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ABSTRACT 

 

Full Name : [SANUSI Ridwan Adeyemi] 

Thesis Title : [NEW EFFICIENT CUSUM CONTROL CHARTS] 

Major Field : [Applied Statistics] 

Date of Degree : [April, 2016] 

 

Statistical quality control deals with monitoring of the production/manufacturing 

processes and control chart is one of its major tools. It is vastly applied in industry to 

keep the process variability under control. One of the most popular categories of control 

charts is CUSUM chart which is based on utilizing the information on cumulative sum 

pattern to detect small shifts. This thesis proposes new efficient CUSUM charts which are 

based on the utilization of auxiliary information to monitor the location parameter of a 

study variable. Furthermore, to increase the sensitivity of the proposed charts in detecting 

moderate to large shifts, the proposed charts are extended to Combined Shewhart 

CUSUM charts. CUSUM chart for monitoring dispersion parameter is also improved by 

applying the Fast Initial Response. The average run length performance of the proposed 

charts is evaluated in terms of shifts in study variable and compared with some recently 

designed control structures meant for the same purposes. The comparisons revealed that 

the proposed charts perform really well relative to the other charts under discussion. At 

last, real life industrial examples are provided to describe the application procedure of the 

proposed charts. 
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 ملخص الرسالة

 
 

    أدييمي رضوان ،سانوسي :الاسم الكامل
 

      الجديدة والأكثر فعالية CUSUMخرائط المراقبة  :عنوان الرسالة
 

 إحصاء تطبيقي التخصص:

 
 2016نيسان،        :تاريخ الدرجة العلمية

 

 

التصنيع، وخريطة المراقبة هي إحدى أدواتها. يتم تطبيق /يتعامل الضبط الاحصائي للجودة مع مراقبة عمليات الإنتاج

خريطة المراقبة الى حد كبير في الصناعة للحفاظ على تبيان العمليات بالمنتج ضمن المواصفات المطلوبة. إن 

CUSUM  هي واحدة من أهم أصناف خرائط المراقبة وهي مبنية على استخدام المعلومات عن ماهية أو نمط الجمع

جديدة وأكثر فعالية مبنية على  CUSUMللكشف عن الازاحات الصغيرة. في هذه الرسالة نقترح طريقة  التراكمي

استخدام معلومات مساعدة للتحكم بمعلمة الموقع الخاصة بالمتغير قيد الدراسة. إضافة الى أن هذه الطريقة المقترحة 

 Shewhartطة المقترحة تم توسعتها الى خرائط لها القدرة في الكشف عن الإزاحات المتوسطة الى الكبيرة، الخري

CUSUM  المركبة. كذلك في هذه الرسالة تم إجراء تحسين على خريطةCUSUM  للتحكم بمعلمة التشتت من

للخريطة المقترحة من  ARL. تم حساب متوسط طول المدى FIRخلال تطبيق ما يسمى بالاستجابة الأولية السريعة 

ر قيد الدراسة وتم مقارنتها مع تصاميم أخرى حديثة مماثلة. أظهرت المقارنات بأن أداء خلال معلمة الازاحة للمتغي

الخريطة المقترحة أفضل من الخرائط الأخرى التي شملتها الرسالة. وأخيرا، تم عرض أمثلة واقعية من القطاع 

 الصناعي وذلك كتطبيق على الطريقة الجديدة المقترحة في هذه الرسالة.
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1 CHAPTER 1 

INTRODUCTION 

Control chart is a statistical chart to observe process quality, it is one of the seven tool kits 

(Pareto diagram, Cause and effect diagram, Flowcharts, Control chart, Histogram, Scatter 

diagram and Check sheet) of statistical process control (Montgomery, 2009). Two core types of 

control chart exist depending on the number of process features or variable to be examined; the 

univariate control chart and the multivariate control charts. The former is a graphical 

representation that summarizes one quality characteristic, while the latter describes the 

characteristics of two or more variable of interest.  

Univariate control chart shows the value of the variable of interest over time or against sample 

number. In addition, three lines exist in a chart; the lower control limit (LCL), the center line 

(CL) and the upper control limit (UCL). The CL indicates the average value of the in-control 

process, while the UCL and the LCL give boundaries around the CL for declaring that a process 

is in-control. These control limits are carefully chosen to ensure that all the study observations 

are within these boundaries as far as the process remains in-control.  

Control charts are used for observing different shifts in a process, these shifts can be a transient 

shift (memoryless structure) or a persistent shift (memory structure). Shewhart (1924) introduced 

the Shewhart control chart for detecting transient shifts. This chart monitors sudden shift by 

using information from the most recent examined samples, consequently, it is not effective in 

monitoring minute shifts in a process. However, small shifts can be monitored by the memory-
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type control charts, which are the EWMA chart, developed by Roberts (1959), and the CUSUM 

control chart, proposed by Page (1954). The Exponentially Weighted Moving Average 

(EWMA), allot larger weight to the most current data points for detecting small shifts in a 

process. Also, the CUSUM chart is based on geometric moving average. It detects smaller shifts 

efficiently by using information from a very long sequence of samples. 

In this thesis, CUSUM control chart is considered extensively by proposing new CUSUM charts 

that are more efficient in detecting smaller to moderate shifts, than the ones in the literature. The 

efficiency is mainly compared using the average run length (ARL) approach. The proposed 

charts are compared with existing charts of the same purpose. Efficient estimators used in the 

field of sampling techniques are used for the construction of the proposed CUSUM charts. The 

proposed charts detect shifts in location parameter or dispersion parameter in a process, and 

various statistical properties of the charts are examined. 

 

1.1 CUSUM CONTROL CHART 

The CUSUM control chart is used in detecting small shift in a variable (X) of a process, it is a 

cumulative deviation from the target value 0 . It is calculated by two statistics which are the  

  



  10,0max ttt CKXC            (1.1) 

    10,0max ittt CKXC           (1.2) 

upper CUSUM  tC  and the lower CUSUM  tC , where t is the observation number and 

000   CC  though they can also be set to other values (Headstart values) for fast initial 
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response (FIR) CUSUM (Hawkins and Olwell, 1998). Both 


tC  and 


tC  are plotted against 

control limits (H). K  is the reference value, and it is taken to be half of the shift (𝛿) to be 

detected, scaled in standard deviation (𝜎) unit, under the assumption that the study variable X is 

normally distributed. The lower the value of K , the more sensitive the CUSUM control chart is 

to small shifts. tX  represents the tth observation for a single sample size (n = 1). For a subgroup (

1n  ), tX  is replaced with the mean of the subgroup in each observation. 
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2 CHAPTER 2 

LITERATURE REVIEW 

In the field of engineering, statistical process control (SPC) is recurrently connected to the use of 

charting methods for identifying changes in variability or mean of a process. Its activities include 

Pareto analysis, the experimental design and multivariable analysis, design of sampling and 

inspection schemes. Base on design structure, we can group control charts into two different 

aspects; the memoryless control chart (Shewhart-type) and memory control charts. The 

frequently used memory control charts are the Cumulative Sum (CUSUM) control charts and the 

Exponentially Weighted Moving Average (EWMA) control chart proposed by Page (1954) and 

Roberts (1959) respectively. Unlike the Shewhart-type charts that ignores the past information, 

the CUSUM and the EWMA charts make use of the past information and the current information 

to give a better performance in detecting small shifts and moderate shifts. The structure of the 

CUSUM charts and their average run length(ARL) performance for various choices of parameters 

are well  explained in Hawkins and Olwell (1998). When fundamental distribution of a process is 

not normal or unlikely to be normal, nonparametric control charts will be good. Considering 

small shifts in scatter outliers, Midi and Shabbak (2011) proposed robust EWMA and CUSUM 

for early detection of the shift in multivariate case. Li et al. (2010) introduced two nonparametric 

equivalents of the CUSUM and EWMA control charts for detecting shifts in the location 

parameter of a process, based on the Wilcoxon rank-sum test. The application of robust control 

chart in CUSUM for detecting shifts in location and dispersion of a process simultaneously was 

considered by Reynolds and Stoumbos (2010). 
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Some authors also consider the use of auxiliary variable to increase the efficiency of the study 

variate, which we also consider in this thesis work. When assessing a control chart’s plotting 

statistic(s), Riaz (2008a) popularized the notion of using auxiliary information. He suggested a 

control chart which uses a regression-type estimator as the plotting statistic to monitor the 

process’s variability, and showed the supremacy of his chart over the famous Shewhart-type 

control charts for the same drive. Aiming on small shifts and moderate shifts in the location 

parameter of a process, Abbas et al. (2014) proposed an EWMA-type control chart which uses 

one auxiliary variable. The mean in the structure of the proposed chart is estimated using the 

regression estimation method. It was established that the chart outperformed its univariate and 

bivariate counterparts. Furthermore, Riaz (2008b) proposed a regression-type estimator to 

monitor the location of a process. He not only showed the superiority of his proposal over the 

Shewhart’s X -chart, but also over the regression charts and the cause-selecting charts. 

Due to the advancement in technology and industrial processes, there is need to enhance the 

sensitivity of CUSUM charts to large shifts. This is done by combining the CUSUM chart with 

the Shewhart chart, to detects small to large shifts effectively at the same time. Westgard et al. 

(1977) applied this concept to improve quality control in clinical chemistry. The combination of 

Shewhart chart and CUSUM chart was observed by Lucas (1982) after which some scholars 

improved the chart by proposing more efficient charts. Combined Shewhart-CUSUM (hereafter 

called “CSC”) for location parameter can be optimized over the entire mean shift range by 

adding an extra parameter (w) known as the exponential of the sample mean shift, to the 

structure of the CSC. This will improve its performance and it will not increase the difficulty 

level of understanding and implementing the chart (Wu et al., 2008). The CSC, which has a wide 

range of application, attracts the attention of Environmentalists, and it is the only quality control 
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chart directly recommended by the United States Environment Protection Agency for intra-well 

monitoring. It has been consistently applied to waste disposal facilities for detection monitoring 

programs (Gibbons, 1999). Abujiya et al. (2013) replaced the traditional simple random 

sampling in the plotting statistic of the CSC chart with ranked set sampling.  

Control charts monitor the location and (or) dispersion parameter(s) of a process. The location 

parameter monitoring and its modification is mostly available in the literature, but little work has 

been done on dispersion monitoring. In detecting shift in process dispersion, CUSUM was 

applied to subgroup range by Page (1954). Tuprah and Ncube (1987) later compared this 

procedure with another procedure that was based on sample standard deviation. Using ARL 

approach, they found that the procedure based on the sample standard deviation detects shift 

from the target value faster, given that the process variables are normally distributed. 

Furthermore, one-sided and two-sided CUSUM structures based on logarithmic transformation 

of process variance was proposed by Chang & Gan (1995) for monitoring shift in process 

variance, and they also enhanced the performance of the schemes by introducing the Fast Initial 

Response (FIR) feature. The FIR was first proposed by Roberts (1959) and later improved by 

Steiner (1999) to reduce the time-varying limits of the first few sample observations. The FIR 

feature improves the performance of CUSUM chart if there is shift in a process at start-up 

(Hawkins and Olwell, 1998). The performance of this feature was later improved by using a 

power transformation with respect to time t (Haq, 2013). 
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2.1 OBJECTIVES OF THE STUDY 

We summarize the main objectives to be achieved in this study: 

1. To improve CUSUM control chart that monitor location parameter. 

2. To improve CUSUM control chart that monitor dispersion parameter. 

3. To extend the proposed charts to combined Shewhart-CUSUM chart. 

4. To compare the proposed charts with their counterparts using average run length and some 

other performance measures. 

5. Apply this study to numerous real life dataset. 
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3 CHAPTER 3 

Efficient CUSUM-Type Control Charts for Monitoring the Process Mean 

Using Auxiliary Information 

 

Statistical quality control deals with monitoring of the production/manufacturing processes and 

control chart is one of its major tools. It is vastly applied in industry to keep the process 

variability under control. One of the most popular categories of control charts is CUSUM chart 

which is based on utilizing the information on cumulative sum pattern. This article proposes a 

new two-sided CUSUM charts which are based on the utilization of auxiliary information. The 

𝐴𝑅𝐿 performance of the proposed charts is evaluated in terms of shifts in study variable and 

compared with some recently designed control structures meant for the same purposes. The 

comparisons revealed that the proposed charts perform really well relative to the other charts 

under discussion. At last, a real life industrial example is provided to describe the application 

procedure of the proposal. 
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3.1 INTRODUCTION 

The output of all the manufacturing processes always includes some amount of variation in it; 

e.g. in the process of filling two bottles with cooking oil, the amount of oil filled in any of the 

two bottles will not be exactly the same, and in the process of making tube light rods, the 

diameter or length of any two rods will not be the same, etc. This inherent part of process is 

known as common (uncontrollable) cause variation. The variations outside this common cause 

pattern are called special (controllable) cause variations. These variations are usually large in 

magnitude, controllable in nature and due to many inescapable causes. Statistical Quality Control 

(𝑆𝑄𝐶) includes some tools that can be used to discriminate between common and special cause 

variations. There are seven most commonly referred tools (Montgomery, 2009) and these tools 

are jointly known as 𝑆𝑄𝐶 tool-kit. The most important and the most powerful tool of this kit is 

the control chart which is the graphical display of a quality characteristic plotted against three 

lines named as Upper Control Limit (𝑈𝐶𝐿), Center Line (𝐶𝐿) and Lower Control Limit (𝐿𝐶𝐿). 

The two control limits (i.e. 𝑈𝐶𝐿 and 𝐿𝐶𝐿) are basically the parameters of a control chart which 

are selected in such a way that there is a very small probability, generally referred as False Alarm 

Rate (𝐹𝐴𝑅) in quality control literature and denoted by (𝛼)) of the in-control data points falling 

outside these limits. 

Control charts are further classified as Shewhart, CUSUM and EWMA-type control charts. The 

structure of Shewhart-type control charts proposed by Shewhart (1924) is made such that they 

utilize just the present information and hence, they ignore all the past information which results 

in less efficiency of these charts for detecting shifts (alterations in a process) that are of smaller 

magnitude. This drawback of Shewhart-type control charts leads to the proposal of Cumulative 

Sum (CUSUM) control charts (Page, 1954) and Exponentially Weighted Moving Average 

(EWMA) control charts (Roberts, 1959). The formation of these control charts is based on 



10 

 

utilizing the past information along with the present to improve the performance of control charts 

for detecting small amount of shifts. The two most commonly named performance measures for 

control charts are power and average run length (𝐴𝑅𝐿). Power of a control chart is defined as the 

probability of detecting a shift whereas 𝐴𝑅𝐿 is defined as average number of samples required to 

detect a shift. 𝐴𝑅𝐿0 and 𝐴𝑅𝐿1 are the representations of in-control and out-of-control chart 𝐴𝑅𝐿𝑠 

respectively, for a control chart. The 𝐴𝑅𝐿𝑠 for the Shewhart-type charts ( like 𝑋̅, 𝑅, 𝑆 and 𝑆2) 

can be obtained by taking the reciprocal of power, as the assumptions of having a geometric run  

 falseishypothesisnullhypothesisnullrejectPPower
ARL

|

11
  

length variable are fulfilled for these charts. For CUSUM and EWMA-type control chart, the 

𝐴𝑅𝐿 values are obtained through averaging the exact run length distribution, as the assumption 

of geometric run length variable does not hold for these charts. 

Auxiliary information is the extra information accessible apart from the information from the 

sample, at the estimation stage. Ratio, product and regression-type estimators are the most 

commonly quoted fashions of the exploitation of auxiliary information at the time of estimation 

(Fuller, 2011). The design of these estimators are structured such that they make use of the 

sample information and the auxiliary information, hence, they are more efficient than the 

traditional ones. There is a long history of the use of auxiliary information in the field of survey 

sampling but Riaz (2008a) popularized the concept of using it at estimation stage in 𝑆𝑄𝐶. Riaz 

(2008a) and Riaz (2008b) proposed the auxiliary based control charts for monitoring the process 

variability and location respectively where both of these charts are based on regression-type 

estimators. Furthermore, Riaz and Does (2009) suggested another variability chart based on a 

ratio-type estimator and showed the dominance of their proposed chart over the one based on 

regression-type estimator. Following the work of all these authors, several CUSUM-type control 
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charts which are based on auxiliary information are presented in this chapter. The performance 

of the proposed charts is measured in terms of its 𝐴𝑅𝐿 values.  

The organization of the rest of this chapter is as follows: the design structure of the classical 

CUSUM control chart is given in Section 3.2; Section 3.3 contains the details regarding the 

proposed charts (AXCUSUM charts) and their 𝐴𝑅𝐿 performance; Section 3.4 gives comparisons 

of our proposed chart with the other recently developed CUSUM and EWMA-type control 

charts; Section 3.5 contains an illustrative example in which the application of the proposed 

charts is shown on a simulated dataset; finally, Section 3.6 concludes the finding of this chapter. 

 

3.2 THE CLASSICAL CUSUM CONTROL CHART 

Today, CUSUM control chart proposed by Page (1954) has become one of the most admired 

algorithms to monitor production processes.  There is a close connection between the formation 

of this chart and the Sequential Probability Ratio Test (𝑆𝑃𝑅𝑇) by Wald (1947), which is in 

agreement with the observation of Fuh (2003) that CUSUM and 𝑆𝑃𝑅𝑇 form a hidden Markov 

Chain model. For a two-sided CUSUM chart, two statistics 𝑆𝑖
+ and 𝑆𝑖

− are plotted against single 

control limit 𝐻. These plotting statistics are defined as: 

           
𝑆𝑖

+ = max[0, (𝑌̅𝑖 − 𝜇0) − 𝐾 + 𝑆𝑖−1
+ ]

𝑆𝑖
− = max[0, −(𝑌̅𝑖 − 𝜇0) − 𝐾 + 𝑆𝑖−1

− ]
}                  (3.1) 

where 𝑖 is the sample number, 𝑌̅ is the sample mean of study variable 𝑌, 𝜇0 is the target mean of 

𝑌, 𝐾 is the reference value of CUSUM scheme often taken equal to half of the amount of shift to 

be detected (Ewan and Kemp, 1960). The starting value for both the plotting statistics is taken 

equal to zero i.e. 𝑆0
+ = 𝑆0

− = 0. Now, these two statistics are plotted against the control limit 𝐻 

and it is concluded that the process mean has moved upward if 𝑆𝑖
+ > 𝐻 for any value of 𝑖, 
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whereas the process mean is said to be shifted downward if 𝑆𝑖
− > 𝐻 for any value of 𝑖. The 

CUSUM chart is defined by two parameters i.e. 𝐾 and 𝐻 which are to be chosen very carefully 

because, the 𝐴𝑅𝐿 performance of the CUSUM chart is very sensitive to these parameters 

(Montgomery, 2009). These two parameters are used in the standardized manner (Montgomery, 

2009) given as: 

𝐾 = 𝑘 × √Var(𝑌̅), and    𝐻 = ℎ × √Var(𝑌̅)       (3.2) 

where √Var(𝑌̅) =
𝜎𝑌

√𝑛
⁄  and 𝜎𝑌 is the standard deviation of 𝑌. In the next section, we provide 

the details regarding the proposed chart, for which we have used the version of the CUSUM 

given in (3.1).  

 

3.3 THE PROPOSED AXCUSUM CONTROL CHART 

Suppose (𝑦𝑖1, 𝑥𝑖1), (𝑦𝑖2, 𝑥𝑖2), (𝑦𝑖3, 𝑥𝑖3), . .. (where 𝑖 = 1,2, …) represent a sequence of paired 

observations taken for a quality characteristic 𝑌 (which is the study variable) and is also 

correlated with the auxiliary variable 𝑋. Each pair (𝑌𝑖𝑗 , 𝑋𝑖𝑗) for 𝑗 = 1,2,3, … , 𝑛 is assumed to 

follow bivariate normal distribution with mean vector 𝜇 and variance-covariance matrix Σ given 

as: 

𝜇 = (
𝜇0 + 𝛿𝜎𝑌

𝜇𝑋
),     𝛴 = (

𝜎𝑌
2 Cov(𝑌, 𝑋)

Cov(𝑋, 𝑌) 𝜎𝑋
2 )       (3.3) 

where 𝜇0 is the in-control mean of study variable 𝑌 and 𝜇𝑋 are the known mean of auxiliary 

variable 𝑋. 𝜎𝑌
2 and 𝜎𝑋

2 are the population variances of 𝑌 and 𝑋, respectively, and are assumed to 

be known. Cov(𝑌, 𝑋) = Cov(𝑋, 𝑌) is the covariance between the study variable 𝑌 and the 

auxiliary variable 𝑋. 𝛿 represents the amount of shift introduced in the study variable 𝑌 in 𝜎𝑌 
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units i.e. 𝛿 =
|𝜇1−𝜇0|

𝜎𝑌
, where 𝜇1 represents the out-of-control mean of 𝑌. Now based on (3.3), 

there are several estimators in the literature for estimating the population mean (Srivastava 

(1967), Singh and Tailor (2003), Kadilar and Cingi (2004) and Cochran (1977)). Some of them 

(along with their expected value and mean square error) are given in Table 3.1. 

 

Table 3.1 : Definition and properties of some estimators for estimating population mean 

Estimators (𝑌̅𝑝, 𝑝 = 1,2, … ,10) 𝐸(𝑌̅𝑝) 𝑀𝑆𝐸(𝑌̅𝑝) 

𝑌̅1 =
∑ 𝑌𝑗

𝑛
𝑗=1

𝑛
 𝜇0 

𝜎𝑌
2

𝑛
 

𝑌̅2 = 𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅) 𝜇0 − Cov(𝑋̅, 𝑏𝑌𝑋) 
𝜎𝑌

2

𝑛
(1 − 𝜌𝑌𝑋

2 ) 

𝑌̅3 = 𝑌̅ (
𝜇𝑋

𝑋̅
) 𝜇0 +

𝜇𝑌(𝐶𝑋
2 − 𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
 

𝜇𝑌
2(𝐶𝑌

2 + 𝐶𝑋
2 − 2𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
 

𝑌̅4 = 𝑌̅ (
𝜇𝑋 + 𝜌𝑌𝑋

𝑋̅ + 𝜌𝑌𝑋

) 𝜇0 +
𝜇𝑌𝑔(𝑔𝐶𝑋

2 − 𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
 

𝜇𝑌
2(𝐶𝑌

2 + 𝑔2𝐶𝑋
2 − 2𝑔𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
 

𝑌̅5 = [𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅)] (
𝜇𝑋

𝑋̅
) 𝜇0 +

𝜇𝑋𝐶𝑋
2

𝑛
 

𝜇𝑋
2 [𝐶𝑋

2 + 𝐶𝑌
2(1 − 𝜌𝑌𝑋

2 )]

𝑛
 

𝑌̅6 = [𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅)] (
𝜇𝑋 + 𝐶𝑋

𝑋̅ + 𝐶𝑋

) 𝜇0 +
𝜇𝑋𝐶𝑋

2

𝑛
(

𝜇𝑋

𝜇𝑋 + 𝐶𝑋
)

2

 
𝜇𝑋

2 [(
𝜇𝑋

𝜇𝑋 + 𝐶𝑋
)

2
𝐶𝑋

2 + 𝐶𝑌
2(1 − 𝜌𝑌𝑋

2 )]

𝑛
 

𝑌̅7 = [𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅)] (
𝜇𝑋 + 𝛽2(𝑋)

𝑋̅ + 𝛽2(𝑋)

) 𝜇0 +
𝜇𝑋𝐶𝑋

2

𝑛
(

𝜇𝑋

𝜇𝑋 + 𝛽2(𝑋)
)

2

 
𝜇𝑋

2 [(
𝜇𝑋

𝜇𝑋 + 𝛽2(𝑋)
)

2

𝐶𝑋
2 + 𝐶𝑌

2(1 − 𝜌𝑌𝑋
2 )]

𝑛
 

𝑌̅8 = [𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅)] (
𝜇𝑋𝛽2(𝑋) + 𝐶𝑋

𝑋̅𝛽2(𝑋) + 𝐶𝑋

) 𝜇0 +
𝜇𝑋𝐶𝑋

2

𝑛
(

𝜇𝑋𝛽2(𝑋)

𝜇𝑋𝛽2(𝑋) + 𝐶𝑋
)

2

 
𝜇𝑋

2 [(
𝜇𝑋𝛽2(𝑋)

𝜇𝑋𝛽2(𝑋) + 𝐶𝑋
)

2

𝐶𝑋
2 + 𝐶𝑌

2(1 − 𝜌𝑌𝑋
2 )]

𝑛
 

𝑌̅9 = [𝑌̅ + 𝑏𝑌𝑋(𝜇𝑋 − 𝑋̅)] (
𝜇𝑋𝐶𝑋 + 𝛽2(𝑋)

𝑋̅𝐶𝑋 + 𝛽2(𝑋)

) 𝜇0 +
𝜇𝑋𝐶𝑋

2

𝑛
(

𝜇𝑋𝐶𝑋

𝜇𝑋𝐶𝑋 + 𝛽2(𝑋)
)

2

 
𝜇𝑋

2 [(
𝜇𝑋𝐶𝑋

𝜇𝑋𝐶𝑋 + 𝛽2(𝑋)
)

2

𝐶𝑋
2 + 𝐶𝑌

2(1 − 𝜌𝑌𝑋
2 )]

𝑛
 

𝑌̅10 = 𝑌̅ (
𝜇𝑋

𝑋̅
)

𝛼

 
𝜇0 +

𝜇𝑌 (
𝛼(𝛼 − 1)

2
𝐶𝑋

2 − 𝛼𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
 

𝜇𝑌
2(𝐶𝑌

2 + 𝛼2𝐶𝑋
2 − 2𝛼𝜌𝑌𝑋𝐶𝑌𝐶𝑋)

𝑛
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Some of the quantities in Table 3.1 are defined as: 𝑏𝑌𝑋 =
𝑠𝑌𝑋

𝑠𝑋
2  is the sample regression coefficient 

where 𝑠𝑌𝑋 =
1

𝑛−1
∑ (𝑌𝑗 − 𝑌̅)(𝑋𝑗 − 𝑋̅)𝑛

𝑗=1  and 𝑠𝑋
2=

1

𝑛−1
∑ (𝑋𝑗 − 𝑋̅)

2𝑛
𝑗=1 ; 𝛽𝑌𝑋 =

𝜎𝑌𝑋

𝜎𝑋
2  is the population 

regression coefficient; 𝜌𝑌𝑋 is the population correlation coefficient between the variables 𝑋 and 

𝑌; 𝐶𝑌 =
𝜎𝑌

𝜇𝑌
 and 𝐶𝑋 =

𝜎𝑋

𝜇𝑋
 are the population coefficient of variation for variables 𝑌 and 𝑋, 

respectively; 𝑔 =
𝜇𝑋

𝜇𝑋+𝜌𝑌𝑋
; 𝛽2(𝑋) is the population coefficient of kurtosis for variable 𝑋; the 

optimal value  for 𝛼 (that minimizes the mean square error) 𝛼 = −𝜌𝑌𝑋
𝐶𝑌

𝐶𝑋
.  

In this section, we have utilized the efficiency of the estimators in Table 3.1 to design a 

CUSUM-type structure and tried to study the effect of these efficient estimators on the 𝐴𝑅𝐿 

performance of CUSUM chart. Now the plotting statistics of the proposed chart (which is based 

on the estimators given in Table 1) is given as: 

𝑇𝑖
+ = max [0, (𝑌̅𝑝,𝑖 − 𝐸(𝑌̅𝑝)) − 𝐾𝑝 + 𝑇𝑖−1

+ ]

𝑇𝑖
− = max [0, − (𝑌̅𝑝,𝑖 − 𝐸(𝑌̅𝑝)) − 𝐾𝑝 + 𝑇𝑖−1

− ]
}      (3.4) 

Initial values for the statistics given in (3.4) are taken equal to zero i.e. 𝑇0
+ = 𝑇0

− = 0. The 

decision rule for the proposed chart is given as: the statistics 𝑇𝑖
+ and 𝑇𝑖

− are plotted against the 

control limit 𝐻𝑝. For any value of 𝑖, if the value of 𝑇𝑖
+ exceeds the value of 𝐻𝑝 then the process 

mean is declared to be shifted upward and if the value of 𝑇𝑖
− exceeds the value of 𝐻𝑝 then the 

process mean is said to be moved downward. 𝐾𝑝 and 𝐻𝑝 are defined as: 

𝐾𝑝 = 𝑘𝑝 × √𝑀𝑆𝐸(𝑌̅𝑝)  and  𝐻𝑝 = ℎ𝑝 × √𝑀𝑆𝐸(𝑌̅𝑝)        (3.5) 

where 𝑘𝑝 and ℎ𝑝 are the design parameters of the proposed AXCUSUM chart. The values of 𝑘𝑝 

and ℎ𝑝 need to be selected very carefully because the 𝐴𝑅𝐿 properties of the proposed chart 

mainly depend on these two constants (along with the value of 𝜌𝑌𝑋). For some selected values of   
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Table 3.2: Design parameters (𝒌𝒑, 𝒉𝒑) of the proposed AXCUSUM for 𝑨𝑹𝑳𝟎 ≅ 𝟑𝟕𝟎 

𝜌𝑌𝑋  
Estimator 

𝑌̅1 𝑌̅2 𝑌̅3 𝑌̅4 𝑌̅5 𝑌̅6 𝑌̅7 𝑌̅8 𝑌̅9 𝑌̅10 

0.25 

(0.25,8.008) (0.25,8.082) (0.25,8.018) (0.25,8.048) (0.25,8.048) (0.25,8.094) (0.25,8.085) (0.25,8.083) (0.25,8.040) (0.25,8.091) 

(0.50,4.774) (0.50,5.099) (0.50,4.787) (0.50,4.782) (0.50,4.782) (0.50,5.088) (0.50,5.101) (0.50,5.088) (0.50,5.059) (0.50,5.100) 

(0.75,3.339) (0.75,3.860) (0.75,3.340) (0.75,3.348) (0.75,3.348) (0.75,3.860) (0.75,3.850) (0.75,3.863) (0.75,3.831) (0.75,3.864) 

(1.00,2.516) (1.00,3.180) (1.00,2.512) (1.00,2.522) (1.00,2.522) (1.00,3.177) (1.00,3.169) (1.00,3.175) (1.00,3.150) (1.00,3.194) 

0.50 

(0.25,8.008) (0.25,8.083) (0.25,8.000) (0.25,8.004) (0.25,8.004) (0.25,8.078) (0.25,8.083) (0.25,8.078) (0.25,8.084) (0.25,8.135) 

(0.50,4.774) (0.50,5.060) (0.50,4.775) (0.50,4.762) (0.50,4.762) (0.50,5.070) (0.50,5.084) (0.50,5.066) (0.50,5.086) (0.50,5.138) 

(0.75,3.339) (0.75,3.860) (0.75,3.329) (0.75,3.330) (0.75,3.330) (0.75,3.838) (0.75,3.836) (0.75,3.834) (0.75,3.840) (0.75,3.894) 

(1.00,2.516) (1.00,3.180) (1.00,2.508) (1.00,2.499) (1.00,2.499) (1.00,3.146) (1.00,3.145) (1.00,3.145) (1.00,3.145) (1.00,3.217) 

0.75 

(0.25,8.008) (0.25,8.084) (0.25,8.014) (0.25,7.995) (0.25,7.995) (0.25,8.075) (0.25,8.050) (0.25,8.067) (0.25,8.072) (0.25,8.108) 

(0.50,4.774) (0.50,5.065) (0.50,4.775) (0.50,4.760) (0.50,4.760) (0.50,5.045) (0.50,5.040) (0.50,5.039) (0.50,5.043) (0.50,5.108) 

(0.75,3.339) (0.75,3.845) (0.75,3.342) (0.75,3.332) (0.75,3.332) (0.75,3.780) (0.75,3.772) (0.75,3.772) (0.75,3.773) (0.75,3.885) 

(1.00,2.516) (1.00,3.168) (1.00,2.513) (1.00,2.506) (1.00,2.506) (1.00,3.070) (1.00,3.070) (1.00,3.069) (1.00,3.066) (1.00,3.210) 

0.90 

(0.25,8.008) (0.25,8.030) (0.25,8.010) (0.25,7.984) (0.25,7.984) (0.25,8.049) (0.25,8.041) (0.25,8.041) (0.25,8.035) (0.25,8.043) 

(0.50,4.774) (0.50,5.066) (0.50,4.768) (0.50,4.744) (0.50,4.744) (0.50,4.936) (0.50,4.946) (0.50,4.942) (0.50,4.939) (0.50,5.100) 

(0.75,3.339) (0.75,3.840) (0.75,3.338) (0.75,3.320) (0.75,3.320) (0.75,3.630) (0.75,3.636) (0.75,3.640) (0.75,3.626) (0.75,3.882) 

(1.00,2.516) (1.00,3.163) (1.00,2.512) (1.00,2.500) (1.00,2.500) (1.00,2.890) (1.00,2.900) (1.00,2.901) (1.00,2.880) (1.00,3.192) 

 

Table 3.3: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅2 

𝜌𝑌𝑋 𝑘2 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 371.8 31.91 12.36 7.65 5.58 3.70 2.85 2.26 2.02 1.80 1.12 

0.5 370.9 28.56 8.88 4.95 3.46 2.25 1.76 1.35 1.08 1.00 1.00 

0.75 370.7 82.32 14.79 6.47 4.12 2.46 1.87 1.46 1.13 1.00 1.00 

1 370.6 141.90 23.53 7.72 4.33 2.37 1.71 1.28 1.06 1.00 1.00 

0.5 

0.25 371.2 26.95 10.77 6.76 4.96 3.33 2.56 2.07 1.98 1.46 1.01 

0.5 369.7 35.61 9.66 5.40 3.80 2.46 1.97 1.62 1.21 1.00 1.00 

0.75 369.3 64.13 11.55 5.37 3.52 2.19 1.68 1.24 1.04 1.00 1.00 

1 369.4 115.40 16.82 6.08 3.59 2.08 1.49 1.12 1.02 1.00 1.00 

0.75 

0.25 371.4 18.39 7.84 5.06 3.78 2.60 2.03 1.93 1.51 1.01 1.00 

0.5 369.3 20.58 6.52 3.90 2.83 1.99 1.52 1.08 1.01 1.00 1.00 

0.75 369.9 32.70 6.79 3.61 2.53 1.71 1.16 1.01 1.00 1.00 1.00 

1 367.6 60.24 8.26 3.70 2.45 1.53 1.08 1.01 1.00 1.00 1.00 

0.9 

0.25 372.2 10.81 4.98 3.34 2.56 1.98 1.47 1.02 1.00 1.00 1.00 

0.5 369.5 9.79 3.83 2.48 1.98 1.22 1.01 1.00 1.00 1.00 1.00 

0.75 370.7 11.67 3.55 2.21 1.69 1.04 1.00 1.00 1.00 1.00 1.00 

1 370.1 17.16 3.63 2.10 1.50 1.02 1.00 1.00 1.00 1.00 1.00 
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Table 3.4: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅3 

𝜌𝑌𝑋 𝑘3 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.4 32.96 12.76 7.90 5.75 3.80 2.91 2.34 2.04 1.83 1.20 

0.5 370.1 42.25 11.52 6.24 4.31 2.73 2.09 1.77 1.43 1.02 1.00 

0.75 367.3 59.42 13.09 6.04 3.84 2.30 1.71 1.32 1.09 1.00 1.00 

1 368.5 80.22 16.72 6.55 3.78 2.08 1.47 1.15 1.02 1.00 1.00 

0.5 

0.25 370.3 24.52 9.97 6.30 4.66 3.14 2.38 2.03 1.94 1.25 1.00 

0.5 369.8 28.41 8.39 4.78 3.40 2.24 1.80 1.38 1.08 1.00 1.00 

0.75 368.8 38.85 8.71 4.37 2.93 1.87 1.35 1.07 1.00 1.00 1.00 

1 371.8 53.81 10.30 4.40 2.75 1.63 1.17 1.02 1.00 1.00 1.00 

0.75 

0.25 371.7 15.33 6.72 4.38 3.32 2.25 1.97 1.64 1.11 1.00 1.00 

0.5 369.5 14.67 5.16 3.18 2.37 1.71 1.15 1.00 1.00 1.00 1.00 

0.75 369.1 17.88 4.77 2.72 1.98 1.26 1.01 1.00 1.00 1.00 1.00 

1 369.1 23.85 4.91 2.52 1.74 1.11 1.00 1.00 1.00 1.00 1.00 

0.9 

0.25 368.9 8.76 4.16 2.84 2.15 1.77 1.04 1.00 1.00 1.00 1.00 

0.5 368.8 7.09 3.00 2.05 1.60 1.01 1.00 1.00 1.00 1.00 1.00 

0.75 370.3 7.06 2.56 1.66 1.18 1.00 1.00 1.00 1.00 1.00 1.00 

1 371.3 8.02 2.35 1.42 1.07 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 3.5: 𝑨𝑹𝑳 values for the proposed AXCUSUM chart with estimator 𝒀̅𝟒 

𝜌𝑌𝑋 𝑘4 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 368.9 32.99 12.76 7.90 5.76 3.81 2.91 2.34 2.04 1.83 1.20 

0.5 370.1 41.79 11.47 6.23 4.30 2.72 2.09 1.76 1.42 1.02 1.00 

0.75 369.2 59.38 13.13 6.03 3.84 2.31 1.71 1.32 1.08 1.00 1.00 

1 369.7 80.63 16.73 6.54 3.78 2.09 1.47 1.15 1.03 1.00 1.00 

0.5 

0.25 370.7 24.47 9.98 6.29 4.64 3.14 2.38 2.02 1.94 1.25 1.00 

0.5 371.6 28.20 8.32 4.76 3.38 2.24 1.80 1.37 1.08 1.00 1.00 

0.75 369.6 38.83 8.70 4.34 2.92 1.86 1.35 1.07 1.00 1.00 1.00 

1 368.6 53.29 10.26 4.38 2.73 1.62 1.17 1.02 1.00 1.00 1.00 

0.75 

0.25 370.7 15.21 6.70 4.37 3.30 2.24 1.97 1.62 1.11 1.00 1.00 

0.5 369.4 14.64 5.13 3.16 2.36 1.70 1.14 1.00 1.00 1.00 1.00 

0.75 368.3 17.90 4.75 2.71 1.98 1.25 1.01 1.00 1.00 1.00 1.00 

1 368.9 23.96 4.88 2.51 1.73 1.11 1.00 1.00 1.00 1.00 1.00 

0.9 

0.25 369.7 8.71 4.13 2.83 2.14 1.77 1.04 1.00 1.00 1.00 1.00 

0.5 370.6 7.03 2.98 2.04 1.59 1.01 1.00 1.00 1.00 1.00 1.00 

0.75 370.3 7.03 2.54 1.65 1.18 1.00 1.00 1.00 1.00 1.00 1.00 

1 368.6 7.94 2.34 1.42 1.07 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 3.6: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅5 

𝜌𝑌𝑋 𝑘5 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.9 48.38 17.44 10.45 7.50 4.84 3.64 2.97 2.49 2.01 1.88 

0.5 370.4 77.64 18.95 9.30 6.15 3.70 2.71 2.19 1.94 1.42 1.05 

0.75 369.7 132.55 28.83 10.88 6.27 3.41 2.41 1.95 1.64 1.11 1.01 

1 370.1 195.24 51.18 15.53 7.40 3.44 2.32 1.81 1.44 1.05 1.00 

0.5 

0.25 369.0 44.28 16.09 9.72 7.00 4.55 3.43 2.81 2.32 1.99 1.76 

0.5 369.3 69.29 16.89 8.49 5.63 3.45 2.54 2.09 1.87 1.27 1.02 

0.75 369.0 119.63 24.61 9.59 5.66 3.13 2.25 1.84 1.50 1.06 1.00 

1 371.4 179.62 42.55 13.05 6.42 3.11 2.15 1.67 1.31 1.03 1.00 

0.75 

0.25 368.5 36.20 13.65 8.39 6.09 4.00 3.06 2.47 2.09 1.92 1.34 

0.5 369.3 52.62 13.29 7.00 4.77 2.99 2.24 1.93 1.64 1.08 1.00 

0.75 370.1 89.75 17.47 7.36 4.56 2.66 1.98 1.59 1.23 1.01 1.00 

1 370.2 140.21 27.82 9.06 4.87 2.56 1.83 1.39 1.12 1.00 1.00 

0.9 

0.25 369.5 29.78 11.69 7.26 5.32 3.54 2.73 2.17 2.00 1.67 1.06 

0.5 369.9 39.11 10.56 5.79 4.03 2.58 2.01 1.71 1.31 1.01 1.00 

0.75 370.5 63.31 12.45 5.71 3.69 2.25 1.71 1.28 1.06 1.00 1.00 

1 368.3 97.75 17.62 6.43 3.73 2.10 1.49 1.14 1.03 1.00 1.00 

 

Table 3.7: 𝑨𝑹𝑳 values for the proposed AXCUSUM chart with estimator 𝒀̅𝟔 

𝜌𝑌𝑋 𝑘6 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.4 48.75 17.53 10.46 7.49 4.84 3.64 2.97 2.49 2.01 1.88 

0.5 369.7 78.62 19.04 9.38 6.15 3.71 2.71 2.19 1.94 1.43 1.05 

0.75 371.1 28.89 10.89 6.27 3.41 2.41 1.95 1.63 1.11 1.01 1.00 

1 371.6 195.45 51.14 15.64 7.41 3.44 2.31 1.80 1.44 1.05 1.00 

0.5 

0.25 370.8 43.92 16.07 9.71 6.99 4.55 3.43 2.81 2.32 1.99 1.76 

0.5 370.6 68.85 16.79 8.48 5.65 3.45 2.54 2.08 1.87 1.27 1.02 

0.75 370.8 118.37 24.44 9.55 5.63 3.13 2.25 1.84 1.50 1.06 1.00 

1 368.2 177.64 41.94 12.95 6.42 3.12 2.14 1.67 1.31 1.03 1.00 

0.75 

0.25 370.2 36.10 13.67 8.39 6.09 4.01 3.06 2.47 2.09 1.92 1.34 

0.5 369.8 52.90 13.35 7.02 4.78 2.99 2.24 1.93 1.64 1.08 1.00 

0.75 368.1 90.01 17.61 7.38 4.56 2.65 1.98 1.59 1.23 1.01 1.00 

1 370.7 141.26 27.93 9.09 4.90 2.57 1.83 1.39 1.12 1.01 1.00 

0.9 

0.25 370.6 29.57 11.62 7.24 5.31 3.53 2.72 2.17 2.00 1.66 1.06 

0.5 368.4 38.80 10.49 5.79 4.03 2.58 2.02 1.71 1.31 1.01 1.00 

0.75 369.9 62.45 12.46 5.72 3.68 2.25 1.71 1.28 1.06 1.00 1.00 

1 370.1 97.87 17.48 6.42 3.72 2.11 1.50 1.15 1.03 1.00 1.00 
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Table 3.8: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅7 

𝜌𝑌𝑋 𝑘7 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.9 48.25 17.27 10.35 7.39 4.79 3.60 2.94 2.46 2.01 1.00 

0.5 369.6 77.42 18.63 9.21 6.04 3.66 2.68 2.16 1.93 1.39 1.04 

0.75 371.5 133.50 28.33 10.71 6.20 3.35 2.38 1.93 1.62 1.10 1.01 

1 370.9 195.31 50.13 15.27 7.25 3.40 2.28 1.78 1.42 1.05 1.00 

0.5 

0.25 368.9 43.07 15.81 9.57 6.89 4.48 3.38 2.78 2.29 1.98 1.73 

0.5 369.5 67.11 16.33 8.30 5.54 3.39 2.50 2.07 1.85 1.24 1.02 

0.75 369.4 115.99 23.71 9.29 5.50 3.08 2.22 1.82 1.47 1.05 1.00 

1 368.4 175.94 40.76 12.54 6.25 3.05 2.11 1.64 1.29 1.02 1.00 

0.75 

0.25 370.4 35.18 13.38 8.23 5.98 3.94 3.01 2.43 2.07 1.90 1.29 

0.5 369.7 51.00 12.95 6.84 4.67 2.94 2.21 1.90 1.61 1.06 1.00 

0.75 368.4 87.10 16.77 7.12 4.43 2.60 1.95 1.56 1.20 1.01 1.00 

1 368.7 136.89 26.63 8.69 4.73 2.51 1.80 1.36 1.10 1.00 1.00 

0.9 

0.25 369.7 28.68 11.32 7.08 5.18 3.46 2.66 2.13 1.99 1.60 1.04 

0.5 370.6 37.15 10.15 5.62 3.93 2.52 1.99 1.67 1.26 1.01 1.00 

0.75 371.0 60.03 11.86 5.49 3.58 2.21 1.67 1.25 1.05 1.00 1.00 

1 371.3 94.47 16.52 6.15 3.60 2.05 1.46 1.12 1.02 1.00 1.00 

 

Table 3.9: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅8 

𝜌𝑌𝑋 𝑘8 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.4 48.63 17.53 10.48 7.49 4.84 3.63 2.96 2.49 2.01 1.88 

0.5 371.1 78.15 19.04 9.37 6.14 3.70 2.71 2.19 1.94 1.42 1.05 

0.75 369.1 133.91 29.03 10.95 6.29 3.40 2.41 1.95 1.63 1.11 1.01 

1 369.4 196.36 51.60 15.74 7.45 3.45 2.31 1.80 1.44 1.05 1.00 

0.5 

0.25 372.4 44.07 16.12 9.70 6.99 4.55 3.43 2.81 2.32 1.99 1.76 

0.5 371.1 69.13 16.85 8.49 5.65 3.45 2.54 2.09 1.87 1.28 1.02 

0.75 369.3 118.74 24.54 9.53 5.63 3.14 2.25 1.84 1.50 1.06 1.00 

1 368.3 177.81 42.25 12.94 6.41 3.11 2.14 1.67 1.31 1.03 1.00 

0.75 

0.25 370.9 36.12 13.69 8.39 6.09 4.00 3.05 2.47 2.09 1.92 1.34 

0.5 369.5 52.73 13.26 7.01 4.77 2.99 2.24 1.92 1.64 1.08 1.00 

0.75 370.4 89.25 17.45 7.37 4.55 2.65 1.98 1.59 1.23 1.01 1.00 

1 369.9 138.86 27.82 9.09 4.88 2.56 1.83 1.38 1.12 1.00 1.00 

0.9 

0.25 370.4 29.61 11.65 7.26 5.31 3.53 2.72 2.17 2.00 1.66 1.06 

0.5 370.5 38.87 10.55 5.80 4.03 2.58 2.02 1.71 1.31 1.01 1.00 

0.75 368.7 62.75 12.39 5.72 3.69 2.25 1.71 1.28 1.06 1.00 1.00 

1 371.1 96.74 17.36 6.40 3.71 2.10 1.49 1.14 1.02 1.00 1.00 
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Table 3.10: 𝐴𝑅𝐿 values for the proposed AXCUSUM chart with estimator 𝑌̅9 

𝜌𝑌𝑋 𝑘9 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 370.6 33.06 12.74 7.85 5.72 3.78 2.91 2.32 2.03 1.85 1.17 

0.5 369.2 78.15 19.04 9.37 6.14 3.70 2.71 2.19 1.94 1.42 1.05 

0.75 371.4 133.91 29.03 10.95 6.29 3.40 2.41 1.95 1.63 1.11 1.01 

1 369.4 148.39 25.33 8.21 4.51 2.44 1.76 1.33 1.08 1.00 1.00 

0.5 

0.25 370.1 28.13 11.14 6.98 5.12 3.42 2.64 2.11 1.99 1.56 1.03 

0.5 370.3 38.08 10.19 5.64 3.94 2.54 2.01 1.70 1.28 1.01 1.00 

0.75 368.1 68.31 12.24 5.64 3.66 2.25 1.73 1.30 1.06 1.00 1.00 

1 371.3 121.56 18.26 6.44 3.76 2.16 1.56 1.16 1.02 1.00 1.00 

0.75 

0.25 369.7 19.66 8.29 5.32 3.97 2.73 2.07 1.97 1.68 1.02 1.00 

0.5 369.4 52.73 13.26 7.01 4.77 2.99 2.24 1.92 1.64 1.08 1.00 

0.75 370.6 36.70 7.37 3.85 2.67 1.80 1.24 1.02 1.00 1.00 1.00 

1 370.9 138.86 27.82 9.09 4.88 2.56 1.83 1.38 1.12 1.00 1.00 

0.9 

0.25 368.9 12.28 5.55 3.68 2.83 2.02 1.78 1.11 1.00 1.00 1.00 

0.5 369.7 11.66 4.35 2.76 2.11 1.47 1.02 1.00 1.00 1.00 1.00 

0.75 369.7 14.95 4.13 2.46 1.88 1.13 1.00 1.00 1.00 1.00 1.00 

1 368.7 96.74 17.36 6.40 3.71 2.10 1.49 1.14 1.02 1.00 1.00 

 

Table 3.11: 𝑨𝑹𝑳 values for the proposed AXCUSUM chart with estimator 𝒀̅𝟏𝟎 

𝜌𝑌𝑋 𝑘10 
𝛿 

0 0.25 0.5 0.75 1 1.5 2 2.5 3 4 5 

0.25 

0.25 369.4 36.21 12.88 7.87 5.73 3.78 2.92 2.30 2.02 1.89 1.15 

0.5 370.2 66.81 12.00 6.23 4.25 2.69 2.07 1.81 1.40 1.01 1.00 

0.75 369.0 162.02 15.51 6.15 3.80 2.27 1.73 1.28 1.04 1.00 1.00 

1 370.1 332.20 25.81 7.07 3.79 2.06 1.44 1.10 1.01 1.00 1.00 

0.5 

0.25 370.2 25.18 9.97 6.28 4.64 3.13 2.37 2.02 1.95 1.22 1.00 

0.5 370.1 31.45 8.41 4.76 3.37 2.22 1.81 1.36 1.06 1.00 1.00 

0.75 368.4 49.61 8.99 4.33 2.90 1.87 1.33 1.05 1.00 1.00 1.00 

1 371.2 75.31 11.16 4.40 2.72 1.61 1.14 1.01 1.00 1.00 1.00 

0.75 

0.25 369.2 15.23 6.71 4.37 3.31 2.25 1.97 1.63 1.11 1.00 1.00 

0.5 370.9 14.39 5.14 3.18 2.36 1.70 1.15 1.01 1.00 1.00 1.00 

0.75 369.4 16.98 4.75 2.72 1.98 1.26 1.02 1.00 1.00 1.00 1.00 

1 370.1 21.49 4.85 2.52 1.74 1.11 1.01 1.00 1.00 1.00 1.00 

0.9 

0.25 370.1 8.73 4.16 2.84 2.16 1.75 1.06 1.00 1.00 1.00 1.00 

0.5 370.2 6.99 3.01 2.05 1.59 1.02 1.00 1.00 1.00 1.00 1.00 

0.75 369.2 6.82 2.57 1.66 1.20 1.00 1.00 1.00 1.00 1.00 1.00 

1 369.7 7.41 2.36 1.44 1.09 1.00 1.00 1.00 1.00 1.00 1.00 
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𝑘𝑝 (0.25, 0.50, 0.75, and 1.00), 𝜌𝑌𝑋 (0.25, 0.50, 0.75 and 0.90) and fixed 𝐴𝑅𝐿0 = 370, the 

corresponding ℎ𝑝 are guessed by running 105 simulations in R software (R Core Team, 2014).  

These constants are given in table 2 where we fixed 𝐴𝑅𝐿0 = 370 Based on the constants in 

Table 3.2, the 𝐴𝑅𝐿 values of the proposed AXCUSUM chart (for all the estimators) are given in 

Tables 3.3 – 3.11. 

From Tables 3.1 – 3.11, the chief findings about the proposed AXCUSUM control chart is 

presented as follows: 

i. The use of auxiliary variable with the control structure of CUSUM chart is really 

advantageous in terms of 𝐴𝑅𝐿1 (The ARL value when there is a shift in a process) values 

if the value of 𝜌𝑌𝑋 is reasonably large (cf. Tables 3.3 – 3.11). 

ii. For a fixed value of 𝐴𝑅𝐿0, the 𝐴𝑅𝐿1 values decrease rapidly with increase in the values 

of either or both 𝜌𝑌𝑋 and |𝛿| (cf. Tables 3.3 – 3.11). 

iii. For all values of 𝜌, ℎ ranges from (7.984 to 8.135), (4.744 to 5.138), (3.320 to 3.894) 

and (2.499 to 3.194) for 𝑘 equals 0.25, 0.5, 0.75 and 1 respectively (cf. Table 3.2). 

iv. For weak positive correlation between the 𝑌 and 𝑋, A2CUSUM (i.e. the proposed 

CUSUM with estimator 𝑌̅2) chart  outperform other proposed charts, over the whole 

range of 𝛿, when 𝑘 ∈ (0.25,0.5) (cf. Tables 3.3 – 3.11). 

v. When  𝑘 ∈ (0.75,1) and there is small positive value of 𝜌𝑌𝑋, then A3CUSUM and 

A4CUSUM charts give the best performance in the cases of small to moderate shifts, 

while A10CUSUM chart is the best in detecting large shift (cf. Tables 3.3 – 3.11). 

vi. For 𝜌𝑌𝑋 = 0.5, A3CUSUM and A4CUSUM charts give the best performance (followed 

by A10CUSUM chart) when 𝛿 ∈ (0.25,0.5) i.e. small shifts (cf. Tables 3.3 – 3.11). 
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vii. For 𝜌𝑌𝑋 = 0.5, A4CUSUM and A10CUSUM charts give the best performance (followed 

by A3CUSUM chart) when 𝛿 ∈ (0.75,5) i.e. moderate and large shifts (cf. Tables 3.3 – 

3.11). 

viii. For 𝜌𝑌𝑋 = 0.75, A3CUSUM and A4CUSUM charts precede A10CUSUM chart in 

outperforming other proposed charts in detecting small shift (cf. Tables 3.3 – 3.11). 

ix. For a strong positive correlation 𝜌𝑌𝑋 ≥ 0.75, A3CUSUM, A4CUSUM and A10CUSUM 

charts are the best preceded by A2CUSUM chart, in detecting moderate to large shift (i.e. 

𝛿 ≥ 0.75) (cf. Tables 3.3 – 3.11). 

 

3.4 COMPARISONS 

Generally, 𝐴𝑅𝐿 is used to compare the performance of two charts. Wu et al. (2009) highlighted 

some of the drawbacks of 𝐴𝑅𝐿 as it gives the performance of a control chart for a specific shift 

size. Hence, they recommended some measures which evaluate the performance of a control 

chart over a range of 𝛿 values. These measures are named as extra quadratic loss (𝐸𝑄𝐿) and ratio 

of average run lengths (𝑅𝐴𝑅𝐿) which are defined as: 

𝐸𝑄𝐿 =
1

𝛿max−𝛿min
∫ 𝛿2𝐴𝑅𝐿(𝛿)𝑑𝛿

𝛿max

𝛿min
      (3.6) 

𝑅𝐴𝑅𝐿 =
1

𝛿max−𝛿min
∫

𝐴𝑅𝐿(𝛿)

𝐴𝑅𝐿benchmark(𝛿)
𝑑𝛿

𝛿max

𝛿min
      (3.7) 

Another performance measure named as performance comparison index (𝑃𝐶𝐼) given by Ou et al. 

(2012) is defined as: 

𝑃𝐶𝐼 =
𝐸𝑄𝐿

𝐸𝑄𝐿benchmark
                                                      (3.8) 

where 𝐴𝑅𝐿benchmark and 𝐸𝑄𝐿benchmark are evaluated for the benchmark chart (taken as the best 

chart in this section).  
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Table 3.12: Performance comparison of classical EWMA, classical CUSUM and AXCUSUM charts with fixed 𝐴𝑅𝐿0 = 370 

 
EWMA CUSUM 

𝜆 Classical Classical A2 (𝜌 = 0.5) A2 (𝜌 = 0.75) A3 (𝜌 = 0.5) A3 (𝜌 = 0.75) A4 (𝜌 = 0.5) A4 (𝜌 = 0.75) A10 (𝜌 = 0.5) A10 (𝜌 = 0.75) 𝑘 

EQL 

0.05 

6.067 6.249 6.553 5.373 6.255 4.612 6.242 4.583 6.245 4.599 

0.25 RARL 1.347 1.407 1.498 1.163 1.408 1.005 1.406 1.000 1.542 1.220 

PCI 1.324 1.364 1.430 1.172 1.365 1.006 1.362 1.000 1.003 1.363 

 

EQL 

0.14 

4.556 4.477 5.116 3.708 4.485 3.197 4.467 3.186 4.480 3.200 

0.50 RARL 1.479 1.497 1.728 1.215 1.500 1.004 1.493 1.000 1.810 2.240 

PCI 1.430 1.405 1.605 1.164 1.407 1.003 1.402 1.000 1.004 1.406 

 

EQL 

0.25 

3.946 3.881 4.768 3.486 3.881 2.931 3.873 2.927 3.965 2.925 

0.75 RARL 1.515 1.546 2.028 1.340 1.544 1.008 1.540 1.006 1.646 1.000 

PCI 1.349 1.327 1.630 1.192 1.327 1.002 1.324 1.001 1.356 1.000 

 

EQL 

0.38 

3.835 3.864 5.248 3.711 3.856 2.898 3.842 2.897 4.067 2.876 

1.0 RARL 1.559 1.619 2.464 1.541 1.611 1.018 1.602 1.018 1.784 1.000 

PCI 1.334 1.344 1.825 1.291 1.341 1.008 1.336 1.007 1.414 1.000 
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In this current study, we have used the sensitivity parameter of CUSUM chart 𝑘 =

0.25, 0.5, 0.75 and 1 which are the optimal choices for detecting a shift of size 𝛿 =

0.5, 1, 1.5 and 2, respectively. For the same values of 𝛿, we have found the optimal 

choices for the sensitivity parameter (𝜆) of EWMA chart to be 𝜆 = 0.05, 0.14, 0.25 and 

0.38 for 𝛿 = 0.5, 1, 1.5 and 2, respectively, using the technique of Crowder (1989). 

Finally, the comparisons of all the charts under discussion in the form of 𝐸𝑄𝐿, 𝑅𝐴𝑅𝐿 and 

𝑃𝐶𝐼 are provided in Table 3.12 where the in-control 𝐴𝑅𝐿 for all the charts is fixed at 

370. In Table 3.12, smaller value of 𝐸𝑄𝐿 shows a better performance of a chart, and the 

best chart in every situations is taken as the benchmark chart, indicated by bold value. 

The best charts in Table 3.12 are A4CUSUM for 𝑘=0.25,0.5 and A10CUSUM for 

𝑘=0.75,1. Similarly, the value of 𝑅𝐴𝑅𝐿 (or 𝑃𝐶𝐼) greater than 1 means that the benchmark 

chart has a superior overall performance and vice versa. It can be clearly seen from Table 

3.12 that AXCUSUM is outperforming the classical EWMA and the classical CUSUM 

charts. 

3.5 ILLUSTRATIVE EXAMPLE 

In this section, we provide an illustrative example to show the implementation of our 

proposed chart in real situation. For this purpose, we have considered the bivariate data 

by Constable and Parker (1988) on the measurements of a component part for an 

automobile’s braking system, containing the study variable 𝑌 = BAKEWT and the 

auxiliary variable 𝑋 = ROLLWT. 45 data points are taken from the in-control process and 

are used to estimate the population parameters. These estimates came out to be 𝜇0̂ =

201.18, 𝜇𝑋̂ = 210.24, 𝜎𝑌̂ = 1.17, 𝜎𝑋̂ = 1.23 and 𝜌𝑌𝑋̂ = 0.54. Considering these 

estimates as the known parameters, we have generated two datasets from bivariate 
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normal distribution. Dataset 1 with 𝜇1 = 201.7, 𝜇𝑋 = 210.24, 𝜎𝑌 = 1.17, 𝜎𝑋 = 1.23 and 

𝜌𝑌𝑋 = 0.54 contains 15 paired observations which refer to an out-of-control situation 

with 𝛿 =
(𝜇1−𝜇0)

𝜎𝑌

√𝑛
⁄

=
(201.7−201.18)

1.17
√1

⁄
≅ 1. Similarly, Dataset 2 with 𝜇1 = 200.6, 𝜇𝑋 =

210.24, 𝜎𝑌 = 1.17, 𝜎𝑋 = 1.23 and 𝜌𝑌𝑋 = 0.54 contains 15 paired observations which 

refer to an out-of-control situation with negative shift i.e. 𝛿 =
(𝜇1−𝜇0)

𝜎𝑌

√𝑛
⁄

=
(200.6−201.18)

1.17
√1

⁄
≅

−1.1.  The inspiration of generating dataset in such manner is taken from Singh and 

Mangat, (1996, pp. 221).  

According to the findings of section 3.3 A2CUSUM, A4CUSUM and A10CUSUM are 

generally performing best in most of the situations. So we have applied the classical 

CUSUM, A2CUSUM, A4CUSUM and A10CUSUM (with 𝑘 = 0.5) to the generated 

datasets. The chart output for all the charts when there is a positive shift in the process 

location is given in Figure 3.1, while Figure 3.2 contains the display of all the charts 

when the process location is shifted downwards. 

Figure 3.1 shows that the classical CUSUM detects the shift at sample # 10, A2CUSUM 

detects the shift at sample # 13, A4CUSUM detects the shift at sample # 9 and 

A10CUSUM also detects the shift at sample # 9. Similarly for the negative shift in the 

process parameter, classical CUSUM detects the shift at sample # 10, A2CUSUM detects 

the shift at sample # 12, A4CUSUM detects the shift at sample # 9 and A10CUSUM 

detects the shift at sample # 5. These findings of the illustrative example are also 

authenticating the findings of Section 3.3 where we said the superiority order is 

A10CUSUM (the best), followed by A4CUSUM, classical CUSUM and A2CUSUM. 
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Figure 3.1: Graphical display of the classical CUSUM, A2CUSUM, A4CUSUM and 

A10CUSUM charts for dataset 1 

 

3.6 SUMMARY AND CONCLUSIONS 

Quality of manufactured products and services are always important for the management 

department of a firm or industry. 𝑆𝑄𝐶 provides some suitable tools to monitor and 

improve the quality of products by reducing the undesirable variation in their output. 

Control chart is the most important tool of 𝑆𝑄𝐶 which is further categorized into 

Shewhart, CUSUM and EWMA-type control charts. Shewhart-type control charts are 
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Figure 3.2: Graphical display of the classical CUSUM, A2CUSUM, A4CUSUM and 

A10CUSUM charts for dataset 2 

built to detect large shifts in the process while CUSUM and EWMA-type control charts 

are designed to give better performance against small and moderate shifts. This chapter 

proposes a new two-sided CUSUM-type control chart named as AXCUSUM control chart 

for monitoring the mean of a process. The proposed chart is based on the information of 

auxiliary variable and different estimators are used to exploit the auxiliary information. 

The study revealed that the proposed chart is generalized form of the classical CUSUM 

chart and its performance is also better than the classical CUSUM and the classical 

EWMA charts.   
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4 CHAPTER 4  

Combined Shewhart CUSUM Charts using Auxiliary Variable 

 

Control chart is an important tool for monitoring disturbances in a statistical process, and 

it is richly applied in the industrial sector, the health sector, the agricultural sector, among 

others. The Shewhart chart and the cumulative sum (CUSUM) chart are traditionally used 

for detecting large shifts and small shifts, respectively, while the Combined Shewhart 

CUSUM (CSC) monitors both small and large shifts. Using auxiliary information, we 

propose new CSC (MiCSC) charts with more efficient estimators (the Regression-type 

estimator, the Ratio estimator, the Singh and Tailor estimator, the power ratio-type 

estimator, and the Kadilar and Cingi estimators) for estimating the location parameter. 

We compare the charts using average run length, standard deviation run length and extra 

quadratic loss, with other existing charts of the same purpose, and found out that some of 

the MiCSC charts outperform their counterparts. At last, a real-life industrial example is 

provided. 
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4.1 INTRODUCTION 

The most widely known quality control chart, Shewhart chart, was proposed by 

(Shewhart, 1924). It detects shifts in a production process by signaling when a process 

goes beyond some particular threshold limits known as control limits. Shewhart chart 

makes use of the information when the process goes out of the control limits and ignores 

the information when the process is within the control limits, i.e. in-control. Due to this 

fact, the chart is sensitive for detecting large shifts (or disturbance) in a process. Roberts 

(1959) and Page (1954) proposed Exponentially Weighted Moving Average (EWMA) 

chart and Cumulative Sum (CUSUM) chart, respectively, which make use of the 

information when the process gets out of control and even when the process is in-control, 

hence, these charts are sensitive to small and moderate shifts in a process. Other 

modifications of these charts have been proposed to increase their efficiency in terms of 

time, cost, and simplicity of usage and expression. 

The plotting statistic of CUSUM chart assumes normality. What if the plotting statistic is 

not normally distributed or its normality is altered? Nazir et al., (2013) answered these 

questions by suggesting some charts which are not normally distributed or their normality 

has been altered. They aimed at finding charts that perform practically well under normal, 

contaminated normal, non-normal, and special cause contaminated parent cases. Based 

on mean, median, Hodge-Lehman, midrange and trimean statistics, they proposed 

different CUSUM charts for phase II monitoring of location parameter and computed 

their performance measure using the average run length (ARL) approach. Abujiya et al. 

(2015) suggested the use of well-structured sampling techniques such as the double 

ranked set sampling, the median-double ranked set sampling, and the double-median 
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ranked set sampling, to significantly improve the performance of the CUSUM chart, 

without inflating the false alarm rate. They compared their proposed charts with some 

existing charts and found out that their charts perform better. 

Due to the advancement in technology and industrial processes, emphasis has been made 

on the implementation of CUSUM chart to existing Levey-Jennings or Shewhart control 

charts to improve their performance. These can be done manually using control charts or 

in a computerized quality control systems. Westgard et al. (1977) applied this concept to 

improve quality control in clinical chemistry. The combination of Shewhart chart and 

CUSUM chart was observed by Lucas (1982), after which some scholars improved the 

chart by proposing more efficient charts. Combined Shewhart-CUSUM (hereafter called 

“CSC”) for location parameter can be optimized over the entire mean shift range by 

adding an extra parameter (w) known as the exponential of the sample mean shift, to the 

structure of the CSC. This will improve its performance and it will not increase the 

difficulty level of understanding and implementing the chart (Wu et al., 2008). The CSC, 

which has a wide range of application, attracts the attention of Environmentalists, and it 

is the only quality control chart directly recommended by the United States Environment 

Protection Agency for intra-well monitoring. It has been consistently applied to waste 

disposal facilities for detection monitoring programs (Gibbons, 1999). Abujiya et al. 

(2013) replaced the traditional simple random sampling in the plotting statistic of the 

CSC, with ranked set sampling.  

The control statistics of the classical Shewhart, CUSUM, and CSC charts for monitoring 

location parameter are based on the usual unbiased simple mean estimator 



30 

 

   


n

i ixnx
1

1  for estimating the population mean. However, in the field of sample 

survey, different scholars have suggested many estimators other than the simple mean in 

terms of their mean square error (MSE). Some of these estimators requires the use of 

auxiliary variable(s) which are cheap, easy and affordable to get, and also, with known 

population parameters (Cochran, 1953). According to Cochran (1953), the correlation 

between the study variable and the auxiliary variable will serves as an advantage to 

increase the precision of estimation. Sukhatme & Sukhatme (1970) proposed regression 

estimator for estimating the mean, while power ratio-type estimator and modified ratio-

type estimator were suggested by Srivastava (1967) and Ahmad et al. (2014) respectively. 

Interested reader can see H. P. Singh & Tailor (2003), Kadilar & Cingi (2004), Kadilar & 

Cingi (2006a), Kadilar & Cingi (2006b), Gupta & Shabbir (2008) and Adebola et al. 

(2015) for different forms of a transformed ratio estimator.  

G. Zhang (1992) suggested the cause-selecting control chart, while Riaz (2008b) 

popularised the use of auxiliary information at the estimation stage, for monitoring 

dispersion parameter. He concluded that the chart is better than the R chart, the S chart 

and the S2 chart. Furthermore, Riaz (2008a) suggested similar chart for location 

parameter estimation, which was also superior to the Shewhart chart, the regression chart 

and the cause-selecting control chart. Assuming stability of parameters, Ahmad et al. 

(2014) proposed new Shewhart charts based on auxiliary information for non-cascading 

processes. The charts monitor a dispersion parameter in an efficient way. The superiority 

of the charts over competing charts was shown using the ARL, relative average run 

length (RARL) and extra quadratic loss (EQL) under t and normal distributed process 

environment. Similar work was also done for location parameter monitoring, and it was 
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found out that there is an improvement in the detection ability of Shewhart chart base on 

the level of correlation between the concerned variables (Riaz, 2015).  

Since most of the estimators are more efficient than the simple mean estimator based on 

simple random sample, their introduction to the plotting statistic(s) of the Shewhart chart, 

the CUSUM chart, and the CSC chart would results to efficient control charts. Hence, 

this study aims at optimizing the CSC chart by introducing some efficient estimators to 

its plotting statistics. These estimators use auxiliary information in the sampling stage. 

This is helpful whenever there is no information about the population of the variable of 

interest, but there is information about a closely related variable(s) which is cheap and 

affordable to get.  

The rest of this article is organized as follows: Location estimators and their properties 

are explained in the next section; The general structure of the proposed charts is 

explained in Section 4.3; Section 4 explains the performance measures for evaluating the 

proposed charts and compares the proposed charts with their existing counterparts; 

Section 4.5 gives an illustrative example; and finally, conclusions and recommendations 

are given in Section 4.6. 

 

4.2 LOCATION ESTIMATORS AND THEIR PROPERTIES 

We assume that a process has a quality characteristic of interest X  and an auxiliary 

quality characteristic A . Let the population parameters of X  and A , respectively, be 

represented as X and A  for the means; 
2

X  and 
2

A  for the variances; XC XX   

and AC AA   for the coefficient of variations; 
 X2  and 

 A2  for the coefficient of 
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kurtoses; 
XA  for the covariance between X  and A ; and 

XA  for the correlation 

coefficient. Let the sample statistics of X  and A , respectively, be represented as x  and 

a  for the means; 2

xs  and 2

as  for the variances; xc  and ac  for the coefficient of 

variations; xas  for the covariance; and xar  for the correlation coefficient. Let ix  and 

 ii ax ,  be univariate and bivariate sample respectively, where ni ,,2,1   and n  

sample size. From the sample statistics, we have nxx
n

i i 


1
, naa

n

i i 


1
, 

   1
1

22  
nxxs

n

i ix
,    1

1

22  
naas

n

i ia
, xsc xx  , asc aa   and 

axxaxa sssr  . Based on this introduction, some efficient estimators with one auxiliary 

variable for estimating the mean of a quality process characteristic, assuming sampling 

with replacement, are presented with their respective bias (B) and MSE. 

i) The Simple Random Sampling Estimator (Cochran, 1953) 

nxM
n

i i 


11
                                          (4.1) 

with   01 MB  and   nMMSE X

2

1  .  

ii) The Regression-Type Estimator (Difference Estimator) (Cochran, 1953) 

                 )(2 aAbxM XA       (4.2) 

where 
AXXAXAb  , with   02 MB  and   nMMSE XAX )1( 22

2   .  

The bias and the MSE of the next estimators are given up to the first order 

approximation. 
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iii) The Ratio Estimator (Cochran, 1953) 

aAxM 3      (4.3) 

with  AXXAA CCCXMB  2

3 )(  and  AXXAAX CCCCXMMSE 2)( 222

3    

iv) The Singh and Tailor Estimator (H. P. Singh & Tailor, 2003) 

















XA

XA

a

A
xM




4

    (4.4) 

with   nCCgCgXMB AXXAA  2

4 )(  and 

  nCCgCgCXMMSE AXXAAX 2)( 2222

4  , where  XAAAg  .    

v) The Power Ratio-Type Estimator (Srivastava, 1967) 

)/(5 aAxM      (4.5)  

where 
AXXA CC  , with        AXXAA CCCnXMB   2

5 21  and 

      )21( 2222

5 AXXAXAX CCCCnMMSE   . 

vi) The Kadilar and Cingi Estimator’s Series 1 (Kadilar & Cingi, 2004) 

   aAaAbxM XA 6                 (4.6) 

with   nCXMB A

2

6   and      nCCXMMSE XAXA

2222

6 1       

vii) The Kadilar and Cingi Estimator’s Series 2 (Kadilar & Cingi, 2004) 
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  
A

A

XA
Ca

CA
aAbxM




7    (4.7) 

with        22

7 AA CAACnXMB   and 

         22222

7 1 XAXAA CCCAAnXMMSE  . 

viii) The Kadilar and Cingi Estimator’s Series 3 (Kadilar & Cingi, 2004) 

           

 A

A

XA
a

A
aAbxM

2

2

8







    (4.8) 

with        22

2

8 AA AACnXMB   and 

          2222

2

2

8 1 XAXAA CCAAnXMMSE   . 

ix) The Kadilar and Cingi Estimator’s Series 4 (Kadilar & Cingi, 2004) 

       

  AA

AA

XA
Ca

CA
aAbxM






2

2

9



      (4.9) 

with          222

2

9 AAAA CAACnXMB    and 

           2222

22

2

9 1 XAXAAAA CCCAAnXMMSE   . 

x) The Kadilar and Cingi Estimator’s Series 5 (Kadilar & Cingi, 2004) 

    

 AA

AA

XA
Ca

CA
aAbxM

2

2

10







     (4.10) 

with        22

2

10 AAAA CACACnXMB   and 

          2222

2

2

10 1 XAXAAAA CCCACAnXMMSE   . 
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4.3 GENERAL STRUCTURE OF THE PROPOSED CHARTS 

The CSC is a combination of the Shewhart chart and the CUSUM chart, where the 

Shewhart chart is responsible for early detection of a large shift while the CUSUM chart 

detects small to moderate shifts in a quality control process. The addition of Shewhart 

chart limits to CUSUM chart will improve the performance of CUSUM in detecting a 

large shift, which is an advantage over ordinary CUSUM chart, though there will be 

payoff in the CUSUM structure, as well as in the Shewhart structure, by widening the 

control limits of the two charts. According to Henning et al. (2015), the CSC is the 

probabilistic combination of two charts to form a new one by adjusting their control 

limits, and taking the sensitivity of false alarm rates to the new scheme into 

consideration. This has large scope of application {Westgard et al. (1977), Lucas (1982), 

Wu et al. (2008), Montgomery (2009), Abujiya et al. (2013) and Henning et al. (2015)}. 

Like the CUSUM chart, the CSC chart is not difficult to construct and use (Lucas, 1982).  

In this study, a bivariate setup from a normal distribution such that 

   XAAXAXNAX  ,,,,~, 22

2  is assumed in proposing some improved CSC control 

charts, using the location estimators 10,,3,2, iM i . Let  
ii MMtit MZ  ,  be the 

standardized transformation of the estimators 10,,3,2, iM i , for the n-subgroup tht  

sample, where  iM MBX
i

  and  iM MMSE
i
2 . Hence, the general control 

charting structure of the proposed charts is presented. The CUSUM’s plotting statistics 

are given as  

  
0);,0max(

0);,0max(

01

01
















CCkZC

CCkZC

ttt

ttt
   (4.11) 
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and the Shewhart’s plotting statistic is given as 
tZ  with upper control limit    LUCL   

and lower control limit   LLCL  . A process is declared out of control if  hCt   or 

hCt 
 or LZ t  , where h  is the control limit of the CUSUM chart, predetermined 

based on the desired false alarm rate and k  is one-half of the magnitude of the shift ( ) 

we are interested in, which is expressed as 2k  (Montgomery, 2009).  

After the plotting statistics of the proposed charts have been stated, it is necessary to 

distinguish between the two states of control; in-control and out-of-control. A process is 

in-control if the population parameters of the study variable in a quality process have 

target mean value 0  and true variance 2

0 , but if the parameters are altered to new 

values 
1  and 

2

1 , the process is said to be out-of-control. Since our focus is on 

monitoring the shift in location parameter, we are concerned with the alteration of the 

population mean from 0  to 
1  with shift     nX 01  . Therefore, if 

   XAAXAXNAX  ,,,,~, 22

2  for the in-control case, we have 

   XAAXAXNAX  ,,,,~, 22

2   for the out-of-control case. 

Based on the purpose of this work, any of the sensitizing rules given in quality control 

literatures (Abbas et al, 2011) may be used. Specifically, we use the first rule (one-out-of-

one) which is the most popular to detect an out-of-control process. To explain the rule 

with respect to the proposed charts, generate n  samples from a bivariate normal 

distribution    XAAXAXii Nax  ,,,,~, 22

2
, estimate the mean of the samples using 

the estimators 10,,3,2, iM i  and construct the plotting statistics. According to the 
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first rule, once the plotting statistics fall outside the process control limits, the process is 

declared as out-of-control, to indicate a shift in the location parameter of the variable of 

interest. 

4.3.1 SPECIAL CASES 

Let 10,,3,2,1, iCSCM i
 represents the proposed chart.  

i. It is worthy of note that CSCM1
 chart is the classical CSC chart.  

ii. If h approaches infinity, we have the Shewhart chart.  

iii. If L  approaches infinity, we have the CUSUM chart. 

 

4.4 PERFORMANCE MEASURES 

In this section, following the works of some authors {Zhang et al. (2012); Riaz, (2015)}, 

performance of the CSCM i  charts  10,,3,2 i  using the ARL and the standard 

deviation run length (SDRL) for each shift    is done. In addition, evaluation of the 

overall precision of the charts over the entire shift is carried out using extra quadratic loss 

(EQL) in order to make an accurate and reliable conclusion about the relative 

effectiveness of the CSCM i  charts  10,,3,2 i . Below is a brief description of these 

measures. 

ARL is the average number of points (samples) plotted until a point indicates an out-of-

control signal (Montgomery, 2009). It is a popular measure for measuring the 

effectiveness of a control chart. ARL can be categorized into ARL0 and ARL1. ARL0 is 

the ARL value when a process is stable i.e. in an in-control state ( 0 ) while ARL1 is 
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the ARL value when a process is unstable i.e. in an out-of-control state ( 0 ). It is 

expected that ARL0 has a large value while ARL1 has a small value (Ahmad et al., 2014). 

This idea is often used to measure the effectiveness of a chart and to compare the 

performance of different charting structures. Interested reader should see Jamali et al. 

(2006), Riaz & Does (2008), Cox (2010), Abbasi et al. (2012), Busaba et al. (2012) and 

the references therein. 

On the other hand, SDRL is the standard deviation of points (samples) plotted until a 

point indicates an out-of-control signal. It is also used to compare different charts and 

examine their response to shift in parameter(s). The smaller the SDRL, the better the 

performance of a control chart (Abujiya et al., 2015). There is also EQL, which is the 

weighted average ARL over all shifts considered in a control process. It measures the 

effectiveness of a chart over all range of shifts, unlike ARL that deals with a specific 

shift. In the work of Wu et al. (2008), Wu et al. (2009), Ou et al. (2012) and  Abujiya et 

al. (2015), EQL and its other forms were used to measure the effectiveness of control 

charts over a range of process shifts. The mathematical expression of EQL is given as 

 


max

min

2

minmax

1







dARLEQL                             (4.12) 

where min  and max  are the minimum and maximum values of the shifts considered in 

a process; and  ARL  is the ARL at a particular shift   . The EQL values are 

computed with numerical integration approach. A particular CSC chart could have 

different combinations of h and L, and the combination with the lowest EQL will give the 

optimum choice of h and L. 
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The ARL of the CSCM i  charts  10,,3,2 i  are given in Tables (4.1 – 4.4) and the 

value of the best chart at each magnitude of shift is written in bold fonts. Also presented 

in Tables (4.1 – 4.4) are the EQL values. Furthermore, the SDRL results for the CSCM i  

charts  10,,3,2 i  are presented in Tables (4.5 – 4.8). 

Table 4.1 :   ARL values of the proposed charts with 25.0XA  and k = 0.25 

L 3.20 4.13 3.20 3.20 2.60 3.95 4.10 4.20 4.00 4.10 

H 9.200 9.670 9.180 9.20 6.551 10.050 9.480 9.170 9.780 9.900 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 370.59 371.25 371.53 368.65 370.02 370.14 367.98 373.32 368.83 369.74 

0.25 27.11 37.44 36.50 36.68 27.56 58.95 57.63 54.67 58.43 39.78 

0.50 10.68 14.39 13.78 13.86 10.06 20.92 19.97 19.2 20.63 15.12 

0.75 6.22 8.83 8.13 8.12 5.88 12.47 12.02 11.51 12.38 9.3 

1.00 3.95 6.42 5.44 5.43 3.73 8.96 8.54 8.16 8.8 6.68 

1.50 1.74 3.88 2.65 2.66 1.7 5.56 5.35 5.19 5.46 4.08 

2.00 1.11 2.28 1.47 1.48 1.1 3.73 3.72 3.65 3.74 2.4 

2.50 1.01 1.34 1.10 1.09 1.01 2.37 2.49 2.48 2.41 1.39 

3.00 1.00 1.06 1.01 1.01 1.00 1.49 1.59 1.61 1.53 1.07 

4.00 1.00 1.00 1.00 1.00 1.00 1.04 1.05 1.05 1.04 1.00 

5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

EQL 6.360 8.137 7.186 7.185 6.298 10.955 10.987 10.822 10.959 8.362 
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Table 4.2:   ARL values of the proposed charts with 25.0XA  and k = 0.5 

L 3.20 4.20 3.25 3.20 2.70 4.40 4.20 4.40 4.30 4.30 

h 9.200 4.060 5.247 5.40 3.463 5.330 5.558 5.354 5.360 5.510 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 371.01 371.28 368.43 371.18 368.74 368.48 371.84 366.72 368.76 369.76 

0.25 31.31 52.33 46.49 47.83 35.75 82.74 89.22 83.19 85.51 53.55 

0.50 8.90 12.66 12.17 12.47 8.62 19.87 20.73 19.72 19.98 13.06 

0.75 4.91 6.87 6.52 6.52 4.54 9.73 10.14 9.77 9.84 6.98 

1.00 3.21 4.71 4.33 4.35 3.02 6.37 6.62 6.29 6.46 4.76 

1.50 1.65 2.9 2.37 2.32 1.64 3.82 3.95 3.79 3.85 2.93 

2.00 1.11 1.92 1.47 1.45 1.11 2.74 2.81 2.72 2.76 1.99 

2.50 1.01 1.31 1.1 1.09 1.01 2.07 2.04 2.05 2.05 1.39 

3.00 1.00 1.07 1.01 1.01 1.00 1.59 1.49 1.54 1.54 1.10 

4.00 1.00 1.00 1.00 1.00 1.00 1.08 1.05 1.07 1.07 1.00 

5.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00 

EQL 6.190 7.562 6.962 6.950 6.183 9.865 9.911 9.776 9.853 7.703 

 

 

 

 

 

 



41 

 

Table 4.3:   ARL values of the proposed charts with 75.0XA   and k = 0.25 

L 3.200 4.000 3.150 3.100 4.300 3.625 4.000 4.000 3.9.00 4.200 

H 5.350 10.100 9.692 10.000 11.370 4.620 9.183 9.258 9.640 9.500 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 370.59 367.75 370.81 373.083 368.91 372.01 367.96 369.31 367.73 368.35 

0.25 27.11 22.57 15.75 17.72 20.84 22.17 40.86 40.02 43.26 22.72 

0.50 10.68 9.47 5.27 6.96 9.03 8.28 15.20 14.97 15.91 9.50 

0.75 6.22 5.94 2.94 3.46 5.66 5.07 9.35 9.22 9.65 6.01 

1.00 3.95 4.04 1.87 1.84 3.71 3.72 6.69 6.61 6.9 4.29 

1.50 1.74 1.71 1.08 1.05 1.47 2.40 4.11 4.03 4.15 2.08 

2.00 1.11 1.06 1.00 1.00 1.03 1.62 2.50 2.42 2.46 1.14 

2.50 1.01 1.00 1.00 1.00 1.00 1.15 1.50 1.44 1.42 1.01 

3.00 1.00 1.00 1.00 1.00 1.00 1.01 1.12 1.10 1.10 1.00 

4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

EQL 6.360 6.260 5.554 5.628 6.113 6.639 8.534 8.402 8.528 6.425 
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Table 4.4: ARL Values of the proposed charts with  75.0XA and k = 0.5 

L 3.20 4.15 3.20 3.15 4.30 4.00 4.00 4.20 4.00 4.20 

H 5.350 4.06 5.355 5.490 6.700 5.507 5.497 5.300 5.577 5.680 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 371.01 370.25 368.66 371.36 370.64 370.31 371.63 367.64 369.27 369.08 

0.25 31.31 22.85 16.06 16.35 20.62 60.13 59.59 54.91 60.47 25.09 

0.50 8.90 7.05 5.32 5.35 6.87 14.18 14.43 13.55 14.6 7.59 

0.75 4.91 4.15 2.92 2.92 4.09 7.55 7.50 7.12 7.57 4.45 

1.00 3.21 2.96 1.83 1.8 2.84 5.08 5.09 4.86 5.12 3.16 

1.50 1.65 1.62 1.06 1.06 1.41 3.09 3.1 2.99 3.12 1.75 

2.00 1.11 1.08 1.00 1.00 1.03 2.06 2.07 2.05 2.07 1.12 

2.50 1.01 1.01 1.00 1.00 1.00 1.39 1.39 1.43 1.40 1.01 

3.00 1.00 1.00 1.00 1.00 1.00 1.11 1.11 1.13 1.11 1.00 

4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

EQL 6.190 5.998 5.549 5.548 5.883 7.921 7.922 7.834 7.955 6.116 
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Table 4.5: SDRL values for the proposed charts with 25.0XA  and k = 0.25 

L 3.20 4.13 3.20 3.20 2.60 3.95 4.10 4.20 4.00 4.10 

H 9.200 9.670 9.180 9.20 6.551 10.050 9.480 9.170 9.780 9.900 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 358.20 360.25 352.77 356.51 364.25 364.09 357.81 363.34 363.31 356.60 

0.25 14.66 13.46 10.90 22.77 16.46 40.47 39.61 37.87 40.06 23.47 

0.50 4.32 5.17 3.99 5.90 4.17 9.10 8.89 8.30 9.08 5.59 

0.75 2.66 3.46 2.96 3.29 2.46 4.31 4.10 3.91 4.19 2.76 

1.00 2.07 2.08 1.68 2.46 1.88 2.73 2.56 2.46 2.63 1.81 

1.50 1.04 0.97 0.85 1.61 0.97 1.70 1.53 1.40 1.65 1.38 

2.00 0.35 0.39 0.34 0.81 0.34 1.48 1.33 1.22 1.41 1.22 

2.50 0.09 0.20 0.17 0.31 0.09 1.27 1.20 1.14 1.24 0.68 

3.00 0.00 0.08 0.00 0.11 0.01 0.79 0.82 0.81 0.8.0 0.27 

4.00 0.00 0.00 0.00 0.00 0.00 0.2 0.23 0.23 0.20 0.04 

5.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 0.06 0.05 0.02 
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Table 4.6: SDRL Values for the proposed charts with 25.0XA  and k = 0.5 

L 3.20 4.20 3.25 3.20 2.70 4.40 4.20 4.40 4.30 4.30 

H 9.200 4.060 5.247 5.400 3.463 5.330 5.558 5.354 5.360 5.510 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 358.20 368.03 370.10 361.17 363.61 367.80 368.31 366.08 360.52 365.63 

0.25 14.66 44.53 39.87 40.86 30.24 75.98 80.33 75.94 76.79 45.85 

0.50 4.32 6.55 7.04 7.13 4.87 13.04 13.60 12.82 12.95 6.99 

0.75 2.66 2.65 2.99 3.04 2.03 4.74 4.78 4.67 4.77 2.78 

1.00 2.07 1.54 1.85 1.90 1.28 2.49 2.57 2.42 2.54 1.57 

1.50 1.04 0.88 1.15 1.16 0.75 1.18 1.22 1.14 1.18 0.86 

2.00 0.35 0.75 0.71 0.71 0.33 0.82 0.87 0.79 0.83 0.72 

2.50 0.09 0.51 0.33 0.31 0.1 0.68 0.77 0.69 0.71 0.53 

3.00 0.00 0.26 0.11 0.11 0.02 0.58 0.60 0.57 0.59 0.30 

4.00 0.00 0.04 0.00 0.00 0.01 0.27 0.23 0.25 0.25 0.06 

5.00 0.00 0.01 0.00 0.00 0.01 0.08 0.07 0.06 0.08 0.03 
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Table 4.7: SDRL Values for the proposed charts with 75.0XA and k = 0.25 

L 3.2 4 3.15 3.1 4.3 3.625 4 4 3.9 4.2 

H 5.35 10.1 9.692 10 11.37 4.62 9.183 9.258 9.64 9.5 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 367.01 365.04 363.77 364.27 368.51 359.04 364.22 363.1 354.66 362.83 

0.25 24.22 17.61 10.03 8.2 8.53 13.61 25.46 24.62 26.79 10.27 

0.50 4.61 3.14 2.3 3.16 2.57 3.14 6.06 5.9 6.37 2.87 

0.75 2.15 1.5 1.33 2.06 1.67 1.5 2.98 2.92 3.12 1.58 

1.00 1.46 0.95 0.93 1.15 1.53 0.95 1.97 1.94 2.13 1.27 

1.50 0.84 0.67 0.28 0.23 0.78 0.67 1.4 1.4 1.53 1.06 

2.00 0.35 0.56 0.04 0.03 0.17 0.56 1.22 1.2 1.27 0.39 

2.50 0.09 0.36 0.01 0 0.04 0.36 0.76 0.72 0.71 0.11 

3.00 0.02 0.12 0 0 0.01 0.12 0.36 0.32 0.32 0.04 

4.00 0 0 0 0 0.01 0 0.07 0.05 0.05 0.02 

5.00 0 0 0 0 0 0 0.01 0.01 0.01 0.01 
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Table 4.8: SDRL Values for the proposed charts with 75.0XA and k = 0.5 

L 3.200 4.15 3.20 3.15 4.30 4.00 4.00 4.20 4.00 4.20 

h 5.350 4.060 5.355 5.490 6.700 5.507 5.497 5.300 5.577 5.680 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

0.00 367.01 366.21 370.72 373.70 369.75 373.24 374.11 357.65 367.11 360.22 

0.25 24.22 15.62 10.39 10.40 12.82 53.08 51.31 48.41 52.35 17.48 

0.50 4.61 2.77 2.36 2.41 2.49 8.10 8.20 7.76 8.44 3.04 

0.75 2.15 1.30 1.38 1.41 1.26 3.21 3.18 2.94 3.20 1.41 

1.00 1.46 0.88 0.94 0.94 1.00 1.78 1.80 1.68 1.79 0.94 

1.50 0.84 0.65 0.25 0.24 0.63 1.02 0.99 0.91 1.01 0.72 

2.00 0.35 0.28 0.02 0.04 0.18 0.83 0.83 0.74 0.83 0.34 

2.50 0.09 0.08 0.00 0.00 0.05 0.058 0.058 0.56 0.59 0.1 

3.00 0.02 0.02 0.00 0.00 0.03 0.032 0.032 0.34 0.32 0.04 

4.00 0.00 0.01 0.00 0.00 0.01 0.07 0.06 0.07 0.07 0.01 

5.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00 

  

We have also presented the ARL curve of the proposed control schemes for a visual 

comparison. Figures (4.1 – 4.4) present the ARL curves for CSCM i  charts 

 10,,3,2 i  for monitoring changes in the process mean using different values of k 

and 
XA  with n = 5 and ARL0 = 370. 
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Figure 4.1: ARL curve of the proposed charts with 
XA  = 0.25, k = 0.25 and ARL0 = 370. 
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Figure 4.2: ARL curve of the proposed charts with XA  = 0.25, k = 0.50 and ARL0 = 370. 
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 Figure 4.3: ARL curve of the proposed charts with 
XA  = 0.75, k = 0.25 and ARL0 = 

370. 
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Figure 4.4: ARL curve of the proposed charts with 
XA  = 0.75, k = 0.50 and ARL0 = 370.  

 

Based on the results in Tables (4.1 – 4.8) and Figures (4.1 – 4.4), we summarize our 

major findings from the proposed charts as follow: 

I. The proposed CSCM 5
 chart has smaller ARL values than all other charts when 

25.0XA  for all values of k. This means that the chart is able to detect all 

magnitudes of the shift faster than other proposed charts when there is a weak 

positive correlation between the study variable and the auxiliary variable. A point 

equally supported by the SDRL (cf. Table 4.6). On the overall performance in 
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terms of EQL, the proposed CSCM 5
 still dominates all other charts (Tables 4.1 - 

4.2, Figures 4.1 – 4.2). 

II. For 75.0XA , the proposed CSCM 3
 chart and CSCM 4

 chart have smaller 

ARL values than all other charts when 2  for all values of k. This means that 

the charts are able to detect small to moderate shifts faster than other proposed 

charts when there is a strong positive correlation between the study variable and 

the auxiliary variable. On the overall performance in terms of EQL, the proposed 

CSCM 3
 and CSCM 4

 still dominate all other charts (Tables 4.3 – 4.4, Figures 

4.3 – 4.4). 

III. Almost all the charts have good performance in detecting large shifts, over all 

values of k (Tables 4.1 – 4.4, Figures 4.1 – 4.4). 

IV. The proposed charts are ARL unbiased for all the different values of XA  and  , 

i.e., ARL0 is always greater than ARL1 for any choice of δ (Tables 4.1 – 4.8). 

V. For 0 , there is no significant difference between the ARL and the SDRL of 

the proposed charts. In addition, the ARL and SDRL values approach 1 and 0, 

respectively, as shift increases (Tables 4.1 – 4.8). 

 

4.5 COMPARISONS WITH EXISTING CHARTS 

4.5.1 CSCM i  charts  10,,3,2 i  vs. Classical CSC chart  CSCM1
  

Most of the proposed charts outperform the classical CSC chart except for few cases of 

detecting small and large shifts when there is weak positive correlation between the study 

variable and the auxiliary variable. For example, in Tables 4.1 – 4.2, CSCM1
 chart shows 
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the best performance for shift of 0.25, while CSCM 5  chart (closely followed by 

CSCM1  chart) shows the best performance for other values of shifts. This implies that 

our proposed charts will perform better than the classical CSC when there is a high value 

of 
XA , irrespective of the value of k This is evident from the low values of ARL1 and 

EQL of the proposed charts (Tables 4.1 – 4.4). 

4.5.2 CSCM i  charts  10,,3,2 i  vs. CUSUM charts based on Median, Mid-

range, Hodges-Lehman (HL), and Trimean (TM) estimators under 

unconterminated Normal distribution. 

 Nazir et al., (2013) proposed robust CUSUM charts that are effective in detecting small 

shifts when the parameters of the underlying normal distribution of a process are 

contaminated. Assuming no contamination in the parameters of the normal distribution of 

a process, most of our proposed charts outperform their charts in detecting all magnitudes 

of shift, over all values of k. Specifically,  CSCM 5  chart (when 25.0XA ), CSCM 3

chart (when 75.0XA ) and CSCM 4
chart  (when 75.0XA ) perform better than 

their proposed charts, and this is evident from the low ARL1 values of CSCM 3 chart, 

CSCM 4
chart and CSCM 5  chart (cf. Tables 4.9 – 4.10). 

 

 

* 
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Table 4.9: Some selected proposed charts versus existing CUSUM charts based on 

different estimators (Median, Mid-range, Hodges-Lehmann [HL] and Trimean [TM]), 

when k = 0.25. 

L 3.15 3.10 2.60     

h 9.692 10.000 6.551 8.030 8.030 8.030 8.030 

  M3(rho=.75) M4(rho=.75) M5(rho=.25) Median Mid-range HL TM 

0.00 370.81 373.08 370.02 372.50 370.75 373.12 373.93 

0.25 15.75 17.72 27.56 31.59 29.82 25.83 27.59 

0.50 5.27 6.96 10.06 12.38 11.68 10.44 10.92 

0.75 2.94 3.46 5.88 7.70 7.31 6.55 6.90 

1.00 1.87 1.84 3.73 5.60 5.35 4.81 5.07 

1.50 1.08 1.05 1.70 3.73 3.55 3.25 3.39 

2.00 1.00 1.00 1.10 2.85 2.73 2.48 2.60 
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Table 4.10: Some selected proposed charts versus existing CUSUM charts based on 

different estimators (Median, Mid-range and Hodge Lehman), when k = 0.5.  

L 3.20 3.15 2.70     

H 5.355 5.490 3.463 4.774 4.774 4.774 4.774 

  M3(rho=.75) M4(rho=.75) M5(rho=.25) Median Mid-range HL TM 

0.00 368.66 371.36 368.74 374.28 370.11 367.10 368.02 

0.25 16.06 16.35 35.75 41.83 37.53 29.99 32.52 

0.50 5.32 5.35 8.62 11.27 10.27 8.79 9.36 

0.75 2.92 2.92 4.54 6.07 5.71 5.00 5.25 

1.00 1.83 1.80 3.02 4.21 3.97 3.52 3.70 

1.50 1.06 1.06 1.64 2.67 2.53 2.31 2.39 

2.00 1.00 1.00 1.11 2.07 1.99 1.85 1.91 

 

4.6 ILLUSTRATIVE EXAMPLE 

In this section, we provide an illustrative example to show the implementation of our 

proposed charts in real situation. For this purpose, we have considered the bivariate data 

by Constable and Parker (1988) on the measurements of a component part for an 

automobile’s braking system, containing the study variable 𝑋 = BAKEWT and the 

auxiliary variable 𝐴 = ROLLWT. The 45 data points, which are taken from the in-control 

process, are used to estimate the population parameters. These estimates came out to be 

18.201x , 24.210a , 17.1xs , 23.1as  and 54.0xar . Considering 

these estimates as the known parameters, we have generated dataset from bivariate 

normal distribution with 18.201X , 24.210A , 17.1X , 23.1A  and 
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54.0XA  containing 15 paired observations but the last seven observations refer to an 

out-of-control situation with         47.3117.118.20120301  nXX X  

where 0X  and 1X  are the in-control mean and the out-of-control mean respectively. The 

inspiration of generating dataset in such a manner is taken from Singh and Mangat 

(1996).  

 

Figure 4.5: Graphical display of the CSCM i
  2,1i  charts. 

 

The classical CUSUM  CSCM1
 and some selected CSCM i   10,4,2i  charts with 

5.0k  are applied to the generated dataset. The chart outputs for CSCM i   2,1i  

charts and CSCM i   5,4i  charts are respectively given in Figure 4.5 and Figure 4.6. 
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They are splited into two figures to aid visually. The CSCM i   5,4,2,1i  charts signal a 

shift in the process when either of the Shewhart or CUSUM detects a shift. In accordance 

with our findings, the proposed charts show their superiority. CSCM1
 detects the shift 

at sample #12 (cf Figure 4.5), CSCM 2
 detects the shift earlier at sample #10 (cf Figure 

4.5) while CSCM 4
 and CSCM 5

 detect the shift at sample #11 (cf Figure 4.6). 

 

 

Figure 4.6. Graphical display of the CSCM i   5,4i  charts. 
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4.7 CONCLUSIONS AND RECOMMENDATIONS 

Shewhart chart is traditionally used for detecting large shifts, while CUSUM chart is used 

for detecting small shifts. CSC chart was proposed to monitor small and large shifts 

simultaneously. We study the effect of introducing some efficient estimators to CSC 

chart, and observed that some of the proposed charts with the following estimators; the 

Ratio estimator, the Singh and Tailor estimator, and the Power ratio-type estimator give a 

better performance than the classical CSC chart and some existing CUSUM charts, in 

detecting small, moderate and large shifts. 

We hereby recommend that if there is a weak positive correlation between a study 

variable and an auxiliary variable, CSCM 5  chart (with the Power ratio-type estimator) 

should be preferred, while CSCM 3  chart (with the Ratio estimator) or CSCM 4
 chart 

(with the Singh and Tailor estimator) should be preferred over their counterparts in 

detecting small, moderate and large shifts. 
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CHAPTER 5 

USING FIR TO IMPROVE CUSUM CHARTS FOR 

MONITORING PROCESS DISPERSION 

Statistical process control deals with monitoring process to detect disturbances in the 

process. These disturbances may be from the process mean or variance. In this study, we 

propose some charts that are efficient for detecting early shifts in dispersion parameter, 

by applying the First Initial Response feature. Performance measures such as average run 

length, standard deviation run length, extra quadratic length, relative average run length 

and performance comparison index are used to compare the proposed charts with their 

existing counterparts including the Shewhart R, the Shewhart S chart, the Shewhart S 

chart with warning lines, the CUSUM of the range R, CUSUM of the standard deviation 

S, the EWMA of 2ln S , the CUSUM of 2ln S , the CUSUMP , the CUSUM  and 

the CUSUMCP . The proposed charts do not only detect early shifts in process 

dispersion faster, but also have better overall performance than their existing 

counterparts. 

 

 

 

 

 



59 

 

5.1 INTRODUCTION 

Statistical process control (SPC) is a collection of useful tools for detecting alteration in a 

process. It has wide application in the industrial field, the medical field, and other fields 

where variation is being monitored. The variation may be a natural cause variation or a 

special cause variation. The natural cause variation is always small, random, tolerable, 

acceptable, harmless, uncontrollable and unassignable. A process with this type of 

variation is sad to be in-control. Inversely, special cause variation has properties that are 

direct opposite of the natural cause variation, hence, a process with this kind of variation 

is said to be out-of-control. SPC has seven major tools namely Histogram, Cause-and-

effect diagram, Pareto Chart, Check Sheets, Defect concentration diagram, Scatter plot 

and Control chart (Montgomery, 2007). Control chart is the most useful, the most 

effective and the most commonly used tool among the other tools. There are generally 

accepted rules on how control charts are to be used in companies, unlike in the past when 

there is no universally acceptable rules on the usage of control charts. Some of the 

universally acceptable international regulatory standards being used, due to the rapid rate 

of business exchange between different countries, are ISO 7870-4:2011, ISO 7870-

3:2012, ISO 7870-2:2013, ASTM E2587:2012, ASTM D6299:2013, ISO 7870-1:2014, 

ISO 7870-5:2014 and ISO 7870-6:2014. 

Control charts monitor the location and (or) dispersion parameter(s) of a process. The 

location parameter monitoring and its modification is mostly available in the literature, 

but little work has been done on dispersion monitoring. There are two good reasons to 

monitor dispersion parameter; increase in process variance above the required level may 

imply increase in the number of defective unit in a process; and decrease in process 
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variance below the required level may imply that process units are closer to their target 

value, leading to high process capability (Acosta-Mejia et al. 1999). The control charts 

for location and dispersion monitoring can be broadly divided into two; the memory 

control chart and the memoryless control chart, which are respectively good for early 

detection of small and large shifts. The Shewhart chart proposed by Shewhart (1931) is 

the traditional memoryless control chart, while the traditional memory control charts are 

the Cumulative Sum (CUSUM) chart and the Exponential Moving Average (EWMA) 

chart proposed by Page (1954) and Roberts (1959) respectively. CUSUM and EWMA get 

memory from past information. Many authors have studied their structures and also 

suggested several modifications to improve their structures for monitoring process mean, 

but less attention has been given to the monitoring of process variance. 

In detecting shift in process dispersion, CUSUM was applied to subgroup range by Page 

(1954). Tuprah and Ncube (1987) later compared this procedure with another procedure 

that was based on sample standard deviation. Using average run length (ARL) approach, 

they found that the procedure based on the sample standard deviation detects shift from 

the target value faster, given that the process variables are normally distributed. 

Furthermore,  EWMA structure based on subgroup range was suggested by Ng (1988), 

while natural logarithmic transformation of subgroup variance was introduced to a one-

sided EWMA structure to monitor process standard deviation (Crowder and Hamilton, 

1992). Similarly, one-sided and two-sided CUSUM structures based on logarithmic 

transformation of process variance was proposed by Chang & Gan (1995) for monitoring 

shift in process variance, and they also enhanced the performance of the schemes by 

introducing Fast Initial Response (FIR). The FIR feature was first proposed by Roberts 
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(1959) and later improved by Steiner (1999) to reduce the time-varying limits of the first 

few sample observations. The FIR feature improves the performance of CUSUM chart if 

there is shift in a process at start-up (Hawkins and Olwell, 1998). The performance of this 

feature was later improved by using a power transformation with respect to time t (Haq, 

2013). 

This chapter focuses on using the FIR feature to improve the work of Acosta-Mejia et al. 

(1999), where they monitor increase and decrease in the variance of a normal process 

using CUSUM structures based on the chi-squared  CUSUM  transformation, the 

inverse normal transformation  CUSUMP , and the CUSUM structure derived from the 

likelihood ratio test for the change point of a normal process  CUSUMCP . 

The rest of this chapter is organized as follows; the general structure of the proposed 

charts, and the FIR feature are explained in Section 5.2; Section 5.3 contains the 

performance evaluations and comparisons; and finally, summary and conclusions are 

given in Section 5.4. 

 

5.2 THE PROPOSED CHARTS 

5.2.1 CUSUM chart for monitoring process mean 

CUSUM chart for monitoring process mean is good for early detection of small shift in a 

process. It has different structures, one of them is the standardized two-sided CUSUM 

structure. Let iX  be the thi mean of sample observation of size n  from a normal 
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distribution with mean 0  and standard deviation 0 , and    nXZ ii 00  , then 

the standardized two-sided CUSUM is given as  

 
 















12

11

,0max

,0max

iii

iii

CkZC

CkZC
     (5.1) 

where 0, 

ii CC , 0 

ii CC  and  21 kk  is the upper (lower) reference value. Mostly, 

kkk  21 .   nk 021   is taken to be half of the mean shift    to be detected, scaled 

in standard deviation unit. The plotting statistics 

iC  and 

iC  are respectively plotted 

against the control limits 1h  and 2h . The process detects an upward shift when either of 

the plotting statistics plot outside its respective control limit. In most cases, hhh  21 , 

that is, the control limits for the plotting statistics may be the same. 

5.2.2 CUSUM chart for monitoring process dispersion 

Let  2

00 ,~ NX i  be the thi observation of the study variable in a process. Suppose 

there is a disturbance in the variance of the process, the distribution of iX  becomes 

 2

0

2

0 ,~ NX i , where   represents a shift in standard deviation . 1  implies no 

shift, 1  implies positive shift while 1  implies negative shift. We now show that 

an out-of-control ARL when 1  can be calculated directly from the in-control ARL. 

Let  

   2

0

0 ,0~ 



N

X
T i

i


      (5.2) 
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      ii ZT   or ii TZ   

The CUSUM structure for iT  is given as  

 
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      (5.3) 

Designing the standardized CUSUM structure for iZ , we have  

 
 
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     (5.4) 

Comparing equations (5.3) and (5.4), we have 
  ii UC   and 

  ii UC  . Accordingly, 

1hCi 
 iff 1hU i 

, and 2hU i 
 iff 2hU i 

. This implies that; 

 The ARL of the CUSUM  

ii SS  to the control limit  21 hh  is equivalent to the 

ARL of the CUSUM  

ii UU  to the control limit   21 hh .     

 The CUSUM 


iU  and 


iU  are CUSUM of standard unshifted  1,0N  with 

reference vales 1k  and 2k  respectively and control limits 1h  and 2h  

respectively. 

We now briefly introduce the CUSUMP , the CUSUM  and the CUSUMCP  

for process dispersion. 

CUSUMP : Let 
2

iS  be the subgroup variance of  niX i ,...,2,1  observed from a 

normal distribution with variance 2 . Applying the inverse normal transformation to 
2

iS  

and assuming that 0  , we have  
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where  1,0~ NP ,    is the cumulative distribution from a standard normal 

distribution and  2

1n
F  is the cumulative distribution from a chi-squared distribution 

with  1n  degree of freedom. Monitoring the mean of iP  is equivalent to monitoring 

the variance of iX . As a result, we could replace iZ  by iP  in equation (5.1) to monitor 

process variance. The reference values 
1k  and 

2k , and the control limits 
1h  and 

2h  that 

fix a particular ARL could be guessed by a search method or by simulation. 

CUSUM : Wilson & Hilferty (1931) proved that 3 2 nn  is approximately 

     nnN 92,921 . For  ,Niid , when 0   we have  
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Monitoring the mean of 
i

  is equivalent to monitoring the variance of iX . Hence, 

replacing iZ  by 
i

  in equation (1) gives the CUSUM . 
1h  and 

2h  that fix a 

particular ARL could be guessed by a search method or by simulation. To determine 
1k  

and 
2k , let 01    for upward shift and 02    for downward shift be the process 

standard deviation to be monitored, then  

    101 ||
2

1
 ii EEk   
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CUSUMCP : This is derived from the likelihood ratio test for the change point of a 

normal process variance to monitor process dispersion. The CUSUMCP  structure is 

given as  
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where  


n

m imi ZZ
1

22 .   00  imim XZ  represents the mth  standardized observation 

in subgroup i . The reference values are defined as  

     
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1
1

11
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





 kk  

where 011    and 022    are the relative increase and decrease in process 

standard deviation. 

The CUSUMP , the CUSUM  and the CUSUMCP were shown by Acosta-Mejia et 

al. (1999) to detect shifts in process variance quickly. If there is an out-of-control point at 

the start of a process, it could be detected at the earliest time by introducing a head start 

to CUSUM structure. 
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5.2.3 FAST INITIAL RESPONSE (FIR) 

FIR CUSUM feature is designed by given a process a head start. Head start enables the 

CUSUM structure to start off at a point other than the usual zero-point. The CUSUM 

structure works by accumulating small shift until the shift is large enough to be noticed. 

The FIR feature would enable a CUSUM chart to give signal as early as possible if there 

is a shift at the start of a process, hence, reducing the time to signal. To maintain the same 

in-control  0ARLARL  of a CUSUM chart, the h  value of the corresponding FIR 

CUSUM must be increased by small amount. Ironically, the out-of-control  1ARLARL  of 

the FIR CUSUM would be lesser than that of its corresponding CUSUM chart. In the 

work of Lucas & Crosier (1982), the 
1ARL  of FIR CUSUM is 30% to 40% shorter than 

the corresponding 
1ARL  of CUSUM chart, in monitoring location parameter. Using their 

recommended head start, we make 20 hC   in our CUSUM schemes, and we focus on 

one-sided FIR CUSUM scheme. 

 

5.3 PERFORMANCE EVALUATION AND COMPARISON 

In the work of Abujiya et al. (2015), performance measures such as ARL, standard 

deviation run length (SDRL), extra quadratic length (EQL), relative average run length 

(RARL) and performance comparison index (PCI) were used in determining and 

explaining the efficiency of their proposed chart. In the same manner, we consider the 

same approach in this section.  

ARL: is the average number of samples observed until the first out-of-control signal 

(false alarm) is detected in a process. ARL0 represents the ARL when there is no shift in a 

process parameter (dispersion parameter in our case) while ARL1 represents the ARL 
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when there is shift in a process parameter (dispersion parameter in our case). It is 

desirable to have high value of ARL0 but low value of ARL1 to efficiently monitor 

process parameter(s) (Riaz et al. 2014). 

SDRL: is the standard deviation of the number of samples observed until a false alarm is 

detected in a process. It is often used to evaluate the performance measure of a chart, and 

the ability of the chart to respond to shift in its parameter (Abbasi et al. 2012). The chart 

with a better performance have a smaller SDRL. 

QUANTILE: The 0.05, 0.25, 0.50, 0.75 and 0.95 quantiles (denoted as q5, q25, q50, q75 

and q95) are estimated to determine the pattern of the run length distribution of an in-

control process. 

EQL: gives the efficiency of a chart over the entire shifts considered in a process. The 

chart with the lowest EQL is said to be the most efficient chart. It is calculated using 

numerical computation, with the formula;  

 


max

min

2

maxmin

1 





dARLEQL . 

RARL: gives the overall effectiveness of a chart with respect to a benchmark (bmk) 

chart. A benchmark chart is usually the best chart (with the lowest EQL) or the chart been 

compared with. It uses ARL values to determine how close a chart is to the benchmark 

chart. RARL equals to one for the benchmark chart, and greater than one for the inferior 

chart (to the benchmark chart) (Zhao et al. 2005). 
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Table 5.1: SDRL and Quantile points of the proposed charts for upward shifts in 𝝈 

at ARL0 = 200.  

% increase in 𝝈 0 10 20 30 40 50 100 

 

SDRL 

A 215.47 36.93 12.85 6.23 3.89 2.67 1.04 

B 211.58 36.74 12.6 6.18 3.86 2.66 1.03 

C 218.23 29.95 9.34 4.74 2.87 2.09 0.83 

 

q5 

 

A 4 2 2 1 1 1 1 

B 4 2 2 1 1 1 1 

C 5 2 1 1 1 1 1 

 

q25 

A 49 8 4 3 2 2 1 

B 46 8 4 3 2 2 1 

C 47 7 4 2 2 2 1 

 

q50 

A 136 23 8 5 4 3 2 

B 131 22 8 5 4 3 2 

C 133 18 7 4 3 3 1 

 

q75 

A 283 48 17 9 6 5 2 

B 278.25 49 17 9 6 5 2 

C 282 39 13 7 5 4 2 

 

q95 

A 628.05 110 39 20 13 9 4 

B 620 108 37 19 12 9 4 

C 625.05 88 29 15 10 7 3 

A = FIRCUSUMP  , B = FIRCUSUM   and C = FIRCUSUMCP   
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Table 5.2: SDRL and Quantile points of the proposed charts for downward shifts in 

𝝈 at ARL0 = 200. 

 Shift 1 0.9 0.8 0.7 0.6 

 

SDRL 

A 214 35.27 8.34 3.08 1.53 

B 214.38 34.81 8.19 3.04 1.5 

C 214.02 30.49 6.84 2.21 0.99 

 

q5 

A 6 4 3 2 2 

B 6 4 3 2 2 

C 5 3 3 2 2 

 

q25 

A 48 10 5 4 3 

B 44 9 5 4 3 

C 48 8 4 3 3 

 

q50 

A 134 21 8 5 4 

B 132 22 8 5 4 

C 134 20 7 4 3 

 

q75 

A 285 47 14 7 5 

B 282 46 14 7 5 

C 284 42 11 6 4 

 

q95 

A 631 106 28 12 7 

B 629.05 104 27 12 7 

C 632.05 92 22 9 5 

A = FIRCUSUMP  , B = FIRCUSUM   and C = FIRCUSUMCP   



70 

 

PCI: is the ratio of the EQL of a chart to the EQL of a benchmark chart under the same 

condition. The best chart (benchmark chart) has PCI = 1, while the worst chart, as 

compared to the benchmark chart, has the highest value of PCI (Ou et al., 2012).  

bmkEQL

EQL
PCI   

Table 5.3: EQL, RARL and PCI of the proposed charts. 

 Upward shift in 𝝈 Downward shift in  𝝈 

A B C A B C 

EQL 28.62225 28.22307 25.29412 28.24351 28.06285 26.76816 

RARL 1.208851 1.198675 1 1.180846 1.168157 1 

PCI 1.131577 1.115796 1 1.055116 1.048367 1 

A = FIRCUSUMP  , B = FIRCUSUM   and C = FIRCUSUMCP   

Based on the result presented in Tables 5.1 – 5.5 and Figures 5.1 – 5.2, the basic findings 

are summarized as follows; 

I. For 0 , there is no significant difference between the ARL and the SDRL of 

the proposed charts (Tables 5.1, 5.2, 5.4 and 5.5). 

II. For 0 , the ARL and the SDRL of the proposed charts decrease rapidly 

(Tables 5.1, 5.2, 5.4 and 5.5). 

III. The FIR feature does not only improve the charts ability to detect out-of-control 

signal at process start-up, but also improve the detection ability of the charts for 

any shift in process standard deviation. (Tables 5.4 – 5.5 and Figures 5.1 – 5.2). 

IV. The quantile points show that the run length distribution of the proposed charts 

are positively skewed (Tables 5.1 – 5.2). 
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Table 5.4 : ARL comparison of dispersion charts for positive shift in process 

standard deviation. 

 

Dispersion charts (n = 5) 

Percentage increase in standard deviation 

0 10 20 30 40 50 100 

Shew. R (UCL = 4.88) 200.18 68.75 30.72 16.55 10.20 6.96 2.40 

Shew. S (UCL =1.93) 200.10 65.10 28.30 15.10 9.20 6.30 2.40 

Shew.1 S (h1 = 1.53, h2 = 2.03) 200.00 58.90 24.60 13.00 8.10 5.70 2.20 

EWMA ln S2 (k = 1.06, =0.05) 200.00 43.00 18.10 11.00 7.60 6.00 3.20 

2ln SCUSUM (k = 0.068, h = 2.66) 199.93 42.94 18.07 10.75 7.63 5.98 3.18 

RCUSUM  (k = 2.56, h = 4.88) 201.80 40.4 17.60 10.82 7.81 6.13 3.13 

CUSUM  (k = 0.38, h = 4.28) 200.70 41.04 17.17 10.23 7.26 5.66 2.90 

CUSUMP (k = 0.38, h = 4.28) 201.10 41.04 17.15 10.21 7.24 5.65 2.98 

SCUSUM  (k = 1.034, h = 1.90) 200.60 38.80 16.85 10.36 7.50 5.85 3.01 

CUSUMCP  (k = 1.193, h = 18.45) 200.76 34.60 14.14 8.42 5.93 4.58 2.20 

CUSUMP + FIR (k = 0.38, h = 

4.403) 

203.26 34.80 12.90 6.99 4.82 3.64 1.86 

CUSUM + FIR (k = 0.38, h = 

4.398) 

198.28 34.66 12.59 6.95 4.75 3.63 1.86 

CUSUMCP + FIR (k = 1.193, h = 

18.95) 

201.76 28.22 9.96 5.76 3.94 3.06 1.59 

1 Shewhart chart with lower warning limit h1r and lower action limit h2r. 
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Table 05.5: ARL comparison of dispersion charts for negative shift in process 

standard deviation. 

 

Dispersion charts (n = 5) 

Percentage decrease in standard deviation 

0 10 20 30 40 

Shew. R (LCL = 0.55) 200.28 133.61 85.37 51.75 29.41 

Shew. S (LCL = 0.23) 200.01 133.34 85.37 51.65 29.24 

Shew.1 S (h1 = 0.47, h2 = 0.06) 200 101.24 49.48 23.56 11.16 

EWMA ln S2 (k = 2.22, , = 0.10) 201 50.01 20.67 11.87 7.89 

2ln SCUSUM (k = 0.43, h = 5.49) 200.01 47.47 18.96 10.78 7.17 

CUSUMP (k = 0.23, h = 5.76) 201.1 44.69 17.58 10.14 6.94 

CUSUM  (k = 0.23, h = 5.75) 201.2 44.35 17.41 10.05 6.92 

RCUSUM  (k = 2.093, h = 4.34) 200.95 45.25 17.41 9.95 6.88 

SCUSUM  (k = 0.846, h = 1.70) 200.15 44.63 17.01 9.7 6.7 

CUSUMCP  (k = 0.793, h = 11.66) 199.64 38.38 14.15 8.24 5.96 

CUSUMP + FIR (k = 0.23, h = 6.085) 201.33 34.08 11.03 5.93 3.97 

CUSUM + FIR (k = 0.23, h = 5.94) 200.33 33.86 10.78 5.86 3.96 

CUSUMCP + FIR (k = 0.793, h = 11.99) 201.77 30.1 8.9 4.75 3.39 

1 Shewhart chart with lower warning limit h1r and lower action limit h2r. 

 

V. The 0.50 quantile (median) of the run length is lesser than the fixed ARL0 of 200, 

meaning that there is 50% chance of the median producing a false alarm in the 

first 134 samples (approximately) while a false alarm occurs on the average of 

every 200 samples (Tables 5.1 – 5.2). 
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VI. Generally, the performance measures indicate a substantial gain in efficiency of 

the proposed charts. 

VII. CP CUSUM with FIR feature is the most efficient charts among the proposed 

charts in detecting small shift (increase or decrease) in process dispersion. 

 

Figure 5.1: ARL curves of the proposed charts and some existing charts for positive 

shift in standard deviation. 
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Figure 5.2: ARL curves of the proposed charts and some existing charts for negative 

shift in standard deviation. 

Using the discussed measures, the proposed charts are compared with some existing 

charts for detecting shift in process dispersion. One-sided CUSUM structures are 

considered with a target ARL0 of 200. The shift in the process dispersion is considered in 

terms of the percentage change in the process standard deviation, while the process mean 
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is assumed stable. The existing charts taken into consideration are ; the Shewhart R, the 

Shewhart S chart, the Page's (1963) Shewhart S chart with warning lines, the CUSUM of 

the range R, CUSUM of the standard deviation S, the EWMA of 2ln S  (Crowder & 

Hamilton, 1992), the CUSUM of 2ln S (Chang & Gan, 1995), and the CUSUMP , the 

CUSUM  and the CUSUMCP of Acosta-Mejia et al. (1999). 

The reference values (k) and the plotting statistics of the charts considered are 

standardized to be independent of any value of 0 . In the CUSUM S chart, we have 

  



  110,0max iii CkSC   

where    21 0141  ck , for the upper one-sided plotting statistic. Similarly, the 

upper one-sided plotting statistic of the CUSUM of R chart is given as  

  



  110,0max iii CkRC   

where    21 0121  dk . 

Table 5.4 (and Figure 5.1) presents the ARL comparison of the charts in detecting 20% 

increase in process standard deviation, with subgroup of size 5. The charts are arranged in 

ascending order of their respective performance. Supplementing the Shewhart S chart 

with warning line gives a better performance than the Shewhart S chart and the Shewhart 

R chart. EWMA 2ln S  chart gives a better performance than the Shewhart’s charts in 

detecting increase in process’s standard deviation, but it is outperformed by the CUSUM  

2ln S  chart. However, the CUSUM R, the CUSUM , the   CUSUMP , the CUSUM 

S and the CP CUSUM all outperformed the CUSUM  2ln S  chart, but perform worse 
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than the  CUSUMP  with FIR, the CUSUM  with FIR and the CP CUSUM with 

FIR. 

Table 5.5 (and Figure 5.2) gives the ARL performance of the charts in detecting 20% 

decrease in process standard deviation, with fixed ARL0 200 and subgroup of size 5. The 

one-sided plotting statistic of the CUSUM S chart in detecting decrease in process 

standard deviation is given as  

  



  10,0max iii CRkC   

while the one-sided plotting statistic of the CUSUM R chart for detecting decrease in 

process standard deviation is given as  

  



  10,0max iii CSkC  . 

The CUSUM R gains advantage over the CUSUM  and the CUSUMP  in detecting 

decrease in  (unlike when detecting increase in  ). The CUSUMP , the 

CUSUM , the CUSUM R and the CUSUM S are comparable and show better 

performance than the Shewhart’s charts, the EWMA 2ln S  chart and the CUSUM 2ln S  

chart, but perform worse than the CP CUSUM, the CUSUMP  with FIR, the 

CUSUM  with FIR and the CP CUSUM with FIR. Consistently, the charts with FIR 

features give the best performance, with CP CUSUM + FIR having the overall best 

performance. 

 



77 

 

5.4 SUMMARY AND CONCLUSION 

Control chart is one of the tools of quality control to monitor production process, and to 

distinguish between assignable causes and chance causes of variation. The variation may 

be due to change in location parameter and/or dispersion parameter of a process. Few 

works has been done on monitoring dispersion parameter of a process. The work of 

Acosta-Mejia et al. (1999) was improved to efficiently detect shift in dispersion 

parameter at start-up by applying the First Initial Response proposed by Lucas and 

Crosier (1982). The proposed charts do not only detect shifts in process dispersion faster, 

but also have better overall performance than their charts and some other existing charts 

for monitoring process dispersion. Performance measures such as ARL, SDRL, quantile, 

EQL, RQRL and PCI are used for comparison.  
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CHAPTER 6 

SUMMARY AND CONCLUSION 

A new two-sided CUSUM charts which are based on the utilization of auxiliary 

information are proposed. The 𝐴𝑅𝐿 performance of the proposed charts is evaluated in 

terms of shifts in study variable and compared with some recently designed control 

structures meant for the same purposes. The comparisons revealed that the proposed 

charts perform really well relative to the other charts under discussion, and a real life 

industrial example is provided to describe the application procedure of the proposal. 

Furthermore, the Shewhart chart and the cumulative sum (CUSUM) chart are 

traditionally used for detecting large shifts and small shifts respectively, while the 

Combined Shewhart CUSUM (CSC) monitors small shifts and large shifts 

simultaneously. Using auxiliary information, new CSC (MiCSC, i = 2, 3, …, 10) charts 

with more efficient estimators (the Regression-type estimator, the Ratio estimator, the 

Singh and Tailor estimator, the power ratio-type estimator and the Kadilar and Cingi 

estimators) for estimating location parameters are proposed. The charts are compared 

using Average Run Length (ARL), Standard Deviation Run Length (SDRL) and Extra 

Quadratic Loss (EQL), with other existing charts of the same purpose, and it is shown 

that some of the MiCSC charts outperform their counterparts. A real-life industrial 

example is provided to show the efficiency and the application of the proposed charts. 

In addition, it is known that statistical process control deals with monitoring process to 

detect disturbance in the process. The disturbance may be from the process mean or 

variance. We assume that the process mean is stable and propose some charts that are 

efficient for detecting early shifts in dispersion parameter, by applying the First Initial 
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Response (FIR) feature. Performance measures such as average run length (ARL), 

standard deviation run length (SDRL), extra quadratic length (EQL), relative average run 

length (RARL) and performance comparison index (PCI) are used to compare the 

proposed charts with their existing counterparts including the Shewhart R, the Shewhart 

S chart, the Shewhart S chart with warning lines, the CUSUM of the range R, CUSUM of 

the standard deviation S, the EWMA of 2ln S , the CUSUM of 2ln S , the CUSUMP , 

the CUSUM  and the CUSUMCP . The proposed charts do not only detect early 

shifts in process dispersion faster, but also have better overall performance than their 

existing counterparts. 
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