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In OFDM based wireless communication systems, whether employing single or

multiple antennas, channel state information has to be estimated accurately and

that too within a fraction of time, making channel estimation very crucial. Against

various state-of-the art on channel estimation, this thesis presents several low

complexity channel estimation techniques for SISO, MIMO and massive MIMO

OFDM systems by exploiting the structure and some of the constraints of commu-

nication problem.

We first present a reduced complexity optimal interpolation technique for SISO-

OFDM systems based on MMSE criteria. By utilizing the structure of channel fre-

quency correlation, it is shown that if pilots are placed appropriately across OFDM

subcarriers, the matrix inversion in conventional MMSE estimation can be com-
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pletely avoided with no loss in performance. Next, we present a blind ML algorithm

for joint channel estimation and data detection for MIMO-OFDM systems with

Alamouti coding where the complexity is reduced by again utilizing the correlation

structure and the finite alphabet property of symbols. A semi-blind algorithm is

also introduced which has much lower complexity than the blind algorithm but at

the cost of few training symbols.

As for the massive MIMO systems, the complexity is of primary concern be-

cause with increased number of base station antennas (BS), the number of un-

known channel parameters also grow large. Unlike the optimal MMSE approach,

which is prohibitively complex, we present a distributed MMSE algorithm whose

complexity is linear in the number of BS antennas while at the same time achieves

near-optimal performance by sharing the information locally in a large antenna ar-

ray. A data-aided version of distributed algorithm is also presented to minimize

the pilot overhead in massive MIMO. Finally, we investigate the effect of pilot

contamination (i.e., interference due to reuse of pilots) on MSE performance of

various algorithms. We use stochastic geometry to derive closed-form expressions

for channel MSE under both noise and pilot contamination regime, which are

validated by simulations. Our results indicate severe implications of pilot contam-

ination on channel estimation performance.
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CHAPTER 1

INTRODUCTION

This Chapter gives a general overview of advances in wireless communications.

Some of the important characteristics of wireless channel and state-of-the-art on

channel estimation in OFDM-based systems are also presented. Towards the end,

we highlight various key research challenges, motivations and scope of our work,

major contributions and layout of the thesis.

1.1 Overview

Transmitting information from one place to another without having any physical

medium was not plausible till the advent of wireless communication about a cen-

tury ago. Since then, the wireless communications has advanced significantly and

has played pivotal role in shaping our society. In the recent decades, there is even

more rapid development of wireless mobile communications. The ever increasing

demand for higher data rates, anytime and anywhere connectivity, security and

robustness has led to evolution of four generations of mobile communications (1G

1



to 4G); with 4G currently being deployed around the world.

Over the years, the two prime technologies for sustaining the higher data-rates

and spectral efficiency for wireless communications are: Multiple-Input-Multiple-

Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). The

use of multiple antennas whether at the transmitter or the receiver or both, can

substantially increase data throughput and the reliability of a radio link [1, 2].

Multi-antenna wireless systems offer additional degrees of freedom provided by

the spatial dimension, which can be exploited to either simultaneously transmit

independent data-streams (spatial multiplexing) thereby increasing the data-rate,

or multiplicative transmission of single data stream (spatial diversity) to increase

the system reliability [3]. In cellular scenario when the base station (BS) serves

a multitude of terminals over same time-frequency resources, these spatially sep-

arated streams can be used to transmit (or receive) the data to (or from) each

terminal. This technique, commonly known as multi-user MIMO (MU-MIMO) or

space-division-multiple-access (SDMA), can significantly increase the throughput

gains of MIMO wireless systems. However, the gains with MIMO are achieved

at increased processing complexity and hardware costs. Hence, it is necessary to

adopt modulation techniques with simplified signal processing at transmitter and

receiver for precoding and equalization respectively.

OFDM emerged as a promising modulation scheme to achieve these objectives

[4]. In OFDM the data is transmitted on orthogonal subcarriers each experiencing

a flat-fading channel conditions and can be processed individually. OFDM also
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efficiently utilizes the bandwidth, a scarce and expensive resource, by allowing

subcarriers to overlap and offers low complexity modulation and demodulation

structures by efficient Discrete Fourier Transform (DFT) based signal processing.

The combination of MIMO technology with OFDM, called MIMO-OFDM, has

enabled high speed data transmission and broadband multimedia services over

wireless links that we enjoy today. MIMO-OFDM has been studied extensively

and is becoming a mature technology. It has also been incorporated into many

existing wireless standards and products such as Wireless Local Area Networks

(WLAN) standards (IEEE 802.11 a/b/g) [5], WiFi standard IEEE 802.11n [6] ,

WiMAX standard IEEE 802.16e [7], digital audio broadcast (DAB), digital video

broadcast (DVB) and also adopted for existing 4G cellular communication systems

(3GPP-LTE Advanced) [8, 9].

The unprecedented usage of smart phones, tablets, super-phones etc., equipped

with data-intensive applications like video streaming, graphics heavy social media

interfaces and real time navigation services, has called for revolutionary changes

for the next generation wireless systems. Data communication speeds of 10Gbps

are expected that must be provided by 10-fold enhanced spectral efficiency and

1000-fold greater system capacity [10]. The Wireless World Research Forum

(WWRF) predicts that with addition of emerging machine-to-machine (M2M)

communications, 7 trillion wireless devices will serve 7 billion people by 2017.

This means the number of network-connected devices to become 1000 times the

world population [11]. Such substantial growth in capacity can only be envis-
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aged when paralleled by similar improvements in energy efficiency. Addressing

these multi-fold challenges requires a revolutionary technology; one that could de-

liver an economically sustainable capacity and performance improvements, better

coverage and superior user experience than the existing wireless systems.

More recently in 2010, in a seminal paper by Marzetta [12], it was established

that installing excessively large number of antennas at the BS, in the order of a few

hundred, can achieve huge gains in spectral and energy efficiencies. Such systems

are commonly known as massive MIMO or large-scale MIMO systems [13, 14, 15].

Massive MIMO overcome several limitations of the traditional MIMO systems

such as security, robustness and throughput scalability. The current state of the

art in cellular technology (LTE Release 10) allows for 8 antenna ports at the BS

and an equal number of antenna ports at the terminal [8]. As such, they cannot

fully achieve the gains offered by MU-MIMO and rely mostly on single-user-MIMO

(SU-MIMO). Thus making a clean break from traditional MIMO, the use of very

large antenna arrays at BS has the potential to achieve full benefits of MIMO on

much larger scale and where the bulk of processing complexity is handled at the

BS. It has been demonstrated that massive MIMO systems hold great promises

of boosting system throughput by 10 times or more by simultaneously serving

tens of users in the same time-frequency resource. This has become possible by

fully exploiting the MU-MIMO through excess degrees of freedom available at the

BS array. They also have the potential to increase energy efficiency because of

their ability to precisely focus their transmission energy towards intended users
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through the use of a large number of small active antennas with very low power.

Moreover, in massive MIMO the effects of fast fading are averaged out and intra-

cell interference almost vanishes. In light of these advantages, the massive MIMO

is expected to play increasingly important role in development of future broadband

wireless systems and envisioned as one of the enabling technologies for 5G [16].

To fully realize the potentials of aforementioned technologies the knowledge

of channel state information (CSI) is indispensable. For improved system perfor-

mance, it is essential that CSI is available at both transmitter and the receiver.

The knowledge of CSI is utilized for coherent detection of signals at the receiver.

On transmitter side, CSI is crucial to design effective precoding schemes for min-

imizing inter-user interference. However, the perfect knowledge of CSI is not

available in real life, therefore it has to be estimated. This thesis is concerned

with efficient and low complexity channel estimation algorithms for single an-

tenna (i.e., SISO) as well as multiple antenna (i.e., MIMO and massive MIMO)

OFDM wireless systems.

1.2 Characteristics of the Wireless Channel

The wireless channel is highly dynamic and unpredictable as opposed to the typ-

ically static and predictable wired channel and therefore limits the performance

of communication systems. This makes the channel estimation an essential part

of the receiver design. In wireless medium, the propagation of a radio wave is

governed by reflection, diffraction, scattering and relative motion of objects in
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the environment, which distort the amplitude, phase and frequency of the re-

ceived signal. The most important characteristics of wireless channel and systems

considered in this thesis are,

• Fading: Fading is the main characteristic of wireless channel which describes

the random fluctuations of received signal strength over time and frequency.

Fading can be classified as large-scale and small-scale fading. The former is

caused by shadowing due to large obstacles such as buildings, trees or walls etc.,

while the later is caused by multipath propagation and time-varying nature of

the channel.

Due to scattering, the transmitted signal arrives at the receiver via several paths

each having its own attenuation and phase-shift. These multipath components

(MPCs) add up constructively or destructively depending on their path-lengths,

giving rise to small-scale fading. If there is no direct path, the small-scale fading

is assumed to follow zero mean complex Gaussian distribution, called Rayleigh

fading [17].

The properties of MPCs may vary due to mobility of the transmitter, receiver

and or scatterers giving rise to Doppler shift in the frequency of MPCs. The

multipath and Doppler effect causes the signal to spread in time and frequency

respectively and manifest themselves as frequency-selective and time-selective

behaviour of wireless channel. The small-fading effects are typically modeled

by a tapped-delay line filter with time-varying coefficients.

• Path loss: The attenuation of received signal power as a function of the dis-
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tance between transmitter and receiver is usually determined by path loss. Cal-

culation of path loss depends largely on the type of environment (e.g., rural or

urban) and the radio propagation conditions (e.g., precipitation) [18]. In free

space the pathloss exponent is 2 meaning that signal strength decreases with

inverse square of the distance, while in urban environment it is found to be be-

tween 2.5 and 6. The effects of path-loss are especially important in multi-cell

and multi-user scenario, where the users are located at different positions in the

cells.

• Channel coherence: As described above, the variation of small-scale fading

with time and frequency give rise to frequency and time selectivity of wireless

channel. Both of these effects are quantified by channel coherence bandwidth,

Bc and channel coherence time, Tc, defined respectively as the bandwidth or

the time over which the channel is approximately constant. They can be well

approximated as Bc ≈ c/Trms and Tc ≈ c/(4vfc) respectively, where c is the

speed of light, Trms is the Root Mean Square (RMS) of path lengths, v is the

velocity of receiver/and or transmitter and fc is the carrier frequency.

Channel coherence has important implications in channel estimation as it places

a fundamental limit on the duration and the bandwidth, called coherence in-

terval, over which the channel estimates are valid.
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1.3 Channel Estimation Techniques

Channel estimation techniques can be broadly categorized into pilot-based, blind,

semi-blind and data-aided. These approaches are summarized as follows.

• Pilot-based techniques: The pilot-based approach is the most common and

widely used approach in which the training sequences (called pilots), known a

priori at the receiver, are transmitted along with data symbols to obtain reliable

channel estimates. Estimation performance generally improves with increasing

the number of pilots but the transmission efficiencies are reduced due to required

overhead of training symbols. So, usually, there is a trade-off.

• Blind techniques: In blind methods no pilots are transmitted and the chan-

nel is estimated using the statistical properties of the received symbols. This

reduces the incurred overhead of pilots, however, often a large number of data

symbols are required to extract statistical properties. Furthermore, their com-

plexity is higher and performance is usually worse than pilot-based techniques.

• Semi-blind: The pilot-based and blind are the two extreme cases in the sense

that the former only uses pilots while the latter doesn’t make use of pilots. The

semi-blind techniques are the hybrid of pilot-based and blind techniques that

utilize statistical properties of data symbols and require fewer pilots. These

techniques are suitable in slowly time-varying channels where initial estimates

can be obtained from pilots and the channel can be tracked subsequently from

received data symbols.
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• Data-aided techniques: Data-aided techniques are perhaps the most sensible

approach, where the data is first decoded from pilot-based channel estimates

and then used to enhance the estimation performance. Both decoding and

estimation process are interdependent and form the basis of many iterative and

joint estimation-detection algorithms.

1.3.1 Previous Works

The problem of channel estimation for wireless systems has been well investigated

and a number of techniques have been proposed in the literature. Here, we present

a brief overview of some state-of-the-art methods on channel estimation for OFDM

wireless systems and also discuss their limitations that forms the basis for this

work.

Pilot-based techniques for OFDM systems mostly rely on estimating the chan-

nel frequency response(CFR) at pilot sub-carriers using Least-Squares (LS) and

the remaining CFR coefficients via some form of interpolation [19]. Some interpo-

lation approaches are based on minimum mean square error estimation (MMSE),

which are optimal while others are non-MMSE based ranging from simple tech-

niques e.g., [20, 21, 22, 23, 24, 25] to more sophisticated ones such as [26, 27].

Although sophisticated techniques may have better performance, simple linear

interpolation techniques are preferred due to computational and implementation

advantages. The MMSE type methods exploit frequency correlation of the chan-

nel to yield optimal performance but require prohibitively higher complexity due
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to large matrix inversion and large matrix-vector products [28]. The sub-optimal

methods to reduce the complexity of MMSE estimators have also been proposed

[29, 30, 31, 32, 33] but have certain drawbacks e.g., heavy computation of singu-

lar value decomposition (SVD). Thus there is a natural desire to look for other

alternatives which give better trade off between complexity and performance.

Blind techniques for channel estimation can be grouped into maximum-

likelihood (ML) based which are optimal, and non-ML based approaches.

The later includes subspace-based methods [34, 35], second-order-statistics [36],

cholesky factorization [37] or iterative methods [38]. These methods either suffer

from slow convergence, higher computational costs or assume channel to be sta-

tionary over several OFDM blocks. These drawbacks make ML based approaches

e.g., [39, 40] more attractive due to their fast convergence. Usually suboptimal

techniques are employed to reduce computational cost by restricting the search

space of exhaustive ML search. These suboptimal techniques, however, are appli-

cable to specific constant modulus constellations [41, 42]. Recently in [43] and [44],

the authors have proposed a low-complexity blind ML method for general con-

stellations for single-input-multiple-output (SIMO) and single-input-single-output

(SISO) systems respectively, which gives motivation for extending this work to

multi-antenna systems.

Channel estimation is critical as well as more challenging in massive MIMO

systems. Having a very large number of antennas means that a significant num-

ber of channel coefficients need to be estimated − far more than that could be
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handled by traditional pilot-based MIMO channel estimation techniques (see [45]

and references therein). In this regard, the Bayesian MMSE estimator provides

an optimal estimate in the presence of additive white Gaussian noise (AWGN)

by exploiting antenna spatial correlations. However, the direct generalization of

MMSE estimator to massive MIMO has some drawbacks. In particular, it suf-

fers from huge complexity due to matrix inversion of very large dimensionality,

making it impractical. Some ways to reduce the complexity of MMSE estimators

in massive MIMO have also been proposed e.g., [46, 47, 48, 49, 50, 51, 52]. It

is important to note that most of these methods make assumptions that are not

always realistic. For example, many methods deal with flat fading channels only

while others assume that the channels are sparse. This gives motivation to investi-

gate low complexity channel estimation approaches suited to correlated Rayleigh

fading channels in massive MIMO-OFDM systems.

In a multi-cell environment, allocation of orthogonal pilot sequences for all

users cannot be guaranteed due to finite coherence time and limited bandwidth

[12, 53]. Therefore, the pilots must be reused across cells. Consequently, when the

BS in a given cell performs channel estimation via uplink training, the channel

estimates will be severely distorted (contaminated) by pilots of neighboring cell

users. The impact of pilot contamination is far greater than AWGN and is one

of the limiting factors in performance of the massive MIMO systems as demon-

strated in [54, 55]. Some ways to reduce the pilot contamination have recently

been proposed. The line of work in [48, 56] shows that the impact of pilot contam-
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ination can be reduced by allocating pilot resources by base station cooperation

that require sharing of second-order statistics. In [57], it is shown that pilot con-

tamination is reduced if adjacent cells are unsynchronized in the sense that one

sends data when the other one is sending pilots, and vice versa. An effective way

to deal with pilot contamination is to use blind and semi-blind approaches as they

do not rely much on pilots [58, 59]. Despite several works on pilot contamination,

only few have analysed its impact on channel estimation performance [47] with

known user's locations. As such, these works cannot analytically answer how the

randomness of user’s locations would effect channel estimation performance under

pilot contamination. Moreover, these techniques also ignore the effects of strong

spatial antenna correlations that is more likely to exist in massive MIMO when

the BS antennas are co-located.

1.4 Aims and Scope

Despite several state-of-the-art techniques on channel estimation, there are many

research challenges that need to be addressed. One of the major challenges, that

is tackled in this thesis is: how to reduce the complexity of the optimum channel

estimation algorithms without loosing their performance? In certain scenarios, the

optimum solutions might be prohibitively complex to implement directly. Hence,

in practical implementation of channel estimators, the designer may be willing to

compromise a bit on performance to lower the complexity.

The approach used in this thesis to reducing the complexity of channel es-
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timators is motivated by the fact that most of communication problems exhibit

inherently rich structure that can be exploited to reduce the complexity. More

specifically, the structure of Fast Fourier Transform (FFT) matrices induced by

OFDM, the Finite alphabet property of symbols (since they belong to certain

constellation), the structure of channel correlation in time, frequency and space

will be utilized in SISO and MIMO OFDM systems resulting in low complexity

solutions attaining optimal or near optimal performance.

The issue of complexity is more pronounced in massive MIMO systems uti-

lizing several hundreds of antennas at the BS. This raises serious questions on

complexity of the optimal MMSE estimator, which grows according to the cube of

the number of antennas, if implemented centrally. Moreover, all received (thou-

sands of) signals in massive MIMO cannot be processed efficiently at one central

processor. These limitations motivate the use of algorithms which are distributed,

computationally efficient and require very little inter-processor communication.

Moreover, with increasing number of users, a large number transmission re-

sources are needed for estimating channel coefficients. This will greatly limit the

bandwidth and power resources that can be allocated for the transmission of in-

formation. Data-aided techniques can significantly reduce the pilot overhead and

improve the spectral efficiency of the system. In this work, we aim to develop

a low complexity data-aided distributed algorithm with a simple equalizer struc-

ture, such as zero-forcing (ZF). In massive MIMO, the rapidly increasing number

of users will also quickly exhaust the available supply of orthogonal pilot sequences.

13



The necessary reuse of pilots from one cell to another results in negative conse-

quences i.e, pilot contamination. Pilot contamination severely distorts the channel

estimates, which not only affects the decoding process but also has implications

on down-link beamforming. We aim to quantify the effect of pilot contamination

on channel estimation performance using a realistic network model. Specifically,

the approach used in our work is inspired by stochastic geometry based analysis

where the users are assumed to be distributed randomly according to a poisson

point process (PPP).

1.5 Thesis Contributions and Layout

The main contributions of the thesis can be summarized into three parts corre-

sponding to SISO, MIMO and massive MIMO OFDM systems as follows:

Part-I (SISO)

• A low-complexity and spectrally efficient channel interpolation method is

developed based on MMSE criteria. The proposed channel estimator ex-

ploits the correlation structure of CFR matrix to reduce the complexity. In

fact, it is shown that if pilots are distributed appropriately across OFDM

subcarriers, then the proposed algorithm requires no matrix inversion, thus

substantially reducing the computational complexity.

Part-II (MIMO)

• A low-complexity blind algorithm is developed for joint channel estimation

and data detection for Alamouti-coded OFDM wireless systems with two
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transmit and single receive antenna. The blind approach, again utilizes the

structure of FFT matrices to significantly reduce the complexity. The pro-

posed algorithm is applicable for both constant modulus and non-constant

modulus constellations.

• A semi-blind version of blind ML algorithm is developed which utilizes few

pilots to further reduce the complexity and subsequently uses reliable data

to improve the channel estimation. Simulation results reveal that signifi-

cant reduction in complexity can be achieved in comparison with the blind

algorithm.

Part-III (Massive MIMO)

• A distributed MMSE algorithm is developed for estimation of generally cor-

related fading channel in massive MIMO-OFDM systems. The distributed

approach involves local estimation of CIRs at each array element followed

by sharing of the estimates through collaboration among array elements.

The distributed approach outperforms the centralized solution in terms of

communication, memory requirements and computational complexity while

at the same time attains almost the same performance as the centralized

(optimal) solution.

• A novel data-aided distributed MMSE channel estimation algorithm is devel-

oped for massive MIMO-OFDM systems that can significantly reduce the

pilot overhead and/or enhance the channel estimation performance. The

data-aided approach increases the number of measurements without adding
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more pilots by carefully picking the most reliable data-carriers after the

hard-decision decoding process.

• The impact of pilot contamination on MSE performance of different

algorithms is quantified by using tools from stochastic geometry. Specif-

ically, the analytical expressions for MSE are derived in presence of

AWGN and pilot contamination resulting from interfering users in a multi-

cell system. The derived expressions are validated by numerical simulations.

Rest of the thesis is organized as follows: Chapter 2 is concerned with pilot based

channel estimation for SISO OFDM systems where a low complexity MMSE-based

algorithm is presented. Chapter 3 is focused on blind and semi-blind algorithms

for MIMO OFDM systems. Chapter 4 is devoted to various channel estimation

techniques (e.g., LS or MMSE) for massive MIMO OFDM systems. Specifically,

distributed MMSE algorithms for estimation of correlated Rayleigh fading chan-

nels based on pilots and data-aided techniques will be presented. The impact of

pilot contamination in massive MIMO is studied in Chapter 5 where the MSE

performance of various algorithms is derived under both AWGN and pilot con-

tamination effects. The Chapter concludes with intensive simulation results to

validate the theoretical analysis. Finally, the general conclusions and future di-

rections of research are discussed in Chapter 6.
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CHAPTER 2

LOW-COMPLEXITY

CHANNEL INTERPOLATION

FOR SISO-OFDM SYSTEMS

Incorporating OFDM technology in wireless systems greatly simplifies the receiver

structure as it converts a frequency selective channel into a number of parallel flat-

fading channels each requiring a single-tap equalizer. Thus all that is required is

the accurate estimate of each channel frequency response (CFR) coefficient to

perform coherent detection at the receiver. This Chapter deals with estimating

the CFR with the aid of pilots with a comb type pilot arrangement i.e., the equi-

spaced pilots are interleaved with the data in an OFDM symbol (see Fig. 2.2).

Channel estimation is accomplished by first estimating the CFR coefficients at pi-

lot locations using LS and then interpolated at other sub-carriers using some form

of interpolation. This Chapter briefly describes various interpolation techniques
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keeping an eye on their estimation performance and complexity trade-offs. Then,

an optimal LMMSE type channel interpolator is presented that is demonstrated

to be superior to existing interpolation schemes both in terms of computations

and MSE performance.

The key idea behind our approach is the exploitation of the correlation struc-

ture of CFR matrix to reduce the computational complexity. It is shown that

if the pilots are placed appropriately across OFDM subcarriers, then the matrix

inversion in LMMSE interpolation can be completely avoided. Further reduction

in complexity can be traded-off with performance by restricting the interpolation

depth of the algorithm.

2.1 System Model

Consider SISO-OFDM system as depicted in Fig. 2.1. Assume that OFDM system

has N subcarriers and let X represent N -dimensional information symbols drawn

from certain constellation (e.g., M-QAM) so that after IFFT operation the time-

domain OFDM symbol can be written as:

x = FHX (2.1)

where F is a unitary FFT matrix whose (l, k)th entry is defined as

fl,k=N
−1/2e−j2πlk/N , l, k=0, 1, 2, · · · , N − 1 for an N -dimensional Fourier

Transform. The multi-path Rayleigh fading channel is modeled by
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Figure 2.1: Simplified block diagram of OFDM system

a Gaussian L-tap channel impulse response (CIR) vector defined by

h� [h(0), h(1), · · · , h(L− 1)]T ∈ C
L×1, where h(l)∈C represents l-th tap complex

channel gain. In OFDM, the time-domain symbol x is transmitted after inserting

a cyclic prefix (CP) of length at least L−1 to avoid inter-symbol-interference (ISI).

The received OFDM symbol after discarding the CP and FFT operation can be

described as

Y = diag(X )H+W (2.2)

where Y is the received OFDM symbol in the frequency domain, diag(X ) is the

diagonal matrix of transmitted information symbols, H is CFR vector and W is

complex AWGN with zero mean and covariance matrix Rw = σ2
wIN .

In pilot-aided channel estimation schemes some subcarriers are reserved for
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pilots or training symbols, which are known to the receiver. Henceforth, these

subcarriers will be called pilot subcarriers. Let P and D represent the set of pilot

and data indices with cardinalities |P| = K and |D| = N −K respectively. The

choice of set P , or which subcarriers should be reserved for pilots, is also crucial.

In slow varying channels i.e., the channels that almost remain constant during

several OFDM symbols, the block type pilot arrangement as shown in Fig. 2.2(a)

is usually considered. The block type pilot arrangement is used in WLAN standard

IEEE 802.11a [5]. For fast varying channels, pilots have to be inserted in each

OFDM symbol as shown in Fig. 2.2(b). This type of pilot arrangement is known

as comb type pilot arrangement, which is used in WLAN standard IEEE 802.11g.

The other standards, like multi-user WiMAX standard IEEE 802.16a uses hybrid

pilots arrangement as depicted in Fig. 2.2(c). In this thesis, we will use comb-

type pilot arrangement which is more appropriate for fast varying channels that

may change according to symbol-by-symbol basis. Further, the equi-spaced pilots

will be considered which results in optimal performance in the presence of AWGN

[60, 61].

For the set of K pilot indices, represented by set P , the system equation (2.2)

can be written as

Y(P) = diag
(X (P)

)H(P) +W(P) = AH(P) +W(P) (2.3)

where A � diag
(X (P)

)
and Y(P), H(P) and W(P) are formed by selecting the

entries of Y , H and W indexed by P .
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(b) Comb-type pilot arrangement
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(c) Hybrid-type pilot arrangement

Figure 2.2: Different types of pilot arrangements used in OFDM systems.
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The CFR coefficients at pilot sub-carriers can be obtained using LS or LMMSE

estimation. We use the LS approach due to its low complexity and simplicity. The

LS solution of (2.3) is given by

ĤLS
(P) =

(
AHA

)−1
AHY(P)

= A−1Y(P) (2.4)

In other words, owing to the diagonal structure of data matrix A, we have

ĤLS
(k) =

Y(k)

X (k)
, k ∈ P (2.5)

Once the CFR coefficients at pilot sub-carriers are determined, the remaining

channel coefficients at data sub-carriers are estimated using various interpolation

techniques. Fig. 2.3 shows CFR coefficients for N = 64 sub-carriers in OFDM

symbol with equi-spaced pilots positioned at P = {2, 6, 10, · · · , 62} and data

carriers with indices D = {1, 3, 4, 5, 7, 8, · · · , 63, 64}. Referring to Fig. 2.3, we

summarize different interpolation techniques.

2.1.1 Linear Interpolation

Linear interpolation (LI) is the simplest of all interpolation techniques where

CFR coefficients are obtained by piece-wise linear approximation. Consider any

two known complex CFR channel coefficients Ĥ(k) and Ĥ(k + 1), where k ∈

P . Without loss of generality we assume that there are M unknown channel
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Figure 2.3: CFR coefficients in an OFDM symbol of N = 64 sub-carriers and
K = 16 equi-spaced pilots

coefficients between two consecutive pilots with indices k and k + 1. Then the LI

of these unknown coefficients is given by:

ĤLI
(n) = Ĥ(k) +

n+ 1

M + 1

(
Ĥ(k + 1)− Ĥ(k)

)
, (2.6)

where, n = 0, 1, 2, . . . ,M − 1 ∈ D.

2.1.2 Polar Linear Interpolation

Polar Linear interpolation (PLI) exploits both magnitude and phase information

of LS estimates at pilot locations. In PLI, first each CFR coefficient is separated

into amplitude and phase. The linear interpolation is then performed separately

on the amplitudes and the phases to estimate CFR coefficients at data carriers.

Again consider two consecutive known CFR coefficients at pilot indices k and k+1
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expressed in polar form as:

Ĥ(k) = â(k)ejφ̂(k)

Ĥ(k + 1) = â(k + 1)ejφ̂(k+1) (2.7)

Linear interpolation of amplitudes and phases of M CFR coefficients between

consecutive pilots is then given by [22]

âPLI(n) = â(k) +
n+ 1

M + 1
(â(k + 1)− â(k)) ,

φ̂PLI(n) = φ̂(k) +
n+ 1

M + 1

(
φ̂(k + 1)− φ̂LS(k)

)
, (2.8)

where, n = 0, 1, 2, . . . ,M − 1 ∈ D. Just like LI, PLI is also very simple and

easy to implement for real systems. When the variation in CFR phases is small,

PLI is expected to yield better performance than LI. Essentially, PLI aims to

track the true trajectory from Ĥ(k) to Ĥ(k + 1), k ∈ P in complex plane as

opposed to LI which follows the straight path. The major problem in PLI is that

when the variation in CFR phases is large (typically larger than π), then the PLI

cannot detect changes in direction of polar route (hence does not follow the true

trajectory). The performance of PLI is even worse than LI in such situations.

2.1.3 Adaptive Polar Linear Interpolation

Build around PLI, Adaptive polar linear interpolation (APLI) is a new geometric

based algorithm recently proposed in [25] which alleviates the weaknesses of PLI
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by involving more pilots (instead of just 2) and introducing additional steps tai-

lored to forcing the PLI to follow the true trajectory. It is observed that APLI

outperforms both LI and PLI provided that the CFR is smooth enough and the

CFR coefficients are highly correlated. This happens when L � K < N which

requires increasing the pilot density, thus compromising the system throughput.

In short, APLI, like LI and PLI is not appropriate for high frequency selective

channels. Moreover, neither of these simple interpolation techniques is capable

of achieving the optimal performance, which makes the optimal LMMSE based

approaches more attractive. However, they do serve as a benchmark for compu-

tational complexity.

2.1.4 LMMSE Interpolation and Variants

The simple approaches described earlier are not optimal in the sense of minimizing

the MSE as they do not exploit the channel correlations and noise statistics. The

LMMSE based interpolation is widely used on OFDM channel estimation and it is

optimum in terms of MSE in the presence of AWGN. Beginning with the system

model in (2.3), the LMMSE estimator of CFR is obtained by minimizing the MSE

criteria

ĤLMMSE
= argmin︸ ︷︷ ︸

ˆH
E

{∥∥H− Ĥ∥∥2} (2.9)
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The solution is given by [62]:

ĤLMMSE
= RHY(P)R

−1
Y(P)Y(P)YP

= RHH(P)A
H
[
σ2
wIK +ARH(P)H(P)A

H
]−1

Y(P) (2.10)

where RHH(P) is the cross correlation matrix between channel coefficients at all

sub-carriers and coefficients at the pilot sub-carriers while RH(P)H(P) is the auto-

correlation matrix of channel coefficients at pilot sub-carriers. By simple algebraic

manipulations, (2.10) can be re-written as,

ĤLMMSE
= RHH(P)

[
RH(P)H(P) + σ2

w

(
AHA

)−1
]−1

ĤLS
(P) (2.11)

The above formulation in (2.11) suggests that LMMSE interpolates/smoothes the

LS estimates over all OFDM sub-carriers. If the noise is AWGN, it is also the

optimal interpolator. However, due to the dependency of LMMSE on transmitted

data, the non-trivial matrix inversion and large matrix products would be required

for each estimation process. The dependence of LMMSE on data can be removed

by assuming that transmitted signals use the same signal constellation so that the

expression
(
AHA

)−1
can be replaced by taking its expected value as follows

σ2
w E

{(
AHA

)−1
}
=
β

ρ
IK (2.12)
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where, β = E{|X (k)|2}E{1/|X (k)|2}, X (k) is the constellation point and ρ is

the SNR. For BPSK, QPSK constellations, β = 1 and for 16−QAM constellation

β = 17/9. Substitution of (2.12) into (2.11) yields:

ĤLMMSE
= RHH(P)

[
RH(P)H(P) +

β

ρ
IK

]−1

ĤLS
(P) (2.13)

The resulting minimum MSE is given by

MSE = trace

(
RHH −RHH(P)

[
RH(P)H(P) +

β

ρ
IK

]−1

RH
HH(P)

)
(2.14)

Although (2.13) is simple, it still requires multiplications of the order O(K3)

due to matrix inversion. Different variants of LMMSE have been proposed to

reduce the complexity of LMMSE.

Subspace Methods

The subspace methods are based on singular value decomposition (SVD) [30, 31,

63, 64]. Since the CIR length is generally much smaller than the total num-

ber of subcarriers, the SVD of autocorrelation and cross correlation matrices in

LMMSE estimator results in only few significant singular values corresponding to

CIR coefficients. Therefore, retaining only few singular values (say r � N) can

result in significant reduction in complexity. However the computation of SVD of

auto/cross correlation matrices is by itself very complex, requiring multiplications

of the order O(K3). This makes SVD based approaches impractical for real time
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implementations.

Approximate LMMSE Algorithm

The original LMMSE involves matrix inversion of size K ×K and multiplication

of two huge matrices of sizes N × K and K × 1. Both of these operations re-

quire intensive computations in practical systems where N is large, e.g. in LTE

N = 1200 and K = 200. To overcome this, Approximate LMMSE algorithm

(ALMMSE) was proposed in [32] for WiMAX which was later adopted for LTE

[33]. The idea is to split the whole band into three portions; 1 to M/2, M/2 + 1

to N −M/2 and N −M/2 + 1 to N , where M is predefined. At the edges of the

bands (i.e. the first and the last), the LMMSE follows the expression (2.11) with

K replaced by M/6, while at the middle band and for each subcarrier k, only the

middle element of computed LMMSE estimate of size M is used i.e., the (M/2)th

element. Although the number of computations is reduced due to this divide-

and-conquer type strategy, it has two main drawbacks. The first is that M ×M

matrix operations are repeated approximately as the number of sub-carriers over

different overlapping frequency bands. Secondly, many redundant computations

for adjacent sub-carriers are also carried out which are later discarded.

2.2 The Proposed Method

We propose a structure-based approach that exploits the structure of auto/cross

correlation matrices of CFR to reduce the number of computations. Since it is
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well known that the number of pilot spacing is inversely proportional to channel

delay spread [65], we will make a reasonable assumption that the number of pilots

K, is an integer multiple of channel length, i.e., K = qL for some integer q ≥ 1.

This gives the pilot spacing of N/(qL) which is inversely proportional to channel

length. Based on this, the CFR correlation matrix can be easily computed as

follows

RHH = E
{HHH

}
= E

{
F hhH FH

}
= F E

{
hhH

}
FH = FRh FH (2.15)

where F is the partial FFT matrix consisting of first L columns of F and Rh is the

autocorrelation matrix of CIR vector h. Observe that the auto/cross correlation

matrices in (2.13) are the subsets of the full correlation matrix given in (2.15). The

design of the proposed estimator is based on the assumption that CIR coefficients

are uncorrelated, so that Rh = σ2
hIL where σ2

h represents the channel variance

that will be assumed to be unity. This corresponds to the channel exhibiting a

uniform PDP. Based on this assumption, (2.15) simplifies to

RHH = F FH (2.16)

By using the definition of F in (2.16), the correlation between any two CFR

coefficients can be analytically computed and in fact it can be easily shown that
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the magnitude of (i, l)-th element of RHH is:

∣∣[RHH]i,l
∣∣ = |aia

H
l | =

⎧⎪⎪⎨⎪⎪⎩
L if i = l

1
L

∣∣ sin(π(i−1)L/N)
sin(π(i−1)/N)

∣∣ if i 
= l

(2.17)

where ai represents the i
th row of F. In Fig. 2.4 we plot this magnitude correlation

function for i = 1, N = 64 and L = 16 as a function of l i.e., the first row of RHH.

From Fig. 2.4, it is clear that correlation between any two coefficients which are

N/L (or its integer multiples) apart is zero. So, if we place the pilots at those very

positions then the autocorrelation matrix RH(P)H(P) would essentially become an

identity matrix. Hence the matrix inversion in LMMSE estimation process would

be trivial, thanks to the special structure of FFT matrix. In practical OFDM

systems where N is large, this can result in significant computational advantages.

Exploiting of above facts is carried out in the proposed solutions as described

below for different choices of parameter q (or equivalently K).

The Case When q = 1

Evidently when q = 1, the pilot spacing would be N/L, so that one would end up

with K = L pilots. Further, from (2.13), due to orthogonality of CFR coefficients

at pilot positions, we get

Ĥ =
RHH(P)ĤLS

(P)

(1 + β/ρ)
(2.18)
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Figure 2.4: Normalized correlation as function of l for N=64 and L=16

where matrix RHH(P) that will be referred to as interpolation matrix, can be easily

read-off from RHH. This choice of K renders our method spectrally efficient as

only few pilots (i.e., equal to the number of unknown channel coefficients) are

required to achieve the optimal performance. The resulting minimum MSE from

(2.14) is given by

MSE = trace

(
RHH − RHH(P)R

H
HH(P)

1 + β/ρ

)
(2.19)

The Case When q > 1

Despite the fact that utilizing less number of pilots is spectrally more efficient,

in many practical systems (e.g., LTE) the number of pilots are considered to be

much larger than the length of CIR, in order to obtain fairly accurate channel

31



estimates. Let the number of pilots be K = qL and for q > 1, the pilot spacing

would be N/(qL). In this case the consecutive pilot subcarriers would not be

orthogonal, since the orthogonality is only guaranteed when the pilot spacing

is an integer multiple of N/L. However, one can always construct q disjoint

sets of pilot indices such that the pilot spacing in each set is exactly N/L and

thus the carriers within each set are orthogonal. For example, if N = 64, L =

8 and q = 2, the pilot spacing is 4 which gives the set of pilot indices P as

depicted in Fig. 2.3. This set can be further decomposed into two disjoint sets,

P1 = {2, 10, · · · , 58} and P2 = {6, 14, · · · , 62}, each fulfilling the orthogonality

condition. Hence, (2.18) can be applied to each set of pilot indices to obtain q

estimates of CFR coefficients corresponding to each set. The final CFR estimate

is then obtained by combining the individual CFR estimates by means of simple

averaging as given in the following equations,

Ĥ =
1

q

q∑
i=1

Ĥ(i)

=
1

q (1 + β/ρ)

q∑
i=1

R
(i)
HHPĤ

i(LS)

P (2.20)

where, Ĥi(LS)

P is the LS estimate of CFR at the ith set of pilot indices, P i. Note

that (2.20) is more general than (2.18) and applicable for q = 1. Also observe that

the interpolation matrices (i.e., R
(i)
HHP ) associated with different sets of indices are

related to each other, such that given for the i-th set, the rest can be obtained

by simple shift operations. This alleviates the requirement to compute them
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individually for all the sets, thus reducing the computational complexity.

2.2.1 Further Reducing the Complexity

Despite avoiding matrix inversion, (2.18) and (2.20) still require large matrix-

vector product of size N × K i.e., the computation of each CFR coefficient re-

quires K complex multiplications. This is because all the LS channel estimates

are involved in the interpolation process. The fact that the correlations among

CFR coefficients decrease exponentially (see Fig. 2.4), we can take only few LS

estimates in the interpolation process. This allows us to further reduce the com-

plexity of the proposed algorithm. Hence, by defining a parameter d ≤ K, the

interpolation depth parameter, as the number of LS estimates centered around

a CFR coefficient, the number of multiplications can be reduced from K to d.

As the depth increases the performance improves but at the cost of increasing

the complexity. Fig. 2.5 describes the pictorial representation of interpolation

process for d = 1 and d = 2 respectively. Note that the computational complex-

ity of the proposed algorithm is comparable to the benchmark (i.e., simple linear

interpolation) schemes for d = 2.

2.3 Simulation Results

For simulations we consider BPSK, QPSK and QAM modulation schemes with

FFT size N varying from 64 to 1024 with pilots assumed to be uniformly dis-

tributed in an OFDM symbol. The channel is assumed to vary independently
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(a) Single point interpolation, d = 1.
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(b) Two-point interpolation, d = 2.

Figure 2.5: Pictorial representation of interpolation process.

from one symbol to another but assumed to be stationary within an OFDM sym-

bol duration. The MSE performance is evaluated based on following criteria,

NMSE =
1

Θ

Θ∑
i=1

∥∥∥Hi − Ĥi
∥∥∥2

‖Hi‖2 (2.21)

where, Hi and Ĥi
are true and estimated CFR in the ith trial respectively, and

Θ is the total number of trials. We use Θ =500 in our simulations.

Impact of Interpolation Depth

Fig. 2.6(a) shows the MSE performance of the proposed algorithm with various

levels of interpolation depth determined by parameter d. It is clear that the

MSE decreases with increasing the interpolation depth and vice versa. The case

d = 1 corresponds to the lowest complexity with just one multiplication per CFR
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coefficient. The BER vs SNR in Fig. 2.6(b) shows a similar behaviour.

Impact of PDP Mismatch

Since the proposed algorithm was designed based on uniform PDP, it is impor-

tant to investigate the performance under non-uniform channel PDP. Fig. 2.7(a)

compares the performance when channel correlation matrix has more general form

[Rh]i,j = a|i−j|, where a is the correlation parameter such that 0 ≤ a ≤ 1. Thus

a = 0 corresponds to uniform PDP while a = 1 corresponds to the perfect cor-

relation. The results in Fig. 2.7(a) show that there is only marginal loss in

performance for different choices of a. In Fig. 2.7(b), we evaluate the proposed

estimator for the exponential PDP i.e., E{|h(k)|2} = e−0.1k, k = 0, 1, · · · , L − 1.

Again, the result indicates that the proposed estimator is robust against PDP

mismatch.

The Impact of Channel Spreading and Pilots

The frequency selectivity of the channel increases with increasing the channel delay

spread L. First, we compare the MSE performance of the proposed algorithm by

fixing the number of pilots K and varying the channel length L. The simulation

results at SNR of 20dB in Fig. 2.8(a) show that the MSE performance deteriorates

with increasing the CIR length, which is typical of LMMSE estimation. Also it

is obvious that the proposed method almost attains LMMSE performance and is

robust against frequency selectivity.

Next we fix the CIR length to 8 and vary the number of pilots at SNR of
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20dB. Obviously, the MSE performance improves by increasing the number of

pilot measurements as depicted in Fig. 2.8(b). Again observe that there is a close

match between the proposed algorithm and LMMSE estimator.

Comparison With Other Approaches

We compare the performance of proposed algorithm with various channel interpo-

lation techniques such as LI, PLI and DFT based interpolation. In all algorithms

CFR estimates are computed using LS. The results are plotted for two different

values of CIR lengths i.e., 8 and 32 in Fig. 2.9 and Fig. 2.10, respectively. It

can be seen that the proposed algorithm attains LMMSE performance at all SNR

values and that too with very low complexity. The MSE of simple interpolation

techniques reaches an error floor at higher SNRs. Their performance is gener-

ally better over low frequency selective channels (i.e., when L is small), where

the CFR is rather smooth enough as shown in Fig.2.9(b). However when the

channel exhibits high frequency selective behaviour as depicted in Fig.2.10(b),

simple interpolation techniques suffer from huge performance loss as indicated in

Fig.2.10(a). Further, the DFT-based interpolation attains LMMSE performance

only at higher SNR and that too at comparatively higher complexity (because the

FFT has to be done twice).

Complexity Vs Performance

The complexity and performance comparison of various algorithm is summarized

in Table 2.1. Evidently, the conventional MMSE based techniques or those based
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on SVD yield optimal MSE performance but are too complex to be realized.

The simple interpolation techniques have the advantage of low complexity but

at the cost of performance. More advanced interpolation techniques yield better

performance but at the cost of higher complexity than simple interpolation

schemes. The proposed algorithm has the best trade-off between complexity and

performance as it does not require any matrix inversion nor any channel statistics.

Table 2.1: Complexity-Performance Trade-off

CE methods
Need Matrix
Inversion

Complexity
MSE
performance

LS in TD No Low Not Optimal

LMMSE
(conventional)

Yes Very high Optimal

SVD based No Very high Optimal

DFT/IDFT
based

No High Near Optimal

Simple Interpo-
lation schemes

No Very low Not Optimal

Sophisticated
Interpolation
schemes

No High Sub-Optimal

Proposed No Low Near Optimal
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2.4 Concluding Remarks

In this Chapter we proposed a simple yet a novel strategy to reduce the complexity

of LMMSE based interpolation for channel estimation in OFDM systems. The key

to achieving the objective was to use the inherent structure of channel correlation

in the frequency domain. Moreover, the correlations required for interpolation

process could be computed off-line, since they are designed on the basis of uniform

PDP. The simulation results demonstrate that if pilots are placed appropriately

i.e., q(N/L) apart, then the matrix inversion in LMMSE can be avoided without

loosing MSE performance. Further, the computations due to large matrix-vector

products in LMMSE can be traded off with the performance.
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Figure 2.6: Effect of interpolation depth on (a) MSE and (b) BER performance.
Number of required multiplications per CFR coefficient is proportional to d.
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Figure 2.7: Effect of channel PDP mismatch for (a) General PDP profile and (b)
Exponentially decaying profile. The parameters are N=128 and L=8 and K=16
with QPSK symbols.
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performance using N=256, 16-QAM symbols at 20dB SNR.
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Figure 2.9: (Top) MSE performance comparison of the proposed method with
various algorithms. The parameters are N=256, K=32 with QPSK symbols.
(Bottom) Snapshot of the magnitude of CFR at each subcarrier. Red circles
represent pilot locations where the CFR is known.
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Figure 2.10: (Top) MSE performance comparison of the proposed method with
various algorithms. The parameters are N=256, K=32 with QPSK symbols.
(Bottom) Snapshot of the magnitude of CFR at each subcarrier. Red circles
represent pilot locations where the CFR is known.
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CHAPTER 3

BLIND AND SEMI-BLIND ML

DETECTION FOR MIMO

OFDM SYSTEMS

The current standards use pilot symbols to estimate the channel thus sacrificing

bandwidth which otherwise would have been available for data transmission. In

high mobility wireless systems, the channels may even change so rapidly that this

approach will become infeasible. Blind or semi-blind detection over the time-

varying wireless channels has shown to enhance the system performance consid-

erably [66, 67]. Unlike the pilot-based techniques as discussed in the previous

Chapter, this Chapter focuses on blind and semi-blind methods for channel esti-

mation that can significantly improve the spectral efficiency of overall system.

Specifically, we investigate the joint ML data detection and channel estimation

problem for Alamouti space-time-block-coded (STBC) OFDM systems. However,
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the joint ML estimation and data detection is generally considered a hard combi-

natorial optimization problem. We propose an efficient low-complexity algorithm

based on branch-estimate-bound strategy that renders exact joint ML solution.

However, the computational complexity of blind algorithm becomes critical at

low signal-to-noise-ratio (SNR) regime as the number of OFDM carriers and con-

stellation size are increased. To overcome this problem a semi-blind algorithm is

proposed based on subcarrier reordering according to their reliability. The pro-

posed algorithm can reliably track the wireless Rayleigh fading channel without

requiring any channel statistics. Simulation results presented against the perfect

coherent detection demonstrate the effectiveness of the proposed technique.

3.1 Motivation

The use of multiple antennas at transmitter offers many advantages over single an-

tenna systems including multiplexing gain and diversity gain [1]. Of several diver-

sity schemes available in the literature, the major motivation for using Alamouti

scheme [68] with two transmit and one receive antenna is that it is the optimum in

both the capacity and the diversity. Alamouti coding achieves full spatial diversity

at full transmission rate for any signal (real or complex) constellation and offers

very simple receiver structures. However, to decouple the signals at the receiver

side via simple decoding, the Alamouti scheme requires the channel between each

transmit-receive antenna to be constant over two consecutive OFDM symbols.

Moreover, when dealing with frequency selective channels, Alamouti scheme has
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to be implemented over the block level.

The proposed research in blind estimation is motivated by recent works [43]

and [44], where the authors have developed a low-complexity blind ML method for

general constellations for SIMO and SISO systems, respectively. Specifically, we

extend the work in [44] to Alamouti block-coded OFDM systems with two transmit

antennas. Parallelizing the results and discussions therein, we first derive the exact

blind ML algorithm and then reduce its complexity using different methods. Then

a semi-blind algorithm is proposed by assuming that few training symbols are

available.

3.2 Problem Formulation

Consider a single user OFDM system with two-transmit and one-receive antenna

as shown in Fig. 3.1(a). The frequency selective channels from two transmit

antennas to the receive antenna are modelled as finite impulse response (FIR)

filters. We assume that both channels are independent Rayleigh-fading channels

having maximum length L and CP length is at least L-1 to avoid ISI.

Let X represent information symbols and that OFDM system has N sub-

carriers so that after IFFT operation the time-domain information symbols can

be written in vector form as:

x = FHX (3.1)

where F is unitary FFT matrix defined as [F]l,k = N−1/2 e−j2πlk/N . Let the

nth symbol of kth transmitted block from antenna i (= 1 or 2) be denoted by
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Figure 3.1: (a) Alamouti coded OFDM system (b) Frame structure of OFDM
data blocks over two consecutive time instants.

x
(k)
i (n), n = 0, 1, · · · , N − 1. At times k = 0, 2, 4, · · · pair of blocks x

(k)
1 (n) and

x
(k)
2 (n) are generated according to the Alamouti STBC coding rule, which is de-

fined as [68, 69]

x
(k+1)
1 (n) = −x∗(k)2 ((n)N)

x
(k+1)
2 (n) = x

∗(k)
1 ((n)N) (3.2)

where, (.)N is modulo N operation and (.)∗ denotes the complex conjugation op-

eration. Each antenna transmits a data block of length N according to the above

STBC scheme after appending the CP. Adding CP eliminates inter-block inter-

ference and converts linear convolution into circular convolution. The structure
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of data-blocks over consecutive time instants is depicted in Fig. 3.1(b). In the

presence of additive white Gaussian noise (AWGN), the received data blocks over

two consecutive time instants after discarding the CPs can be written as:

y(j) =
√
ρ H1x

(j)
1 +

√
ρ H2x

(j)
2 +w(j), j = k, k + 1 (3.3)

where ρ is the SNR, H1 and H2 are circular channel matrices from two transmit

antennas to the receive antenna and w is circular symmetric AWGN with

pdf: w ∼ CN(0, I). In (3.3), we also assumed that channel is static over two

consecutive OFDM blocks at time instants k and k+1. Specifically, the structure

of two circular channel matrices is:

Hi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hi(0) 0 · · · hi(L− 1) · · · hi(1)

...
. . .

...
...

. . .
...

hi(L− 2) · · · hi(0) 0 · · · hi(L− 1)

hi(L− 1) hi(L− 2) · · · hi(0) 0
...

...
. . .

...
...

. . .
...

0 · · · hi(L− 1) hi(L− 2) · · · hi(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and where,

hi =

[
hi(0) hi(1) · · · hi(L− 1)

]T
(3.4)

represents the impulse response sequence of ith channel matrix. At the receiver

side, the frequency domain received symbols after FFT operations are obtained
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as:

Y (j) =
√
ρ Λ1X (j)

1 +
√
ρ Λ2X (j)

2 +W (j), j = k, k + 1 (3.5)

where X (j)
i = Fx

(j)
i , Λi = FHiF

H are diagonal matrices whose entries are N -point

DFT of hi after zero-padding and W (j) = Fw(j). Expanding (3.5) and using DFT

properties we get:

Y (k) =
√
ρ Λ1X (k)

1 +
√
ρ Λ2X (k)

2 +W (k),

Y (k+1) =
√
ρ Λ1X (k+1)

1 +
√
ρ Λ2X (k+1)

2 +W (k+1) (3.6)

By stacking the received data symbols over consecutive intervals in one column

and so as the DFT channel coefficients, (3.6) can be written in matrix-vector

notation as

⎡⎢⎢⎣ Y (k)

Y (k+1)

⎤⎥⎥⎦ =
√
ρ

⎡⎢⎢⎣ diag
(
X (k)

1

)
diag

(
X (k)

2

)
−diag

(
X ∗(k)

2

)
diag

(
X ∗(k)

1

)
⎤⎥⎥⎦
⎡⎢⎢⎣ H1

H2

⎤⎥⎥⎦+

⎡⎢⎢⎣ W (k)

W (k+1)

⎤⎥⎥⎦
(3.7)

where Hi = diag(Λi) = F

⎡⎢⎢⎣ hi

0

⎤⎥⎥⎦. Let F consists of first L columns of F, then

Hi = Fhi and hi = FHHi (3.8)
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which allows us to rewrite (3.7) as:

⎡⎢⎢⎣ Y (k)

Y (k+1)

⎤⎥⎥⎦
︸ ︷︷ ︸

Y

=
√
ρ

⎡⎢⎢⎣ diag
(
X (k)

1

)
F diag

(
X (k)

2

)
F

−diag
(
X ∗(k)

2

)
F diag

(
X ∗(k)

1

)
F

⎤⎥⎥⎦
︸ ︷︷ ︸

Xa

⎡⎢⎢⎣ h1

h2

⎤⎥⎥⎦
︸ ︷︷ ︸

h

+

⎡⎢⎢⎣ W (k)

W (k+1)

⎤⎥⎥⎦
︸ ︷︷ ︸

W

(3.9)

or even more compactly as:

Y =
√
ρ Xah+W (3.10)

where Y and W are observation and noise vectors each of size 2N × 1, Xa is

of 2N × 2L data matrix, which we shall refer to as Alamouti matrix, and h is

2L × 1 dimensional composite channel vector. The above model can be easily

transformed to SISO-OFDM system of [44] by replacing Xa with N × N square

matrix diag(X ) consisting of N data symbols on its diagonal as follows,

Y =
√
ρ diag(X )Fh+W (3.11)

where Y and W are N -dimensional received OFDM symbol and noise vector

respectively while h is the length-L SISO channel vector. In either case, the task

of receiver is to jointly estimate the channel h and the data vector X given only

the received data symbol Y .
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3.3 Joint ML/MAP solution

Considering the data model in (3.10), the joint ML channel estimation and data

detection problem reduces to minimizing the following objective function,

JML = argmin
h,X ∈Ω2N

{
‖Y −√

ρ Xah‖2
}

(3.12)

where Ω2N denotes all possible 2N -dimensional signal vectors. As seen from (3.12),

the joint ML problem is a combinatorial problem involving |Ω|2N hypothesis tests

and it is almost impossible to solve it exactly for sufficiently large Ω and N . For

instance, if N = 16 and 4-QAM constellation is used, the exhaustive search would

require to examine 4(32) ≈ 1.84 × 1019 hypothesis for each coherence time of two

OFDM blocks.

To solve it efficiently, we propose the following strategy. We start by decom-

posing the original cost function as,

JML = min
h,X ∈Ω2N

⎧⎪⎪⎨⎪⎪⎩
∥∥Y (i) −√

ρ Xa(i)h
∥∥2︸ ︷︷ ︸

MX(i)

+
N∑

j=i+1

‖Y(j)−√
ρ Xa(j)h‖2

⎫⎪⎪⎬⎪⎪⎭ (3.13)

and define,

MX(i)
=
∥∥Y (i) −√

ρ Xa(i)h
∥∥2 (3.14)

as the partial joint ML metric for X up to the index i, i.e., X (i) and where
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Xa(i)=

⎡⎢⎢⎣ diag
(
X (k)

1(i)

)
F(i) diag

(
X (k)

2(i)

)
F(i)

−diag
(
X ∗(k)

2(i)

)
F(i) diag

(
X ∗(k)

1(i)

)
F(i)

⎤⎥⎥⎦
is a partial Alamouti-matrix of dimension 2i × 2L corresponding to X (i), Xa(j)

is 2× 2L matrix corresponding to X (i), which is the same as Xa(j) with all X (j)

replaced by X (j), Y (i) =

[(
Y (k)

(i)

)T (
Y (k+1)

(i)

)T]T
is the partial data vector of

dimension 2i × 1 and the partial matrix F(i) consists of first i rows of F. It

should be noted that partial Alamouti-matrix Xa(i) is the function of first i data

points while Xa(i) is only a function of ith data point. Obviously, the solution

that minimizes this partial joint ML metric would not be globally optimal, but

we have the following Lemma.

Lemma 3.1 Let R represent the optimal value of the objective function in (3.12).

If MX(i)
> R, then X (i) cannot be the ML solution X̂ML

(i) of (3.12). In other words,

for any estimate X̂ (i) to correspond to the ML solution, we should haveMX(i)
< R.

Proof. This Lemma was proved in [44] for SISO case, we simply extend it here

to the multi-antenna case.

The above Lemma suggests that if the optimal value of the objective function

(3.12) R, can be estimated then we can adopt the following tree search procedure

for joint estimation and detection: At each subcarrier i, make a guess of new value

ofX (i) =

[
X1(i) X2(i)

]T
and use that along with previous estimates to construct
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X̂ (i) and X̂a(i). Then estimate h to minimize the associated cost function,

MX̂(i)
= argmin

h

{∥∥∥Y (i) −√
ρ X̂(i)h

∥∥∥2} (3.15)

and calculate the resulting metric MX̂(i)
. If MX̂(i)

< R, then proceed to the next

subcarrier i+1, otherwise backtrack and change the guess of X (j) for some j ≤ i.

We call this approach as the branch-estimate-and-bound strategy, which reduces

the search space of exhaustive ML search to those (partial) sequences that satisfy

the given constraint MX̂(i)
< R. This approach however doesn’t work for i ≤ L

as Xa(i) will be full rank for any choice of X (i) and therefore h with 2L degrees

of freedom can always be chosen by Least Squares (LS) to yield the trivial (i.e.,

zero) value for MX̂(i)
. To obtain a non-trivial value of MX̂(i)

, we have to use L

pilots, but it would defeat our original motive of blind estimation.

To overcome this problem, we adopt a weighted regularized LS and instead

of minimizing the ML objective function, JML, we minimize the maximum a

posteriori (MAP) objective function

JMAP = argmin
h,X ∈Ω2N

{
‖h‖2Rh

−1 + ‖Y −√
ρ Xah‖2

}
(3.16)

where Rh is the block diagonal autocorrelation matrix of the composite chan-

nel vector h i.e. Rh = E
{
hhH

}
. The objective function in (3.16) can also be
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decomposed as

JMAP = argmin
hX ∈Ω2N

{
‖h‖2Rh

−1 +
∥∥Y (i) −√

ρ Xa(i)h
∥∥2︸ ︷︷ ︸

MX(i)

+
N∑

j=i+1

‖Y(j)−√
ρ Xa(j)h‖2

} (3.17)

So, if we have the guess X̂ (i−1), then the partial metric for X up to index i − 1

can be written as

MX̂(i−1)
= argmin

h

{
‖h‖2Rh

−1 +
∥∥∥Y (i−1) −√

ρ X̂a(i−1)h
∥∥∥2} (3.18)

whose optimum value ĥ and the minimum cost can be computed [62].

3.3.1 Recursive Derivation of Bound

For our blind search strategy, the calculation of the metric or bound MX̂(i)
is

needed at each tree node for comparison with the optimal value of objective func-

tion, R. This bound can be derived recursively by simply expressing MX̂(i)
in

terms of new observation and an additional regressor X̂a(i) as follows:

MX̂(i)
= argmin

h

{
‖h‖2Rh

−1 +
∥∥∥Y (i) −√

ρ X̂a(i)h
∥∥∥2}

= argmin
h

⎧⎪⎪⎨⎪⎪⎩‖h‖2Rh
−1 +

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣ Y (i−1)

Y(i)

⎤⎥⎥⎦−√
ρ

⎡⎢⎢⎣ X̂a(i−1)

X̂a(i)

⎤⎥⎥⎦h
∥∥∥∥∥∥∥∥
2⎫⎪⎪⎬⎪⎪⎭ (3.19)
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By invoking the block version of recursive least squares (RLS) algorithm to the

cost function in (3.19) with the data vector of size 2× 1 and the regressor matrix

of dimension 2× 2L we get [62],

MX̂(i)
=MX̂(i−1)

+ eHi Γiei (3.20)

ĥi = ĥi−1 +Giei (3.21)

where

ei = Y(i)−√
ρ X̂a(i)ĥi−1 (3.22)

Γi =
[
I2 + ρX̂a(i)Pi−1X̂a(i)

H
]−1

(3.23)

Gi =
√
ρ Pi−1X̂a(i)

HΓi (3.24)

Pi = Pi−1 −GiΓ
−1
i GH

i (3.25)

The RLS recursions are initialized by

MX̂(i−1)
= 0, ĥ−1 = 0 and P−1 = Rh.

Before introducing our algorithm, we first number the |Ω|2 combinations of the

constellation points from two antennas by 1, 2, . . . , |Ω|2 and treat them as a big

constellation set Ψ, where the kth(1 ≤ k ≤ |Ω|2) vector constellation point is

denoted by Ψ(k). We then perform the depth-first search of signal tree for joint

ML solution as shown in Algorithm 3.1.
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Algorithm 3.1 Blind MAP Algorithm

Parameters: Initial search radius r, ρ and channel covariance matrix Rh.
Inputs: Y , constellation set Ψ and the 1×N carrier index vector I.
Outputs: Estimated channel ĥ and data vector X̂ .

1. (Initialize) Set i = 1 ,I(i) = 1, X̂ (i) = Ψ
(
I(i)
)
and construct the Alamouti

matrix X̂a(i).

2. (Compare with bound) Compute and store the metric MX̂(i)
. If MX̂(i)

> r ;

go to 3; else go to 4.

3. (Backtracking) Find the largest 1 ≤ j ≤ i such that I(j) < |Ω|2. If there
exists such j, set i = j and go to 5; else go to 6.

4. (Increment subcarrier) If i < N , set i = i+ 1, I(i) = 1, X̂ (i) = Ψ
(
I(i)
)
and

go to 2; else store the current X̂ (N), update r =MX̂(N)
and go to 3.

5. (Increment constellation) Set I(i) = I(i) + 1 and X̂ (i) = Ψ
(
I(i)
)
. Go to 2.

6. (End/Restart) If a full-length sequence X̂ (N) has been found in step 4, out-
put it as the MAP solution and terminate; otherwise, double ’r’ and go to
1.

The algorithm essentially reduces the search space of exhaustive ML search

by performing a trimmed search over the signal tree of N layers, where each tree

node at the ith layer corresponds to a specific partial sequence X (i) and each tree

node at the intermediate layer has |Ω|2 off-springs to the next layer.

The parameter ρ can be easily determined by estimating the noise variance,

whereas for Rh, our simulation results indicate that we can replace it with an

identity matrix with almost no effect on the performance via carrier reordering

(see the next Section). To obtain the initial guess of search radius we can use the

strategy described in [44] to determine r that would guarantee a MAP solution

with very high probability. Nevertheless, the algorithm itself takes care of the
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value of r, in that if it is too small such that the algorithm is not able to back-

track, then it doubles the value of r and if it is too large such that the algorithm

reaches the last subcarrier too quickly then it reduces r to the most recent value of

objective function (see step 4 and 6). Therefore any choice of r would guarantee

the MAP solution.

3.4 Low-Complexity Blind Algorithm

The complexity of the algorithm is mainly due to: (i) calculation of the bound

MX̂(i)
in step 2, and (ii) the backtracking in step 3. The former, as can be seen

from RLS recursions, depends heavily on computation of 2L × 2L matrix Pi in

(3.25). We show how we can completely avoid computing Pi by exploiting the

structure of the FFT matrix and hence simply discard (3.25) from RLS recursions.

This means that RLS algorithm will reduce to least mean square (LMS) in terms

of complexity. The issue of backtracking will be treated in Section 3.5.

3.4.1 Reducing Complexity by Avoiding Pi

Let us assume that P−1 = I and the row vectors ai of F are orthogonal for

i = 0, 1, 2, · · · , N − 1, i.e., aH
i aj = 0 for i 
= j (In fact a weaker condition that

three consecutive vectors ai, ai+1 and ai+2 are orthogonal, would suffice). First

we merge (3.24) with (3.25) and obtain,

Pi = Pi−1 − ρPi−1X̂
H
a (i)Γ

H
i X̂a(i)Pi−1 (3.26)
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Then, by using (3.26) and our assumptions, it follows by induction that

PiX̂
H
a (i+1)=X̂H

a (i+1),PiX̂
H
a (i+2)=X̂H

a (i+2) and Pi+1X̂
H
a (i+2)=X̂H

a (i+2)

Hence, if the successive regressors are orthogonal we can simply replace Pi with

an identity matrix and hence discard equation (3.25). Moreover, from the orthog-

onality assumptions it also follows that:

X̂a(i)X̂
H
a (j) =

⎧⎪⎪⎨⎪⎪⎩
0 if i 
= j

L
(
‖X̂1(i)‖2 + ‖X̂2(i)‖2

)
I2 if i = j

(3.27)

where, In represents an n × n identity matrix. Incorporating these results into

RLS recursions, the matrices Γi and Gi become independent of Pi and are given

as,

Γi =
1

1 + ρL
(
‖X̂ 1(i)‖2 + ‖X̂ 2(i)‖2

)I2 (3.28)

Gi =
√
ρ X̂a(i)

HΓi (3.29)

The resulting low-complexity blind algorithm based on (3.20)−(3.22), (3.28) and

(3.29) for metric computation, requires no matrix inversion or computation of Pi.

3.4.2 Reducing Complexity by Carrier Reordering

In the above approximation, we assumed that P−1 = I and ai are orthogonal

which allows us to use (3.27). However, ai are rows of the partial FFT matrix
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F, so strictly speaking they are not orthogonal. Hence, the successive regressor

matrices would not be orthogonal too. However, we can make them orthogonal or

semi-orthogonal by carrier reordering based on the idea presented in Section 2.2.

Specifically, in Fig. 3.2 we plot the magnitude of correlation of these partial vectors

given by (2.17) for N = 16 and L = 4. It can be seen that rows 1, 5, 9, 13 are

orthogonal to each other and so are the rows 2, 6, 10, 14 and so on. If we visit the

sub-carriers in order 1, 5, 9, 13, 2, 6, 10, 14, · · · , 4, 8, 12, 16 we find that consecutive

vectors will be orthogonal or approximately orthogonal. In general, (as we saw

earlier Section 2.2) with Δ = N/L the vectors ai, ai+Δ, ai+2Δ, ∀i are orthogonal.

Therefore, by simple reordering the carriers we can achieve orthogonality among

different sub-carriers and use that fact to reduce the complexity of our algorithm

as done previously in Section 3.4.1.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

i

|aH 1
a
i|

Figure 3.2: Correlation between partial vectors a1 and ai for N=16 and L=4.
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3.5 Complexity Reduction by Reliable Carriers

The second major source of complexity is the backtracking, which occurs whenever

the constraint MX̂(i)
< r is not satisfied. The algorithm then goes back either to

the nearest subcarrier or to the current subcarrier whose alphabet is not exhausted

and increments the alphabet (step 3 then step 5). This issue is rigorously analyzed

in [44] where it is shown that the probability of backtracking is almost zero at high

SNR, however, no solution is proposed in the low SNR case. Moreover, with two

transmit antennas, the search space at each node grows as |Ω|2 as compared to |Ω|

for SISO system. Thus the complexity of proposed algorithms due to backtracking

ultimately dominates the complexity induced by computing the matrix Pi (or its

inverse) and becomes the real bottleneck.

Since the backtracking is inevitable in all blind search algorithms, it cannot

be avoided in practice. However, its effect can be minimized and we aim to do so

by using the concept of reliable carriers. The basic idea is that if we are able to

arrange the data according to its reliability, starting with the most reliable data,

then there would be a less chance that we need to backtrack. Since earlier data is

reliable, there is no need to backtrack for this part. The later data might not be

reliable but by the time we start processing this data, the algorithm would have

converged. However, measuring the data reliability requires tentative channel es-

timates which can only be obtained by using some pilots. Therefore, we transform

our blind algorithm into semi-blind algorithm that would require a short training

sequence of L symbols only at the start of transmission to get a tentative estimate
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of the data and its reliability and no further pilots or channel statistics would be

required.

3.5.1 Measuring the Reliability

To minimize backtracking, the algorithm must devise a procedure to identify the

reliable data carriers from the tentative estimates of channel and the data. Thus

it is imperative to measure the reliability of data carriers. With receiver having

an estimate of channel Ĥ using pilots, the decoding process can be accomplished

by re-writing (3.10) as follows

Ỹ =
√
ρ HaX + W̃ (3.30)

where Ỹ =

[
(Y (k))T (Y∗(k+1))T

]T
, W̃ =

[
(W (k))T (W∗(k+1))T

]T
and Ha is an

Alamouti-like matrix defined as follows

Ha �

⎡⎢⎢⎣Λ1 Λ2

Λ∗
2 −Λ∗

1

⎤⎥⎥⎦ (3.31)

Now, using the zero-forcing i.e., left multiplying both sides of (3.30) with (the

estimate of) 1√
ρ
H−1

a and re-arranging the terms we get,

X̂ ≈ X +Z (3.32)
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where Z � 1√
ρ
Ĥ−1

a W̃ represents the distortion due to noise and channel estima-

tion error. Given the estimate Ĥa, Z can be modelled as Gaussian with zero

mean and covariance 1
ρ
(Ĥ−1

a )(Ĥ−1
a )H. Hence, some data-carriers X (k), would be

severely effected by noise and channel perturbation errors i.e., Z(k) and fall out-

side their correct decision regions, while for some other data-carriers the distortion

is not strong enough and they are decoded correctly. All those data carriers X (k)

which satisfy the condition 〈X̂ (k)〉 = X (k) with high probability, are termed

reliable carriers.

The authors in [70] have developed a rigorous method for assessing the relia-

bility of data carriers, based on which the expression for reliability is a vector-wise

likelihood ratio defined as

Rexact = log
fZ

(
X̂ − 〈X̂ 〉

)
∑|Ω|

m=1,Ωm �=〈X̂〉 fZ

(
X̂ − Ωm

) (3.33)

where fZ(.) is the pdf of Z . Intuitively, (3.33) measures the reliability in decoding

X (k) to the nearest constellation point 〈X̂ 〉 relative to decoding it any other con-

stellation point. Fig. 3.3 also illustrates this concept, such that, for instance even

though X̂ (1) and X̂ (2) have the same distance from X (i.e., value of numerator

in (3.33) is same), X̂ (2) has a higher reliability (i.e., the denominator in (3.33)

is smaller) than X̂ (1) as it is farther from the nearest neighbour. Thus higher

the value of Rexact(k) the higher the probability of data-carrier to be decoded

correctly and higher the reliability of the carrier.
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X̂2

Figure 3.3: Reliability of data carriers X̂1 and X̂2 in decoding them to the nearest
neighbour constellation point X .

Once the vector R is computed, we can proceed to select the most reliable

data tones. These reliable data tones can then be supplied to our algorithm for

initial search of the ML solution. Based on the above developments, the proposed

semi-blind algorithm is given below.

Remarks : The first two steps of the semi-blind algorithm serve as pre-

processing steps tailored to minimizing the backtracking of blind algorithm in

step 3. One can easily obtain the channel estimates from pilots to run the algo-

rithm. The prediction step 1 is trivial and would suffer only little distortion as

the channel does not change much in slow fading. To initiate the RLS recursions

of blind algorithm in step 3, we initialize the channel vector with its previous
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Algorithm 3.2 Semi-blind algorithm

Obtain an initial estimate of the channel vector h from L training/pilot symbols
at start of transmission, then repeat the following steps over two consecutive time
instants.

1. Predict and decode the carriers X̂ from previous channel estimate ĥ and
observation vector Ỹ as in (3.32).

2. Use (3.33) to compute reliability of data carriers, R(k)Pk=1, with 1 ≤ P ≤ N
and rearrange them in decreasing order of their reliability. The parameter
P represents the total number of re-ordered carriers used by the algorithm.

3. Run Blind Algorithm 3.1 starting with the most reliable data, to obtain
exact ML estimates of the channel and the data.

estimate and set Pi = I; thus no channel statistics are required a priori. The

blind algorithm is supplied with re-ordered carriers with most reliable data to

start over the search (step 2), so that there will be almost no backtracking during

the convergence of the algorithm. However, we observe that the carrier reordering

based on reliability measures does not ensure orthogonality of successive regres-

sors therefore the low complexity variants of RLS introduced earlier, cannot be

employed.

3.6 Simulation Results

For simulation of Blind Algorithm 3.1, we assume that channels between two

transmitters and a receiver are both independent Rayleigh fading, stationary over

two consecutive OFDM blocks and each having an exponential power decay profile

i.e. E {|hi(τ)|2} = e−0.2τ . Information symbols are modulated using BPSK or 4-

QAM constellations.
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In Fig. 3.4, we compare the BER performance of the proposed exact blind

algorithm and the proposed low-complexity variants, i.e., blind algorithm with

(i)Pi = I and (ii) Pi = I with subcarrier reordering, against the perfectly known

channel. The results shown in Fig. 3.4(a) for BPSK data symbols indicate that

with Pi = I, the performance degrades and BER reaches an error floor. However,

with subcarrier reordering approach we almost get the same performance as that

of exact blind algorithm without requiring the channel statistics. Similar trend is

observed in Fig. 3.4(b), when 4-QAM signal modulation is considered.

For Semi-blind Algorithm 3.2, we adopt the AR(1) process to model the slow

rayleigh fading channels, such that the channel weight vector varies as [62]

h(n) = αh(n− 1) + q(n)

where, α = J0(2πfdTs) and q is a complex normal vector with covariance matrix

(1 − α2)I. The product of maximum Doppler frequency fd and sampling time

Ts, referred to as normalized doppler frequency Fd, controls the amount of time

variations of the channel taps. Two different values of normalized doppler fre-

quency; 0.1 and 0.001 corresponding to relatively fast and slow varying channel,

are considered. Results for semi-blind algorithm are presented against perfect co-

herent detection in Fig. 3.5 which show favourable performance of the proposed

algorithm under different modulation constellations and fading conditions.

To assess the computational complexity of the proposed algorithm, we com-

pare the average number of nodes visited by the algorithm with various reliability
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measures in Fig. 3.6(a). It is clearly observed that the proposed reliability scheme

offers significantly lower complexity at lower SNR values. At higher SNR the com-

plexity is constant, confirming the fact that there is almost no backtracking. Fig.

3.6(b) shows that the performance for various degrees of reliability measures is

almost identical which means that computational advantages are attained with-

out degrading the performance. Through simulations it has also been observed

that the reliability of around 50-60 percent is enough for a good performance,

although more importantly, the algorithm doesn’t disfavour the usage of more

reliable carriers.

Finally in Fig. 3.7 the complexity comparison of semi-blind algorithm with and

without using reliable carriers is presented for different modulation schemes such

as BPSK, 4-QAM and 16-QAM. The results clearly indicate the computational

advantages gained by the proposed method using reliable carriers for minimiz-

ing the backtracking of the algorithm. In comparison, for N = 16 and 4-QAM

constellation, the exhaustive search would require to examine 4(32) ≈ 1.84× 1019

hypothesis for each coherence time.
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Figure 3.4: BER Performance of blind algorithm over Rayleigh fading channel
with N = 16 and L = 4.
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Figure 3.5: BER performance of semi-blind algorithm over Rayleigh fading chan-
nel with N = 32 and L = 4
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Figure 3.6: (a) Computational complexity and (b) BER performance of the pro-
posed algorithm with various degrees of reliability measurements using BPSK
symbols with N=16 and L=4.
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CHAPTER 4

CHANNEL ESTIMATION FOR

MASSIVE MIMO OFDM

SYSTEMS

The demand for wireless data traffic has increased rapidly since the past few years

mainly due to unprecedented use of smart phones, tablets, laptops etc. With

growing number of mobile devices and wireless internet connections, the demand

for future wireless data would increase even more. Basically, the key parameter

for wireless data traffic is the wireless throughput (bits/sec) defined as:

Throughput
(
bits/sec

)
= Bandwidth

(
Hz
)× Spectral efficiency

(
bits/sec/Hz

)

Hence, to improve the throughput the new technologies which can either in-

crease the bandwidth or the spectral efficiency or both should be exploited. This
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chapter focuses on massive MIMO systems which have recently emerge as one

solution to meet the demands for the next generation wireless communications as

they can significantly improve the spectral efficiency and provide huge gains in

throughput over SISO and conventional MIMO systems.

Specifically, we focus on estimation of correlated Rayleigh fading channels in

the uplink of large antenna or massive MIMO OFDM systems. In massive MIMO,

with increased number of BS antennas, the number of channel parameters to be

estimated also grows large. This makes the conventional MMSE solution almost

impractical due to very high complexity. We propose an efficient distributed

MMSE algorithm that can achieve near optimal channel estimates at very low

complexity by exploiting the strong spatial correlations and symmetry of large

antenna array elements. The proposed method involves solving a (fixed) reduced

dimensional MMSE problem at each antenna element followed by a repetitive

sharing of information through collaboration among neighboring elements. To

further enhance the channel estimates and/or reduce the number of reserved pi-

lot tones, we propose a data-aided estimation technique that relies on finding a

set of most reliable data carriers. Simulation results validate the near optimal

performance of proposed estimation algorithm.

4.1 System Model

We consider a multi-cell massive MIMO-OFDM wireless system as shown in Fig.

4.1(a), where the BS in each cell is equipped with uniform planar array (UPA)
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consisting of a large number of antennas. We assume that each BS serves a

number of single antenna user terminals. The antennas on UPAs are distributed

across M rows and G columns with horizontal and vertical spacing of dx and

dy, respectively. We define the linear (column-wise) index of (m, g)th antenna as

r=m +M(g − 1) where 1 ≤ m ≤ M , 1 ≤ g ≤ G, 1 ≤ r ≤ R and R=MG is

the total number of antennas in a UPA. Fig. 4.1(b) shows an example of a M×G

UPA structure with antenna indexing. Note that, depending on values of G and

M , the antennas could have linear or a rectangular configuration. However, we

confine our attention to rectangular UPA structure which is a viable configuration

in deployment scenarios for massive MIMO [71].

Each user communicates with the BS using OFDM and transmits uplink pilots

for channel estimation. We assume that all users in a particular cell are assigned

orthogonal frequency tones so that there is no intra-cell interference. However,

there are (interfering) users in the neighboring cells that transmit pilots at the

same frequency tones, resulting in an inter-cell interference or pilot contamination.

In this Chapter, we assume that there is no inter-cell interference and hence

without loss of generality, we focus on a single-cell single-user scenario (the case

of multi-cell will be treated in Chapter 5).

4.1.1 Channel Model

We assume that multi-path channel between user and receive antenna r is modeled

by a Gaussian L-tap CIR vector defined by hr� [hr(0), hr(1), · · · , hr(L− 1)]T ∈
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(b)

Figure 4.1: (a) Multi-cell massive MIMO system layout (b) An example ofM ×G
UPA structure with antenna indexing.
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C
L×1. We append all the CIR vectors from a user to the BS to form a composite

channel vector h�
[
hT
1 ,h

T
2 , · · · ,hT

R

]T
of size RL×1. Further, we collect the lth

tap of all CIRs to form the lth tap vector h(l)� [h1(l), h2(l), · · · , hR(l)]T of size

R×1. Then, the RL×RL dimensional composite channel correlation matrix can

be written as

Rh � E{hhH} = Ra ⊗Rtap , (4.1)

which is the Kronecker product of two components: (i) The R×R dimensional an-

tenna spatial correlation matrix,Ra=E{h(l)h(l)H}, ∀l = 0, 1, · · · , L−1 and (ii) The

L×L dimensional channel tap correlation matrix, Rtap=E{hrh
H
r }, ∀r=1, 2, · · · , R,

that depends on channel PDP. In the channel correlation model in (4.1), we im-

plicitly assume Ra to be identical across the l taps and Rtap to be identical across

the array. For the spatial correlation matrix Ra, we adopt a ray-based 3D chan-

nel model from [72] which is appropriate for rectangular arrays. Accordingly, the

spatial correlation between array elements r=(m, g) and r′=(p, q) is given by,

[Ra]r,r′ =
D1√
D5

e
−D7+(D2(sinφ)σ)2

2D5 e
j
D2D6
D5 , (4.2)
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where the Di's are defined as,

D1 = ej
2πdx

ν
(p−m)cos(θ)e−

1
2
(ξ 2πdx

ν
)2(p−m)2sin2θ ,

D2 =
2πdx
ν

(q − g)sin(θ) ,

D3 = ξ
2πdx
ν

(q − g)cos(θ) ,

D4 =
1

2

(
ξ
2π

ν

)2

(p−m)(q − g)sin(2θ) ,

D5 = (D3)
2(sin(φ)σ)2 + 1 ,

D6 = D4(sin(φ)σ)
2 + cos(φ) ,

D7 = (D3)
2cos2φ− (D4)

2(sin(φ)σ)2 − 2D4cosφ .

Here, ν is the carrier-frequency wavelength in meters, φ and θ are the mean hor-

izontal angle-of-departure (AoD) and the mean vertical AoD in radians, respec-

tively, σ and ξ are the standard deviation of horizontal AoD and the standard

deviation of vertical AoD, respectively. As shown in [72], the spatial correlation

matrix can be well approximated as

Ra ≈ Raz ⊗Rel , (4.3)
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where Raz and Rel are the correlation matrices in azimuth (horizontal) and ele-

vation (vertical) directions, respectively, defined as below:

[Rel]m,p = ej
2πdx

ν
(p−m)cos(θ)e−

1
2
(ξ 2πdx

ν
)2(p−m)2sin2θ, (M×M)

[Raz]g,q =
1√
D5

e
−D2

3cos
2φ

2D5 e
j
D2cosφ

D5 e
− 1

2
(D2σ)2

D5 , (G×G) .

4.1.2 Signal Model

We assume that there are N OFDM sub-carriers and let X represent the N -

dimensional information symbol whose entries are drawn from a bi-dimensional

constellation (e.g., QPSK or QAM). The equivalent time-domain symbol is ob-

tained by taking inverse Fourier transform, i.e., x=FHX . The time-domain sym-

bol is then transmitted after inserting a cyclic prefix (CP) of length at least L−1

to avoid inter-symbol-interference (ISI). After discarding the CP at the receiver,

the frequency-domain OFDM symbol at rth antenna can be represented as

Yr =
√
Ndiag(X )Fhr +Wr = Ahr +Wr , (4.4)

where A�
√
Ndiag(X )F, F is truncated Fourier matrix formed by selecting the

first L columns of F and Wr is frequency domain noise vector of zero mean and

covariance Rw=σ
2
wIN , assumed to be uncorrelated with the channel vector hr. For

a set of K pilot indices denoted by vector P , the system equation (4.4) reduces to

Yr(P) = A(P)hr +Wr(P) , (4.5)
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where Yr(P) and Wr(P) are formed by selecting the entries of Yr and Wr

indexed by P while A(P) is a K × L matrix formed by selecting the rows of A

indexed by P . We can now collect the pilot measurements (4.5) received by all

antennas into a single system of equations as follows

Y(P) = [IR ⊗A(P)]h+W(P) , (4.6)

where Y(P) and W(P) are formed by column-wise stacking of pilots and noise

observations at each antenna while IR is an R×R identity matrix. For convenience,

we assume the noise variance to be identical across the array so that W(P) ∼

CN (0,Rw=σ
2
wIRK). Note that the number of unknown channel coefficients in

(4.6) is RL whereas the total number of equations is RK. Therefore, a necessary

condition to solve (4.6) for h (and also (4.5) for hr) using least squares, is that

the number of pilots be at least equal to L i.e., K ≥ L. However, K could be

reduced if we utilize the correlation information. With the models defined above,

we are ready to estimate the CIRs between the user and each BS antenna.

4.2 LMMSE and LS based Channel Estimation

In this Section, we pursue different approaches, based on LS and LMMSE that

can be adopted for channel estimation in massive MIMO setup depending on

whether the information processing takes place independently at each antenna

element (local processing) or jointly at a centralized processor. We also discuss
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their limitations which motivate us to propose a novel distributed approach for

channel estimation.

4.2.1 The Localized LMMSE (L-LMMSE) Estimation

In this approach, all CIRs are estimated independently based on the observations

received at each antenna element by using the classical LMMSE solution. Us-

ing the linear system model in (4.5), the LMMSE estimate of hr is obtained by

minimizing the (local) MSE, E{‖hr−ĥr‖2}, over ĥr as follows [62]

ĥr =
(
R−1

tap +AHR−1
w A

)−1
AHR−1

w Yr , (4.7)

where we drop the index vector P for convenience. Similarly, it follows that the

(minimum) MSE is,

mser = trace
(
R−1

tap +AHR−1
w A

)−1
. (4.8)

The overall global MSE can be obtained by taking summation over all array

elements i.e., MSE(L)=
∑R

r=1 mser, which after simplifying (4.8), can be expressed

as,

MSE(L) = R

L∑
i=1

(
δi

1 + ρKδi

)
, (4.9)

where {δi}Li=1 are eigenvalues of Rtap, ρ � Ex/σ
2
w is the SNR with Ex representing

the average signal energy per symbol and the superscript (L) indicates L-LMMSE.

Observe from (4.9) that channel delay spread L, has an adverse effect on MSE per-
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formance, which can be reduced by increasing the number of pilot tones. Despite

the fact that the computational complexity of L-LMMSE increases linearly with

the number of BS antennas (see Table 4.1), the CIR estimates are not optimal

in the sense of minimizing the overall or global MSE. The estimates would have

been optimal, had the antennas been placed sufficiently apart so that the channel

vectors were effectively uncorrelated. But for massive MIMO with extremely large

number of antennas, it is expected that antennas are located in close proximity,

so the channel vectors are highly likely to be correlated with each other.

4.2.2 The Optimal LMMSE (O-LMMSE) Solution

In this strategy all the channel vectors are estimated simultaneously by minimizing

the global MSE, E{‖h− ĥ‖2} over the composite channel vector ĥ. This could be

realized by sending all observations to a central processor and then invoking the

LMMSE estimation based on the composite system model in (4.6). The solution

to this problem is given by

ĥ =
(
R−1

h + ÁHR−1
w Á

)−1

ÁHR−1
w Y , (4.10)

where Á=IR ⊗ A, Rh is as given in (4.1) and for notational convenience we

dropped the index P . The corresponding MSE is

MSE(O) = trace
(
R−1

h + ÁHR−1
w Á

)−1

, (4.11)
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which can be simplified to yield

MSE(O) =
R∑

j=1

L∑
i=1

ηjδi
1 + ρKηjδi

, (4.12)

where ηj and δi are eigenvalues of Ra and Rtap, respectively. By comparing (4.12)

with (4.9), we conclude that in presence of spatial correlation, the optimal solution

yields better MSE performance than the localized strategy, however, it has the

following two major drawbacks:

1. Realization of optimal strategy requires global sharing of information

to/from the central processor that results in communication overhead (as

it requires complex signalling which can be very expensive).

2. As evident from (4.10), the computation complexity of optimal LMMSE

grows with cubic power of the number of BS antennas as it requires inverting

a non-trivial matrix of very high dimension RK ×RK (see Table 4.1).

In a massive MIMO scenario where R is of the order of few hundreds, both of the

above mentioned operations are very expensive and almost impractical.

4.2.3 Estimation Using Least Squares

If the channel statistics are unknown, one can employ simple LS based estimation.

In the absence of correlation, we can let the inverse of channel correlation matrix

go to zero, i.e., R−1
tap → 0, thereby ignoring the channel statistics. Therefore, the
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localized LS solution from (4.7) is

ĥls
r =

(
AHR−1

w A
)−1

AHR−1
w Yr , (4.13)

and the resulting MSE is given by

mselsr = trace
(
AHR−1

w A
)−1

. (4.14)

In this case, the overall MSE simplifies to

MSE(LS) =
R∑

r=1

mselsr =
RL

ρK
. (4.15)

From (4.15) and (4.9), it is obvious that LS has poor performance in comparison

with the LMMSE as it does not utilize the channel statistics. It is for this reason

that the centralized LS (C-LS) solution would achieve the same MSE performance

as the localized one as shown below.

MSE(C−LS) = trace
(
(IR ⊗A)H (IR ⊗Rw)

−1 (IR ⊗A)
)−1

= trace
(
IR ⊗AHR−1

w A
)−1

,

=
R∑

r=1

trace
(
AHR−1

w A
)−1

= MSE(LS) ,
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where we have used the Kronecker product identities, (A⊗B)(C⊗D)=AC⊗BD

and (A⊗B)−1=A−1 ⊗B−1.

In short, the L-LMMSE estimation has the advantage of low complexity (and

better performance than LS) but it is unable to exploit the strong spatial corre-

lation among array elements. On the other hand, O-LMMSE exploits the spa-

tial correlations but at a significantly higher computational cost. This motivates

us to propose a method that can overcome the shortcomings of aforementioned

techniques without affecting the estimation quality. Specifically, we propose a dis-

tributed estimation of CIRs based on antenna coordination that attains near op-

timal performance with tractable complexity. The proposed distributed LMMSE

estimation is described next and is further extended in Section 4.4 via a data-aided

technique.

4.3 The Proposed Distributed LMMSE Estima-

tion

It is well known from equivalence results in linear estimation theory [73] that

the O-LMMSE solution (4.10) could be obtained by solving an RL dimensional

optimization problem

argmin
h

‖Y −A′h‖2R−1
w

+ ‖h‖2R−1
h
, (4.16)
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where all the variables are defined as before. Instead of solving (4.16) globally, we

aim to solve it in a distributed manner over R antennas in which the rth antenna

has access to Yr only. Moreover, the antenna r is interested only in determining

its own CIR (i.e., hr) without worrying about other hj's. Here, we would like

to mention that this problem is fundamentally different from those considered in

the context of adaptive networks (see [74] and references therein). In particular,

most of the existing distributed estimation techniques in adaptive networks deal

with single task problems devoted to estimating a single common parameter of

interest and rely on full cooperation between the nodes, i.e., exchanging both the

estimates and the observations. Our proposed solution, the distributed LMMSE

(D-LMMSE) algorithm, as will become clear, is much simpler in that it exploits

the structure of spatial correlation matrix Ra and relies only on exchanging the

(partial) weighted estimates of CIRs with immediate neighbors, thus significantly

reducing the communication and computational cost. The working principle of

the proposed D-LMMSE algorithm is depicted in Fig. 4.2 which is composed of

three main steps namely, estimation, sharing and updating, as explained below.

Estimation

In the estimation step, each antenna acting as a center antenna rC , estimates not

only its own CIR but also the CIRs of its neighborhood. The neighborhood of rC

consists of 4-direct neighbors represented by the set N={rL, rR, rU , rD}1 on the

left, right, top and bottom positions respectively as shown in Fig. 4.3(a). Now, let

the corresponding channel vectors be represented by hC , hL, hR, hU and hD, re-
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Figure 4.2: The working principle of D-LMMSE Algorithm

spectively, and let hc represent |N+|L×1 dimensional composite channel vector of

the central antenna and its |N | direct neighbors (i.e., hc=
[
hT
C ,h

T
L,h

T
R,h

T
U ,h

T
D

]T
).

During the estimation, each antenna acting as a central element computes the

estimate of hc by solving a reduced dimensional weighted least squares (WLS)

optimization problem

ĥc = argmin
hc

‖YC(P)−A(P)hC‖2R−1
w

+ ‖hc‖2R−1
hc
, (4.17)

where YC(P) represents pilot observations at the central element, Rhc is chan-

nel correlation matrix defined as Rhc � E{hc(hc)H}, which is the subset of full

correlation matrix Rh and Rw=σ
2
wIK is the noise covariance matrix at the cen-

tral element. From (4.17) it is clear that information is processed locally at each

antenna as each antenna uses only its own observations and interacts with its

neighborhood only through Rhc . The solution to the above WLS minimization

problem can be obtained by first re-writing (4.17) explicitly in terms of hc as
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follows

ĥc = argmin
hc

∥∥Ȳ − Āhc
∥∥2
R−1

w
+ ‖hc‖2R−1

hc
, (4.18)

where Ȳ=YC(P) and Ā=

[
A(P) 0K×L|N |

]
. Then, by invoking the equivalence

between LMMSE and WLS estimation problems we obtain,

ĥc =
(
R−1

hc + ĀHR−1
w Ā

)−1
ĀHR−1

w Ȳ . (4.19)

Now ĥc can be re-written as ĥc = (Pc)−1ĥc
w, where

Pc = R−1
hc + ĀHR−1

w Ā, (4.20)

corresponds to the inverse error covariance matrix and ĥc
w represents the weighted

estimate given by

ĥ
c

w = Pcĥ
c
= ĀHR−1

w Ȳ . (4.21)

Above weighting by inverse error covariance matrix asserts that we put more con-

fidence into the estimates which are more reliable and vice versa. After computing

P matrix and the weighted estimate ĥ
c

w, each antenna is ready to move to the

sharing step.

Sharing

The sharing step is the key to the proposed distributed algorithm where the

information is shared through collaboration between antennas. Let us define the
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(b) An example of a 3 × 4 antenna array
where the neighboring antennas (indices 4
and 2) share the selected estimates (high-
lighted) with the central antenna (index 1).

Figure 4.3: Details of (a) Information diffusion process and (b) Information shar-
ing process.

sub-vector ĥwj of the composite vector ĥ
k

w as the (weighted) CIR estimate of

antenna j computed by the antenna k. In sharing step, the antenna k would

share only the selected components; its own (weighted) estimate ĥwk and the

(weighted) estimate ĥwj with element j ∈ N . Henceforth, the shared vectors

will be termed as partial vectors and represented by an underline notation. An

example of how this sharing takes place is also depicted in Fig. 4.3(b) for a 3× 4

array with central element rC=1 having only two neighbors; N={rR=4, rD=2}.

As shown, each of the neighboring element shares only two sub-vectors (i.e., partial

information) with the central antenna. The collaboration between the rest of the
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elements takes place in similar fashion.

As a result of information sharing, each antenna acting as a central node rC

receives |N | partial vectors, ĥj

w, j ∈ N , from its neighbors, each of dimension

|N+|L × 1 and having only two non-zero components; ĥwj and ĥwc. For the

example in Fig. 4.3(b), the composite vector of the central node and the partial

vectors received from its neighbors are given as follows,

ĥ1
w =

⎡⎢⎢⎢⎢⎢⎢⎣
ĥw1

ĥw4

ĥw2

⎤⎥⎥⎥⎥⎥⎥⎦ , ĥ
4

w =

⎡⎢⎢⎢⎢⎢⎢⎣
ĥw1

ĥw4

0

⎤⎥⎥⎥⎥⎥⎥⎦ and ĥ
2

w =

⎡⎢⎢⎢⎢⎢⎢⎣
ĥw1

0

ĥw2

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.22)

Note that the estimates which are not shared are assigned as null vectors.

Update

Upon receiving the (partial) LMMSE estimates from the neighboring elements,

each antenna acting as the central element updates its estimate and error covari-

ance matrix. The update rule is summarized in the following Lemma [73]

Lemma 4.1 Let y1 and y2 be two separate observations of a zero mean random

vector h, such that y1=A1h+w1 and y2=A2h+w2, where we assume that h is

uncorrelated with both w1 and w2. Let ĥ1 and ĥ2 denote the LMMSE estimates

of h and C1 and C2 be the corresponding error covariance matrices in two exper-

iments. Then, the optimal LMMSE estimator and the error covariance matrix of
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h given both the observations are,

C−1ĥ = C−1
1 ĥ1 +C−1

2 ĥ2 , (4.23)

and

C−1 = C−1
1 +C−1

2 +R−1
h −R−1

1 −R−1
2 , (4.24)

where Rh=E{hhH} and R1 and R2 are covariance matrices of h in the two ex-

periments.

Proof. See [73].

The aforementioned Lemma suggests an optimal way of combining the individ-

ual estimates and can be easily extended to more than two observations. We use

this Lemma at each antenna to improve the initial channel estimate by combining

it with the estimates computed and shared by |N | neighbors. Consequently, by

treating each antenna as a central element rC , the update equations are given by,

ĥc(i)
w = ĥc(i−1)

w +
∑
j∈N

ĥ
j(i−1)

w , (4.25)

and

Pc(i) = Pc(i−1) +
∑
j∈N

(
Pj(i−1) −R−1

hj

)
, (4.26)

respectively, where Pj and Rhj represent the partial (inverse) error covariance

and correlation matrices associated with the partial estimates ĥ
j

w and i represents

the iteration index.
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The recursions in the update equations are initialized by (4.21) and (4.20),

respectively, which are available after the estimation step. In the subsequent

iterations, each antenna would also require the partial matrices, Pj's and Rhj 's,

for each of its |N | neighbors. Fortunately, they can be obtained from Pc and

Rhc , respectively (which are available at the central antenna) by exploiting the

symmetrical structure of Ra. Thus, there is no need to share them across the

neighboring elements, that in turn saves a significant amount of communication

burden. Specifically, the matricesRhc and Pc exhibit the following two properties:

Property 1: The matrix Rhc is identical for all elements in the neighborhood of

rC i.e., Rhc=Rhj , ∀j ∈ N

Property 2: The matrix Pc is identical for all elements in the neighborhood of rC

i.e., Pc=Pj, ∀j ∈ N

Property 1 is due to symmetric nature of the spatial correlation matrix Ra which

implies that the spatial correlation between any two antennas placed equidistant

apart, is the same. Therefore, it is not difficult to see that property 1 holds exactly

under the Kronecker model and our earlier assumption of identical tap correlation

across the antenna array in Section 4.1. Property 2 is the consequence of property

1 when incorporated into (4.20). Note that these properties are generally satisfied

as the spatial correlation matrix is generally symmetric, if not, then antennas can

share these matrices as well.
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Hence, to obtain the patrial correlation matrices, Rhj , j ∈ N , we first set

Rhj=Rhc and then modify the off-diagonal block entries corresponding to the null

vectors of partial estimates as Rij=0 if any ĥwi, ĥwj=0 and the diagonal block

entries as Rii=IL if ĥwi=0, where the subscript ij denotes the (i, j)th block.

The matrices Pj's are obtained similarly except that the diagonal block entry

corresponding to null vectors is replaced by aI where 0 < a � 1 is a small

positive number, which indicates very low weight or confidence in the estimates

that are not shared. In essence, the central element has the full information

needed to construct Pj's and Rhj 's. For the example in Fig. 4.3(b), the partial

correlation and error covariance matrices associated with estimates in (4.22) are

given in (4.27) and (4.28), respectively. Based on above steps and procedures, the

proposed D-LMMSE algorithm is summarized in Algorithm 4.1.

Rh1=

⎡⎢⎢⎢⎢⎢⎢⎣
R11 R14 R12

R41 R44 R42

R21 R24 R22

⎤⎥⎥⎥⎥⎥⎥⎦ ,Rh4=

⎡⎢⎢⎢⎢⎢⎢⎣
R44 R41 0

R14 R11 0

0 0 IL

⎤⎥⎥⎥⎥⎥⎥⎦ and Rh2 =

⎡⎢⎢⎢⎢⎢⎢⎣
R22 0 R21

0 IL 0

R12 0 R11

⎤⎥⎥⎥⎥⎥⎥⎦
(4.27)

P1=

⎡⎢⎢⎢⎢⎢⎢⎣
P11 P14 P12

P41 P44 P42

P21 P24 P22

⎤⎥⎥⎥⎥⎥⎥⎦ , P
4=

⎡⎢⎢⎢⎢⎢⎢⎣
P44 P41 0

P14 P11 0

0 0 aI

⎤⎥⎥⎥⎥⎥⎥⎦ and P2 =

⎡⎢⎢⎢⎢⎢⎢⎣
P22 0 P21

0 aI 0

P12 0 P11

⎤⎥⎥⎥⎥⎥⎥⎦ (4.28)

Remarks:
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Algorithm 4.1 Distributive LMMSE (D-LMMSE) algorithm

1. (Estimation) Each antenna acting as a central element rC computes ĥ
c

w

and Pc by using (4.21) and (4.20) respectively.

2. (Sharing) Each antenna acting as a central element rC shares partial esti-

mates, ĥ
c

w with its |N | neighbors as described in Section 4.3.

3. (Pre-processing) Using Rhc , Pc from step 1 and the received (partial)

information {ĥj

w}|N |
j=1 in step 2, each antenna, acting as a central element rC ,

constructs {R−1
hj }, {Pj}, j ∈ N .

4. (Update) Each antenna acting as a central element rC , updates its weighted
estimate and error covariance using (4.25) and (4.26) respectively.

5. (Iterate) Repeat steps 2-4 D times, where D is the maximum number of
iterations.

6. (Output) Compute ĥ
c
=(Pc)−1ĥ

c

w and output the estimated CIR ĥC .

1. Information sharing and update take place during each iteration of the al-

gorithm such that after few iterations the information diffuses swiftly across

the whole array resulting in fast convergence. This concept of sharing is

depicted in Fig. 4.3(a).

2. The repetitive sharing enables each antenna in the array to utilize the ob-

servations from distant elements, thereby improving its estimate in each

iteration till it converges to near optimal solution.

3. As opposed to the centralized processing, the proposed sharing step is more

convenient and computationally more efficient as all antennas do not com-

municate with each other. The collaboration takes place only among the

neighboring antennas. Therefore, the complexity of proposed algorithm is

significantly less than the centralized approach.
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4. Note that the antennas share only the partial information because only se-

lected vectors are transmitted to the neighbors which save significant amount

of communication. Also, the estimation step and repetitive sharing and up-

date steps require simple linear block processing and have a fixed size data

structure which is well suited for real implementations. In contrast, the

memory and processing requirements for the centralized approach are even

more challenging with large array dimensions.

4.3.1 Complexity Analysis

In Table 4.1, we compare the computational complexity of proposed D-LMMSE

algorithm with LS, L-LMMSE and the centralized O-LMMSE algorithm in terms

of multiply and add operations. The figures indicate that complexity of proposed

algorithm is slightly higher than L-LMMSE but is significantly less than the cen-

tralized approach. It is also worth mentioning here that, the P matrices in (4.20)

can be computed off-line and in parallel at all antennas as they do not depend

on observations. Moreover, the computation of weighted estimates in (4.21) does

not involve any matrix inversion. Further, the update in (4.25) requires simple

addition during each step of iteration, while (4.26) needs one time computations

of inversions R−1
hj as they do not depend on iteration index. Finally, the com-

putation of inverse,(Pc)−1 is required but only after the convergence when each

antenna outputs its final estimate.
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Table 4.1: Computational Complexity

Algorithm Multiplications (×) Additions (+) Complexity

LS RK(L+ 1) R(KL− 1) O(RLK)

L-LMMSE R
[
2L3+L2+K(L+1)

]
RL[L+K−1] O(RL3)

O-LMMSE
R
[
(L3+1)R2+RL(L +

K)+K
]
+L3 R2LK O(R3L3)

D-LMMSE
R
[
(53+1)L3+2(5L)2 +

L(K+1) + 53
] R[D(5L)3+(5L)2+

L(K−1)−D]
O(RL3)

Choice of Parameter D

The choice of parameter D i.e., the maximum number of required iterations,

has a great influence on computational complexity and convergence of D-LMMSE

algorithm. A trivial choice forD is that it can be set to the largest dimension of the

array i.e., D=max(M,G), which ensures that each antenna receives information

from every other antenna in the array. However, such a high value of D is very

inefficient from the computational complexity point of view, particularly when

the array dimensions are large. A simple loose upper bound on D can be derived

by noting that total number of antennas sharing information in D iterations are

2D(D + 1) + 1. Hence, we should have 2D(D + 1) + 1 ≤ R which leads to

D ≤
√
R

2
− 1

4
− 1

2
. (4.29)

It must be emphasised here, that the actual value of D also depends on the spatial

correlations among antennas. Specifically, if the antennas are not very strongly

correlated, then we might not gain from sharing and a small number of iterations

might be sufficient.
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4.3.2 Linkage Between Localized and Centralized Solu-

tions

Our distributed LMMSE approach can be seen as a hybrid of the localized (L-

LMMSE) and the centralized (O-LMMSE) estimation approaches. Specifically,

we derive the linkage between L-LMMSE and O-LMMSE solutions to justify our

estimation and collaboration approach as a viable strategy. To this end, we take

a closer look into the optimal LMMSE solution by decomposing (4.10) as follows

ĥ =
(
R−1

h + ÁHR−1
w Á

)−1

ÁHR−1
w Y

=
[
(Ra⊗Rtap)

−1 +(IR⊗A)H (IR⊗Rw)
−1 (IR⊗A)

]−1

(IR⊗A)H (IR⊗Rw)
−1 Y

=
[
R−1

a ⊗R−1
tap + IR⊗(AHR−1

w A)
]−1 [

IR⊗(AHR−1
w )
]Y (4.30)

For simplicity we assume that Rtap = IL and after introducing the matrix

IR⊗
(
IL+AHR−1

w A
)
and its inverse between brackets [.]−1[.] of (4.30), we get

ĥ(opt)=
[
R−1

a ⊗ IL + IR ⊗ (AHR−1
w A)

]−1[
IR ⊗ (IL +AHR−1

w A
)]
ĥ
(L)

=
[
R−1

a ⊗IL + IR⊗(Kρ)IL
]−1[

IR⊗(IL +KρIL)
]
ĥ
(L)

=
[(
R−1

a +KρIR
)−1 ⊗IL

][
(1 +Kρ)IR ⊗ IL

]
ĥ
(L)

=
[(
R−1

a +KρIR
)−1

(1 +Kρ)⊗ IL

]
ĥ
(L)

(4.31)
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To get further insight, we use the EVD Ra = VSVH, where S is diagonal matrix

of eigenvalues {ηi}, to obtain

ĥ =
[
V
(
S−1 +KρIR

)−1
(1 +Kρ)VH ⊗ IL

]
ĥ
(L)

=
[
VΔVH ⊗ IL

]
ĥ
(L)

(4.32)

where Δ = (S−1+KρIR)
−1

(1+Kρ) is a diagonal matrix with entries, ηi(1 +

Kρ)/(1 + Kρηi), i=1, · · · , R. Relation in (4.32) provides a linkage between L-

LMMSE and O-LMMSE solutions and suggests that collaboration among anten-

nas (through sharing the local estimates) is necessary to get the optimal solution

which is the key step of our distributed strategy. Moreover, the level of col-

laboration depends on the spatial correlation values. Specifically, in case of no

correlation, i.e., ηi=1, ∀i, there would be no advantage of collaboration and the

optimal solution would converge to the localized one.

4.4 Data-Aided D-LMMSE Estimation

The basic idea of data-aided channel estimation is to exploit the decoded data-

carriers in order to improve the initial channel estimates obtained using pilots. It

is possible that some of the data-carriers are erroneous due to noise and channel

estimation errors, while some of the other data-carriers are reliable i.e., they are

likely to be decoded correctly. An important problem is how to down-select a

subset of the most reliable data-carriers to be used as data-pilots. For this purpose,
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we shall use the same idea presented earlier in Section 3.5. The working principle

of the proposed Data-Aided D-LMMSE (DAD-LMMSE) algorithm is described

in Fig. 4.4 which is essentially the same as D-LMMSE with two additional steps

tailored to improving initial channel estimates by selecting the most reliable data-

carriers as explained next.

4.4.1 Reliable Carriers Selection

Consider the received OFDM symbol at any antenna as shown in (4.4), and let ĥ

and Ĥ �
√
NFĥr be the CIR and CFR estimates obtained using pilots. Then,

the tentative estimates of the data symbols are obtained by equalizing the received

OFDM symbol using zero-forcing (ZF) as follows

X̂ (k) =
Y(k)

Ĥ(k)
, k ∈ {1, 2, · · · , N} \ P

≈ X (k) +
W(k)

Ĥ(k)
= X (k) +Z(k), (4.33)

where Z(k) represents the distortion on k-th data-carrier due to noise and channel

estimation error. Given the CFR estimate, Z(k) can be modelled as Gaussian

with zero mean and variance σ2
z=Ĥ(k)−2σ2

w. The recovery of data symbols is

then performed by simple hard decisions on estimated symbols X̂ (k) denoted by

〈X̂ (k)〉. Clearly, the errors in the decoding process occur due to both noise and

inaccurate channel estimates. Hence, some data-carriers would be severely effected

by these distortions and fall outside their correct decision regions. All those data
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Figure 4.4: The working principle of DAD-LMMSE Algorithm

carriers X̂ (k) which satisfy the condition 〈X̂ (k)〉=X (k) with high probability, are

termed reliable carriers.

The proposed strategy for selecting the subset R ⊂ N \P of the most reliable

data-carriers is based on the criteria [70]

R(k)=
fz

(
Z(k)=X (k)− 〈 ˆX (k)〉

)
∑|Ω|

m=1,Ωm �=〈 ˆX(k)〉 fz (Z(k)=X (k)− Ωm)
, (4.34)

where fz(.) is the pdf of Z(k) and {Ωm} represents the set of constellation al-
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phabets. Note that the numerator in (4.34) is the probability that X (k) will be

decoded correctly while the denominator sums the probabilities of all possible in-

correct decisions due to distortion Z(k). The subset R is formed by selecting only

those data-carriers for which R(k) > 1, i.e.,

R = {k | R(k) > 1} . (4.35)

4.4.2 Revisiting the Estimation Step

We now revisit the estimation step of the proposed Algorithm 4.1 using both the

pilots and reliable carriers in order to enhance the initial estimates. Let Rr be the

set of indices of reliable data carriers for antenna r. Each antenna could revisit

the estimation step by solving (4.17) using an extended set of indices, P ∪ Rr

corresponding to pilots and reliable data carriers. However, since the pilots have

already been utilized to obtain an estimate ĥ
r
of CIR, we simply need to update

this estimate based on reliable data. Thus, using the block form of RLS [62], we

can write

ĥ
r

d = ĥ
r
+Cr

eĀ
H
dG
(
Ȳd − Ādĥ

r
)
, (4.36)

where the gain matrix G is defined as

G =
(
Rw + ĀdC

r
eĀ

H
d

)−1
. (4.37)
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and the corresponding error covariance matrix is evaluated as

Cr
ed = Cr

e −Cr
eĀ

H
dGĀd . (4.38)

Here Ȳd = Yr (P ∪ Rr) is an extended set of observations and

Ād=

[
A(P ∪Rr) 0|P∪Rr|×|N |L

]
is the extended data matrix. The data-aided

approach is described in Algorithm 4.2.

Algorithm 4.2 Data-aided Distributed LMMSE (DAD-LMMSE) Algorithm

1. Each antenna acting as a central element rC computes ĥ
c
and Cr

e by using
(4.19) and (4.20) respectively.

2. Each antenna uses its CIR estimate, ĥ
r
to form the subset Rr of the most

reliable data-carriers.

3. Update the estimates and error covariance in step (1) using (4.36)-(4.38).

4. Run steps (2)-(6) of Algorithm 4.1, with Pr=(Cr
e)

−1 and ĥ
r

w=Prĥ
r
.

4.5 Simulation Results

We adopt the channel model in (4.1) with spatial correlation matrix given in

(4.3) whose parameters are: φ=π/3 (mean horizontal AoD in radians), θ=3π/8

(mean vertical AoD in radians), σ=π/12 (standard deviation of horizontal AoD)

and ξ=π/36 (standard deviation of vertical AoD). The channel tap correlation

matrix follows an exponentially decaying PDP, E{|hr(τ)|2}=e−τ , while rest of

the parameters are given in Table 4.2, where ν represents the carrier frequency

wavelength in meters. It is also assumed that receiver has the knowledge of channel
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correlations.

To assess the performance of different algorithms we use the following MSE

performance criterion:

MSE =
1

Θ

Θ∑
i=1

‖hi − ĥi‖2 (4.39)

where hi and ĥi are true and estimated CIR vectors in the ith trial respectively,

each of size RL× 1 and Θ represents the total number of trials. We used Θ=100

in our simulations.

We conduct different experiments to study the performance of our proposed

distributed approach and compare it with the three methods i.e., LS, L-LMMSE

and O-LMMSE described earlier in Section 4.2.

How Many Iterations (D)?

In this experiment we are interested in finding the number of iterations, required

for convergence of the proposed distributed LMMSE algorithm. We plot the

MSE of proposed D-LMMSE algorithm (red curve) against the parameter D (i.e.,

number of iterations) in Fig. 4.5(a). The SNR was fixed at 0 dB. The MSE values

of other algorithms, which do not depend on parameter D, are also shown. It can

be seen that the proposed algorithm converges very closely to the optimal in 3

iterations. Note that, when the antennas do not collaborate (i.e., D=0), the MSE

of distributed algorithm coincides with that of L-LMMSE because no information

sharing takes place. As the information from neighbors comes in during the next

few iterations, the MSE decays exponentially until it converges to near optimal
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Table 4.2: Simulation Parameters

Parameter Value

Array Size (M ×G) 10 ×10

Array element spacing dx, dy 0.3ν, 0.5ν

Number of OFDM sub-carriers (N) 256

Number of pilots (K) 32

Signal constellation modulation 4/16/64 – QAM

Channel length (L) 8

solution. Fig. 4.5(b) also suggests that there would be hardly any improvement

in MSE for D > 3.

The impact of antenna correlation on convergence is depicted in Fig. 4.6, where

we plot MSEs with different antenna spacings. It is evident that as the correlation

gets larger (i.e., element spacing decreases) the number of iterations required for

convergence gets closer to the bound in (4.29) depicted by vertical dashed blue

line. In case of weak correlation, the collaboration may not be beneficial and the

algorithm requires less number of iterations for convergence.

MSE Performance in AWGN

In this experiment, we compare the MSE performance of proposed distributed

algorithms with various algorithms in the presence of AWGN using the parameters

in Table 4.2. The results given in Fig. 4.7, show that O-LMMSE performs better

than both LS and L-LMMSE in terms of MSE as it is able to utilize the antenna

spatial correlations. As shown, the proposed D-LMMSE algorithm (Algorithm

4.1) achieves near optimal results in just 3 iterations. It is obvious that data-
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aided approach has the best performance compared to all others and that the

effect of using reliable carriers is more pronounced at higher SNR. The analytical

MSE expressions given in Section 4.2, for LS, L-LMMSE and O-LMMSE under

AWGN are also plotted with legends (Th.), which agree with simulation results.

Fig. 4.8 demonstrates the MSE behaviour of different algorithms with varying

number of pilots K at SNR of 20 dB. As is shown, increasing the pilot tones yields

better estimation performance but this comes at the cost of lower spectral effi-

ciency. The data-aided algorithm however, is able to achieve the best performance

even for a small number of pilot observations.

Computational Complexity

Finally we compare the average runtime of various algorithms that can be regarded

as a measure of computational complexity. Fig. 4.9 shows the average runtime

with increasing number of BS antennas under the default simulation parameters

of Table 4.2. It is clear that computational requirements for proposed D-LMMSE

algorithm, with different values of parameter D, grow at much slower pace than

that of the O-LMMSE algorithm as the number of BS antenna increases. Further,

in terms of memory requirements and communication overhead (not shown here),

the advantages of D-LMMSE are even more tangible.
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4.6 Concluding Remarks

Channel estimation is a challenging problem in massive MIMO systems as the con-

ventional techniques applicable to MIMO systems cannot be employed owing to an

exceptionally large number of unknown channel coefficients. We proposed a dis-

tributed algorithm where, each antenna estimates its own CIR but in a collabora-

tive manner by sharing information with the neighbors. As a result, the proposed

algorithm attains near optimal solution at a significantly reduced complexity than

the centralized strategy. To reduce the pilots overhead, the distributed LMMSE

algorithm is extended using data-aided estimation based on reliable carriers.
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Figure 4.5: Number of iterations (D) required for convergence of the proposed
distributed algorithm
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Figure 4.6: Effect of spatial correlation on convergence of the proposed distributed
algorithm.
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Figure 4.7: MSE performance comparison of different algorithms.
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CHAPTER 5

EFFECT OF PILOT

CONTAMINATION ON

CHANNEL ESTIMATION

In Chapter 4 we assumed a single-cell scenario where all the users are allocated

orthogonal resources for channel estimation, thus the pilot observations were cor-

rupted only by AWGN. In multi-cell environment, the pilot contamination due to

aggressive reuse of the pilots across different cells, has severe impact on channel es-

timation performance. In fact, it was shown in [75] that the effect of uncorrelated

interference and fast Rayleigh fading diminishes as the number of BS antennas

increase while the effect of pilot contamination is not eliminated. This Chapter is

exclusively devoted to investigating the effect of pilot contamination on channel

estimation performance. The effect of pilot contamination on system performance

has been analysed by many researches [54, 55], but only few studies have analysed
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its impact on channel estimation performance [47]. Moreover, in these works, the

analysis is carried out for fixed locations of (interference) users. As such, the ex-

isting studies cannot analytically answer how the randomness of user's locations

would effect MSE performance under pilot contamination. In contrast, we ap-

proach the problem by using concepts from the stochastic geometry. By assuming

that interfering users are distributed according to a homogeneous poisson point

process (PPP), we obtain an analytical expression for the interference variance

(or power) across OFDM frequency tones and use it to derive MSE expressions

for LS and LMMSE based channel estimation algorithms under both noise and

pilot contaminated regimes. Analytical expressions are validated by simulations.

5.1 Pilot Contamination and Implications

An important characteristic of the wireless channel, as already pointed out in

Section 1.2, is its finite coherence interval, i.e., the number of time-frequency

resources over which the channel can be assumed to be approximately constant

(or static) is finite. Therefore, channel estimates obtained via pilots are valid only

within this interval, after which the channel must be estimated again. Moreover,

considering the preferred TDD mode in massive MIMO, the number of mutually

orthogonal pilot sequences are limited by this coherence interval.

The increasing number of users in massive MIMO will quickly exhaust the

availability of orthogonal pilot sequences, especially when the coherence interval

is short. This means that only the users within a particular cell can be assigned or-
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thogonal pilot sequences to avoid intra-cell interference and pilots must be reused

across different cells. The consequence of pilot reuse leads to inter-cell interfer-

ence or pilot contamination, resulting in impairments of channel estimates during

uplink as depicted in Fig. 5.1(a). The worst case pilot contamination occurs when

the same set of orthogonal pilot sequences are used in each cell.

Since the interference takes place only with the users sharing the same pilots,

we assume single user in each cell without loss of generality and that each user is

transmitting identical pilots which represents the worst case scenario from pilot

contamination point of view. Let us assume that cell i is of interest and all other

cells
{
j
}J
j=1,j �=i

are interfering cells as depicted in Fig. 5.1(a) for J = 2. The

received OFDM symbol at antenna r of i-th BS, after omitting the index P for

convenience, can be written as,

Yr = Ahr,i +
J∑

j=1,j �=i

βjAhr,j︸ ︷︷ ︸
Pilot contamination

+Wr (5.1)

which is the pilot contaminated version of (4.5) and where hr,j is the channel vector

from user (or cell) j to the antenna r of i-th BS and the scaling factor βj represents

the path-loss and shadow fading coefficient for cell j where 0 ≤ βj ≤ 1, ∀j 
= i.

Thus βj = 0 corresponds to no interference and βj = 1 represents the strongest

interference from user j. From (5.1) we observe that pilot observations received

at the BS are adversely affected due to pilot contamination. In the conventional

approaches, such as [47], the effect of pilot contamination and noise is analysed
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(a) Uplink pilot transmission
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(b) Downlink data transmission using precoding

Figure 5.1: Effect of pilot contamination due to reuse of pilots, on the uplink and
downlink data transmissions.
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by computing the correlation of interference term, which is zero-mean complex

Gaussian random vector. In contrast, we will use a different approach based

on stochastic geometry for the analysis of pilot contamination in the next two

Sections.

Besides the uplink, pilot contamination has also severe implications in the

downlink transmission when the BS performs precoding, such as maximum ratio

transmission (MRT) or conjugate beamforming, to focus the signal energy towards

intended users. Due to contaminated channel estimates, some of the transmission

power will leak to other cell's users, causing interference with those users, as

well as power attenuation towards the desired users. Thus the effect of pilot

contamination on downlink is two-fold; power loss and interference, as depicted

in Fig. 5.1(b).

5.2 Mathematical Preliminaries

In this Section we provide brief mathematical preliminaries and important results

which are used in the analysis presented in this Chapter.

5.2.1 Point Processes

A point refers to a simple geometric object in some Euclidean space R
d. A point

process is the random collection of the points in Euclidean space that can be

represented by set Ψ = {ψ1, ψ2, ψ3, · · · · · · } ⊂ R
d with random points ψi. The

point process in 1D (i.e., d = 1) is useful to model events occurring at random
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time instants, for example arrivals of calls or customers. The point processes in

real 2D (or 3D) space, called spatial point processes, are useful to model random

patterns or locations of location of users in wireless and/or cellular networks.

5.2.2 Poisson Point Process (PPP)

A simple but an important type of point process is the poisson point process

(PPP). Due to its simplicity and tractability, the PPP has been widely used in

stochastic geometry for modelling of interference in cellular networks [76, 77, 78,

79]. A spatial PPP is a point process with intensity λ > 0, that satisfies the

following two conditions:

1. If B ⊂ R
d, then the number of points in B, denoted by N(B), has poisson

distribution with mean μ(B).

2. If B1,B2, · · · ,Bm are disjoint regions in R
d, then N(B1),N(B2), · · · ,N(Bm)

are independent random variables.

Thus for the poisson process we can write,

P {N(B) = k} =
μ(B)k
k!

e−μ(B) (5.2)

where,

μ(B) =
∫
B
λ(x)dx (5.3)

= λA(B) . (5.4)
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Eq. (5.4) is a special case of (5.3) for a homogeneous PPP where λ is uniform.

Here A(B) denotes the Lebesgue measure of the subset B, for example in 2D

space, it is the area of region B. A homogeneous PPP is stationary and isotropic

i.e., it is invariant to translation and rotation.

Next, we state one of the most important Theorem with regard to PPP, that

will be used later in the Chapter, to derive statistics of the interference. This

Theorem is known as Campbell’s Theorem [80].

Theorem 5.1 (Campbell's Theorem) Let Ψ be a Poisson Point Process on

R
d with intensity λ and let f : Rd → R

+ be a non-negative measurable function.

Then the random sum

S =
∑
x∈Ψ

f(x), (5.5)

is a random variable with

E

{∑
x∈Ψ

f(x)

}
=

∫
Rd

f(x)λ(x)dx (5.6)

Proof. See [80].

5.3 Modified Network Model

To characterise inter-cell interference resulting from pilot contamination, we mod-

ify our previous 2D network model of Fig. 4.1(a) (and also Fig. 5.1(a)) by intro-

ducing interferes that are assumed to be distributed according to PPP. Specifically,

without loss of generality, we assume a single user in a reference cell of radius γo,
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communicating with the BS located at the origin O in a 2-D plane. The inter-

fering users (outside radius γo) are distributed over a circular region of radius γm

according to a homogenous PP, denoted by Ψ and having intensity λ. The inter-

fering space is thus an annular region with radii γo and γm, where the distance

of i-th interferer from BS satisfies γo < γi < γm. Fig. 5.2 shows a realization

of interferes distributed according to homogeneous PP of λ=0.1 with γo=2m and

γm=5m.

5.4 Interference Characterization

The knowledge of the interference statistics is critical in studying the effect of

pilot contamination on channel estimation. It is assumed that during uplink pi-

lot transmission for channel estimation in massive MIMO-OFDM, all users (i.e.,

the desired user in the reference cell and the interfering users) communicate with

the BS by using identical pilots, which is the worst case scenario from pilot con-

tamination point of view. Since each OFDM subcarrier acts as an independent

narrow-band channel, it is enough to characterize the interference at a single

OFDM tone. This makes the analysis quite simple and tractable. Thus, consider

the complex received interference at any given sub-carrier (at the BS antenna r)

due to all interfering users, which can be represented as [81]

I =
∑
i∈Ψ

√
Exxihi (5.7)
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Interferers

Base Station

γo

γm

Figure 5.2: Realization of interferes distributed according to PPP of λ=0.3, γo=2m
and γm=5m with BS at the origin.

where, xi=aiexp{jθi} is the interfering symbol, hi=γ
−b
i αiexp{jφi} is the inter-

fering channel, where b > 1 is the pathloss exponent, αi is an independent

Rayleigh distributed random variable with ζ=E{α2
i }=1 and φi is independent

random variable that is uniformly distributed over [0, 2π). The symbols xi are

generated from a general bi-dimensional constellation with |Ω| equiprobable sym-

bols Ωm=a
(m)exp{jθ(m)}, m=1, 2, · · · , |Ω|. We assume that all interfering users

transmit with the same average energy per symbol Ex and that the transmission

constellation is normalized so that E{|xi|2}=1. Therefore, (5.7) can be written as

I=
∑

i∈Ψ\O

√
Exaiαiexp{j(θi + φi)}

γbi
=
∑

i∈Ψ\O

√
Exzi
γbi

(5.8)
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where, zi = aiαiexp{j(θi + φi)} are independent spherically symmetric (SS) ran-

dom variables.

For LS/LMMSE based channel estimation, we need mean and variance of

interference I, which are given in the following Lemma.

Lemma 5.1 Using the network model in Section 5.3, the mean and variance of

interference I are given by,

μI = E{I} = 0 (5.9)

and

σ2
I = E{|I|2} = πλ(b− 1)−1

E{|x|2}Exζ

(
1

γ2b−2
o

− 1

γ2b−2
m

)
(5.10)

respectively.

Proof. See Appendix A.1.

Although (5.10) is derived by considering that the interference space is annular,

it can be extended for an infinite interference space by taking the limit as γm → ∞

yielding

σ2
I = πλγ2o(b− 1)−1

E{|x|2}
(
Exζ

γb−1
o

)
. (5.11)

5.5 Effect of PC on MSE Performance

The knowledge of interference statistics at single OFDM frequency tone enables

us to evaluate the aggregate interference correlation over all OFDM tones and/or
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across the entire BS antenna array using known channel statistics. It is assumed

that all the users have similar channel characteristics as described in Section 4.1.

Thus, consider the received OFDM symbol at rth BS antenna, after omitting the

index P

Yr = Ahr + Ir +Wr

= Ahr + Er (5.12)

where, Ir is the interference due to pilot contamination and Er is the combined

interference term due to both pilot contamination and noise. The correlation

matrix of interference Er is given by

REr = RIr+Rw (5.13)

= σ2
IARtapA

H + σ2
wIK (5.14)

where (5.13) follows due to independence of interferences due to PC and AWGN,

and (5.14) is based on the assumption that all user channels have identical correla-

tions (as in Section 4.1) and use the same pilots, and Rw=σ
2
wIK is noise covariance

matrix.

Similarly, in the multi-antenna case, based on system model of (4.6), the in-
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terference correlation matrix for the entire BS array can be obtained by

RE = RI +Rw

= σ2
IÁRhÁ

H + σ2
wIRK (5.15)

where Á = IR ⊗A as defined in Chapter 4. Using these interference correlations,

we can derive the MSE expressions for LS, L-LMMSE and O-LMMSE algorithms

in the presence of noise and pilot contamination. The results are presented in

following Theorems.

Theorem 5.2 For the system model described in Section 4.1 and pilot contam-

ination as characterised in Section 5.5, the MSE expression for LS estimation

algorithm of Section 4.2.3 under both AWGN and pilot contamination is given by

MSE(PC−LS) =
RL

ρK
+Rσ2

I trace(Λ) , (5.16)

where σ2
I is given in (5.10) and Λ is a diagonal matrix with eigenvalues of Rtap

spread along the diagonal and all users are assumed to have similar channel char-

acteristics.

Proof. See Appendix A.2.

Theorem 5.2, shows that MSE is composed of two terms. The first term due to

AWGN can be suppressed by increasing the number of pilot tones but the second

term due to pilot contamination cannot be reduced by adding more pilots and

even persists at high SNR (i.e., ρ→ ∞).
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Theorem 5.3 For the system model described in Section 4.1 and pilot contamina-

tion as characterised in Section 5.5, the MSE expression for L-LMMSE estimation

algorithm presented in Section 4.2.1 under both AWGN and pilot contamination

is given by

MSE(PC−L) = R
L∑
i=1

δi (1 + ρKδiσ
2
I)

1 + ρKδi + ρKδiσ2
I
, (5.17)

where σ2
I is given in (5.10), δi are the eigenvalues of Rtap and all users are assumed

to have similar channel characteristics.

Proof. Replace Rw with Rw + RIr in MSE expression (4.8), then invoke the

eigenvalue decomposition (EVD) of Rtap. We skip the detailed proof due to its

similarity to Theorem 5.2 given in Appendix A.2.

Note that (5.17) reduces to MSE expression (4.8) for AWGN had there been no

pilot contamination. At high SNR (i.e. ρ� 1), the MSE expression (5.17) reduces

to

MSE(PC−L) high SNR−→ R

(
σ2
I

1 + σ2
I

)
trace(Λ) , (5.18)

which shows that the MSE is independent of the number of pilots and that

LMMSE estimation is more robust to pilot contamination compared to LS.

Theorem 5.4 For the system model described in Section 4.1 and pilot contamina-

tion as characterised in Section 5.5, the MSE expression for O-LMMSE estimation

algorithm presented in Section 4.2.2 under both AWGN and pilot contamination

is given by

MSE(PC−O) =
R∑

j=1

L∑
i=1

ηjδi (1 + ρKηjδiσ
2
I)

1 + ρKηjδi + ρKηjδiσ2
I
, (5.19)
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where σ2
I is given in (5.10), ηj and δi are the eigenvalues of Ra and Rtap respec-

tively, and all users are assumed to have similar channel characteristics.

Proof. See Appendix A.3.

Note that (5.19) reduces to the MSE expression for AWGN given in (4.11) in

absence of pilot contamination. Again observe that, under the assumption of high

SNR, this simplifies to,

MSE(PC−O) high SNR−→
(

σ2
I

1 + σ2
I

)
trace(Ra)trace(Λ). (5.20)

This indicates that MSE depends strongly on interference power and is indepen-

dent of number of pilots K. Since trace(Ra) ≤ R, the O-LMMSE seems to be

more robust to pilot contamination compared to both LS and L-LMMSE. The

MSE expression also gives a clue that effect of pilot contamination can be min-

imized by exploiting the spatial correlations and by optimizing the BS antenna

array design.

Above Theorems quantify the effect of pilot contamination on MSE perfor-

mance of channel estimation in terms of interference power (or variance) which

in turn depends on various network parameters described in Lemma 5.1. These

results are summarized in Table 5.1. The MSE performance against various pa-

rameters will be numerically analysed through simulations.
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Table 5.1: Summary of MSE expressions

Algorithm AWGN only AWGN + Pilot Contamination

LS MSE = RL
ρK

MSE = RL
ρK

+Rσ2
I trace(Λ)

L-LMMSE MSE = R
∑L

i=1

(
δi

1+ρKδi

)
MSE = R

∑L
i=1

δi(1+ρKδiσ
2
I)

1+ρKδi+ρKδiσ2
I

O-LMMSE MSE =
∑R

j=1

∑L
i=1

ηjδi
1+ρKηjδi

MSE =
∑R

j=1

∑L
i=1

ηjδi(1+ρKηjδiσ
2
I)

1+ρKηjδi+ρKηjδiσ2
I

5.6 Simulation Results

For simulations, we use the same parameters and the MSE criterion to evaluate

the performance as described in Chapter 4 with a notable difference of modified

network model based on stochastic geometry introduced earlier at the beginning

of this Chapter. Different experiments are conducted to validate the analysis of

pilot contamination presented in this Chapter.

Mean and variance of interference

We first validate the mean and variance of the interference given in Lemma 5.1

by numerical simulations. In order to mimic the setup described in Section 5.3,

we use single antenna BS and assume that CIRs from each user to the BS has a

uniform PDP. Further, we assume that BS is located at the origin, the desired user

at a distance of 1m from BS with γo=2m while interfering users are distributed in

a region of radius 5m according to a PPP with density λ and pathloss exponent

b. All users communicate with BS using OFDM with N=256, L=8 and K=32

identical pilot symbols drawn from a 4-QAM constellation. Fig. 5.3 compares the
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mean and variance of interference observed on single OFDM carrier (randomly

picked) due to simulated sources with expressions given in Lemma 5.1, as a func-

tion of λ and b. In Fig. 5.3(a) pathloss exponent is kept fixed at b = 2 and λ is

varied while in Fig. 5.3(b) the parameter λ = 1 and pathloss exponent b is varied.

The results indicate a close match between simulation and theory for a wide range

of both parameters.

MSE Performance Under AWGN and Pilot Contamination

We now compare the MSE performance of different algorithms in the presence

of both AWGN and pilot contamination. For simulations, we use the parameters

given in Table 4.2 with the interfering users distributed according to a PPP of

λ=0.1 in circular region of radius 5m, the desired user is assumed 1m away from

BS located at origin with γo=2m and pathloss b=2. In Fig. 5.4, the simulated

MSE performance of different algorithms is compared over a wide range of SNR

with the analytical expressions given in Theorems 5.2, 5.3 and 5.4 (see Section

5.5). Observe that all MSE curves decrease with increasing SNR in lower range

but reach an error floor at higher SNR. This is in stark contrast to AWGN case

(see Fig. 4.7), which indicates that pilot contamination persists even at high SNR

and its effect on MSE is more severe than AWGN.

We present similar analysis in Fig. 5.5(a), where the MSE is plotted as a

function of λ with SNR fixed at 10 dB. It is obvious that all algorithms perform

well for small values of λ. However when λ increases, the interference due to

pilot contamination dominates AWGN, thus severely degrading the performance
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as indicated by a sharp increase in MSE curves. Note that LMMSE channel

estimation is more robust to pilot contamination than simple LS based channel

estimation. The effect of pathloss is portrayed in Fig. 5.5(b), where a close match

can be observed between simulation and theoretical analysis over a wide range of

λ and b.
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Figure 5.3: Mean and variance of interference as a function of: (a) Intensity λ,
with b = 2 and (b) Pathloss exponent b, with λ = 1.
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CHAPTER 6

CONCLUSIONS AND FUTURE

RECOMMENDATIONS

6.1 Achievements of the Work

In this thesis we have investigated several low complexity channel estimation tech-

niques for OFDM based wireless systems by utilizing the inherent structure and

constraints of the communication problem at hand. Specifically, in Chapter 2,

we exploited the structure of FFT matrices induced by OFDM and the frequency

correlation of the channel in developing a low complexity MMSE based channel

estimation algorithm for SISO-OFDM systems.

In Chapter 3, we presented a blind and semi-blind channel estimation tech-

niques for MIMO-OFDM systems employing Alamouti coding. The proposed

blind algorithm performed joint channel estimation and data-detection for both

constant modulus and nonconstant modulus constellations. The computational
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complexity of proposed algorithms was substantially reduced by utilizing the

structure of FFT matrices, frequency and time correlations of the channel and

using the finite alphabet property of transmitted symbols.

The thesis also investigated channel estimation in massive MIMO-OFDM sys-

tems where exceptionally large number of unknown channel coefficients needs to

be estimated. A distributed LMMSE algorithm was presented in Section 4.3 which

was further extended with a data-aided approach. By relying on antenna coordina-

tion, the distributed algorithm turned out to be an efficient strategy for estimating

large number of channel coefficients, and that too at significantly reduced com-

plexity. The structure of channel frequency and spatial antenna correlations were

both exploited to reduce the communication overhead. Further, the finite alpha-

bet constraint was utilized to reduce the large pilot overhead in massive MIMO

systems.

Finally, the impact of pilot contamination on channel estimation performance

was studied in Chapter 5. In order to quantify the interference resulting from

neighboring cell users, a stochastic geometry based analysis was carried out which

culminated in closed form expressions for MSE under both additive white noise

and pilot contamination.

6.2 Summary of Contributions

The main contributions of this thesis are summarised as follows:

• Development of optimal low-complexity MMSE channel estimation scheme
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for SISO-OFDM systems based on pilots.

• Development blind and semi-blind methods for MIMO-OFDM systems em-

ploying Alamouti coding.

• Development of distributed LMMSE algorithm for massive MIMO-OFDM

systems.

• Analysis of the effect of pilot contamination on MSE performance of channel

estimators by using stochastic geometry.

6.3 Future Recommendations

The research work on channel estimation carried out in this thesis can be extended

in many dimensions. Some recommendations for future work are listed below.

• Pilot based algorithm of Chapter 2 can be extended by a data-aided ap-

proach using the concept of reliable carriers selection method presented in

Chapter 4. Further, an exact performance analysis of data-aided algorithm

utilizing ZF detector, can be carried out based on statistics of the channel

and known results on ratio distributions. Moreover, the proposed channel

estimation algorithm, although presented for SISO-OFDM systems, can also

be adopted for MIMO-OFDM systems.

• The distributed LMMSE algorithm presented in Chapter 4 can be investi-

gated for solving multi-task problems over a wireless sensor network, where
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each sensor in the network tries to estimate a different but correlated set of

unknown parameters.

• Transformation of distributed LMMSE algorithm into stochastic algorithms

based on LMS/RLS algorithms could be an interesting future work as it

would not only alleviate the requirement of exact channel statistics but

also cope with time variations of the channel parameters. However, the

LMS based stochastic gradient algorithm might have convergence issues with

finite data records.

• Based on stochastic geometry, the analysis of pilot contamination can be

extended to investigate both uplink and downlink throughput of massive

MIMO systems by focusing on received signal-to-interference-noise-ratio

(SINR). Recall that current work only deals with the MSE performance

analysis but not the throughput analysis.

131



APPENDIX A

A.1 Proof of Lemma 5.1

The mean of I can be determined as follows,

μI = E{I}

= E

{∑
i∈Ψ

√
Exzi
γbi

}

= EΨ

{∑
i∈Ψ

√
Ex Ez{zi}
γbi

}

=
√
ExE{zi}

∫
R2

1

rb
rdrdθ = 0 (A.1)

where, (A.1) results from Campbell's Theorem given in Section 5.2.2 and then

the fact, E{zi} = 0 yields the zero mean.
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Similarly, the variance of interference can be computed as follows,

σ2
I = E{|I|2}

= EΨ

{
Ez

∑
i∈Ψ

√
Exzi
γbi

∑
j∈Ψ

√
Exz

∗
j

γbj

}

= EΨ

{∑
i∈Ψ

ExEz{|zi|2}
γ2bi

}
(A.2)

= λExE{|zi|2}
∫ 2π

0

∫ γm

γo

1

r2b
rdrdθ (A.3)

= πλ(b− 1)−1ExζE{|x|2}
(

1

γ2b−2
o

− 1

γ2b−2
m

)
(A.4)

where, (A.2) is due to the fact that zi are independent SS random variables, in

(A.3) we employed Campbell's Theorem and in (A.4) we used the result E{|zi|2} =

E{a2iα2
i } = ζE{|x|2}, where we note that ai and αi are independent random

variables, which completes the proof.

A.2 Proof of Theorem 5.2

By replacing Rw with Rw +RIr in MSE expression of (4.14), we obtain

mselsr = trace
(
AH (Rw +RIr)

−1 A
)−1

= trace
(
AH
(
Rw + σ2

IARtapA
H
)−1

A
)−1

(a)
= trace

(
AHR−1

w A− σ2
IA

HR−1
w A

(
R−1

tap + σ2
IA

HR−1
w A

)−1
AHR−1

w A
)−1

(A.5)
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where, (A.5) follows from matrix inversion Lemma. Now, using the EVD of the

channel correlation matrix Rtap = QΛQH and the fact that AHR−1
w A = KEx

σ2
w
IL

we obtain,

mselsr = trace

(
KEx

σ2
w

IL − σ2
I

(
KEx

σ2
w

)2 (
Λ−1 +

σ2
IKEx

σ2
w

IL

)−1
)−1

(A.6)

=
L∑
i=1

(
KEx

σ2
w

−σ2
I

(
KEx

σ2
w

)2(
δ−1
i +

σ2
IKEx

σ2
w

)−1
)−1

(A.7)

where, (A.6) follows from the property that trace
(
QRQH

)
= trace(R) if Q is

unitary. After simple algebraic manipulations, the term inside the summation of

(A.7) simplifies to σ2
wL

KEx
+ σ2

I
∑L

i=1 δi, which completes the proof.

A.3 Proof of Theorem 5.4

Under both AWGN and pilot contamination, we replace Rw with RE = Rw +

σ2
IÁRhÁ

H in the MSE expression (4.11) to get,

MSE(O) = trace

(
R−1

h +ÁH
(
Rw+σ

2
IÁRhÁ

H
)−1

Á

)−1

= trace

(
R−1

h + ÁRhÁ
H − σ2

IÁRhÁ
H
(
R−1

h + σ2
IÁRhÁ

H
)−1

ÁRhÁ
H

)−1

(A.8)

where (A.8) follows from matrix inversion Lemma. Using the properties of

kronecker product, it can be shown that ÁRhÁ
H = KEx

σ2
w
(IR ⊗ IL). Fur-

ther, the channel correlation matrix Rh = Ra ⊗ Rtap can be decomposed as
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Rh = (V ⊗Q)(S ⊗ Λ)(V ⊗Q)H, where we introduced the EVDs, Ra = VSVH

and Rtap = QΛQH. Incorporating these results in (A.8) yields,

MSE(O) = trace

(
S−1⊗Λ−1+

KEx

σ2
w

(IR ⊗ IL)−σ2
I

(
KEx

σ2
w

)2 (
S−1 ⊗Λ−1+

σ2
IKEx

σ2
w

(IR ⊗ IL)
)−1
)−1

(A.9)

=
R∑

j=1

L∑
i=1

(
1

ηjδi
+
KEx

σ2
w

− σ2
I

(
KEx

σ2
w

)2(
1

ηjδi
+
σ2
IKEx

σ2
w

)−1
)−1

(A.10)

where, (A.9) follows from property, trace
(
QRQH

)
=trace(R) when Q is unitary

and (A.10) is due to the diagonal nature of the matrix inside the trace operator,

ηj and δi represent the eigenvalues of matrices Ra and Rtap respectively. After

some algebraic manipulations, (A.10) simplifies to the result given in Theorem

5.4.
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