




©Mahmoud M. M. Alhelou
2016

i



Dedications

To the soul of my father,

and my beloved mother.

ii



ACKNOWLEDGMENTS

First of all, my deepest and sincere gratitude to almighty Allah for his infinite

and persistent help and blessings. I would like to express my gratefulness to my late

father who has always inspired me to become the man who I am. I wish to thank

my beloved mother for her unconditional love and all of my brothers and sisters for

standing always beside me.

Many thanks to my adviser and academic godfather Dr. Mohamed Deriche for his

appreciated support and valuable guidance that helped me finish this work. My profound

gratitude goes to my thesis committee members Dr. Lahouari Gouti and Dr. Mohamed

Mohandes for providing me with their valuable comments.

My genuine thanks to King Faisal Specialist Hospital & Research Centre staff specially

Dr. Nuha Khumais for her worthy consultancy that helped me in understanding the

problem of breast cancer detection from the perspective of medical professionals. I

would like to thank Dr. Ahmed Shamia and Dr. Ahmed Alashqar for their precious

feedback and meetings that helped me in developing my knowledge and insight of the

breast cancer detection challenges.

Finally, I acknowledge my colleges and wonderful friends Mr. Mohammad Qureshi

and Mr. Asjad Amin for supporting and encouraging me through out all of this work.

iii



TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS ix

ABSTRACT (ENGLISH) xii

CHAPTER 1 INTRODUCTION 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 CAD approaches for breast density classification . . . . . . . . . . . . . 8

2.2 CAD approaches for cancer detection . . . . . . . . . . . . . . . . . . . 13

2.3 Texture analysis techniques . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Local Binary Patterns (LBP) texture features . . . . . . . . . . 22

2.3.2 Gray Level Co-occurrence Matrix (GLCM) features . . . . . . . 24

2.3.3 Gray Level Run Length Matrix (GLRL) features . . . . . . . . . 30

2.3.4 Wavelet based texture analysis . . . . . . . . . . . . . . . . . . . 33

2.3.5 Gabor texture analysis . . . . . . . . . . . . . . . . . . . . . . . 36

iv



2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 3 RESEARCH METHODOLOGY 38

3.1 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.4 Pattern Classification . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Image Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 4 RESULTS AND DISCUSSION 54

4.1 Density Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Cancer detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 The proposed two stage classifier . . . . . . . . . . . . . . . . . . . . . 62

CHAPTER 5 CONCLUSION AND FUTURE WORK 65

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES 67

VITAE 80

v



LIST OF TABLES

2.1 BIRADS Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Brief summary of work on the DDSM database . . . . . . . . . . . . . 9

2.3 Brief summary of work on the MIAS database . . . . . . . . . . . . . . 10

2.4 Summary of popular feature extraction and classification methods . . . 14

2.5 Basic notation used in GLCM computations . . . . . . . . . . . . . . . 26

4.1 Density classification using all features . . . . . . . . . . . . . . . . . . 56

4.2 Density classification using feature selection . . . . . . . . . . . . . . . 57

4.3 The top 20 features for 4 BIRADS classes . . . . . . . . . . . . . . . . 57

4.4 The top 20 features for low and high densities . . . . . . . . . . . . . . 58

4.5 Comparison for density classification with four BIRADS classes . . . . 58

4.6 Comparison for density classification with low and high densities classes 59

4.7 Classification rate for cancer detection for all images (BIRADS

I,II,III,IV) (without density information , all features) . . . . . . . . . . 60

4.8 Classification rate for Cancer detection based on Low and High densities

for setup 1 (Normal ,benign and malignant)(known densities, selected

features). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Classification rate for Cancer detection based on Low and High densities

for setup 2 (Cancer/No cancer)(known densities,selected features). . . . 61

4.10 The optimal features for cancer classification using High and Low den-

sity classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Summery of 2-stage classifier . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



LIST OF FIGURES

1.1 A typical Mammography Device [1] . . . . . . . . . . . . . . . . . . . . 3

1.2 An example of showing the two views(MLO and CC) with different

regions of intrest [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overall CAD systems used in mammogram analysis . . . . . . . . . . . 7

2.2 Examples of BIRADS examples . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A full view of the approach proposed by [3]. . . . . . . . . . . . . . . . 12

2.4 Overall structure of CAD cancer detection systems . . . . . . . . . . . 15

2.5 An example of GLCM constructed for a small patch from a mammo-

gram image [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 The central pixel gc and its P circularly symmetric neighbors at radius R 17

2.7 Multiscale texture modeling [5] : (a) image marked by a radiologist,

(b)Detect abnormal ROIs, (c) Classify ROIs into AD/non-AD, and (d)

Detected correct ROI based on (c). . . . . . . . . . . . . . . . . . . . . 20

2.8 LBP for Circular neighborhood [6] . . . . . . . . . . . . . . . . . . . . . 22

2.9 An example of finding LBP with R=1,P=8 and gray level value gc =70 24

2.10 An example of calculating GLCM for 0◦ . . . . . . . . . . . . . . . . . 25

2.11 The structure of a 2D Wavelet decomposition with 1 Level [7] . . . . . 34

2.12 The structure of a 2D Wavelet decomposition with 2 Levels [8] . . . . . 35

2.13 An example for 2D Wavelets decomposition with 2 Levels . . . . . . . . 35

2.14 An example of Gabor filter masks over five scales and eight orientations 37

3.1 Full view of the proposed CAD system . . . . . . . . . . . . . . . . . . 39

3.2 Preprocessing steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



3.3 An example of applying a sequance of preprocessing steps [9] . . . . . . 40

3.4 An example of applying a sequance of preprocessing steps: (a) the

original image, (b) after applying label removal, and (c) after applying

pectoral removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Density classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Cancer classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 MIAS examples images . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 IRMA example images . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 Preprocessing example . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 IRMA example images . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Experiments developed for our proposed algorithm . . . . . . . . . . . 63

viii



LIST OF ABBREVIATIONS

Abbreviation Description

ASR Age-Standardized Rate

ACR American College of Radiology

MLO Mediolateral Oblique View

CC Craniocandal View

CAD Computer-Aided Diagnosis

ROI Region Of Interest

BIRADS Breast Imaging-Reporting and Data System

MIAS The Mammographic Image Analysis Society

DDSM The Digital Database for Screening Mammography

MR8 Maximum Response 8

GLCM Gray Level Co-occurrence matrix

kNN K-Nearest Neighbors classifier

SIFT Scale Invariant Feature Transforms

LVQ Learning Vector Quantization

SVM Support Vector Machine

LBP Local Binary Patterns

LGA Local Greylevel Appearances

BIF Basic Image Features

PCA Principal Component Analysis

LDA Linear Discriminant Analysis

ix



NMF Non-negative Matrix Factorization

GLRL Gray Level Run Length Matrix

GLLD Gray Level and Local Difference

ANN Artificial Neural Networks

FS Forward Selection

BS Backward Selection

GMM Gaussian Mixture Model

GT Ground Truth

ROC Receiver Operating Characteristic

AUC The Area Under the (ROC) Curve

SRE Short Run Emphasis

LRE Long Run Emphasis

GLN Gray-Level Non-uniformity

RLN Run Length Non-uniformity

RP Run Percentage

LGRE Low Gray-Level Run Emphasis

HGRE High Gray-Level Run Emphasis

SRLGE Short Run Low Gray-Level Emphasis

SRHGE Short Run High Gray-Level Emphasis

LRLGE Long Run Low Gray-Level Emphasis

LRHGE Long Run High Gray-Level Emphasis

IRMA Image Retrieval in Medical Applications

x



IG Information Gain

SMO Sequential Minimal Optimization

LLNL Lawrence Livermore National Laboratories

CR Classification Rate

xi



THESIS ABSTRACT

NAME: Mahmoud M. M. Alhelou

TITLE OF STUDY: Robust tumor detection in mammogram images using an

optimal set of texture features

MAJOR FIELD: Electrical Engineering Department

DATE OF DEGREE: June 22, 2016

Breast cancer is one of the most common types of cancer, as well as the leading cause

of mortality among women. Recent statistics showed that around 25% of cancer cases

among women are of breast type. Mammography is currently the most effective imag-

ing modality for the detection of breast cancer and diagnosis of abnormalities which

can identify cancerous cells. The problem of early detection of cancer from mammo-

graphic images is still a major challenge and performance is still not acceptable by

medical professionals. Here, we propose to develop a new image processing approach

for early detection of cancer from mammogram images using robust texture features

combined with a statistical classifier. The aim is to start with a pool of features then

use a feature selection technique to extract the most relevant features for the detection

of cancerous image patches. A new two stage classifier is developed which combines
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density classification with cancer classification. The first stage of the proposed al-

gorithm achieved a density classification of 93.56% from two BIRADs. Cancer/no

cancer classification is carried during the second stage. The hybrid two stage classifier

achieved an overall classification rate of 80%. The results were validated on both the

MIAS and IRMA databases. We also show that the reduced size optimal set of features

using small patches achieves excellent results in both density classification and can-

cer detection. A comparison to state-of-the-art has been carried and showed that our

approach provides an improvement both in terms of density classification and cancer

detection accuracy.
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 ملخص الرسالة

 
 

 محمود مروان محمود الحلو     :الاسم الكامل
 

باستخدام أفضل الخصائص ’ mammogram’الإكتشاف الأمثل لسرطان الثدي من صور   :عنوان الرسالة
 من الصورالمستخرجة  

 
 الهندسة الكهربائية  التخصص:

 
 2016 -يونيو  -20   :تاريخ الدرجة العلمية

 
 

يعتبر سرطان الثدي من أكثر أنواع السرطان انتشارا عند النساء وهو أحد أهم أسباب الوفاة للمصابات بهذا المرض. 

من المرضى المصابات بالسرطان مصابات بسرطان الثدي، ويعتبر التصوير  %25أظهرت النتائج مؤخرا أن حوالي 

بكر لسرطان الثدي في الوقت الحالي كما من أهم وأنجع الطرق للاكتشاف الم Mammogramباستخدام صور 

تستخدم لاكتشاف أي كتلة غير طبيعية موجودة في ثدي المرأة سواء كانت هذه الكتل عبارة عن خلايا سرطانية أو 

غيرها. في الوقت الحاضر تعتبر عملية الاكتشاف المبكر لسرطان الثدي عند النساء من أكثر وأصعب الاشكاليات 

ن حيث أنهم لم يتوصلوا إلى الدقة المقبولة للمختصين في المجال الطبي. في هذه الرسالة قمنا بتطوير التي تواجه الباحثي

خوارزمية جديدة باستخدام معالجة الصور الرقمية واستخراج خصائص مميزة لكل صورة واستخدام أدوات التصنيف 

الخصائص من الصور المستخدمة واختيار  الاحصائية للحصول على نتائج جيدة. الهدف من هذه الخوارزمية استخراج

أفضل الخصائص التي تساعد على اكتشاف وجود الخلايا السرطانية  من عدمه باستخدام أدوات التصنيف المناسبة. 

خلال هذا العمل تم تطوير خوارزمية مكونة من مرحلتين: في المرحلة الأولى يتم تصنيف الصورة حسب كثافة 

إلى نوعين: كثافة خفيفة و كثافة عالية وقد حصلنا على دقة تصنيف   BIRADSظام الأنسجة داخل الثدي حسب ن

. في المرحلة الثانية يتم تصنيف الصورة حسب وجود الخلايا السرطانية من عدمه في كل % 93.56صور بنسبة 

هذه النتائج تم  و للحصول على % 80صورة بعد انتهاء المرحلة الأولى وقد حصلنا على دقة كلية للمرحلتين بنسبة 

. خلال هذه الرسالة تم استنتاج أنه حين يتم حذف بعض الخصائص IRMAو   MIASاستخدام قاعدتي بيانات هما 

التي لا تساعد المصنفات في عمليات التصنيف فإنه تزيد دقة التصنيف بشكل جيد. كما تم استخراج الخصائص التي 

ن. في ختام الرسالة تم عرض بعض الدراسات المشابهة لهذا العمل تساعد على التصنيف بشكل جيد في كلتا المرحلتي

 ومقارنة النتائج التي تحصلوا عليها مع ما توصلنا إليه من نتائج وتم ايضاح الفروقات.

 



CHAPTER 1

INTRODUCTION

1.1 Background

Breast cancer is the most common type of cancer among women over the world. The

incidence of breast cancer has increased over the last two decades due to unhealthy

lifestyles, stress, artificial foods ingredients, and other environmental factors. There-

fore, the early detection is important to control the increase in breast cancer incidence

[10].

In Saudi Arabia, a breast cancer ratio of 25.1%, among females, was reported for

all newly diagnosed cases (5, 205) in year 2009. The five regions with the highest ASR

(Age-Standardized Rate) were: the Eastern Region at 33.1/100, 000, Riyadh Region

at 29.4/100, 000, Makkah Region at 26.4/100, 000, Qassim Region at 25/100, 000 and

finally the Jouf Region at 22.5/100, 000. The median age at diagnosis was 48 years

[11].

In 2015, the American Cancer Society reported 231, 840 new cases of breast cancer
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in the U.S. An estimated number of 40, 290 women are expected to succumb from

breast cancer [12][13].

To date, the most common diagnosis tool used at hospitals/clinics in detecting

breast cancer is mammogram analysis. Mammogram images are simply X-ray images

of the breast acquired by mammogram devices such as the one in Figure 1.1. For each

mammogram image, we have two views: Mediolateral Oblique View (MLO) and Cran-

iocandal View (CC), and both views are used by the radiologist to detect the masses

or any other abnormalities within the mammogram image. An example of a mam-

mogram image is displayed in Figure 1.2 showing different regions of interest. Health

professionals recommend that women over 40 years old should take the mammogram

test once a year to avoid late detection of cancer. While acquiring mammographic

images is not very difficult, their analysis on the other hand can be very challenging.

The problem is that cancer textures can look very similar to surrounding breast tissue.

The challenge for the medical professionals is to make a decision on whether a certain

area/region is a cancer or just regular tissue. The breast density is seen as the main

factor in any Computer aided diagnosis (CAD) system as high density breast requires

additional processing like segmentation to differentiate between normal dense tissue

and cancer masses. So, breast density classification is seen as a crucial preprocessing

stage in cancer detection. To reduce the potential of misdiagnosis, patients may be

subjected to unnecessary biopsy which is costly and stressful to patients. Computer

aided diagnosis systems have been developed to close this gap in helping medical pro-

fessionals in focusing only on suspicious regions of the mammogram images. However,
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the detection of such suspicious regions itself is a challenge. This challenge prompted

us to investigate the problem of developing a set of features that are optimal for the

accurate classification of textures and hence detecting cancer in early stages. While

there are hundred of features that can be extracted from mammographic images, many

may be irrelevant to the task of cancer detection. Here, we develop a informative-

theoretic framework to rank features and select an optimal limited size feature set.

These features are then used not under a threshold framework but under a probabilis-

tic framework to reach a final decision on whether a certain mammographic image

contains cancerous regions or not.

Figure 1.1: A typical Mammography Device [1]

1.2 Problem statement

Breast cancer is a common cancer among females all over the world. The main chal-

lenge in mammogram analysis is the accurate detection of malignant tumors. More-

3



Figure 1.2: An example of showing the two views(MLO and CC) with different regions
of intrest [2]

over, the increased density in the breast area has added another challenge to cancer

detection. As such, a robust mammogram analysis system needs to include both

accurate identification of beast density followed by cancer detection.

Computer-Aided Diagnosis (CAD) system continuous to be the main tools that

can help radiologists in processing the substantial number of mammographic images

while focusing only on suspicious regions. Here, we approach the problem of CAD for

mammography using a 2-stage analysis system which first identifies the type of breast

density, then uses a dedicated density-dependent classifier to identify the existence of

cancerous regions.

1.2.1 Research objectives

The aim of this research is to introduce a new CAD system for breast density clas-

sification and cancer detection from mammograms using texture features. The work
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includes the following components:

� Development of a preprocessing algorithm for pectoral removal using a region

growing technique.

� Development of a method for breast density segmentation and Region Of Interest

(ROI) detection using texture analysis.

� Development of a novel approach for breast density classification using the Breast

Imaging-Reporting and Data System (BIRADS) databases.

� Development of a density-depending cancer detection algorithm using an optimal

set of textures features.

� Extensive testing of the developed algorithms on public databases and compar-

ison with existing techniques.

1.3 Main contributions

The main contributions of the thesis are:

� Development of a robust segmentation algorithm for pectoral region detection

for mammogram images.

� Development of an optimal set of features using information theory from mam-

mogram patches which is shown to improve breast density classification and

cancer detection.
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� Development a new framework for cancer detection using a 2-stage den-

sity/cancer classifier.

� Extensive experimental work on stablished mammographic databases showing

the superior performance of the developed algorithms compared to existing ap-

proaches.

1.4 Organization of the thesis

In Chapter 2, we discuss the previous work carried in mammographic image analysis.

In section 2.1, we discuss work related to density classification followed by work on

cancer detection in section 2.2. In chapter 3, we present the methodology used for

our work and discuss the details of the proposed algorithms. We then discuss the

experimental results of our approach in chapter 4. Finally, we conclude our work and

discuss future research directions in chapter 5.
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CHAPTER 2

LITERATURE REVIEW

Substantial research efforts have been put in the development of algorithms for the

detection of breast cancer from mammographic images. Common breast cancer detec-

tion stages consist of two main stages: Breast density classification followed by cancer

classification as shown in Figure 2.1.

Figure 2.1: Overall CAD systems used in mammogram analysis
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2.1 CAD approaches for breast density classifica-

tion

Recently, Birdwell et al [14] found that breast density was the second most common

reason for missed cancer detection when evaluating causes of missed breast cancer.

The American College of Radiology (ACR) [12] came up with standard that categorizes

breast density into 7 so-called BIRADS. Most of the research is based on BIRAD I

(fatty tissue ) to BIRAD IV (extreme dense tissue). The details of these BIRADS are

shown in Table 2.1 and example images are shown in Figure 2.2. The discussion on

the seven classes can be found in [12].

Table 2.1: BIRADS Classification [15]

BI-RADS Class Density(%) Breast density
TYPE-I 00-25 Entirely fatty
TYPE-II 26-50 Some fibro-glandular tissue
TYPE-III 51-75 Heterogeneously dense breast
TYPE-IV 76-100 Extremely dense

Figure 2.2: Example of BIRADS images [15]
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Kumar et al. [15] published a recent review paper related to different approaches

developed for breast density classification. They found that two types of images are

used for density classification : Segmented breast tissue and predefined ROI. For seg-

mented breast tissue, the researchers used the full mammogram images and extracted

a small patch to carry the processing over it. They discussed the developed approaches

that used popular databases like the Mammographic Image Analysis Society (MIAS)

[16] and the Digital Database for Screening Mammography (DDSM) [17]. Different

approaches discussed in their review paper are shown in Table 2.2 for the DDSM and

Table 2.3 for the MIAS databases.

Table 2.2: Brief study carried out on DDSM [15]

Author(s),
Year

Segmented
Breast
Tissue/ROI

No. of im-
ages

Classifier Accuracy(%) Considered
Class

Oliver,et al.
2005

SBT 300 R-MLO KNN, Deci-
sion tree

47.00 BIRADS I-
IV

Oliver,et al.
2008

SBT 831 SFS+KNN 77.00 BIRADS I-
IV

Bovis,et al.
2002

SBT 377 ANN 71.40 BIRADS I-
IV

Bosch,et al.
2006

SBT 500 KNN,SVM 84.75 BIRADS I-
IV

Oliver,et al.
2010

SBT 831 LDA-PCA 79.00 Fatty,dense

Petroudi et al. [18] proposed a method for breast density classification based on

the statistical distribution over textons. They worked on full mammogram images

from the Oxford Database, segmented into patches, and features were extracted using

Maximum Response 8 (MR8) filters. They classified patches into one of the four

BIRADS classes with an overall classification rate of 75%, and when two classes only

9



Table 2.3: Brief summary of work on the MIAS database [15]

Author(s),
Year

Segmented
Breast Tis-
sue/ROI

No. of images Classifier Accuracy(%)

Muhimmah,et
al. 2006

SBT 321 DAG-SVM 77.57

Oliver,et al.
2005

SBT 270 KNN-Decision
tree

67.00-73.00

Oliver,et al.
2008

SBT 43 SVM 95.55

Subashini,et
al. 2010

SBT 377 ANN 71.40

Sharma,et al.
2014

ROI 322 SMO 96.46

Tzikopoulos,et
al. 2010

SBT 322 SVM 85.70

Blot,et al.
2001

SBT 265 KNN 65.00

Qu,et al. 2011 SBT 322 E-FELM 72.67
Bosch,et al.
2006

SBT 322 KNN,SVM 95.42

Z. Chen,et al.
2011

SBT 322 KNN,Bayesian 75.00

Oliver,et al.
2010

SBT 322 LDA-PCA 94.00

Mustra,et al.
2012

ROI 322 KNN,Naive
Bayesian

82.00

Note-SBT:Segmented breast tissue

low and high densities are used, an overall classification rate of 91% was achieved.

Oliver et al. [19] discussed different strategies for feature extraction based on the

BIRADS classification. They used the full MIAS database and classified images into

four classes BIRADS using a segmentation method for achieving an overall classifica-

tion rate of 82%.

He et al. [20] developed an automatic mammographic density segmentation ap-

proach using a Bayes classifier. They used the MIAS database with full mammogram
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images. They classified the images into one of the four BIRADS with a classification

rate of 85% , and into low and high densities with a classification rate of 78%.

Mustra et al. [21] investigated different feature selection algorithms. They used

the MIAS database with three categories: fatty, fatty-glandular, and dense-glandular.

They obtained the Gray Level Co-occurrence matrix (GLCM) for the ROIs and used

the K-Nearest Neighbors classifier (KNN). They achieved around 70% classification

accuracy.

Oliver et al. [22] developed a new approach for breast parenchymal density to

classify mammogram images using the four BIRADS classes. They identified breast

density based on the combination of texture and gray level information. They started

with extracting the breast area only from thefull mammogram image using the DDSM

database. They used the Fuzzy C-Means algorithm to segment the different tissue

types, then classified these using KNN and decision trees into BIRADS classes. They

achieved a 47% correct classification which is considerably low compared to other

approaches.

Kutluk and Gunsel [23] proposed an approach for classification of breast tissue

density from mammographic images into one of 3 classes: fatty , fatty-glandular and

dense-glandular. They used the Scale Invariant Feature Transform (SIFT) as a local

feature extraction technique and the Learning Vector Quantization (LVQ) algorithm

for supervised classification achieving a classification accuracy of over 90%.

Liasis et al. [3] investigated different texture features and their combination to-

gether with a Support Vector Machine (SVM) algorithm for breast density classi-
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Figure 2.3: A full view of the approach proposed by [3].

fication as shown in Figure 2.3. SIFT, Local Binary Patterns (LBP), and texton

histograms resulted in an excellent classification accuracy of 93.4% over the MIAS

database.

Chen et al. [24] presented a model for mammographic tissue analysis in the form of

feature histograms using five different types of local features: LBP , Local Greylevel

Appearances (LGA), Textons I,II and Basic Image Features (BIF). They classified

the images for the MIAS database into four BIRADS classes and into two low and

high density classes. For four BIRADS classes, the overall classification accuracies

achieved were 59%, 72%, 69%, 75% and 70% for LBP , LGA, Texton I , Texton II

and BIF, respectively. For two classes, the accuracies were 79%, 86%, 83%, 88% and

86%, respectively.
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Oliver et al. [25] presented an automatic evaluation approach for beast density

considering fatty or dense classes. Their work was based on statistical analysis over

patches extracted from mammogram images from the MIAS and the Trueta databases.

They used Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA) Models. They achieved a classification accuracy of 91%.

Ghouti and Owaidh [26] developed new features to improve breast density classi-

fication. They extracted features from Non-negative Matrix Factorization (NMF) of

patches of sizes 300× 300 and 1024× 1024, and used an SVM classifier. They applied

NMF on the MIAS database. Finally, PCA was applied on the extracted features

achieving an accuracy of 83%.

As can be seen from the above analysis, density classification is considered to be a

major step for improving cancer detection accuracy. Many researchers are simplifying

this step by taking the two extreme situations: fatty and dense breast tissues. On the

other hand, some researchers ignore this step by working on cancer detection for the

same density class. Many approaches were discussed using different types of feature

which may sometimes be irrelevant. This prompted us to develop a framework for

finding the top ranked features relevant to the task of accurate density classification.

2.2 CAD approaches for cancer detection

In a recent work by Ganesan and his team, a comprehensive survey of different CAD

approaches for cancer detection was presented. The authors explained that most

existing CAD systems were not yet conclusive enough to warrant their credible clinical
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usage. They also show, however, that the detection accuracy of cancer has improved

with the introduction of advanced CAD-based diagnostic procedures. They tabulated

different feature extraction and classification methods as shown in Table 2.4. From

the Table 2.4, the best results are around 90%, however, these are not recommended

yet for use in clinical trials [27].

Table 2.4: Summary of popular feature extraction and classification methods [27]

Author(s) Method used Accuracy(%)
Kimme,et al. Normalized statistics and texture features 74

Petrosian,et al.
Spatial Gray Level Dependence and textural
features with a decision tree classifier

76-89

Kinoshita,et al.
Shape and texture features with a three layer
feed-forward neural network

81

Rangayyan,et al. Region based edge-profile acutance measure 92

Polakowski,et al.
Model based vision algorithm. Difference of
Gaussians and texture features

92

Priebe,et al. Fractal texture measures 88

Sameti,et al.
Optical density, photometric and textural
features

72

Chitre,et al.
Texture measures with artificial neural net-
work

87

Mudigonda,et al.
Gray level co-occurence matrices, polygonal
modeling with jack-knife classification

83

Brijesh,et al. Statistical features with fuzzy neural network 83

Yoshida,et al.
Wavelet features in combination with a dif-
ference image technique

90

Liyang Wei,et al.
Statistical features in a multiple view mam-
mogram with SVM and KFD

85

Oliver A,et al. Eigen faces approach 82-90

Szekeley,et al.
Texture features and a combining classifier
of decision trees and multiresolution markov
random models

88-94

Alolfe,et al.
Forward stepwise linear regression method
with a combined classifier of SVM and LDA

82.5-90

For most existing approaches, the main stages for cancer detection are shown in
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Figure 2.4: Overall structure of CAD cancer detection systems

Figure 2.4. The first stage is image acquisition, which is carried with specialized

mammography devices as was shown in Figure 1.1. The output from stage one is a

digital image at high spacial resolution. The second stage is the preprocessing stage

in which the image is contrast-corrected and non-breast regions such as labels and

pectoral tissue are identified and removed. The third stage is the feature extraction

stage using different techniques. The output of this stage is a feature vector. Such

a set of features may be processed further to remove irrelevant features (Stage 4).

Finally, in the classification stage, the test feature vector is used to decide whether

the ROI is normal, benign, or malignant .

Berbar et al. [28] proposed several classification methods for abnormality detec-

tion in digital mammograms for the DDSM database. Different statistical features

like Mean, Standard Deviation, Smoothness, Skewness, Energy, and Entropy were

all discussed, in addition to LBP texture features. They reported that such features

15



Figure 2.5: An example of GLCM constructed for a small patch from a mammogram
image [4].

were very robust for the task of cancer detection. The detection accuracy achieved of

98.63% using an SVM classifier, and 97.25% using a KNN classifier.

Sabu et al. [4] discussed various texture analysis approaches for the detection

of masses and micro calcification in mammography. They used GLCM, Gray Level

Run Length Matric (GLRLM), LBP, Gray level difference statistics, Laws texture

measures and Fractal based texture analysis. An example of the GLCM constructed

for a small patch from a given input image is shown in Figure 2.5.

Asad et al. [29] introduced a feature set involving six pre-existing and new features.

Thirty-three images from the Mini-MIAS database were selected for training and

testing. They included 16 circumscribed benign cases, 4 circumscribed malignant

cases, 9 speculated benign cases, and 5 speculated malignant lesions cases. The

features were trained using Kohnan Neural Networks (KNN) achieving a 80%

classification rate.
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Figure 2.6: The central pixel gc and its P circularly symmetric neighbors at radius R

Gargouri et al. [30] proposed a local pattern model called Gray Level and Lo-

cal Difference (GLLD) where absolute gray levels and local differences were used as

textural features for mammographic mass detection. The combined descriptors were,

respectively, SGLLDriu2
24,3 , MGLLDriu2

24,3 and CGLLDriu2
24,3 called GLLD.

SGLLDP. R =
P−1∑
p=0

s (gp − gc mean) 2p (2.1)

Where gp is the gray level of p-neighbor and P is the total number of neighbors in the

radius R that used in processing, and gcmean is the average value of the central pixel

and s(x) is traditional signum function (see Figure 2.6).

s(x) =


1, x ≥ 0

−1, x < 0

(2.2)

MGLLDP. R =
P−1∑
p=0

t (mp, c) 2p (2.3)
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t(x, c) =


1, x ≥ c

0, x < c

(2.4)

CGLLDP. R = t (gc mean , cI) (2.5)

The three obtained codes from equations 2.1, 2.3, and 2.5 for each pixel have

carry important texture information. The authors estimated the histogram over an

image for each code and then concatenated these to build the GLLD feature set.

This concatenated histogram was then used in classification. The Artificial neural

networks (ANN) classifier was shown to provide excellent performance and can

consider different image sizes with improved detection rates. A comparative study

with existing local pattern-based features such as LBP showed that the proposed

method led to a better performance with a classification rate of 95%.

Oliver et al. [31] proposed a method for mass false positive reduction based on

textural features. A global descriptor for each ROI is obtained then a ROI image

was divided into small regions and local texture descriptors were then computed using

local binary patterns. The final feature vector from combining these local descriptors

was used to classify the ROIs as true masses or normal tissues. The authors showed

that LBP features are effective and efficient for false positive reduction with different

patches sizes.

Luo et al. [32], used two feature selection methods, Forward Selection (FS) and Back-

ward Selection (BS), to remove redundant features for the detection of breast cancer

18



and then compared the performance between the two methods. The performance of

the algorithm was increased by removing the irrelevant features in a similar fashion

to density classification. The breast cancer prediction accuracy was determined us-

ing DT, SVM-SMO with an enhanced performance. The prediction performance was

tremendously increased using the proposed feature selection methods with ensemble

classifiers on the breast cancer dataset.

Biswas et al [5], proposed a method for modeling mammogram textures using

a mixture of Gaussians distribution (GMM). A two-layer architecture was proposed

for classification. The low-level rotation-invariant textural features were collected at

different scales. Then, latent textural primitives from features were extracted using

the GMM model. The results showed that the proposed probabilistic approach was

better than other competing approaches.

The author in [33] focused on the problem of breast density. They collected

their own data from Malaysian patients at the University of Malaya Medical Cen-

tre (UMMC) during the period 2008 to 2010. The database included standard images

of dense, fatty and fatty-glandular breasts, and were classified into three categories:

normal, benign and malignant, using the results obtained from biopsies. Malignant

and benign abnormalities were selected from the segmented images using the Ground

Truth (GT) data and markings obtained from the radiologists. Texture based features

were extracted from the ROI samples using GLCMs. For classification, the optimum

subset of texture features was used with an SVM classifier. The binary classification
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Figure 2.7: Multiscale texture modeling [5] : (a) image marked by a radiologist,
(b)Detect abnormal ROIs, (c) Classify ROIs into AD/non-AD, and (d) Detected cor-
rect ROI based on (c).

accuracy of the developed system was measured using the Receiver Operating Charac-

teristic (ROC) with performance measures such as sensitivity, specificity and the Area

under the Curve (AUC). They also compared their results to a ANN-based classifier

and found that the SVM classifier gave better results. Their approach achieved a

classification accuracy of 97.6% for classifying images into malignant or benign type.

As seen from the above discussion, cancer detection is the major step in any CAD

system. This step is considered to be the main component of any CAD system. Many

researchers are still working on developing systems with an acceptable performance

from the clinical side. But no comprehensive approach has been adopted to date. The

approaches that have been developed for cancer detection focus either on detecting the

abnormalities and masses or on classifying cancer into benign and malignant. There

are no approaches that detect densities and classify the tissues in a joint fashion.
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Also, in the feature extraction step, many approaches were developed using different

features focusing on specific types of textures. Here, we develop a framework for

finding a feature vector that contains the main features relevant to the task of interest

then use these in classification.

2.3 Texture analysis techniques

In most image processing applications, we are interested in the content and the analysis

of patterns or regions rather than the specific gray level values of the pixels. In our

application, for example, we focus mainly on identifying regions that may that contain

cancerous cells rather that the specific pixels themselves. For this reason, among other,

the literature is full of comprehensive surveys covering texture analysis topics. In [34],

for example, different texture features were discussed and categorized in four groups:

statistical features, structural features, signal processing based features, and model

based features. They considered the co-occurrence matrix as one of the most popular

techniques for estimating different second order statistics. They also considered the

Gray Level Run Length (GLRL) and the LBP as higher order statistical features.

Finally, they categorized the wavelet transform based features and Gabor analysis as

signal processing based features. As many of these features are used in our work,

we will briefly discuss each one of these with some insights on their advantages and

disadvantages.
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2.3.1 Local Binary Patterns (LBP) texture features

Ojala and et al. [6] introduced a new multi-resolution approach for rotation invariant

texture features named local binary patterns. Their approach was initially developed

for gray scale images and used to detect ’uniform’ patterns at any spatial resolution:

Figure 2.8: LBP for Circular neighborhood [6]

LBPP,R =
P−1∑
p=0

s (gp − gc) 2p (2.6)

s(gx − gy) =


1, (gx − gy) ≥ 0

0, (gx − gy) < 0

(2.7)

Where LBPP,R is the traditional LBP texture at gc (central pixel value) which is

modeled using a local neighborhood of radius R, and sampled at P points as shown in

Figure 2.8. The LBPP,R provides the relation between a pixel with neighbors where

P bits assigned for each pixel and if the value of gray level of the neighbor grater than

a pixel value, then the bit belongs to that neighbor in the pattern will be 1 otherwise
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0. An example of the traditional approach is shown in Figure 2.9.

Many improvements over the traditional version from LBPP,R have been devel-

oped. One of these versions is Local Binary Pattern uniform and rotational-invariant

(LBP riu2
P,R ). LBP riu2

P,R was developed for calculating the LBP but taking into account

the uniformity feature with rotation invariance for the LBP pattern. The LBP riu2
P,R is

obtained using the following equation:

LBP riu2
P,R =


P−1∑
p=0

s (gp − gc) if U (LBPP,R) ≤ 2

P + 1 otherwise

(2.8)

Where LBP riu2
P,R stands for LBP uniform and rotational invariant with P samples

located in radius R. U (LBPP,R) is calculated as follows

U (LBPP,R) = | s (gP−1 − gc)− s (g0 − gc)|+
P−1∑
p=1

|s (gp − gc)− s (gp−1 − gc)| (2.9)

Where the uniform pattern is defined as bit patterns with 0 or 2 transitions 01 or 10.

This approach was shown to be robust against gray-scale variations since the

operator was, by definition, invariant against any monotonic transformation of the

gray scale. For feature extraction purposes, a histogram is obtained form the LBP riu2
P,R

image and used as a feature vector for the classification stage. As an example, the

histogram contains 10 bins when the number of samples P = 8. The first nine bins

come from the count of ones in the pattern where starting with 0 when no ones exist

and 8 when all pattern is ones. The tenth bin is considered for non-uniform LBP

pattern.
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Figure 2.9: An example of finding LBP with R=1,P=8 and gray level value gc =70

2.3.2 Gray Level Co-occurrence Matrix (GLCM) features

The spatial GLCM was original introduced by Haralick et. al in [35]. The GLCM

calculates the occurrence of the gray levels with neighbors in different angles(θ) such

as 0◦, 45◦, 90◦and 135◦ ( See Figure 2.10) and the pair placed in distance d where d

here equal 1. The distance and angles are the main parameters for calculating the

GLCM as the occurrences will be counted based on the distance between the pixels

and in a given direction [35, 36, 37].From the example shown in Figure 2.10, P(1,1)

is the occurrence of the pixel with gray level equal 1 followed by gray level equal 1 in

the same direction ( angle = 0◦) and the number of occurrences equals 1. We list in

Table 2.5, the main notation used in estimating the different features for the GLCM.

These features are now briefly discussed.
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Figure 2.10: An example of calculating GLCM for 0◦

Autocorrelation Feature

The autocorrelation feature is based on the repetitive nature of textures observed

within a given image. The correlation between the image and its translated version is

measured using this feature.

Autocorrelation =
∑
i

∑
j

(ij)p(i, j) (2.10)

Contrast Feature

The spatial frequency is measured using the contrast feature computed from the dif-

ference between highest and lowest values for a set of contiguous pixels. Mainly, it

measures the amount of local variations in the image. So, for low contrast images, the

values of GLCM are concentrated around the low spatial frequencies and the main
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Table 2.5: Basic notation used in GLCM computations
p(i, j) (i,j) entry of the co-occurrence probability matrix.

L Number of Gray-levels.
v Mean value of p(i, j)

px(i)
L∑
j=1

p(i, j)

py(i)
L∑
i=1

p(i, j)

µx
∑
i

∑
j

i.p(i, j)

µy
∑
i

∑
j

j.p(i, j)

σ2
x

∑
i

∑
j

(i− µx)2.p(i, j)

σ2
y

∑
i

∑
j

(j − µy)2.p(i, j)

px+y(k)
∑L

i=1

∑L
j=1

i+j=k

p(i, j), k = 2, 3, ..., 2L

px−y(k)
∑L

i=1

∑L
j=1

|i−j|=k
p(i, j), k = 0, 1, ..., L− 1

HX −
∑
i

px(i). log(px(i))

HY −
∑
i

py(i). log(py(i))

HXY −
∑
i

∑
j

p(i, j). log(p(i, j))

HXY 1 −
∑
i

∑
j

p(i, j). log(px(i).py(j))

HXY 2 −
∑
i

∑
j

px(i).py(j). log(px(i)py(j))

diagonal.

Contrast =
L−1∑
n=1

n2

{∑
i

∑
j

p(i, j)

}
, |i− j| = n, L = number of gray levels (2.11)

Correlation Feature

This feature measures the linear dependency between gray levels in the image.

Correlation =

∑
i

∑
j

(ij)p(i, j)− µxµy

σxσy
(2.12)
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Cluster Prominence Feature

The cluster prominence measures the asymmetry where the image with less symmetric

yields high value of cluster prominence and verse visa. A peak in the GLCM around

the mean value exists when the cluster prominence value is low.

ClusterProminence =
∑
i

∑
j

(i+ j − µx − µy)4p(i, j) (2.13)

Cluster Shade Feature

The cluster shade measures the asymmetry too, where it measures the skewness of

the GLCM distribution.

ClusterShade =
∑
i

∑
j

(i+ j − µx − µy)3p(i, j) (2.14)

Dissimilarity Feature

The dissimilarity feature measures the amount of differences between two pixels.

Dissimilarity =
∑
i

∑
j

|i− j| p(i, j) (2.15)

The GLCM Based Energy Feature

This feature measures texture uniformity . When the gray distribution has constant

or periodic structure form then the value of energy will be high which is related to
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the homogeneity of the image. The maximum value of energy equals one.

Energy =
∑
i

∑
j

p(i, j)2 (2.16)

Entropy Feature

This feature measures the complexity of an image. When the GLCM values follow a

nonuniform distribution, then the entropy value will be high.

Entropy = −
∑
i

∑
j

p(i, j). log(p(i, j)) (2.17)

Homogeneity Feature

This feature measures the gray tone differences between pair elements. It reaches its

the maximum value when the image has identical gray level values. The homogeneity

and contrast have a strong relationship since when the homogeneity increases, the

contrast feature decreases, while the energy can be kept constant. It is highly sensitive

and related to the diagonal of the GLCM.

Homogeneity =
∑
i

∑
j

1

1 + (i− j)2
p(i, j) (2.18)
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Maximum Probability feature

This feature shows the pair of gray-levels occurring more than the other pairs in certain

direction and at a certain distance.

Maximumprobability = MAX
i,j

p(i, j) (2.19)

Variance feature

This feature increases when the gray level values differ more from the mean of the

image.

V ariance =
∑
i

∑
j

(i− v)2p(i, j) (2.20)

Sum average feature

Sumaverage =
2L∑
i=2

i.px+y(i), i = 1, 2, ...L and j = 1, 2, .., L (2.21)

Sum variance feature

Sumvariance =
2L∑
i=2

(i− Sumentropy)2.px+y(i), 2L : i = 1, .., L and j = 1, .., L

(2.22)

Sum entropy feature

Sumentropy = −
2L∑
i=2

px+y(i). log(px+y(i)) (2.23)

Difference variance feature

Differencevariance =
L−1∑
i=0

i2.px−y(i) (2.24)
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Difference entropy feature

Differenceentropy = −
L−1∑
i=0

px−y(i). log(px−y(i)) (2.25)

Information measure of correlation 1

Informationmeasureofcorrelation1 =
HXY −HXY 1

max(HX,HY )
(2.26)

Information measure of correlation 2

Informationmeasureofcorrelation2 =
√

1− exp[−2(HXY 2−HXY )] (2.27)

Inverse difference normalized (INN) feature

Inversedifferencenormalized(INN) =
∑
i

∑
j

p(i, j)

1 + |i− j|2/L
(2.28)

Inverse difference moment normalized feature

Inversedifferencemomentnormalized =
∑
i

∑
j

p(i, j)

1 + (i− j)2/L
(2.29)

2.3.3 Gray Level Run Length Matrix (GLRL) features

Another framework for extracting texture feature was developed by Galloway [38]

which he called Gray Level Run Lengths (GLRL). A gray level run is a set of

consecutive, collinear pixels that have the same gray level values. The length of

the run is the number of pixels in the run. For a given image, the GLRL can be

computed for runs in any given direction. In the given direction, the matrix element

(i,j) specifies the number of times that the image contains a run of length j of pixels

value i. The following features are extracted from the GLRL textures.
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Let q(i, j) be (i,j) entry of the M×N run-length matrix, and

nr is the total number of runs,

np is the number of pixels in the image

Short Run Emphasis (SRE) feature

This feature emphasizes short runs.

SRE =
1

nr

M∑
i=1

N∑
j=1

q(i, j)

j2
(2.30)

Long Run Emphasis (LRE) feature

This feature emphasizes long runs.

LRE =
1

nr

M∑
i=1

N∑
j=1

q(i, j).j2 (2.31)

Gray-Level Non-uniformity (GLN) feature

This feature measures the gray level non uniformity of the image. When runs are

uniformly distributed , the GLN feature results in low values.

GLN =
1

nr

M∑
i=1

(
N∑
j=1

q(i, j)

)2

(2.32)
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Run Length Non-uniformity (RLN) feature

This function measures the non-uniformity of run lengths where the runs are uniformly

distributed during the lengths, the RLN value decreases.

RLN =
1

nr

N∑
j=1

(
M∑
i=1

q(i, j)

)2

(2.33)

Run Percentage (RP) feature

This function is a ratio of the total number of runs to the total number of possible

runs if all runs had a length of one. For linear-most patterns, the RP results in the

lowest value.

RP =
nr
np

(2.34)

Low Gray-Level Run Emphasis (LGRE) feature

LGRE =
1

nr

M∑
i=1

N∑
j=1

q(i, j)

i2
(2.35)

High Gray-Level Run Emphasis (HGRE) feature

HGRE =
1

nr

M∑
i=1

N∑
j=1

q(i, j).i2 (2.36)

Short Run Low Gray-Level Emphasis (SRLGE) feature

SRLGE =
1

nr

M∑
i=1

N∑
j=1

q(i, j)

i2.j2
(2.37)

Short Run High Gray-Level Emphasis (SRHGE) feature

SRHGE =
1

nr

M∑
i=1

N∑
j=1

q(i, j).i2

j2
(2.38)
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Long Run Low Gray-Level Emphasis (LRLGE) feature

LRLGE =
1

nr

M∑
i=1

N∑
j=1

q(i, j).j2

i2
(2.39)

Long Run High Gray-Level Emphasis (LRHGE) feature

LRHGE =
1

nr

M∑
i=1

N∑
j=1

q(i, j).i2.j2 (2.40)

2.3.4 Wavelet based texture analysis

The introduction of wavelets in different signal and image applications prompted many

researchers to formulate features based on such a transform. Wavelet based tex-

ture analysis uses a class of functions, that are localized in both spatial and spatial-

frequency domains, to decompose texture images. Wavelet functions are constructed

from a basis function called ’mother wavelet’ or ’basic wavelet’, by means of dilation

and translation [39]. For image processing, the 2D wavelet transform is character-

ized by 2 features: the scaling and wavelet functions denoted as φ(x, y) and ψ(x, y),

respectively. The scaled and translated basis functions are defined as:

φj,m,n(x, y) = 2j/2φ(2jx−m, 2jy − n),

ψij,m,n(x, y) = 2j/2ψi(2jx−m, 2jy − n), i = {H, V,D}
(2.41)

where index i defines the direction of the wavelet functions such that ψHj,m,n(x, y)

measures variations along columns, ψVj,m,n(x, y) measures variations along rows, and

ψDj,m,n(x, y) measures variations along diagonals. Here, we get three different wavelet

functions based on the translation of the basis function for each level. Using the
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Figure 2.11: The structure of a 2D Wavelet decomposition with 1 Level [7]

traditional wavelet decomposition [8], images are decomposed at each level into 4 sub

images as shown in figure 2.13. The structure of a 2D wavelet decomposition for 1

and 2 levels is shown in Figure 2.11 and 2.12. The lower resolution images denoted

as LL, where LH, HL and HH images result from the wavelets decomposition using

ψH , ψV , and ψD respectively. The LL image can further be decomposed into 4 new

sub images, as so on. Many features can be extracted from the sub images such as

mean, variance, energy, entropy,...etc. These features are useful in many applications

including compression, classification, etc.
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Figure 2.12: The structure of a 2D Wavelet decomposition with 2 Levels [8]

Figure 2.13: An example for 2D Wavelets decomposition with 2 Levels
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2.3.5 Gabor texture analysis

Daugman [40] originally proposed a filter-based approach using neural networks. The

characteristics of the Gabor wavelets (filters), especially for frequency and orienta-

tion representations, are similar to those of the human visual system. As one of the

applications of the Gabor filters, they are found to be particularly appropriate for

texture representation and discrimination. In the spatial domain, a 2D Gabor filter

is a Gaussian kernel function modulated by a sinusoidal plane wave [41]

G(x, y) = f2

πγη
exp

(
−x′2+γ2y′2

2σ2

)
exp (j2πfx′ + φ)

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

(2.42)

where f is the frequency of the sinusoidal factor, θ represents the orientation of the

normal to the parallel stripes of a Gabor function, φ is the phase offset, σ is the

standard deviation of the Gaussian envelope and γ is the spatial aspect ratio which

specifies the ellipticity of the support of the Gabor function.

Gabor filters are used to model the spatial summation properties of simple cells in the

visual cortex and have been adapted and popularly used in texture analysis. They have

been long considered as one of the most effective filtering techniques to extract useful

texture features at different orientations and scales. Gabor filters can be categorized

into two components: a real part as the symmetric component and an imaginary part

as the asymmetric component. An example of Gabor wavelets over five scales and eight

orientations is shown in Figure 2.14, where the energy and entropy can be extracted
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from each sub images as features of the Gabor filter. There are many advantages of

using Gabor filter the detection of variations in different angles including and scales.

Hover, the transformation is complex and hence computationally expensive.

Figure 2.14: An example of Gabor filter masks over five scales and eight orientations

2.3.6 Summary

In this chapter, we briefly discussed the literature related to feature extraction for

image which is particularly useful in density classification from mammogram images.

In density classification, we presented the benchmark in density classes used for density

classification. After that, many approaches for cancer detection were discussed in

the section 2.2. Also, we discussed the accuracy rate for these approaches, their

advantages and disadvantages. In the last section (2.3), we discussed some popular

texture approaches used in divers applications. Next, we will implement our approach

for feature extraction followed by the classification algorithm.
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CHAPTER 3

RESEARCH METHODOLOGY

In this chapter, we present our proposed approach for both density and cancer classi-

fication. We discuss the implementation of the different stages of our system (Figure

3.1). We discuss how the system was tested with the MIAS database and the Image

Retrieval in Medical Applications (IRMA) patch database.

3.1 Proposed approach

Our proposed approach follows the general structure of traditional CAD systems men-

tioned in chapter 2 with an important improvement. Our work is divided into two

main parts. In the first part, we analyze full 1024 × 1024 mammogram images and

apply the preprocessing stage only over these. In the second part, we assume that the

ROI patches of size 128× 128 have already been extracted from the IRMA database.

In this part, an optimal set of features is obtained and used to perform the proposed

2-stage classification for both density classification and cancer detection. A complete

block diagram for our proposed system is shown in Figure 3.1. We will now discuss
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each of the stages of the proposed CAD system.

Figure 3.1: Full view of the proposed CAD system
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3.1.1 Image Preprocessing

The main aim of this stage is to extract the breast area only as the original mammo-

gram contains many objects with the breast area as was shown in Figure 1.2. These

include the pectoral muscle and labels, so on. So, we need to remove all unnecessary

objects for the mammogram images. Many researchers discussed diverse techniques

of pectoral removal [9][42]. An example of applying these common steps is shown in

Figures 3.2 and 3.3.

Figure 3.2: Preprocessing steps

Figure 3.3: An example of applying a sequance of preprocessing steps [9]
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Here,to remove the labels, we extract the objects in the image using a basic thresh-

olding algorithm from the original image e.g. Figure 3.4-(a) , then keep the largest

object and remove the others. The resulting image contains the breast region with

the pectoral as shown in Figure 3.4-(b).

At this point, we have the breast and pectoral regions as an output from the

previous step. We start by applying the Otsu’s thresholding algorithm [43] on the

breast region with some basic features from image processing tools on MATLAB

[44, 45]. Using region features, we determine the location of pectoral area in the

image. Then, a region growing technique is applied to extract the pectoral area and

keep only the breast area as shown in Figure 3.4-(c).

Figure 3.4: An example of applying a sequance of preprocessing steps: (a) the original
image, (b) after applying label removal, and (c) after applying pectoral removal

3.1.2 Feature extraction

Among different feature extraction approaches listed in [34], some of these are used

individually or in combination with each other to improve classification accuracy. In

41



the previous section of a texture analysis, we discussed a number of feature extraction

approaches that are commonly used in mammogram analysis: LBP , GLCM and

wavelet transform features, etc. . In our work, we started by computing a galaxy of

79 features distributed as following:

� Statistical features: These are 4 features (Mean, Variance, Kurtosis, and

Skewness) which are extracted from the images/patches directly.

� GLCM features: These are 20 features which were discussed in section 2.3.2.

� GLRL features: These are 11 features discussed earlier in section 2.3.3.

� LBP features: These are 10 features which are generated by obtaining the

histogram of LBP values which were discussed in section 2.3.1.

� Wavelet transform features: These are 10 features based on applying a multi-

level wavelet transform with 3 levels. The number of levels is chosen based on

the experiments carried before showing no additional information or improving

in classification accuracy is achieved when we increase the number of levels

further. So, we will have 3 bands for each level except for the third level we

have 4 bands which we discussed in section 2.3.4. We calculate the percentage

of energy corresponding to each band ( the approximation, horizontal, vertical

and diagonal details images) .

� Gabor filter features: These are 24 features where we used 3 scales with 8

orientations. Also, no more information or improving in classification accuracy
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was achieved when we increased the number of scales or orientations further.

So, we have 24 bands, we,then, calculate the energy for each band.

After calculating the different features, we combine these in one super feature

vector which is then used in classification. The feature vector can also be reduced

using optimal feature selection. The above listed features are used in our proposed

approach throughout our experiments.

3.1.3 Feature selection

We mentioned above that the size of the original feature vector can be reduced by

removing irrelevant features or features with low correlation with class labels. In the

feature selection stage, we identify the optimal features to be used in the classification

stage. The optimal features are identified by ranking the features and using the top

ranked ones. The main tool that we used in this work is the WEKA software [46][47]

which includes a collection of machine learning algorithms and data processing tools.

The algorithms we tested here are: the Chi-Squared statistic Evaluator and the

Information Gain Evaluator [48]. For the Chi-Squared statistics, the algorithm evalu-

ates the importance of features by computing the value of the Chi-squared taking into

account the class labels. The Chi-squared value is obtained from the sample variance

or sum of squared errors. For the Information Gain(IG) algorithm, the importance of

the feature is obtained by measuring the IG with respect to the class labels:

IG(class, feature) = H(class)−H(class|feature) (3.1)
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Which measures the entropy when this feature is considered or not.

In our work, we tried both scenarios: with and without optimal feature selection.

This stage is followed with the classification stage either for density classification or

for cancer detection.

3.1.4 Pattern Classification

This stage is divided into two phases: breast density classification and cancer classifi-

cation in sequential manner. To fully investigate the power of the proposed algorithm,

we tested four classifiers. These are :

� Support Vector Machine based on Sequential Minimal Optimization training

(SMO-based on SVM)[49][50][51]: The SVM classifier is one of the most popu-

lar classification algorithms based on learning using supervised approaches. The

training itself of the SVM classifier can be carried in a number of ways. Here,

we used an SVM implementation based on Sequential Minimal Optimization

(SMO). The SMO algorithm is used for solving quadratic programming (QP)

problems useful in training SVMs. The SVM classifier used here was imple-

mented using a polynomial kernel:

K(x, y) =< x, y >p

where x and y are vectors in the input space. This classifier was shown to give

best results in the classification stage as will be seen later.
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� the KNN classifier [52][53]: The KNN classifier is a supervised learning algorithm

and considers instance-based classification. The KNN operates on the promises

that classification of unknown instances can be achieved by relating the unknown

pattern to the known ones based on a given similarity measure (e.g., distance

functions). This classifier used the k-nearest neighbor principle to determine the

class using Euclidean distance.

� Decision tree classifier [54]: The Decision Tree Classifier is a non-parametric

supervised learning method used for classification. The goal is to create a model

that predicts the value of a target variable by learning simple decision rules

inferred from the data features. Tree models in which target variables can take

a finite set of values are called classification trees. In these tree structures, leaves

represent class labels and branches represent conjunctions of features that lead

to these class labels. The best results achieved when the attributes or features

are of categorical nature [55].

� Naive Bayes classifier[56]: The Naive Bayes classification covers a set of super-

vised learning algorithms based on applying the Bayes theorem with the naive

assumption of independence between pairs of features. Given a class variable y

and a dependent feature vector x1, ..., xn, the Bayes theorem states the following

relationship:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)
(3.2)
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Using the variable independence assumption,we can write:

P (xi|y, x1, ..., xi−1, xi+1, ..., xn) = P (xi|y) (3.3)

Since P (x1, . . . , xn) is constant given the input, we can use the following classi-

fication rule:

P (y|x1, ..., xn)αP (y)
n∏
i=1

P (xi|y)

⇒ ỹ = arg max
y
P (y)

n∏
i=1

P (xi|y)

(3.4)

In [57], an empirical study of this classifier was discussed with an explanation

as to why this classifier is popular and powerful for diverse applications.

Breast density classification

Density classification is an important step in cancer detection systems. The literature

showed that tumor is a mass looking like dense tissue. The classification of density

has been discussed by many researchers under different standards such as BIRADS,

Low and High densities, etc.

In our work, we considered two cases: Four classes BIRADS, and low (BIRAD I)

and high (BIRAD IV) densities. These are shown in Figure 3.5 .

Cancer classification

In cancer classification, the setup considered in this work is shown in Figure 3.6.

Normal is equivalent to no cancer in the patch. Benign is the case when a mass exists

but is not considered to be cancer by medical practitioners. Malignant represents the
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Figure 3.5: Density classification categories

case of a tumor that needs to be removed.

There is also a second type of classification which considers patches as either normal

or cancerous where both benign and malignant cases are considered under one cancer

class.

Figure 3.6: Cancer classification categories
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3.2 System Implementation

The implementation of our proposed method is discussed in this section where we start

with a description of the databases we used, then we discuss the different experimental

setups that we considered.

3.2.1 Image Databases

We used two main public databases; the MIAS and the IRMA databases.

MIAS database

This database [58] was generated by MIAS, a UK organization of research groups

interested in mammograms. The images were digitized at 50µ/pixel where each pixel

is 8 bits. These images have been reduced to 200µ/pixel and each image is 1024×1024

pixels. The database contains 322 images where 106 images are fatty, 104 fatty-

glandular and 112 dense-glandular. This database was marked by radiologists and

classified into three density classes : fatty, fatty-glandular and dense-glandular. The

abnormal images have been classified into either benign and malignant. Figure 3.7

shows three sample images with different densities.

IRMA patch database

The IRMA patches [59] were extracted from different databases like the DDSM,

the MIAS, the Lawrence Livermore National Laboratories (LLNL), and the RWTH

databases. Each patch has a resolution of 50µ/pixel and 128 × 128 pixels. This col-
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Figure 3.7: Examples of the MIAS database: (a) Fatty - mdb006, (b) Fatty-glandular
- mdb008, (c) Dense-glandular - mdb004

lection contains of 12 classes covering 4 BIRADS classes and for each BIRAD class,

there are 3 types of patches normal, benign, and malignant. So, we have a total of

12 classes and each class contains of 233 patches. All together, we have 2796 patches

with 12 classes. Figure 3.8 shows some examples from the 12 classes patches. In the

following table, some statistics about the IRMA dataset are listed.

Description No. of images Total images
MLO patch images 1471

2796
CC patch images 1325

Normal patch images 932
2796Benign patch images 932

Malignant patch images 932
Left breast patch images 1337

2796
Right breast patch images 1459
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Figure 3.8: Samples from the IRMA database: Each row shows a given BIRAD type

3.2.2 Experimental setup

This section describes the experiments that we carried where we apply the proposed

method under different scenarios. In the first experiment, we discuss the results
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from the preprocessing stage over full mammograms, then we discuss three different

experiments using the patches.

Experiment 1: Pectoral removal of mammography

In this experiment, our algorithm for pectoral removal is discussed (see section 3.1.1).

The algorithm starts with an input image from the MIAS database. Then, label and

pectoral removal steps are applied as discussed earlier. The input image contains

labels and pectoral regions as extra unwanted areas as shown in Figure 3.9-(a). In

first step, label removal is applied on the input image and the resulted image is shown

in Figure 3.9-(b). In the second step, the pectoral area is removed to get the output

image as shown in Figure 3.9-(c). The output image is used for further processing.

Figure 3.9: An example of applying the preprocessing steps on the mdb004 image:
(a)the original image, (b) after applying labels removal, and (c) after applying pectoral
removal
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Experiment 2: Cancer detection knowing the BIRADS class

In this experiment, we assume the BIRADS type to be known as a prior-knowledge.

The experiment performed in the following steps: an input image is taken from the

IRMA database where 100 images were chosen randomly from each class. Then, an

optimal set of features is obtained using features extraction and selection techniques

discussed earlier. Finally, a suitable classifier is obtained for each class. We performed

the experiments under different scenarios. For the first setup, we deal with one of these

three cancer types: normal, benign, or malignant. Two scenarios were developed

for this setup. The two scenarios are: classification using 4 BIRADS classes and

classification using Low and High densities. Under each scenario, we obtained cancer

classification rate for each scenario individually. For the second setup, we consider the

existence of a tumor of not. We also consider the same two scenarios as above. The

main assumption for these experiments is that breast density is already known before

cancer detection.

Experiment 3: Cancer detection without knowing BIRADs

Here, we ignore the density information and focus only on cancer classification. We

followed the same steps discussed above. The input images are taken from the datasets

then, an optimal set of features obtained using features extraction and selection tech-

niques. Finally, a suitable classifier is used for each class. Here, we also consider two

setups. 100 images were chosen randomly for each class. We also considered here two

scenarios: 4 BIRADS and only Low and High densities. For the two scenarios, we
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combined all the images under the same cancer type and chose 100 images randomly.

Here, the focus is on cancer detection without knowledge about the density type.

Experiment 4:Proposed two stage classification system

This experiment focuses on our proposed two stage approach which includes density

classification and cancer detection. The two stages work in a sequential manner where

the density classification is applied first, then cancer detection is performed. We start

with 100 images chosen randomly from the dataset for each class. Then, the features

obtained using features extraction techniques. Next, the features vectors are used

for density classification to determine the density type. Based on density type, a

dedicated classifier is used to identify the cancer type.

The experiments were developed under four scenarios. In the first scenario , we

deal with low and high densities classes with all features (79 features). Then, we used

the class assigned from the first stage which added to the feature vector to apply the

second stage - cancer detection. In the cancer detection, we classified the images into

either cancer exist or not. We used an optimal classifier for each class to achieve the

best accuracy rate. Under the second scenario, we carried the same procedure as in

the first scenario. Under the second scenario, we deal also with low and high densities

but with top ranked features.

For the third and fourth scenarios, we deal with 4 BIRADS classes where the third

scenario deals with all features and the fourth scenario deals with the top ranked

features. The same procedure is followed as discussed above.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, we discuss the results for density classification, cancer detection, and

the combination of both using the proposed 2-stage classifier.We also compare our

results with other state-of-the-art methods in the literature. Moreover, we highlight

some challenges and difficulties we faced during the experiments.

Since the main contribution of our work is the 2-stage classifier which combines

density classification and cancer detection, we prefer to start with discussions on our

density classification experimental results. For the classification, we have used a 5-

fold cross validation approach where we divide the dataset into 5 subsets, then use 4

subsets for training (80%) and 1 subset for testing (20%). This is repeated a number

of times, then we average the results.

4.1 Density Classification

As mentioned earlier, there are two scenarios for breast density classification. The

first scenario considers 4 BIRADs as followes:
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� BIRAD I : the breast density is fatty.

� BIRAD II : the breast is fibroglandular dense.

� BIRAD III : the breast is heterogeneously dense.

� BIRAD IV : the breast is extremely dense.

Figure 4.1: BIRADS examples: (a) BIRADS I, (b) BIRADS II, (c) BIRADS III, and
(d) BIRADS IV

The second scenario only considers low and high density classes. For both types of

breast density classification categories, we either use all extracted features directly or

use the top ranked features. The effects of using both sets of features on classification

performance are now discussed

F Using all features:

Here, we use all the extracted features with four different classifiers that i.e. SMO

, KNN , Naive Bayes, and Decision tree. The classification results are presented in

Table 4.1.

Form Table 4.1, we observe that the SMO-based SVM gives the best performance

among the other classifiers while the Naive Bayes did not perform well. The results are
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Table 4.1: Density classification using all features
SMO kNN Naive Bayes Decision Trees

BIRADS (4 classes) 59.12% 52.47% 46.35% 51.9%
Low/High density (2 classes) 93.56% 92.7% 83.69% 91.63%

reasonable when we know that the assumption made on the independence of features

in the Naive Bayes classifier is not realistic. Better results can be obtained when a

general Bayesian classifier is used. Also, KNN and Decision Trees classifiers didn’t

give good performance as the KNN classifies the classes based on the distance between

classes which not accurate since the features are not homogeneous in nature, and the

decision tree classifier is mainly adopted for categorical data.

F Using the top ranked features:

Instead of using all features for density classification, we have selected the top 20 high

ranked features, using results from the Chi-Squared statistics and the Information

Gain feature selection methods. We obtained different top ranked features for BIRADs

breast density classes and Low/High breast density classes. The selected features for

these two breast density categories are shown in Table 4.3 and 4.4, respectively. From

these two tables, we note that some of the features are common across both breast

density categories while due to the difference in textures in mammogram images for

BIRADs classes, we have some different features selected as well (see Table 4.3 and

4.4). The classification results are shown in Table 4.2, where we notice that the SMO-

based SVM again outperforms the other classifiers. The Naive Bayes also gives the

same performance compared to the SMO-based SVM for Low/High breast density

classification. The reason for this improvement in the Naive Bayes classifier is the

selection of independent features which is a necessary requirement for the Naive Bayes
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classifier. The Naive Bayes is mainly adapted to work with binary hypotheses as can be

seen from these results. Recall that using feature selection using information content

helps in selecting features that are relatively independent hence making the Naive

Bayesian more applicable.

Table 4.2: Density classification using feature selection
SMO kNN Naive Bayes Decision Trees

4 BIRADS 55.36% 50.75% 46.14% 52.79%
Low and high density 92.06% 90.56% 92.06% 91.8%

Table 4.3: The top 20 features for 4 BIRADS classes
rank feature approach feature Name IG Chi

1 GLCM Information measure of correlation 2 1 1
2 GLCM Correlation 2 2
3 GLRL RLN 3 3
4 GLCM Sum entropy 4 5
5 image Variance 5 4
6 GLCM Information measure of correlation 1 6 8
7 GLCM Cluster Shade 7 7
8 GLCM Cluster Prominence 8 6
9 LBP H(4)* 9 9
10 GLCM Entropy 10 10
11 image Skewness 11 11
12 LBP H(9) 12 12
13 GLCM Energy 13 13
14 GLCM Maximum probability 14 14
15 GLCM Difference entropy 15 15
16 GLCM Inverse difference moment normalized 16 19
17 GLCM Contrast 17 18
18 GLCM Difference variance 18 17
19 LBP H(10) 19 20
20 Wavelet Energy of diagonal band in level 3 20 16

* H(x) = LBP Histogram bin number x
* IG: the ranking of features based on Information Gain, and Chi: the ranking of

features based on Chi-Squared statistics.
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Table 4.4: The top 20 features for low and high densities
rank feature approach feature Name IG Chi

1 GLCM Information measure of correlation 2 1 1
2 GLCM Correlation 2 2
3 GLCM Information measure of correlation 1 3 4
4 GLCM Cluster Shade 4 3
5 GLRL RLN 5 6
6 image Variance 6 5
7 GLCM Cluster Prominence 7 8
8 GLCM Sum entropy 8 7
9 image Skewness 9 9
10 GLRL SRN 10 10
11 GLCM Sum of squares: Variance 11 12
12 GLCM Autocorrelation 12 11
13 GLCM Sum variance 13 14
14 GLRL SGLGE 14 13
15 image Mean of image 15 15
16 GLRL LRE 16 16
17 GLCM Sum average 17 17
18 GLRL LRLGE 18 18
19 GLRL SRHGE 19 19
20 LBP LBP Histogram bin number 4 20 20

Summary:

The density classification plays an impotent role in cancer classification due to the

strong relationship between breast density and cancer detection. We observed that

the classification performance is different for breast density categories. For BIRADs

classes,we used 128 × 128 patch size equals to 5mm x 5mm actual patch dimensions

and we achieved 59.12% classification rate better than the results from [22] where they

used full images for the feature extraction stage (see Table 4.5).

Table 4.5: Comparison for density classification with four BIRADS classes
Algorithm classification rate

Oliver et.al [22] 47%
Proposed work 59.12%
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For low and high densities classes, we compared our results with other methods in

the literature as shown in Table 4.6. The results show that our proposed algorithm

achieves an excellent classification accuracy of 93.6% using SVM, outperforming all

exists approaches. Next, we will discuss the results related to cancer detection on

Table 4.6: Comparison for density classification with low and high densities classes
Algorithm classification rate

Petroudi et al. [18] 91%
He et al. [20] 78%

Chen et al. [24] 88%
Oliver et al. [25] 91%

Ghouti and Owaidh [26] 83%
Proposed work 93.6%

mammogram images.

4.2 Cancer detection

For cancer detection, we classify the images under 2 different setups. In the first

setup, we consider normal, benign and malignant mammogram patches, whereas in

the second setup, we consider patches with and without cancer regions. We performed

a number of experiments related to cancer detection. First, we mixed all types of den-

sities and classified patches as either normal, benign or malignant patches using four

different classifiers. The results are shown in Table 4.7. The maximum classification

rate obtained was 55.54% using the SMO-based SVM with all features. The Naive

Bayes gave the worst performance while the kNN and decision trees gave moderate

performances. We also performed experiments to classify mammogram patches as

either cancer or no cancer regions. We reached a maximum detection rate of 71.78%
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using the SMO-based SVM. As expected, the classification accuracy has improved

when considering only 2 classes.

Table 4.7: Classification rate for cancer detection for all images (BIRADS I,II,III,IV)
(without density information , all features)

SMO kNN Naive Bayes Decision Trees
Normal, Benign and Malignant 55.54% 48.82% 41.3% 49.64%

Cancer/No cancer 71.78% 69.78% 70.39% 70.8%

We then considered the top ranked features in the next set of experiments. In

particular, we used the top 16 ranked features shown in Table 4.10. In Table 4.8,

the results were obtained for both Low and High density patches (BIRADS I and

IV) separately under setup 1 (normal, benign and malignant patches). We reached

a maximum detection rate of 57.8%, and 53.8% using the SMO-based SVM for Low

density and High density, respectively. Overall, a maximum average classification

accuracy of 55.8 % was reached when the type of density is known (only 2 types of

density are considered). The results in Table 4.9 are similar to the ones in Table

4.8, however, only Cancer/No cancer classes are considered. We reached a maximum

detection rate of 97% and 72.7% using the SMO-based SVM for Low density and High

densities, respectively. Overall, a maximum average classification accuracy of 84.9 %

was achieved.

Table 4.8: Classification rate for Cancer detection based on Low and High densities
for setup 1 (Normal ,benign and malignant)(known densities, selected features).

SMO kNN Naive Bayes Decision Trees
Low density 57.8% 51.6% 50.8% 44.64%
High density 53.8% 47.8% 46.6% 45.2%

Low/High densities average 55.8% 49.7% 48.7% 44.9%
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Table 4.9: Classification rate for Cancer detection based on Low and High densities
for setup 2 (Cancer/No cancer)(known densities,selected features).

SMO kNN Naive Bayes Decision Trees
Low density 97.0% 95.0% 89.0% 95.0%
High density 72.7% 67.3% 68.0% 68.0%

Low/High density average 84.9% 81.2% 78.5% 81.5%

Table 4.10: The optimal features for cancer classification using High and Low density
classes

rank feature approach feature Name
1 GLCM Information measure of correlation 2
2 GLCM Correlation
3 GLCM Information measure of correlation 1
4 GLCM Cluster Prominence
5 image Variance
6 GLCM Cluster Shade
7 GLCM Sum entropy
8 GLRL RLN
9 image Skewness
10 LBP LBP Histogram bin number 4
11 GLCM Entropy
12 LBP LBP Histogram bin number 2
13 LBP LBP Histogram bin number 1
14 GLCM Maximum probability
15 image Kurtosis
16 LBP LBP Histogram bin number 10

From the results in Tables 4.8 and 4.9, we observe that cancer detection perfor-

mance is greatly effected by density classification. We achieved a maximum detection

rate of 97% for low or fatty breast density patches and 72.7% for dense or high density

patches. The average classification rate into cancer/no cancer patches is 84.9%. This

result is much better than the case of unknown density type (Table 4.7).

The main reasons for the low classification accuracy in the case of high density are:

the tumor size in mammogram patch, and the similarity of tumors in dense tissue.

For the first reason, the full size of the patch is 128×128 with 50µ/pixel, so it is 5mm
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x 5mm and the micro-classification size of the tumor is 0.5 - 1mm. Thus, the ROI

area from our patch is only 1mm x 1mm which represents 1/25 from full patch size.

The second reason is that the tumor looks like dense tissue or might be brighter and

this problem complicates the diagnosis of tumors by radiologists leading to a wrong

diagnosis or a miss. This problem is less prominent in the case of low density tissue.

4.3 The proposed two stage classifier

Since accuracy in cancer classification is substantially effected by the type of breast

density, we propose here to combine breast density classification and cancer detection

in a two-stage classification system. The experiments were performed for both the

full set of features and the top ranked features. We list in Figure 4.2 the different

experimental setups and show, as Experiment 4, how our approach is different to

existing techniques. In particular, instead of ignoring completely the information on

density or assuming it to be known, we propose to, first, identify the type of density

we have, then, based on this stage, we use the specific classifier dedicated for this type

of density.

Experimental results using all features:

Here, all features (79 features) are used for the experiments. For density classification

(see experiment 1), we achieved a classification accuracy of 93.6 % for Low and High

densities as shown earlier in Table 4.1. For cancer detection, we perform two experi-

ments. In the first experiment, we performed cancer detection with prior- knowledge
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Figure 4.2: Experiments developed for our proposed algorithm

for density type (see experiment 2). We achieved classification rate of 83.9 % using the

SMO-based SVM classifier for Cancer/No cancer classes. In the second experiment,

we achieved a classification accuracy of 71.8 % using the SMO-based SVM classifier.

In the experiment, no information about density is taken into the account ( see ex-

periment 3). The classification was also considered for Cancer/No cancer classes, too.

All the above experiments have been performed with all features (79 features) . For

experiment 4, the density classification was applied first, then we use the assigned

classes in the next stage (cancer classification ). Overall, for in the two stage classi-

fier, we achieved an average classification rate of 78.5%

Experimental results using the top 16 ranked features:

Here, only the top ranked features ( 16 features) are used for the experiments. We

performed the same experiments discussed above but with the top ranked 16 features.
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For cancer detection, we performed cancer detection with prior- knowledge for density

type (see experiment 2) and achieved a classification rate of 84.9 % for Cancer/No

cancer classes as shown in Table 4.9. We performed the same second experiment as

discussed above and achieved the same result. The experiments are also performed

under Cancer/No cancer classes, too.

From experiment 4, the density classification was applied, we use the resulted

classes in the cancer classification. For the case of the proposed two stage classifier,

we achieved an average classification rate of 79.4%

The results are summarized for 2-stage classifier in Table 4.11. From the results,

we observe an increase in classification performance using a small set of optimal fea-

tures.The detection rate is increased by 0.9% using only the 16 top ranked features

out of 79 features.This can greatly reduce the computational cost and improve the

computational performance of our proposed approach. Also, we observe an increase

in accuracy when prior knowledge about density classification is used (here, unknown

but estimated) before cancer classification.

Table 4.11: Summery of 2-stage classifier
Using all features using feature selection

Cancer/No cancer classification with-
out knowing density type (L/H densi-
ties,selected features)

71.8% 71.8%

Low/High density classification 93.6% 93.6%
Cancer detection with prior knowledge
of density classes

83.9% 84.9%

Proposed 2-stage classification 78.5% 79.4%
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CHAPTER 5

CONCLUSION AND FUTURE

WORK

5.1 Conclusion

Breast cancer detection is still a challenging topic in medical image processing is breast

cancer is a major threat to women well being. Numerous approaches and systems

have been developed to assist doctors and radiologists in the early detection of cancer.

CAD systems developed so far do not satisfy the clinical standards which deal with

human lives. Current research activities focus on special problem such as classification

between mass/no mass in ROI or between malignant and benign patches. Moreover,

density classification is usually separated for cancer detection. In our proposed work,

we combined density classification and cancer detection into a single robust CAD

system. In our work, we started by proposing an approach for identifying the optimal

set of features for cancer detection from small patches. Then, breast density and
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cancer detection are fused into a single two stage classifier. The classification rate

achieved around 80% without any prior knowledge about the density. We achieved

an excellent result in density classification comparing to exists approaches reaching

93.58% accuracy with low and high density classes. Overall, we proposed a new

framework for cancer detection which does not require any knowledge about the type

of density in the mammogram images.

5.2 Future work

In cancer detection, many challenges still face researchers are faced the researcher.

Following our research finding, These are some suggestions for future work:

� Building a robust algorithm for extracting ROI to improve density and cancer

classification.

� Building a robust algorithm for extracting suspicious areas for abnormal masses

in breast areas using MLO and CC images.

� Using segmentation methods over ROI to improve density and cancer classifica-

tion.

� Building a robust approach to combine shape and textural features over ROI to

identify malignant and benign masses.
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Appendix

This is the feature vector that used in our proposed method.

SN Feature approach Feature Name

1 image Mean of image

2 image Variance of image

3 image kurtosis of image

4 image Skewness of image

5 GLCM Autocorrelation of GLCM

6 GLCM Contrast of GLCM

7 GLCM Correlation of GLCM

8 GLCM Cluster Prominence of GLCM

9 GLCM Cluster Shade of GLCM

10 GLCM Dissimilarity of GLCM

11 GLCM Energy of GLCM

12 GLCM Entropy of GLCM

13 GLCM Homogeneity of GLCM

14 GLCM Maximum probability of GLCM

15 GLCM Sum of sqaures: Variance of GLCM

16 GLCM Sum average of GLCM

17 GLCM Sum variance of GLCM

18 GLCM Sum entropy of GLCM
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19 GLCM Difference variance of GLCM

20 GLCM Difference entropy of GLCM

21 GLCM Information measure of correlation 1 of GLCM

22 GLCM Informaiton measure of correlation 2 of GLCM

23 GLCM Inverse difference normalized (INN) of GLCM

24 GLCM Inverse difference moment normalized of GLCM

25 LBP LBP Histogram bin (1)

26 LBP LBP Histogram bin (2)

27 LBP LBP Histogram bin (3)

28 LBP LBP Histogram bin (4)

29 LBP LBP Histogram bin (5)

30 LBP LBP Histogram bin (6)

31 LBP LBP Histogram bin (7)

32 LBP LBP Histogram bin (8)

33 LBP LBP Histogram bin (9)

34 LBP LBP Histogram bin (10)

35 GLRL SRE

36 GLRL LRE

37 GLRL GLN

38 GLRL RLN

39 GLRL RP
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40 GLRL LGRE

41 GLRL HGRE

42 GLRL SGLGE

43 GLRL SRHGE

44 GLRL LRLGE

45 GLRL LRHGE

46 Wavelet Transform Energy of image level 3

47 Wavelet Transform Energy of horizontal band level 1

48 Wavelet Transform Energy of horizontal band level 2

49 Wavelet Transform Energy of horizontal band level 3

50 Wavelet Transform Energy of Vertical band level 1

51 Wavelet Transform Energy of Vertical band level 2

52 Wavelet Transform Energy of Vertical band level 3

53 Wavelet Transform Energy of Diagonal band level 1

54 Wavelet Transform Energy of Diagonal band level 2

55 Wavelet Transform Energy of Diagonal band level 3

56 Gabor filter Energy of Band 1 from Gabor with 3 scales and 8 orientation

57 Gabor filter Energy of Band 2 from Gabor with 3 scales and 8 orientation

58 Gabor filter Energy of Band 3 from Gabor with 3 scales and 8 orientation

59 Gabor filter Energy of Band 4 from Gabor with 3 scales and 8 orientation

60 Gabor filter Energy of Band 5 from Gabor with 3 scales and 8 orientation
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61 Gabor filter Energy of Band 6 from Gabor with 3 scales and 8 orientation

62 Gabor filter Energy of Band 7 from Gabor with 3 scales and 8 orientation

63 Gabor filter Energy of Band 8 from Gabor with 3 scales and 8 orientation

64 Gabor filter Energy of Band 9 from Gabor with 3 scales and 8 orientation

65 Gabor filter Energy of Band 10 from Gabor with 3 scales and 8 orientation

66 Gabor filter Energy of Band 11 from Gabor with 3 scales and 8 orientation

67 Gabor filter Energy of Band 12 from Gabor with 3 scales and 8 orientation

68 Gabor filter Energy of Band 13 from Gabor with 3 scales and 8 orientation

69 Gabor filter Energy of Band 14 from Gabor with 3 scales and 8 orientation

70 Gabor filter Energy of Band 15 from Gabor with 3 scales and 8 orientation

71 Gabor filter Energy of Band 16 from Gabor with 3 scales and 8 orientation

72 Gabor filter Energy of Band 17 from Gabor with 3 scales and 8 orientation

73 Gabor filter Energy of Band 18 from Gabor with 3 scales and 8 orientation

74 Gabor filter Energy of Band 19 from Gabor with 3 scales and 8 orientation

75 Gabor filter Energy of Band 20 from Gabor with 3 scales and 8 orientation

76 Gabor filter Energy of Band 21 from Gabor with 3 scales and 8 orientation

77 Gabor filter Energy of Band 22 from Gabor with 3 scales and 8 orientation

78 Gabor filter Energy of Band 23 from Gabor with 3 scales and 8 orientation

79 Gabor filter Energy of Band 24 from Gabor with 3 scales and 8 orientation

79



Vitae

Name: Mahmoud Marwan Alhelou

Nationality: Palestinian

Date of Birth: 24-4-1989

Email: mm.alhelou@gmail.com

Mobile : 00966562477356

Permanent Address: Jeddah, Saudi Arabia

Education:

King Fahd University of Petroleum and Minerals ( KFUPM)

M.Sc. in Electrical Engineering CGPA: 3.028 December, 2015

Islamic University Of Gaza (Gaza Strip)

B.S. in Computer Engineering CGPA : 81.14% - very Good.

Experience (Training and Work) :

Courses Trainer : 2 months

ITIL Foundation , Global Knowledge Oct. 2015

DBA SQL server , Saudi Electronic University Sept. 2015

Program Trainer: 90 days

iExcel Gifted Program as Trainer in Electrical Engineering , Saudi Aramco Aug. 2015

Work Experience:

King Fahd University of Petroleum and Minerals ( KFUPM) 2012 - 2015

Taught courses: Microprocessor, Microcontroller and Electrical circuit.

80



Workshops :

The Fifth Engineering and Technology Forum at the Islamic university of Gaza

The The first ICT Symposium 2011, Palestine Technical College - Deer AlBalah.

The The Attending Google Events , TEDxCairo and a lot of Scientism Conference .

Publication :

Hand Gesture System, the 2nd International Conference on Information and Communication

Systems (ICICS 2011), May 22-24, 2011 Amman, Jordan.

81




