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CHAPTER 1

INTRODUCTION

1.1 Adaptive Filtering Structures:

Adaptive filters are one of the key elements in most of the communications and
real time signal processing systems because of their high efficiency and reliability.
It is widely used in channel equalization, echo cancellation, noise cancellation and
many other applications. Regardless of the difference in nature between all the
systems that uses adaptive filters, there is one common, an input signal and a
desired response are used to calculate the error which is used in controlling an
adjustable filter coefficients. Generally, there are four types of structures of adap-
tive filters that covers wide range of applications: system identification, Inverse
system modeling, signal predication and noise cancellation [2].

Since the main objective of this thesis is to study sparse system identifica-
tion structure, we employ system identification setting. Figure 1.1 below show a
schematic diagram of the abstract system identification problem.

Figure 1.1: Schematic Diagram of the system identification problem.
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The input to both systems is ui. The first system is the unknown wo while
the other is wi. Note that we do not have control over wo, but through wi we
will be able to recognize the unknown system. di is the desired output which is
contaminated with the noise process v(i).

If v(i) is Gaussian process, we say that the adaptive filter is performing in
Gaussian noise environment.If else, we say it performs in Non-Gaussian

noise environment.
The error signal e(i) = d(i)− y(i) is used to adjust the parameters of wi. y(i)

is the estimated desired signal.
The estimation problem in Fig 1 can be easily casted as an optimization prob-

lem. The cost functions used for this purpose are quite abundant, we limit our-
selves here to the basic (and famous) costs. For example, the weights vector wi

can be controlled using Square Error function defined as following:

J(i) =
1

2
E{e2(i)} (1.1)

where:

e(i) = d(i)− y(i) (1.2)

d(i) = woui + v(i) (1.3)

Note that our objective is to minimize (1.1).
The weights can be solved as well using the fourth power minimization of the

error, that is:

J(i) =
1

4
E{e4(i)} (1.4)

Several approaches can be followed to minimize both (1.1) and (1.4) recursively.
The steepest descent however, has proved its simplicity and robustness through
out history, and these functions were not an exception to it. The steepest descent
formula is given by:

wi = wi−1 + µ
∂J(i)

∂wi−1

(1.5)

By applying (1.5) to (1.1), the resultant steepest descent is of the following form
[3]:

wi = wi−1 + µ[Rdu −Ruwi−1] (1.6)

where Rdu = E{d(i)ui} is the covariance vector between the input ui and the
desired output d(i). Ru is autocorrelation matrix of the input row vector ui —
assuming the input and the desired output are jointly stationary, and the input
is stationary. As i → ∞, wi = wo. Note that wi is deterministic unknown vector.
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1.1.1 LMS Algorithm

The steepest descent recursion depends on the second order statistical informa-
tion of the input and the desired response. Since these moments are practically
difficult to acquire, we resort to approximating these moments. The simplest
approximation is the instantaneous one, that, Ru is approximated by u∗

iu for
example. Following this instantaneous approximation, (1.6) is rendered to [4]:

wi = wi−1 + µuie
∗(i) (1.7)

Which is called the Least Mean Square (LMS) algorithm. The LMS algorithm is
one of the famous adaptive filters algorithms because of its simplicity which suits
many practical real time applications.

It may seem at first glance as well this approximation is only beneficial from
computational point of view. However, (1.7) adaption depends on streaming data,
and if the statistical nature of the data changes with time, the LMS will be able
to adapt itself and still give the desired solution. This is not possible with the
case of (1.6) since we have to know when the data nature will change — a very
difficult pursuit. Note that wi is stochastic vector unlike the wi, which is unknown
deterministic vector.

The LMS can be sought as steepest decent algorithm of the following error
cost function:

J(i) =
1

2
e2(i) (1.8)

1.1.2 LMF Algorithm:

As in (1.8), the cost function in (1.4) can be rendered to (by applying instanta-
neous statistical approximation — remove the expectation):

J(i) =
1

4
e4(i) (1.9)

and the resultant algorithm of minimizing (1.9) is called Least Mean Fourth (LMF)
algorithm:

wi = wi−1 + µuie
∗(i)|e(i)|2 (1.10)

LMF had been proposed as a solution to the poor performance of the LMS under
non-Gaussian noise according [5]. However, LMS performs better in the Gaussian
noise environment. The common factor though (which is the most related to the
future discussion and results ) is that both of these steepest decent algorithms
suffers from the correlation of the input of the signals [6][3]. The correlated input
appears for example, in the Echo Cancellation systems. In these systems, the
input is the human speech — which is highly correlated. And since these systems
are real time systems, the slowness of the adaptive filters used can significantly

3



reduce the quality of the final echo-free speech. Hence, it becomes mandatory to
find solutions to solve this problem of slow convergence to the optimum solution
wo. In the next section, we explore the main approaches used to improve the
convergence rate of adaptive algorithms.

1.2 De-Correlation Approaches

The three approaches mainly used to tackle the slow convergence (resulted from
highly correlated input) are; instantaneous power normalization, unitary transfor-
mations accompanied with power normalization and pre-whitening filtering. At
the end of this section we justify the usage of the Transform domain algorithms
(which belongs to the approach of unitary transformations).

1.2.1 Input Instantaneous Normalization

Normalized LMS/F Algorithms

The recurrence of Normalized Least Mean Square (NLMS) is given [7][2]:

wi = wi−1 + µ
ui

‖ui‖22
e(i) (1.11)

The power normalization introduced in (1.11) proved to shrink the eigenvalue
spread of the autocorrelation matrix of the input ui, and hence whiten the input.

In [8], the NLMF algorithm is motivated by the NLMS algorithm, and has the
following recursion:

wi = wi−1 + µ
ui

‖ui‖22
e3(i) (1.12)

The algorithm performed better than NLMS in Non-Gaussian Environments. Nor-
malized LMF inherits the LMF features (low Meas Square Error (MSE) in Non-
Gaussian noise environment)).

NLMS and NLMF algorithm offer good performance on the correlated en-
vironments, however, as the correlation level increase the instantaneous power
normalization does not mitigate the correlation and may introduce instabilities
especially in the NLMF algorithm. This problem acted as motive for looking for
more thorough ways of de-correlation and performing normalization.

1.2.2 Transformation and power Normalization:

The input regressor in this approach is transformed - using suitable transform —
to another domain where it has lower correlation. There are many transforms
that can do the job, but the optimal (In Mean Square Sense) is Karhunen-Loeve
Transform or for short KLT.
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Karhunen-Loeve Transform:

The Karhunen-Loeve theorem states that a wide stationary process can be ex-
panded into summation of random variables with orthnormal functions, i.e. it is
analogous to the Fourier transform of functions in the deterministic case. Math-
ematically: assume x(t) a wide stationary random process then:

x̃(t) =
∞∑

i=1

Cnφn(t) (1.13)

where Cn is a random variable given by the following projection:

Cn =

∫ τ

0

x(t)φ∗
n(t)dt (1.14)

The Karhunen-Loeve expansion is optimal since the following is true :

E[|x̃(t)− x(t)|2] = 0, (1.15)

which implies that the set of the φn(t) are set of orthonormal functions. from the
KL theorem we get the following crucial result:

E[CnC
∗
m] =

{
σ2
n n = m

0 n 6= m

extending the input signal to be a vector, the KL expansion will be a summa-
tion of vectors over the same orthonormal set which can be transformed into
matrix format and we will have the KL transformation. The KLT based on this
simple analysis is optimal in a mean square sense and has perfect de-correlation
properties.[7][9]. KLT transform is found to be optimal in another sense, the
variance distribution after the transformation [10]. The KLT transform is quite
complex, for example the KLT entries of N by N KLT transform for first order
Markov process is given by:

wij = [
2

N + µj]

]
1
2 sin[rj[(i+ 1)− N + 1

2
] + (j + 1)

π

2
] (1.16)

and µj = (1− ρ2)[1− cos(rj) + ρ2] and rj is the real positive root of the transcen-
dental equation:

tan(Nr) =
(1− ρ2)sin(r)

cos(r)− 2ρ+ ρ2cos(r)
(1.17)

from the above equations we see the strong dependence of the KLT into the
correlation factor . This one of the main obstacles in calculating the KLT. for
some applications like image processing we can estimate ρ from heuristics. But
this is not the case for most of the applications. Not only that, assuming we know
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ρ , the calculation can computationally demanding if N is very large, especially
in real time applications like echo-cancellation for example. For this reasons, the
KLT has been set to be the bench mark for evaluating the sub-optimal transforms.
Transforms that is data independent and computationally efficient. The family
of Discrete Cosine Transform (DCT), Discrete Since Transform (DST), Discrete
Fourier transform (DFT) and Discrete Hilbert Transform are well known for their
ability to perform de-correlation.

Discrete Cosine Transform:

There are four types of Discrete Cosine Transforms commonly used in the litera-
ture, which are:

DCT-I [CI
N+1]nk =

√
2
N
[ǫnǫkcos

πnk
N

]

DCT-II [CII
N ]nk =

√
2
N
[ǫkcos

π(2n+1)k
2N

]

DCT-III [CIII
N ]nk =

√
2
N
[ǫncos

π(2n+1)n
2N

]

DCT-IV [CIV
N ]nk =

√
2
N
[cosπ(2n+1)(2k+1)

4N
]

where n, k = 0, ...., N − 1 and ǫp =
1√
2,
p = 0, N and zero otherwise.

The DCT-II and its inverse DCT-III proposed by [11] are known for the excellent
de- correlation and energy compaction and in some cases can be approximated to
the KLT. in [11], the transforms are proposed and proved to perform closely to the
KLT for Markov-I process. The same result is proven on [12] using analytical ap-
proach. Further study of the DCT diagonalization properties is done in [15],where,
eight DCT transformation had been generated form a general from circulant ma-
trix. To study their asymptotic behavior, the weak norm of the difference of the
input covariance matrix and the output (after transformation) covariance matrix
is used. The result is that the DCTs developed are asymptotically optimal for
all finite order Markovian processes. hence, in another word, in this case the
DCTs are asymptotically equivalent to Karhunen-Loeve transformation. In [13]
comparison is conducted between the Karhunen-Loeve transformation and DCT,
for widely correlated data (the correlation factor vary widely ), the DCT is found
perform closely to KLT in energy compaction and de-correlation.

Discrete Fourier Transform:

Discrete Fourier Transform is defined as following:

FN(i, l) =
1√
N
e

j2πl
N (1.18)

fori, l = 0, ....., N − 1
in [14], a comparison is held to measure of the effectiveness of de-correlation for
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DFT and DCT transforms in the case of Makov-1 input process. The metric
used for the comparison was Hilbert-Schmidt norm for the difference between a
chosen Toeplitz matrix and the transformation matrix. it is found that for the
first Markovian process the DCT performed (that is, de-correlate much better)
than DFT , or at least as it. Since these transformation are generally suboptimal
(cannot give perfect de-correlation) residual correlation is expected.

Discrete Sine Transform

There are four types of Discrete Sine Transforms commonly used in the literature,
which are:

DST-I [CI
N−1]nk =

√
2
N
[sinπ(n+1)(k+1)

2N
]

DST-II [CIV
N ]nk =

√
2
N
[ǫksin

π(2n+1)(2k+1)
2N

]

DST-III [CIV
N ]nk =

√
2
N
[ǫnsin

π(n+1)(2k+1)
2N

]

DST-IV [CIV
N ]nk =

√
2
N
[cosπ(2n+1)(k+1)

2N
]

where n, k = 0, ...., N − 1 and ǫp =
1√
2,
p = 0, N and zero otherwise.

DST-II and DST-III are used exchange ably with DCT-II and DCT-III. DST-II is
found to be equivalent to KLT when the input processes is Markov-I with negative
correlation factor or very small adjacent-element correlation factor [15][16]. In [17]
, new transformation is constructed in a way it will be approximated to KLT in
the case of the first order process — and work for ±ρ. This transformation is also
symmetrical regarding the energy packing.

Power Normalization to enhance the performance

The De-correlation alone will not solve the problem of the poor performance in
the correlated environment [18][7][19], because using unitary transformation only
removes the correlation and remains the problem of the eigenvalue spread. The
unitary transformation performs similarity transformation which is known to pre-
serve the eigen values and eigen value spread. The power normalization concept is
used to shrink the eigenvalue spread of the resultant matrix of the de-correlation
process. The power normalization hence, is trying to whiten the transformed
input [19].

Technique for estimating the power Normalization Matrix

The power normalization technique generally used is exponential smoothing as de-
scribed in [19][20]. Λi is defined as the power normalization matrix with diagonal
elements calculated as following:

σ2
k(i) = βσ2

k−1(i) + (1− β)|Uk(i)|2 (1.19)
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with β as smoothing factor. However it should be noted that this estimation is
valid only on the environment where the input is not too non-stationary. The
initial values of the powers are commonly based on initial estimate of the input
power.

1.2.3 Pre-Whitening filtering approach

Assuming that the second order statistics of the input sequence u(i) is known, the
spectral factorization of the input is given by:

Su(z) =
inf∑

−inf

r(k)z−k (1.20)

where r(k) = Eu(i)u∗(i − k), and since the spectral factorization has a para-
hemeritian property it can be written as:

Su(z) = σ2
u

Πm
i=1(z − zl)(z

−1 − z∗l )

Πn
i=1(z − pl)(z−1 − p∗l )

(1.21)

from this relation we can clearly see that if we designed a filter with function
1

σuA(z)
, the output will have unit variance and completely whitened. However this

approach is demanding on the level of information required to perform it, since
it is all based on the assumption that we know the second order statistics of the
input and the order of the process.

Why Transform Domain Adaptive Filtering Approach

From the previous discussion we can conclude clearly that the Transformation
and power normalization is the most practical approach to mitigate the effect of
the correlated input slow convergence of adaptive filters. By applying unitary
transformation that is data independent, we free ourself from the immense knowl-
edge to implement both the KLT transformational and the pre-filtering approach.
Moreover, the Unitary transformation will use efficient algorithms to be calculated
which will reduce the computational complexity significantly.

To get more insight about these algorithms, we explore the choice of the uni-
tary transformation and its stochastic modeling, and conclude with variants of
algorithms.

1.2.4 Performance of the transform domain LMS algo-
rithms

Comparing the two versions of LMS algorithms-time domain versus frequency
domain, it is found that they give identical Weiner solution, regardless of the
transform used. From computational complexity point of view the TDLMS al-
gorithm increased the complexity of calculations because of the transformation
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and power normalization [21]. In [22], The Transform Domain LMS algorithm
is studied from a different point of view, that is , how the transform used with
power normalization can reduce the eigenvalue spread of the input. In [23], the
analysis is extended for the second order AR processes. In order for the TDLMS
algorithm to perform well, the higher the dimension of the transform the more
de-correlation we can get. but this create a real time implementation issue since
it will impose large delays. In [24] , an algorithm is proposed to become compati-
ble with rectangular transformation, to overcome this tradeoff and still have high
decor relation with small time delay.

1.2.5 Stochastic Modeling of TDLMS

in [25], statistical model is developed for the transform domain LMS algorithm,
with regularization factor in the power normalization. The result of the pro-
posed model is the MSE curve for the algorithm. This model is built on easing
assumptions: the input vector and the estimated weight vector are statistically
independent ( independent assumptions), and the power normalization matrix
and the numerical autocorrelation of the input are jointly stationary (i.e. the
power normalization matrix does not change significantly with time). The model
assumes colored Gaussian data as input. The MSE curve is found to be very close
to the simulated one, with second order process. The model is developed even
more for finer agreement between the simulation and analytical MSE curves in
[26] without using the independence assumptions. Also conditions on the step size
is obtained. The previous models assume white Gaussian input [19] (and other
similar models). Hence, significantly reduces the mathematical analysis.

1.2.6 Variants of Transform domain LMS algorithms

In this As in the case of the LMS, Transform Domain LMS also has its normal-
ized version which proved to be superior to the TDLMS as discussed in [27]. in
[28], A new approach is used to study the normalized TDLMS and M-estimate
Algorithm TDNLMM[29] , which is better than TDNLMS algorithm in impulsive
noise environment. Price theorem is used to obtain decoupled difference equa-
tions that describe the mean and mean square behavior. In the work of [30], A
new LMS algorithm based on the partial update of the filter coefficients, i.e. to
update the only significant coefficients that will reduce the MSE. The choice of
the subset group is based on magnitude of the corresponding gradient estimate.
The transform domain LMS version of the subset update is proposed in [31], The
DCTLMS proved to benefit from the partial update and reduce the computational
complexity of the DCTLMS.

In [32][33], variable step TD-LMS is proposed, based on the instantaneous
power normalization, error , and a global factor which is the same for each filter
confident. The computational complexity increased, however the convergence is
very fast compared to the ordinary transform LMS. in [34], A new normalized
TDLMS algorithm is proposed to solve the sensitivity of the TDNLMS algorithm
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to the level of excitation signal (which differs greatly over time). The proposed
algorithm uses regularization factor in order to reduce the variance of the estima-
tor. In [35] a new algorithm that uses a variable regularization factor is developed
for the case of white noise input. The algorithm showed excellent convergence
speed compared to Regularized TDNLMS algorithm for colored Gaussian input.

10



CHAPTER 2

TRANSFORM DOMAIN LMF
ALGORITHM FOR SPARSE
SYSTEM IDENTIFICATION

2.1 Introduction

The sparse-aware algorithm advent has been triggered firstly by recognizing that
important impulse responses (IR) happens to be sparse by nature, like the room
acoustic response wireless channels with few reflector environment and MIMO
systems. However because of lack of tools to employ such structure in adaptive
filtering and estimation problems, the early work done based on case by case
solution, for example numerous algorithms developed for enhancing echo can-
celers performance by exploiting this structure [36] [37] [?] [38] [39] [40] [41]the
famous proportionate NLMS, which changes the step-size-per-element each itera-
tion and has the potentiality to consider sparsity, by setting small step sizes for
the zero elements. The availability of mathematical tolls and their properties in-
troduced by the Compressed Sensing theory, availed the algorithms to be truly
sparse aware (the algorithm literally knows that its objective is sparse) as opposed
to the PNLMS approach.

2.2 Regularized Algorithms

2.2.1 Sparse LMS

The regularization firstly introduced to the LMS algorithm by [42]-motivated by
the LASSO-, where two version of regularizations used. The first one is the l1
norm which appears as a sign function on the recursion. The term acts as a Zero
Attractor (ZA), which simply attracts the filter coefficients to zero, including the
non-zero elements. The second logarithmic (with absolute value) regularization
function is proposed to distribute the attraction power unequally, force the zero
elements to zero and release the non-zeros from the attraction power and it is
called Re-wighted ZA (RZA). The second algorithm (RZA-LMS) performed much
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better because it introduces less bias as compared to (ZA-LMS).The RZA term
is approximated by piecewise linear functions to make the slope of the decent
steeper, which resulted in faster convergence [43].

The Steady State Analysis for ZA-LMS algorithm is given in [44], assuming
the input is white Gaussian.The analysis resulted in convergence limits and a rule
of on choosing the regularization factor.

The l0 norm is basically the optimum norm to exploit sparsity (as suggested by
the compressive sensing theory), but minimization of the l0 is NP hard problem
which motivated the l1. However,in [45] the l0 sparse aware LMS is implemented
using exponential something of l0 given in [46] . The analysis of the algorithm
resulted in rules of choosing the regularization parameter and the smoothing factor
of the l0 approximation[47].

The lp norm is introduced in [?], in [48] the Re-wighted l1 is introduced,which
results in an attraction term stronger than RZA. The Leaky RZA-LMS is intro-
duced in [49].

Set theoretic approach based on weighted projection on l1 norm is discussed
in [50] [51], where each data pair come is used to create set that the solution exist
in, and recursive projection leads to the solution.

Adaptive Sparse Signals Estimation

Sparse-Aware algorithms are employed in estimating the sparse signals. In [52],
three algorithms introduced; l0 LMS, Exponential Forgetting Factor LMS (EFF-
LMS), and Zero Attraction Projection (ZAP-LMS). The algorithms splits the
estimation into two recursive steps. The first step is LMS based (it can exploit
sparsity as well) while second step enforces sparsity in the solution.

Sparse LMS slow Convergence remedies

The convergence speed of the LMS is inversely proportional to the correlation level
of regressors, and its sparse aware versions inherit this disadvantage. Transform
domain LMS with ZA and RZA proposed by [53] to secure faster convergence
when the input is correlated. The variable step size algorithms VSS is another
valid approach for rising the convergence performance, the VSS-ZA-LMSa and
VSS-RZA-LMS introduced in [54][55], where the step size recursion depends on
the squared estimation error.

Support Identification Algorithms

By splitting the estimation od sparse vectors into two optimization problem, the
first is estimating the locations (gains at each location) and the second to esti-
mate the amplitude, the authors in [56] presented two recursions update alterna-
tively, the algorithm performance is very close to the oracle LMS (the know-it-all
algorithm) and much better than sparse-LMS algorithms, because clearly this
algorithm double check at each iteration which means faster convergence.
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Block Sparsity Structure

The block sparsity is structure can appear in many situation. The sparse algo-
rithms presented accounts for sparsity but id does not take block structure into
consideration. In [57], the authors presented mixed norm, namely l1,2. Two algo-
rithms showed and called Group ZA-LMS (GZA-LMS) and its reweighed version
called (GRZA-LMS).

Variable Sparsity Structure

The structure of the system can shift over time from sparse to completely non-
sparse, in this case ZA-LMS for example performance deteriorate significantly, in
[58] convex combination filter composed of LMS and ZA-LMS. The filter proved
to be universal-perform at least as the best of the two.

2.2.2 Sparse Affine Projection Algorithm (APA)

The ZA-APA and RZA-APA are introduced in [59] and the stability analysis is
developed in [60], and based on MSD minimization a rule on regularization factor
is deduced. Soft thresholding technique based on local approximation of the lp is
introduced in [61]. The l0 APA is introduced in [62], the performance is proved
by simulation only.

2.2.3 Sparse NLMS Algorithms

The NLMS sparse [62].The VSS-NLMS based on the based on l0 and l1 are intro-
duced in [63][64] respectively and the transient analysis and stability of ZA-NLMS
is studied on [65]. In [66] an exact NLMS lp based algorithm is derived based on
the fact that the lp is non-convex (we can not just take the derivative) and hence
the recursion result is exact and Quasi Newton, and the resulted NLMS is reported
to be stable.

2.3 Sparse LMF and NLMF Algorithms

LMF has its sparse versions introduced in [67] , where ZA-LMF, RZA-LMF ,lp-
LMF and l0-LMF are proved to perform significantly better than the LMF and
LMS at low SNR environment. The NLMF performance is know to be much
better than LMF in the case of correlated input, and sparse versions inherit this
property as well. In [68] ZA-NLMF introduced and the RZA-NLMF is proposed
by [69], and the same algorithm with used for estimating sparse signals in [70][71].
The lp norm NLMF introduced in [72] with application to the MIMO channel
estimation. The ZA-NLMF and RZA-NLMF algorithms are generalized by the
regularized weighted l1 algorithm introduced in [73].
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2.4 Sparse RLS Algorithm

The Least Square Method (LS) is extended to its l1 norm regularized version to
explore the sparsity of the MIMO channels estimation [74]. The RLS is equipped
with the l1 and l0 norm in and the lp-RLS in[75]. Greedy implementation that has
comparable computational complexity to recursive approach is proposed in [76].
The RLS is used as well to solve the problem of block sparsity using mixed norms
in [77] . The RLS is used with l1 to estimate sparse signal introduced in [78].

This chapter deals with the LMF algorithms and their transform domain ver-
sion in a sparse system identification (SSI) setting. The SSI has gained its popu-
larity over the years because it has been shown , in many research area, that the
impulse response naturally have very few insignificant components compared to
its length,i.e sparse.

2.5 Transform Domain LMS Algorithm and Its

Sparse Version: Review

2.5.1 Geometrical Insight

Let us first understand how the transformation and power normalization help in
increasing the convergence speed. We can treat (2.1) and (2.2) as LMS with input

vs(i) =
vs(i)

‖vs(i)‖2 and vc(i) =
vc(i)

‖vc(i)‖2 . The Correlation Matrices of these inputs can
be approximated as following:

Rs = Evsv
T
s ≈ EΛ−1

s (i)TsRT
T
s (2.1)

Rc = EΛ−1
c (i)TcRT

T
c (2.2)

Where R = EuTu. In order to evaluate the effect of TPN (Transformation and
Power Normalization), we study the eigenvalues of Rs and Rc with respect to
the non-transformed eigenvalues of R. And because of the difficulty of eigenvalue
analysis of the toeplitz matrices, we resort to limiting theorems of eigenvalues,
namely Gershgorin’s theorem

Gershgorin’s Theorem:

Let A be a complex n × n matrix, with entries aij, For i ∈ {1, . . . , n} let
Ri =

∑
j 6=i |aij| be the sum of the absolute values of the non-diagonal entries in

the i-th row. Let D(aii, Ri) be the closed disc centered at aii with radius Ri.
Such a disc is called a Gershgorin disc. Then:

Every eigenvalue of A lies within at least one of the Gershgorin discs D(aii, Ri) .

Let us assume we have the following 4 × 4 AR(1) Autocorrelation matrix

14



−2 −1 0 1 2 3 4

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

The real axis

The eigenvalues locations and Gershgorin Discs

 

 

Eigenvalue number = 1

Eigenvalue number = 2

Eigenvalue number = 3

Eigenvalue number = 4

Figure 2.1: Gershgorin’s Discs and locations of Eigenvalues of AR(1), with ρ = 0.9

R, with pole ρ:

R =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


 (2.3)

The Gershgorin’s discs of this matrix is depicted in Fig (2.1). For the Adaptive
filters to have the fastest convergence, we wish R to be an identity matrix, with
centers at (σ2

u, 0) and Radius 0. We can clearly see that now how the matrix in
(2.3) worsen the convergence. The matrix has very large radii, and high eigen-
values spread. Now, for the case of (2.1), where we have transformed normalized
input with DST, the Gershorgorin’s discs are depicted in Fig(2.2). The DST ma-
trix decreased the radii, compared to the original matrix R, and based on the
theorem, this means the non-diagonal elements are smaller, which means whiter
autocorrelation matrix. Fig (2.3), it shows how the DCT is superior to the DST
for this process, where the non-diagonal elements are significantly diminished. For
AR(1), with ρ = −0.9, Fig (2.4) and Fig (2.5) depict how the DST is better than
DCT, for negative poles.

2.5.2 Transient Analysis of Transform Domain Filters

In this section we conduct a customized transient analysis of th DCT-LMS algo-
rithms. Th same procedure is replicated for the DST-LMS. Based on the results of
the Gersgorin’s theorem, we can see that, for DCT-LMS for example, the AR(1)
with positive pole, the transformation almost completely de-correlates the input,
and results in Gaussian regressors with diagonal autocorrelation matrix, and dif-
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Figure 2.2: Gershgorin’s Discs and locations of Eigenvalues of AR(1), with ρ = 0.9
and DST transformation
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and DCT transformation
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Figure 2.4: Gershgorin’s Discs and locations of Eigenvalues of AR(1), with ρ =
−0.9 and DCT transformation
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Figure 2.5: Gershgorin’s Discs and locations of Eigenvalues of AR(1), with ρ =
−0.9 and DST transformation
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ferent entries in the diagonal, i.e. colored uncorrelated Gaussian. Figure (2.6)
explains the claim of Gaussianty as well. We launch the analysis by the energy
conservation relation for Matrix data non-linearities, where the LMS recursion is
defined as following:

wi = wi−1 + µH[ui]u
T
i e(i) (2.4)

e(i) = d(i)− uiwi−1 (2.5)

the Energy conservation relation is then:

‖ui‖2HΣH‖w̃i‖22 + ‖eHΣ
a (i)‖2 = ‖ui‖2HΣH‖w̃i−1‖22 + ‖eHΣ

p (i)‖2 (2.6)

and the variance relation is given by:

E‖w̃i‖2Σ = E‖w̃i‖2Σ̄ + µ2σ2
vE‖ui‖2HΣH (2.7)

Σ̄ = Σ− µΣE(H[ui]u
T
i ui)− µE(H[ui]u

T
i ui)Σ (2.8)

where are are using here the small step size approximation. The matrix data non
linearity is defined here by the power normalization matrix as following:

H[ui] = Λ−1(i) (2.9)

where Λ(i) is a diagonal matrix with elements given by the following exponential
windowing setting:

pk(i) = βpk(i− 1) + (1− β)|uk(i)|2 (2.10)

and β is the smoothing parameter. In this customized analysis,we benefit from the
fact the transformed regressor is Gaussian in calculating the following expectations
appear in variance relation given by (2.7) and (2.8),

E(H[ui]u
T
i ui)︸ ︷︷ ︸

A

, E‖ui‖2HΣH︸ ︷︷ ︸
B

(2.11)

employing the separation principle , by assuming that the input signal is not too
non-stationary, hence the power normalization matrix will not vary significantly
with time, compared to the input signal.
E(H[ui]u

T
i ui) Applying separation principle, we have:

A = EΛ−1
i EuT

i ui (2.12)

We tackle EΛ−1
i element by element, since it is a diagonal matrix,as following:
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EΛ−1
i =




E 1
p1(i)

0 0 0

0 E 1
p2(i)

0 0
...

...
0 0 E 1

pM−1(i)
0

0 0 0 E 1
pM (i)




≈




1
Ep1(i)

0 0 0

0 E 1
Ep2(i)

0 0
...

...
0 0 E 1

EpM−1(i)
0

0 0 0 E 1
EpM (i)




(2.13)

iterating (2.9), with zero initial conditions:

Epk(i) = (1− β)
i∑

j=0

βjE|u(i− j)|2 = σ2
k(1− βi+1) (2.14)

A renders:

A(i) =
1

1− βi+1
K−1Ru (2.15)

Following the same procedure, for term B:

B(i) = E‖ui‖2EH2Σ = RuEH2(i)Σ (2.16)

=
1 + β

3(1− β)(1− β2i+1)
K−2Ru (2.17)

using vector notation, equations (37)-(38) read:

E‖w̃i‖2σ = E‖w̃i‖2σ̄ + µ2σ2
v(λ

TB(i)σ) (2.18)

σ̄ = (I− 2µA)σ = Fσ (2.19)

the state-space recursion then is given by:

Wi = FiWi−1 + µ2σ2
vYi (2.20)
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Where: 1

Wi =




E‖w̃(i)‖σ
E‖w̃(i)‖Fσ

E‖w̃(i)‖F2σ

...
E‖w̃c(i)‖F(M−1)σ




,
[
Y
]
k
= λTFk−1B(i)σ (2.21)

F =




0 1
0 0 1
0 0 0 1
...
0 0 0 1

−a0 −a1 −a2 −a3 . . . −aMa−1




(2.22)

and ak are the coefficients of the characteristics polynomial of F. The steady-
state performance measure can be constructed from equations (37)-(38) directly,

MSD = µ2σ2
v(λ

TB(∞)(I− F)−1q) (2.23)

EMSE = µ2σ2
v(λ

TB(∞)(I− F)−1λ) (2.24)
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Figure 2.7: MSE Theoretical and Simulation Curves

1Note that, the state matrix changes with time, but after a while the change is
extremely small, and we can treat the matrix as constant Matrix , and drop the time
change notations, we use this fact for simulation. Similarly for Yi.
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2.5.3 Transient Analysis of Sparse LMS Algorithms

In order to understand the behavior of the sparse LMS algorithm, it is mandatory
to see how the missadjustment error vector (w̃i = wo−wi) evolves with time and
how the sparsity enforcing term affects stability conditions and steady state level.
We launch the analysis by the following recursion:

w̃i = w̃i−1 − µvT
i e(i) + si (2.25)

We follow an energy conservation argument 2, by using a weighted matrix Σ:

E‖w̃i‖2Σ =
(
w̃i−1 − µvT

i e(i) + si

)T

Σ

(
w̃i−1 − µvT

i e(i) + si

)

Which, after expanding, becomes:

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ − µE ˜wi−1
TvT

i e(i)︸ ︷︷ ︸
A

+ ˜wi−1
TΣsi − µEvT

i Σ ˜wi−1e(i)︸ ︷︷ ︸
B

+ µ2E‖vi‖22e2(i)︸ ︷︷ ︸
C

−µEviΣsie(i)︸ ︷︷ ︸
D

+EsTi Σ ˜wi−1 − µEsiΣv
T
i e(i)︸ ︷︷ ︸

E

+E‖si‖22

(2.26)

to conclude the relation, we progressively deal with terms A,B,C,D and E as
following.
Term A

A = −µE‖w̃i−1‖2ΣvT
i u

where we used the fac that e(i) = uT
i w̃i + v(i), where v(i) is the measurement

noise modeled as white Gaussian and ui is the non-transformed regressor. By
invoking the independence assumption , term A renders:

A = −µE‖w̃i−1‖2ΣEvT
i u

Following the same arguemnt, term B reads:

B = −µE‖w̃i−1‖2ΣEuT
i v

2We can not follow the Energy conservation argument directly (except for the steady
state calculations) because of the sparsity term which affects the flow of energy from
iteration to iteration,not necceassry in a simiar way to the original energy conservation
relation.

22



C,D and E summarize to:

C = µ2E‖w̃i−1‖E‖vi‖2ΣuT
i u2

i
+ µ2σ2

vTr(Rv)

D = µEw̃T
i−1u

T
i viΣsi

E = −µEsTi Σv
T
i uiw̃i−1

introducing A,B,C,D and E into (1.29) produce:

E‖w̃i−1‖Σ = E‖w̃i−1‖Σ̀ + EsTi Kw̃i−1 + E‖si‖2Σ + µ2σ2
vTr(Rv)

Σ̀ = Σ− µΣEvT
i ui − µEuT

i viΣ + µ2E‖vi‖2ΣuT
i u

2
i

K = Σ− µΣEvT
i ui − µEuT

i viΣ

(2.27)

assuming the step size is small enough, hence K = Σ̀. In order to diagonalize the
set of equations in (2.27), we use U as an arbitrary unitary transformation and
the matrices are redefined as following: w̄i−1 = Uw̃i−1, ūi = Uui−1, Σ̄ = UT Σ̀U
and s̄i = UT si. Employing the vector notation σ̄ = vec(Σ̄), we have:

E‖w̄i‖2σ̄ = E‖w̄i−1‖2F̄σ̄ + E(s̄i ⊙ w̄i−1)
T σ̄ + E‖ s̄i‖2σ̄ + µ2σ2

v(λv̄σ̄) (2.28)

where F̄ = I− 2µRūv. (2.28) can be introduced in a recursive state space model
similar to the one deduced in [3] as following:

Wi = FWi−1 + µ2σ2
vY + Si + Ji (2.29)

where:

[
Yk

]
= Fk−1σ̄,

[
S(k)

]
= E‖s̄i‖2Fk−1σ̄,

[
J (k)

]
= E(s̄i ⊙ w̄i−1)

TFk−1σ̄ (2.30)

and the EMSE (or MSD, depending on the σ̄ choice) is given by the first entry in
Wi.

Steady State EMSE and MSD

At the steady state, (2.28) reduces further into:

E‖w̄∞‖2(I−F̄)σ̄ = µ2σ2
v(λ

T
v σ̄) + E‖s∞‖2σ̄ + E(s̄∞ ⊙ w̄∞)T σ̄ (2.31)

By choosing σ̄ = (I − F̄)−1λv̄, we yield EMSE(∞) and for σ̄ = ones(M, 1),
MSD(∞) is deduced. As an example, let us consider the ZA-LMS algorithm,
where ui = vi (without TPN) and si = ρsgn(wi−1). The MSD(∞) as a function
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of ρ becomes:

MSDZA−LMS(∞) = µ2σ2
v(λ

T
uq) +Mρ2 + ρ

M∑

k=1

Esgn(w∞(k))w∞(k) (2.32)

We infer from this relation that in addition to the Excess LMS error, the sparsity
term introduces an excess error by itself ( Mρ2), and at the same time reduce the
bias by the other term (which later we prove it is negativity). The optimum ρ,
for the ZA-LMS is then:

ρopt = −
∑M

k=1 Esgn(w∞(k))w∞(k)

2M
(2.33)

The MSD in (2.32) seems to be larger than the MSD without the sparse term in
the regular algorithms. However, we should not that the kast term

which is clearly a function of the filter length. Before moving on, let us sum-
marize. To the point, we have explained the transform domain algorithm and its
convergence behavior. We have shed some light as well on the sparse adaptive
algorithms, how the sparse term si affects the steady state. With these insights,
we explain the proposed algorithm.

2.5.4 New LMF Algorithm

The Transform Domain LMF Algorithm

Consider a system identification scenario (as in figure 1.1) with input ui and the
desired output d(i) defined by

d(i) = woui + n(i) (2.34)

where wo is the optimal filter with length N . The transformed input vector is
defined as

xi = uiT (2.35)

where T is an N × N transformation matrix and the transformed input is xi.
Both xi and ui are of length N . The transform domain LMF algorithm is given
by

wi = wi−1 + µΛ−1
i xT

i e
3(i) (2.36)

where

wi = TT w̄i (2.37)

where w̄i is the time domain weight vector and wi is the transformed domain
weight vector. µ is the step size, e(i) is the error, the difference between the desired
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output and the output of the adaptive system, and Λ is the power normalization
matrix. Clearly (3) does not exploit any sparsity information in its recursion. In
order to exploit sparsity, we will alter the cost function to include a sparsity-aware
term and then apply the general gradient algorithm formula:

wi = wi−1 − µΛ−1
i

∂J

∂wT
i

(2.38)

to yield the proposed TD-ZA-LMF algorithm.

Zero Attractor TDLMF Algorithm

The cost function of the zero attractor is given by

JZA =
1

4
e4(i) + λZA‖Twi‖1 (2.39)

where λZA is the zero attraction force (Lagrangian multiplier). Note that we are
transforming back the coefficients in order to exploit sparsity, since the trans-
formed weight vector is not sparse. Now,

∂JZA

∂wT
i

= −e3(i)xT
i + λZAT

T sgn(Twi) (2.40)

substituting (7) into (5) gives

wi = wi−1 + µΛ−1xT
i e

3(i)− ρZAΛ
−1
i TT sgn(Twi)

where ρZA = µλZA. In contrast to the algorithm introduced in [79], this algorithm
is designed for Non-Gaussian and correlated inputs. Moreover, it has the ability
to attract all the filter coefficients to zero.

2.5.5 Performance Analysis of the TD-ZA-LMF

Convergence Analysis

In this section, we study the convergence in the mean of the TD-LMF sparse-aware
algorithm. We launch the analysis by using the following general recursion:

wi = wi−1 + µvT
i e

2k−1(i)− si (2.41)

where si is the sparsity penalty term and k ∈ N
∗, note that k = 1 and k = 2 result

in the LMS algorithm and LMF algorithm, respectively.
Defining the weight error vector by zi = wo−wi−1 and employing the relation

between the zi and e(i), that is,

e(i) = n(i)− zTi vi (2.42)
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equation (8), reads:

zi = zi−1 + µzTi {n(i)− zTi vi}2k−1(i)− si (2.43)

Ignoring the high power of the vT
i ui and applying statistical expectation to (10)

results in

E[zi] = E[zi−1] + µE[vin
2k−1
i ]

− µ(2k − 1)E[n2k−2
i viv

T
i zi]− E[si] (2.44)

By modeling the measurement noise as a white Gaussian process, E[vin
2k−1
i ] = 0.

The noise and regressor, using independence assumption, can be assumed to be
independent from each other at steady state. The higher the noise plant power,
the lower the SNR which implies higher E[vi] value. But for very small step size,
the effect of E[vi] will be decreasing regardless of the noise plant power and the
regressor power at steady state. Hence this independence assumption is valid for
a small step size scenario. This assumption suggests the following relation:

E[n2k−2
i viv

T
i zi] = E[n2k−2

i ]E[viv
T
i ]E[zi]

= E[n2k−2
i ]RvE[zi] (2.45)

Finally, taking into account (12), (11) looks like:

E[zi] =

{
I− µ(2k − 1)E[n2k−2

i ]RvE[zi−1]

}
− E[si] (2.46)

Clearly the sparsity contribution, E[si], does not affect the convergence. Equation
(13) is quite similar to that of the LMS convergence relation introduced in [3],
and hence a necessary condition for the stability of (8) in the mean is that the
step size, µ, should satisfy the following:

0 < µ <
2

(2k − 1)E[n2k−2
i ]Tr(Rv)

(2.47)

and in the case of TD-ZA-LMF, k = 2, this range should be:

0 < µ <
2

σ2
nTr(Rv)

(2.48)

where σ2
n is the variance of noise. and from [80], Tr(Rv) = M , where M is the

number of filter coefficients. The condition in (15) becomes:

0 < µ <
2

σ2
nM

(2.49)

where for sparse filters, M is known to be large, which reflects in a small step size.
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Steady State Analysis

The steady-state analysis of the proposed algorithm is derived in this section. For
the case of the TD-ZA-LMF, the recursion is governed by

wi = wi−1 + µvT
i e

3(i)− si (2.50)

where vT
i = Λ−1xT

i . Using energy conservation relation arguments leads to the
following [3]:

E‖w̃i‖2 + E
|ea(i)|2
‖vi‖22

= E‖w̃i−1‖2 + E
|ep(i)|2
‖vi‖22

(2.51)

where w̃i = wo −wi is the weight error vector, ea(i) = viw̃i−1 and ep(i) = viw̃i

are the posterior and priori errors, respectively. At steady state the following
condition is always valid:

E‖w̃i‖22 = E‖w̃i−1‖22 (2.52)

the Excess Mean Square Error (EMSE) is defined as

EMSE = E|ea(i)|2 (2.53)

Hence equation (9) becomes:

E
|ea(i)|2
‖vi‖22

= E
|ep(i)|2
‖vi‖22

(2.54)

the priori and a posteriori errors can be found to be related through the following
recursion:

ea(i) = ep(i)− µ‖vi‖2e3(i) + visi (2.55)

Then:

E
|ep(i)|2
‖vi‖22

= E
|ea(i)|2
‖vi‖22

+ Eµ2e6(i)‖vi‖22︸ ︷︷ ︸
A

+E
‖si‖2viv

T
i

‖vi‖22︸ ︷︷ ︸
B

− 2µEea(i)e
3(i)︸ ︷︷ ︸

C

+ ea(i)
visi
‖vi‖22︸ ︷︷ ︸
D

− µe3(i)visi︸ ︷︷ ︸
E

(2.56)

In order to simplify (222) the following adopted assumptions are used:

A1: At steady state the error is independent from the input, and hence the a
posterior error.
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A2: The measurement noise is independent of the adaption error, the input and
the sparsity enforcing term.

Moreover, we will also resort to the separation principle assumption, which states
that, at steady-state the adaption error is independent of the input. Also, we will
use the following relation expectation approximation [81]:

E
vT
i vi

‖vi‖22
≈ EvT

i vi

E‖vi‖22
=

Rv

Tr(Rv)
(2.57)

This approximation is quite helpful in simplifying the analysis, and suitable for
long filters, which is the case for sparse filters. It should be noted that the TD-
LMF algorithm inherits the same step size conditions for convergence.

We start the steady-state analysis by exploring each term of the right hand
side of (222). By applying the separation principle, the term A reads:

A = µ2Ee6(i)E‖vi‖22 (2.58)

Using the following relation between the error, a posterior error and noise:

e(i) = ea(i) + n(i) (2.59)

the term A results in the following:

A ≈ 45µ2Tr(Rv)σ
4
nEea(i)

2 + 15µ2Tr(Rv)σ
6
n (2.60)

The sparsity enforcing at steady-state is independent from the regressors. How-
ever, for the case of the transform domain, we will assume further that the input
is not too non-stationary, and hence the power normalization matrix is almost
constant and by employing the rational expectation approximation, the term B
lands in:

E
‖si‖2viv

T
i

‖vi‖22
= E

‖si‖Rv

Tr(Rv)
(2.61)

Using A2 and ignoring the high power terms, C approximates to

C ≈ −6µσ2
nEea(i)

2 (2.62)

Also, the term D can be shown to be results in

D = Eea(i)
visi
‖vi‖22

= E
w̃T

i v
T
i visi

‖vi‖22
= E

w̃T
i Rvsi

Tr(Rv)
(2.63)
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Finally, applying the same procedure for term D, E gives:

E = −6µσ2
nw̃

T
i Rvsi (2.64)

Now, substituting the different terms in (222), the EMSE reads

η =
5µσ4

nTr(Rv)

2− 9µσ2
nTr(Rv)︸ ︷︷ ︸

EMSETD−LMF

+ γ

{
E

‖si‖Rv

Tr(Rv)
− w̃iTr(Rv)[6µσ

2
n −

1

Tr(Rv)
]si

}

︸ ︷︷ ︸
EMSEsparse

(2.65)

where

γ =
1

6µσ2
n − 45µ2Tr(Rv)σ4

n

(2.66)

If the transformation and power normalization matrices are set to I, the EMSE
for the TD-LMF falls back to that of the EMSE for the LMF given in [3].

To get more insight of equation (31), we study the EMSE for the two set
of elements in the vector wi, namely, the non-zero (NZ) elements and zero (Z)
elements. The EMSE exerted for the non-zero elements is

EMSEm∈NZ =
5µσ4

nTr(Rv)

2− 9µσ2
nTr(Rv)

+ γE
‖si‖Rv

Tr(Rv)
(2.67)

where for this group of weights, the sparsity enforcing term si is independent from
the error w̃i. While, for the zero elements, the EMSE is

EMSEm∈Z =
5µσ4

nTr(Rv)

2− 9µσ2
nTr(Rv)

− Ew̃iTr(Rv)(6µσ
2
n −

1

Tr(Rv)
)si (2.68)

Since for this group, the sparsity term si is expected to be zero, then from (32)
and (33), we can see the tension in the EMSE between the NZ and Z elements.
When the sparsity rate is low (i.e., |Z| >> |NZ|), the overall EMSE will be
lower than for the non-sparse-aware algorithm, which in this case the TD-LMF.

2.5.6 Simulation Results

In this section, the performance of the proposed TD-ZA-LMF, ZA-LMF, ZA-LMS
and TD-ZA-LMS are evaluated using Monte Carlo simulations. The results are
averaged over 500 runs. The transform used is the Discrete Cosine Transform
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(DCT-II). The SNR is set to 5 dB, (σ2
n = 0.31) and M = 32, which sets the step

size range to 0 < µ < 0.098. We choose µ = 0.005.

2.5.7 Gaussian Noise Scenario

Two experiments are conducted for the input signal, Gaussian input and correlated
one — under low SNR regime with measurement noise modeled as white Gaussian.
For the correlated input, a first-order filter with transfer function 1

1+0.9z−1 is sued
to generate the correlated samples. The system under identification has sparsity
m = 2, with random location for the non-zero elements.

The zero-attraction parameters are set to allow all algorithms to reach the
same level of mean-square-deviation (MSD), which allow a fair comparison of the
algorithms. The values are give in Table (2.1).

Algorithm First Experiment Second Experiment
ZA-LMS 5.5× 10−5 1× 10−5

ZA-LMF 5× 10−6 9× 10−6

TD-ZA-LMS 4.5× 10−5 3.1× 10−5

TD-ZA-LMF 9× 10−6 9× 10−6

Table 2.1: Zero Attractor values for the different algorithms.

As can be seen from Fig.4, the LMF based algorithms reached the steady state
faster compared to the LMS based ones. Because of the bias introduced by the
power normalization matrix, the TD-ZA-LMF is slightly slower than the ZA-LMF.

Figure 5 depicts the ZA-LMF [79] algorithm is better than the ZA-LMS al-
gorithm when the SNR is low. However, both algorithms suffer from very slow
convergence due to the high correlated input. More importantly, The transform
domain algorithms, though, are comparatively faster in convergence and lower in
steady state level, and the TD-ZA-LMF is the best performing. This proves the
power of the hybridisation of the transform domain and the sparse-aware ability
in enhancing the convergence behavior of the LMF algorithm at low SNR.

2.5.8 Non-Gaussian Noise Scenario

This scenario deals with the case when the measurement noise is modeled as Non-
Gaussian, here we are assuming it has uniform distribution [82]. In the case of
Gaussian input as depicted in Fig (2.8), the LMF family gives noticeably difference
in the steady state and convergence, compared to the LMS family.

Figures (2.9) and (2.10) deals with the case when the input is correlated with
sparsity rate equals 2. Figure (2.8) shows that the steady state floor of the TD-
ZA-LMF is lower by −5 dB of TD-ZA-LMS. As for the convergence comparison, in
Fig (2.10), we can clearly see that under this conditions, TD-ZA-LMF is superior
as well. The trend holds when sparsity rank is increased to 4, as in figures (2.11)
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Figure 2.8: MSD curves for white Gaussian input with sparsity rate = 2.

and (2.12), however, we notice a degradation in the steady state floor of both
algorithms, non-surprisingly as a result of increasing the non-zero elements.

2.6 Conclusion

By introducing the Zero Attractor to the TD-LMF, the resultant algorithm is able
to explore sparse structure in correlated environment with low SNR. Compared
to the existing methods, the proposed algorithm improved the convergence as
confirmed by simulations. The proposed algorithm though, performed a bit slower
in comparison with the ZA-LMF in case of white Gaussian input, because of the
bias of the power normalization introduced in the zero-attractor.

31



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−25

−20

−15

−10

−5

0

iteration

M
S
D

(d
B
)

 

 

TD−ZA−LMS

TD−ZA−LMF

Figure 2.9: MSD curves for correlated input with sparsity rate = 2 and uniform
measurement noise.
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Figure 2.10: MSD curves for correlated input with sparsity rate = 2 and uniform
measurement noise.
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Figure 2.11: MSD curves for correlated input with sparsity rate = 4, with uniform
measurement noise.
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Figure 2.12: MSD curves for correlated input with sparsity rate = 4,with uniform
measurement noise.
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CHAPTER 3

CONVEX COMBINATION
FILTERS FOR VARIABLE

SPARSE SYSTEM
IDENTIFICATION

3.1 Why Convex Combination Filters

To understand the motive ofr using this group of filters let us discuss the case
of the LMS. One of the main characteristics of the LMS algorithm is relation
between the step size (µ) and both convergence rate and steady state level. The
relation between step size and convergence rate is proportional, that is, the higher
the value of µ the faster the convergence to steady state. However, the relation
between µ and the steady state is inversely proportional. The higher µ introduces
worse steady state level. Hence, the choice of the step size µ can not offer both
low steady state level and high convergence rate. The designer of the algorithm
will have to make a trade off depending on the application on hand.

The convex combination filter is the answer to such following question: can we
have LMS with both low steady state and high convergence rate?. For the case of
LMS for example, we combine two filters in one filter. The first filter has high µ1

and solves for high convergence. The second filter µ2 solves for low steady state.
The convex filter is the master filter that controls the component filters — and
insures the low steady state and hihg convergence.

Generally, whenever there are conflicting demands of a filter, we can employ
convex filter to reconcile. Here we will be employing it for the sparse adaptive
algorithms. From (2.31), we see the MSD depends on the sparsity enforcing term
si. Assuming that we do not know the level of sparsity of the system we are
employing, employing sparsity can be equally beneficial and deter mental. Hence,
we combine two filters in one, the first is sparsity agnostic (si = 0) and the second
is sparsity aware. And the master convex filter will control both of them in a
manner to always insures the lowest MSD regardless of sparsity level.

Before we introduce the algorithms in this chapter, let us first introduce the

36



convex filter rigorously and shed some insightful results about its transient behav-
ior.

3.2 Convex Combination Filter — Review

3.2.1 Steady State Universality

The convex filter is an aggregation of two filters. The convex filter is defined by
the output y(i) and the error e(i) defined by the following relations: The output

Figure 3.1: Diagram shows the Convex Combination filter proposed in [1].

of the convex filter is defined by the following equation:

y(i) = λ(i)y1(i) + [1− λ(i)]y2(i) (3.1)

e(i) = d(i)− e(i) (3.2)

where y1(i) and y2(i) are the outputs from filters 1 and 2 respectively. The weight
vector also follows similar convex relation:

wi = wi,1λ(i) + [1− λ(i)]wi,2 (3.3)

The combination factor λ(i) is given by the following equation:

λ(i) =
1

1 + e−a(i)
(3.4)
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from this equation, it is obvious that the update recursion of the convex factor
will be on a(i) rather than λ(i) directly, The recursion equation is given by:

a(i+ 1) = a(i)− µa

2

∂e2(i)

∂a(i)

= a(i) + µae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)] (3.5)

The universality, mathematically speaking, is to see where the combination goes
as the nature of the system change, from sparse through semi-sparse to completely
non-sparse. The combination should follow the change, and offer the lowest possi-
ble EMSE. In order to do this, we study the behavior of equation (1.47) at steady
state. At steady state we assume that λ(i) is independent of ea,k(i), we have the
following equation describes the steady state behavior of a(i):

E[a(i+ 1)] = E[a(i)] + µaE[λ(i)[1− λ(i)]2]∆J2 − µaE[λ(i)2[1− λ(i)]]∆J1 (3.6)

where ∆J1 = Jex,1(∞)−Jex,12(∞) and ∆J2 = Jex,2(∞)−Jex,12(∞), equation(1.6)
assumes that both algorithm has converged. And the equation describes the
evolution of the E[a(i)]. W later we study equation(1.6) for the three cases of
systems, considering that the two filers use the same step size.

3.2.2 Investigation of Transient Universality

In the previous section we explored the universality of the combination filter at the
steady state and we found that combination will always switch to the component
filter with lower MSD or MSE. In this section we would like to investigate the
universality of the combination filter in the transient mode of operation.
By extending the universality definition of the steady state to the transient mode,
we infer that, for a convex filter to be universal (non-asymptotically), the following
condition is to be satisfied:

E[MΣ] < E‖w̃i,k‖2Σ (3.7)

where E[MΣ](i) is the performance metric (which depends on the choice of the
matrix Σ, for example if Σ = I, then the metric reduces to the miss adjustment
error of the combination filter). The condition in (2.1) says that, the transient
universality requires the combination filter to insure a level of error always lower
than its components, along the way to the steady state. Obviously, the inequality
in (2.1) is very difficult to satisfy, and later on we will see how we can relax the
condition to reach meaningful results.

38



Launching the investigation form the a posteriori error relations:

ea,1(i) = u(i)w̃i,1 (3.8)

ea,2(i) = u(i)w̃i,2 (3.9)

ea(i) = λ(i)ea,1(i) + [1− λ(n)]ea,2(i) (3.10)

w̃i = λ(i)w̃i, 1 + [1− λ(i)]w̃i, 2 (3.11)

and if we took the square of (2.4), the squared error evolution is governed by:

‖ea(i)‖2 = λ2(i)‖w̃i,1‖2uT (i)u(i) + [1− λ(i)]λ(i)w̃T
i,1u

T (i)u(i)w̃2
i,2

+ [1− λ(i)]2‖w̃i,2‖uT (i)u(i) (3.12)

now, we apply the statistical expectation with respect to λ(i) 1, and applying the
independence assumption (the error w̃i is independent of the input u(i)), (2.6)
reads:

E[‖ea(i)‖2|λ(i)] = λ(i)2E‖w̃i,1‖2Ru
+ [1− λ(i)]2E‖w̃i,2‖2Ru

+ λ(i)[1− λ(i)]w̃T
i,1Ruw̃i,2 (3.13)

following the same procedure with (2.5), we reach:

E[‖w̃(i)‖2|λ(i)] = λ2(i)E‖w̃‖21,i + [1− λ(i)]2E‖w̃‖22,i
+ λ(i)[1− λ(i)]w̃T

i,1w̃i,2 (3.14)

both (2.7) and (2.8) can be seen as an instances of the following generalized
recursion:

E[MΣ(i)|λ(i)] = λ(i)2E‖w̃i,1‖2Σ + [1− λ(i)]2E‖w̃i,2‖2Σ
+ λ(i)[1− λ(i)]E{w̃T

i,1Σw̃i,2} (3.15)

for example, if we set Σ = Ru, the metric M = E[‖ea(i)‖2|λ(i)] and by defining
the cross error by:

M12 = E{w̃T
i,1Σw̃i,2} (3.16)

(2.9) reads:

E[MΣ(i)|λ(i)] = λ2(i){M1(i) +M2(i)} − λ(i)M12(i) (3.17)

1We approach the problem by this setting for the following reason. Firstly, it is
very difficilut to apply any kind of seperation pronciples betwenn the λ(i) and w̃i,k and
the second reason will be clear when we apply the Markov inequality, in which the
conditional expectation is more becoming.
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where:

Mk(i) = E‖w̃i,1‖2Σ −M12(i) (3.18)

and as we said earlier, the condition in (2.1) is strict. We re-approach the problem
by asking the question with a small twist; under what conditions, the probability
of (2.1) to be satisfied is high (close to one), algebraically:

P [E[MΣ] < E‖w̃i‖2Σ] ≈ 1 (3.19)

by invoking the Markov’s inequality, we have:

P [E[MΣ] < E‖w̃i‖2Σ] = 1− P [E[MΣ] ≥ E‖w̃i‖2Σ]

= 1− Eλ[E[MΣ]|λ(i)]
E‖w̃i,k‖2Σ

= 1− M1(i) +M2(i)

Mk(i)
Eλ2(i) +

2M12(i)

Mk(i)
Eλ(i)

(3.20)

= 1− f{M1(i),M2(i).M12(i), λ(i)} (3.21)

to minimize the probability of exceedance —f{M1(i),M2(i).M12(i), λ(i)} — by
taking the derivative with respect to E{λ(i)} 2, and the optimum is:

Eλo(i) =
2M12(i)

M1(i) +M2(i)
(3.22)

3.3 Convex Combination of LMF and ZA-LMF

for Sparse System Identification

The Weiner filtering problem depends heavily on the assumption of the Gaussianty
of the adaption error, which explains why we ar using the second moment of the
error in the minimization problem that result in the famous LMS algorithm [83].
The LMS performs exceptionally well when both the input regressors and the
measurement noise are Gaussian under high SNR environments. These conditions,
insures from the first iterations that the adaption error is Gaussain process. The
distribution of the error however is a function of the signal to noise ratio. The
following figure depicts the relationship between the excess kurtosis and the SNR
, for the adaption error at its first iteration in the LMS algorithms. We sue
the excess kurtosis because it measure how much the distribution in our hand
is similar to normal. If the excess kurtosis is zero, we have a perfect normal
distribution, where negative and positive distributions correspond to platykurtic
and leptokurtic distributions respectively. As it can be seen from the figure,
as the SNR decrease the distribution of the error is rendered into platykurtic

2Note that we used the Jensen’s inequality to modify (2.14) into a function of Eλ(i).
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Figure 3.2: Excess Kurtosis versus SNR. Both the input and noise measurement
follow Gaussian Distributions. The number of filter taps M = 10, with step size
µ = 0.001. The experiments are run 10000 times and the estimated Kurtosis is
averaged over 50 experiments. We assume ergodicity of the error signal.

distribution, which is known for their large variations of observations. Hence,
we infer from this experiment that the LMS at low SNR, it suffers convergence
because it ignores to minimize the excess kurtosis. Where the LMF succeed in
minimizing both the variance and the excess kurtosis simultaneously. We conclude
from this observation that the LMF acknowledge the platykurtic distribution of
the error in low SNR more than LMS, which explains the faster convergence and
better MSE level described in [82].

3.3.1 Problem Formulation

The objective of this work is to introduce a solution to the problem of variable
sparse system identification in low signal to noise ratio environments. The LMF
is a sparse agnostic algorithm which for sparse systems it has higher excess MSE
compared to its sparse aware companion called ZA-LMF given by:

wi = wi−1 + µuT
i e

3(i)− ρsign(wi) (3.23)

which introduces lower EMSE in case of sparse optimum filter, however the EMSE
starts to increase as the sparsity rate increases. Hence, both of the algorithms is
not suitable (by itself) for the variable sparse system identification problem.
By combining the two algorithms, with the convex filter technique introduced in
[1], the resultant algorithm is universal compared to its components. The univer-
sality here means that the convex filter performs as better as its best component
elements (ZA-LMF and LMF in this case), in the steady state. The universality
can be extended into the transient state, but this will not be covered for this case.
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3.3.2 Convex Combination Filter — Review

The solution offered by the filter is given by the following equation:

w(i) = λ(i)w1(i) + [1− λ(i)]w2(i) (3.24)

In order to insure that the combination is convex, we have to find a function of
λ(i) such that it is bounded from zero to one. Sigmoid f

3.3.3 Introduction

Since the introduction od the theory of Weiner filtering, the full density of the
optimum solution (in a system identification setting)was taken fro granted as a
fact. However, through time, it is found that the sparse system have quite notice-
able frequent occurrence in the nature and practice. For example, in acoustic echo
cancellation, it is found that the impulse response has small significant elements
where the rest is negligibly small. The explanation of this phenomena is due to
the large delays introduced in these type of systems [84]. Another interesting
prominence is in wireless multi-path channels in communication systems, when
the environment contains few signal reflectors implying that the impulse response
of the channel is sparse— similar to the acoustic echo cancellation system [85].
Large reflectors are as well one of the features of the under sea communication
channels, where the channel is found to be sparse as well [86]. Other types of sys-
tems has been found to have special structure as well, for example the envelope of
the impulse response is exponential in special cases of acoustic echo cancellation,
an additional fact that help the designer of adaptive algorithm to achieve better
design . The sparsity of the optimal solution is considered even stronger as a
feature and exploiting this information is a must for the algorithms designer [87].
This remarkable structure has triggered the research the sparse system identifi-
cation, which is — nevertheless its novelty — has already produced a plethora of
algorithms.
Before conceiving an abstract overview (before understanding the problem from
sparsity structure vantage point) the solution is customized to the problem un-
der consideration. This lead to introducing of family of algorithms based on
proportionate update (PN) concept. PN algorithms assign adaption rate (step
size) for each elements that is proportionate to tis value. PN-LMS is introduced
firstly for solving the echo cancellation application [88], and its variants like µ-law
MPNLMS [89] and Improved PNLMS (PNLMS) [90]. The PN-LMF algorithm
has been recently proposed and analyzed in [91]. The PN technique rendered the
sparse-agnostic algorithms (like LMS [4] and LMF [82]) to sparse aware. However
there performance begins to deteriorate as the number of the significant elements
increase.
Another line of research emerged after the advent of the compressive sensing and
the LASSO operator techniques [92] [93]. The CS proposed solutions to the prob-
lem by using sparsity-recognizing norm l0. However because of the difficulty on
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optimizing this norm and its mathematical non-convexity properties, l1 is ascribed
instead to yield a real time solution to the problem. The LASSO technique is im-
plemented with the MSE function of the LMS, and the resultant algorithm is
called Zero Attractor LMS (LMS) [94]. The ZA-LMF algorithm is introduced
in [79]. This LASSO technique resulted in lower steady state error and reduced
the computational complexity at one shot. And to overcome the deterioration
of EMSE of the ZA-LMS when sparsity increases, Re- weighted ZA-LMS, which
assign weights for elements before taking the l1 norm, i.e. which elements to be
included in applying the attraction-to-zero force. The RZA-LMS (and RZA-LMF)
are found to be very sensitive to the choice of there parameters, which implies that
they can bot be considered as final remedy to the variable sparsity problem.
The convex combination filter — a filter that chooses between two component
filters — is sought as a solution to the trade-off between tow algorithms [1]. For
example, the tracking ability of the LMS is superior to the RLS under specific
condition, and the converse is true for the RLS. by using a convex combination
of the RLS and LMS [95], the trade-off is removed and the convex filter will al-
ways insure the best tracking ability, and the convex is called universal. And by
looking at the variable sparsity identification as a trade-off between sparse-aware
algorithm and sparse-agnostic,a convex combination is proposed with LMS and
ZA-LMS as component filters [?].
The LMF is know to be superior to the LMS algorithm when the SNR is low
and the measurement noise is non-Gaussian. In this work we propse a convex
combination of LMF and ZA-LMF algorithm to solve the problem of variable
sparse system identification under these conditions. The first section gives an
insight about the mechanism of the LMF and why it is superior to the LMS in
non-Gaussian environments with low SNR. In the second section we study the
universality of the convex combination under three conditions, when the system
is sparse, semi-sparse and completely dense. We conclude by the computer simu-
lations, in which we found that the LMF convex combination offers lower steady
state error compared to its counterpart, the LMS convex filter.

3.3.4 The universality of the combination filter

The universality in the excess mean square sense means that the convex filter
always performs as good as its best component filter. Let us denote the EMSE
of the LMF filter Jex,1(i) and the ZA-LMF filter with Jex,2(i). and to decide the
universality we use the cross error between the two filters which is defined by:

Jex,12(i) = E{ea,1(i)ea,2(i)} (3.25)

We use this cross error as a metric to deiced what the filter choose in the specific
condition. The conditions we have here are full sparse, semi-sparse or completely
non-sparse system (dense). Before we study the universality we find the excess
mean square errors, Jex,1(i), Jex,1(i) and Jex,cs(i).
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EMSE of LMF and ZA-LMF algorithms

We use the following general LMF recursion to launch the analysis of the EMSE.

wi = wi−1 − si + µe3(i)uT
i (3.26)

When the sparsity aware term si = 0, we have the ordinary LMF and si =
ρsign(wi) results in ZA-LMF algorithm. We customize the analysis for the White
Gaussian input, which dictates a linear relation between the EMSe and MSD,
reads as:

MSD(∞) = σ2
uEMSE(∞) (3.27)

3.
by defining the misalignment error as zi = wo − wiThe energy conservation is
then derived as follows.

‖zi‖22 = {zi−1 + si − µe3(i)uT
i }T{zi−1 + si − µe3(i)uT

i }
= ‖zi−1‖22 − zTi−1si + µe3(i)zTi−1u

T
i (3.28)

+ sTi zi−1 + s2i − µe3(i)siui (3.29)

+ µe3(i)uizi−1 − µe3(i)uisi + µ2e6(i)‖ui‖22 (3.30)

we assume here that all the signals are real 4. The Energy relation then summarizes
to:

‖zi‖22 = ‖zi−1‖22 + ‖si‖22 − 2zTi−1si + 2µe3(i)zi−1u
T
i − 2µe3(i)uisi + µ2e6(i)‖ui‖22

(3.31)

The adaption error is assumed to have a symmetrical PDF, and invoking the
following assumptions:

1. The input is white Gaussian with Autocorrelation matrix σ2
uI.

2. E‖zi‖22 = E‖zi−1‖22 as i|∞. (steady state definition).

3. The sparse enforcing term si is independent from the input regressor and
adaption error. (this assumptions follow directly from the independent as-
sumption).

4. The weight vector wi is Gaussian at the steady state.

5. The measurement noise is white Gaussian with power σ2
v .

3And if we choose σ2
u = 1, then we need one measure to evaluate the performance of

the algorithm under consideration
4For sake of mathematical tractability, but it can be extended to the complex case.
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2µEe3(i)zi−1u
T
i︸ ︷︷ ︸

A

= µ2Ee6(i)E‖ui‖22︸ ︷︷ ︸
B

+E‖si‖22︸ ︷︷ ︸
C

+2EzTi−1si︸ ︷︷ ︸
D

(3.32)

We tackle the terms as following:
Term A

A = 2µEe3(i)zi−1u
T
i = 2µEe3(i)ea(i)

= 2µEe4a(i) + 6µσ2
vEe2a(i) (3.33)

Term B

B = µ2Mσ2
uEe6(i)

= µ2Mσ2
u{Ee6a(i) + 15σ2

vEe4a(i) + 15η4vEe2a(i) + η6v} (3.34)

Where ηjv = E|v(i)|j
Term C

C = E‖si‖22 = Mρ2 (3.35)

And ρ = 0 for LMF.
Term D
Clearly this term vanishes is the algorithm is sparse agnostic (LMF). For the
case of the ZA-LMF algorithm, we segment the elements of the sparse optimum
filter into two groups, the zero and the non-zero elements (i.e.significant).For the
non-zeros elements (k ∈ NZ), the sparsity acknowledging term si will become
independent of the filter update vector wi,while this fact does not hold for the
zeros elements (k ∈ Z).Then term D than can be expanded into its component as
following:

D = E
∑

k∈Z
z(i− 1, k)s(i, k) +

∑

k∈NZ

E{z(i− 1, k)}s(i, k)

= −ρE
∑

k∈Z
w(i− 1, k)sgn{w(i− 1, k)} = ηz (3.36)

By invoking assumption 3 and the Price’s theorem, we deduce the following:

Ew(i− 1, k)sgn(w(i− 1, k)) = aEw(i− 1, k)2 > 0 (3.37)

a =
√

{( 2

πσ2
w,k

)} (3.38)

By applying (1.11)-(1.14) into (1.10), we reach EMSE expression as following:

Eea(i)
2 =

µMσ2
uη

6
v

6σ2
v − 15µMσ2

uη
4
v︸ ︷︷ ︸

ζLMF

+
Mρ2 + ηz

6µσ2
v − 15µ2Mσ2

uη
4
v︸ ︷︷ ︸

ζZA−LMF

(3.39)
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For the case of ρ = 0, (1.16) falls back into the EMSE expression of the LMF

described in [3].Note that Mρ2 + ηz = ρ{Mρ −
√

2
π
(M − N)σw} < 0 5,when the

number of Non-zeros (N) is very small. From (1.17), we can see that it is always
beneficial to apply a zero attractor to the SSI problem, since it will always insures
lower EMSE — given that we have chosen the suitable attraction factor value
ρ.What remains is to find cross excess mean square error for the combination
filter defined in (1.3).

Cross Excess Mean Square Error, CEMSE

Starting with the following two recursions of the LMF and ZA-LMF respectively,

w1(i) = w1(i− 1) + µe31(i)u
T
i (3.40)

w2(i) = w2(i− 1) + µe32(i)u
T
i − s(i) (3.41)

6 and the relation between the CEMSE and the CMSD, for Gaussian input defined
by:

CEMSE(i) = σ4
uCMSD(i) (3.42)

we can follow an energy conservation argument similar to (1.6) as follows:

z1(i)
Tz2(i) = z1(i− 1)Tz2(i− 1)− µe32(i)uiz1(i− 1)

+ zT1 (i− 1)si − µe31(i)uiz2(i− 1)

+ µ2e31(i)e
3
2(i)‖ui‖22 − µe31(i)uisi (3.43)

where zi = wo − wi similar to the component filter, at the steady state the
following condition is satisfied [1]:

E{z1(i)Tz2(i)} = E{z1(i− 1)Tz2(i− 1)} (3.44)

then (1.20) reduces to:

µEe31(i)ea,1(i) + µEe32(i)ea,2(i) = µ2Mσ2
uEe31(i)e

3
2(i) + Ez1(i− 1)T s(i) (3.45)

By ignoring the higher power errors and recalling assumption 4, (1.22) further
reduced to:

6µσ2
vJex,12(i) = 9µ2Mσ2

uη
4
vJex,12(i) + 9µ2Mσ2

uη
6
v + E z1(i− 1)T s(i)︸ ︷︷ ︸

ζz

(3.46)

Jex,12(∞) =
µMσ2

uη
6
v

6σ2
v − 9µMσ2

uη
4
v

+
ζs

6µσ2
v − 9µ2Mσ2

uη
6
v

(3.47)

5Practically,
√

2
π
>> ρ

6we assume equal step sizes for the two recursions.
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following the same argument in Term D (that leads (1.14)), we occlude:

ζz = −ρ
∑

k∈Z
w1(∞, k)sgn(w2(∞, k)) = −aρ

∑

k∈Z
E{w1(∞, k)w2(∞, k)}

= −aρ
∑

k∈Z
E{z1(∞, k)z2(∞, k) (3.48)

Where a =
√

{( 2
πσ2

w,k

)}, In to investigate the sign of ζz, we study the behavior

of the cross miss-adjustment as i → ∞. The next step is to prove that the term
E{w1(∞, k)w2(∞, k)} is positive in the steady state.

Sign of E{w1(∞, k)w2(∞, k)} in the steady state:

Starting with the matrix version of (1.20):

z1(i+ 1) = z1(i)− µe31(i)x
T
i (3.49)

z2(i+ 1) = z2(i)− µe32(i)x
T
i + ρsgn{w2(i)} (3.50)

E{z2(i+ 1)zT1 (i+ 1)} = E{z2(i)− µe32(i)x
T
i + ρsgn{w2(i)}}{z1(i)− µe31(i)x

T
i }T

= E{z2(i)zT1 (i)} − µE{z2(i)xie
3
1(i)} − µE{xT

i z1(i)e
3
2(i)}

+ µ2E{e31(i)e32(i)xix
T
i }+ ρE{sgn{w2(i)}z1(i− 1)}

− µρE{sgn{w2(i)}xie
3
1(i)} (3.51)

by ignoring the higher power errors, and evoking assumption (5), and the famous
independence assumptions, recursion(1.28) becomes:

c(i+ 1) = c(i)− 3µσ2
vc(i)Rx − 3µσ2

vRxc(i) + ρb(i)− µρσ2
vb(i)Rx + 9µ2η6vRx

+ 18µ2η4vσ
4
xc(i) + 9µ2η4vσ

4
xE{zT1 (i)z2(i)}1 (3.52)

Recalling that the input correlation matrix of the input is σ2
xI,, we finally have:

c(i+ 1) = c(i)[1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x] + ρ(1− µσ2

vσ
2
x)b(i)

+ 9µ2σ2
xη

6
v1+ 9µ2η4vσ

4
xE{zT1 (i)z2(i)}1 (3.53)

Where c(i) = diag[E{z2(i)zT1 (i)}] and b(i) = diag[E{sgn{w2(i)}z1(i)}] . We
pursue (1.30) more by grouping the elements of c(i) and b(i) into the zero [k ∈ Z]
and non zero [k ∈ NZ] elements.
For the b(i) = [bNZ(i),bZ(i)]

T , we notice that — for the non-zero (significant)
elements — as i → ∞, E[sign{wk,2(i)}zk,1] = sign{wo

k,2}E[zk,1](i) = 0. And
for the zero elements, E[sign{wk,2(i)}zk,1] = −aE[wk,2(i)wk,1] = −aE[zk,2(i)zk,1],
where a is given in (1.15). Hence, b(i) = −ac(i), when i → ∞. Next, the
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evolution of the cross weight error vectors, E[zT
1
(i)z2(i)]1 = λ(i)is given by:

λ(i+ 1) = (1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x)1

TcNZ(i)

+ (1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x − aρ(1− µσ2

vσ
2
x))1

Tcz(i)

+ 9µ2Mσ2
xη

6
v + 9Mµ2η4vσ

4
xλ(i) (3.54)

(1.31) convergence depends almost on (1 − 6µσ2
vσ

2
x + 18µ2η4vσ

4
x) = α,since ρ ≈ 0.

The attraction factor is normally chosen to be small since it introduces high EMSE
for high ρ, for the non-zero elements. For the convergence condition given in
[82],that is, 0 < µ < 1

6σ2
vTr(Rx)

= 1
6Mσ2

vσ
2
x
. α < 1. (1.31) is interesting (and

descriptive) because it gives the convergence of the cross weight errors in terms
of the cross weight error of the zero and non-zeros elements, cZ(i) and cNZ(i)
respectively. By neglecting ρ(.), we have:

λ(i+ 1) = λ(i)[1− 6µσ2
vσ

2
x + (9M + 18)µ2η4vσ

4
x] + 9Mµ2σ2

xη
6
v (3.55)

λ(∞) =
9Mµ2σ2

xη
6
v

µσ2
x(6σ

2
v − (9M + 18)µη4vσ

2
x)

> 0 (3.56)

For large M 7 and Gaussian noise.
For k ∈ Z (1.30) becomes:

ck(i+ 1) = ck(i)[1− 6µσ2
vσ

2
x + 18µ2η4vσ

4
x] + 9µ2σ2

xη
6
v + 9µ2η4vσ

4
xλ(i) (3.57)

ck(∞) =
9Mµ2σ2

x(η
4
v + σ2

xη
6
vλ(∞))

µσ2
x(6σ

2
v − (9M + 18)µη4vσ

2
x)

> 0 (3.58)

from (1.35) if follows that ζz < 0 in (1.26). Lemma 1, summarizes the EMSE
analysis of the three filter. Interestingly, from (1.41) and (1.43), we conclude
that for a combination of two identical LMF filters, the EMSE is always less
than the LMF. Which implies full universality of the combination — unlike the
combination of tow identical LMS, which is near optimal [1].

7Sparse filter are naturally large.
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Summary of EMSE:
To sum up, the EMSE of the LMF is given by:

ζLMF =
µMσ2

uη
6
v

6σ2
v − 15µMσ2

uη
4
v

= Jex,2(∞) (3.59)

And fro the ZA-LMF, EMSE is defined by:

ζZA−LMF = ζLMF + S(∞) = Jex,1(∞) (3.60)

S(∞) =
ρ{Mρ−

√
2
π
(N −M)σw}

6µσ2
v − 15µ2Mσ2

uη
4
v

(3.61)

Where S(∞) < 0 for sparse systems (i.e. N << M), and S(∞) > 0 for non-sparse
systems where n ≈ M . and the Cross-EMSE of the two filters is given by:

ζ12 =
µMσ2

uη
6
v

6σ2
v − 9µMσ2

uη
4
v

+ S12(∞) = Jex,12(∞) (3.62)

S12(∞) < 0, regardless of the sparsity level.

Next , we study the combination behavior in the three state under consid-
eration.
Non-sparse system — dense: In this case the number of significant elements
in the optimal vector solution is very large. Hence, S12(∞) ≈ 0 and S(∞) > 0.
which means Jex,1 > Jex,2 for this case. The error difference quantities in (1.6)
summarizes as follows:

∆J2 = Jex,2(∞)− Jex,12(∞)

=
6M2µ2σ4

uη
4
vη

6
v

(+)
≈ 0 (3.63)

∆J1 ≈ µMσ2
uη

6
v

6σ2
v − 15µMσ2

uη
4
v

− Mρ2

6σ2
v − 9µMσ2

uη
4
v

> 0 (3.64)

Note that we have used the small step size approximation, which is apropos for
the LMF filters, since we use very small step size to annihilate the probability of
divergence8. This case corresponds to the second case introduced in [1]. And the
evolution of Ea(i) is described by:

E{a(i+ 1)} ≤ [E{a(i)} − C]a
+

a− (3.65)

where C = λ+(1 − λ+)2(∆J1 − ∆J2), indicating that the asymptotic value of
Ea(i) = −a+. In another words, the combination chooses the LMF over the ZA-
LMF.

8The LMF can diverge even if we use step size that satisfies that insures the conver-
gence conditions, for more information, please check [96] and the reference therein.
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Semi-Sparse Systems
In this case the following condition is satisfied:

∆J1 > 0,∆J2 > 0 (3.66)

since ∆Jex,1(∞) > ∆Jex,2(∞) > ∆Jex,1(∞) but we also have ∆Jex,2(∞) >
∆Jex,12(∞) because S12(∞) < 0 — because the number of zero elements in-
creased dramatically for this case compared to the first case (dense systems). The
semi-sparse case then corresponds to the third case in [1], where the asymptotic
combination factor is given by:

E[λ(∞)] =
∆J2

∆J1 +∆J2
> 0.5 (3.67)

In this case the combination filter is completely optimal and generates EMSE
lower than the EMSE of both components filter, i.e.:

Jex(∞) ≤ min{Jex,1(∞), Jex,2(∞)} (3.68)

Sparse Systems
For this case, Jex,2(∞) > Jex,1(∞), since the S(∞) < 0 because of the dominance
of the zero terms. Jex,2(∞) > Jex,1(∞) is also satisfied because S12(∞) < 0.
Hence, ∆J2 > 0. What remains is ∆J2 which is given by:

∆J1 = Jex,1(∞)− Jex,12(∞) (3.69)

≈ Mρ

6σ2
v

[
ρ

µ
−

√
2

π
(1− N

M
)
σw

µ
+

√
2

π

9

2

σ2
v

σw

]
(3.70)

= kρ2 + lρ (3.71)

and k = M
6σ2

vµ
> 0 and l =

√
2
π
[σw

σ2
v
− 9σ2

v

2σw
]. Assuming that A.5 is satisfied. The

behavior of ∆J1 is a function of the sign of l. we consider the two cases of sign as
following:
l > 0
In this case ∆J1 > 0, and the sparse case matches again the third case introduced
in [1], i.e., the combination filter introduces lower EMSE compared to the LMF
and ZA-LMF.
l < 0
For this case ∆J1 < 0, for the range of 0 < ρ < l

k
. This case corresponds to the

first case in [1]. In which, the evolution of the combination factor a(i) is described
by:

E{a(i+ 1)} ≥ [E{a(i)}+ C]a
+

a− (3.72)

which leads eventually to the asymptotic value of λ(i) = λ+, which implies that
the combination filter switches to the ZA-LMF completely.
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3.3.5 Computer Simulation

The convex combination is tested under low SNR (= 10) environment with
measurement noise modeled with uniform process. The optimum system with
number of taps M = 80, is firstly set to be very sparse with fixed value
(= 1) at support S = {5}, then changed to semi sparse system with S =
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, and completely non-sparse (dense) system for the
last stage. The step sizes of the algorithms is 0.002, the zero-attractor factors are
2× 10−6,1× 10−4 for LMF and LMS based algorithms respectively. The step size
of the convex combination filters (i.e. µa) has the value of 50,10 for LMF and
LMS respectively 9.

It should be noted that the MSD as a measure of performance is equivalent to
the EMSE, especially we are using Gaussian with unity input power, we can clearly
see this fact from (1.9). The results of the first experiment is depicted in Figures
[1.2 — 1.3]. For the first stage, the sparse system, the LMS convex combination
converged faster to steady state, but with much higher miss-adjustment compared
to the convex combination of the LMF. This trend continued over the three stages
of the experiment, proving that the LMF is superior to the LMS under low SNR
with uniform noise process.

The LMF convex filter followed the ZA-LMF completely— which reached
steady lower state level and slightly faster.However, the MSD level of the ZA-
LMF deteriorates as the density of the significant elements in the optimal vector
increased. We conclude from the experiment that not only the LMF convex filter
insured lower MSd level compared to the LMS combination, but it also reduced
the dynamic range of the MSD compared to LMS.

9Unlike the conventional very high values of µa (in terms of 1000,10000), to avoid
instability under the conditions of the experiment— this values are found by experiment
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3.4 Convex Combination of NLMF and ZA-

NLMF algorithms

One of the problems of the LMF + ZA—LMF convex combination is stability,
which is inherited from the instability of LMF. To resolve this issue we construct
a convex combination of the stable NLMF [97] and ZA-NLMF algorithms. In ad-
dition to stability, an additional benefit of improved convergence under correlated
environment is harvested. The stabilized NLMF algorithm has the form:

w1,i = w1,i−1 +
µ1e

3
1(i)u

T
i,1

‖ui,1‖2(ui,1 + e1(i))2
(3.73)

where we assume here the input is real. Similarly, ZA-NLMF [98]:

w2,i = w2,i−1 +
µ2e

3
2(i)u

T
i,2

‖ui,2‖2(ui,2 + e2(i))2
− ρsign{w2,i−1} (3.74)

3.5 Convex Combination of TD-LMS and TD-

AZ-LMS

3.6 abstract

The objective of this work is to introduce a convex combination of two filters to
solve the problem of variable sparsity rate under highly correlated input environ-
ments. The two filters chosen are Transform Domain LMS (TD-LMS) algorithm
and its sparse-aware L1 version known as the Zero- Attractor Transform Domain
LMS (TD-ZA-LMS) algorithm. This combination have the ability to converge to
the sparse and non-sparse solutions in the case that the system is sparse or dense,
respectively. The transform domain algorithms are known also for their ability to
reach the steady state condition faster than the LMS algorithm , when the input
is highly correlated. The analysis of the mentioned combination proved that the
aggregation is universal; it will perform, at least, as the best of the two algorithms.
Simulation results is performed to verify the universality of the combination.

3.7 Introduction

Least Mean Square (LMS) algorithm proposed by [4] is well known in the adap-
tive filtering applications because of its simplicity and robustness, however, and
since its advent, the highly correlated input proved to deteriorate the convergence
rate of LMS [3]. Several approaches are used to remove this short coming. For
example, in Normalized Least Mean Square (NLMS) instantaneous power normal-
ization is employed to reduce eigenvalue spread and the approach is extended to
Affine projection algorithms [99]. Transform Domain LMS (TD-LMS) introduced
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Figure 3.4: Combination factor evolution for the first experiment

by [6] employed unitary transformation like DFT and DCT accompanied with
power normalization, which results in whitening the input. The whitening process
geometrically results in rendering the contours of the error surface into circular
contours, which significantly enhanced the convergence [100]. Both algorithms
are extensively applied in wide range of applications from channel identification
to Acoustic Echo Cancellation (AEC). It is also noted as well that the performance
of the algorithms become worse when the impulse response under identification
tends to be sparse [99]. Sparse-aware LMS [94] is developed by adding a zero at-
tractor to the LMS recursion (ZA-LMS). The ZA-LMS proved to recognize sparse
systems and offered lower error compared to LMS. The Transform Domain version
of ZA-LMS is proposed by [101].

The level of sparsity of impulse is found to change with time in many appli-
cations. For example in AEC, the sparsity changes with the distance between
the microphone and the speakers [84]. The same phenomena appears in wireless
channels, where the environmental obstacles reallocation affects the sparsity rate.
In these scenarios, we clearly can’t use solely LMS neither ZA-LMS, because of
the variable nature of the structure of the impulse response. The convex combina-
tion of ZA-LMS and LMS is prosed by [102], removed the dilemma of choice, and
gave always the lower EMSE compared to its components regardless of the level
of sparsity. The convex combination filter is used, whenever, we have a trade-off
to make between two conflicting interests, as stated in [1].
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The convex filter is proved to be universal, i.e, it always performs at least as
better as the best of its components. TD-LMS with DFT and DCT transforms,
are used as component filter in [103] and [104] respectively, with distinct step size
for each component filter. In order to resolve the problem of slow convergence
in the case of highly correlated input, in this work we introduce the transform
domain version of [102].
In section II we review the convex filter and propose the algorithms that are
used in our case. In the section III we venture into the steady state study of
the component filter and follow that by universality study of the convex filter
proposed in section IV. The performance of the filter is the tested in section V.

3.8 Convex Combination Filter

The convex combination filter as described in Fig.1, is an aggregation of two
component filters, in our case one TD-LMS and second is TD-ZA-LMS filter. The

Figure 3.5: Diagram shows the Convex Combination filter proposed in [1].

output of the convex filter is defined by the following equation:

y(i) = λ(i)y1(i) + [1− λ(i)]y2(i) (3.75)

Where y1(i) is the TD-LMS filter and y2(i) is the ZA-TD-LMS. The weight vector
also follows similar convex relation as (1) and is given by:

wi = wi,1λ(i) + [1− λ(i)]wi,2 (3.76)
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where w1,i,w2,i are the estimates of TD-LMS and TD-ZA-LMS, respectively. The
error of the convex filter is defined by:

e(i) = d(i)− y(i) (3.77)

The error is minimized by updating the convex parameter λ(i), indirectly, through
the middle variable a(i), the two variables λ(i) and a(i) are linked with sigmoid
function of the following format:

λ(i) =
1

1 + ea(i)
(3.78)

and a(i) is updated in a gradient descent setting with:

a(i+ 1) = a(i) + µae(i)[y1(i)− y2(i)]λ(i)[1− λ(i)] (3.79)

To insure the universality of the convex combination filter, a(i) is set to the
interval of [a+, a−], which reflects back into λ(i) in [λ+, λ−]. Limiting the range
of the update coefficients endows the filter with continuous ability to learn, an
essential requirement for universality.

3.9 Excess Mean Square Error for Component

Filters

The cost function of the sparse aware algorithm is of the form [94]:

min
w

f(e(i),wi,ui)︸ ︷︷ ︸
the main estimation part

+ S̄i︸︷︷︸
Sparsity enforcing condition

(3.80)

the sparsity enforcing term can take several forms, for example ‖wi‖0 or ‖wi‖p
and ‖w‖1. we employ the general term in (6) since it will help to shed light on
the mechanism of sparse algorithm. Applying stochastic descent approach to solve
(6), the following general recurrence manifest itself:

wi = wi−1 + µvH
i e(i)− si (3.81)

and vi is defined by:

vH
i = Λ−1

i xH
i (3.82)

where xi andwi represent the transformed orignial regressors and filter coefficients
, respectively, and define:

xi = uiT (3.83)

wi = THw̄i (3.84)
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The transformation T is unitary transformation, which conserves the eigenvalue
spread of the input ui, and the power normalization matrix Λ−1

i shrinks the
eigenvalue spread. When si is set to zero, the resultant algorithm is TD-LMS,
otherwise, the algorithm is sparse-aware TD-LMS algorithm. and when the si has
the following description:

si = ρΛ−1
i THsgn[Twi] (3.85)

then recurrence (7) is called as the TD-ZA-LMS algorithm. Note that we are
exposing the sparsity in the time domain. The transformation generally needs
not to be real, but in this analysis we will assume this without loss of generality,
since the analysis can be extended easily to the complex case.
The relation between a-priori and posteriori errors:

ep(i) = ea(i)(1− µ‖vi‖22)− µ‖vi‖22n(i) + visi (3.86)

We use (12) to deduce the energy conservation relationship at the steady state,
given by the following equation:

E‖ea(i)‖2 =
σ2
nTr(Rv)

2− µTr(Rv)

+
1

2µ− µ2Tr(Rv)

{
2E

ea(i)visi
‖vi‖22

+ E
‖si‖vHv

‖vi‖22
− 2µEea(i)visi

}
(3.87)

Where we assumed that the measurement noise is independent of the input and
the weights vector. Applying the separation principle, (13) reads:

EMSE =
σ2
nTr(Rv)

2− µTr(Rv)︸ ︷︷ ︸
ns

+
1

2µ− µ2Tr(Rv)

{
E

‖si‖Rv

Tr(Rv)

+ 2Ew̃i
HRv

(
1

Tr(Rv)
− µ

)
si

}

(3.88)

The first term in (14) represents the EMSE introduced due to the non-sparse
part of the algorithm, and the second term is due to introducing the sparse aware
term to the algorithm. Note that the second term vanishes, when si = 0, where
equation (7) becomes an ordinary LMS algorithm, the EMSE is given by:

EMSETD−LMS =
σ2
nµTr(Rv)

2− µTr(Rv)
(3.89)
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and for the ordinary LMSRv = Ru. Which matches exactly the EMSE of the LMS
given in [3] .For the case of sparse-aware algorithm (ZA-LMS , where T = I and
si = ρsgn(w̄)), the EMSE behavior depends on the elements of the weight vector.
For the non-zero elements in the sparse optimum vector, the EMSE equation
reduces to:

EMSEk∈NZ =
σ2
nµTr(Rv)

2− µTr(Rv)

+
1

2µ− µ2Tr(Rv)
E

‖si‖2Rv

Tr(Rv)

(3.90)

where in this case, we can assume that si is independent from w̃. For the zero-
elements in the sparse vector, the expected value of si is zero (assuming the
algorithms converges) and the EMSE is then:

EMSEk∈Z =
σ2
nµTr(Rv)

2− µTr(Rv)

− 2

2µ− µ2Tr(Rv)
Ew̃i

HRv

(
µ− 1

Tr(Rv)

)
si

(3.91)

Here the sparse-aware term affects the wights error directly, and we independence
assumption cannot be taken.

From (3.90) and (3.91), it is clear that the LMS-sparse aware algorithm in-
creases the EMSE in the non-zero elements and reduces it for zero-elements. When
the number of non-zeros is very small (very sparse), the overall EMSE is signifi-
cantly less than the LMS. The EMSE of the TD-ZA-LMS:

EMSETD−ZA−LMS = EMSETD−LMS

+
1

2− µTr(RV)

[
2ρEw̃∞

H

×
(

1

Tr(Rv)
− µ

)
sgn(w∞)

+ ρ2
E||sgn(w∞)‖2

RvΛ
−2

Tr(Rv)

]

= ζTD−LMS + J(∞) (3.92)

3.10 Universality of the Convex Filter

To evaluate the steady state performance of the proposed convex filter,Cross-
Excess Mean Square Error (CMSE) exerted by the combination filter is studied.
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The CMSE is defined as:

CMSE = E{ea,ns(i)ea,s(i)} (3.93)

The energy conservation relation for the combination filter at the steady state:

E{ea,ns(i)ea,s(i)‖vi‖22
} = E{ep,ns(i)ep,s(i)‖vi‖22

} (3.94)

Starting from equation (11), the CMSE is given by:

CMSE =
σ2
nµsµnsTr(Rv)

η

+
1

η
Ew̃nsRv

(
1

Tr(Rv)
− µns

)
si (3.95)

where η = µs + µns − µsµnsTr(Rv). Comparing equation (19) with (13), we can
see that the convex filter is already introducing less bias to the non-zero elements.
To study the steady state behavior of the filter, we study the evolution of the
combination factor λ(i) as i tends to infinity. We do so by studying a(i):

E[a(i+ 1)] = E[a(i)] + µaE[λ(i)[1− λ(i)]2]∆J2

− µaE[λ(i)2[1− λ(i)]]∆J1 (3.96)

where:

∆J1 = Jex,1(∞)− Jex,12(∞)

∆J2 = Jex,2(∞)− Jex,12(∞)

For the case under consideration,, Jex,2 = EMSETD−LMS while Jex,1 =
EMSETD−ZA−LMS. The cross error of the convex in (3.95) represents Jex,12. To
study the universality of the proposed filter, three scenarios are considered. The
first case when the systems under identification is completely dense, and as the
number of active taps reduces from the dense setting, we move to the semi-sparse
setting and the final case is only spare.

3.10.1 Non-Sparse System — Jex,2 ≤ Jex,12 ≤ Jex,1:

For this case, and from equations (17) and (21), we can see that Jex,12 ≈ Jex,2
since ρ2 is very small. equivalently, ∆J2 ≈ 0 and ∆J2 > 0 or Jex,1 > Jex,2, which is
logical since for non sparse systems, TD-LMS is better than TD-ZA-LMS. equation
(21) translates to:

E[a(i+ 1)] = E[a(i)]− µaE[λ(i)2[1− λ(i)]]∆J1 (3.97)
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limiting a(i) to be in the range a+ < a(i) < −a+ which corresponds to λ+ <
λ(i) < λ−, then the term f(λ(i)) = E[λ(i)2[1 − λ(i)]] ≥ f(1 − λ+) = C > 0,
equation (22) becomes:

E[a(i+ 1)] ≤ E[a(i)]− µaC∆J1 (3.98)

(24) says that, the combination factor evolves to reach the limit of −a+ at ∞.
That means the combination chooses the second filer i.e, TD-LMS filter, since it
performs better.

3.10.2 Semi-Sparse System:

In this case, both ∆J1 > 0 and ∆J2 > 0, solving (21) at i = ∞, the stationary
point is given by:

E[λ(∞)] =
∆J2

∆J1 +∆J2
(3.99)

This condition is optimal , since it leads to:

Jex,12 ≤ min[Jex,1, Jex,2] (3.100)

which means that the combination is performing better than both of them.

3.10.3 Sparse System — Jex,1 ≤ Jex,12 ≤ Jex,2:

In this case, TD-ZA-LMS performs better, which leads to ∆J1 ≈ 0 and ∆J2 > 0,
then (22) summarize to:

E[a(i+ 1)] = E[a(i)] + µaE[λ(i)2[1− λ(i)]]∆J2

≥ µaC∆J2

(3.101)

which means that as a(i) goes to a+ (equivalently λ+), selects the first filter i.e,
the TD-ZA-LMS.Hence the combination filter, as expected, inherits the same uni-
versality properties as its time domain version. Next, we explore the performance
of the filter when the input is highly correlated.

3.11 Computer Simulation

In this section the performance of the Transformed convex combination is investi-
gated. Two experiments are performed and, in each, three stages are introduced
to measure the tracking ability. The three phases are sparse, semi-sparse and
dense.
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Figure 3.6: MSD curves for LMF, ZA-LMF algorithms and their convex combination. SNR level is 10 dB with uniform
measurement noise.
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In the first experiment, the input to the convex filter is white Gaussian. DFT
is used as a unitary transfromation and the power normalization is estimated using
exponential windowing described by:

σ2
k(i+ 1) = βσ2

k(i) + (1− β)‖vk(i)‖2 (3.102)

where β = 0.95 is good choice for stationary inputs. The step sizes of the com-
ponent algorithms equal 0.01, and µa = 1000, µtd = 100 for the combination fil-
ters.The step sizes are chosen to insure that the algorithms reach the same Mean
Square Deviation (MSD) floor, which allows us to compare the convergence speed
more efficiently. Both filters has the same zero attraction power ρ = 5 × 10−5.
The SNR is set to 30 dB. For first 1000 iterations, the system under identification
is considered to be a sparse system with sparsity rate of Mactive

M
= 1/16, where

Mactive is the cardinality of active taps , and M is the number of taps of the
filter. At iteration number 1000, the system is switched to semi sparse case with
rate 5

16
, and after 2000 system is considered to be dense.. The same procedure of

university testing is duplicated for the second experiment.
From Fig. 2, we see that both types of filters offer the same convergence, since
the DFT and power normalization can slightly wighten the already White Gaus-
sian input. The difference in convergence in Fig. 3 though is dramatic. The
transformed convex filter offer much higher rate of convergence compared to its
time domain version. It can also be noted that, the transformed convex grantees
optimal universality,in the case of semi-sparse case. In which the EMSE is strictly
less than the component filters.
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3.12 Conclusion

In this work, a convex combination filter for variable sparse system identification
problem is proposed, under highly correlated environment. The proposed filter
merge two algorithms, namely the transform domain LMS and its sparse aware
version, TD-ZA-LMS. It is verified that, compared to the time domain convex
proposed in [102], the transformed domain convex offers much higher speed of
convergence.
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CHAPTER 4

NON-NEGATIVE SPARSE
SYSTEM IDENTIFICATION

4.1 Sparse Non-negative NLMF algorithms

4.1.1 Introduction

The non-negativity constraint is another structure can be employed to refine the
optimum solution. The non-negative LMS algorithm introduced in [] solves employ
this condition with the square error function of the LMS, and applying the KKT
conditions to reach an equation of the form f(x) = 0, where it is solved using
fixed point recursion to find the root which happens to be the optimum solution,
since the f(x) is strictly convex. HHLMS algorithm, though superior in Gaussian
noise environments, its performance deteriorates in non-Gaussian environments.
NN-LMF algorithm is proposed as a fit solution to these environments, because
the non-negative algorithm will inherit the properties of the LMF — which serves
lower EMSE compared to the LMS in these environments. In this section we
propose the sparse NN-LMF algorithm, which employs in addition to the non-
negativity constraints, the l1 norm of the solution we seek.

4.1.2 Zero Attractor Non-Negative LMF Algorithm

The cost function we seek to minimize for the optimum solution wo is given by:

wo = argmin
w

[uiwi−1 − d(i)]4 + λ‖wi−1‖1 = f(wi−1)

s.two(i) > 0∀i (4.1)

Introducing the non-negative vectors w+
i and w−

i , the l1 regularized problem ren-
ders to [105]:

w̃o = argmin
w

[

[
ui

−ui

]T
w̃i−1 − d(i)]4 + λ12Mw̃i−1

s.tw̃i−1 � 0 (4.2)
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Clearly, the problem in (1.118) is convex. and λ is the Lagrange multiplier, and the
Karush-Kuhn-Tucker must be satisfied at the optimal solution w̃o. LetQ(w̃o, λ) =
J(w) + λTw, Then the KKT conditions are given by:

∇wQ(wo, λo) = 0 (4.3)

wo
iλ

o
i = 0 (4.4)

And the two conditions can be concatenated in one, given by:

Dwwo[∇J(wo)] = Φ(wo) = 0 (4.5)

which translates the problem from minimization of (1.118) to finding the root of
(1.121). In order to solve for the root iteratively, we resort an interior point iter-
ative method, namely, the fixed point iteration scheme. The fixed point scheme
generally is used to solve problems in the form f(x) = 0, by a mediate func-
tion g(x) = x, and iterating using xn+1 = g(xn), hoping that the sequence
x0, x1, x2, x3... will converge to the solution x.
By employing the fixed point iteration (FPI) to the point in hand, and introducing
µn to act as a step size to endow (FPI) with convergence control, the optimum
solution wo can be sought using:

w̃n+1 = w̃n + µnDw̃[ũie
3(i)− 1Tλ] (4.6)

w̃n+1 = (1− µλ)w̃n + f(w̃i−1)Dw̃ũie
3(i) (4.7)

where f(w̃i−1) =
1
4
is a positive function on w̃i−1. ũi

[
ui −ui

]
. where:

e(i) = d(i)− ũiw̃ = d(i)− uiw (4.8)

and twi is calculated by:

wi = w+
i −w−

i (4.9)

Note that because of the use of the positive variables difference method, and the
fixed point procedure, the algorithm seems to be sparse agnostic. However, by
comparing to the algorithm in (1.123) with the ZA-LMF algorithm:

wn+1 = wn + uie
3(i)− λsign(wn) (4.10)

we see that, by introducing Dw̃ which prevents the algorithm for looking of
negative values of the optimum solution, which renders the zero attractor term
−λsign(wi−1) into −λwi−1, hence we can see that (1.123) is sparse aware, when
the optimum sought is non-negative.
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4.1.3 Mean Behavior of the l1 NNLMF algorithm

We study now the mean behavior of the l1 NNLMF. We assume that the measure-
ment noise z(n) = d(n) − unwo is white Gaussian with variance σ2

z . As for the
input the input and desired signals are assumed to be stationary. We customize
the analysis for the proposed algorithm with White Gaussian input with power
σ2
x. The error vector is defined as following:

c(n) = w̃(n)− w̃o (4.11)

and the error vector evolution recurssion is then:

c(n+ 1) = (1− µλ)c(n) + µe3(n)Dx̃w̃(n) + µλwo (4.12)

and by redefining the error in term of error miss-adjustment vector c(n), that is
, e(n) = z(n) − w̃(n)c(n) is rendered to(and applying the statistical expectation
E.):

Ec(n+ 1) = Ec(n) + µ{−3z2(n)x̃(n)w̃(n) + [x̃(n)w̃(n)]3}Dx̃[c(n) + w̃o] + µλwo

(4.13)

At this stage we resort to the independence assumption in order to simplify the
analysis. the ith entry of the vector c(n) is then reads:

ci(n+ 1) = (1− µλ)ci(n)− 3µσ2
zE[xi(n)x̃(n)]E[ci(n)c̃(n)]

+ µE[xi(n)x̃(n)]
3E[ci(n)c̃(n)]

4

− 3µσ2
zwo,iE[xi(n)x̃(n)]E[ci(n)]

+ µwo,iE[xi(n)x̃(n)]
3E[ci(n)c̃(n)]

3 (4.14)

And by extending the independence assumption, and assuming the error taps are
statistically independent, we have:

Eci(n+ 1) = (1− µλ− 3µσ2
zσ

2
xwo)Eci(n)− 3µσ2

zσ
2
xEc2i (n)

+ 3µwoσ
4
xEc3i (n) + 3µσ4

xwoEc4i (n) + µλwo (4.15)

at the steady state, ci(n + 1) = ci(n) when wo > 0, and the higher moments of
error (third and fourth) are expected to be very small, with this in hand, (1.131)
becomes:

E[ci(∞)2] =
λwo

3σ2
zσ

2
x

(4.16)

In this case of wo = 0,E[ci(∞)] 6= 0 is not valid since the error can only random
walk around the solution from one direction only, hence the average location is
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above zero. Hence the steady state is then:

E[ci(∞)2] =
λci(∞)

3σ2
zσ

2
x

(4.17)

and the total MSD is the sum of the incurred MSD for the non-zero and zero
elements. As for the step size condition to insure the convergence, we have to
insure µ ≤ 2

3woσ2
xσ

2
z
. The overall seems not to depend on the step size µ, but note

that E[ci(∞)] is a function of the learning rate µ, as it can be seen from (1.131).

4.1.4 Simulation

To evaluate the performance of the algorithm, two scenarios are tested with system
identification setting. The length of the unknown filter is assumed to be M = 32.
In both of the scenarios, a uniform initialization vector is used, with w(o)i =

1
M
.

Firstly, simulating Low SNR (= 5dB) environment with both the input sequence
and the measurement noise are assumed to be white Gaussian input. The per-
formance of the algorithm compared to its sparse agnostic version is superior as
depicted in figure (1.6), and offer nearly 10dB improvement in steady state ex-
cess MSD. And for the second scenario the measurement noise is assumed to be
uniform, and the algorithm grantees even lower steady state. The convergence of
both algorithms is slow, basically because of the diminishing step size required for
the LMF algorithms generally, to reduce the probability of divergence.

4.1.5 Conclusion

In this work, a sparse aware non negative LMF algorithm is proposed. Where
it is found that it offers much lower EMSE compared its agnostic version, In
Gaussian and non Gaussian noise environments (where LMS version algorithms
suffers performance).

4.2 Convex Combination of NNLMS and l1
NNLMS for variable non-negative sparse

system identification

4.2.1 Introduction

The problem of sparse system identification has been quite famous for now be-
cause it is recognized, in myriad of applications in physical phenomena, that the
underlying system is sparse in it is nature. And with the fort of mathematical
tools introduced by the LASSO techniques, the problem is tackled systematical
rather than one by one cases. In addition to sparsity structure, that is, very
few non-zero elements are active, other systems inherit more customized setting,
where the non-zero are strictly non-negative — mainly, because of the physical
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Figure 4.1: MSD curve for Sparse NNLMF, NNLMF algorithms,with White Gaus-
sian Input and White Gaussian noise, and sparsity rate 1
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Simulation parameters are set to µ = 0.001, λ = 0.001 and M = 32.
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meaning of the non-zero quantities. The l1 NNLMS algorithm proved to recognize
more these systems (non-negative sparse systems) efferently than their counter-
part NNLMS. However, in many systems, the nature of the system can flow from
sparse to dense system back and forth, an obstacle to select one algorithm over
the other. However, the bewilderment of the choice can be remved completely by
introducing a convex combination of the two algorithms, that is, merged filter of
NNLMS and l1 — NNLMS. The convex filter will automatically shifts from one
filter to another depending on the system to be identified, in a system identifi-
cation setting. Even more, when the system is semi-sparse, the convex offers a
performance better than each of its components.
IN this work, we firstly introduce the convex combination of the two filters, and
in the second part we study the universality of the convex filter: the EMSE of
the convex compared to its components. In the third we propose the affine filter,
which offers performance tantamount to the convex, with slightly less computa-
tional complexity reduction. Ee conclude the study by the computer simulations,
to verify the theoretical analysis.

4.2.2 Problem Formulation

The first filter, F1, is the NNLMS algorithm, with recursion:

w1(n+ 1) = w1(n) + µe1(n)Dx(n)w1(n) (4.18)

and for the l1 non negative algorithm:

α(n+ 1) = α(n)(1− µλ) + µe2(n)Dx̃α1(n) (4.19)

w2(n) = α+(n)− α−(n) (4.20)

where λ is the zero attractor power. clearly, e1(n) = d(n) − xnw1 and e2(n) =
d(n) − x̃nα. To study the universality of the convex filter, three parameters
are sought, Jex,1(∞) = E|ea,1(∞)|, Jex,2(∞) = E|ea,2(∞)| and Jex,12(∞) =
E|ea,1(∞)ea,2(∞)|.
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4.3 Computer Simulation
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CHAPTER 5

CONCLUSION AND FUTURE
WORK

The field of adaptive filters has been active for quite a while because of the sim-
plicity of these systems . Recently, the advent of the compressive sensing theory
has reinvented the whole systems to be sparse aware. In this work, the main theme
is the sparse system identification problem where we tried to find solutions under
special environments, namely, the non-Gaussian with correlated input. Moreover,
we dealt with the problem of variable sparsity of the system under consideration,
that is, the number of active coefficients is allowed to change, in addition to the
support (locations). Endowing these algorithms in the communication systems
for example, is expected to improve the Symbol error rate, because of good recon-
struction of the communication channel for example.
As we have mentioned earlier, the sparsity is a very strong structure that is always
beneficial to explore. Another equipotent structure is the block sparsity. Endow-
ing block sparse aware algorithms with ability to recognize the variable block
structure is mandatory in non-stationary environments. To do so, we will study
the convex combination of block sparse aware algorithms, under Gaussian con-
ditions. We resort ourself to the Gaussian conditions here, because of simplicity
of analysis that is reflected in insightful results, that helps designer to efferently
cook-up their algorithms. Moreover, the Gaussian assumption is quite reasonable
because of central limit theorem.
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