − vj)−
∑
j∈J

∑
i∈I

vjµijyij

−
∑
j∈J

(
ej − vj

)∫ ∞
xŷj=Qj

(xŷj −Qj) f (xŷj) dxŷj.

(2.24)

Substituting the loss function, Λŷj (Qj), from (2.4), and the optimal order quan-

tity, Q∗ŷj, from (2.3), we get:

E [P (Qj, yij,Yi)] =
∑
i∈I

(∑
j∈J

((rijµij − sij) yij)− si

)
Yi −

∑
j∈J

Q∗ŷj (cj − vj)

−
∑
j∈J

∑
i∈I

vjµijyij −
∑
j∈J

(
ej − vj

)
Λŷj

(
Q∗ŷj

)
.

For normally distributed demand, similar to Case 1 and 2, the function

E [P (Qj, yij,Yi)] can be written as:

E
[
P
(
Φ−1 (ρj) , yij,Yi

)]
=
∑
i∈I

(∑
j∈J

(((rij − cj)µij − sij) yij)− si

)
Yi

−
∑
j∈J

(cj − vj) Φ−1 (ρj)

√∑
i∈I

σ2
ijyij

−
∑
j∈J

(
ej − vj

)
L
(
Φ−1 (ρj)

)√∑
i∈I

σ2
ijyij.
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Defining πij and K (ρj) as:

πij = (rij − cj)µij − sij,

K (ρj) = (cj − vj) Φ−1 (ρj) +
(
ej − vj

)
L
(
Φ−1 (ρj)

)
.

Using these definitions, and noting that yijYi = yij because both variables are

binary and Yi ≥ yij, then the expected profit function, E [P (Φ−1 (ρj) , yij,Yi)],

becomes:

E
[
P
(
Φ−1 (ρj) , yij,Yi

)]
=
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

K (ρj)

√∑
i∈I

σ2
ijyij −

∑
i∈I

siYi.

If there is a target service level, αj ∈ (0, 1), for product j, it can be implemented

as:

Fŷ (Qŷj) ≥ γj

where γj = max{ρj, αj}. To maximize the expected profit of the firm we solve the

following model of Case 3:

Problem III:

Max
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

K (γj)

√∑
i∈I

σ2
ijyij −

∑
i∈I

siYi,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

(2.25)
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Similar to Problems I and II, Problem III is a binary integer nonlinear program

involving the market selection variables for each product.

2.3.6 Solution Algorithm to Case 3

The solution procedure for the MPSNVP with partial market entry is based on the

properties of the model structure and the properties from Theorem 2. To obtain

the optimal solution to Problem III given by (2.25), we can apply the following

solution procedure which contains two stages:

Algorithm III :

Stage 1

We solve for the following part of Problem III shown in (2.25),

Max
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

K (γj)

√∑
i∈I

σ2
ijyij,

s.t.

yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

The above reduced model is equivalent to Problem I presented in (2.7), there-

fore we apply Algorithm I to get the candidate markets for each product, i.e.

yij = 1 ∀ i ∈ K∗, where K∗ is defined and obtained in Algorithm I.

Stage 2

In this stage we consider the candidate solutions for yij that are obtained from

Stage 1. Stage 2 can be achieved by implementing one of the following algorithms:

Forward Algorithm:
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Step 1: for any market i, if yij = 0 ∀ j ∈ J , then fix Y∗i = 0. Let

T = {i | yij = 0 ∀ j ∈ J, i ∈ I}, update I = I \ T .

Step 2: calculate the marginal profit, Pi, for each market i, defined as:

Pi =
∑
j∈J

πij −
∑
j∈J

K(γj)σij − si, ∀ i ∈ I.

Step 3: set k = 0

� If Pi ≥ 0 for some i ∈ I, then let Lk = {i | Pi > 0, i ∈ I}, if Lk = I, then

go to Step 7, otherwise go to Step 4.

� If Pi < 0 ∀ i ∈ I, then let Lk =

{
r | Pr = max

i∈I
Pi

}
, and go to Step 4.

Step 4: calculate:

G(Lk) =
∑
i∈Lk

∑
j∈J

πij −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij −

∑
i∈Lk

si.

Step 5: for each market r ∈ I \ Lk calculate:

G(Lk ∪ r) =
∑
i∈Lk

πi + πr −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij + σ2

rj −
∑
i∈Lk

si − sr, ∀ r ∈ I \ Lk.

Step 6:

� If G(Lk ∪ r) ≥ G(Lk) for some r ∈ I \ Lk, then let U =

{r | G(Lk ∪ r) ≥ G(Lk), r ∈ I \ Lk}, and update k = k + 1 and Lk =

Lk ∪ U , if Lk = I, then go to Step 8, otherwise go to Step 5.

� If G(Lk ∪ r) < G(Lk) ∀ r ∈ Lk \ I, then let r̄ =
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{
r̄ | G(Lk ∪ r̄) = max

r∈I\Lk
G(Lk ∪ r)

}
, and update k = k + 1 and Lk =

Lk ∪ r̄, if Lk = I, then go to Step 8, otherwise go to Step 5.

Step 7: calculate:

G(Lk) =
∑
i∈Lk

∑
j∈J

πij −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij −

∑
i∈Lk

si.

Step 8: The optimal solution is Y∗i = 1 ∀ i ∈ L∗, where L∗ is the set of optimal

selected markets and it is defined as L∗ =
{
L | G(L) = max

k
G(Lk)

}
, Y∗i = 0

otherwise. While y∗ij = 1 ∀ i ∈ L∗ ∩K∗, y∗ij = 0 otherwise.

Backward Algorithm:

Step 1: for any market i, if yij = 0 ∀ j ∈ J , then fix Y∗i = 0. Let

T = {i | yij = 0 ∀ j ∈ J, ∀ i ∈ I}, update I = I \ T .

Step 2: set k = 0 and Lk = I,

Step 3: calculate

G(Lk) =
∑
i∈Lk

∑
j∈J

πij −
∑
j∈J

K (γj)

√∑
i∈Lk

σ2
ij −

∑
i∈Lk

si.

Step 4: for each market r, where r ∈ Lk, calculate:

G(Lk \ r) =
∑
i∈Lk\r

πi −
∑
j∈J

K (γj)

√ ∑
i∈Lk\r

σ2
ij −

∑
i∈Lk

si.

� If G(Lk \ r) ≥ G(Lk) for some r ∈ Lk, then let U =

{r | G(Lk \ r) ≥ G(Lk), r ∈ Lk}, and update k = k+ 1 and Lk = Lk \U , if
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Lk = ∅ then set G(Lk) = 0 and go to Step 5, otherwise go to Step 3.

� If G(Lk \ r) < G(Lk) ∀ r ∈ Lk, then let r̄ ={
r̄ | G(Lk \ r̄) = max

r∈Lk
G(Lk \ r)

}
, and update k = k + 1 and Lk = Lk \ r̄,

if Lk = ∅ then set G(Lk) = 0 and go to Step 5, otherwise go to Step 3.

Step 5: The optimal solution is Y∗i = 1 ∀ i ∈ L∗, where L∗ is the set of optimal

selected markets and it is defined as L∗ =
{
L | G(L) = max

k
G(Lk)

}
, Y∗i = 0

otherwise. While y∗ij = 1 ∀ i ∈ L∗ ∩K∗, y∗ij = 0 otherwise.

Algorithm III reduces the number of possible market selection combinations or

candidate solutions from 2pm to (p+ 1)(m+ 1), therefore the proposed algorithm

obtains the optimal solution in polynomial time with computational complexity

O(pm logm+
∑m

n=1 n log n).

Heuristic II as an Alternative to Stage 2 :

We can further reduce the required computational time for solving the partial

market entry MPSNVP, Problem III shown in (2.25), by applying Stage 1 in Al-

gorithm III then replace Stage 2 by the following heuristic:

Step 1: for any market i, if yij = 0 ∀ j ∈ J , then fix Y∗i = 0. Let

T = {i | yij = 0 ∀ j ∈ J, ∀ i ∈ I}, update I = I \ T .

Step 2: sort the markets in a non-increasing order of the RDU ratio; RHII ,∑
j∈J

πij−si∑
j∈J

K2(γj)σ2
ij
, ∀ i ∈ I:

RHII :

∑
j∈J

π[1]j − s[1]∑
j∈J

K2 (γj)σ2
[1]j

≥

∑
j∈J

π[2]j − s[2]∑
j∈J

K2 (γj)σ2
[2]j

≥ · · · ≥

∑
j∈J

π[m−l−t]j − s[m]∑
j∈J

K2 (γj)σ2
[m]j

. (2.26)
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Step 3: following the sequence obtained fromRHII , calculate the objective function

values, G (k), of Problem III as defined below

G (k) =
k∑
i=1

∑
j∈J

π[i]j −
∑
j∈J

K (γj)

√√√√ k∑
i=1

σ2
[i]j −

k∑
i=1

s[i], k = 1, . . . , m.

Step 4: Identify k for each j ∈ J , such that Gj (k) ≥ Gj (k) , k = 1, . . . , m.

Fix Y∗i = 1 for the selected set of markets K
∗
, where K

∗
= {[1] , [2] , . . . , [k]}

corresponds to the maximum Gj (k) for each product j, Y∗i = 0 otherwise. While

y∗ij = 1 ∀ i ∈ K∗ ∩K∗, y∗ij = 0 otherwise.

Algorithm III based on Heuristic II reduces the number of possible market selec-

tion combinations or candidate solutions from 2pm to (p+1)(m+1), therefore the

proposed algorithm obtains the solution in polynomial time with computational

complexity O((p+ 1)m logm).

2.4 Computational Results

In this section, we evaluate the quality of the proposed heuristic solutions based

on sorting rules similar to the optimal sorting rule in Algorithm I. In addition to

the sorting rule in Heuristics I and II, for simplicity and consistency we call it

here R1H , two additional sorting rules, R2H and R3H are suggested for arranging
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the variables of the following general problem:

F : = maxw
∑
i∈I

aiwi −
∑
j∈J

√∑
i∈I

bijwi

s. t.

ai ∈ R, ∀ i ∈ I,

bij > 0, ∀ i ∈ I, ∀ j ∈ J,

wi ∈ {0, 1} , ∀ i ∈ I,

where |I| = m

The variables of the problem will be arranged in a non-increasing order of one of

the following ratios:

R1H =
ai∑

j∈J
bij
, R2H =

ai∑
j∈J

√
bij
, R3H =

ai(∑
j∈J

√
bij

)2 .

Then, we calculate the objective function values, G (k), as defined below

G (k) =
k∑
i=1

a[i] −
∑
j∈J

√√√√ k∑
i=1

b[i]j, k = 1, . . . , m,

where the sequence [1] , [2] , . . . , [m] follows a non-increasing order of R1H , R2H

or R3H .

We choose the set of variables {[1] , [2] , . . . , [k]} that corresponds to the maxi-

mum G (k). We fix wi = 1 for the variables {[1] , [2] , . . . , [k]}.

We consider a problem with |I| = 20 variables and |J | = 5. The positive term
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coefficients i.e. ai, are drawn from uniform distributions on [0, 2,000]. bij are

also drawn from uniform distributions on [0, 1,500,000]. One thousand instances

of the test problem are solved individually using the proposed sorting rules R1H ,

R2H and R3H . The optimal solution is obtained via complete enumeration. The

comparison between the optimal solution and the heuristic results shows the fol-

lowing:

1. The heuristic based on the proposed sorting rule R1H always gives the opti-

mal solution;

2. The heuristic based on R2H fails in obtaining the optimal in 81 instances

out of 1,000 runs;

3. The heuristic based on R3H fails in obtaining the optimal solution in 27

instances out of 1,000 runs.

Now, we consider a larger problem with |I| = 100 variables and |J | = 3, 4 and 5.

The positive term coefficients i.e. ai, are drawn from uniform distributions on [0,

500]. bij are also drawn from uniform distributions on [0, 500,000]. One thousand

instances of the test problem are solved individually using the proposed heuristic

based on the sorting rules R1H , R2H and R3H . In Table 1, we report the number

of times a heuristic based on one rule beats the heuristic based on another rule.

For instance, in the first row of the table, 626 indicates that out of 1000 runs, in

626 instances the heuristic based on R1H gives a better objective function value

than the heuristic based on R2H . To improve the quality of the obtained solution
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Table 2.1: A comparison between the heuristic solutions based on the proposed
sorting ratios for MPSNVP.

|J | = 3 |J | = 4 |J | = 5
R1H R2H R3H R1H R2H R3H R1H R2H R3H

R1H - 626 334 - 718 467 - 771 557
R2H 1 - 145 1 - 188 0 - 221
R3H 2 558 - 1 619 - 0 630 -

using the proposed heuristic, we can apply a local search to obtain a local star.

The local search provides a mechanism to compare the performance of the sorting

rules.

In the following, we introduce the definition of a local star solution used in non-

convex optimization [36, 37]. Loosely speaking, a solution is a local star if the

objective function at this point is not less than its adjacent points. In the definition

below, we define a local star point in the context of the problem on hand.

Definition :

Let G(w) =
∑
i∈I
aiwi−

∑
j∈J

√∑
i∈I
bijwi, ai, bij ∈ R ∀ i ∈ I, ∀ j ∈ J ; and the objective

is to maximize G(w).

A point w∗ = ( w∗1, w
∗
2, . . . , w

∗
m) is a local star solution if G (w∗) ≥ G (wr) , r =

1, 2, . . . , m, where wr = ( wr1, w
r
2, . . . , w

r
m) , r = 1, 2, . . . , m are the points

adjacent to w∗; i.e. wri = w∗i for i = 1, 2, . . . , m, i 6= r, wrr = 1− w∗r .

We evaluate the local search performance by considering the above large-scale

problem. Applying the local search shows that:

1. In the case of using R1H as the sorting rule, the objective function value

is improved for seven instances out of 1,000 runs and the local search con-

verged, at most, after three iterations of the local search.
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2. In the case of using R2H as the sorting rule, the objective function value is

improved for 762 instances out of 1,000 runs and the local search converged,

at most, after ten iterations of the local search.

3. In the case of using R3H as the sorting rule, the objective function value is

improved for 538 instances out of 1,000 runs and the local search converged,

at most, after nine iterations of the local search.

The overall conclusion of these experiments implies that the sorting rule R1H is a

good choice to be used for constructing the proposed heuristic.

2.4.1 The relationship between the market selection deci-

sions and the service level constraints

The relationship between the market selection decisions and the service level con-

straints In this section, we show how the service level constraint affects the market

selection decision of the MPSNVP. Consider an MPSNVP problem that involves

three products with ρj = 0.2 for each product and five possible markets to con-

sider. The optimal solution to the problem without service level constraints is to

select all markets. The heuristic solution based on the RDU ratio generates op-

timal solution. Figure 2.1 shows the optimal market selection vector for different

service level values in the range αj ∈ (0, 1). We examine the same service level

value for all products. The markets are sorted in a non-increasing order of the

RDU ratio. Figure 1 shows that optimal solution is given by ŷ = [1, 1, 1, 1, 1]

for αj ≤ 0.6. On the other hand, as the service level increases the optimal solution
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vector changes to [1, 1, 1, 1, 0], [1, 1, 1, 0, 0], [1, 1, 0, 0, 0] and [1, 0, 0, 0, 0].

Increasing in the service level results in removing markets with less RDU ratio

before the markets with large RDU ratio. This implies that exaggerating the ser-

vice level value guarantees that shortage is reduced and the need for expediting

is rare; however, it also results in less profit.

Figure 2.1: Expected profit as a function of the service level for different market
selection decisions.

2.4.2 The relationship between the market selection de-

cisions and the unit selling price

At contracting stage with markets, the firm should choose whether to allow the

selling price per unit to be market dependent or fixed for all markets. The de-

termination of the selling price per unit is related to other parameters such as
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the mean and variance of the market demand and the market entry cost. For the

partial market entry MPSNVP, the attractive selling price for product j is

rij >
sij + cjµij +K (γj)σij

µij

If the above expression of the selling price for product j is satisfied, then market

i becomes a strong candidate for selection. The coefficient
σij
µij

is the coefficient of

variation for market i demand. If the firm can reduce the coefficient of variation,

then the selling price per unit can be reduced. This will also enable higher market

share.

In addition, market i is selected if the following expression is satisfied,

p∑
j=1

rijµij >

p∑
j=1

[K (γj)σij + sij + cjµij] + si

Controlling the coefficients of variation is possible by at least two ways. First,

employing effective advertising to enhance the sales volume and reduce variabil-

ity. Second, implementing strong forecasting and market study tools will reduce

uncertainty and enable good estimation of the demand parameters.

Now, if the firm already contracted with a set of markets k and there is a potential

market k + 1 for the firm to add, the marginal profit due to this market should

be checked. If market k + 1 satisfies the following expression,

p∑
j=1

rk+1,jµk+1,j >

p∑
j=1

K (γj)


√√√√k+1∑

i=1

σij −

√√√√ k∑
i=1

σij

+

p∑
j=1

[sk+1,j + cjµk+1,j]+sk+1
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then, market k+ 1 should be added to the market list. Note that the risk-pooling

concept plays an important role in this case. The more the contracted markets

the less the demand variability [20, 38]. The risk pooling effect constructs a buffer

in safety stock that accommodates the additional variability by the new market.
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CHAPTER 3

RISK-AVERSE

MULTI-PRODUCT SELECTIVE

NEWSVENDOR PROBLEM

UNDER CVAR CRITERION

3.1 Introduction

In the previous chapter, we study the risk-neutral MPSNVP. In this chapter,

we study the risk-averse version of the MPSNVP. We consider the Conditional

Value-at-Risk (CVaR) as the risk measure. Traditionally, the classical newsven-

dor problem and the SNVP are modeled to obtain the maximum expected profit

or, equivalently, the minimum expected cost. This modeling approach is suit-

able for risk-neutral decision makers. However, there are decision makers with

51



risk-taking preferences and others with risk-aversion preferences [19]. Empirical

studies based on interviews with executives, and based on questionnaires from

executives of international firms, showed that the behavior of decision-makers in

the real world is always consistent with the loss aversion preferences [39]. Practi-

cally, not all companies have financial resources to support potential losses due to

demand uncertainty; risk-aversion preference is suitable for this kind of companies

[12]. In addition, in real world, companies might be concerned with achieving a

predetermined target of profit or avoiding a certain level of losses [40]. These

facts motivate the study of risk aversion preferences of decision makers and the

consequences of these preferences.

3.2 Literature Review

In recent years, researchers have focused on the risk-averse newsvendor prob-

lem and have provided different approaches to incorporate risk-aversion to the

newsvendor problem. Atkinson [41] studied the risk-aversion attitude of a man-

ager, and showed that, such a manager will order a smaller quantity than a risk-

neutral manager will. Some of the researchers exploited the utility function to

model the risk-aversion in the newsvendor problem [42, 43, 44, 45]. Other studies

maximized the probability of achieving a predetermined profit [44, 46]. Another

approach to incorporate risk-aversion to the newsvendor problem is to optimize

the mean-variance function of the newsvendor model [47, 48, 49]. The recent trend

in the risk-averse newsvendor literature is focusing on the use of risk measures,
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such as Value-at-Risk (VaR) [50, 51, 52, 53], Conditional Value-at-Risk (CVaR)

[40, 54, 12, 55, 56, 57], spectral measures of risk [58], and law invariant measures

of risk [59, 60].

Several studies were performed to extend the SNVP by incorporating risk-aversion

preferences to the SNVP.

Taaffe and Tirumalasetty [13] introduced the risk aversion concept into the SNVP.

They provided two risk models; one of them is related to the critical predefined

profit level and the other is related to minimizing the worst case profits of a given

demand. The authors proposed heuristic procedures for solving each model of the

two resulting stochastic integer programs.

Chahar and Taaffe [12] extended the all-or-nothing model of [14] to the risk aver-

sion case. They applied the CVaR and the mean-CVaR approaches to control the

demand risk.

Waring [15] studied the effect of the value-at-risk (VaR) as well as the CVaR and

the mean-CVaR as risk measures on the optimal decisions and profit of the SNVP.

She also evaluated the effect of the fluctuations of the risk preference levels on the

SNVP performance.

The common approach to treating risk aversion is through utility function. How-

ever, several studies state that expected utility is not a dedicated risk measure and

is difficult or even impossible to be implemented in practice [57, 60, 61]. Artzner

et al. [62] introduced four coherency axioms, when a risk measure satisfies these

axioms; it is known to be a coherent measure of risk.
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Gotoh and Takano [40] and Choi et al. [59] justified the utilization of coherent

risk measures; such as CVaR, as a strong alternative to utility function approach

in expressing the risk aversion preferences of decision makers and demonstrate

that optimizing the CVaR never conflicts with optimizing the expectation of any

risk-averse utility function by stating that:

� Expected utility models as well as coherent risk measures are convex and

consistent with stochastic dominance.

� Coherent risk measures satisfy the axioms of Translation Equivariance and

Positive Homogeneity.

� For expected utility models, Translation Equivariance and Positive Homo-

geneity axioms typically do not hold.

Choi et al. [59] stated the following ”For a multi-product newsvendor, the Trans-

lation Equivariance axiom implies that adding a constant gain is equivalent to

changing the vendors performance measure by the same amount; the Positive Ho-

mogeneity axiom guarantees that one obtains the same solution when considering

the total profit or the profit rate (i.e., average profit per product), and when one

changes the currency in which the profit is calculated.”

The above arguments demonstrate that implementing coherent risk measures to

model risk aversion attitudes of the multi-product newsvendor problem can be

more attractive than implementing the expected utility approaches due to the

appealing properties of coherent risk measures.

Pflug [63] proved that CVaR is a coherent risk measure. The appealing property

54



of CVaR; and in fact all coherent risk measures, is that it is consistent with the

stochastic dominance conditions and this leads to convex optimization problems

[57, 64].

In this chapter, we take risk preferences of decision makers into consideration. We

study the CVaR risk-averse MPSNVP.

3.3 CVaR Risk-Averse MPSNVP Mathematical

Modeling

In this section, we introduce three cases of the CVaR risk-averse mathemati-

cal modeling and optimization for the three cases of the MPSNVP discussed in

Chapter 2, namely, flexible, full and partial market entry MPSNVP. For the sake

of simplicity, throughout this chapter, we assume that the selling price for each

product is the same in all markets, i.e. rij = rj.

3.3.1 Case 1: CVaR Risk-Averse MPSNVP with Flexible

Market Entry

The profit function for the flexible market entry MPSNVP; P (Qj, yij), is given

by (2.1). The expected profit model or the risk-neutral version of the problem is

presented in (2.2).

In this section, we present the flexible market entry risk-averse MPSNVP. We

use the CVaR criterion as the risk measure. Specifically, CVaR at a certain
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level, say 1−η, can be defined as the average profit in the left (1−η) tail of the

profit distribution. The literature of ordering decisions based on CVaR; e.g.,

[40, 55, 65, 66], assume that the ris-averse newsvendor aims at maximizing the

expected profit that falls below some (1 − η) quantile of the profit distribution,

we denote this quantile as θ. Following this definition of CVaR, we can write the

risk-averse profit function based on the CVaR criterion as follows:

CV aR [P (Qj, yij)] =
∑
j∈J

max
θj∈R

Πj (Qj, yij, θj), (3.1)

where Πj (Qj, yij, θj) = θj− 1
1−ηjE

[
(θj − Pj (Qj, yij))

+], (z)+ = max {z, 0} and

Pj (Qj, yij) =



m∑
i=1

(rjxij − Sij) yij+vj
(
Qj −

m∑
i=1

xijyij

)
− cjQj,

for Qj ≥
m∑
i=1

xijyij,

m∑
i=1

(rjxij − Sij) yij−ej
(

m∑
i=1

xijyij −Qj

)
− cjQj,

for Qj <
m∑
i=1

xijyij.

Proposition 1: Given a vector ŷ; which specifies the selected markets, the opti-

mal order quantity for any product j; Q∗ŷj, that maximizes the CVaR risk-averse

profit function (3.1), is given by :

Q∗ŷj = Fŷ
−1

[
(ej − cj) (1− ηj)

ej − vj

]
,

where F−1
ŷ is the inverse of Fŷ.

Proof:
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We can write Equation (3.1), for a given vector of markets, i.e. ŷ, as follows:

Πŷj (Qŷj, ŷ, θŷj) = θŷj −
1

1− ηj
E [θŷj − Pj (Qj, ŷ)]+ ,

where

Pj (Qj, ŷ) = (rjxŷj − Sŷj) + vj(Qŷj − xŷj)+ − ej(xŷj −Qŷj)
+ − cjQŷj.

The above equation can be rewritten as:

Πŷj (Qŷj, ŷ, θŷj) =

θŷj −
1

1− ηj

∫ Qŷj

xŷj=0

(θŷj − ((rj − vj)xŷj − Sŷj − (cj − vj)Qŷj))
+fŷ (xŷj)

− 1

1− ηj

∫ ∞
xŷj=Qŷj

(θŷj − ((rj − ej)xŷj − Sŷj + (ej − cj)Qŷj))
+fŷ (xŷj) .

The optimal order quantity for each product of the above CVaR risk-averse

newsvendor is determined by Q∗ŷj = arg max
Qŷj≥0

max
θŷj∈R

Πŷj (Qŷj, ŷ, θŷj) . To find the

optimal solution, we consider three ranges for θŷj. In the first range, both inte-

grand disappear, in the second range the first integrand disappears. We prove

that the third range includes the optimal solution.

If θŷj ≤ − (cj − vj)Qŷj − Sŷj, then Πŷj (Qŷj, ŷ, θŷj) = θŷj < 0. Hence this range

of θŷj does not contain the optimal solution.
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If − (cj − vj)Qŷj − Sŷj < θŷj ≤ (rj − cj)Qŷj − Sŷj, then,

Πŷj (Qŷj, ŷ, θŷj) = θŷj −
1

1− ηj

∫ θŷj+(cj−vj)Qŷj+Sŷj

rj−vj

xŷj=0

[θŷj − ((rj − vj)xŷj − Sŷj − (cj − vj)Qŷj)] fŷ (xŷj) ,

(3.2)

Next, we investigate the conditions under which a maximum for (3.2) exists.

Towards this end, we examine the partial derevative of Πŷj (Qŷj, ŷ, θŷj) with

respect to θŷj,

∂Πŷj (Qŷj, ŷ, θŷj)

∂θŷj
= 1− 1

1− ηj
Fŷ

(
θŷj + (cj − vj)Qŷj + Sŷj

rj − vj

)
, (3.3)

Setting the right hand side of (3.3) equal to zero, we get:

θ∗ŷj = (rj − vj)Fŷ
−1 (1− ηj)− (cj − vj)Qŷj − Sŷj. (3.4)

By substituting for θ∗ŷj from (3.4) into (3.2), we get:

Π∗ŷj (Qŷj, ŷ) = (rj − vj)Fŷ
−1 (1− ηj)− (cj − vj)Qŷj − Sŷj

− 1

1− ηj

∫ Fŷ
−1(1−ηj)

xŷj=0

(rj − vj)
(
Fŷ
−1 (1− ηj)− xŷj

)
fŷ (xŷj) .

which is a decreasing linear function of Qŷj. Hence, the maximum of Π∗ŷj in this

range of θŷj is achieved at Q∗ŷj = 0. Again, this range of θŷj does not contain the

optimal solution of the problem on hand.
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Finally, we consider θŷj > (rj − cj)Qŷj − Sŷj, then,

Πŷj (Qŷj, ŷ, θŷj) =

θŷj −
1

1− ηj

∫ Qŷj

xŷj=0

[θŷj − ((rj − vj)xŷj − Sŷj − (cj − vj)Qŷj)]fŷ (xŷj)

− 1

1− ηj

∫ θŷj−(ej−cj)Qŷj+Sŷj

rj−ej∑
i∈I xŷj=Qŷj

[θŷj − ((rj − ej)xŷj − Sŷj + (ej − cj)Qŷj)]fŷ (xŷj) ,

(3.5)

and,

∂Πŷj (Qŷj, ŷ, θŷj)

∂θŷj
= 1− 1

1− ηj
Fŷ

(
θŷj − (ej − cj)Qŷj + Sŷj

rj − ej

)
, (3.6)

Setting the right hand side of (3.6) equal to zero, we get:

θ∗ŷj = (rj − ej)Fŷ
−1 (1− ηj) + (ej − cj)Qŷj − Sŷj. (3.7)

By substituting for θ∗ŷj from (3.7) into (3.5), we get:

Π∗ŷj (Qŷj, ŷ) = (rj − ej)Fŷ
−1 (1− ηj) + (ej − cj)Qŷj − Sŷj

− 1

1− ηj

∫ Qŷj

xŷj=0

[
(rj − ej)Fŷ

−1 (1− ηj) + (ej − vj)Qŷj − (rj − vj)xŷj
]
fŷ (xŷj)

− 1

1− ηj

∫ Fŷ
−1(1−ηj)

xŷj=Qŷj

(rj − ej)
(
Fŷ
−1 (1− ηj)− xŷj

)
fŷ (xŷj) .

(3.8)
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Then,

∂Π∗ŷj (Qŷj, ŷ)

∂Qŷj

=

ej − cj −
1

1− ηj
[
(ej − vj)Fŷ (Qŷj) + (rj − ej)Fŷ

−1 (1− ηj)− (rj − ej)Qŷj

]
− 1

1− ηj
(rj − ej)

(
Fŷ
−1 (1− ηj)−Qŷj

)
,

(3.9)

Setting the right hand side of (3.9) equal to zero, we get:

(ej − vj)Fŷ (Qŷj) = (ej − cj) (1− ηj) .

Hence, for any product j, the optimal order quantity is:

Q∗ŷj = Fŷ
−1

[
(ej − cj) (1− ηj)

ej − vj

]
= Fŷ

−1 (βj) , (3.10)

where, βj =
(ej−cj)(1−ηj)

ej−vj . �

In the previous chapter we show that the order quantity for the risk-neutral

MPSNVP is Q∗ŷj = Fŷ
−1
(
ej−cj
ej−vj

)
. Proposition 1 demonstrates that the CVaR

risk-averse MPSNVP orders smaller quantities than the risk-neutral MPSNVP

do. This result is congruous with the results appeared in the literature (c.f.

[12, 40, 55]). Also, we can notice that the optimal order quantity for any product

j is independent of the selling price of the product, while it changes inversely

with change in the purchasing cost. It is also worth noting that, the optimal

order quantity for any product j increases/decreases as the expediting cost in-
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creases/decreases; the same can be said about the salvage value. The increase

in the expediting cost will motivate the firm to order more in order to avoid the

expediting losses. The increase in the salvage value will stimulate the firm to

order more, because this leads to less loss at the end of the selling period, if there

is excess inventory.

Proposition 2. The CVaR risk-averse profit function (3.1) can be written as :

CV aR [P (Qj, yij)] =
∑
j∈J

∑
i∈I

πijyij −Kηj (βj)

√∑
i∈I

σ2
ijyij

,
where,

βj =
(ej − cj) (1− ηj)

ej − vj
,

πij = (rj − cj)µij − Sij,

Kηj (βj) =

(
1

1− ηj
− 1

)
(rj − ej) Φ−1 (1− ηj)− (ej − cj) Φ−1 (βj)

+
1

1− ηj
[
(rj − ej)L

(
Φ−1 (1− ηj)

)
+ (ej − vj)

(
Φ−1 (βj) + L

(
Φ−1 (βj)

))]
.

Proof

The CVaR risk-averse profit function, from (3.8), can be expressed as:

Π∗ŷj
(
Q∗ŷj, ŷ

)
= (rj − ej)Fŷ

−1 (1− ηj) + (ej − cj)Q∗ŷj − Sŷj

− 1

1− ηj
(ej − vj)

∫ Q∗
ŷj

xŷj=0

(
Q∗ŷj − xŷj

)
fŷ (xŷj)

− 1

1− ηj
(rj − ej)

∫ Fŷ
−1(1−ηj)

xŷj=0

(
Fŷ
−1 (1− ηj)− xŷj

)
fŷ (xŷj) .

(3.11)

Now, assuming that market demands are independent and normally distributed
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with a negligible probability of negative demands, we can write the following,

∫ Q∗
ŷj

xŷj=0

(Qŷj − xŷj)fŷ (xŷj) =

∫ Fŷ
−1(βj)

xŷj=0

(
Fŷ
−1 (βj)− xŷj

)
fŷ (xŷj) =∫ ∞

xŷj=0

(
Fŷ
−1 (βj)− xŷj

)
fŷ (xŷj) +

∫ ∞
xŷj=Fŷ

−1(βj)

(
xŷj − Fŷ

−1 (βj)
)
fŷ (xŷj) .

Therefore,

∫ Fŷ
−1(1−ηj)

xŷj=0

(
Fŷ
−1 (βj)− xŷj

)
fŷ (xŷj) = Fŷ

−1 (βj)− (µŷj) + L
(
Φ−1 (βj)

)√
σ2
ŷj,

and hence,

∫ Fŷ
−1(βj)

xŷj=0

(
Fŷ
−1 (βj)− xŷj

)
fŷ (xŷj) = Φ−1 (βj)

√
σ2
ŷj + L

(
Φ−1 (βj)

)√
σ2
ŷj.

(3.12)

Similarly, ∫ Fŷ
−1(1−ηj)

xŷj=0

(
Fŷ
−1 (1− ηj)− xŷj

)
fŷ (xŷj) =

Φ−1 (1− ηj)
√
σ2
ŷj + L

(
Φ−1 (1− ηj)

)√
σ2
ŷj.

(3.13)

The optimal order quantity in (3.10) can be written as:

Q∗ŷj = µŷj + Φ−1 (βj)
√
σ2
ŷj. (3.14)
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By substituting the above results of (3.12), (3.13) and (3.14) into (3.11), we get:

Π∗∗ŷj (ŷ) = (rj − ej)
(

(µŷj) + Φ−1 (1− ηj)
√
σ2
ŷj

)
+ (ej − cj)

(
(µŷj) + Φ−1 (βj)

√
σ2
ŷj

)
− Sŷj

− 1

1− ηj
(rj − ej)

(
Φ−1 (1− ηj)

√
σ2
ŷj + L

(
Φ−1 (1− ηj)

)√
σ2
ŷj

)
− 1

1− ηj
(ej − vj)

(
Φ−1 (βj)

√
σ2
ŷj + L

(
Φ−1 (βj)

)√
σ2
ŷj

)
.

Now, we can write the above equation on the following form:

Π∗∗ŷj (ŷ) = πŷj −Kηj (βj)
√
σ2
ŷj,

where,

πŷj = (rj − cj)µŷj − Sŷj,

Kηj (βj) =

(
1

1− ηj
− 1

)
(rj − ej) Φ−1 (1− ηj)− (ej − cj) Φ−1 (βj)

+
1

1− ηj
[
(rj − ej)L

(
Φ−1 (1− ηj)

)
+ (ej − vj)

(
Φ−1 (βj) + L

(
Φ−1 (βj)

))]
. �

To maximize the CVaR risk-averse profit of the MPSNVP with flexible market

entry, we have to solve the following model:

Problem I-RA:

Max
∑
j∈J

∑
i∈I

πijyij −Kηj (βj)

√∑
i∈I

σ2
ijyij

,
s.t.

yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

(3.15)
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The final model is a binary integer nonlinear program involving only the market

selection variables.

3.3.2 Case 2: CVaR Risk-Averse MPSNVP with Full

Market Entry

In the full market entry MPSNVP case, if any market i is selected, then a single

fixed market entry cost, Si, is incurred. The profit function for the full market

entry MPSNVP; P (Qj, Yi), is given by (2.9). The expected profit model or the

risk-neutral version of the problem is presented in (2.10).

In order to find the CVaR risk-averse value of the profit function presented in (2.9),

we can follow the same modeling procedure in Case 1 provided in the previous

section, where CVaR is expressed as in equation (3.1). Thereafter, we follow

the same derivation sequence as in Proposition 1, we find that the optimal order

quantity Q∗ŷj for a given vector of markets ŷ, for each product j, is obtained by

equation (3.10). Finally, the CVaR risk-averse profit function for Case 2, can be

expressed as:

CV aR [P (Qj, Yi)] =
∑
i∈I

πiYi −
∑
j∈J

Kηj (βj)

√∑
i∈I

σ2
ijYi,

where,

βj =
(ej − cj) (1− ηj)

ej − vj
,

πi =
∑
j∈J

(rj − cj)µij − Si,
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Kηj (βj) =

(
1

1− ηj
− 1

)
(rj − ej) Φ−1 (1− ηj)− (ej − cj) Φ−1 (βj)

+
1

1− ηj
[
(rj − ej)L

(
Φ−1 (1− ηj)

)
+ (ej − vj)

(
Φ−1 (βj) + L

(
Φ−1 (βj)

))]
.

To maximize the CVaR risk-averse profit of the firm, the following model of Case

2 should be solved:

Problem II-RA:

Max
∑
i∈I

πiYi −
∑
j∈J

Kηj (βj)

√∑
i∈I

σ2
ijYi,

s.t.

Yi ∈ {0, 1} , ∀ i ∈ I.

(3.16)

Similar to Problem I-RA, Problem II-RA is a binary integer nonlinear program

involving the market selection variables.

3.3.3 Case 3: CVaR Risk-Averse MPSNVP with Partial

Market Entry

For this case, if any market i is selected, then a fixed market entry cost per

period, si, is incurred, and if a product j is selected to be sold in market i, then

an additional cost per period, sij, is paid for introducing product j into market i.

The profit function for the partial market entry MPSNVP; P (Qj, yij,Yi), is given

by (2.23). The expected profit model or the risk-neutral version of the problem is

presented in (2.24).

Following the same modeling procedure in Cases 1 and 2 discussed in the previous
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two sections, we can obtain the CVaR risk-averse solution of the above profit

function. CVaR is expressed as in equation (3.1). Afterwards, we find that the

optimal order quantity Q∗ŷj for a given vector of markets ŷ, for each product j,

is obtained by equation (3.10). Therefore, we follow the same sequence as in

Section 3.3.1. Now, we can write the CVaR risk-averse profit function for Case 3

as follows:

CV aR [P (Qj, yij,Yi)] =
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

Kηj (βj)

√∑
i∈I

σ2
ijyij −

∑
i∈I

siYi,

where,

βj =
(ej − cj) (1− ηj)

ej − vj
,

πij = (rj − cj)µij − sij,

Kηj (βj) =

(
1

1− ηj
− 1

)
(rj − ej) Φ−1 (1− ηj)− (ej − cj) Φ−1 (βj)

+
1

1− ηj
[
(rj − ej)L

(
Φ−1 (1− ηj)

)
+ (ej − vj)

(
Φ−1 (βj) + L

(
Φ−1 (βj)

))]
.

We solve the following model of Case 3 in order to maximize the CVaR risk-averse

profit of the firm:

66



Problem III-RA:

Max
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

Kηj (βj)

√∑
i∈I

σ2
ijyij −

∑
i∈I

siYi,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

(3.17)

Similar to Problems I-RA and II-RA, Problem III-RA is a binary integer nonlinear

program involving the market selection variables for each product.

3.3.4 Solution Algorithms

Problems I-RA, II-RA and III-RA have the same structure as Problems I, II and

III given by (2.7), (2.11) and (2.25), respectively. For Problems I-RA, II-RA and

III-RA if ηj = 0, then we retrieve the risk neutral models that presented in Prob-

lems I, II and III, respectively.

Therefore, we obtain the optimal solution to Problem I-RA by applying Algo-

rithm I discussed in Section 2.3.2. The solution to Problem II-RA is obtained by

applying Algorithm II or Heuristic I discussed in Section 2.3.4. And lastly, The

solution to Problem III-RA is obtained by applying Algorithm III or Heuristic II

provided in Section 2.3.6.
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3.3.5 Conic Quadratic Mixed Integer Reformulation of

Cases 2 and 3

The obtained models for Cases 2 and 3 are more complex than the model obtained

for Case 1. Therefore, the computational effort required for solving Problems II-

RA and III-RA is higher than that required for solving Problem I-RA. In this

section, we reformulate Problems II-RA and III-RA and put them in the form

of Conic Quadratic Mixed-Integer Programs (CQMIP). In fact, this reformula-

tion enables the use of standard optimization software packages, such as CPLEX,

LINDO, XPRESS or MOSEK. This CQMIP transformation of the nonlineari-

ties in the objective function has been used in the literature to reformulate the

location-inventory models [67, 68, 69, 70], and the shortest path problem [71, 72].

We introduce auxiliary variables ωj to represent the nonlinear terms in the objec-

tive function, then we transform Problem II-RA as follows:

Problem IV-RA:

Max
∑
i∈I

πiYi −
∑
j∈J

Kηj (βj)ωj,

s.t.∑
i∈I

σ2
ijYi ≤ ω2

j , ∀ j ∈ J,

ωj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

(3.18)

Similarly, Problem III-RA is reformulated as:
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Problem V-RA:

Max
∑
i∈I

∑
j∈J

πijyij −
∑
j∈J

Kηj (βj)ωj −
∑
i∈I

siYi,

s.t.∑
i∈I

σ2
ijyij ≤ ω2

j , ∀ j ∈ J,

ωj ≥ 0, ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

(3.19)

Now, we can use these transformations of the formulation of Cases 2 and 3 to com-

pare the performance of the proposed solution strategies in the previous section,

with state-of-the-art commercial solvers.

The following section presents computational tests to investigate the performance

of the proposed solution procedures.

3.4 Computational Results

Through these computational experiments, we consider a CVaR risk-averse MP-

SNVP for which the market entry costs and the product demand distributions are

market dependent, while the selling prices, purchasing costs, expediting costs, and

the salvage values are product dependent. The solution to Problem I-RA of the

flexible market entry case is easier than Problems II-RA and III-RA; therefore,

we will not discuss it here and we focus on sloving Problems II-RA and III-RA
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and their reformulations in Problems IV-RA and V-RA.

3.4.1 Computational Efficiency of the Solution Algorithms

The following computational tests are conducted to study the performance of the

proposed solution algorithms and evaluate the quality of the achieved solution,

and then, compare it with that of the state-of-the-art commercial solvers.

We consider MPSNVP with three, five and ten products. We consider six market

pool sizes: 50, 100, 250, 500, 1,000 and 5,000. Table 1 shows the details of the

products’ selling prices, purchasing costs, expediting costs, salvage values and

the degrees of risk-aversion; these values are fixed for each type of the products.

Table 3.1 provides the detailed cost values for the products in the MPSNVP. The

purchasing cost per unit of each product, the expediting cost per unit of each

product, and the salvage value per unit of each product are shown in the table.

Table 3.2 provides the nominal demand as well as the demand variance for each

Table 3.1: Costs of the products in the risk-averse MPSNVP.

Parameter
Product

1 2 3 4 5 6 7 8 9 10
r 15 150 20 1,500 300 25 100 10 250 1,000
e 10 120 15 1,200 250 24 90 7 220 900
c 7 100 10 1,000 200 15 85 6 200 800
v 5 50 5 600 50 5 30 5 100 200
η 0.7 0.4 0.8 0.2 0.4 0.8 0.4 0.6 0.2 0.7

market. In addition, the market entry cost for each type of the products are

presented. These input data are drawn from uniform distributions as shown in

Table 3.2.
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Table 3.2: Input parameters for the risk-averse MPSNVP.

Product
Parameters

µ σ s
1 U(400, 600) U(50, 100) U(1,000, 2,000)
2 U(300, 400) U(40, 75) U(2,000, 3,000)
3 U(600, 800) U(100, 150) U(2,000, 4,000)
4 U(40, 60) U(5, 10) U(6,000, 10,000)
5 U(200, 500) U(20, 50) U(4,000, 8,000)
6 U(300, 400) U(60, 70) U(2,000, 3,000)
7 U(200, 220) U(45, 50) U(1,000, 3,000)
8 U(300, 500) U(50, 60) U(3,000, 5,000)
9 U(100, 120) U(20, 25) U(3,000, 5,000)
10 U(120, 150) U(25, 30) U(6,000, 10,000)

Example 1: We use the details of the CVaR risk-averse MPSNVP for the case of

full market entry, i.e., Case 2, as presented in Table 1 and the first two columns

of Table 3.2.

For each market pool size, we solve three problems, 3-product, 5-product and 10-

product problems. For the 3-product problem, we use the input data of products

1 to 3, and the market entry cost is drawn from the uniform distribution U(20,000,

40,000). For the 5-product problem we use the input data of the products 1 to

5, and the market entry cost is drawn from the uniform distribution U(40,000,

80,000). Lastly, for the 10-product problem we use the input data of products 1

to 10, and the market entry cost is drawn from the uniform distribution U(80,000,

100,000).

Algorithm II is applied for solving the risk-averse full market entry problem, i.e.,

Problem II-RA. The obtained results are compared with the results of BARON

and CPLEX. The performance of the proposed algorithm and the state-of-the-art

commercial solvers are shown in Table 3.3.
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Table 3.3 shows the obtained objective function values and the computational

times for Baron, CPLEX and Algorithm II for 18 problem instances. The re-

ported results provide a clear evidence of the efficiency of using Algorithm II for

solving the optimization model of Case 2.

Algorithm II succeeds in obtaining at least as higher objective values as those

Table 3.3: Comparisons of NIP and CQMIP solvers with Algorithm II for risk-
averse full market entry MPSNVP.

|J | |I| BARON CPLEX Heuristic I
Gap% Time Gap% Time Gap% Time

3

50 0.0% 0.44 0.0% 0.27 0.0% 0.002
100 0.0% 0.54 0.0% 0.31 0.0% 0.01
250 0.2% 0.65 <0.1% 0.37 0.0% 0.02
500 <0.1% 0.77 0.1% 0.61 0.0% 0.03
1000 <0.1% 0.89 <0.1% 0.83 0.0% 0.08
5000 <0.1% 4.15 <0.1% 4.33 0.0% 0.51

5

50 0.7% 0.72 0.0% 0.32 0.0% 0.003
100 0.5% 0.63 0.0% 0.31 0.0% 0.004
250 0.5% 0.64 <0.1% 0.49 0.0% 0.02
500 0.3% 0.76 <0.1% 0.57 0.0% 0.05
1000 0.2% 0.99 0.0% 0.63 0.0% 0.09
5000 0.3% 4.27 <0.1% 3.74 0.0% 1.19

10

50 0.0% 0.75 0.0% 0.29 0.0% 0.005
100 0.0% 0.73 0.0% 0.27 0.0% 0.01
250 0.0% 0.75 0.0% 0.31 0.0% 0.04
500 0.0% 0.78 0.0% 0.39 0.0% 0.06
1000 0.0% 1.09 0.0% 0.45 0.0% 0.18
5000 0.0% 6.28 0.0% 1.49 0.0% 0.98

obtained by the commercial solvers for all problem instances. Algorithm II out-

performs the NIP solver in ten problem instances out of 18 instances. It also

outperforms the CQMIP solver in seven problem instances out of 18 instances.

The Gap% of the obtained objective values are reported in Table 3.3. The Gap%

is calculated as the percent relative gap from the best-obtained objective value,
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which is consistently obtained by Algorithm II. For some of the solved instances

there is a positive relative gap from the optimal solution. The highest observed

gap value is 0.7%.

The computational time required by Algorithm II is much smaller than the com-

putational time required by the solvers. This reflects the efficiency of Algorithm

II in terms of the computational effort.

Example 2: We utilize the details of the MPSNVP for the case of partial market

entry, i.e., Case 3, as presented in Table 3.1 and Table 3.2.

We solve three problems, 3-product, 5-product and 10-product problems, for each

market pool size. The 3-product problem uses the input data of products 1 to 3,

the 5-product problem uses the input data of the products 1 to 5, and finally, the

10-product problem uses the input data of products 1 to 10. The market entry

cost is drawn from the uniform distribution U (15,000, 30,000).

We apply Algorithm III to solve the partial market entry problem, i.e., Problem

III-RA. The obtained results are then compared with the results of BARON and

CPLEX. The comparisons of the results are shown in Table 3.4.

Table 3.4 represents the performance of the commercial solvers; Baron and

CPLEX, and Algorithm III for solving Case 3. The obtained objective func-

tion values and the computational times for 18 problem instances are reported in

Table 3.4. The results clearly demonstrate the efficiency of using Algorithm III

for solving the optimization model of Case 3.

Algorithm III succeeds in obtaining at least as higher objective values as those
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Table 3.4: Comparisons of NIP and CQMIP solvers with Algorithm III for risk-
averse partial market entry MPSNVP

|J | |I| BARON CPLEX Heuristic II
Gap% Time Gap% Time Gap% Time

3

50 0.0% 0.56 0.0% 0.32 0.0% 0.003
100 0.0% 0.78 0.0% 0.35 0.0% 0.005
250 0.0% 1.62 0.0% 0.53 0.0% 0.009
500 <0.1% 1.77 <0.1% 0.79 0.0% 0.034
1000 <0.1% 2.41 <0.1% 1.15 0.0% 0.09
5000 <0.1% 28.36 7.3% 8.38 0.0% 2.39

5

50 0.0% 0.74 0.0% 0.23 0.0% 0.007
100 0.0% 0.90 0.0% 0.36 0.0% 0.01
250 0.0% 1.13 0.0% 0.47 0.0% 0.03
500 0.0% 2.08 0.0% 0.69 0.0% 0.07
1000 0.0% 4.65 0.0% 0.93 0.0% 0.15
5000 0.0% 58.52 0.0% 6.16 0.0% 3.05

10

50 <0.1% 0.91 <0.1% 0.35 0.0% 0.01
100 <0.1% 1.01 0.0% 0.47 0.0% 0.02
250 0.0% 2.24 <0.1% 0.83 0.0% 0.06
500 0.0% 4.52 0.0% 1.19 0.0% 0.12
1000 <0.1% 11.71 <0.1% 2.64 0.0% 0.28
5000 0.0% 212.02 <0.1% 49.2 0.0% 6.42

obtained by the commercial solvers for all problem instances. Algorithm III out-

performs the NIP solver in six problem instances out of 18 instances. It also

outperforms the CQMIP solver in seven problem instances out of 18 instances.

The relative Gap% of the obtained objective values are reported in Table 3.4.

For some of the solved instances there is a positive relative gap from the optimal

solution. The highest observed gap value is 7.3%.

Algorithm III presents huge savings in computational effort, as it requires much

smaller computational time than that required by the commercial solvers, espe-

cially for large-scale problems.

The computational results of Examples 1 and 2, which are presented in Tables 3.3
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and 3.4, show the efficiency of the proposed algorithms in solving the models in

polynomial time. One can say, in general, that the proposed algorithms succeed

in obtaining a better solution and in less computational time than the commercial

solvers. These findings show the practicality of the proposed solution algorithms

in solving large-scale real-life supply chain and logistics problems.

3.4.2 Effect of the Risk Aversion Degree on Profit

In this section, computational tests are conducted to study the effect of the risk

aversion degree on the profit. This effect is determined in terms of the absolute

difference percentage (%AD) and the relative difference percentage (%RD) for

specified values of the risk aversion degree; ηk, in the range from 0.1 to 0.9. The

%ADk and %RDk at each risk aversion degree; ηk, are defined, respectively, as

follows:

%ADk=

[
1− Risk Averse Profit at ηk

Risk Neutral Profit

]
× 100

%RDk=

[
1− Risk Averse Profit at ηk

Risk Averse Profit at ηk−1

]
× 100

Figure 3.1 shows %AD and %RD for the full market entry MPSNVP with market

pool size 50 for different number of products. One can notice that, the %AD is

increasing almost linearly as a function of the risk aversion degree in the range

from 0.1 to 0.5, while the increase has much higher rate in the range of η from

0.5 to 0.9. On the other hand, for %RD, the curve seems to be flat in the range

of η from 0.1 to 0.5, then it increases with much higher rate in the range of η

from 0.5 to 0.9. It is also notable, from Figure 3.1, that both %AD and %RD are
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decreasing as the number of products increases.
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Figure 3.1: Percentage of relative and absolute differences for the CVaR profit
values of the full market entry MPSNVP as a function of η for market pool size
50.

Figure 3.2 presents %AD and %RD for the full market entry MPSNVP with

market pool size 5,000 for different number of products. The behavior of %AD

and %RD in Figure 3.2 is similar to that in Figure 3.1. Comparing the values of

%AD and %RD for market pool sizes 50 and 5,000, implies that, both of %AD

and %RD are decreasing as the market pool size increases.
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Figure 3.2: Percentage of relative and absolute differences for the CVaR profit
values of the full market entry MPSNVP as a function of η for market pool size
5,000.

Figure 3.3 shows %AD and %RD for the partial market entry MPSNVP with

market pool size 50 for different number of products. It is notable that, the %AD

is increasing almost linearly as a function of the risk aversion degree in the range

from 0.1 to 0.5, while it increases at a much higher rate in the range of η from 0.5

to 0.9. For %RD, the curve is almost flat in the range of η from 0.1 to 0.5, then

it increases at a much higher rate in the range of η from 0.5 to 0.9. Both %AD

and %RD are decreasing as the number of products increases.
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Figure 3.3: Percentage of relative and absolute differences for the CVaR profit
values of the partial market entry MPSNVP as a function of η for market pool
size 50.

Figure 3.4 provides %AD and %RD for the partial market entry MPSNVP with

market pool size 5,000 for different number of products. The behavior of %AD

and %RD in Figure 3.4 is similar to that in Figure 3.3. the values of %AD and

%RD for market pool sizes 50 and 5,000, indicates that, both of %AD and %RD

are decreasing as the market pool size increases.
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Figure 3.4: Percentage of relative and absolute differences for the CVaR profit
values of the partial market entry MPSNVP as a function of η for market pool
size 5,000.

Examination of the behavior of the %RD leads to the following conclusions. Ob-

viously, the degree of risk aversion will affect the profit; the higher the value of η,

the lesser is the profit. If the decision maker has low risk aversion preference, e.g.

η ≤ 0.5, then the change in η within this range will not result in large variation in

the profit. The above figures show, for the case of 50 markets, that an increase in

η of 0.1 will result in a relative drop in profit of at most 5.8%, this relative drop

in the profit decreases with the increase in products number. However, the same

change in η, if there are 5,000 markets, will cause a drop of at most 0.5%. Hence,

a precise choice of η for this decision maker is not critical. On the other hand,

if the decision maker is highly risk averse, then he/she has to choose η carefully,

since the increase in its value within the range of 0.5 < η < 1, causes a significant

drop in the profit. For instance, the above figures show for the case of 50 markets
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that an increase in η of 0.1 will result in large relative drop in profit, this relative

drop approaches 25%. The drop in the profit increases with the decrease in the

market pool size and/or the number of products. A similar behavior is observable

for the %AD; however the profit drop, as a result of the increase in η, is much

more severe.
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CHAPTER 4

ROBUST MULTI-PRODUCT

SELECTIVE NEWSVENDOR

4.1 Introduction

The parameter values in optimization problems are usually assumed to be precisely

known. However, this is not always the case in real world. Ignoring parameter un-

certainties might have significant influence on the solution optimality, moreover, in

most cases, it affects model feasibility. Therefore, parameter uncertainties should

be taken into consideration in both modeling and analysis stages.

Uncertain model parameters may follow known probability distributions, while

in many cases the available information about the probability distributions are

limited. When the probability distribution of an uncertain parameter is known,

the appropriate modeling approach is Stochastic Programming. However, when

the probability distribution of the uncertain parameter is unknown, Robust Opti-
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mization is the appropriate modeling approach.

In previous chapters, we presented the stochastic optimization of the MPSNVP. In

this chapter, we are motivated to discuss the robust optimization of the MPSNVP

with uncertain parameters. We will consider the cases where product’s demand

is uncertain with unknown probability distribution.

In the next section we give a review of the relevant robust optimization literature.

4.2 Literature Review on Robust Optimization

Making decisions in inventory problems under limited parameters information

used to be done by developing distribution-free approach. The first appearance of

the distribution-free approach with min-max objective for the classical newsven-

dor model was in the study by Scarf [73]. Scarf’s model was extended in several

studies, such as [74, 75, 76, 77, 78, 79, 80, 81, 82].

In another line of work, researchers quantified the regret of different decisions and

made the optimal decision based on the minimax regret criterion. The minimax

regret approach is less conservative than the min-max approach. The interested

reader may refer to [83, 84] The recent trend of modeling lack of information is by

using a predefined Uncertainty Set to describe the parameters’ uncertainty[85, 86].

The uncertainty set is defined as the set of all possible realizations of the uncertain

parameter that will be considered in the robust problem [85, 86]. The approach of

defining an uncertainty set is known as Robust Optimization approach. The known

uncertainty sets in the literature are, box, interval, ellipsoidal, polyhedral uncer-
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tainty set and combinations of theses sets. The shape of the selected uncertainty

set will affect the tractability of the resulting robust optimization counterpart.

Robust optimization is a relatively recent approach in optimization. Researchers

started developing robust optimization seriously and extensively 15 year ago

[86, 87]. Today, robust optimization has a wide range of applications, includ-

ing finance, energy systems, supply chain, facility location, inventory manage-

ment, health-care, scheduling, marketing, queuing networks, machine learning;

etc. [86, 87, 85].

Robust optimization is tailored to deal with the lack of information, while lead-

ing to tractable formulation. The uncertain parameters in robust optimization

are taken at their worst case values, therefore the robust optimization approach

results in a solution that is immunized against uncertainty [87].

The following paragraphs will discuss some of the studies in the literature of in-

ventory robust optimization.

Ben-Tal et al. [88] developed an adjustable robust counterpart of a linear pro-

gramming model under uncertain parameters with ellipsoidal and polyhedral un-

certainty sets. They applied the counterpart reformulation on a multi-stage un-

certain inventory system. Ben-Tal et al. [89] presented a multi-echelon supply

chain with multi-period inventory control policy. An affinely adjustable robust

counterpart reformulation of the original model is developed based on polyhedral

uncertainty set.

Bienstock and Özbay [90] considered the optimization model of the base-stock
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level for a single buffer when demand is uncertain. The authors developed two

robust counterparts, one of them is based on box uncertainty set, while the other

is based on polyhedral uncertainty set.

See and Sim [91] proposed a robust counterpart reformulation of a multi-period

inventory control problem under uncertain demand with limited information.

The robust counterpart reformulation is based on the combination of interval-

ellipsoidal and the combination of interval- polyhedral uncertainty sets.

Bertsimas and Thiele [92] determined the robust counterpart reformulation of a

set of inventory problems based on the polyhedral uncertainty set.

Sözüer and Theiele [93] provide a recent survey and discussion of the most recent

developments and applications of robust optimization.

To the best of our knowledge, the only available work discussing the robust op-

timization for an SNVP with a single product was showed in [10]. The authors

discussed the minimax regret optimization of the SNVP where the demand is un-

certain and the uncertainty set is an interval set.

In the next sections, we will describe the robust counterpart reformulations of

the MPSNVP under different uncertainty sets. We will also propose the solution

procedures for the obtained models.
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4.3 Robust Counterpart Based on Uncertainty

Sets

To ensure computational tractability of robust problems, the parameter uncer-

tainty should be defined carefully. The uncertainty set should be specified by

the decision maker [85, 86]. The size and shape of the uncertainty set reflect the

degree of conservativeness and the preferences of the decision maker, respectively

[94]. Typically applied uncertainty sets are box, ellipsoidal, polyhedral and com-

binations of them [95]. Generally speaking, consider the following Mixed-Integer

Linear programming problem (MILP):

P : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j

ãijXj +
∑
k

d̃ikYk ≤ bi, ∀ i ∈ I,

Xj ∈ R, ∀ j ∈ J,

Yk ∈ Z, ∀ k ∈ K.

Suppose, without loss of generality, that only the left-hand-side parameters in the

constraints of model P have uncertain data. This assumption is valid because of

the following:

� If the coefficients in the objective function have uncertain data, then the

objective function can be written as a constraint.

85



� In any constraint i, if the right-hand-side parameter is subject to uncertainty,

then it can be written as
∑
j

ãijXj + +
∑
k

d̃ikYk− b̃i ≤ 0, therefore we end up

with a constraint that has uncertain parameters on the left-hand-side only.

Assuming that only parameters ãij and d̃ik are subjected to uncertainty, then any

constraint i in model P can be expressed as:

∑
j /∈Ji

aijXj +
∑
j∈Ji

ãijXj +
∑
k/∈Ki

dikYk +
∑
k∈Ki

d̃ikYk ≤ bi, (4.1)

where, Ji and Ki denote the sets of uncertain parameters in constraint i, and

ãij, d̃ik represent the true values of the uncertain parameters. In order to acquire

control of the conservativeness degree of the robust formulation, the true value of

the uncertain parameters ãij and d̃ik are represented as follows:

ãij = aij + ξij âij,

d̃ik = dik + ξikd̂ik,

(4.2)

where aij and dik are the nominal values and âij and d̂ik represent the deviation

magnitudes from the nominal values of the uncertain parameters ãij and d̃ik re-

spectively. In addition, ξij and ξik are variables that take values in the interval

[−1, 1], indeed, these variables provide perturbations to the uncertain parameters.

Next sections present the robust counterpart based on different uncertainty sets.
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4.3.1 Robust Counterpart Based on Interval Uncertainty

Set

To the best of our knowledge, the first work on robust optimization appeared

in Soyster [96]. The author considered a simple perturbation in the data for

uncertain parameters in a linear programming formulation, then he provided a

reformulation of the original problem in order to obtain a solution that is feasi-

ble for all possible realizations of the uncertain parameters. Soyster’s approach

considers all uncertain parameters to take their worst case values, therefore this

approach is considered to be the most conservative robust optimization approach.

In terms of modeling complexity, robust counterpart approach based on interval

uncertainty set preserves exactly the same complexity of the original model. This

makes it a good candidate for complex problems such as robust discrete optimiza-

tion problems including robust network problems, see [97] for a recent survey on

the utilization of interval uncertainty set in discrete optimization problems.

To immunize against uncertainty, we apply the robust counterpart approach to

the original constraint (4.1) under the uncertainty set (4.2), this yields,

∑
j /∈Ji

aijXj+max
ξij

[∑
j∈Ji

(aij + ξij âij)Xj

]
+
∑
k/∈Ki

dikYk+max
ξik

[∑
k∈Ki

(
dik + ξikd̂ik

)
Yk

]
≤ bi.

The above constraint reduces to,

∑
j∈J

aijXj + max
ξij

[∑
j∈Ji

ξij âijXj

]
+
∑
k∈K

dikYk + max
ξij

[∑
k∈Ki

ξikd̂ikYk

]
≤ bi. (4.3)
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The above constraint indicates that each uncertain parameter will take its bound-

ary value and yields,

∑
j∈J

aijXj +
∑
j∈Ji

âij |Xj|+
∑
k∈K

dikYk +
∑
k∈Ki

d̂ik |Yk| ≤ bi. (4.4)

The absolute value operator in (4.4) can be removed directly if the variableXj, j ∈

Ji, is positive, and if the variable Yk, k ∈ Ki, is positive or binary, hence the robust

formulation for model P based on Soyster’s approach becomes:

Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
j∈Ji

âijXj +
∑
k∈K

dikYk +
∑
k∈Ki

d̂ikYk ≤ bi, ∀ i ∈ I,

Xj ∈ R+, ∀ j ∈ Ji,

Yk ∈ Z+or ∈ {0, 1}, ∀ k ∈ Ki,

Xj ∈ R, ∀ j ∈ J \ Ji,

Yk ∈ Z, ∀ k ∈ K \Ki.

However if the variable Xj, j ∈ Ji, is not positive and the variable Yk, k ∈ Ki, is

neither positive nor binary, the robust formulation for model P based on Soyster’s

approach becomes:

P −RCI : Max
∑
j

τjXj +
∑
k

λkYk,

88



s. t.∑
j∈J

aijXj +
∑
j∈Ji

âijwj +
∑
k∈K

dikYk +
∑
k∈Ki

d̂ikuk ≤ bi, ∀ i ∈ I,

− wj ≤ Xj ≤ wj, ∀ j ∈ Ji,

− uk ≤ Yk ≤ uk, ∀ k ∈ Ki,

wj, uk ≥ 0, ∀ j ∈ Ji, ∀ k ∈ Ki,

Xj ∈ R, ∀ j ∈ J,

Yk ∈ Z, ∀ k ∈ K,

where, wj and uk are auxiliary variables.

4.3.2 Robust Counterpart Based on Box Uncertainty Set

Recently, Li et al. [95] provided a comprehensive study on the robust counterpart

formulation for linear and MILP. They gave the mathematical proof of the robust

counterpart to linear and MILP using different uncertainty sets. The proposed

uncertainty sets are formulated based on different norms of the perturbation vari-

ables.

The box uncertainty set is formulated based on the Chebyshev norm of the per-

turbation variables, it is presented as follows:

U∞ =
{
ξj | ‖ξj‖∞ ≤ Ψ

}
= {ξj | ξj ≤ Ψ} , (4.5)
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where Ψ is the adjustable parameter that control the uncertainty set size, and

hence controlling the degree of conservatism. If Ψ = 1, then the resulting un-

certainty set is the interval uncertainty set which is a special case of the box

uncertainty set.

The robust counterpart of model P under box uncertainty set (4.5) is given as

follows:

P −RCB : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
k∈K

dikYk + Ψi

[∑
j∈Ji

âijwj +
∑
k∈Ki

d̂ikuk

]
≤ bi, ∀ i ∈ I,

− wj ≤ Xj ≤ wj, ∀ j ∈ Ji,

− uk ≤ Yk ≤ uk, ∀ k ∈ Ki,

wj, uk ≥ 0, ∀ j ∈ Ji, ∀ k ∈ Ki,

Xj ∈ R, ∀ j ∈ J,

Yk ∈ Z, ∀ k ∈ K,

where wj and uk are auxiliary variables.

The proof of model P −RCB is available in [95].

If Xj, j ∈ Ji, is positive, then we can remove the constraint −wj ≤ Xj ≤ wj

and replace wj by Xj in model P − RCB. If Yk, k ∈ Ki, is binary or positive,

then we can remove the constraint −uk ≤ Yk ≤ uk and replace uk by Yk in model
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P −RCB.

4.3.3 Robust Counterpart Based on Ellipsoidal Uncer-

tainty Set

Li et al. [95] studied the robust counterpart formulation under the pure ellipsoidal

uncertainty set. The ellipsoidal uncertainty set is defined as follows:

U2 =
{
ξj | ‖ξj‖2 ≤ Ω

}
=

ξj |
√∑

j∈Ji

ξ2
j ≤ Ω

 , (4.6)

where Ω is the radius of the uncertainty set; it also represent the degree of con-

servatism. The ellipsoidal uncertainty set is formulated based on the 2-norm of

the perturbation variables.

The robust counterpart of model P as follows:

P −RCE : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
k∈K

dikYk + Ωi

√∑
j∈Ji

â2
ijX

2
j +

∑
k∈Ki

d̂2
ikY

2
k ≤ bi, ∀ i ∈ I,

Xj ∈ R, ∀ j ∈ J,

Yk ∈ Z, ∀ k ∈ K.

The proof of model P −RCE is available in [95].
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4.3.4 Robust Counterpart Based on Polyhedral Uncer-

tainty Set

Li et al. [95] also discussed the robust counterpart formulation under the pure

polyhedral uncertainty set. The polyhedral uncertainty set is defined below:

U1 =
{
ξj | ‖ξj‖1 ≤ Γ

}
=

{
ξj |

∑
j∈Ji

|ξj| ≤ Γ

}
, (4.7)

where Γ is the parameter that controls of the uncertainty set size; it also known

as the budget of robustness or price of robustness. The polyhedral uncertainty set

is formulated based on the 1-norm of the perturbation random variables.

The robust counterpart of model P is given as follows:

P −RCP : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
k∈K

dikYk + ziΓi ≤ bi, ∀ i ∈ I,

zi ≥ âijwj, ∀ j ∈ Ji, ∀ i ∈ I,

zi ≥ b̂ikuk, ∀ k ∈ Ki, ∀ i ∈ I,

− wj ≤ Xj ≤ wj, ∀ j ∈ Ji,

− uk ≤ Yk ≤ uk, ∀ k ∈ Ki,

wj, uk, zi ≥ 0, ∀ j ∈ Ji, ∀ k ∈ Ki, ∀ i ∈ I,

Xj ∈ R, ∀ j ∈ J,
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Yk ∈ Z, ∀ k ∈ K,

where wj and uk are auxiliary variables.

The proof of model P −RCP is available in [95].

If Xj, j ∈ Ji, is positive, then we can remove the constraint −wj ≤ Xj ≤ wj

and replace wj by Xj in model P − RCP . If Yk, k ∈ Ki, is binary or positive,

then we can remove the constraint −uk ≤ Yk ≤ uk and replace uk by Yk in model

P −RCP .

4.3.5 Robust Counterpart Based on Interval-Ellipsoidal

Uncertainty Set

The rigorous development of robust optimization traced back to the early 2000’s.

Among the pioneering studies in the field are Ben-Tal and Nemirovski [98] and

Bertsimas and Sim [99, 100].

Ben-Tal and Nemirovski [98] employed the ellipsoidal uncertainty set (4.6), this

yields a robust optimization counterpart that is less conservative than the one

obtained in Soyster’s approach. The proposed robust counterpart formulation

allows for a trade-off between the performance and the robustness or equivalently

between the objective value and the conservativeness degree.

Figure 4.1 illustrates different geometry representations of the combined interval-

ellipsoidal uncertainty set based on the value of the adjustable parameter Ω.
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(a) 0 < Ω < 1. (b) Ω = 1. (c) 1 < Ω <
√
|Ji|+ |Ki|.

(d) Ω =
√
|Ji|+ |Ki|. (e)

√
|Ji|+ |Ki| < Ω.

Figure 4.1: Illustration of the combined interval-ellipsoidal uncertainty set.

The robust counterpart formulation of model P based on the combination of the

interval uncertainty set (4.5) with Ψ = 1 and the ellipsoidal uncertainty set (4.6)

is given by,

P −RCI−E : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
k∈K

dikYk +
∑
j∈Ji

âijwij +
∑
k∈Ki

d̂ikuik

+ Ωi

√∑
j∈Ji

â2
ijt

2
ij +

∑
k∈Ki

d̂2
ikz

2
ik ≤ bi, ∀ i ∈ I,

− wij ≤ Xj − tij ≤ wij, ∀ j ∈ Ji, ∀ i ∈ I,

− uik ≤ Yk − zik ≤ uik, ∀ k ∈ Ki, ∀ i ∈ I,
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wij, tij ≥ 0, ∀ j ∈ Ji, ∀ i ∈ I,

uik, zik ≥ 0, ∀ k ∈ Ki, ∀ i ∈ I,

Xj ∈ R, ∀ j ∈ J,

Yk ∈ Z, ∀ k ∈ K,

where tij and zik are positive dual variables, and wij and uik are auxiliary variables.

The proof of model P −RCI−E is available in [87, 95, 98].

4.3.6 Robust Counterpart Based on Interval-Polyhedral

Uncertainty Set

Although the approach proposed by Ben-Tal and Nemirovski [98]; which was

discussed in Section 4.3.5, solved the problem of over conservatism in Soyster’s

approach [96]; which was discussed in Section 4.3.1, the resulting formulation

P − RCI−E is nonlinear, this results in computational complexities in solving

mixed-integer nonlinear optimization problems.

Bertsimas and Sim [99, 100] provided the robust counterpart formulation that

overcomes the drawbacks in both Soyster’s approach and Ben-Tal and Ne-

mirovski’s approach. They presented the combination of the interval uncertainty

set (4.5) with Ψ = 1 and the polyhedral uncertainty set (4.7).

Figure 4.2 illustrates different geometry representations of the combined interval-

polyhedral uncertainty set based on the value of the adjustable parameter Γ.
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(a) 0 < Γ < 1. (b) Γ = 1. (c) 1 < Γ < |Ji|+ |Ki|.

(d) Γ = |Ji|+ |Ki|. (e) |Ji|+ |Ki| < Γ.

Figure 4.2: Illustration of the combined interval-polyhedral uncertainty set.

The robust counterpart formulation of model P based on the interval-polyhedral

uncertainty combination is expressed as,

P −RCI−P : Max
∑
j

τjXj +
∑
k

λkYk,

s. t.∑
j∈J

aijXj +
∑
k∈K

dikYk +
∑
j∈Ji

tij +
∑
k∈Ki

pik + ziΓi ≤ bi, ∀ i ∈ I,

zi + tij ≥ âijwj, ∀ j ∈ Ji, ∀ i ∈ I,

zi + pik ≥ b̂ikuk, ∀ k ∈ Ki, ∀ i ∈ I,

− wj ≤ Xj ≤ wj, ∀ j ∈ Ji,

− uk ≤ Yk ≤ uk, ∀ k ∈ Ki,
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wj, uk, zi, tij, pik ≥ 0, ∀ j ∈ Ji, ∀ k ∈ Ki, ∀ i ∈ I,

Xj ∈ R, ∀ j ∈ J, , ∀ k ∈ Ki,

Yk ∈ Z, ∀ k ∈ K,

where tij, pik and zi are positive dual variables, and wj and uk are auxiliary

variables.

The proof of model P −RCI−P is available in [95, 99, 100].

If Xj, j ∈ Ji, is positive, then we can remove the constraint −wj ≤ Xj ≤ wj

and replace wj by Xj in model P − RCI−P . If Yk, k ∈ Ki, is binary or positive,

then we can remove the constraint −uk ≤ Yk ≤ uk and replace uk by Yk in model

P −RCI−P .

4.4 Robust Multi-Product Selective Newsven-

dor Problem with Flexible Market Entry

The profit function for the deterministic flexible market entry case of the multi-

product selective newsvendor problem is given by (2.1) which equivalently can be

expressed as:

P (Qj, yij) =
∑
i∈I

(∑
j∈J

(rij − vj)xij − Sij

)
yij −

∑
j∈J

(ej − vj)

(∑
i∈I

xijyij −Qj

)+

−
∑
j∈J

(cj − vj)Qj.

(4.8)
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where (ζ)+ = ζ if ζ ≥ 0, and 0 otherwise. It is also notable that the above

model is separable in products; j. The resulting deterministic flexible market

entry selective newsvendor problem for each product is given as:

P (Qj, yij) =
∑
i∈I

((rij − vj)xij − Sij) yij − (ej − vj)

(∑
i∈I

xijyij −Qj

)+

− (cj − vj)Qj.

(4.9)

In that function, we can replace
(∑

i∈I xijyij −Qj

)+
by zj and add the constraints∑

i∈I xijyij −Qj ≤ zj and zj ≥ 0. Thus, the optimization model becomes:

SNVPFlex : Max
∑
i∈I

((rij − vj)xij − Sij) yij − (ej − vj) zj − (cj − vj)Qj,

s. t.∑
i∈I

xijyij −Qj ≤ zj,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

Note that, the optimal order quantity for each product j; Qj, should satisfy the

demand of that product from the selected markets, i.e.,

Qj =
∑
i∈I

xijyij, (4.10)

and this causes zj = 0 at optimality.

Hence, the deterministic flexible market entry selective newsvendor problem for
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product j can be expressed as:

SNVPFlex−D : Max
∑
i∈I

((rij − cj)xij − Sij) yij,

s. t.

yij ∈ {0, 1} , ∀ i ∈ I.

The optimal solution to the deterministic flexible market entry selective newsven-

dor problem SNVPFlex−D, is:

y∗ij = 1 if (rij − cj)xij − Sij > 0,

y∗ij = 0 otherwise.

(4.11)

The optimal order quantity is given by (4.10).

Now, suppose that the demand of the products; xij, is uncertain in the market

set Ik ⊆ I, therefore, the demand value is considered as,

x̃ij = xij + ξijx̂ij, ∀ i ∈ Ik, (4.12)

where xij is the nominal value of the uncertain demand of product j in market i, x̂ij

represents the deviation magnitude from the nominal value and ξij is the variable

that controls demand perturbation and takes a value in the interval [−1, 1]. The
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model SNVPFlex can be rewritten as:

Max
∑
i∈I\Ik

((rij − vj)xij − Sij) yij +
∑
i∈Ik

((rij − vj) x̃ij − Sij) yij

− (ej − vj) zj − (cj − vj)Qj,

s. t. ∑
i∈I\Ik

xijyij +
∑
i∈Ik

x̃ijyij −Qj ≤ zj,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

where xij and x̃ij represent the deterministic and uncertain values of the demand

of product j in market i, respectively.

The above model can be rewritten as:

SNVPFlex−U : Max δ,

s. t.

δ −
∑
i∈I\Ik

((rij − vj)xij − Sij) yij −
∑
i∈Ik

((rij − vj) x̃ij − Sij) yij

+ (ej − vj) zj + (cj − vj)Qj ≤ 0,∑
i∈I\Ik

xijyij +
∑
i∈Ik

x̃ijyij −Qj ≤ zj,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.
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Next, we present the robust counterpart reformulation of the MPSNVP with flex-

ible market entry; SNVPFlex−U , under different uncertainty sets.

4.4.1 Robust MPSNVP with Flexible Market Entry Based

on Box Uncertainty Set

We apply the approach presented in Section 4.3.2 to obtain the robust counterpart

of the uncertain model of the MPSNVP with flexible market entry, SNVPFlex−U ,

based on the box uncertainty set (4.5). Note that the uncertain demands are

coefficients of the decision variables yij, which are binary variables, therefore the

robust counterpart approach yields:

Max δ,

s.t.

δ −
∑
i∈I

((rij − vj)xij − Sij) yij + Ψ
∑
i∈Ik

((rij − vj) x̂ij) yij

+ (ej − vj) zj + (cj − vj)Qj ≤ 0,∑
i∈I

xijyij + Ψj

∑
i∈Ik

x̂ijyij −Qj ≤ zj,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

This robust counterpart results in an MILP formulation. This preserves the

tractability of original model with the same number of variables and constraints.

Notice that, we can get Soyster’s robust counterpart to the above model by taking
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Ψ = 1 and Ψj = 1.

The optimal solution to the above model yields:

Q∗j =
∑
i∈I

xijy
∗
ij + Ψj

∑
i∈Ik

x̂ijy
∗
ij,

z∗j = 0.

(4.13)

Hence, the above model reduces to:

Max
∑
i∈I

((rij − vj)xij − Sij) yij −Ψ
∑
i∈Ik

((rij − vj) x̂ij) yij

− (cj − vj)

(∑
i∈I

xijyij + Ψj

∑
i∈Ik

x̂ijyij

)
,

s.t.

yij ∈ {0, 1} , ∀ i ∈ I.

This model can be rewritten as:

SNVPFlex−U −RCB :

Max
∑
i∈I\Ik

((rij − cj)xij − Sij) yij

+
∑
i∈Ik

((rij − cj)xij −Ψ (rij − vj) x̂ij −Ψj (cj − vj) x̂ij − Sij) yij,

s.t.

yij ∈ {0, 1} , ∀ i ∈ I.
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The solution to model SNVPFlex−U −RCB is as follows:

For all i ∈ I \ Ik :

y∗ij = 1 if (rij − cj)xij − Sij > 0,

y∗ij = 0 otherwise,

For all i ∈ Ik :

y∗ij = 1 if (rij − cj)xij −Ψ (rij − vj) x̂ij −Ψj (cj − vj) x̂ij − Sij > 0,

y∗ij = 0 otherwise,

(4.14)

while the optimal order quantity for each product j is given by (4.13).

4.4.2 Robust MPSNVP with Flexible Market Entry Based

on Ellipsoidal Uncertainty Set

We apply the approach provided in Section 4.3.3 to obtain the robust counterpart

of the uncertain model of the MPSNVP with flexible market entry, SNVPFlex−U ,

this can be expressed as:

Max δ,

s.t.

δ −
∑
i∈I

((rij − vj)xij − Sij) yij + Ω

√∑
i∈Ik

(rij − vj)2 x̂2
ijy

2
ij

+ (ej − vj) zj + (cj − vj)Qj ≤ 0,
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∑
i∈I

xijyij + Ωj

√∑
i∈Ik

x̂2
ijy

2
ij −Qj ≤ zj,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

This robust counterpart preserves the same number of variables and constraints,

however it results in an MINLP formulation, which causes computational com-

plexities.

The optimal solution to the above model yields,

Q∗j =
∑
i∈I

xijy
∗
ij + Ωj

√∑
i∈Ik

x̂2
ijy
∗2
ij ,

z∗j = 0.

(4.15)

Hence, the above model reduces to:

Max
∑
i∈I

((rij − vj)xij − Sij) yij − Ω

√∑
i∈Ik

(rij − vj)2 x̂2
ijy

2
ij

− (cj − vj)

∑
i∈I

xijyij + Ωj

√∑
i∈Ik

x̂2
ijy

2
ij

 ,

s.t.

yij ∈ {0, 1} , ∀ i ∈ I.
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The above model can be rewritten as:

Max
∑
i∈I\Ik

((rij − cj)xij − Sij) yij +
∑
i∈Ik

((rij − cj)xij − Sij) yij

− Ω

√∑
i∈Ik

(rij − vj)2 x̂2
ijy

2
ij − (cj − vj) Ωj

√∑
i∈Ik

x̂2
ijy

2
ij,

s.t.

yij ∈ {0, 1} , ∀ i ∈ I.

The above model can be separated into the following two sub-models:

SNVPFlex−U −D : Max
∑
i∈I\Ik

((rij − cj)xij − Sij) yij,

s.t.

yij ∈ {0, 1} , ∀ i ∈ I \ Ik.

SNVPFlex−U −RCE : Max
∑
i∈Ik

((rij − cj)xij − Sij)yij − Ω

√∑
i∈Ik

(rij − vj)2 x̂2
ijy

2
ij

− (cj − vj) Ωj

√∑
i∈Ik

x̂2
ijy

2
ij,

s.t.

yij ∈ {0, 1} , ∀ i ∈ Ik.

The optimal solution to sub-model SNVPFlex−U −D is as follows:

For all i ∈ I \ Ik :

y∗ij = 1 if (rij − cj)xij − Sij > 0,

y∗ij = 0 otherwise.

(4.16)
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The optimal solution to sub-model SNVPFlex−U − RCE can be determined by

applying the same solution procedure that was applied in Section 2.3.2 for solving

the risk-neutral MPSNVP with flexible market entry. The RDU ratio for sub-

model SNVPFlex−U −RCE is:

RDUFlex−RCE =
(rij − cj)xij − Sij

Ω2 (rij − vj)2 x̂2
ij + Ω2

j (cj − vj)2 x̂2
ij

. (4.17)

The optimal order quantity for each product j is given be (4.15).

4.4.3 Robust MPSNVP with Flexible Market Entry Based

on Polyhedral Uncertainty Set

We apply the approach provided in Section 4.3.4 to obtain the robust counterpart

of the uncertain model of the MPSNVP with flexible market entry, SNVPFlex−U .

Note that the uncertain demands are coefficients of the decision variables yij,

which are binary variables, therefore applying the robust counterpart based on

the polyhedral uncertainty set yields:

Max δ,

s.t.

δ −
∑
i∈I

((rij − vj)xij − Sij) yij + uΓ + (ej − vj) zj

+ (cj − vj)Qj ≤ 0,

u ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,
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∑
i∈I

xijyij + ujΓj −Qj ≤ zj,

uj ≥ x̂ijyij, ∀ i ∈ Ik,

u, uj, Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

This robust counterpart results in MILP. This preserves the tractability of orig-

inal model, however, the number of variables increases as well as the number of

constraints. The number of binary variables remains the same as in the original

formulation SNVPFlex−U .

We can further reduce the size of the above model. Note that the optimal solution

to the above model; given the values of y∗ij and u∗j , results in:

Q∗j =
∑
i∈I

xijy
∗
ij + u∗jΓj,

z∗j = 0.

(4.18)

Substituting from (4.18) into the above model:

Max
∑
i∈I

((rij − vj)xij − Sij) yij − uΓ− (cj − vj)

(∑
i∈I

xijyij + ujΓj

)
,

s.t.

u ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,

uj ≥ x̂ijyij, ∀ i ∈ Ik,

u, uj ≥ 0,
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yij ∈ {0, 1} , ∀ i ∈ I.

The above model can be rewritten as:

SNVPFlex−U −RCP : Max
∑
i∈I

((rij − cj)xij − Sij) yij − uΓ− (cj − vj)ujΓj,

s.t.

u ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,

uj ≥ x̂ijyij, ∀ i ∈ Ik,

u, uj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

The reduced model SNVPFlex−U − RCP is an MILP problem, it can be solved

using commercial solvers such as CPLEX. Then, the results are used to get the

optimal order quantities Qj from (4.18).

4.4.4 Robust MPSNVP with Flexible Market Entry Based

on Interval-Ellipsoidal Uncertainty Set

We apply the approach provided in Section 4.3.5 to obtain the robust counterpart

of the uncertain model of the MPSNVP with flexible market entry, SNVPFlex−U ,

this can be expressed as:

Max δ,

108



s.t.

δ −
∑
i∈I

((rij − vj)xij − Sij) yij +
∑
i∈Ik

(rij − vj) x̂ijpij

+ Ω

√∑
i∈Ik

(rij − vj)2 x̂2
iju

2
ij + (ej − vj) zj + (cj − vj)Qj ≤ 0,

− pij ≤ yij − uij ≤ pij, ∀ i ∈ Ik,∑
i∈I

xijyij +
∑
i∈Ik

x̂ijtij + Ωj

√∑
i∈Ik

x̂2
ijw

2
ij −Qj ≤ zj,

− tij ≤ yij − wij ≤ tij, ∀ i ∈ Ik,

uij, wij, pij, tij ≥ 0, ∀ i ∈ Ik,

Qj, zj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I,

where, pij and tij are auxiliary variables, while uij and wij are positive dual

variables.

This robust counterpart results in an MINLP formulation with number of variables

and constraints greater than that in the original formulation SNVPFlex−U . The

size of the model can be reduced by performing preprocessing of some variables.

In addition, the tractability of the above model can be retrieved by linearizing the

nonlinear terms.

When the optimal values of y∗ij, t
∗
ij and w∗ij are known, then the optimal solution
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to the above model is:

Q∗j =
∑
i∈I

xijy
∗
ij +

∑
i∈Ik

x̂ijt
∗
ij + Ωj

√∑
i∈Ik

x̂2
ijw
∗2
ij ,

z∗j = 0.

(4.19)

We also substitute for the nonlinear terms as follows:

∑
i∈Ik

(rij − vj)2 x̂2
iju

2
ij ≤ q2

j ,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j .

Now, the above model can be represented as:

Max
∑
i∈I

((rij − vj)xij − Sij) yij −
∑
i∈Ik

(rij − vj) x̂ijpij

− Ωqj − (cj − vj)

(∑
i∈I

xijyij +
∑
i∈Ik

x̂ijtij + Ωjhj

)
,

s.t.

− pij ≤ yij − uij ≤ pij, ∀ i ∈ Ik,

− tij ≤ yij − wij ≤ tij, ∀ i ∈ Ik,∑
i∈Ik

(rij − vj)2 x̂2
iju

2
ij ≤ q2

j ,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j ,

uij, wij, pij, tij ≥ 0, ∀ i ∈ Ik,

hj, qj ≥ 0,
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yij ∈ {0, 1} , ∀ i ∈ I,

The above model can be expressed as:

SNVPFlex−U −RCI−E : Max
∑
i∈I

((rij − cj)xij − Sij) yij −
∑
i∈Ik

(rij − vj) x̂ijpij

− Ωqj − (cj − vj)
∑
i∈Ik

x̂ijtij − (cj − vj) Ωjhj,

s.t.

− pij ≤ yij − uij ≤ pij, ∀ i ∈ Ik,

− tij ≤ yij − wij ≤ tij, ∀ i ∈ Ik,∑
i∈Ik

(rij − vj)2 x̂2
iju

2
ij ≤ q2

j ,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j ,

uij, wij, pij, tij ≥ 0, ∀ i ∈ Ik,

hj, qj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

Model SNVPFlex−U − RCI−E is an CQMIP problem, which can be solved effi-

ciently and in reasonable computational time using of-the-shelf MILP commercial

solvers such as CPLEX.
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4.4.5 Robust MPSNVP with Flexible Market Entry Based

on Interval-Polyhedral Uncertainty Set

We apply the approach provided in Section 4.3.6 to obtain the robust counterpart

of the uncertain model of the MPSNVP with flexible market entry, SNVPFlex−U .

Note that the uncertain demands are coefficients of the decision variables yij,

which are binary variables, therefore applying the robust counterpart presented

in Section 4.3.6 yields:

Max δ,

s.t.

δ −
∑
i∈I

((rij − vj)xij − Sij) yij +
∑
i∈Ik

pij + uΓ + (ej − vj) zj

+ (cj − vj)Qj ≤ 0,

u+ pij ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,∑
i∈I

xijyij +
∑
i∈Ik

tij + ujΓj −Qj ≤ zj,

uj + tij ≥ x̂ijyij, ∀ i ∈ Ik,

pij, tij ≥ 0, ∀ i ∈ Ik,

u, uj, Qj, zj ≥ 0,

pij ≥ 0, ∀ i ∈ Ik,

yij ∈ {0, 1} , ∀ i ∈ I.
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This robust counterpart results in MILP. This preserves the tractability of original

model, however, the number of variables increases as well as the number of con-

straints. The number of binary variables remains the same as that in the original

formulation SNVPFlex−U .

The size of the above model can be reduced by noting that the optimal values of

Qj and zj are given as follows:

Q∗j =
∑
i∈I

xijy
∗
ij +

∑
i∈Ik

t∗ij + u∗jΓj,

z∗j = 0.

(4.20)

We substitute for Q∗j and z∗j in the above model, this yields the following:

Max
∑
i∈I

((rij − vj)xij − Sij) yij −
∑
i∈Ik

pij − uΓ

− (cj − vj)

(∑
i∈I

xijyij +
∑
i∈Ik

tij + ujΓj

)
,

s.t.

u+ pij ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,

uj + tij ≥ x̂ijyij, ∀ i ∈ Ik,

pij, tij ≥ 0, ∀ i ∈ Ik,

u, uj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.
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The above model can be rewritten as follows:

SNVPFlex−U −RCI−P : Max
∑
i∈I

((rij − cj)xij − Sij) yij −
∑
i∈Ik

pij − uΓ

− (cj − vj)
∑
i∈Ik

tij − (cj − vj)ujΓj,

s.t.

u+ pij ≥ (rij − vj) x̂ijyij, ∀ i ∈ Ik,

uj + tij ≥ x̂ijyij, ∀ i ∈ Ik,

pij, tij ≥ 0, ∀ i ∈ Ik,

u, uj ≥ 0,

yij ∈ {0, 1} , ∀ i ∈ I.

The reduced model SNVPFlex−U −RCI−P is an MILP problem, it can be solved

using commercial solvers such as CPLEX. Then, the results are used to get the

optimal order quantities Q∗j from (4.20).

4.5 Computational Results

In this section, we study and compare the implementation and solution of robust

MPSNVP with flexible market entry. The study includes the robust counterpart

formulations under different uncertainty sets discussed in the previous sections,

namely, box, ellipsoidal, polyhedral, interval-ellipsoidal and interval-polyhedral

based robust counterparts. The study compares the objective values under differ-

114



ent uncertainty sets. In addition, we study the effect of changing the adjustable

parameters on the performance of the robust counterparts.

It has been shown in the previous sections that the robust counterpart formulation

of the MPSNVP with flexible market entry is a separable problem and it reduces

to a single product problem for each product. Therefore, we apply the robust

counterpart analysis on one product, and then similarly, the analysis procedure

can be applied to other products.

As an example, we take the data of product 2 from Tables 4.1 and 4.2. Table 4.1

provides the detailed cost values for the products in the MPSNVP. The purchas-

ing cost per unit of each product, the expediting cost per unit of each product,

and the salvage value per unit of each product are shown in the table. Table

Table 4.1: Costs of the products in an MPSNVP with uncertain demand.

Parameter
Product

1 2 3 4 5 6 7 8 9 10
e 10 120 15 1,200 250 24 90 7 220 900
c 7 100 10 1,000 200 15 85 6 200 800
v 5 50 5 600 50 5 30 5 100 200

4.2 provides the selling prices as well as the nominal demand for each market. In

addition, the market entry cost for each type of the products are presented. These

input data are drawn from uniform distributions as shown in Table 4.2.

We consider three market pool sizes: 10, 100 and 1000. For each market pool size

we apply different robust counterpart formulations to product 2. In addition, we

assume that 50% of the markets have uncertain demand data. The demand of the

product is assumed to be 10% perturbed around its nominal value.
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Table 4.2: Input parameters for an MPSNVP with uncertain demand.

Product
Parameters

r x S
1 U(12, 20) U(400, 600) U(1,000, 2,000)
2 U(150, 200) U(200, 300) U(5,000, 10,000)
3 U(15, 25) U(600, 800) U(3,000, 5,000)
4 U(1200, 1800) U(40, 60) U(15,000, 20,000)
5 U(200, 300) U(200, 500) U(10,000, 15,000)
6 U(20, 30) U(300, 400) U(3,000, 5,000)
7 U(80, 120) U(200, 220) U(4,000, 8,000)
8 U(8, 12) U(300, 500) U(1,000, 2,000)
9 U(200, 300) U(100, 120) U(5,000, 10,000)
10 U(900, 1,100) U(120, 150) U(15,000, 20,000)

We set the values of Ω and Ωj at the same level, they are equal to Ψ
√
|Ik|, where

|Ik| is the cardinality of the set of markets with uncertain demand; e.g. for market

pool size 10 with 50% of the markets have uncertain demand, |I5|= 5. Moreover,

we set the values of Γ and Γj at the same level, they are equal to Ψ|Ik|.

Figures 4.3, 4.4 and 4.5 show the optimization results for 10, 100 and 1000 markets

pool sizes respectively. We notice the following:
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Figure 4.3: Robust MPSNVP with flexible market entry for market pool size 10.
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� For Ψ = 0, all robust counterpart formulations yield the same solution,

which is the solution of the deterministic problem.

� For 0 < Ψ < 1, the solution of the robust counterpart based on box un-

certainty set is better than the solution of any other uncertainty set, this

happens because the box uncertainty set is smaller than any other uncer-

tainty set in that range of the values of Ψ.

� For Ω ≤ 1, the solution of the robust counterpart based on the ellipsoidal

uncertainty set has the same value of that solution based on the combination

of interval and ellipsoidal uncertainty sets. The reason behind this is that the

corresponding uncertainty sets for both robust counterparts are the same;

see Figures 4.1a and 4.1b.

� For 1 < Ω <
√
|Ik|, the solution of the robust counterpart based on the

combination of interval and ellipsoidal uncertainty sets is better than that

solution based on the ellipsoidal uncertainty set because the corresponding

uncertainty set for the former is smaller than that of the latter; see Figure

4.1c.

� For Ω ≥
√
|Ik|, the solution of the robust counterpart based on the combi-

nation of interval and ellipsoidal uncertainty sets reaches its worst value and

does not decrease any more. This is due to the fact that the corresponding

uncertainty set becomes exactly the interval uncertainty set and it does not

change; see Figures 4.1d and 4.1e.
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Figure 4.4: Robust MPSNVP with flexible market entry for market pool size 100.

� For Γ ≤ 1, the solution of the robust counterpart based on the polyhedral

uncertainty set has the same value of that solution based on the combi-

nation of interval and polyhedral uncertainty sets. The reason is that the

corresponding uncertainty sets for both robust counterparts are the same;

see Figures 4.2a and 4.2b.

� For 1 < Γ < |Ik|, the solution of the robust counterpart based on the combi-

nation of interval and polyhedral uncertainty sets is better than that solution

based on the polyhedral uncertainty set because the corresponding uncer-

tainty set for the former is smaller than that of the polyhedral uncertainty

set; see Figure 4.2c.

� For Γ ≥ |Ik|, the solution of the robust counterpart based on the combination

of interval and polyhedral uncertainty sets reaches its worst value and does

not decrease any more. This happens because the corresponding uncertainty
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Figure 4.5: Robust MPSNVP with flexible market entry for market pool size 1000.

set becomes exactly the interval uncertainty set and it does not change; see

Figures 4.2d and 4.2e.

� For Ω = Γ, the solution of the robust counterpart based on the combination

of interval and polyhedral uncertainty sets is better than that of the robust

counterpart based on the combination of interval and ellipsoidal uncertainty

sets, because the combination of interval and polyhedral uncertainty sets in

this case is smaller than the combination of interval and ellipsoidal uncer-

tainty sets. In this case, the corresponding uncertainty set of the former is

completely covered by the corresponding uncertainty set of the latter; see

Figure 4.6a.

� For Γ = Ω
√
|Ik|, the solution of the robust counterpart based on the com-

bination of interval and ellipsoidal uncertainty sets is better than that of

the robust counterpart based on the combination of interval and polyhedral
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uncertainty sets, because the corresponding uncertainty set of the former is

completely circumvented by the corresponding uncertainty set of the latter;

see Figure 4.6b.

(a) Ω = Γ. (b) Γ = Ω
√
|Ik|.

Figure 4.6: Illustration of the relationship between ellipsoidal and polyhedral
uncertainty set.

� For the robust counterparts based on box, ellipsoidal and polyhedral un-

certainty set, there is a certain value of Ψ at which none of the markets

with uncertain demand is selected, because the adjustable uncertainty set

parameters take large values, these values indicate that the markets with

uncertain demands are completely unreliable.
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CHAPTER 5

ROBUST MULTI-PRODUCT

SELECTIVE NEWSVENDOR

WITH FULL MARKET ENTRY

5.1 Introduction

In this chapter, we discuss robust counterpart reformulations of MPSNVP with

full market entry under different uncertainty sets of uncertain demand. Some of

the obtained models can be solved in closed form solution, some of these models are

MILP and the rest are CQMILP which can be solved efficiently using commercial

solvers such as CPLEX.
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5.2 Robust Multi-Product Selective Newsven-

dor Problem with Full Market Entry

The profit function for the deterministic full market entry case of the multi-

product selective newsvendor problem is given by (2.9), or equivalently,

P (Qj, Yi) =
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi −

∑
j∈J

(ej − vj)

(∑
i∈I

xijYi −Qj

)+

−
∑
j∈J

(cj − vj)Qj.

(5.1)

In that function, we can replace

(∑
i∈I
xijYi −Qj

)+

by zj and add the constraints∑
i∈I
xijYi −Qj ≤ zj and zj ≥ 0. Thus, the optimization model becomes:

SNVPFull : Max
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi −

∑
j∈J

(ej − vj) zj

−
∑
j∈J

(cj − vj)Qj,

s. t.∑
i∈I

xijYi −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.
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Note that, the optimal order quantity for each product j; Qj, should satisfy the

demand of that product from the selected markets, i.e.,

Qj =
∑
i∈I

xijYi, ∀ j ∈ J, (5.2)

and this causes zj = 0 at optimality.

Hence, the deterministic full market entry selective newsvendor problem can be

expressed as:

SNVPFull−D : Max
∑
i∈I

(∑
j∈J

(rij − cj)xij − Si

)
Yi,

s. t.

Yi ∈ {0, 1} , ∀ i ∈ I.

The optimal solution to the deterministic full market entry MPSNVP

SNVPFull−D is:

Y∗i = 1 if
∑
j∈J

(rij − vj)xij − Si > 0,

Y∗i = 0 otherwise.

(5.3)

The optimal order quantity Q∗j is given by (5.2).

Suppose that the demand of the products; xij, is uncertain in the market set

Ik ⊆ I, therefore, the demand value is considered as presented in (4.12). Hence,
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model SNVPFull can be rewritten as:

Max
∑
i∈I\Ik

(∑
j∈J

(rij − vj)xij − Si

)
Yi +

∑
i∈Ik

(∑
j∈J

(rij − vj) x̃ij − Si

)
Yi

−
∑
j∈J

(ej − vj) zj −
∑
j∈J

(cj − vj)Qj,

s. t. ∑
i∈I\Ik

xijYi +
∑
i∈Ik

x̃ijYi −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

where xij and x̃ij represent the deterministic and uncertain values of the demand

of product j in market i, respectively.

The above model can be rewritten as:

SNVPFull−U :

Max δ,

s. t.

δ −
∑
i∈I\Ik

(∑
j∈J

(rij − vj)xij − Si

)
Yi −

∑
i∈Ik

(∑
j∈J

(rij − vj) x̃ij − Si

)
Yi

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I\Ik

xijYi +
∑
i∈Ik

x̃ijYi −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,
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Yi ∈ {0, 1} , ∀ i ∈ I.

Next, we present the robust counterpart reformulation of the MPSNVP with full

market entry; SNVPFull−U , under different uncertainty sets.

5.2.1 Robust MPSNVP with Full Market Entry Based on

Box Uncertainty Set

We apply the approach presented in Section 4.3.2 to obtain the robust counterpart

of the uncertain model of the MPSNVP with full market entry, SNVPFull−U ,

based on the box uncertainty set. Note that the uncertain demands are coefficients

of the decision variables Yi, which are binary variables, therefore applying the

robust counterpart approach in Section 4.3.2 yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi + Ψ

∑
i∈Ik

(∑
j∈J

(rij − vj) x̂ij

)
Yi

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I

xijYi + Ψj

∑
i∈Ik

x̂ijYi −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.
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This robust counterpart results in an MILP formulation. This preserves the

tractability of original model with the same number of variables and constraints.

Note that, we can get Soyster’s robust counterpart to the model given in Section

4.3.1 by taking Ψ = 1 and Ψj = 1 in the above model.

The optimal solution to the above model yields,

Q∗j =
∑
i∈I

xijY∗i + Ψj

∑
i∈Ik

x̂ijY∗i , ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(5.4)

Hence, the above model reduces to:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi + Ψ

∑
i∈Ik

(∑
j∈J

(rij − vj) x̂ij

)
Yi

+
∑
j∈J

(cj − vj)

(∑
i∈I

xijYi + Ψj

∑
i∈Ik

x̂ijYi

)
≤ 0,

Yi ∈ {0, 1} , ∀ i ∈ I.

This model can be represented as:

SNVPFull−U −RCB : Max
∑
i∈I

(∑
j∈J

(rij − cj)xij − Si

)
Yi

−Ψ
∑
i∈Ik

(∑
j∈J

(rij − vj) x̂ij

)
Yi

−
∑
i∈Ik

(∑
j∈J

Ψj (cj − vj) x̂ij

)
Yi,
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s.t.

Yi ∈ {0, 1} , ∀ i ∈ I.

The optimal solution to model SNVPFull−U −RCB is as follows:

For all i ∈ I \ Ik :

Y∗i = 1 if
∑
j∈J

(rij − cj)xij − Si > 0,

Y∗i = 0 otherwise,

For all i ∈ Ik :

Y∗i = 1 if
∑
j∈J

(rij − cj)xij −Ψ
∑
j∈J

(rij − vj) x̂ij

−
∑
j∈J

Ψj (cj − vj) x̂ij − Si > 0,

Y∗i = 0 otherwise.

(5.5)

The optimal order quantity Q∗j for each product j is given by (5.4).

5.2.2 Robust MPSNVP with Full Market Entry Based on

Ellipsoidal Uncertainty Set

We apply the approach provided in Section 4.3.3 to obtain the robust counterpart

of the uncertain model of the MPSNVP with full market entry, SNVPFull−U ,
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based on the ellipsoidal uncertainty set, this can be expressed as:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi + Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijY2

i

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I

xijYi + Ωj

√∑
i∈Ik

x̂2
ijY2

i −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

This robust counterpart preserves the same number of variables and constraints,

however it results in an MINLP formulation, which causes computational com-

plexities.

Noting that, the optimal solution to the above model results in,

Q∗j =
∑
i∈I

xijY∗i + Ωj

√∑
i∈Ik

x̂2
ijY∗2i , ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(5.6)

Therefore, the above model becomes:

Max
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi − Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijY2

i
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−
∑
j∈J

(cj − vj)

∑
i∈I

xijYi + Ωj

√∑
i∈Ik

x̂2
ijY2

i

,
s.t.

Yi ∈ {0, 1} , ∀ i ∈ I.

This model is rewritten as:

Max
∑
i∈I\Ik

(∑
j∈J

(rij − cj)xij − Si

)
Yi +

∑
i∈Ik

(∑
j∈J

(rij − cj)xij − Si

)
Yi

− Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijY2

i −
∑
j∈J

Ωj (cj − vj)
√∑

i∈Ik

x̂2
ijY2

i ,

s.t.

Yi ∈ {0, 1} , ∀ i ∈ I.

The last model can be separated into the following two sub-models:

SNVPFull−U −D : Max
∑
i∈I\Ik

(∑
j∈J

(rij − cj)xij − Si

)
Yi,

s.t.

Yi ∈ {0, 1} , ∀ i ∈ I \ Ik.

SNVPFull−U −RCE : Max
∑
i∈Ik

(∑
j∈J

(rij − cj)xij − Si

)
Yi

− Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijY2

i
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−
∑
j∈J

Ωj (cj − vj)
√∑

i∈Ik

x̂2
ijY2

i ,

s.t.

Yi ∈ {0, 1} , ∀ i ∈ Ik.

The optimal solution to sub-model SNVPFull−U −D is as follows:

For all i ∈ I \ Ik :

Y∗i = 1 if
∑
j∈J

(rij − cj)xij − Si > 0,

Y∗i = 0 otherwise.

(5.7)

The optimal solution to sub-model SNVPFull−U − RCE can be determined by

appliyng the same solution procedure that was applied in Section 2.3.4 for solving

the risk-neutral MPSNVP with flexible market entry. The RDU ratio for sub-

model SNVPFull−U −RCE is:

RDUFull−RCE =

∑
j∈J

(rij − cj)xij − Si∑
j∈J

Ω2 (rij − vj)2 x̂2
ij +

∑
j∈J

Ω2
j (cj − vj)2 x̂2

ij

. (5.8)

The optimal order quantity Q∗j for each product j is given by (5.6).

5.2.3 Robust MPSNVP with Full Market Entry Based on

Polyhedral Uncertainty Set

We apply the approach shown in Section 4.3.4 to obtain the robust counterpart of

the uncertain model of the MPSNVP with full market entry, SNVPFull−U , based
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on the polyhedral uncertainty set. Note that the uncertain demands are coeffi-

cients of the decision variables Yi, which are binary variables, therefore applying

the robust counterpart given in Section 4.3.4 yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi + uΓ +

∑
j∈J

(ej − vj) zj

+
∑
j∈J

(cj − vj)Qj ≤ 0,

u ≥ (rij − vj) x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijYi + ujΓj −Qj ≤ zj, ∀ j ∈ J,

uj ≥ x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

u ≥ 0,

uj, Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

This robust counterpart results in MILP. This preserves the tractability of orig-

inal model, however, the number of variables increases as well as the number of

constraints. The number of binary variables remains the same as in the original

formulation in SNVPFull−U .

The size of model SNVPFull−U −RCP can be reduced by noting that; when the

values of Y∗i and u∗j are given, then the optimal solution to model SNVPFull−U −
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RCP results in:

Q∗j =
∑
i∈I

xijY∗i + u∗jΓj, ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(5.9)

Substituting from (5.9) into model SNVPFull−U −RCP :

Max
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi − uΓ−

∑
j∈J

(cj − vj)

(∑
i∈I

xijYi + ujΓj

)
,

s.t.

u ≥ (rij − vj) x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

uj ≥ x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

u,≥ 0,

uj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

The above model can be rewritten as:

SNVPFull−U −RCP : Max
∑
i∈I

(∑
j∈J

(rij − cj)xij − Si

)
Yi − uΓ

−
∑
j∈J

(cj − vj)ujΓj,

s.t.

u ≥ (rij − vj) x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

uj ≥ x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

u ≥ 0,
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uj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.

Model SNVPFull−U −RCP is an MILP problem, it can be solved using commer-

cial solvers such as CPLEX. Then, the results are used to get the optimal order

quantities Qj from (5.9).

5.2.4 Robust MPSNVP with Full Market Entry Based on

Interval-Ellipsoidal Uncertainty Set

We apply the approach provided in Section 4.3.5 to obtain the robust counterpart

of the uncertain model of the MPSNVP with full market entry, SNVPFull−U , this

can be expressed as:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi +

∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijpij

+ Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
iju

2
ij +

∑
j∈J

(ej − vj) zj

+
∑
j∈J

(cj − vj)Qj ≤ 0,

− pij ≤ Yi − uij ≤ pij, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijYi +
∑
i∈Ik

x̂ijtij + Ωj

√∑
i∈Ik

x̂2
ijw

2
ij −Qj ≤ zj, ∀ j ∈ J,
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− tij ≤ Yi − wij ≤ tij, ∀ j ∈ J, ∀ i ∈ Ik,

uij, wij, pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I,

where, pij and tij are auxiliary variables, while uij and wij are positive dual

variables.

This robust counterpart results in an MINLP formulation with number of variables

and constraints greater than that in the original formulation SNVPFull−U .

The size of the above model can be reduced by performing preprocessing of some

variables. In addition, the tractability of this model can be retrieved by linearizing

the nonlinear terms.

Given the optimal values of Y∗i , t∗ij and w∗ij, the optimal solution to the above

model will result in:

Q∗j =
∑
i∈I

xijY∗i +
∑
i∈Ik

x̂ijt
∗
ij + Ωj

√∑
i∈Ik

x̂2
ijw
∗2
ij , ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(5.10)

We can also substitute for the nonlinear terms as follows:

∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
iju

2
ij ≤ q2,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j , ∀ j ∈ J.
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This leads to a reformulation of the above model as an CQMIP problem, which

can be solved efficiently and in reasonable computational time using commercial

solvers such as CPLEX.

Now, the above model can be represented in the following CQMIP formulation:

SNVPFull−U −RCI−E : Max
∑
i∈I

(∑
j∈J

(rij − cj)xij − Si

)
Yi

−
∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijpij − Ωq

−
∑
j∈J

(cj − vj)

(∑
i∈Ik

x̂ijtij + Ωjhj

)
,

s.t.

− pij ≤ Yi − uij ≤ pij, ∀ j ∈ J, ∀ i ∈ Ik,

− tij ≤ Yi − wij ≤ tij, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
iju

2
ij ≤ q2,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j , ∀ j ∈ J,

uij, wij, pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

q ≥ 0,

hj ≥ 0, ∀ j ∈ J,

Yi ∈ {0, 1} , ∀ i ∈ I.
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5.2.5 Robust MPSNVP with Full Market Entry Based on

Interval-Polyhedral Uncertainty Set

We apply the approach presented in Section 4.3.6 to obtain the robust counterpart

of the uncertain model of the MPSNVP with full market entry, SNVPFull−U .

Note that the uncertain demands are coefficients of the decision variables Yi,

which are binary variables, therefore, applying the robust counterpart approach

given Section 4.3.6 yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

(rij − vj)xij − Si

)
Yi +

∑
i∈Ik

∑
j∈J

pij + uΓ +
∑
j∈J

(ej − vj) zj

+
∑
j∈J

(cj − vj)Qj ≤ 0,

u+ pij ≥ (rij − vj) x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijYi +
∑
i∈Ik

tij + ujΓj −Qj ≤ zj, ∀ j ∈ J,

uj + tij ≥ x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

u ≥ 0,

uj, Qj, zj ≥ 0, ∀ j ∈ J,

pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ∈ {0, 1} , ∀ i ∈ I.
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This robust counterpart results in MILP. This preserves the tractability of original

model, however, the number of variables increases as well as the number of con-

straints. The number of binary variables remains the same as that in the original

formulation SNVPFull−U .

We can reduce the size of the last model by noting that the optimal values of Qj

and zj are given as follows:

Q∗j =
∑
i∈I

xijY∗i +
∑
i∈Ik

t∗ij + u∗jΓj, ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(5.11)

Substituting for Q∗j and z∗j in the above model yields the following:

SNVPFull−U −RCI−P : Max
∑
i∈I

(∑
j∈J

(rij − cj)xij − Si

)
Yi −

∑
i∈Ik

∑
j∈J

pij

− uΓ−
∑
i∈Ik

∑
j∈J

(cj − vj) tij −
∑
j∈J

(cj − vj)ujΓj,

s.t.

u+ pij ≥ (rij − vj) x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

uj + tij ≥ x̂ijYi, ∀ j ∈ J, ∀ i ∈ Ik,

u ≥ 0,

uj ≥ 0, ∀ j ∈ J,

pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ∈ {0, 1} , ∀ i ∈ I.
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The reduced model SNVPFull−U −RCI−P is an MILP problem, it can be solved

using commercial solvers such as CPLEX. Then, the results are used to get the

optimal order quantities Q∗j from (5.11).

5.3 Computational Results

In this section, we implement the robust counterpart reformulations from previous

sections on a numerical examples of full market entry MPSNVP subjected to

demand uncertainty.

We consider an MPSNVP with three, five and ten products. In addition, we

consider three market pool sizes: 10, 100 and 1000. The details of the input data

are given in Tables 4.1 and 4.2.

In the following examples, we assume that 50% of the markets have uncertain

demand data. We set the values of Ω and Ωj at the same level, they are equal to

Ψ
√
|Ik|, where |Ik| is the cardinality of the set of markets with uncertain demand.

In addition, we take the values of Γ and Γj at the same level, they are equal to

Ψ|Ik|.

For the full market entry MPSNVP with 3 products, we consider the input data

for the first three products in Tables 4.1 and 4.2, i.e. products 1, 2 and 3. The

demand of these products is assumed to be 20%, 30% and 10% perturbed around

their nominal values, respectively. The value of the market entry cost is considered

to be uniformly distributed on U(15,000, 20,000).

For the full market entry MPSNVP with 5 products, we consider the input data
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for the first five products in Tables 4.1 and 4.2, i.e. products 1, 2, 3, 4 and 5.

The demand of these products is assumed to be 20%, 30%, 10%, 10% and 25%

perturbed around their nominal values, respectively. The value of the market

entry cost is considered to be uniformly distributed on U(60,000, 120,000).

For the full market entry MPSNVP with 10 products, we consider the input data

in Tables 4.1 and 4.2. The demand of products 1 to 10 is assumed to be 20%,

30%, 10%, 10%, 25%, 10%, 20%, 20%, 10% and 25%, perturbed around their

nominal values, respectively. The value of the market entry cost is considered to

be uniformly distributed on U(150,000, 200,000).

Figures 5.1, 5.2 and 5.3 show the optimization results of the full market entry

MPSNVP with 3 products for 10, 100 and 1000 markets pool sizes respectively.

Figures 5.4, 5.5 and 5.6 show the optimization results of the full market entry

MPSNVP with 5 products for 10, 100 and 1000 markets pool sizes respectively.

Figures 5.7, 5.8 and 5.9 show the optimization results of the full market entry

MPSNVP with 10 products for 10, 100 and 1000 markets pool sizes respectively.

For these figures, we notice a similar behavior to that behavior in Figures 4.3, 4.4

and 4.5. Therefore, the same discussion presented in Section 4.5 is applicable to

the results in this section.
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Figure 5.1: A 3-product robust MPSNVP with full market entry for market pool
size 10.
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Figure 5.2: A 3-product robust MPSNVP with full market entry for market pool
size 100.

140



0 0.5 1 1.5
6

7

8

9

10

11

12

13
x 10

6

Ψ

O
bj

ec
tiv

e

 

 

Box (Ψ)
Ellipsoidal (Ω = Ψ*√|I

k
|)

Polyhedral (Γ = Ψ*|I
k
|)

Interval−Ellipsoidal (Ω = Ψ*√|I
k
|)

Interval−Polyhedral (Γ = Ψ*|I
k
|)

Figure 5.3: A 3-product robust MPSNVP with full market entry for market pool
size 1000.
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Figure 5.4: A 5-product robust MPSNVP with full market entry for market pool
size 10.
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Figure 5.5: A 5-product robust MPSNVP with full market entry for market pool
size 100.
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Figure 5.6: A 5-product robust MPSNVP with full market entry for market pool
size 1000.
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Figure 5.7: A 10-product robust MPSNVP with full market entry for market pool
size 10.
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Figure 5.8: A 10-product robust MPSNVP with full market entry for market pool
size 100.
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Figure 5.9: A 10-product robust MPSNVP with full market entry for market pool
size 1000.
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CHAPTER 6

ROBUST MULTI-PRODUCT

SELECTIVE NEWSVENDOR

WITH PARTIAL MARKET

ENTRY

6.1 Introduction

In this chapter, we consider the MPSNVP with partial market entry when mar-

ket demands are uncertain. We develop robust counterpart reformulations under

different uncertainty sets. Numerical examples are presented and results are dis-

cussed.
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6.2 Robust Multi-Product Selective Newsven-

dor Problem with Partial Market Entry

The profit function for the partial market entry case of the multi-product selective

newsvendor problem is given by (2.23); equivalently, it can be expressed as:

Max
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − si

)
Yi

−
∑
j∈J

(ej − vj)

(∑
i∈I

xijyij −Qj

)+

−
∑
j∈J

(cj − vj)Qj,

s. t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

Since Yi and yij are binary variables and Yi ≥ yij, then Yiyij = yij, and hence,

the above model can be written as:

SNVPPart : Max
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)

−
∑
j∈J

(ej − vj)

(∑
i∈I

xijyij −Qj

)+

−
∑
j∈J

(cj − vj)Qj,

s. t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.
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The profit for the deterministic partial market entry case of the multi-product

selective newsvendor problem is given by the above model. In that model, we can

replace
(∑

i∈I xijyij −Qj

)+
by zj and add the constraints

∑
i∈I xijyij − Qj ≤ zj

and zj ≥ 0. Thus, the optimization model becomes:

SNVPPart−D : Max
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
−
∑
j∈J

(ej − vj) zj

−
∑
j∈J

(cj − vj)Qj,

s. t.∑
i∈I

xijyij −Qj ≤ zj, ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

Suppose that the demand of the products; xij, is uncertain in the market set Ik ⊆

I, therefore, the demand value is considered as shown in (4.12). Subsequently,

the above model can be rewritten as:

Max
∑
i∈I\Ik

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)

+
∑
i∈Ik

(∑
j∈J

((rij − vj) x̃ij − sij) yij − siYi

)

−
∑
j∈J

(ej − vj) zj −
∑
j∈J

(cj − vj)Qj,

s. t.

147



∑
i∈I\Ik

xijyij +
∑
i∈Ik

x̃ijyij −Qj ≤ zj, ∀ j ∈ J

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I

Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I,

where xij and x̃ij represent the deterministic and uncertain values of the demand

of product j in market i, respectively.

The above model can be rewritten as:

SNVPPart−U : Max δ,

s. t.

δ −
∑
i∈I\Ik

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)

−
∑
i∈Ik

(∑
j∈J

((rij − vj) x̃ij − sij) yij − siYi

)

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I\Ik

xijyij +
∑
i∈Ik

x̃ijyij −Qj ≤ zj, ∀ j ∈ J,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I.

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.
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Next, we present the robust counterpart reformulation of the uncertain model of

the MPSNVP with partial market entry; SNVPPart−U , under different uncer-

tainty sets.

6.2.1 Robust MPSNVP with Partial Market Entry Based

on Box Uncertainty Set

We apply the approach provided in Section 4.3.2 to obtain the robust counterpart

of the uncertain model of the MPSNVP with partial market entry, SNVPPart−U ,

based on the box uncertainty set. Note that the uncertain demands are coefficients

of the decision variables yij, which are binary variables, therefore applying the

robust counterpart discussed in Section 4.3.2 yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
+ Ψ

∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijyij

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I

xijyij + Ψj

∑
i∈Ik

x̂ijyij −Qj ≤ zj, ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

149



This robust counterpart results in an MILP formulation. This reformulation pre-

serves the tractability of original model with the same number of variables and

constraints. Notice that, we can get Soyster’s robust counterpart to the above

model gby taking Ψ = 1 and Ψj = 1.

The optimal solution to the above modelresults in:

Q∗j =
∑
i∈I

xijy
∗
ij + Ψj

∑
i∈Ik

x̂ijy
∗
ij, ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(6.1)

Hence, the above model reduces to:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
+ Ψ

∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijyij

+
∑
j∈J

(cj − vj)

(∑
i∈I

xijyij + Ψj

∑
i∈Ik

x̂ijyij

)
≤ 0,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

The last model can be rewritten as:

SNVPPart−U −RCB : Max
∑
i∈I

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)
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−Ψ
∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijyij −
∑
i∈Ik

∑
j∈J

Ψj (cj − vj) x̂ijyij,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

The optimal solution to model SNVPPart−U −RCB is as follows:

For all i ∈ I \ Ik :

y∗ij = 1 if (rij − cj)xij − sij > 0 and Y∗i = 1,

y∗ij = 0 otherwise,

Y∗i = 1 if
∑
j∈J

((rij − cj)xij − sij) y
∗
ij − si > 0,

Y∗i = 0 otherwise,

For all i ∈ Ik :

y∗ij = 1 if (rij − cj)xij −Ψ (rij − vj) x̂ij −Ψj (cj − vj) x̂ij − sij > 0 and Y∗i = 1,

y∗ij = 0 otherwise,

Y∗i = 1 if
∑
j∈J

((rij − cj)xij − sij) y
∗
ij −Ψ

∑
j∈J

(rij − vj) x̂ijy∗ij

−
∑
j∈J

Ψj (cj − vj) x̂ijy∗ij − si > 0,

Y∗i = 0 otherwise.
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y∗ij given above are considered as candidate selected markets when the first part

of the condition is satisfied, then we check for Y∗i with those candidate selected

markets; i.e. y∗ij = 1. If the condition of Y∗i = 1 is satisfied, then y∗ij candidates

become actual selected markets. In addition, the optimal order quantity Q∗j for

each product j is given by (6.1).

6.2.2 Robust MPSNVP with Partial Market Entry Based

on Ellipsoidal Uncertainty Set

We apply the approach provided in Section 4.3.3 to obtain the robust counterpart

of the uncertain model of the MPSNVP with partial market entry, SNVPPart−U ,

this can be expressed as:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
+ Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijy

2
ij

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

∑
i∈I

xijyij + Ωj

√∑
i∈Ik

x̂2
ijy

2
ij −Qj ≤ zj, ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.
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This robust counterpart preserves the same number of variables and constraints,

however it results in an MINLP formulation, which causes computational com-

plexities.

The optimal solution to the above model yields,

Q∗j =
∑
i∈I

xijy
∗
ij + Ωj

√∑
i∈Ik

x̂2
ijy
∗2
ij , ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(6.2)

Hence, the above model becomes:

Max
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
− Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijy

2
ij

−
∑
j∈J

(cj − vj)

∑
i∈I

xijyij + Ωj

√∑
i∈Ik

x̂2
ijy

2
ij

 ,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

This model can be rewritten as:

Max
∑
i∈I\Ik

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)

+
∑
i∈Ik

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)

− Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijy

2
ij −

∑
j∈J

(cj − vj) Ωj

√∑
i∈Ik

x̂2
ijy

2
ij,
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s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

The last model can be separated into the following two sub-models:

SNVPPart−U −D : Max
∑
i∈I\Ik

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)
,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I \ Ik,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I \ Ik.

SNVPPart−U −RCE : Max
∑
i∈Ik

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)

− Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
ijy

2
ij

−
∑
j∈J

(cj − vj) Ωj

√∑
i∈Ik

x̂2
ijy

2
ij,

s.t.

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ Ik.
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The optimal solution to sub-model SNVPPart−U −D is as follows:

For all i ∈ I \ Ik :

y∗ij = 1 if (rij − cj)xij − sij > 0 and Y∗i = 1,

y∗ij = 0 otherwise,

Y∗i = 1 if
∑
j∈J

((rij − cj)xij − sij) y
∗
ij − si > 0,

Y∗i = 0 otherwise

(6.3)

The optimal solution to sub-model SNVPPart−U − RCE can be determined by

applying the same solution procedures that was applied in Section 2.3.6 for solving

the risk-neutral MPSNVP with flexible market entry. For applying Heuristic II,

The RDU ratio for sub-model SNVPPart−U −RCE is:

RDUPart−RCE =

∑
j∈J

[(rij − cj)xij − sij] y
∗
ij − si∑

j∈J
Ω2 (rij − vj)2 x̂2

ij +
∑
j∈J

Ω2
j (cj − vj)2 x̂2

ij

. (6.4)

The optimal order quantity for each product j is given be (6.2).

6.2.3 Robust MPSNVP with Partial Market Entry Based

on Polyhedral Uncertainty Set

We apply the approach presented in Section 4.3.4 to obtain the robust counterpart

of the uncertain model of the MPSNVP with partial market entry, SNVPPart−U ,

based on the polyhedral uncertainty set. Note that the uncertain demands are

coefficients of the decision variables yij, which are binary variables, therefore ap-

155



plying the robust counterpart approach yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)

+ uΓ +
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

u ≥ (rij − vj) x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijyij + ujΓj −Qj ≤ zj, ∀ j ∈ J,

uj ≥ x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

u ≥ 0,

uj, Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

This robust counterpart results in MILP. This preserves the tractability of orig-

inal model, however, the number of variables increases as well as the number of

constraints. The number of binary variables remains the same as in the original

formulation SNVPPart−U .

We can reduce the size of the last model by noting that, when the values of y∗ij
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and u∗j are given, then the optimal solution to the above model results in:

Q∗j =
∑
i∈I

xijy
∗
ij + u∗jΓj, ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(6.5)

By substitution from (6.5) into the above model:

Max
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
− uΓ

−
∑
j∈J

(cj − vj)

(∑
i∈I

xijyij + ujΓj

)
,

s.t.

u ≥ (rij − vj) x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

uj ≥ x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

u ≥ 0,

uj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

This model is expressed as:

SNVPPart−U −RCP : Max
∑
i∈I

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)
− uΓ

−
∑
j∈J

(cj − vj)ujΓj,
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s.t.

u ≥ (rij − vj) x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

uj ≥ x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

u ≥ 0,

uj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

Model SNVPPart−U −RCP is an MILP problem, it can be solved using commer-

cial solvers such as CPLEX. Then, the results are used to get the optimal order

quantities Qj from (6.5).

6.2.4 Robust MPSNVP with Partial Market Entry Based

on Interval-Ellipsoidal Uncertainty Set

We apply the approach presented in Section 4.3.5 to obtain the robust counterpart

of the uncertain model of the MPSNVP with partial market entry, SNVPPart−U ,

this can be expressed as:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
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+
∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijpij + Ω

√∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
iju

2
ij

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

− pij ≤ yij − uij ≤ pij, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijyij +
∑
i∈Ik

x̂ijtij + Ωj

√∑
i∈Ik

x̂2
ijw

2
ij −Qj ≤ zj, ∀ j ∈ J,

− tij ≤ yij − wij ≤ tij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

uij, wij, pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Qj, zj ≥ 0, ∀ j ∈ J,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I,

where, pij and tij are auxiliary variables, while uij and wij are positive dual

variables.

This robust counterpart results in an MINLP formulation with number of variables

and constraints greater than that in the original formulation SNVPPart−U .

We can reduce the size of the above model by performing preprocessing of some

variables, as it discusses below. In addition, we can retrieved the tractability of

the above model by linearizing the nonlinear terms.

Given the optimal values of y∗ij, t
∗
ij and w∗ij, the optimal solution to the above
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model will results in:

Q∗j =
∑
i∈I

xijy
∗
ij +

∑
i∈Ik

x̂ijt
∗
ij + Ωj

√∑
i∈Ik

x̂2
ijw
∗2
ij , ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(6.6)

In addition, we can substitute for the nonlinear terms as follows:

∑
i∈Ik

∑
j∈J

(rij − vj)2 x̂2
iju

2
ij ≤ q2,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j , ∀ j ∈ J.

This leads to a reformulation of the above model as an CQMIP problem, which

can be solved efficiently and in reasonable computational time using commercial

solvers such as CPLEX.

We express the above model in the following CQMIP formulation:

SNVPPart−U −RCI−E : Max
∑
i∈I

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)

−
∑
i∈Ik

∑
j∈J

(rij − vj) x̂ijpij − Ωq

−
∑
j∈J

(cj − vj)

(∑
i∈Ik

x̂ijtij + Ωjhj

)
,

s.t.

− pij ≤ yij − uij ≤ pij, ∀ j ∈ J, ∀ i ∈ Ik,

− tij ≤ yij − wij ≤ tij, ∀ j ∈ J, ∀ i ∈ Ik,
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∑
i∈Ik

(rij − vj)2 x̂2
iju

2
ij ≤ q2,

∑
i∈Ik

x̂2
ijw

2
ij ≤ h2

j , ∀ j ∈ J,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

uij, wij, pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

hj,≥ 0, ∀ j ∈ J,

q ≥ 0,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

6.2.5 Robust MPSNVP with Partial Market Entry Based

on Interval-Polyhedral Uncertainty Set

We apply the approach provided in Section 4.3.6 to obtain the robust counterpart

of the uncertain model of the MPSNVP with partial market entry, SNVPPart−U .

Note that the uncertain demands are coefficients of the decision variables yij,

which are binary variables, therefore applying the robust counterpart presented

in Section 4.3.6 yields:

Max δ,

s.t.

δ −
∑
i∈I

(∑
j∈J

((rij − vj)xij − sij) yij − siYi

)
+
∑
i∈Ik

∑
j∈J

pij + uΓ

+
∑
j∈J

(ej − vj) zj +
∑
j∈J

(cj − vj)Qj ≤ 0,

161



u+ pij ≥ (rij − vj) x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,∑
i∈I

xijyij +
∑
i∈Ik

tij + ujΓj −Qj ≤ zj, ∀ j ∈ J,

uj + tij ≥ x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

u ≥ 0,

uj, Qj, zj ≥ 0, ∀ j ∈ J,

pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

This robust counterpart results in MILP. This preserves the tractability of original

model, however, the number of variables increases as well as the number of con-

straints. The number of binary variables remains the same as that in the original

formulation SNVPPart−U .

The size of the above model can be reduced by noticing that the optimal values

of Qj and zj are given as follows:

Q∗j =
∑
i∈I

xijy
∗
ij +

∑
i∈Ik

t∗ij + u∗jΓj, ∀ j ∈ J,

z∗j = 0, ∀ j ∈ J.

(6.7)

By substituting for Q∗j and z∗j from (6.7) into the above model, we get:

SNVPPart−U −RCI−P : Max
∑
i∈I

(∑
j∈J

((rij − cj)xij − sij) yij − siYi

)
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−
∑
i∈Ik

∑
j∈J

pij − uΓ−
∑
i∈Ik

∑
j∈J

(cj − vj) tij

−
∑
j∈J

(cj − vj)ujΓj,

s.t.

u+ pij ≥ (rij − vj) x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

uj + tij ≥ x̂ijyij, ∀ j ∈ J, ∀ i ∈ Ik,

Yi ≥ yij, ∀ j ∈ J, ∀ i ∈ I,

u ≥ 0,

uj ≥ 0, ∀ j ∈ J,

pij, tij ≥ 0, ∀ j ∈ J, ∀ i ∈ Ik,

Yi, yij ∈ {0, 1} , ∀ j ∈ J, ∀ i ∈ I.

Model SNVPPart−U − RCI−P is an MILP problem, it can be solved using com-

mercial solvers such as CPLEX. Then, the results are used to get the optimal

order quantities Q∗j from (6.7).

6.3 Computational Results

In this section, we implement the robust counterpart reformulations from previous

sections on a numerical examples of partial market entry MPSNVP subjected to

demand uncertainty.

We consider the same input data of the MPSNVP discussed in Section 5.3 with
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the following exceptions:

� For the partial market entry MPSNVP with 3 products, the value of the

market entry cost is considered to be uniformly distributed on U(5,000,

10,000).

� For the partial market entry MPSNVP with 5 products, the value of the

market entry cost is considered to be uniformly distributed on U(10,000,

20,000).

� For the partial market entry MPSNVP with 10 products, the value of the

market entry cost is considered to be uniformly distributed on U(20,000,

30,000).

Figures 6.1, 6.2 and 6.3 show the optimization results of the partial market entry

MPSNVP with 3 products for 10, 100 and 1000 markets pool sizes respectively.

Figures 6.4, 6.5 and 6.6 show the optimization results of the partial market entry

MPSNVP with 5 products for 10, 100 and 1000 markets pool sizes respectively.

Figures 6.7, 6.8 and 6.9 show the optimization results of the partial market entry

MPSNVP with 10 products for 10, 100 and 1000 markets pool sizes respectively.

For these figures, we notice a similar behavior to that behavior in Figures 4.3, 4.4

and 4.5. Therefore, the same discussion presented in Section 4.5 is applicable to

the results in this section.
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Figure 6.1: A 3 products MPSNVP with partial market entry for market pool size
10.
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Figure 6.2: A 3 products MPSNVP with partial market entry for market pool size
100.
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Figure 6.3: A 3 products MPSNVP with partial market entry for market pool size
1000.
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Figure 6.4: A 5 products MPSNVP with partial market entry for market pool size
10.
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Figure 6.5: A 5 products MPSNVP with partial market entry for market pool size
100.
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Figure 6.6: A 5 products MPSNVP with partial market entry for market pool size
1000.
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Figure 6.7: A 10 products MPSNVP with partial market entry for market pool
size 10.
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Figure 6.8: A 10 products MPSNVP with partial market entry for market pool
size 100.
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Figure 6.9: A 10 products MPSNVP with partial market entry for market pool
size 1000.
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CHAPTER 7

CONCLUSION

One of the very practical problems in supply chain planning is when the deci-

sion maker has freehand to select demands to satisfy, especially when resources

are limited. In this dissertation, we studied the so-called Multi-Product Selective

Newsvendor Problem (MPSNVP). The MPSNVP is multi-product multi-market

newsvendor problem where the decision maker could select some markets to serve.

A single study have been conducted in the literature to consider the MPSNVP.

That study discussed the risk-neutral version of the problem and suggested a solu-

tion procedure that is exponential in the number of products. In this dissertation,

we studied challenging general cases of the MPSNVP under risk-neutral as well

as risk-averse preferences. In addition, we analyzed the MPSNVP with limited

demand information.

For the MPSNVP with risk-neutral preferences, we discussed the flexible market

entry, the full market entry and the partial market entry cases. The latter case is

introduced by us to generalize the former two cases. For each case, we incorporate
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service level constraints. Then, we utilized the special structure of the developed

models to provide polynomial optimal solution algorithms that obtain optimal

markets to select and optimal order quantity to procure.

Conditional Value-at-Risk (CVaR) is a common coherent risk measure that has

wide applications in finance industry, energy applications and supply chain plan-

ning. We examined the risk-averse preferences of the MPSNVP under CVaR risk

criterion. We provided polynomial optimal solution algorithms that outperforms

the stat-of-the-art commercial solvers in terms of the solution quality and com-

putational time. In addition, we studied the effect of the risk-aversion degree on

the objective value and gave some managerial insights.

The availability and quality of the demand information is always questionable. To

overcome these limitations, we examined different cases of the MPSNVP under

limited demand information. We analyzed mathematical models development of

the robust counterparts under box, ellipsoidal, polyhedral uncertainty sets and

combinations of these sets. We were able to propose solution algorithms to the

developed robust counterparts. In addition, we were able to interpret the compu-

tational results and give some insights.

There are many direction for extending the work presented in this dissertation.

One limitation of the presented work in Chapter 2 and Chapter 3 is the assump-

tion that the market demands are independent normally distributed. It will be

very interesting to relax this assumption, this will lead to different mathematical

models and consequently, will require different solution approaches.
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Another potential direction of extension for the risk-averse cases is to study the

incorporation of other new risk measures such as the spectral risk measure.

It would also be very interesting to study the constrained versions of the MP-

SNVP.
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