

To all that have been pushing

Acknowledgment

I have many more to acknowledge than mentioned here; but these are the most
obvious, the most directly invloved, and the most deserving:

A great advisor that has fulfilled and surpassed his role and whose meticu-
lousness and appreciation of quality are very encouraging; a true mentor given
the right circumstances... and the right apprentice.

An Experienced committee with insightful thoughts—well, mostly about
tables; so much so that I barely managed to resist the urge to make this very
page into a table!

The K people, Grigore Ros,u, Dwight Guth, Traian Florin S, erbănut,ă, Andrei
S, tefănescu, Radu Mereut,ă, Cosmin Rădoi and others for their great help and
support, and most of all, for the outstanding effort put in developing, honing
and perfecting the K framework, tool, its tutorials and supporting projects. Did
I mention Dwight Guth?

ii

Contents

Acknowledgment . ii
List of Figures . vi
List of Tables . vii
List of K Rules . viii
Abstract . x
Arabic Abstract . xi
1 Introduction . 1

1.1 Problem Description . 2
1.2 Approach . 3
1.3 Contribution . 3
1.4 Outline . 4

2 Background . 5
2.1 Service Orchestration . 5

2.1.1 Orc . 6
2.2 Formal Specification and Verification 11

2.2.1 SOS-based Frameworks . 12
2.2.2 The Chemical Abstract Machine (CHAM) [BB92] 13
2.2.3 Rewriting Logic [Mes92] 13
2.2.4 The K Framework . 14
2.2.5 Formal Verification techniques 19

3 Designing a Formal Semantics of Orc 21
3.1 Combinators . 22

3.1.1 Parallel Combinator . 22
3.1.2 Sequential Combinator . 22
3.1.3 Pruning Combinator . 24
3.1.4 Otherwise Combinator . 25

3.2 From Abstract Managers to Publishing 25
3.2.1 Abstraction of Manager Threads 25
3.2.2 Publishing . 26

3.3 Time . 26
4 K Semantics of Orc . 28

4.1 Syntax Module . 29
4.1.1 Expression Definitions . 32
4.1.2 Parameters and Arguments 32
4.1.3 Calls and Handles . 32

iii

4.1.4 Values . 33
4.1.5 Manager Functions . 34
4.1.6 Semantic Elements in Syntax 34

4.2 Main Module . 34
4.3 Combinators Module . 35
4.4 Parallel Combinator . 37
4.5 Sequential Combinator . 42
4.6 Pruning Combinator . 46
4.7 Otherwise Combinator . 49
4.8 Recap . 53
4.9 Synchronization . 54
4.10 Site-Call Management . 54
4.11 Publishing . 55

4.11.1 Publishing to Parents . 57
4.12 Variable Lookup . 57

4.12.1 Variable Requests . 58
4.13 Time . 62

4.13.1 The δ Function . 62
4.13.2 Implemented Time Modules 62

4.14 Predicate Functions . 65
4.15 Expression Definition and Expression Calls 68

4.15.1 Expression Definitions . 68
4.15.2 Expression Calling . 68

4.16 Testing and Validation . 68
5 Executing the Semantics . 72

5.1 Case Study: Robot Movement . 72
5.1.1 Semantics of Robot Sites 72
5.1.2 Running the Programs . 73

5.2 Various Key Programs . 79
5.3 Conclusion . 82

6 Related Work . 83
6.1 Service Composition . 83

6.1.1 Approaches to Service Composition 83
6.1.2 Verification of Service Composition Frameworks 86

6.2 Orc-related . 86
6.2.1 Formal Semantics of Orc 86
6.2.2 Verification of Orc . 87
6.2.3 Summary and Comparison 88

6.3 Work done in K . 88
7 Conclusion . 91

7.1 Limitations . 91
7.1.1 Observable Transitions and State Space Explosion 91
7.1.2 Threats to Validity . 92

7.2 Future Work . 93
7.2.1 A Formal Comparison . 93
7.2.2 Extending the Case Study 93

iv

7.2.3 Making a Test Suite . 93
7.2.4 Real Time . 93

Vita . 104
A Select Modules of the K-Orc Definition 105
B Testing Examples . 148

v

List of Figures

2.1 Abstract syntax of Orc expressions. 8
2.2 Variable lookup rule as defined in K. 16

3.1 Transformation schematic of the parallel combinator. 22
3.2 Transformation schematics of the sequential combinator 23
3.3 Transformation schematics of the pruning combinator. 23
3.4 Transformation schematics of the otherwise combinator. 24
3.5 Transformation schematic of publishing values. 25

4.1 The sequential-prep rule as defined in the K tool. 29
4.2 Structure of the configuration. 36

5.1 Result of Example 5.1.1. 74
5.2 Result of Example 5.1.2. 75
5.3 Result of Example 5.1.3. 76
5.4 Result of Example 5.1.4. 78
5.5 Result of Example 5.1.5. 79

vi

List of Tables

2.1 Summary table of all concepts used in K categorized by the frame-
works that inspired them. 16

4.1 Table of all modules implemented in our definition. 30
4.2 Explaining K’s bubble cell notation. 31
4.3 Summary of test programs in Appendix B and what features of

Orc they test. 71

5.1 Semantics of Orc sites that control the robot and the time needed
by each site. 73

6.1 Comparison of different definitions of Orc; Wh:Whermann SOS [WKCM08],
TA: Dong’s Timed Automata [DLSZ14, DLSZ06], CLP: Dong’s
Constraint Logic Programming [DLSZ14], MOrc: Alturki’s Maude
definition [AlT11], KOrc: This thesis’ definition. : Fully Im-
plemented G#: Partially Implemented #: Not Implemented . . 89

6.2 Comparing the strength of certain qualities of the different defini-
tions of Orc in relation to ours; TA: Dong’s Timed Automata [DLSZ14][DLSZ06],
CLP: Dong’s Constraint Logic Programming [DLSZ14], MOrc: Al-
turki’s Maude definition [AlT11], KOrc: This thesis’ definition.
#: Significantly Less G#: Relatively Less : Almost Equal . . 90

vii

List of K Rules

4.4.1 Parallel prep. 39
4.4.2 Parallel expression flattening. 40
4.4.3 Parallel cleanup 1. 41
4.4.4 Parallel cleanup 2. 42
4.5.1 Sequential prep. 43
4.5.2 Sequential spawning. 44
4.5.3 Sequential, de-sugaring of the ≫ operator. 45
4.5.4 Sequential cleanup 1. 45
4.5.5 Sequential cleanup 2. 46
4.6.1 Pruning prep. 47
4.6.2 Pruning prune. 48
4.6.3 Pruning, de-sugaring of the ≪ operator. 49
4.6.4 Pruning cleanup 1. 50
4.6.5 Pruning cleanup 2. 51
4.7.1 Otherwise prep. 51
4.7.2 Otherwise left published. 52
4.7.3 Otherwise left halted without publishing. 52
4.7.4 Otherwise cleanup. 53
4.10.1 Site calling. 55
4.10.2 if (true). 55
4.10.3 if (false). 55
4.11.1 Lone Val de-sugaring. 56
4.11.2 Publishing. 56
4.11.3 Published value propagation. 57
4.11.4 Publishing at root. 58
4.12.1 Basic variable lookup. 59
4.12.2 Variable request creation. 59
4.12.3 Variable request propagation. 60
4.12.4 Variable request reset. 61
4.12.5 Variable request resolution. 61
4.13.1 Sequential δ applied to a single thread. 63
4.13.2 Sequential δ processed. 64
4.13.3 Clock tick after sequential δ is applied. 64
4.13.4 Clock Tick. 65

viii

4.13.5 Apply δ. 66
4.13.6 δ applied. 66
4.13.7 Timed handle done. 66
4.14.1 Match any thread that has a site call that hasn’t been made. . 66
4.14.2 Match any thread that has an unprocessed handle. 67
4.14.3 Match any thread that has a handle ready to respond with a

value. 67
4.14.4 Match any thread that has a timed handle. 67
4.14.5 Match any thread that hasn’t yet applied δ. 67
4.14.6 Match any thread that has the applied_delta flag on and is

not reset. 68
4.15.1 Expression Definition Prep. 69
4.15.2 Expression Definition End. 69

ix

Abstract

• Name: Omar Alzuhaibi

• Thesis Title: A Formal Executable Semantics of Orc using the K Frame-
work

• Major: Computer Science

• Degree Date: January 2016

Orc is a programming model for expressing orchestrated distributed and concur-
rent computations. It abstracts computations through calling sites and expresses
concurrency through four concise constructors. Our goal is twofold: (1) to devise
a formal semantics of Orc that elegantly captures its intended semantics and (2)
to formally verify the correctness of programs written in Orc. In order to achieve
that, we wrote a complete formal semantics of Orc using the K framework,
which in turn enables the execution and verification of Orc programs. This
thesis presents in detail how the K framework’s various facilities were utilized to
arrive at a clean, minimal, precise and elegant semantic specification; informally
compares our specification to previously developed operational semantics of Orc;
and demonstrates how all of that enables the execution and verification of Orc
programs through a case study and a few distinctive examples.

x

Arabic Abstract

سالة ال ص ّ مل
هيبي ال هي عم سمخ ا •

K يط بم خ اٝ ة لل يّ يا ف و سالةخ ال عنوان •

اسب علوم صّصخ ال •

٦ يناي جّخ ال يخ ا •

كلمة صا ا و هي المهام)، م وسبة ال في (كما ية وا م وسبة عمليات ف و من مكّن ية يا بي ة ل أرٝخ
يق ن و ال فيه عا على المهام يع و و يم ن في ص ا قائ عمل عن نويها لك ب سمّي ا)، (اوٝكۧ ص ا
على ا وي ي انيق ا س لف ة م الب ات ل في وفة الم وسبة ال عمليات يل فا ه ه بي ال ة ل في بينهم.
ا ه من فنا ه ة. ام و ة ي ب ية ص ا قات من بع با بينها مع و ال والّ ال اء ن على الق هي ة ي ب وات ا
كامل ليّ)) يّ يا ف و ابة ك لك ل ب فو خ، اٝ ة بل وبة المك امج الب ة من ليّ ا اكّ ال مكين الب
و يمكّن ات، الل لك ب امج ب يل م ات ل يف من يمكّن K مى ي عمل يط م نا ا لك مل و ل خ، اٝ ة لل
يّ يا ف و الى لنصل K ات ممي لف م منا اس كيف قةّ ب الب ا ه ض ي ها. من ٍ اكّ من لك ك
من ِ اك و ال خ اٝ ة بل امج ب يل من ا ه يمكّننا و كيف سبقه، بما فنا و ن يقا و كيف خ، اٝ ة لل و انيق يط ب

ة. و م لة ام ّ ع ل من ها ّ

xi

1

C
h

a
p

t
e

r

Introduction

The past few decades have witnessed a tremendous growth in cloud-based web
applications on one hand, and in parallel algorithms on a totally different hand.
These two directions of growth might not be correlated but they are definitely
converging towards our vision of future internet use, i.e., cloud services using
parallel algorithms to utilize other cloud services.

Nowadays, many computer applications face a difficult problem; that is,
how to obtain sufficiently safe operation. Critical systems such as medical
instrumentation, aircraft flight control and nuclear reactor safety have extreme
safety requirements. Traditionally, software testing methods such as fault tree
analysis (FTA) were used for safety analysis. However, such methods were
subjective and dependent on the software engineer; and even at their best,
they could not ensure the extreme safety requirements that today’s complex
safety-critical systems demand [YJC09]. Here lies the indispensability of formal
program verification. It provides a very rigorous demonstration that the program
satisfies the given specification in every execution, the specification itself being
an explicit description of the intentions and requirements of the program.

In the early days of formal verification, it used to be done manually exactly like
mathematical proofs. But with the (1) prevalence of concurrent and distributed
systems and with (2) increasing demand for safe and reliable operation in
different practical fields like the health sector, big machines and space missions,
the need for formal verification is bigger than it has ever been. Add to that
(3) the increasing complexity of systems that nowadays most are intrinsically
concurrent. All these factors increase the demand for automatic, instead of
manual, verification. And this is one side of this thesis’ work; it is an effort to
provide a method to verify these systems’ correctness automatically.

Another side to this work is revealed by the general lack of formal seman-

1

tics for programming languages, models and paradigms. Even though many
formalisms have been proposed to describe programming language semantics,
most programming languages, even the most widely used ones, have neither
been formally defined nor analyzed until very recently. This has created a gap
between language designers, language implementers, compiler developers, and
programmers. This is why until now we find very subtle differences in the
interpretation of a C program for example from one compiler to the other. On
our end, by providing a formal semantics for an elegant programming model
such as Orc, we do our part in mending that gap.

The third side to this work is that it provides an executable semantics; and
that is the part that allows formal verification to be automated. An executable
semantics means that we can use specialized tools to simulate programs and run
different verification techniques on them that are carried out automatically.

To sum up, this work:

• addresses the rising complexity of distributed systems and the need for
safe operation

• by providing a formal semantics for such systems

• that is also an executable semantics

• which enables automatic formal verification on these systems.

The notion of composing web applications out of individual web services
called and managed concurrently is called service composition. Out of many
service composition systems, we focus on one that is formal, abstract, and
expressive, namely Orc [Mis04, MC07, Mis14]. Orc is named after the theory of
orchestration of services being a way of composing them into a well-synchronized
web application just like an orchestra composes a piece of music. Orc is capable of
describing concurrent systems in a minimal way. This abstractness helps simplify
the process of formal verification by shifting the focus from all computational
details into just the concurrency computations that we wish to analyze. So, this
work tries to enable automatic verification for systems described in Orc.

1.1 Problem Description

Our concern is with the correctness of concurrent systems, service orchestrations
in particular described through Orc. Our goal is to enable formal analysis of
service orchestrations. But that itself requires a formal semantics able to capture
every detail in an orchestration as abstractly and minimally as possible. We
need a semantics that:

• reflects the simplicity and expressiveness of Orc

• is executable

• can be used for automatic formal verification

2

• is defined with modularity

All those factors will help us arrive at a minimal definition of Orc that faithfully
captures its semantics while also being executable and on top of that easy to
validate manually.

1.2 Approach

Because our goal is to verify properties related to correctness formally, we would
always need a formal description of the system under question. Therefore, we
chose a formal description language that is specifically designed to describe
distributed and concurrent systems. We chose Orc [Mis04, MC07, Mis14], a
programming model that can elegantly express such systems through what
is called service orchestration. Orc uses only a few combinators to express
concurrency, while abstracting away all other computations through services.
This abstract precise formalism gives us concurrent systems written as Orc
programs which we can formally verify certain properties about.

To do the verification automatically, we need not only a formal semantics
for Orc, but an executable formal semantics. We also need it written in a way
abstract enough to directly relate to the informal semantics of Orc, hide technical
details and minimize human error; yet expressive enough to capture all of Orc’s
features. Taking all that into consideration, we use a framework-and-tool called
K [Rc10, LcR12].

We use K to, first, write a formal semantics of Orc’s service orchestration
calculus; and second, execute and formally automatically verify sample Orc
programs. Our K semantics capture Orc’s concurrent computations through an
intuitive definition with which K can understand Orc programs. Applying that
to Orc extends its power beyond expressiveness towards meeting extreme safety
requirements.

1.3 Contribution

This work contributes a formal executable semantics written in K. Utilizing
K, it presents a definition that is much more elegant than any that have been
developed before it. It allows the execution of Orc programs and enables formal
verification on them. Moreover, The new semantics carries the promise of true
concurrency from K, thus by enabling the simulation and verification of certain
Orc programs in unprecedented accuracy. It allows for very expressive formal
analysis of concurrent computations. This was not provided through other
combinations of formalisms of concurrent computation and formal analysis.

On top of the K semantics being simple enough to allow manual validation,
this work also provides a simplistic test suite that aims to build confidence in
the correctness of the K definition itself.

The work also reviews the latest work related to Orc as well as other similar
frameworks, verification done on these frameworks, and other semantics defined

3

in K.

1.4 Outline

The outline of this thesis is as follows. First, in Chapter 2, we give a compre-
hensive background covering all the basic concepts and terminology required to
comprehend this work. Then, in Chapter 3, we walk through the design of our
formal semantics of Orc and how we formed modular rewrite-based rules. And
in Chapter 4, we show how those rules took form as a full-fledged specification
written and structured in the K tool, and we overview the validity tests. In
Chapter 5, we discuss the results of executing sample Orc programs through our
K semantics and show examples of formal analysis. Chapter 6 reviews previous
work related to service orchestration and program verification, and compares
this work to it. Finally, we conclude with Chapter 7 with a recap of the thesis
and a discussion of limitations of this work and how it can further be developed.

4

2

C
h

a
p

t
e

r

Background

In this chapter, we cover all the basic information needed to understand the work
explained in Chapter 4. We first explain the concept of Service Orchestration in
general followed by an in-depth explanation of Orc, its syntax and its semantics.
In Section 2.2, we introduce the K framework and its tool and we compare them
to other semantic-definition frameworks, formalisms and tools.

2.1 Service Orchestration

This section gives a background on service orchestration by explaining the Orc
calculus, its syntax and semantics with examples.

To understand this term, we simply define the terms service and orchestration.
In general, services are units of discrete isolated tasks. In the context of service
orchestration, they usually refer to software tasks. The term web-services is
often used in cloud computing referring to software tasks that are available over
the internet.

The term Orchestration is named after the process that a musical orchestra
conductor undertakes when managing and synchronizing the individual members.
Computation orchestration works the same way. Individual services are managed
and coordinated by a central orchestrator which is also a service. Likewise, a
controlled service can itself be an orchestrator of a sub-group of services.

That is, in general, what Service Orchestration means. A more specific
definition would require bringing an implementation of the concept to the
discussion; and that is what we do in this section by viewing Service Orchestration
through the perspective of Orc1.

1Throughout this thesis, the term Orc will refer to Orc the calculus [MC07], not its child

5

2.1.1 Orc

Orc [Mis04, MC07] is a theory for orchestration of services that provides an
elegant expressive programming model for timed, concurrent computations. Orc
has special terminology that relates to general concepts of service orchestration.
Let us go through these terms in a brief overview of Orc.

Orc, short for orchestration, is a process calculus for concurrent computations.
The building block of an Orc expression is the site call. A site in Orc represents
a service. Site calls are joined together using one or more of Orc’s concurrency
combinators to make Orc expressions. An expression that has completed it
execution is said to have halted. Based on [MC07], we give the informal semantics
of Orc in a somewhat structured manner centered around its main concepts:

• Values: A value, on its own, is a valid Orc expression. When the expression
is executed, it publishes that value, and then halts. An Orc value could be:

– The signal value which indicates the termination of some expression
evaluation, but carries no information.

– stop, which indicates termination of a site call without publishing.

– A number, such as 0, 2.718, or -14

– A boolean, true or false.

– a character string, such as "I am not an orc".

• Sites: When a site is called, it may return, publish, at most one value. A
called site may not always respond, or may respond after a unplanned
delay. A site call that never responds is called silent. In that regard, sites
are either external or internal.

– External sites are those that may have a delayed response.

– Internal sites need zero time to respond, but they can also never
respond. Internal sites facilitate Orc with basic functions. Here are
some of Orc’s internal sites.

∗ 0, or zero, the internal silent site which never responds.
∗ let(x), publishes the value x.
∗ if (b), publishes a signal if b is true and remains silent otherwise.
∗ Clock, publishes the current time value.
∗ Rtimer(t), publishes a signal after t time units.

• Combinators:

– The parallel or the symmetric parallel combinator (|), written as:
f | g. f and g are executed concurrently independently from each
other. The expression f | g publishes all values published by f and g

in timed order. The expression halts when both f and g halt.

the full-fledged programming language [KQCM09].

6

– The sequential or spawning combinator, written as: f >x> g. f is
executed first. For each output x, published by f , an instance g(x)
is spawned to be executed in parallel with f >x> g. The sequential
combinator may be written as f ≫ g, when x is not bound in g. The
execution halts when f and all instances of g halt.

– The asymmetric parallel or pruning combinator, written as: f <x< g.
f and g start execution concurrently. The variable x may or may not
be bound in f but f will start executing nonetheless.
As soon as g publishes a value v, g halts immediately, and x is bound
to v in f . If g halts without publishing a value, all occurrences of x

in f are replaced by stop. A site call with an argument stop halts
immediately.
Since f begins executing before x is bound to a value, execution of f

may encounter a site call with an argument x, or even x as its own
expression. Execution of such expressions blocks; nothing happens
until x is bound to a value or stop; and then the expression resumes
execution. A blocked expression is not considered halted, since it
might become unblocked in the future.
When f has halted, and g has either published or halted, the expression
f <x< g halts. The pruning combinator may be written as f ≪ g,
when x is not bound in f .

– The otherwise combinator, written as: f ; g. f is executed first. If f

published a value then the expression f ; g publishes that value and
halts. However, if f halted without publishing, then the expression is
replaced by g.

The precedence order of these combinators from higher to lower is:

– Sequential (≫).

– Parallel (|).

– Pruning (≪).

– Otherwise (;).

• Expressions: Finally, an Orc expression is any which the syntax allows.
Orc’s abstract syntax is shown in Figure 2.1. From that definition, we can
see that an expression can be either of:

– A site call.

– A parameter.

– An expression call having an optional list of actual parameters as
arguments.

– A composition of two or more subexpression through the combinators.

7

Figure 2.1: Abstract syntax of Orc expressions.

8

Time in Orc

On top of mentioned main features, Orc also accounts for time. The original
semantics by Misra in [Mis04] did not model time. However, later in [MC07], timer
sites like Rtimer(t) were introduced, and in [WKCM08], the SOS specification
was extended to include time.

Formally, the passage of time can be expressed in different ways, but informally
it is very basic. And like all other computation details, time is also abstracted
behind site calls. The way it is done is that certain sites, whether internal or
external, are timed. A simple example is the aforementioned Rtimer(t) site
which takes t time units to respond. Another example would be a collection
of sites that control a machine. Every site that, for example, requests motion
from the machine or naturally imposes mechanical delay would take time; and
so those sites would be timed. This can be seen in our simulation in Chapter 5
where we model such sites that control a virtual robot’s movements.

Orc Examples

To illustrate the informal meaning of the combinators, we list some examples here.
More demonstrative examples can be found in [MC07, KPM08, Mis14]. Larger
programs can be found in [CPM06] where Orc was used to describe workflows
over internal and remote services; and in [KQM10], an excellent demonstration
of the power of Orc through an implementation of the quicksort algorithm.

Example 2.1. Suppose we want to get the current prices of three stocks:
Microsoft, Google, and Apple; and that there is a site that provides such service
called StockPrice. The three pieces of information are independent from each
other, and we want to receive them as soon as possible not preferring a certain
order. Therefore, it would make sense to request all three prices in parallel,
instructing each called site to send a value as soon as possible. The Orc expression
would be:

StockPrice(Google) | StockPrice(Microsoft) | StockPrice(Apple)

and the output would be a time-ordered list of the three values, ordered by
the time they were received.

Example 2.2. Now, suppose you own some of these stocks and you wish to know
your unrealized gain/loss, i.e., how much you gain/lose if you sell now, which
depends on two pieces of information: the current price of the stock, and how
much you own of it. The first example takes care of the former. For the latter,
assume that we simply have a site called MyUnrealizedGainLoss(Stock, Price)
that has access to your account and can calculate the unrealized gain/loss. The

9

following Orc expression gives the answer:

StockPrice(Google) | StockPrice(Microsoft) | StockPrice(Apple)

>(Stock, Price)>

MyUnrealizedGainLoss(Stock, Price)

The site StockPrice returns a tuple containing two values: the stock and
its price. Each response from StockPrice creates a new instance of MyUnre-
alizedGainLoss passing it the arguments (Stock, Price). These instances run
independently in parallel and act exactly like the three subexpressions of the
first example.

Example 2.3. Suppose we want to get the current gold price, and that we have
three sites that provide this service: GoldSeek, GoldPrice, and Kitco. This is
just like Example 2.1 where we don’t prefer a certain order of response. The
expression would be:

(Gold-Live() | GoldPrice() | Kitco())

Now, suppose we want the price in a different unit, say Euro/gram instead
of USD/Oz. We need only one of these three sites to publish a value. Observe
the following Orc expression:

USDtoEuro(x) <x< (Gold-Live() | GoldPrice() | Kitco())

The pruning combinator tells its right-side operand, the parallel expression,
to give it only the first value it publishes. As soon as it receives a value, it prunes
the whole right-side expression and passes the value to the left side.

Example 2.4. Suppose we have a site called FireAlarm that when called, will
hang. It would only respond when a fire has been detected giving its location.
That information is sent to the fire department who need to make a decision to
dispatch a fire engine. The fire department calls a site CalcNearestStation and
gives it the location of the fire to locate the nearest fire station. The response
is then passed on to a site Dispatch which will dispatch a fire truck from the
given station to the given location.

FireAlarm()

>fireLocation>

CalcNearestStation(fireLocation)

>station>

Dispatch(station, fireLocation)

Example 2.5. The standard programming idiom of the two-branch conditional
if b then f else g can be written in Orc as the expression:

if (b) ≫ f | if (¬b) ≫ g

10

Given the behavior of the internal site if , only one of the expressions f and g is
executed, depending on the truth value of b.

In the next few examples, we introduce the pivotal role of the site Rtimer
which is the building block of Orc’s timed computations.

Example 2.6. The Orc expression below specifies a timeout t on the call to a
site M :

let(x) <x< (M() | Rtimer(t) ≫ let(signal))

Upon executing the expression, both sites M and Rtimer are called. If M

publishes a value w before t time units, then w is the value published by the
expression. But if M publishes w in exactly t time unites, then either w or signal
is published. Otherwise, signal is published.

Example 2.7. Another Rtimer example is the following Orc expression decla-
ration, which defines an expression that recursively publishes a signal every t

time units, indefinitely.

Metronome(t) , let(signal) | Rtimer(t) ≫ Metronome(t)

The expression named Metronome can be used to repeatedly initiate an in-
stance of a task every t time units. For example, the expression Metronome(10)
≫ UpdateLocation() calls on the task of updating the current location of a mobile
user every ten time units.

2.2 Formal Specification and Verification

Formal specification is the modeling of systems mathematically through certain
standard notations. Different approaches for how to capture semantics formally
make different frameworks. Some of these frameworks can be used for automatic
program verification. But what is program verification? It is a mechanism by
which certain premises in the execution of a program are mathematically proven.
In order to prove anything about a program, it has to be written in a formal
mathematical language; in other words, it has to be formally specified. Once
formally specified, a program can undergo mathematical and logical operations
with the goal of proving certain properties about it; that process is called Formal
Verification.

Formal verification can be done manually, but with larger and more complex
programs, the need for automatic program verification becomes more imminent.
Today, we have different tools that apply different verification techniques given
of course a formal specification of the program of interest.

In this section, we review the most prominent semantic frameworks, and the
formal specification tools built upon them, ending with the K framework which
we explain in detail in light of the other frameworks. We start with frameworks
that are based on Structural Operational Semantics (SOS) [Plo81]; then ones
based on Rewriting Logic [Mes92]; and then we review a few more tools that
have different approaches but are useful to view in contrast.

11

2.2.1 SOS-based Frameworks

Structural operational semantics (SOS) [Plo81] is a framework used to give oper-
ational semantics to programming and specification languages. SOS generates a
labeled transition system, where the states are specific terms and the transitions
between states are represented by transition rules. The concept of rules of SOS
gave rise to many theories of formalization, each trying to improve and expand
the general framework, like for instance Modular SOS which was introduced to
deal with the non-modularity of SOS. However, with our focus on concurrency,
the important point is that none of these theories gives a "true concurrency"
semantics. They only allow "interleaving semantics" for concurrency. What this
means is that no two rules can be applied on a certain term at the same time.
There has to be an order with which they apply.

Semantics given by SOS-based frameworks cannot, in general, be executed
even though there are specific cases of executable semantics [MR07]. That is
why researchers were not motivated to build tools on them. Another point is
such semantics cannot be used for automatic verification either [Ro5]. Yet, we
include them in the review building up to K for two reasons: first, because they
are very well-known; and second, because K uses their basic concepts which need
to be explained.

Small-step SOS

Small-step semantics, also called transition (or reduction) semantics, is the first
introduced variant of SOS, given in the same paper by Poltkin [Plo81]. A rule in
Small-step SOS describes a single computational step. So it is easy to trace the
computations and find errors. It gives interleaving semantics for concurrency.

Big-step SOS

Big-step SOS, introduced by Kahn in [Kah87] by the name "natural semantics",
also called relational or evaluation semantics, is another well-known approach
to operational semantics. To make sense out of the name, big-step rules are
written in a way that describes evaluation in a single step that can only end at
a terminal state, while a small-step rule describes only how to transition to the
next state. Big-step is the closest of all operational semantics to denotational
semantics [Rc10], in the sense that it maps the construct to a final value. Big-step
rules are like schemes; variables have to be instantiated in order to be applied.
This means that it makes the defined system difficult to trace and debug, and
thus make it more difficult to execute.

Modularity in SOS

Neither of the two aforementioned SOS frameworks (small-step and big-step) is
modular. Several attempts were made to write modular semantics using SOS,
the first being Modular SOS (MSOS), introduced by Mosses [Mos04]. It modified
SOS such that only the needed attributes are selected from a state, and that

12

on every transition, the non-syntactic components of a state are moved into
the labels of that transition. This would generate a labeled transition system.
Whereas That is a syntactic approach to modifying SOS, a semantic one is made
by Jaskelioff in [JGH11] who also reviews other interesting approaches.

2.2.2 The Chemical Abstract Machine (CHAM) [BB92]

CHAM views a state in a distributed system as a chemical solution with molecules
floating. It understands concurrent transitions as reactions that can occur
simultaneously in different parts of the solution. This is a unique paradigm
for distributed systems, and it works for defining languages and systems with
concurrency. However, it cannot handle complex features of languages such as
threads and thread synchronization and control features.

2.2.3 Rewriting Logic [Mes92]

Rewriting logic was proposed by Meseguer [Mes92] as a logical formalism. Its
design generalized both equational logic and term rewriting. In contrast with
plain term rewriting, Rewriting Logic was made to be more suited and optimized
for language semantics. In other words, it made it possible to naturally specify
languages and systems.

Rewriting logic is a general semantic framework in which languages and
systems can be naturally specified.

The generality and flexibility of rewriting logic make it suitable for specify-
ing both deterministic computations (algebraically using equations) and non-
deterministic computations (using rewrite rules) within a uniform model.

Here is where it falls short for our purposes. First, rewriting logic’s power
comes from it being a general-purpose computational framework. However, it is
not focused towards defining language semantics, which makes defining language
constructs, precedence, evaluation strategies and so on less intuitive. The second
point is that it cannot satisfy our objective of true concurrency. It is true that
one rule can be applied on two terms at the same time, because the framework
deals with instances of rules, so that two or more instances can run at the same
time. However, in such a case where two threads are trying to read from a shared
store, the two rule instances would have to interleave the operation.

Maude [CDE+07]

Maude is the software tool implementing rewriting logic. Maude is built in a way
that makes defining systems as general as possible. It can be used to formally
and modularly define almost any system. It can define formalisms; it was used
to define MSOS [MB04]. And [cRM09] shows how it can define CHAM and
Reduction Semantics with Evaluation Contexts. An example of generality is
that equations and rules can be conditional and can have extra variables in
the right-hand side of a rewrite, and they can have side conditions. Another
example is that functions can take not just other functions as arguments, but

13

entire modules as arguments. This shows the true generality and extensibility
of Maude. A unique feature of Maude is its efficient built-in support for model
checking. It supports reachability analysis, invariant verification and LTL model
checking.

Maude has been applied in a wide range of applications. It has also been used
to give formal semantics to, and provide formal analysis for, several real-time
programming languages and software modeling languages [CDE+07].

However, because Maude is so general, defining a very specific system almost
from scratch is rather tedious. This is why, Maude being so extensible, a lot of
extensions have been added to it; and this is exactly where K comes in. K is
built on Maude and it utilizes its strengths while at the same time specializing
in defining and analyzing programming languages.

2.2.4 The K Framework

K [Rc10, Rc14] is a framework for formally defining the syntax and semantics of
programming languages. It includes several specialized syntactic notations and
semantic innovations that make it easy to write concise and modular definitions
of programming languages. K is based on context-insensitive term rewriting,
and builds upon three main concepts inspired by existing semantic frameworks:

• Computational Structures (or Computations): A computation is a task
that is represented by a component of the abstract syntax of the language
or by an internal structure with a specific semantic purpose. Computations
enable a natural mechanism for flattening the (abstract) syntax of a
program into a sequence of tasks to be performed.

• Configurations: A configuration is a representation of the static state of
a program in execution. K models a configuration as a possibly nested
cell structure. Cells are labeled and represent fundamental semantic
components, such as environments, stores, threads, locks, stacks, etc., that
are needed for defining the semantics.

• Rules: Rules give semantics to language constructs. They apply to con-
figurations, or fragments of configurations, to transform them into other
configurations. There are two types of rules in K: structural rules, which
rearrange the structure of a configuration into a behaviorally equivalent
configuration, and computational rules, which define externally observable
transitions across different configurations. This distinction is similar to
that of equations and rules in Rewriting Logic [Mes92], and to that of
heating/cooling rules and reaction rules in CHAM [BB92].

Concepts Inspired by Other Frameworks

The K framework carries concepts in its design inspired by other semantic
frameworks. Following is an overview of them that is summarized in Table 2.1.

14

Concepts used in K from Small Step. The concept of rewriting used in
K, in its essence, can be seen as small-step in the sense that a rewrite specifies a
transition to the next configuration. However, a K rewrite can combine multiple
smaller rewrites, making it more general than a small-step rule.

Concepts used in K from Big Step. Terminal states are either acceptable
or error states. SOS does not define which are which, neither does Rewriting
Logic. The way K does it is through its syntax definition. Combined with its
rules, a closure is achieved through one or many transitions. Such closure has
the same concept as a big-step relation.

Concepts used in K from MSOS. K uses MSOS’s approach to increase
modularity through labeling information. It is apparent in the structure of a K

configuration as cell names.

Concepts used in K from CHAM. Heating/Cooling rules: One very useful
concept of CHAM that was adopted by K is Heating/Cooling rules. These rules
come in pairs: a heating rule and a cooling rule. Heating refers to taking apart
the different components of a statement and then evaluating each separately.
Cooling refers to bringing these components into the statement to evaluate it.
This is very useful for specifying which computations should be brought to the
top to be evaluated first. It adds a layer of control for rules being applied on a
program’s syntax tree. You can also subtly conceive how the concepts of big-step
and small-step apply here.

Concepts used in K from RL. K is based mostly on Rewriting Logic. It
uses rewrite rules. However, K can capture a concurrency feature that Rewriting
Logic cannot, that is concurrency with shared reads. And regarding concurrent
term rewriting in general, where Rewriting Logic needs multiple interleaved
rewrites, K can capture the same in one concurrent rewrite.

Overview of K Rules

To briefly introduce the notations used in K rules, we present a K rule used for
variable lookup (Figure 2.2).

• The illustrated rule shows two bubbles, each representing a cell predefined
in the configuration. k is the computation cell, while context is the cell
that holds variable mappings.

• Each bubble can be smooth or torn from the left, right, or both sides.

– A both-side-smooth cell means that the matched cell should contain
only the content specified in the rule.

– A right-side-torn cell means that the matching should occur at the
beginning of the cell; this allows for matching when more contents
are at the end of the matched cell.

15

Framework Concepts

Small-step Rewrites are more a general version of small-step.

Big-step Transitive closure is a big-step relation.

MSOS K has labeled information as cell names.

Reduction Semantics Where it splits/plugs expressions into context, K

flattens them into computations.

Rewriting Logic 1) Where RL splits sentences into equations and rules,
K rules are split into structural and computational.
2) K rules are rewrites.
3) Like RL, K is based on context-insensitive term
rewriting.

CHAM 1) CHAM’s solutions are K configurations.
2) Heating/Cooling is how K moves computations to
the top and evaluates them.
3) Heating/Cooling rules vs. Reaction rules in CHAM
is similar to K’s structural vs. computational rules.

Table 2.1: Summary table of all concepts used in K categorized by the frameworks
that inspired them.

Basic-Variable-Lookup

X :Param

V

k

X 7→ V :Val

context

[structural]

Figure 2.2: Variable lookup rule as defined in K.

16

– Similarly, a left-side-torn cell means that the matching should occur
at the end of the cell, so that unspecified content can be on left of
the specified term.

– A both-sides-torn cell means that the matching can occur anywhere
in the matched cell.

• Furthermore, Upper-case identifiers such as X and V are variables to be
referenced inside the rule only; they can be followed by a colon meaning
"of type".

• Finally, the horizontal line means that the top term rewrites to the bottom
term.

What this rule does is that it matches a Param X at the beginning of a k

cell, matches the same X in the context cell mapped to a Value V, and then
rewrites the X in the k cell to the value V.

Main Features of K

K combines many of the desirable features of existing semantics frameworks,
including expressiveness, modularity, convenient notations, intuitive concepts,
conformance to standards, etc. One very useful facility of K when defining
programming languages is the ability to tag rules with built-in attributes, e.g.
strict, for specifying evaluation strategies, which are essentially notational
conveniences for a special category of structural rules (called heating/cooling
rules) that rearrange a computation to the desired evaluation strategy. Using
attributes, instead of explicitly writing down these rules protects against potential
specification errors and avoids going into unwanted non-termination. In general,
these attributes constitute a very useful feature of K that makes defining complex
evaluation strategies quite easy.

Furthermore, K is unique in that it allows for true concurrency even with
shared reads, since rules are treated as transactions. In particular, instances
of possibly the same or different computational rules can match overlapping
fragments of a configuration and concurrently fire if the overlap is not being
rewritten by the rules. Truly concurrent semantics of K is formally specified by
graph rewriting [cR12]. For more details about the K framework and its features
and semantics, the reader is referred to [Rc10, Rc14].

The K Tool

An implementation of the K framework is given by the K tool [cAL+14, LAc+12],
which is based on Maude [CDE+07], a high-performance rewriting logic engine.
Using the underlying facilities of Maude, the K tool can interpret and run K

semantic specifications providing a practical mechanism to simulate programs in
the language being specified and verify their correctness. In addition, the K tool
includes a state-space search tool and a model checker (based, respectively, on
Maude’s search and LTL model-checking tools), as well as a deductive program

17

verifier for the targeted language. This allows for dynamic formal verification of
Orc programs in our case.

The K tool can compile definitions into a Maude definition using the kompile

command. It can then do several operations on the compiled definition using its
Maude backend. krun can execute programs and display the final configuration.
krun with the --search option displays all different solutions that can be reached
through any non-deterministic choices introduced by the definition. An option
--pattern can be specified to only display configurations that match a certain
pattern. Moreover, --ltlmc directly uses Maude’s LTL model checker 2.

The K tool leverages the powerful and generic formal verification tools
implemented in Maude by translating K specifications into rewrite theories, whose
corresponding Maude modules are then executed and analyzed using the Maude
rewrite engine. This is how it is built on top of Maude. As explained earlier, it
makes it a lot easier and more intuitive to write many kinds of specifications
like configurations, syntax rules, evaluation strategies, and heating/cooling rule
pairs. At the same time, it makes use of Maude’s strengths, such as its multi-set
and context-insensitive rewriting.

Where Maude is very general that it can be used to define any system, K is
very simple and is perfect for defining programming languages. Moreover, K has
added a lot more features as explained earlier, not to mention it is much faster
and lighter on resources when compared to Maude.

Advantages over Maude in defining configurations

The following example shows the simplicity of the K tool over Maude, particularly
in configuration definition. Declaring a configuration in K defines several things
at the same time, whereas in Maude, it would be necessary to define the following
things separately:

• First, to define an algebraic signature for configurations in general.

• Second, to tell the engine how to initialize the configuration without any
extra instructions.

• Third, to give a basis for specifying concrete rewrite rules.

The K tool’s implementation of defining configurations uses XML-style cells
(a nested cell structure). It allows for custom initialization of the configuration. It
even allows for connecting any certain cell of the configuration to the standard I/O
stream. Moreover, the K tool allows for defining purely syntactic, substitution-
based semantics. For example, say we want to define the semantics of the pruning
operator of Orc, which is a substitution-based semantics. Then, we would only
need a one-cell configuration initialized with the main program.

Overall, we showed that defining a language in K is much simpler than, yet
as expressive as, in Maude.

2The latest release of K 3.5 depends on Maude as well as Java as backends. It is the last
version to support the Maude backend. Developments are running on the Java backend to
incorporate all of Maude’s features.

18

Advantages over SOS in modularity

K applies a mechanism called Configuration Abstraction. Basically, it allows us
to add new features to the configuration without the need to revisit all the rules
to change the structure of the configuration. This makes K modular.

Final words about K

In short, K is the best choice for the following four reasons:

• K’s semantic specification is simple, expressive and concise.

• The infrastructure for defining semantics is predefined in K.

• Simpler rules; means simpler and more efficient matching.

• True concurrency.

The K tool effectively combines the simplicity and suitability of the K

framework to defining programming languages with the power and features of
Maude. A fairly recent reference on the K tool that gently introduces its most
commonly useful features can be found in [cAL+14].

2.2.5 Formal Verification techniques

Here we briefly talk about a specific formal verification method, i.e., Model
Checking, and the temporal logics used in model checking. In fact, this subsection
should be titled "Model Checking Logics". Given a state model and certain
formal properties, checking that these properties are met in all states generated
by the model is the technique called Model Checking. In our case, an Orc
program would be translated to a state model by K and then checked. The
checked formal properties are written in a certain logic and they represent some
behavior within the model. Different logics differ in their expressiveness and the
ability to apply automatically. These two properties are reversely proportional.
The logics which are mostly used and have tools based on them are LTL, CTL,
CTL* and µ-calculus, ordered from the least to the most expressive.

Maude [CDE+07], K and SPIN [spi] use LTL for formal verification; NuMSV
[num] uses CTL; ARC, the checker of the AltaRica project [alt], uses CTL*; and
mCRL2 [mcr] uses the most expressive temporal logic µ-calculus.

A completely different tool that uses Higher Order Logic called Isabelle/HOL
[NPW02, isa] is worth mentioning here. Isabelle/HOL is a theorem prover used
as a specification and verification system, while Isabelle (just Isabelle) is a generic
system for implementing logical formalisms.

A Note Comparing Formal Verification Tools. It is important to add
that these different tools have different approaches and different goals which
make them incomparable. Maude, along with Maude-based K, is a generic
framework which can define systems and even other frameworks as mentioned

19

earlier, whereas mCRL2 is a different formalism with a different objective and
a different underlying formal system. For example mCRL2 and NuMSV are
mostly used for the verification of industrial designs, so the tools used depend on
the system being verified. In some instances the logic is modified to bring it up
to the level of the system to be defined. For example, Isabelle/HOL originally
used predicate logic which has relations, and then later, higher order functions
were added that take other functions as arguments. This combination turned
out to be quite useful because it made it possible to define complex structures.
In conclusion, these tools cannot be directly comparedto each other because they
have completely different approaches and thus different uses.

A Note on Comparing Different Temporal Logics. The same can be
said about comparing different temporal logics. LTL, the logic used by K’s
model checker, is for specifying properties, while the more expressive logics such
as CTL* and µ-calculus are for specifying whole systems. The suitable logic
for our application not only depends on that, but even on the property to be
defined. In LTL, for example, although temporal properties (that show progress)
can be specified, they can’t be defined on specific execution paths. However, on
the other hand, LTL has a useful property not found in comparable logics, that
is the efficiency of deciding the properties. The reason LTL is widely used is its
extreme efficiency. Predicate logic is incomparable in that regard because it’s
intractable.

20

3

C
h

a
p

t
e

r

Designing a Formal Semantics of Orc

This chapter presents the core of our formal semantics of Orc. We will go through
the main semantic features of Orc explained in the background and show how
we captured those features in a concise set of semantic rules. Each section of
this chapter explains a single independent part of the semantics. This shows the
large-scale modularity with which this design was conceived. This later reflects
on the implementation of the semantics in the K tool detailed in Chapter 4.
The small-scale modularity is shown in individual rules and in the assumed
constructs used in those rules. It is shown in how each rule is specialized, i.e, it
has a limited domain on which it acts so that rules don’t overlap.

We illustrate these rules as transformations in schematic diagrams shown in
Figure 3.1 to Figure 3.5. These schematics use the following notations:

• Each box represents a thread.

• Lines are drawn between boxes to link a parent thread to child threads,
where a parent thread appears above its child threads.

• The positioning of a child thread indicates whether that thread is a left-side
child or a right-side child (which is needed by the sequential and pruning
compositions). Note that in our formal rules, this information is maintained
through meta thread properties.

• The center of a box holds the expression the thread is executing.

• A letter v at the lower right corner of the box represents a value which the
thread has published.

• A letter P at the lower left corner is a flag meaning that the thread is
allowed to move its published values to its parent thread.

21

Figure 3.1: Transformation schematic of the parallel combinator.

• Variable mappings such as x → v mapping a variable x to a value v are
displayed at the bottom of the box.

• Finally and most significantly, the symbol ⇒ denotes a rewrite, the trans-
formation from one state to another.

This chapter focuses on the parts of Orc that needed the most careful design.
We divide up these parts into sections: first the four combinators, then publishing,
then time.

3.1 Combinators

Orc is based on the execution of expressions, and simple expression can be made
into more complex ones using one or more of its combinators. So, let us start
with the design of combinators’ semantic rules. Notice that we do not care about
what the expressions being combined reduce to. We want our rules to be abstract
enough to handle all expressions regardless of their complexity, i.e., whether they
are simple like values and site calls, or are more complex combinations.

Orc has four combinators, which combine subexpressions according to four
distinct patterns of concurrent execution, parallel, sequential, pruning and other-
wise.

3.1.1 Parallel Combinator

Given an expression f | g as shown in Figure 3.1, the rule creates a manager
thread carrying a meta-function called PCM(x), short for Parallel Composition
Manager, where x is the count of sub-threads it is managing. Child threads are
created as well for each of the expressions f , and g. This of course extends to
any number of subexpressions in the initial expression. For example, f | g | h

will transform to PCM(3) and so on, as each subexpression will be matched in
turn.

3.1.2 Sequential Combinator

The first rule of the sequential combinator, shown in Figure 3.2a, creates a
manager called SCM, short for Sequential Composition Manager; and it creates

22

(a) Prep.

(b) Spawn.

Figure 3.2: Transformation schematics of the sequential combinator

(a) Prep.

(b) Prune.

Figure 3.3: Transformation schematics of the pruning combinator.

one child that will execute f . The manager keeps three pieces of information: x,
the parameter through which values are passed to instances of g; g, the right-side

23

(a)

(b)

(c)

Figure 3.4: Transformation schematics of the otherwise combinator.

expression; and k, a count of active instances of g that is initially 0.
Every time f publishes a value, the second rule, shown in Figure 3.2b, creates

an instance of g with its x parameter bound to the published value. The new
instance will work independently of all of f , the manager, and any other instance
that was created before. So in effect, it is working in parallel with the whole
composition, as is meant by the informal semantics of [Mis04].

3.1.3 Pruning Combinator

The idea of the pruning expression is to pass the first value published by g to f

as a variable x defined in the context of f . Regardless, f should start execution
anyway. If it needed a value for x to continue its execution, it would wait for
it. So, the first rule of the pruning combinator, shown in Figure 3.3a, creates a
manager PrCM (short for Pruning Composition Manager), a thread executing

24

Figure 3.5: Transformation schematic of publishing values.

f , and another thread executing g.
The second rule, Figure 3.3b, is responsible for passing the published value

from g to f and terminating (pruning) g.

3.1.4 Otherwise Combinator

The otherwise combinator is first processed as in Figure 3.4a by creating a
manager called OthCM (short for Otherwise Composition Manager) and a child
thread to execute f . Then, Figure 3.4b tells that if f publishes its first value, g

is discarded and f may continue to execute and is given permission to publish.
However, in Figure 3.4c, if f halts without publishing anything, then it is
discarded and replaced by g. As mentioned in Section 2.1.1, stop is a special
value that indicates that an expression has halted.

3.2 From Abstract Managers to Publishing

3.2.1 Abstraction of Manager Threads

In the previous section, we showed the design of the semantic rules of the
combinators through schematics. Note the common structure of thread hierarchy
in all of those rules. We made it such that any parent thread is a manager
of one of four types, one type for each combinator. We also made it such
that each parent is responsible for creating and deleting child threads, and for
managing any values they publish. From the schematics, you can see that some
arrangements allow for a child to pass a published value up to its parent marked
by giving the child the publishing flag P. Child threads that are given the P flag
are:

• All children of a Parallel Composition Manager.

• All right-side instances of a Sequential Composition Manager

• The left-side child of a Pruning Composition Manager

• Any child of an Otherwise Composition Manager.

25

This scheme is particularly useful in making rules as abstract as possible for
publishing.

3.2.2 Publishing

Since every manager controls when it receives publishes from its children, and
since all such cases are abstracted through the publishing flag P, the publishing
rule becomes straightforward as shown in Figure 3.5. It says that if a child
thread has the P flag and has published a value, then it should send that value
to its parent. This can happen recursively until the value reaches the topmost
thread in the hierarchy, i.e., the root thread which represents the whole Orc
program. Whatever is published by the root thread is considered published by
the program.

About Variable Lookup. This scheme also helps us in making simple rules
for variable lookup and helps us in defining scopes. However, because that issue
is technical and depends on the implementation environment, we deferred its
explanation to Chapter 4.

3.3 Time

As mentioned in subsubsection 2.1.1, Orc accounts for the passage of time
through timer sites. This means that we could write a specification that is
simply limited to handling only untimed sites as a partial definition of Orc; and
indeed we have. After that, we extended the specification by defining timed
sites and devising rules to model time. The untimed semantics of Orc does not
depend on the time extension. This also shows modularity in the definition.

Another point is that in our definition, time is logical (discrete), not dense.
The semantics of our discrete timing model follows the standard semantics

of time in rewrite theories implemented in Real-Time Maude [ÖM07], where (1)
time is modeled by the set of natural numbers held in a certain environment
variable, say Clock, and (2) the effects of time elapsing are modeled by a function
called δ.

The way it applies to the definition we described in this chapter thus far can
be put simply as follows. When δ is applied on the environment, Clock advances
by one time unit, an event called a tick, while at the same time any timed site
will be time-shifted by one unit as well. The time lapse through the environment
is synchronous.

To simply formalize this, we use Orc’s Rtimer(t) site, which publishes a
signal after t time units. The δ function’s effect can be directly seen on Rtimer
in the following rewrite rule:

δ(Rtimer(t)) ⇒ Rtimer(t − 1), requires t > 0.
Needless to say, adding this to our definition will not affect the processing

of a completely untimed Orc program. Such a program will be processed from
beginning to end in 0 time units.

26

Synchronization. Another semantic element that we adopted is that threads
synchronize before a time tick occurs. The tick rule is designed carefully so that
it does not conflict with other actions that an Orc expression may take. To be
specific, When a thread has a site call that hasn’t been processed, time should
not elapse until that site is called. Similarly, If a called site is ready to publish,
then time must also not elapse until that value is published.

27

4

C
h

a
p

t
e

r

K Semantics of Orc

This chapter shows in detail the semantics of Orc as defined in the K tool. The
definition is specified in multiple modules. These modules are: (1) the syntax
module, (2) the main module, and (3) a cluster of semantics modules. These
modules are explained in detail in this chapter. Table 4.1 shows the names of all
the modules along with a brief description of each.

Although this chapter explains the definition in depth, it leaves out a few
rules that are too technical and carry little semantic significance. Modules from
which such rules were omitted—and only such modules—are fully delineated in
Appendix A.

How to Read This Chapter. Each of the following sections will explain
one module showing key rules and explaining its mechanics, its role and how
it completes the picture. To do so, when explaining some modules, we will
naturally refer to other modules, which is why we tried to list the sections in
order of significance. Moreover, we tried as much as possible to order the modules
themselves and their contents such that the simpler rules come first so as to
provide gentle progression through the semantics. Therefore, it is important that
this chapter is read in order because explaining some of the later rules depends
on understanding details of earlier ones.

Another thing we will see as we go through the modules is how each performs
its role in a way independent from yet harmonious with others. We will also see
the modularity and abstractness of the rules that we intended in the design, in
Chapter 3, and how it translated into a simple and elegant implementation in
the K tool.

28

1 rule [Sequent ia l −Prep] :
2 〈 thread〉 ···
3 〈 k 〉 (F : Exp > X: Param > G: Exp) ⇒ seqCompMgr(X, G, 0) 〈 /

k 〉
4 〈context〉 Context 〈 /context〉
5 〈 t i d 〉 MgrId 〈 / t i d 〉
6 ··· 〈/ thread 〉
7 (. Bag ⇒ 〈 thread〉 ···
8 〈 k 〉 F 〈 /k 〉
9 〈context〉 Context 〈 /context〉

10 〈 t i d 〉 ! NewId : In t 〈 / t i d 〉
11 〈 parentId 〉 MgrId 〈 / parentId 〉
12 〈 props 〉 SetItem (" seqLeftExp ") 〈 / props 〉
13 ··· 〈/ thread 〉)
14 [structural]

Figure 4.1: The sequential-prep rule as defined in the K tool.

Specification vs. Implementation. We sometimes refer to the work of this
chapter as an implementation, even though it is far from the notion of a low-level
application optimized for practicality; it is a specification, a formal specification.
However, we call it an implementation because it is executable and because in a
sense implementation completes design. Here and in the rest of the thesis, we
will be using the two words, specification and implementation, interchangeably.

Representation of Rules. Rules are written in K in plain ASCII text. Fig-
ure 4.1 shows one of the rules for the sequential combinator exactly as defined
in plain text. We choose however to show the rules in a different representation—
the one explained in Section 2.2.4—where each cell is shown as a bubble. The
mentioned rule is shown in this chapter as Rule 4.5.1. We chose this because it
is more readable and it clearly shows the nested cell structure. We explain it in
Table 4.2.

4.1 Syntax Module

The syntax module contains syntactic productions from Orc’s abstract syntax
shown in Figure 2.1. In addition, it defines sorts (types) to make defining entities
in rules simpler and more convenient. It uses a format similar to BNF, but has a
few more syntactic and semantic elements defined, which we will explain shortly.

Orc is based on the execution of expressions, which can be simple values or
site calls, or more complex compositions of simpler subexpressions using one or
more of its combinators. Looking at Figure 2.1 showing the abstract syntax of
the Orc calculus, the following grammar defined in K syntax is almost identical
(with Pgm and Exp as syntactic categories for Orc programs and expressions,
respectively):

29

Module Name Description

ORC-SYNTAX Defines the abstract syntax of Orc in a BNF-like
style along with precedence, evaluation strategies and
other useful annotations.

ORC This is the main module where we import all the
other modules and define our configuration.

Core modules The core semantics modules specify the semantics of
Orc using K rules. Each rule specifies one or more
rewrites, that take place in different parts of the
configuration.

ORC-OPS Orc’s four operators or combinators.

ORC-SITECALL Manages site calls.

ORC-EXPDEF Expression definition and calling.

ORC-TIME Defines a discrete time model for timed sites.

ORC-PREDICATES Contains functions that check if a certain type of
thread exists in the current configuration.

ORC-PUB Manages value publishing.

ORC-VARLOOKUP Defines variable lookup mechanics and scope.

Sites modules These give semantics to sites that serve specific pur-
poses.

ORC-ISITES Defines Orc internal sites like let and if .

ORC-TSITES Defines Orc timer sites like Rtimer .

ORC-MATH Defines some mathematical sites.

ORC-ROBOT Defines sites for the virtual robot environment used
in the test case of Section 5.1.

ORC-LTL Provides functions necessary to compose LTL formu-
las used in model checking.

Table 4.1: Table of all modules implemented in our definition.

30

Notation Meaning

content

label A cell has a label and content.

Match this

Rewrite to that

The horizontal bar represents a rewrite, the central
operation of any rewriting-based semantics. Anything
above the bar is matched and rewritten to what is
below the bar.

Matching: When matching a cell the label is always matched
exactly. However, regarding its content, different
shapes are used that affect how the matching is done.

content

label Match a cell having exactly this content.

content

label Match a cell having this content at its beginning.

content

label Match a cell having this content at its end.

content

label Match a cell having this content anywhere in it.

Content:

Variable:Sort This notation shows a variable and its sort. Some-
times, the sort is omitted because K can infer it.

—:Sort This means any variable of the sort specified can be
matched. In this case as well, the sort can be omitted
when K can infer it.

• The dot refers to empty content. It is applied to any
sort to indicate an empty content of that sort. For
example, the empty set is •Set ; so are •List , •Map

and •Bag . Most other (non-group) sorts used in the
definition are subsorts of the K sort and so the dot
is applied to them like •K .

Table 4.2: Explaining K’s bubble cell notation.

31

syntax Pgm ::= Exp
| ExpDefs Exp

syntax Exp ::= Arg
> Exp > Param > Exp [right]

| Exp » Exp [right]
> Exp | Exp [right]
> Exp < Param < Exp [left]

| Exp « Exp [left]
> Exp ; Exp [left]

4.1.1 Expression Definitions

Defined expressions, if any, are placed before the main Orc expression. The
syntax for defining expressions is as follows:

syntax ExpDefs ::= List{ExpDef, “”}

syntax ExpDef ::= Decl := Exp

syntax Decl ::= ExpId(Params)

syntax ExpId ::= Id

4.1.2 Parameters and Arguments

Here we define what should arguments of site calls and expression calls be.
Parameters, on the other hand, are the ones an expression is defined with. It
should be mentioned that Arguments are what is called Actual Parameters in
Orc’s literature, while our Parameters are what they called Formal Parameters.

The following syntax specifies that an argument can be an Orc value, a tuple
of values, an identifier, or a call (site or expression); and a parameter can only be
an identifier. Id is K’s builtin syntactic category for a general identifier string.

syntax Arg ::= Val
| Tuple
| Id
| Call

syntax Param ::= Id

4.1.3 Calls and Handles

A Call can be a site call or an expression call. Once a site is called, as explained
in Section 4.10, it becomes a Handle. The four categories under it are also

32

explained in that section. Site identifiers, SiteId are divided into ISiteId for
internal sites and TSiteId for timer sites.

syntax Call ::= SiteCall
| Handle
| ExpCall

syntax SiteCall ::= SiteId(Args) [strict(2)]

syntax ExpCall ::= ExpId(Args)

syntax Handle ::= FreeHandle
| PubHandle
| SilentHandle
| TimedHandle

syntax FreeHandle ::= handle (SiteCall)

syntax PubHandle ::= pubHandle (Val)

syntax SilentHandle ::= silentHandle (SiteCall)

syntax TimedHandle ::= timedHandle (Int, SiteCall, Arg)
| timedHandle (Int, SiteCall)

syntax SiteId ::= ISiteId
| TSiteId

Internal or Meta Functions. Functions such as pubHandle and silentHandle,
and later seen prllCompMgr and seqCompMgr, are specific to the definition in K

and are not part of Orc. They are used in rules.

4.1.4 Values

Orc values are defined as described in Section 2.1.1.

syntax Val ::= Int
| Float
| Bool
| String
| signal

| stop

33

4.1.5 Manager Functions

Finally, we define the manager functions that were introduced in Section 3.1 for
the combinators, a function for each composition.

syntax Exp ::= prllCompMgr (Int)
syntax Exp ::= seqCompMgr (Param, Exp, Int)
syntax Exp ::= prunCompMgr (Param)
syntax Exp ::= othrCompMgr (Exp)

4.1.6 Semantic Elements in Syntax

A few semantic elements appear in the defined syntax.

• The first is precedence, denoted by the > operator, seen in the Exp
production. As mentioned in Section 2.1.1, the order of precedence of the
four combinators from highest to lowest is: the sequential, the parallel, the
pruning, and then the otherwise combinator. In addition, we prefer for
simpler expressions to be matched before complex ones; so, on top, we put
Arg.

• The second semantic element that is defined within the syntax module of
K is right- or left-associativity.

• The third is strictness. strict(i) means that the ith term in the right
hand side of the production must be evaluated before the production is
matched.

Associativity of the Parallel Operator. It is important to note that the
parallel operator is defined as right-associative, even though it is in fact fully-
associative. However, because that option is not provided in K, we use rules to
work around it; Section 4.4 details how this is resolved by transforming the tree
of parallel composition into a fully-associative soup of threads.

4.2 Main Module

When K simulates a program, it generates a state-transition system where every
state is represented by a configuration. The main module is where we define the
structure of the configuration, shown in Figure 4.2, as a nested-cell structure.
Each cell holds certain information about the state of the program. These cells
and their contents are then used to define semantics in K rules as we will see in
the coming modules. The following overviews the cells of our configuration and
the role of each:

• Cell T is the topmost cell that holds the whole configuration. It is needed
for technical convenience.

34

• Cell threads holds all the threads in the environment.

• Cell thread represents a single thread in the configuration. It is declared
with multiplicity ’*’, which means a configuration can have zero, one, or
more threads.

• Enclosed in thread is the cell k. k is the computation cell where we execute
our program. It is where the program resides after it’s parsed. We handle
different Orc constructs from inside the k cell.

• Cell context is for mapping variables to values.

• Cell publish keeps the published values of each thread, while gPublish is
for globally published values.

• Cell props holds thread management flags.

• Cell varReqs helps manage context sharing.

• Cell gVars holds global variables for environment control.

• Cells in and out are respectively the standard input and output streams.

• And finally, cell defs holds the expressions defined at the beginning of an
Orc program.

Each cell is declared with an initial value. The $PGM variable, which is the initial
value of the k cell, tells K that this is where we want our program to go (after it
is parsed). So by default, the initial configuration, shown in Figure 4.2, would
hold a single thread with the k cell holding the entire parsed Orc program as
the Pgm non-terminal defined in the syntax above.

Modularity in Defining a Configuration. What is convenient about defin-
ing a configuration this way is that you can add new cells to the configuration,
if needed, as you progress through defining your language. Suppose you want to
add a feature to your already-defined language that needs certain information
that you hadn’t captured. In that case, you would add a cell to the configuration
whose role is to hold that information; and then, without the need to change
any of the current rules, you would make rules that target and manipulate that
cell according to certain other predicates in the environment.

4.3 Combinators Module

The combinators or operators module called ORC-OPS defines how Orc’s four
combinators should be handled. It is the most significant semantics module;
therefore it was designed and implemented with great care.

Orc has four combinators that combine subexpressions according to four
distinct patterns of concurrent execution, parallel, sequential, pruning and other-
wise. We chose to explain each in its own section, even though they are all part

35

configuration:

0

tid

$PGM :Pgm
k

•Map

context

•List

publish

-1

parentId

•Set

props

•List

varReqs

thread*

threads

""

defId

•Params

defParams

•K

body

def*

defs

•List

gPublish

•List

gVars

•List

in

•List

out

T

Figure 4.2: Structure of the configuration.

36

of the same module, because each takes as much space to explain as a whole
module and even more, and because we would like to separate the rules for each
combinator.

The next four sections will explain the implementation of these four combi-
nators. We chose to start with the combinators because they are the core part
of the semantics, and because their rules hold many concept and techniques that
are essential to understand before diving into the rest of the definition. To make
these concepts and techniques easily accessible and identifiable, we tried as much
as possible to list them under properly titled sub-headings, so that even if a
reader jumped forward in the chapter and faced an unexplained concept, or forgot
its meaning, then they can quickly jump back and skim through sub-headings to
find it.

4.4 Parallel Combinator

To process parallel expressions, we start with the simplest and the most general,
i.e., f | g. It is handled through Rule 4.4.1, which creates a manager thread
carrying an internal function called prllCompMgr(X), short for Parallel Com-
position Manager, where X is the count of sub-threads it is managing. Child
threads are created as well for each of the expressions f and g. In K, any new
thread will run immediately and all threads in the environment automatically
run concurrently. So it suffices to create a thread to tell K to run it in parallel
with other threads. In this case, f and g will run in parallel, which is what we
intended.

Now what remains is to generalize that to extend it to any number of
subexpressions in the initial expression. For example, f | g | h should rewrite to
a managing thread with prllCompMgr(3) and create three child threads, and so
on. To achieve that, we made Rule 4.4.2. To understand its role, consider the
parallel expression:

E1 | E2 | E3 | E4

Recall that in the syntax module, we declared the parallel operator right-
associative. This means that our expression will be parsed effectively like the
following:

E1 | (E2 | (E3 | (E4)))

In this case, Rule 4.4.1 will apply to that expression where F is substituted
by E1 and G by (E2 | (E3 | (E4))). So now we need to simplify or flatten
this compound G expression, and we do so using Rule 4.4.2. This rule applies
recursively on the compound expression, creating a new child thread every time
and increasing the count of managed children by one. This rule effectively makes
the parallel operator fully associative.

37

Thread Properties

The props cell is used throughout the specification to carry information about
threads that is vital for rules to communicate so that each carries out its role.
In this case, Rule 4.4.1 and Rule 4.4.2 give the following two properties to each
child thread they create:

• The publishUp property which means that a thread is allowed to pass any
value found in its publish cell to its parent, whether it published it itself
or received it from a child. A certain rule, Rule 4.11.3, is responsible for
passing values up the thread tree from threads carrying this property. This
is an example of communication between rules using the props cell. This
property is given to multiple kinds of threads as detailed in Section 4.11.1.

• The prllChild property is one of many properties that tag a thread by
its type. It is used to ensure that the matched thread is indeed a parallel
child. Even though this specific property is not needed because the rules
already match the parent having the prllCompMgr function, the properties
similar to this one in other combinators are indeed necessary as will be
seen. On top of that, such properties are useful for debugging purposes
and when simply viewing simulation results.

Cell Shapes on the Rewritten Side

We explained in Table 4.2 under matching the meaning of each shape. Those
meanings apply only when the shapes are at the matching side of a rewrite. At
the rewritten side, a both-side-smooth cell will make cell have the exact same
content as specified whereas a both-side-torn cell tells K to fill unspecified content
of the cell with the default values specified in the configuration. Always, for the
sake of modularity, we use the latter. There never is a case where incomplete
cells would help anywhere, at least in our definition.

Creating New Threads

Every time a new thread is created, the following points are done:

• A both-side-torn cell is used to let K fill in the rest of the content as we
just explained.

• The context map, which carries variable mappings, is copied from the
parent to the newly created child, because a child shares the scope of its
parent.

• The new thread is assigned a new thread ID (tid) using K’s ! operator.

• The parent’s thread ID is copied into the parentId cell of the child thread
to link child to parent.

38

(F :Exp | G:Exp)

PCM (2)

k

C

context

MgrId
tid

S :Set

props

thread

•Bag

F

k

C

context

!NewId1 :Int

tid

MgrId
parentId

SetItem ("prllChild") SetItem ("publishUp")
props

thread

G

k

C

context

!NewId2 :Int

tid

MgrId
parentId

SetItem ("prllChild") SetItem ("publishUp")
props

thread

requires ¬Bool"prllChild" in S

Rule 4.4.1: Parallel prep.

39

(F :Exp | G:Exp)

F

k

SetItem ("prllChild")
props

MgrId
parentId

thread

PCM (N :Int)

PCM (N +Int 1)

k

C

context

MgrId
tid

thread

•Bag

G

k

C

context

!NewId:Int

tid

MgrId
parentId

SetItem ("prllChild") SetItem ("publishUp")
props

thread

Rule 4.4.2: Parallel expression flattening.

40

Halted Thread Cleanup

After the created threads finish execution, they need to be erased. Generally, we
consider a thread to have finished execution (halted) if it has no more commands
to execute, and it has nothing to publish. So we check its k and publish cells,
and if they are empty, we erase the thread.

In the case of threads whose manager keeps count of, like the parallel compo-
sition manager does, we need to decrement the count as we erase them. This is
the work of Rule 4.4.3; it kills a child thread that has halted and decrements the
count of managed children. Once all managed threads are killed, Rule 4.4.4 is
responsible for halting the manager by simply erasing the content of its k cell.
These two rules constitute the cleanup for the parallel composition. Each of the
four combinators has similar cleanup rules that will be explained.

Modularity in Thread Management

We should point out here that in the grander scheme of our design, no thread is
responsible for erasing itself, but rather every manager is responsible for cleaning
up its own children. This will become clear throughout this section as we go
through every combinator’s cleanup rules. Also, every parent is a manager,
which means that the only threads that are not managers are the leaves of the
thread tree. Therefore, this design adds modularity. This is especially obvious
considering that each of the managed threads can itself be—and would most
probably be—a manager of other threads.

prllCompMgr (N :Int)

prllCompMgr (N −Int 1)

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("prllChild")
props

thread

•Bag

Rule 4.4.3: Parallel cleanup 1.

41

prllCompMgr (0)
•K

k

•List

publish

thread

Rule 4.4.4: Parallel cleanup 2.

4.5 Sequential Combinator

Processing a sequential expression f >x> g is done exactly as the design shown
in Figure 3.2 intended. Rule 4.5.1 is the first step. It prepares the expression by
rewriting it into a manager thread carrying the internal function seqCompMgr in
its k cell. It also creates a child that will execute f . The manager keeps three
pieces of information that are the three arguments of seqCompMgr in order:

• X, the parameter through which values are passed to instances of G.

• G, the right-side expression.

• The third argument, a count of active instances of G which is initially 0.

The first two are used in the spawning rule, explained shortly, while the third
is necessary for defining cleanup rules. Let us have a close look at the created
child. It carries its parent’s context map as well as its thread ID, and a property
declaring its type a seqLeftExp, a left-side child of a sequential expression. This
is similar to children of the parallel expression we just explained in Section 4.4,
except that this child does not have the publishUp property. That is because
any value that this child publishes should be handled directly and exclusively by
its parent, the seqCompMgr; and it does that in Rule 4.5.2.

The Spawning Rule

Rule 4.5.2, the spawning rule, is the key rule of the sequential combinator, and
here is how it works. It fires as soon as the left-side child publishes a value. It
detects the published value by matching the content of the child’s publish cell
with a type Val. Keep in mind that this rule applies every time F publishes a
value. When it fires, the following happens:

• The rule creates a thread and places in its k cell the expression G which
the manager has been carrying for this purpose.

• The manager’s count of managed instances of G is incremented by one.

• The created child is given the publishUp property.

42

(F :Exp > X :Param > G:Exp)

seqCompMgr (X , G, 0)

k

C

context

MgrId
tid

thread

•Bag

F

k

C

context

!NewId:Int

tid

MgrId
parentId

SetItem ("seqLeftExp")
props

thread

Rule 4.5.1: Sequential prep.

• The created child is tagged by its type: seqRightExpInstance. This is
necessary for cleanup rules.

• Most notably, the parent’s context map is copied to the created child but
with adding a mapping X 7→ V , binding the variable X in G to the value
V that was published by F .

Matching the publish Cell. Note that the publish cell has only its
right side torn, which means that the content is matched at the beginning
of the cell. That is because we need to match only one value and remove
it from the list, not caring about the rest of the cell. If the rest of the cell
contains any other values, they will be processed in the same way in future
iterations of this rule. This is how, for every value published by F , the
rule will apply.

Handling the ≫ Operator

As explained in Section 2.1.1, the ≫ operator is used like in f ≫ g when no
variable is to be bound in g. This is effectively a sequential operation where g

is followed by f which could be directly modeled in K as so. However, for the
reasons of generality, modularity, and faithfulness to the original semantics, we
chose to treat it as the syntactic sugar it is, and expand it into its more general
form. We do so by adding a dummy variable so that the expression becomes

43

seqCompMgr (X , G, N :Int)

seqCompMgr (X , G, N +Int 1)

k

C

context

MgrId
tid

thread

MgrId
parentId

ListItem (V :Val)
•List

publish

SetItem ("seqLeftExp")
props

thread

•Bag

G

k

C (X 7→ V)
context

!NewId:Int

tid

MgrId
parentId

SetItem ("seqRightExpInstance") SetItem ("publishUp")
props

thread

Rule 4.5.2: Sequential spawning.

44

f >dummy_var> g. Rule 4.5.3 does just that though it needs a K built-in
function to define the string dummy_var as an identifier.

F ≫ G

F > String2Id ("dummy_var") > G

Rule 4.5.3: Sequential, de-sugaring of the ≫ operator.

Cleanup: Right-side Instances

Cleaning up created threads is done differently for each of the two types of
threads: the left-side child, and the right-side instance. We start with the latter,
which will continue to be treated like parallel threads. Rule 4.5.4 matches a child
thread tagged with seqRightExpInstance that has halted and has nothing to
more to publish, erases it and decrements the count of managed instances from
the manager. This is similar to Rule 4.4.3, the parallel child cleanup rule. In
fact it is so similar that these two can be generalized into one rule with a bit of
work—if the count of children could be isolated and the two properties unified—,
but that would add unnecessary complexity and will make the rules look less
uniform and harder to read and understand.

seqCompMgr (X , G, N :Int)

seqCompMgr (X , G, N −Int 1)

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("seqRightExpInstance")
props

thread

•Bag

Rule 4.5.4: Sequential cleanup 1.

Cleanup: Manager and Left-side Child

After all right-side instances had halted and are cleaned up, we proceed to clean
up the left-side child and the manager using Rule 4.5.5. This rule matches two
things: A manager thread that has 0 managed children and left-side child that

45

has halted. Both of these must have empty publish cells, as is the case in
all cleanup actions. Once the match is done, the rule then erases the manager
function thus by halting the manager thread; and it kills the left-side child. Note
that this rule may apply under a slightly different scenario, that is if the left-side
child halts without publishing any values, which is a correct application.

seqCompMgr (—, —, 0)
•K

k

MgrId
tid

•List

publish

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("seqLeftExp")
props

thread

•Bag

Rule 4.5.5: Sequential cleanup 2.

4.6 Pruning Combinator

Just like with the parallel and sequential combinators, we process a pruning
expression F <X< G first through a prep rule, that is Rule 4.6.1. It rewrites
the expression to a manager thread and creates two child threads, a left-side
child executing F and a right-side child executing G. That is because according
to the semantics, both should start execution concurrently even if F needs a
value from G.

The Pruning Operation

As soon as G publishes a value comes the role of Rule 4.6.2. This is the key
rule here that does the actual pruning, and here is how it works. It matches
three threads, the manager and its two children, which are linked to the parent
through its thread ID.

Right-side Child. In the right-side child, Rule 4.6.2 does the following:

• It terminates any computation (—:K) in the k cell by rewriting it to
nothing (•K).

• It takes the first value from the publish cell and erases the rest.

46

(F :Exp < X :Param < G:Exp)

prunCompMgr (X)

k

C

context

MgrId
tid

thread

•Bag

F

k

C

context

ChildId1 :Int

tid

MgrId
parentId

SetItem ("prunLeftExp") SetItem ("publishUp")
props

thread

G

k

C

context

ChildId2 :Int

tid

MgrId
parentId

SetItem ("prunRightExp")
props

thread

Rule 4.6.1: Pruning prep.

47

• It changes the property from prunRightExp to pruneMe so that the cleanup
rule processes it later.

Matching the publish Cell. Note that the publish cell has both sides
smooth, which means that matching is done on the whole cell. Note also
that it matches a V :Val at the beginning of the cell followed by K’s —
operator which means anything. This is to make sure that, if the cell
contains any other published values, the rewrite to nothing (•List) happens
to the whole cell.

Left-side Child. At the same time, the rule (Rule 4.6.2) maps X to V in the
left-side child, where V is the value published by the right-side child.

prunCompMgr (X :Param)
k

MgrId
tid

thread

—:K
•K

k

ListItem (V :Val) —
•List

publish

SetItem ("prunRightExp")

SetItem ("pruneMe")

props

MgrId
parentId

thread

•Map

X 7→ V

context

MgrId
parentId

SetItem ("prunLeftExp")
props

thread

Rule 4.6.2: Pruning prune.

De-sugaring the ≪ Operator

Similarly to the de-sugaring of the sequential ≫ operator, we use Rule 4.6.3 to
expand F ≪ G to F <dummy_var< G

48

F ≪ G

F < String2Id ("dummy_var") < G

Rule 4.6.3: Pruning, de-sugaring of the ≪ operator.

Pruning Cleanup

Pruning has two cleanup rules to handle the two different cases where a pruning
expression can halt:

• The first case is that G publishes and F halts. This is handled by Rule 4.6.4
which matches the left-side child having halted and not had any published
values left in its publish cell; and matches the right-side child with the
property pruneMe, which is given by Rule 4.6.2 to indicate that G has
published.

• The second case is when F and G have both halted without G having
published anything. In this case, the right-side child would still have the
property prunRightExp, but its k cell should be empty. And this is what
Rule 4.6.5 matches.

Both Rule 4.6.4 and Rule 4.6.5 kill both children and halt the manager to
mark the pruning expression itself halted.

4.7 Otherwise Combinator

Rule 4.7.1 processes the otherwise expression F ; G by rewriting it into a manager
function called othrCompMgr, and creating a child thread executing F and carry-
ing the property othrLeftExp. G is stored as an argument of othrCompMgr. Now
we have two cases to deal with; either F publishes or halts without publishing:

• If F publishes a value, then Rule 4.7.2 applies. It discards G from the
manager and gives F the publishUp property. Now F will continue its
execution normally and pass published values towards its parent.

• If F halts without publishing anything, then Rule 4.7.3 applies. It kills
the left-side child, creates a child executing G and gives it the publishUp

property, effectively replacing F by G.

Otherwise Halting and Cleanup

Now whether Rule 4.7.2 or Rule 4.7.3 applied, we will end up with similar
configurations because of the symmetry of the two rules. This makes Rule 4.7.4,
the cleanup rule, apply in both cases once the child halts. The rule will then kill
the child and halt the manager.

49

prunCompMgr (—)
•K

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("prunLeftExp")
props

thread

MgrId
parentId

SetItem ("pruneMe")
props

thread

•Bag

Rule 4.6.4: Pruning cleanup 1.

50

prunCompMgr (—)
•K

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("prunLeftExp")
props

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("prunRightExp")
props

thread

•Bag

Rule 4.6.5: Pruning cleanup 2.

(F :Exp ; G:Exp)

othrCompMgr (G)

k

C

context

MgrId
tid

thread

•Bag

F

k

C

context

!NewId:Int

tid

MgrId
parentId

SetItem ("othrLeftExp")
props

thread

Rule 4.7.1: Otherwise prep.

51

othrCompMgr (G:Exp)

othrCompMgr (•K)

k

MgrId
tid

thread

MgrId
parentId

L:List

publish

SetItem ("othrLeftExp") •Set

SetItem ("publishUp")

props

thread

requires L 6=K
•List ∧Bool G 6=K

•K

Rule 4.7.2: Otherwise left published.

othrCompMgr (G)

G

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

SetItem ("othrLeftExp")
props

thread

•Bag

requires G 6=K
•K

Rule 4.7.3: Otherwise left halted without publishing.

52

othrCompMgr (•K)
•K

k

MgrId
tid

thread

•K

k

MgrId
parentId

•List

publish

thread

•Bag

Rule 4.7.4: Otherwise cleanup.

4.8 Recap

Before moving on to the next module, we would like take a pause and look back.
In Section 3.1, we showed the design of the semantic rules of the combinators
through schematics; and in Section 3.2, we pointed out how the uniform structure
of thread hierarchy was common in the rules of all four combinators. We also
showed that the rules are oblivious to how complex the expressions processed
are. And this was reconfirmed by the rules explained so far in this chapter where
each thread is managed by its parent. This kind of abstraction made it possible
to handle publish-ups and halts modularly and will make—as will be seen later
in this chapter—defining general operations like publishing and variable lookup
straightforward.

What About the Root Thread? We keep saying that every thread has a
manager which makes the rules modular and uniform; but what about the root
thread? How is it managed? Well, the root thread, the topmost node, is the
whole program. If it halts then that’s the end of the program’s execution. If it
is stuck trying to resolve a variable, then the program is stuck, and is rightfully
so. If it needs to publish or pass on published values then that is the output
of the whole program; and that is called root publishing and it is handled by
Rule 4.11.4.

Matching Contents of k Cells. In almost all the rules, k cells are both-side-
smooth, meaning they are matched entirely. That is because if a k cell had a
complex expression, then it will be expanded by parsing and combinators’ prep
rules.

53

4.9 Synchronization

What we mean by synchronization is controlling the order of certain events; in
particular, controlling the order at which certain rules apply. We synchronize
threads on the following actions:

• Site calling (Rule 4.10.1).

• Publishing (Rule 4.11.2).

• Time ticking (Rule 4.13.4).

And these actions are done in that order. So no site is allowed to publish before
all site calls in the environment have been made. Likewise, time is not allowed
to tick unless all publishes currently in the environment have been done.

This is implemented through the rules that apply these actions. Each of these
rules has a side condition that guarantees the synchronization. The conditions
use predicate functions explained in Section 4.14.

4.10 Site-Call Management

Here we explain how the module ORC-SITECALL works. A site call is replaced by
a handle as Rule 4.10.1 does; and with that, we consider the call to have been
made. In the syntax explained in Section 4.1, we defined four types of handles:

• FreeHandle: an unprocessed handle. This needs a rule exclusive to the site
called in order to process it.

• PubHandle: A processed handle that represents a site publishing the value
v.

• SilentHandle: A processed handle for a site that should remain silent, and
will not undergo further processing by any rule.

• TimedHandle: A processed handle for a site that should remain silent, and
will not undergo further processing by any rule.

From there on, individual rules that define individual sites, such as if and
Rtimer, rewrite the handles into the appropriate type of handle. Those rules
can be viewed in the ORC-ISITES module and the ORC-TSITES module.

For example, see Rule 4.10.2 defining the behavior of the site if in case its
argument is evaluated to true. Recall that in Orc, if (true) publishes a signal,
but if (false) remains silent. So when a site publishes, its handle is rewritten
to a pubHandle which is then processed in the ORC-PUB module explained in
Section 4.11. To process if (false), we rewrite it into a different type of handle,
silentHandle, in Rule 4.10.3.

54

SC :SiteCall

handle (SC)

Rule 4.10.1: Site calling.

handle (if(true))

pubHandle (signal)

Rule 4.10.2: if (true).

Why the Silent Handle? If a site is supposed to remain silent, why do we
rewrite its handle into a SilentHandle instead of just ignoring it and leaving it as
a FreeHandle? The answer is because all site calls need to be processed in order
for certain other rules to apply. And in our model is no other way of knowing
whether a handle has been processed and is supposed to remain silent, or hasn’t
been processed at all. This approach is discussed in Section 7.2.4.

4.11 Publishing

The way publishing is implemented is through the publish cell. The act of
publishing a value, in our semantics, is moving that value from inside a pubHandle

in the k cell, into the publish cell. This is exactly what Rule 4.11.2 does. In
Orc, only sites publish values, and we stay true to that in our semantics. Even
an expression that is just a single value v, which we call a lone Val, is actually
syntactic sugar for the site call let(v). Rule 4.11.1 processes that by simply
rewriting the lone Val v into let(v).

Taking that and the rules we have seen so far in this chapter into account,
we can see that any Orc expression will boil down to a group of site calls each in
its own thread. Once any of these sites publishes a value, it will be carried by a
pubHandle.

After that, we only need to process pubHandle’s; and we do so in Rule 4.11.2
just as explained in the beginning of this section.

Using Predicates in Publishing. The side condition of Rule 4.11.2 checks
that two functions return false. We gave these functions a special name, predi-
cates, and they are defined in the ORC-PREDICATES module which is explained

handle (if(false))

silentHandle (if(false))

Rule 4.10.3: if (false).

55

in Section 4.14. These predicates are given as an argument the whole bag of
threads excepting the one thread being matched where the publish is being made.
The side condition ensures that no publish is made unless the environment is
empty of SiteCalls and of FreeHandles, both of which were just explained in
Section 4.10. This is to enforce the priority of site calling over publishing.

V :Val

let(V)

k

Rule 4.11.1: Lone Val de-sugaring.

A:Bag

pubHandle (V :Val)
•K

k

•List

ListItem (V)

publish

thread

threads

"publishCount" 7→ I :Int

I +Int 1

gVars

requires ¬Bool(anySiteCall (A)) ∧Bool ¬Bool(anyFreeHandle (A))
[transition]

Rule 4.11.2: Publishing.

The transition Attribute. The transition attribute decorating a rule marks it
as an observable transition from one configuration to the next. Very few rules are
given this attribute because it adds exponential complexity to the computations
made by K, evident especially when using state search. All other rules are given by
default the structural attribute marking them as unobservable transitions, which
means that even if they were designed to produce nondeterministic behavior, it
will not be explored by state searching. In Chapter 5, we run examples that
explore nondeterministic behavior. The choice of which rules are given this
attribute is discussed in Section 7.1.1.

56

4.11.1 Publishing to Parents

A manager thread expecting values from a certain child simply sets a property
in the child called publishUp in the cell props. As pointed out earlier, in our
schematic drawings of the semantics in Chapter 3, this property is denoted by a
letter P in the lower left corner of the thread box as in Figure 3.5. To complete
the picture, notice that the child receiving the publishUp property might itself
be a manager of a deeper composition, awaiting values to be published up to it.
This behavior creates a channel from the leaves of a thread tree up to its root,
which will publish the output of the whole Orc program in the cell gPublish.

Threads which are given the publishUp property are:

• All children of a Parallel Composition Manager.

• All right-side instances of a Sequential Composition Manager

• The left-side thread of a Pruning Composition Manager

• Any child of an Otherwise Composition Manager.

Rule 4.11.3 is responsible for publishing values to parents and Rule 4.11.4
handles that for the root thread publishing to the gPublish cell.

MgrId
tid

•List

ListItem (V)

publish

thread

MgrId
parentId

ListItem (V :Val)
•List

publish

SetItem ("publishUp")
props

thread

Rule 4.11.3: Published value propagation.

4.12 Variable Lookup

When a variable name is encountered in a computation, i.e. in the k cell, it is
resolved by Rule 4.12.1. This rule checks the context cell for the variable name
and, if found mapped to a value, it substitutes the variable in the computation
with the value. However, if it is not found, Rule 4.12.2 creates what we call a
variable request.

57

0

tid

-1

parentId

ListItem (V :Val)
•List

publish

thread

•List

ListItem (V)

gPublish

Rule 4.11.4: Publishing at root.

4.12.1 Variable Requests

Similar to the propagation of published values up a thread tree is that of variable
lookup inquiries. A child thread shares the scope of its parent, but not vice
versa. Therefore, every thread is allowed to access the context map of any of its
ancestors. An inquiry about a variable name, represented by the varRequest

function, carrying the requester thread’s ID, is created by Rule 4.12.2 and then
propagated recursively up the tree by Rule 4.12.3, through a specialized cell
varReqs. The request keeps propagating up the tree until it is resolved by
Rule 4.12.5 or until it reaches the root in which case Rule 4.12.4 resets it.

Condition on Reset. Notice the side condition of Rule 4.12.4. The first part
checks that the variable is not found in the current context which is a condition
common with Rule 4.12.2 and Rule 4.12.3. The second part, that is our focus
here, is specific to the reset action and holds the key to understanding the
underlying mechanism. That is the condition: CurrPcount >Int Pcount. CurrP-
count is being retrieved from inside the gVars cell from a global environment
variable called publishCount which keeps the number of publishes made since
the program started. The publishing rule, Rule 4.11.2, updates that variable with
every publish. Now, the function varReq keeps, as an argument, the number of
publishes made when it was created. The condition ensures that at least one
publish has been made after the request was created. This is important because
if no publish has been made, then nothing is gained from resetting the request,
because no other action may produce a value for the requested variable. Another
reason for this condition is that it will prevent an infinite loop of the request
propagating until the root, resetting, getting recreated, propagating again and
so on.

Role of varReqs Cell. This cell is where each thread keeps requests that
reached it from its descendants. It is a list of thread IDs of the requester children.
When a request is pushed up to a parent, like in Rule 4.12.3, the item concerning
the requester is deleted from the child and created at the parent. This happens
until eventually an ancestor who has the needed variable gets the requester’s ID
in its varReqs cell; and that makes Rule 4.12.5 apply resolving the request.

58

Scope. It is important to note that no manager is allowed to share the context
of any of its children with the others, nor is it allowed to access it. Otherwise,
some values could be accidentally overwritten if copied from one scope to another.

Expected Variables. Both Rule 4.12.2 and Rule 4.12.3 do not even try to
request a variable in case it is expected to be provided by a managing parent.
Such is the case when a left-side child of a pruning composition is requesting the
variable that the manager is supposed to receive from the right-side child. That
case is checked by the side conditions of those two rules.

X :Param

V

k

X 7→ V :Val

context

Rule 4.12.1: Basic variable lookup.

X :Param

varRequest (X , Pcount)

k

Requester
tid

pid
parentId

C

context

S :Set

props

thread

ParentK :Exp
k

pid
tid

•List

ListItem (Requester)

varReqs

thread

"publishCount" 7→ Pcount:Int
gVars

requires ¬BoolX in keys (C) ∧Bool

(ParentK 6=K prunCompMgr (X) ∨Bool "prunRightExp" in S)

Rule 4.12.2: Variable request creation.

59

varRequest (X , —)
k

Requester
tid

thread

From

tid

S :Set

props

To

parentId

C

context

ListItem (Requester)
•List

varReqs

thread

ParentK :Exp
k

To

tid

•List

ListItem (Requester)

varReqs

thread

requires ¬BoolX in keys (C) ∧Bool

(ParentK 6=K prunCompMgr (X) ∨Bool "prunRightExp" in S)

Rule 4.12.3: Variable request propagation.

60

varRequest (X :Param, Pcount:Int)

X

k

Requester
tid

thread

C

context

ListItem (Requester)
•List

varReqs

thread

"publishCount" 7→ CurrPcount:Int
gVars

requires ¬BoolX in keys (C) ∧Bool CurrPcount >Int Pcount

Rule 4.12.4: Variable request reset.

varRequest (X :Param, —)

X

k

Requester
tid

•Map

X 7→ A

context

thread

X 7→ A:Arg
context

ListItem (Requester)
•List

varReqs

thread

Rule 4.12.5: Variable request resolution.

61

4.13 Time

Continuing on from Section 3.3, we now delve into the subject of timing. Let us
point out the distinction between different kinds of Orc sites. Orc has internal,
external, and timer sites. Internal sites are those that run locally and need zero
time to respond, but do not involve time. External sites run on an outside server
and may respond at any given time or may not respond at all. Timer sites run
locally like internal sites, but they involve time. Let us elaborate.

Timer Sites. Timer sites—Clock, Atimer and Rtimer—are used for compu-
tations involving time. Since these are local sites, they respond at the exact
moment they are expected to. So, Rtimer(0) responds immediately. Atimer and
Rtimer are essentially the same except that the former takes an absolute value
of time as an argument and the latter takes a relative value of time.[MC07]

• Clock publishes the current time.

• Rtimer(t) publishes a signal after t time units.

• Atimer(t) publishes a signal at time t.

4.13.1 The δ Function

Here we give a simple informal description of the δ function. Effectively, the δ

function is what advances time in the environment. It is applied to the whole
environment, and so it will be applied on all threads, and on the environment’s
clock to increment it. It will not have an effect on computations of internal sites,
but only on timer sites and external sites that are yet to respond. One such site
is Rtimer(t), which publishes a signal after t time units. The δ function’s effect
can be directly seen on Rtimer in the following rule:

δ(Rtimer(t)) ⇒ Rtimer(t − 1), where t > 0.
Therefore, the semantics of the Rtimer site, and any timed site, is only

realizable through the δ function. When δ successfully runs on the whole
environment, it is said to have completed one tick.

4.13.2 Implemented Time Modules

We implemented two different modules for time. The first applied δ sequentially
which is one reason why we implemented a second time module that has the
potential to apply δ concurrently. We called them ORC-TIMESEQ and ORC-TIME

respectively. Since the latter is the preferred module, we explain it thoroughly
in this section, but start with an overview of the former.

Sequential Time Module

The first of the two time modules implemented is called ORC-TIMESEQ; it tries
to follow the model more literally than the other. Here we explain key rules

62

whereas the whole module can be found in Appendix A.4.2. This module applies
δ to the whole environment and then processes threads one by one. When it
finds a thread with a timed site, it applies δ to it without processing it, which
is the role of Rule 4.13.1. After that, Rule 4.13.2 executes δ on the thread by
decrementing the time value held in its timeHandle. Both these rules keep count
of threads that applied δ. The count is used to determine if all timed threads
applied δ, which is when Rule 4.13.3 ticks the environment’s clock.

δ

 timedHandle (T :Int, SC , A)
k C :Bag

thread B:Bag

δ (timedHandle (T , SC , A))
k C

thread δ (B)

threads

"threads_applied_delta" 7→ I :Int

I +Int 1

gVars

requires T >Int 0

Rule 4.13.1: Sequential δ applied to a single thread.

Concurrent Time Module

This module named ORC-TIME is a simpler and more straightforward module for
time. On top of that, it is closer to the followed model in that the clock tick occurs
before delta is applied, not after. It also makes perfect use of the predicates
(Section 4.14). Observe the use of predicates in the side condition of Rule 4.13.4,
the first rule of this module, to guarantee the priority explained in Section 4.9.
This rule ticks the clock and turns on a flag called time.ticked. This flag
enables Rule 4.13.5 to process timeHandle’s. This can apply concurrently on all
such threads even though multiple instances of this rule will all have to read the
gVars cell, because K allows for concurrency with shared reads. After all timed
threads are processed, Rule 4.13.6 turns the time.ticked flag back off.

This whole operation repeats as long as timeHandle’s are in the environment.
Once the timer on one of these handles reaches zero, Rule 4.13.7 rewrites it into

63

δ (timedHandle (I :Int, SC :SiteCall, A))

timedHandle (I −Int 1, SC , A)

k

S :Set •Set

SetItem ("applied_delta")

props

thread

"threads_executed_delta" 7→ N :Int

N +Int 1

gVars

requires I >Int 0 ∧Bool ¬Bool"applied_delta" in S

Rule 4.13.2: Sequential δ processed.

timedHandle (0, —, V :Val)

pubHandle (V)

k

thread

Rule 4.13.3: Clock tick after sequential δ is applied.

64

a pubHandle where it can be further processed by the ORC-PUB module.

A:Bag
threads

"time.ticked" 7→ false

true

"time.clock" 7→ Clk:Int

Clk +Int 1

gVars

requires Clk <Int TL
∧Bool¬Bool(anySiteCall (A))

∧Bool¬Bool(anyFreeHandle (A))
∧Bool¬Bool(anyPubHandle (A))

∧Bool anyTimedHandle (A)
∧Bool¬Bool(anyAppliedDelta (A))

Rule 4.13.4: Clock Tick.

4.14 Predicate Functions

The predicate functions, defined in the ORC-PREDICATES module, are meta
functions used in side conditions of certain rules to ensure the correct order
of applying those rules. They do so by checking the environment for threads
carrying certain features. Following is a list of these functions, their rules, and
what each of them is checking in the environment:

• Rule 4.14.1, anySiteCall: Any thread that has a site call that hasn’t been
made.

• Rule 4.14.2, anyFreeHandle: Any thread that has an unprocessed handle.

• Rule 4.14.3, anyPubHandle: Any thread that has a handle ready to publish
a value.

• Rule 4.14.4, anyTimedHandle: Any thread that has a timed handle.

• Rule 4.14.5, allAppliedDelta: All threads have applied δ.

• Rule 4.14.6, anyAppliedDelta: Any thread that has the applied_delta

flag on and is not reset.

Note that these rules come in pairs of two, one that returns true, for instance, if
the thread is found and another that returns false otherwise. The ‘otherwise’
counterparts were omitted here but are shown in Appendix A.9.

65

timedHandle (I :Int, SC , A)

timedHandle (I −Int 1, SC , A)

k

S :Set •Set

SetItem ("applied_delta")

props

thread

"time.ticked" 7→ true

gVars

requires I >Int 0 ∧Bool ¬Bool("applied_delta" in S)

Rule 4.13.5: Apply δ.

A:Bag
threads

"time.ticked" 7→ true

false

gVars

requires allAppliedDelta (A)

Rule 4.13.6: δ applied.

timedHandle (0, —, V :Val)

pubHandle (V)

k

"time.ticked" 7→ false

gVars

Rule 4.13.7: Timed handle done.

anySiteCall

—:Bag

—:SiteCall

k

thread

true

Rule 4.14.1: Match any thread that has a site call that hasn’t been made.

66

anyFreeHandle

—:Bag

—:FreeHandle

k

thread

true

Rule 4.14.2: Match any thread that has an unprocessed handle.

anyPubHandle

—:Bag

—:PubHandle

k

thread

true

Rule 4.14.3: Match any thread that has a handle ready to respond with a value.

anyTimedHandle

—:Bag

timedHandle (I :Int, —, —)
k

thread

true

requires I >Int 0

Rule 4.14.4: Match any thread that has a timed handle.

allAppliedDelta

—:Bag

—:TimedHandle

k

S :Set

props

thread

false

requires ¬Bool"applied_delta" in S

Rule 4.14.5: Match any thread that hasn’t yet applied δ.

67

anyAppliedDelta

—:Bag

—:TimedHandle

k

SetItem ("applied_delta")
props

thread

true

Rule 4.14.6: Match any thread that has the applied_delta flag on and is not
reset.

4.15 Expression Definition and Expression Calls

4.15.1 Expression Definitions

Orc allows for defining expressions in a program before the main Orc expression.
Expression Definitions are parsed into the ExpDefs syntactic category seen in
the syntax in Section 4.1. That is defined as a list of expressions definitions,
each of which is expanded further in the syntax. Rule 4.15.1 takes that whole
production of a single expression definition, creates for it a new def cell, and
places each part of it into the appropriate cell inside that def. That rule applies
recursively, once for each definition, until the list of expression definitions is
empty. That is when Rule 4.15.2 discards the empty list and allows the main
Orc expression to be on the top of the computation so that other rules can do
their work.

4.15.2 Expression Calling

When an expression call is encountered, the identifier, that is the expression
name, is matched with the ones stored in the defs cell. If it is not found then
the program gets stuck. If it is, then the defined body substitutes the call while
the arguments substitute the parameters in that body. The substitution is done
using K’s builtin substitution module. The substitution is done through four
rules that are too technical to list here, but can be found in Appendix A.3.

4.16 Testing and Validation

Having the goal of formal verification to ensure soundness for safety-critical
applications, ideally, we would like to formally prove the correctness of our K

specification. However, formal validation is not possible because there is no
formal semantics to validate ours against. We are basing our work directly

68

ExpId:ExpId(DefParams:Params) := Body:Exp Ds:ExpDefs

Ds

E :Exp

k

0

tid

thread

•Bag

ExpId
defId

DefParams
defParams

Body
body

def

Rule 4.15.1: Expression Definition Prep.

•ExpDefs E :Exp

E

Rule 4.15.2: Expression Definition End.

69

on an informal semantics. That being said, it is still in our interest to build
sufficient confidence in the correctness of our work. We do so through running
tests which are sample Orc programs that test different elements of Orc, and
different arrangements of orchestrations. Other works using K, some of which we
reviewed in Section 6.3 have solely depended on this approach to build confidence
in the correctness of their semantics; these are the semantics of C [ER12b][gita],
Java [BR15][gitb], RISC Assembly [As4], Python [gitc] and Verilog [MKMR10].

Table 4.3 is a summary of all test programs we have run. For the full details
of these programs, see Appendix B. Most of them are basic examples with the
aim of testing individual features, and some test subtle principles and delicate
mechanics. Chapter 5 demonstrates and discusses the results of running selected
key examples in the K tool.

70

Orc Features

P
ar

al
le

l

Se
qu

en
ti

al

P
ru

ni
ng

O
th

er
w

is
e

LT
L

M
od

el
C

he
ck

in
g

E
xp

re
ss

io
ns

R
ec

ur
si

on

T
im

e

Sy
nc

hr
on

iz
at

io
n

V
ar

ia
bl

e
L

oo
ku

p

Sc
op

e

B.1.1
√

B.1.2
√ √

B.1.3
√ √

B.1.4
√ √

B.1.5
√ √

B.1.6
√ √

B.1.7
√ √

B.1.8
√ √

B.1.9
√ √ √

B.1.10
√

B.1.11
√

B.1.12
√

B.1.13
√ √

B.1.14
√

B.1.15
√

B.2.1
√ √

B.2.2
√ √

B.2.3
√ √ √

B.3.1
√

B.3.2
√

B.3.3
√

B.3.4– B.3.9
√ √

B.3.10
√ √

B.4.1
√

B.4.2
√

B.4.3
√

B.4.4
√ √

B.5.1–B.5.14
√ √ √

B.5.18
√ √ √

B.5.19
√ √ √ √ √

B.5.20
√ √ √ √ √

B.5.21
√ √ √ √ √

B.5.22
√ √ √ √ √ √

B.5.23
√ √ √ √ √ √

T
es

t
E

xa
m

pl
es

B.6.1–B.8.13
√ √ √

Table 4.3: Summary of test programs in Appendix B and what features of Orc
they test.

71

5

C
h

a
p

t
e

r

Executing the Semantics

In this chapter, we show the results of executing the K semantics on sample Orc
programs as well as running verification techniques on them, namely state space
search and model checking. We first go through a case study that envelopes
all elements of Orc and showcases the power of the K tool. Then, we discuss
various examples that address technical and subtle points in our definition.

5.1 Case Study: Robot Movement

In this section, we present a case study showing the formal analysis that can
be done on Orc programs using the K tool. We defined external Orc sites to
simulate a robot moving around a two-dimensional room with walls and possibly
obstacles. The room consists of six tiles, 2 rows by 3 columns, where a crossed
out tile represents an obstacle. The results of the executed programs in this
case study will be shown as terminal output as well as visualized. We could
of course work with a more complex environment whether through a bigger
room or through controlling more than one robot; but the purpose here is a
simple demonstration and a proof of the concept. Other reasons are discussed in
Section 7.2.2.

5.1.1 Semantics of Robot Sites

Table 5.1 explains the semantics of the robot sites that we created for this case
study. We also made each of these sites take a certain amount of time to respond;
this was made as simulation of the time needed to make the physical movement.
The amount time each site consumes is shown in the table as well.

72

Site Time Semantics

stepFwd() 3 Causes the robot to move a distance of one tile
in the direction it is facing.

rotateRight() 1 Rotates the robot 90 degrees clockwise.

rotateLeft() 1 Rotates the robot 90 degrees counterclockwise.

scan() 1 Scans the tile directly in front of the robot for
obstacles.

mapInit(<Length,Width>) 0 Initializes a room with the given dimensions
in tiles.

init(Position, Direction) 0 Places a robot in the given position facing the
given direction.

setObstacles(Locations) 0 Places obstacles in the given location on the
map.

is_bumper_hit – Not a site, but a flag that turns on when the
robot bumps into a wall or an obstacle. It
turns off just as the robot attempts the next
move.

Table 5.1: Semantics of Orc sites that control the robot and the time needed by
each site.

Hitting an obstacle while trying to move forward will still consume the time
needed for the full movement, but will turn on a flag called isBumperHit which
will reset on the next action.

Moreover, locks have been implemented in sites that move the robot. This is
a simulation of a motor responsible for moving the robot. Calling a site that
causes movement will first try to reserve the motor. After the movement is done,
the motor is released.

5.1.2 Running the Programs

Let us now start the simulation with simple examples and increase the complexity
as we go through the rest. Our aim is not to increase complexity simply through
bigger examples, but to reach just enough complexity such that nondeterminism
is introduced, and to show the results of running formal verification tools on a
such a simple environment.

73

(a)

1 <gVars >

2 " BotVars " |->

3 " direction " |-> (0 ,1)

4 " position " |-> (1 ,1)

5 " is_bumper_hit " |-> false

6 "clock" |-> 0

7 </gVars >

(b)

Figure 5.1: Result of Example 5.1.1.

Example 5.1.1. The following program will initialize the robot environment
and place a robot in the default position <1,1> facing the default direction
which is north. The result of running this program is shown in Figure 5.1.

1 bot. mapInit () >> bot.init ()

Example 5.1.2. In this example, we simply move the robot one step forward.
The result is shown in Figure 5.2.

1 bot. mapInit () >> bot.init () >> bot. stepFwd ()

Example 5.1.3. Now let us place an obstacle in front of the robot and command
it to move forward. Running this program will cause the robot to bump into the
obstacle, resulting in a state shown in Figure 5.3.

1 bot. mapInit () >> bot.init () >> bot. setObstacles (<1,2>) >>

bot. stepFwd ()

Notice that the robot has consumed the time needed for the movement even
though it wasn’t successful in moving to the adjacent tile because of the obstacle.
Also notice that the is_bumper_hit flag is true. Here, we can try out LTL
model checking for the same program by running it using the --ltlmc option
and giving a LTL formula like so:

74

(a)

1 <gVars >

2 " BotVars " |->

3 " direction " |-> (0 ,1)

4 " position " |-> (1 ,1)

5 " is_bumper_hit " |-> false

6 "clock" |-> 0

7 </gVars >

(b)

Figure 5.2: Result of Example 5.1.2.

1 krun program .orc --ltlmc "<>Ltl gVarEqTo (\" is_bumper_hit

\", true)"

The LTL formula starts with a LTL operator <>Ltl which means eventually.
The function gVarEqTo is defined in our ORC-LTLMC module and it obviously
takes two arguments, a flag in the cell gVars and a value to check. The function
retrieves the flag specified and passes it to K’s LTL model checker which then
checks if that flag is eventually going to be true. In this case, the flag is
eventually going to be true in any case, and so the command returns true. If
however, the model checker detected nondeterminism which leads to multiple
execution paths, and it found that in one path, the flag does not eventually
become true, then it displays that path to the user as a counter example to
prove that the formula does not hold.

Example 5.1.4. In this example, we analyze a slightly larger program. In it,
two Orc expressions are defined. The first one, called ChangeLane, is the key
component that introduces an element of nondeterminism. Curiously enough, it
tries to perform two movements in parallel. The movements effectively aim to
strafe the robot to the right and to the left respectively. But because only one
of these two movements can reserve the robot’s motor, only one of them will be
executed every time this expression is called. The question of "Which one?" is
what creates nondeterministic behavior.

The next defined expression in the program is SmartStep. It uses the site

75

1 <gVars >

2 " BotVars " |->

3 " direction " |-> (0 ,1)

4 " position " |-> (1 ,1)

5 " is_bumper_hit " |-> true

6 "clock" |-> 3

7 </gVars >

Figure 5.3: Result of Example 5.1.3.

if as explained in Example 2.5. Its behavior is that it checks the tile ahead for
obstacles; if it does not find one, it steps into that tile; if it finds one, it tries to
avoid it by calling ChangeLane which we just explained.

The main expression sets up the environment to look like in Figure 5.4a, then
simply calls SmartStep.

1 ChangeLane (b) :=

2 (

3 (bot. rotateRight (b) >> bot. stepFwd (b) >> bot. rotateLeft (

b))

4 | (bot. rotateLeft (b) >> bot. stepFwd (b) >> bot.

rotateRight (b))

5)

6
7 SmartStep (b) :=

8 bot.scan(b) > isBlocked >

9 (

10 if(isBlocked) >> ChangeLane (b)

11 | ifNot(isBlocked) >> bot. stepFwd (b)

12)

13
14 bot. mapInit () >>

15 bot. setObstacles (<2,2>) >>

16 bot.init (<2,1>,<0,1>) > x > SmartStep (x)

The expected behavior from running this program is that the robot ends
up in either of the positions shown in Figure 5.4b. But what if we want to
explore all the different execution paths that this program may follow. Here
comes K’s state search tool. Using the option --search in the command gives
us one final configuration for each possible execution path. search can also
display configurations at a certain depth if needed instead of exploring the whole
tree. A pattern can be provided to the search command to specify what kind
of configuration we are looking for. Here, we give a general pattern that says
we’re interested in the contents of the gVars cell. We run the program with the
following command:

1 krun program .orc --search --pattern "<gVars > M:Map </gVars

>"

76

Running this command will result in the output shown in Figure 5.4c. It
displays two solutions, each representing a possible final configuration. Solution
1 shows the robot having switched to the left lane, while solution 2 shows it at
the right lane.

Next, we use LTL model checking to verify that the robot never bumps into
an obstacle or a wall. We use the following command:

1 krun program .orc --ltlmc "[] Ltl gVarEqTo (\" is_bumper_hit

\", false)"

We use the LTL operator []Ltl which means always. This returns true

which means that along all execution paths, the flag is_bumper_hit is always
false (during the whole execution).

In the next example, we use the same program but with a different setting.

Example 5.1.5. In this example, we use the same program as in Example 5.1.4,
but we change the setting such that the robot is forced to bump into something.
The initial setting is shown in Figure 5.5a. Like the previous example, the robot
will nondeterministically choose between switching lanes to its right and to its
left. However, this time, the robot will, in one of two cases, hit its bumper
into the obstacle to its left. The program is shown below without repeating the
defined expressions ChangeLane and SmartStep.

1 bot. mapInit () >>

2 bot. setObstacles (<1,1>,<2,2>) >>

3 bot.init (<2,1>,<0,1>) > x > SmartStep (x)

We run the program with the same command as Example 5.1.4:

1 krun program .orc --search --pattern "<gVars > M:Map </gVars

>"

Running this command will result in the output shown in Figure 5.5b which
has two solutions. Solution 1 shows the robot in its initial position, while solution
2 shows it at the right lane. We have already seen solution 2 in Example 5.1.4 and
we expect it, but solution 1 doesn’t provide enough information as to whether
the robot hit its bumper during its movement or not. We know it performed
some actions because the clock is at 6 time units, but the is_bumper_hit flag is
false. That is because we programmed it such that it resets before performing
any new move. So we will use LTL model checking to verify whether it bumped
or not. We give the following command:

1 krun program .orc --ltlmc "[] Ltl gVarEqTo (\" is_bumper_hit

\", false)"

Now if it has never hit, this command should return true, yet instead, it
returns a trace of configurations that represent an execution path in which the

77

(a)

(b)

1 Solution 1:

2 <gVars >

3 " BotVars " |->

4 " direction " |-> (0 ,1)

5 " position " |-> (1 ,1)

6 " is_bumper_hit " |->

false

7 "clock" |-> 6

8 </gVars >

1 Solution 2:

2 <gVars >

3 " BotVars " |->

4 " direction " |-> (0 ,1)

5 " position " |-> (3 ,1)

6 " is_bumper_hit " |->

false

7 "clock" |-> 6

8 </gVars >

(c)

Figure 5.4: Result of Example 5.1.4.

robot has indeed hit its bumper. The trace it shows ends at the configuration of
interest where we find that is_bumper_hit is indeed true. The whole trace is too
lengthy to list here. So Figure 5.5c shows only that mid-execution configuration
of interest—the relevant part of it.

78

(a)

1 Solution 1:

2 <gVars >

3 " BotVars " |->

4 " direction " |-> (0 ,1)

5 " position " |-> (2 ,1)

6 " is_bumper_hit " |->

false

7 "clock" |-> 6

8 </gVars >

1 Solution 2:

2 <gVars >

3 " BotVars " |->

4 " direction " |-> (0 ,1)

5 " position " |-> (3 ,1)

6 " is_bumper_hit " |->

false

7 "clock" |-> 6

8 </gVars >

(b)

1 <gVars >

2 " BotVars " |->

3 " direction " |-> (-1,0)

4 " position " |-> (2 ,2)

5 " is_bumper_hit " |-> true

6 "clock" |-> 5

7 </gVars >

(c)

Figure 5.5: Result of Example 5.1.5.

5.2 Various Key Programs

This section shows unique Orc programs that test certain technicalities and
features.

Example 5.2.1. Variable Scope
Here is an orchestration made out of three pruning combinators and several

calls to the site Add. This tests variable lookup and scope sharing and ensures
that no incorrect scope sharing is occurring. Notice how the parentheses are

79

arranged such that the parse tree would be like shown in the code’s comments.
The topmost node in the tree is prunMgr(f1), i.e., the thread managing the
pruning expression whose center variable is f1. Notice the positions of the
other two managers in the tree. prunMgr(f1) will simply take the result from
its right-side child adding 1 and 1, and will bind f1 to it in its left-side child
prunMgr(f3). Now, prunMgr(f2) is trying to resolve the variable f1 in order
to call the site adding 1 to f1. It does not have f1 in its context, so it will
request it from its parent which indeed has f1 in its context mapped to 2. After
prunMgr(f2) resolves the variable f1 and after its right-side child publishes, it
binds f2 to the published value 3 in its left-side child which is adding f1 and f2.
Now it is prunMgr(f3) who will finally bind its variable to the value published
by its right-side 5. Its left-side child requires f2, so it will request it from its
parent, but because f2 is not in its scope, that variable request will never be
resolved and the program will get stuck right there.

This example demonstrates how our variable lookup system works and how
the request-from-parent system ensures each thread’s scope remains correct.

This is also available in the appendix as Example B.1.13.

1 (Add(f2 ,f3) < f3 < (Add(f1 ,f2) < f2 < Add(f1 ,1))) < f1 <

Add (1 ,1)

2
3 /* Here is how it is structured

4
5 prunMgr (f1)

6 / \

7 prunMgr (f3) 1+1

8 / \

9 This f2 --------> f2+f3 prunMgr (f2)

10 is stuck. / \

11 It should not f1+f2 1+f1

12 see the value

13 provided by

14 prunMgr (f2).

15
16 */

Example 5.2.2. Factorial
This Orc program defines the factorial function and helps us observe its

equivalent in Orc calculus. It uses a few mathematical sites that we defined
in the semantics, particularly in the ORC-MATH module. Notice the calls of if

in parallel. As we pointed out in Example 2.5, this is how if b then f else g

is expressed in Orc. The main point here however is demonstrating the use of
recursion.

This is also available in the appendix as Example B.3.10.

1 // Define factorial

2 Factorial (x) := (((if(r) < r < Equals (x ,0)) >> 1) | ((if(r

) < r < Gr(x ,0)) >> (Mul(a,x) < a < (Factorial (b) < b <

80

Sub(x ,1)))))

3
4 // Print factorial (5)

5 Factorial (5) > f > print(f)

Example 5.2.3. This example is taken directly from Misra’s work [MC07] where
it demonstrated the use of timer sites. It is used here to test timer sites; but
more particularly, it test a subtle point in the semantics which is that publishing
has priority over passing time. So if two threads are running in parallel, one
that is ready to publish and the other is just waiting for time to pass, then time
should never pass until the publish is done. Likewise, site calling has priority
over passing time, and this example tests that as well.

To understand how this is tested, notice the sites count.inc() which incre-
ments a certain count, and count.read() which reads the value of that count.
The program starts by publishing three numbers. These could be any numbers.
The point is to call count.inc() three times because, for each publish, the
sequential combinator ≫ will instantiate a thread that will increment the count.
Each of these three instances will do its work and then publish a signal which
in turn calls the site zero which does nothing.

In parallel with all of that runs a thread with Rtimer(1). Its job is to
simply publish a signal once one time unit has passed, after which the site
count.read() will be called and would publish the current value of the count.

The final value of the count should be equal to the number of publishes done
at the very beginning, which is three, exactly three—well, nothing could stress
that more than this famous passage:

"First shalt thou take out the Holy Pin, then shalt thou count to
three, no more, no less. Three shall be the number thou shalt count,
and the number of the counting shall be three. Four shalt thou not
count, neither count thou two, excepting that thou then proceed to
three. Five is right out. Once the number three, being the third
number, be reached, then lobbest thou thy Holy Hand Grenade of
Antioch towards thy foe, who being naughty in my sight, shall snuff
it." — Monty Python and the Holy Grail (1975)

Thankfully we got that out of the way as it was most assuredly not in-
tended. Now the goal of the test is to assure that time does not pass be-
fore all three publishes are done, nor even before the calls to count.inc()

are made. This can be tested with LTL model checking using the command
krun --ltlmc "<>Ltl isGPublished(3)" which means that this must eventu-
ally publish 3.

This is also available in the appendix as Example B.4.4.

1 (1|1|1) >> count.inc () >> zero () | Rtimer (1) >> count.read

()

81

5.3 Conclusion

This chapter demonstrated the potential of exploiting K’s state search capabilities
and the power of its LTL model checking for purposes of formal verification.
It also showed and discussed a few key examples so that we can see some
technicalities of our implementation. For more examples, see Appendix B; it has
many more examples with results detailed, some of which involve state searching
and model checking.

82

6

C
h

a
p

t
e

r

Related Work

In this chapter, we cover related works done on Orc as well as on other service
composition frameworks regarding modeling and verification as well as compo-
sition techniques. We also review selected semantic definitions that were done
using K.

6.1 Service Composition

Service orchestration, explained in Section 2.1.1, is but one specific approach
to applying service composition, which is simply composing services to form
other services. In this section, we review other approaches to service composition
pointing out which are pure formalisms. Then we discuss some verification
techniques done on those formalisms.

6.1.1 Approaches to Service Composition

Service composition, as the name suggests, is when one or more services are
needed for a bigger task and thus are utilized to compose a bigger service. Service
composition is an active research field with many publications addressing different
problems. For example, the problem of which services to select is well-covered in
the literature. Works such as [OMF14] focus on the best estimation of Quality
of Service (QoS). Other works focus on how to prioritize services given their
QoS, some on general service composition [DBS15, PSFRC14, PSFRC14], and
some specifically on service orchestration [RBJ12].

A more relevant area of research is the different approaches to service
composition. Some of these approaches are based on Artificial Intelligence

83

techniques [ZSPZ15, VBS15, WYM15, WZ13, FS14, ZGCZ14]. Some other
approaches are based on Petri-nets [CBC12, TJZ11, VECDM09, CL08].

In [cF14], T, ut,u and Fiadeiro developed a relational variant of logic program-
ming based on Horn-clause logic programming to give a service orchestration
semantics. They introduced a new categorical model of service orchestrations
they called orchestration scheme.

Aside from orchestration, one well-known formalism is called service choreog-
raphy. A significant work that advanced formal methods research about service
choreography is that of Su et al. in [SBFZ08] who formalized a theory for service
choreographies. This is significant because until then, service choreography had
not had a well-defined set of rules and concepts [cF14].

Also worthy of mention here is the Service-Centered Calculus (SCC) [BBC+06].
Recent surveys on different service composition approaches can be found

in [JSO14, SQV+14, GMM15].

Service-based computations

In [GSS13], Gabarró et al. propose a way to analyze the behavior of service-
based computations "in a realistic way". They argue that in under realistic
conditions, like under mobile network stress, the demand for a particular service
can fluctuate—that a service can be attractive and acquire more users if it has a
high QoS which in turn will put it under stress with which it will fail to deliver its
QoS. They use game theory’s Nash equilibria to model and analyze this behavior.
As a continuation of [GSS13], Gabarró et al. in [GGS14] and later in [SGK15],
where they finally composed a rather amusing title for their work, went on to
build uncertainty profiles for QoS fluctuations, also using Nash equilibria, and
using Orc to model uncertain cloud environments.

Others used BPEL-WS as a service composition framework and a service
behavioral description language to analyze the computational complexity of
description-based compositions [NKL11].

BPEL4WS [JEA+07]

For the sake of coverage, we present an overview of BPEL4WS, a prominent
service orchestration framework, and then we contrast it with Orc. BPEL4WS
(Business Process Execution Language for Web Services) builds on two main
features inspired by two frameworks: the feature of directed graphs taken
from IBM’s WSFL (Web Services Flow Language); and the feature of a block
structured language taken from Microsoft’s XLANG (Web Services for Business
Process Design). The main concept by which BPEL would be understood is the
division of processes into two types: executable and abstract. BPEL supports
the modeling of the following two types.

• Abstract processes which are not executable. An abstract process is a
business protocol that specifies the behavior of messaging between different
peers without revealing the internal behavior of any of them.

84

• Executable processes which specify four things:

– the order in which activities constituting the process are executed,

– the peers that the process involves,

– the messages those peers exchange,

– and exception handling.

In BPEL4WS, A process consists of activities which are either primitive or
structured. Observe the likeness to Orc’s sites and combinators in these activities.
Primitive activities comprise the following:

• invoke: invokes a web service.

• receive: waits for a message from an external source.

• reply: replies to an external source.

• wait: waits for a given amount of time.

• assign: copies data from one place to another.

• throw: throws errors and exceptions.

• terminate: terminates the entire service instance.

• empty: does nothing.

Structured activities are used to combine simple simple structures into more
complex ones, just like Orc’s combinators. Structured activities comprise the
following:

• sequence: puts execution in a sequential order.

• switch: used for conditional routing.

• while: the while loop.

• pick: used for race conditions decided by timing or external triggers.

• flow: used for parallel routing.

• scope: groups activities under a certain exception handler.

How BPEL Compares to Orc. In contrast with Orc, an executable process
can be seen as a site call, whereas an abstract process can be seen as an expression
call. Note that expressions in Orc could contain site calls, so abstract processes
might contain executable processes, which is totally conformant with BPEL’s
definition of abstract processes. However in Orc, the concept of an abstract
process is even more abstract than in BPEL in that Orc allows for seamless
restructuring and evaluation of the contents of an abstract process using its
unique concurrency combinators.

85

Moreover, all activities defined in BPEL, primitive or structured, are included
in Orc, either explicitly as local (built-in) sites, or implicitly as the inner-workings
of the concurrency combinators.

We can see that Orc is simpler and more intuitive than BPEL4WS.

6.1.2 Verification of Service Composition Frameworks

Using timed automata-based approaches for verification of service compositions
has been done many times in recent years. For instance, it was used in verification
of service choreographies [DPC+06, ECDVM11]. In another work, a new model
called the Enhanced Stacked Automata Model (ESAM) has been used to express
and verify BPEL4WS service compositions [NEKN15]. The verification was of
properties like dead transition, deadlock, liveness and reachability, and was done
through the SPIN tool [spi] that we mentioned in Section 2.2.5.

6.2 Orc-related

This section discusses the work most significantly related to ours. First we
preview different formal semantics of Orc, and then we review in more detail
efforts with the same goal as ours, i.e., to formally analyze and verify Orc
programs specifically. We then compare them with this thesis’ work summarizing
the comparison in a nice table.

6.2.1 Formal Semantics of Orc

Apart from the SOS semantics of Orc given in [MC07], its timed SOS ex-
tension given in [WKCM08], and its later transaction-executing extension,
Ora [Kit13], several denotational formalizations of Orc’s semantics have been
developed [HMM05, KCM06, RKB+08, WKCM07, LZH10]. In [DNMT12], De
Nicola et al. introduced a new formalism combining concepts and primitives
from two calculi: Orc and Klaim [BBDN+03]. These denotational formalizations
are not of much interest to us because they do not describe operational behavior,
and thus cannot be executed. The most comprehensive up-to-date work on
Orc is the yet-to-be-published book by Misra [Mis14], which gives a thorough
treatment of the Orc semantics, the Orc language, and its powerful features for
structured concurrent programming.

Token semantics of Orc

In [Thy11], Thywissen presents what is called a token semantics. It is based
on SOS with two modifications: (1) environments are carried in tokens, and
(2) values are carried in tokens, keeping the program’s text reserved instead of
reduced to a value. This makes the semantics free of rewriting.

86

Concurrent Semantics of Orc

A relevant work was done by Perrin et al. who in [PJM13] introduced the idea
behind two semantics they constructed for Orc: one they called an instrumented
semantics which extracts as much information as possible in a single execution;
and the other is a concurrent semantics which describes all possible behaviors of
the program. Their plan is to use these two to design a debugger for Orc that
can replay execution scenarios and provide tools for root cause analysis and race
conditions. The semantics were published later in [PJM15], but the debugger is
yet to be published.

6.2.2 Verification of Orc

Dong et al., 2014 [DLSZ14]

The work presented by Dong et al. in this paper is very relevant to ours.
They wrote a complete semantics of Orc with the aim of formal verification
using two different approaches. The first was a Timed Automata written in
Computational Tree Logic (CTL) and verified using Uppaal [BDL04, BDL+06,
upp]. The second was Constraint Logic Programming (CLP) and was verified
using CLP(R) [JMSY92]. Both specifications were based on the timed operational
semantics of Orc provided in [WKCM08]. For the first approach, they gave a
proof of the weak bi-simulation relation between their Timed Automata and the
target semantics. For the second approach, they made a proof sketch of the weak
bi-simulation between any finite state Orc program and their corresponding CLP
program. Unfortunately, none of the two approaches has the capacity to preserve
Orc’s true concurrency, nor can they translate Orc programs automatically to
their respective analyzable languages.

Moreover, they did formal verification on a certain Orc program checking for
the following properties: "Will the program terminate on all inputs?" and "Is it
deadlock-free?". However, verification using Uppaal in this way has a major
flaw in that it can only verify an Orc expression with a fixed number of threads,
thus by limiting recursion.

The CTL part of this work follows what Dong et al. had proposed in [DLSZ06],
an automata approach, i.e., writing Orc expressions as networks of timed au-
tomata, which would allow the use of Uppaal as a model checking tool for timed
automata models.

Defining Orc in Maude

In his PhD work [AlT11], and later in [AM15], Alturki translated the Structural
Operational Semantics (SOS) of Orc into the corresponding rewrite theory, which
he wrote in Maude as a complete specification of Orc. He then used Maude as
a formal analysis tool for Orc programs. To avoid the inefficiency in execution
inherent in the rules necessary for such a semantics in Rewriting Logic, he further
developed an equivalent Reduction Rewriting Semantics that minimized the

87

number and complexity of the needed rewrite rules. He then wrote Object-
based semantics which improves on the previous two by introducing object-level
concurrency which laid the foundation for a distributed deployment of Orc’s
rewriting specification. Despite being similar to our semantics in that both are
rewriting based, the semantics of [AM15] considered a lower level abstraction
where site and expression calls and site returns, in addition to publishing values,
were all observable actions.

6.2.3 Summary and Comparison

Table 6.1 and Table 6.2 compare different definitions of Orc; namely Whermann’s
timed SOS [WKCM08], Dong’s Timed Automata [DLSZ06, DLSZ14], Dong’s
Constraint Logic Programming [DLSZ14], Alturki’s Rewriting Logic definition
in Maude [AlT11], and finally, our K definition.

Table 6.1 starts by showing which features of Orc were implemented in
each definition. It ignores certain technical features because we are comparing
primarily theoretical definitions. For example, we don’t mention variable lookup
and scope. The TA definition has no specification of scope at all. In it, value
passing is done primitively by giving unique names to variables. However, that
is not part of the Orc calculus, rather it is a technical issue that could be
overlooked.

Another important issue is how Orc programs are processed. In our work,
we defined an executable semantics of Orc. With that, the K tool enables us to
feed it raw Orc programs without any translation. The TA and CLP approaches
do not have that. They have an extra layer of manual work they need to do in
order to analyze an Orc program using their respective tools. And that also acts
as the core reason why they have lower scalability.

6.3 Work done in K

A Complete Java Semantics. After years of work, Bogdănas, and Ros,u
unveil the complete executable semantics of Java written in K in [BR15]. The
paper discusses many details of Java that required complex rules to be written
in K. To validate their work, they developed their own test suite consisting of
840 Java programs. Even though they developed the test suite in tandem with
their semantics, it is general enough that it can be used by any Java analysis
project. Their K semantics passed all the tests.

Similar to Java’s semantics, some real-life languages have been formalized in K

to develop analysis and verification tools for, most notably, C11 [ER12a, HER15]
and JavaScript ES5 [PSR15].

Additionally, several other partial semantics have been developed:

• Python [Dwi13].

• Scheme [MHR07].

88

Definition

Feature Wh TA CLP MOrc KOrc

Captured
Features:

Expression
definition

Recursion #

Time

Synchronization # #

Non-determinism #

Tool support # G# G#

Model construction
of Orc programs:

Systematic

Automatic # # #

Model executable # G# G#

Enables model checking

Table 6.1: Comparison of different definitions of Orc; Wh:Whermann
SOS [WKCM08], TA: Dong’s Timed Automata [DLSZ14, DLSZ06], CLP:
Dong’s Constraint Logic Programming [DLSZ14], MOrc: Alturki’s Maude defi-
nition [AlT11], KOrc: This thesis’ definition.
 : Fully Implemented G#: Partially Implemented #: Not Implemented

89

Definition

Feature TA CLP MOrc KOrc

Constructed
Orc models:

Scalability # G#

Model checking capability G#

Definition:

Expressiveness # G#

Conciseness # # G#

Maintainability # G#

Human-readability # G#

Comprehensiveness G#

Abstractness

Modularity G# #

Closeness to abstract syn-
tax

G#

Closeness to original SOS # #

Table 6.2: Comparing the strength of certain qualities of the different definitions
of Orc in relation to ours; TA: Dong’s Timed Automata [DLSZ14][DLSZ06],
CLP: Dong’s Constraint Logic Programming [DLSZ14], MOrc: Alturki’s Maude
definition [AlT11], KOrc: This thesis’ definition.
#: Significantly Less G#: Relatively Less : Almost Equal

90

• Haskell [Laz12].

• Verilog [MKMR10].

• A RISC Assembly [As4].

• LLVM assembly [EL12].

• An automobile OS [ZCO14].

91

7

C
h

a
p

t
e

r

Conclusion

In this thesis, we presented a complete formal executable semantics for Orc
constructed in the K framework in what is the first time where K is used to
define either of what Orc is: a calculus for concurrent operations, and a service
composition system. We also demonstrated, through a case study and a number
of examples, how its executability may be used not just for interpreting Orc
programs, but also for dynamic formal verification, such as model checking.

This semantics is distinguished from other operational semantics by the
fact that it is not directly based on Orc’s interleaving SOS semantics. It takes
advantage of concurrent rewriting facilitated by the underlying K formalism to
capture its concurrent semantics; and it makes use of K’s innovative notations
to document the meaning of its various combinators.

We now discuss some of the limitations of this work and the future work that
is needed to perfect this semantics and to utilize it for formal verification.

7.1 Limitations

7.1.1 Observable Transitions and State Space Explosion

When a program is simulated by K, it goes through a number of transitions dic-
tated by the transition rules that applied. Rules can be structural or transitional
(computational) as mentioned in Section 2.2.4. When a transition rule applies,
we call that an observable transition, and it creates a new configuration. That
makes the change made by that rule observable and traceable. We can see the
trace of configurations using the state search tool in K.

We make most rules structural, because transitions make the simulation and
analysis considerably slower. The rules that we choose to make into transitions

92

are usually the ones that introduce nondeterminism, i.e., the ones that have the
potential to fork the program into multiple paths of execution. We did that with
the rules that move the robot, which is how we were able to produce multiple
execution paths from the same program in Example 5.1.4.

Another rule that we made transitional was the publishing rule. That is to
introduce nondeterminism in the question of which site of many called in parallel
will publish first. However, nothing dictates that they can’t publish at the same
time, except when a pruning manager would take only one published value out
of multiple. In that case, the only way to guarantee that all solutions would be
explored is by making publishing a transition. However, in some places, this was
undesirable because it would give permutations of all concurrent publishes and
that exponentially increases the number of solutions. We got more than 1000
solutions in an example with a few sets of two to three concurrent publishes.

In this subject is a limitation and potential for future development to alleviate
this problem. It is a well known problem called state space explosion. A possible
future direction is using techniques such as equational abstraction or partial
order reductions.

7.1.2 Threats to Validity

Untested Cases

Some parts of our test set shown in Appendix B was not designed with a tester’s
mentality and is prone to miss some cases. For example, most of our tests end by
publishing a value. So the focus has been on publishing rather than on halting.
In particular, nothing tests specifically Rule 4.6.5, because no test focuses on
that specific part of an expression halting—although it is tested more broadly
like in the factorial of Example 5.2.2. However, focusing all of the tests into
publishing is very relevant to the general design, especially that not much of the
semantics is dedicated to silent site calls. Testing halting will naturally receive
a lot of attention when real time is introduced and site calls will then follow a
time-to-live model as mentioned in Section 7.2.4. When sites timing out is the
focus, halting will be the primary test subject.

So, such cases are natural and are certainly not unexpected.
That being said, this generally poses a threat to the validity of our semantics.

On the other hand, what abates this threat is the underlying design that makes
the whole specification highly modular; and the bigger the definition, the more
valuable the modularity.

Human Error

Human error is always a threat. Even though K minimizes human error through
its concise and expressive notation—which is made clear by the amount of detail
it can express through a handful of rules as seen from Chapter 4—, it does
not eliminate it. Throughout the period this semantics was being developed,
some modules were completely rewritten from scratch. Central modules like

93

publishing, time, the combinators, site-handling, etc., have all been rewritten at
least once and modified several times over. The work seemed never ending and
that is always the case with such projects. After all, the goal from this project
and the whole of formal methods is only to reduce human error to naught. Let
us keep trying then!

7.2 Future Work

Here we discuss the areas of our work which we perceived to have most potential
for future development.

7.2.1 A Formal Comparison

Having our semantics not depend on any other formal semantics, it would be
interesting to study formally how it relates to the existing SOS semantics or
rewriting logic semantics.

7.2.2 Extending the Case Study

In the case study discussed in Section 5.1, we simulated only one robot moving
around a small room. Currently, the module defining sites for robot simulation,
the ORC-ROBOT module, allows for bigger rooms and for more than one robot to
roam the environment; it even allows for them to collide. This is an interesting
future direction for the case study, especially once state search is optimized for
this specific application as mentioned in Section 7.1.1.

7.2.3 Making a Test Suite

The current set of test examples given in Appendix B could be made into a
test suite but it needs to be better organized, better categorized and better
documented. It needs an automatic testing script as well. And most importantly,
it needs to cover more cases. For example, subsubsection 7.1.2 mentions one
area where it needs to expand.

7.2.4 Real Time

Adopting real (dense) time into our definition in place of logical discrete time will
greatly aid in precisely capturing the behavior of external sites, which is what
Orc intended. To better explain the value of real time, consider the syntactic
category, SilentHandle, which we created to express site calls that will remain
silent, like if (false). Now this is an internal site so it should take zero time to
respond, and that is suitable for immediately rewriting it into a SilentHandle.
But for an external site, we can never know that it will remain silent forever.
So with real time, a call to an external site should be tied to a certain time-out
value after which a site call is considered silent, but after a certain time, it is

94

called again and so on. This is much more precise in capturing the behavior of
calling a site that is forever silent.

95

Bibliography

[alt] ARC | AltaRica Project. http://altarica.labri.fr/wp/.

[AlT11] Musab AlTurki. Rewriting-based Formal Modeling, Analysis and
Implementation of Real-Time Distributed Services. PhD thesis,
University of Illinois at Urbana-Champaign, August 2011. http:

//hdl.handle.net/2142/26231.

[AM15] Musab A. AlTurki and José Meseguer. Executable rewriting logic
semantics of Orc and formal analysis of Orc programs. Journal
of Logical and Algebraic Methods in Programming, 84(4):505–533,
July 2015.

[As4] Mihail Asăvoae. K semantics for assembly languages: A case study.
Electronic Notes in Theoretical Computer Science, 304:111–125,
2014.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine.
Theor. Comput. Sci., 96(1):217–248, 1992.

[BBC+06] Michele Boreale, Roberto Bruni, Luís Caires, Rocco De Nicola,
Ivan Lanese, Michele Loreti, Francisco Martins, Ugo Montanari,
António Ravara, Davide Sangiorgi, et al. SCC: a service centered
calculus. Springer, 2006.

[BBDN+03] Lorenzo Bettini, Viviana Bono, Rocco De Nicola, Gianluigi Ferrari,
Daniele Gorla, Michele Loreti, Eugenio Moggi, Rosario Pugliese,
Emilio Tuosto, and Betti Venneri. The klaim project: Theory and
practice. In Corrado Priami, editor, Global Computing. Program-
ming Environments, Languages, Security, and Analysis of Systems,
volume 2874 of Lecture Notes in Computer Science, pages 88–150.
Springer Berlin Heidelberg, 2003.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL.
In Marco Bernardo and Flavio Corradini, editors, International
School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems (SFM-RT), volume 3185 of Lecture
Notes in Computer Science, pages 200–236. Springer, 2004.

96

http://altarica.labri.fr/wp/
http://hdl.handle.net/2142/26231
http://hdl.handle.net/2142/26231

[BDL+06] Glenn Behrmann, Alexandre David, Kim G. Larsen, John Hakans-
son, Paul Petterson, Wang Yi, and Monique Hendriks. UPPAAL
4.0. In Quantitative Evaluation of Systems, 2006. QEST 2006.
Third International Conference on, pages 125–126. IEEE, 2006.

[BR15] Denis Bogdănas, and Grigore Ros,u. K-Java: A Complete Semantics
of Java. In Proceedings of the 42nd Symposium on Principles of
Programming Languages (POPL’15), pages 445–456. ACM, January
2015.

[cAL+14] Traian Florin S, erbănut,ă, Andrei Arusoaie, David Lazar, Chucky
Ellison, Dorel Lucanu, and Grigore Ros,u. The K primer (version
3.3). In Mark Hills, editor, Proceedings of the Second International
Workshop on the K Framework and its Applications (K 2011),
volume 304, pages 57 – 80. Elsevier, 2014.

[CBC12] Sofiane Chemaa, Faycal Bachtarzi, and Allaoua Chaoui. A High-
level Petri Net Based Approach for Modeling and Composition of
Web Services. Procedia Computer Science, 9:469–478, 2012.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Martí-Oliet, José Meseguer, and Carolyn Talcott. All About
Maude - A High-Performance Logical Framework, volume 4350 of
Lecture Notes in Computer Science. Springer-Verlag, Secaucus, NJ,
USA, 2007.

[cF14] Ionut T, ut,u and José Luiz Fiadeiro. Service-oriented logic program-
ming. Logical Methods in Computer Science, 2014.

[CL08] Y Chi and H Lee. A formal modeling platform for composing
web services. Expert Systems with Applications, 34(2):1500–1507,
February 2008.

[CPM06] William Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow
patterns in Orc. In Paolo Ciancarini and Herbert Wiklicky, editors,
Coordination Models and Languages, volume 4038 of Lecture Notes
in Computer Science, pages 82–96. Springer Berlin / Heidelberg,
2006.

[cR12] Traian Florin S, erbănut,ă and Grigore Ros,u. A truly concurrent
semantics for the K framework based on graph transformations. In
Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors, Graph Transformations, volume 7562 of Lec-
ture Notes in Computer Science, pages 294–310. Springer Berlin
Heidelberg, 2012.

[cRM09] Traian Florin S, erbănut,ă, Grigore Ros,u, and José Meseguer. A
rewriting logic approach to operational semantics. Information and
Computation, 207(2):305 – 340, 2009. Special issue on Structural
Operational Semantics (SOS).

97

[DBS15] Deivamani Mallayya, Baskaran Ramachandran, and Suganya
Viswanathan. An Automatic Web Service Composition Frame-
work Using QoS-Based Web Service Ranking Algorithm. The
Scientific World Journal, 2015, 2015.

[DLSZ06] Jin Song Dong, Yang Liu, Jun Sun, and Xian Zhang. Verification of
computation orchestration via timed automata. In Zhiming Liu and
Jifeng He, editors, Formal Methods and Software Engineering, 8th
International Conference on Formal Engineering Methods, ICFEM
2006, Macao, China, November 1-3, 2006, Proceedings, volume 4260
of Lecture Notes in Computer Science, pages 226–245. Springer,
2006.

[DLSZ14] Jin Song Dong, Yang Liu, Jun Sun, and Xian Zhang. Towards verifi-
cation of computation orchestration. Formal Aspects of Computing,
26(4):729–759, 2014.

[DNMT12] Rocco De Nicola, Andrea Margheri, and Francesco Tiezzi. Orches-
trating tuple-based languages. In Trustworthy Global Computing,
pages 160–178. Springer, 2012.

[DPC+06] Gregorio Diaz, Juan-JosÃľ Pardo, MarÃŋa-Emilia Cambronero,
ValentÃŋn Valero, and Fernando Cuartero. Verification of Web
Services with Timed Automata. Electronic Notes in Theoretical
Computer Science, 157(2):19–34, May 2006.

[Dwi13] Dwight Guth. A formal semantics of Python 3.3. PhD thesis,
University of Illinois at Urbana-Champaign, 2013.

[ECDVM11] M. Emilia Cambronero, Gregorio DÃŋaz, ValentÃŋn Valero, and
Enrique MartÃŋnez. Validation and verification of Web services
choreographies by using timed automata. The Journal of Logic
and Algebraic Programming, 80(1):25–49, January 2011.

[EL12] C Ellison and D Lazar. K definition of the llvm assembly language.
2012.

[ER12a] Chucky Ellison and Grigore Ros,u. Defining the undefinedness of
C. 2012.

[ER12b] Chucky Ellison and Grigore Ros,u. An executable formal semantics
of C with applications. In John Field and Michael Hicks, editors,
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, Philadelphia,
Pennsylvania, USA, January 22-28, 2012, pages 533–544. ACM,
2012.

[FS14] Yong-Yi FanJiang and Yang Syu. Semantic-based automatic service
composition with functional and non-functional requirements in

98

design time: A genetic algorithm approach. Information and
Software Technology, 56(3):352–373, March 2014.

[GGS14] Joaquim Gabarró, Alina Garcia, and Maria Serna. Computational
Aspects of Uncertainty Profiles and Angel-Daemon Games. Theory
of Computing Systems, 54(1):83–110, January 2014.

[gita] K framework — C semantics, GitHub. https://github.com/

kframework/c-semantics.

[gitb] K framework — Java semantics, GitHub. https://github.com/

kframework/java-semantics.

[gitc] K framework — Python semantics, GitHub. https://github.

com/kframework/python-semantics.

[GMM15] V. Gabrel, M. Manouvrier, and C. Murat. Web services compo-
sition: Complexity and models. Discrete Applied Mathematics,
196:100–114, December 2015.

[GSS13] Joaquim. Gabarró, Maria Serna, and Alan Stewart. Analysing
Web-Orchestrations Under Stress Using Uncertainty Profiles. The
Computer Journal, July 2013.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Ros,u. Defining the
undefinedness of C. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 336–345. ACM, 2015.

[HMM05] Tony Hoare, Galen Menzel, and Jayadev Misra. A tree semantics
of an orchestration language. Engineering Theories of Software
Intensive Systems, pages 331–350, 2005.

[isa] Isabelle/HOL. A Proof Assistant for Higher-Order Logic. https:

//www21.in.tum.de/~nipkow/LNCS2283/.

[JEA+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid
Askary, Charlton Barreto, Ben Bloch, Francisco Curbera, Mark
Ford, Yaron Goland, et al. Web services business process execution
language version 2.0. OASIS standard, 11:11, 2007.

[JGH11] Mauro Jaskelioff, Neil Ghani, and Graham Hutton. Modularity and
implementation of mathematical operational semantics. Electronic
Notes in Theoretical Computer Science, 229(5):75 – 95, 2011. Pro-
ceedings of the Second Workshop on Mathematically Structured
Functional Programming (MSFP 2008).

[JMSY92] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C.
Yap. The clp(r) language and system. ACM Trans. Program.
Lang. Syst., 14(3):339–395, May 1992.

99

https://github.com/kframework/c-semantics
https://github.com/kframework/c-semantics
https://github.com/kframework/java-semantics
https://github.com/kframework/java-semantics
https://github.com/kframework/python-semantics
https://github.com/kframework/python-semantics
https://www21.in.tum.de/~nipkow/LNCS2283/
https://www21.in.tum.de/~nipkow/LNCS2283/

[JSO14] Amin Jula, Elankovan Sundararajan, and Zalinda Othman. Cloud
computing service composition: A systematic literature review.
Expert Systems with Applications, 41(8):3809–3824, June 2014.

[Kah87] G. Kahn. Natural semantics. In FranzJ. Brandenburg, Guy Vidal-
Naquet, and Martin Wirsing, editors, STACS 87, volume 247 of
Lecture Notes in Computer Science, pages 22–39. Springer Berlin
Heidelberg, 1987.

[KCM06] David Kitchin, William R. Cook, and Jayadev Misra. A language
for task orchestration and its semantic properties. In CONCUR
2006, volume 4137 of Lecture Notes in Computer Science, pages
477–491. Springer, 2006.

[Kit13] David Wilson Kitchin. Orchestration and atomicity. PhD thesis,
University of Texas at Austin, 2013.

[KPM08] David Kitchin, Evan Powell, and Jayadev Misra. Simulation us-
ing orchestration. In José Meseguer and Grigore Ros,u, editors,
Algebraic Methodology and Software Technology, volume 5140 of
Lecture Notes in Computer Science, pages 2–15. Springer Berlin /
Heidelberg, 2008.

[KQCM09] David Kitchin, Adrian Quark, William Cook, and Jayadev Misra.
The Orc programming language. In David Lee, Antónia Lopes, and
Arnd Poetzsch-Heffter, editors, Formal techniques for Distributed
Systems; Proc. of FMOODS/FORTE, volume 5522 of Lecture Notes
in Computer Science, pages 1–25. Springer, 2009.

[KQM10] David Kitchin, Adrian Quark, and Jayadev Misra. Quicksort:
Combining concurrency, recursion, and mutable data structures.
In A.W. Roscoe, Cliff B. Jones, and Kenneth R. Wood, editors,
Reflections on the Work of C.A.R. Hoare, History of Computing,
pages 229–254. Springer London, 2010.

[LAc+12] David Lazar, Andrei Arusoaie, Traian Florin S, erbănut,ă, Chucky
Ellison, Radu Mereuta, Dorel Lucanu, and Grigore Ros,u. Execut-
ing formal semantics with the K tool. In Dimitra Giannakopoulou
and Dominique Méry, editors, FM 2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, 2012. Pro-
ceedings, volume 7436 of Lecture Notes in Computer Science, pages
267–271. Springer Berlin / Heidelberg, 2012.

[Laz12] D Lazar. K definition of haskell’98. 2012.

[LcR12] Dorel Lucanu, Traian Florin S, erbănut,ă, and Grigore Ros,u. K

framework distilled. In Franciso Durán, editor, Rewriting Logic
and Its Applications, volume 7571 of Lecture Notes in Computer
Science, pages 31–53. Springer Berlin / Heidelberg, 2012.

100

[LZH10] Qin Li, Huibiao Zhu, and Jifeng He. A denotational semantical
model for Orc language. In Theoretical Aspects of ComputingâĂŞIC-
TAC 2010, pages 106–120. Springer, 2010.

[MB04] José Meseguer and Christiano Braga. Modular rewriting semantics
of programming languages. Algebraic Methodology and Software
Technology, pages 364–378, 2004.

[MC07] Jayadev Misra and WilliamR. Cook. Computation orchestration.
Software & Systems Modeling, 6(1):83–110, 2007.

[mcr] mCRL2 201409.1. http://www.mcrl2.org/.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical computer science, 96(1):73–155, 1992.

[MHR07] Patrick Meredith, Mark Hills, and Grigore Ros,u. An executable
rewriting logic semantics of k-scheme. In Workshop on Scheme and
Functional Programming, volume 1, page 10, 2007.

[Mis04] Jayadev Misra. Computation orchestration: A basis for wide-area
computing. In Manfred Broy, editor, Proc. of the NATO Advanced
Study Institute, Engineering Theories of Software Intensive Sys-
tems, NATO ASI Series, Marktoberdorf, Germany, 2004.

[Mis14] Jayadev Misra. Structured concurrent programming. Manuscript,
University of Texas at Austin, December 2014. http://www.cs.

utexas.edu/users/misra/temporaryFiles.dir/Orc.pdf.

[MKMR10] Patrick Meredith, Michael Katelman, José Meseguer, and Grigore
Ros,u. A formal executable semantics of verilog. In Formal Methods
and Models for Codesign (MEMOCODE), 2010 8th IEEE/ACM
International Conference on, pages 179–188. IEEE, 2010.

[Mos04] Peter D. Mosses. Modular structural operational semantics. J. Log.
Algebr. Program., 60-61:195–228, 2004.

[MR07] José Meseguer and Grigore Ros,u. The rewriting logic semantics
project. Theoretical Computer Science, 373(3):213–237, 2007.

[NEKN15] Danapaquiame Nagamouttou, Ilavarasan Egambaram, Muthuman-
ickam Krishnan, and Poonkuzhali Narasingam. A verification
strategy for web services composition using enhanced stacked au-
tomata model. SpringerPlus, 4(1), December 2015.

[NKL11] Wonhong Nam, Hyunyoung Kil, and Dongwon Lee. On the com-
putational complexity of behavioral description-based web service
composition. Theoretical Computer Science, 412(48):6736–6749,
November 2011.

101

http://www.mcrl2.org/
http://www.cs.utexas.edu/users/misra/temporaryFiles.dir/Orc.pdf
http://www.cs.utexas.edu/users/misra/temporaryFiles.dir/Orc.pdf

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic, volume 2283.
Springer Science & Business Media, 2002.

[num] NuSMV: a new symbolic model checker. http://nusmv.fbk.eu/.

[ÖM07] PeterCsaba Ölveczky and José Meseguer. Semantics and pragmatics
of Real-Time Maude. Higher-Order and Symbolic Computation,
20(1-2):161–196, 2007.

[OMF14] Marc Oriol, Jordi Marco, and Xavier Franch. Quality models for
web services: A systematic mapping. Information and Software
Technology, 56(10):1167–1182, October 2014.

[PJM13] Matthieu Perrin, Claude Jard, and Achour Mostefaoui. Construc-
tion d’une sémantique concurrente par instrumentation d’une sé-
mantique opérationelle structurelle. In MSR 2013-Modélisation
des Systèmes Réactifs, 2013.

[PJM15] Matthieu Perrin, Claude Jard, and Achour Mostefaoui. Tracking
Causal Dependencies in Web Services Orchestrations Defined in
ORC. arXiv preprint arXiv:1505.06299, 2015.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

[PSFRC14] José Antonio Parejo, Sergio Segura, Pablo Fernandez, and Antonio
Ruiz-Cortés. QoS-aware web services composition using GRASP
with Path Relinking. Expert Systems with Applications, 41(9):4211–
4223, July 2014.

[PSR15] Daejun Park, Andrei Stefănescu, and Grigore Ros,u. KJS: a com-
plete formal semantics of JavaScript. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 346–356. ACM, 2015.

[RBJ12] Sidney Rosario, Albert Benveniste, and Claude Jard. Flexible prob-
abilistic qos management of orchestrations. Web Service Composi-
tion and New Frameworks in Designing Semantics: Innovations:
Innovations, page 195, 2012.

[Rc10] Grigore Ros,u and Traian Florin s,erbănut,ă. An overview of the K

semantic framework. Journal of Logic and Algebraic Programming,
79(6):397 – 434, 2010. Membrane computing and programming.

[Rc14] Grigore Ros,u and Traian Florin S, erbănut,ă. K overview and SIM-
PLE case study. In Mark Hills, editor, Proceedings of the Second
International Workshop on the K Framework and its Applications
(K 2011), volume 304 of Electronic Notes in Theoretical Computer
Science, pages 3 – 56. Elsevier, 2014.

102

http://nusmv.fbk.eu/

[RKB+08] Sidney Rosario, David Kitchin, Albert Benveniste, William Cook,
Stefan Haar, and Claude Jard. Event structure semantics of Orc. In
WS-FM 2007, volume 4937 of Lecture Notes in Computer Science,
pages 154–168. Springer, 2008.

[Ro5] Grigore Ros,u. From Rewriting Logic, to Programming Language
Semantics, to Program Verification. In Logic, Rewriting, and
Concurrency, volume 9200 of Lecture Notes in Computer Science,
pages 598–616, Cham, Switzerland, 2015. Springer.

[SBFZ08] Jianwen Su, Tevfik Bultan, Xiang Fu, and Xiangpeng Zhao. To-
wards a theory of web service choreographies. In Marlon Dumas and
Reiko Heckel, editors, Web Services and Formal Methods, volume
4937 of Lecture Notes in Computer Science, pages 1–16. Springer
Berlin Heidelberg, 2008.

[SGK15] Alan Stewart, Joaquim Gabarró, and Anthony Keenan. Uncertainty
in the cloud: An angel-daemon approach to modelling performance.
In SÃľbastien Destercke and Thierry Denoeux, editors, Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, vol-
ume 9161 of Lecture Notes in Computer Science, pages 141–150.
Springer International Publishing, 2015.

[spi] Spin - Formal Verification. http://spinroot.com/spin/

whatispin.html.

[SQV+14] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia
Szabo, Scott Bourne, and Xiaofei Xu. Web services composition: A
decadeâĂŹs overview. Information Sciences, 280:218–238, October
2014.

[Thy11] John A. Thywissen. Token Semantics of Orc. Unpublished working
draftâĂŞNot for distributionâĂŞSeptember, 27(13):48, 2011.

[TJZ11] Xianfei Tang, Changjun Jiang, and Mengchu Zhou. Automatic
Web service composition based on Horn clauses and Petri nets.
Expert Systems with Applications, 38(10):13024–13031, September
2011.

[upp] UPPAAL. http://www.uppaal.org/.

[VBS15] Klemo Vladimir, Ivan Budiselić, and Sinĭsa Srbljić. Consumer-
ized and peer-tutored service composition. Expert Systems with
Applications, 42(3):1028–1038, February 2015.

[VECDM09] Valentín Valero, M. Emilia Cambronero, Gregorio Díaz, and
Hermenegilda Macià. A Petri net approach for the design and
analysis of Web Services Choreographies. The Journal of Logic
and Algebraic Programming, 78(5):359–380, May 2009.

103

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://www.uppaal.org/

[WKCM07] Ian Wehrman, David Kitchin, William R Cook, and Jayadev Misra.
Properties of the timed operational and denotational semantics of
Orc. 2007.

[WKCM08] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra.
A timed semantics of Orc. Theoretical Computer Science, 402(2 -
3):234 – 248, 2008. Trustworthy Global Computing.

[WYM15] Dandan Wang, Yang Yang, and Zhenqiang Mi. A genetic-based
approach to web service composition in geo-distributed cloud envi-
ronment. Computers & Electrical Engineering, 43:129–141, April
2015.

[WZ13] Quanwang Wu and Qingsheng Zhu. Transactional and QoS-aware
dynamic service composition based on ant colony optimization.
Future Generation Computer Systems, 29(5):1112–1119, July 2013.

[YJC09] Junbeom Yoo, Eunkyoung Jee, and Sungdeok Cha. Formal mod-
eling and verification of safety-critical software. Software, IEEE,
26(3):42–49, 2009.

[ZCO14] Min Zhang, Yunja Choi, and Kazuhiro Ogata. A formal semantics
of the osek/vdx standard in K framework and its applications.
2014.

[ZGCZ14] Guobing Zou, Yanglan Gan, Yixin Chen, and Bofeng Zhang. Dy-
namic composition of Web services using efficient planners in large-
scale service repository. Knowledge-Based Systems, 62:98–112, May
2014.

[ZSPZ15] Xin Zhao, Liwei Shen, Xin Peng, and Wenyun Zhao. Toward
SLA-constrained service composition: An approach based on a
fuzzy linguistic preference model and an evolutionary algorithm.
Information Sciences, 316:370–396, September 2015.

104

Vita

Personal Information

• Name: Omar Zuhair Alzuhaibi

• Citizenship: Saudi Arabia

• Born: 1985, Jeddah, Saudi Arabia

• Email: omarzud@gmail.com

Education

• B.S., Electrical Engineering, 2008, King Fahd Univ. of Petroleum and
Minerals, Dhahran, Saudi Arabia.

• M.S., Computer Science, 2016, King Fahd Univ. of Petroleum and Minerals,
Dhahran, Saudi Arabia.

Publications

• AlTurki, Musab A., and Omar Alzuhaibi. "Towards Formal Verification of
Orchestration Computations Using the K Framework." FM 2015: Formal
Methods. Springer International Publishing, 2015. 40-56.
Paper was presented by the author of this thesis at FM 2015, Oslo, Norway;
and it included partial work from this thesis.

Research Interests

Formal Semantics and Syntactic Analysis, especially for natural language.

105

A

A
p

p
e

n
d

i
x

Select Modules of the K-Orc Definition

This appendix shows only those modules of the K-Orc definition that contain
rules which were omitted from Chapter 4. As mentioned, these rules were omitted
because they are too technical and carry too little semantic significance to be
included and explained in Chapter 4.

A.1 Syntax Module

module ORC-SYNTAX

A.1.1 The Orc Calculus

"The Orc process calculus is based on the execution of expressions. As
an expression executes, it may interact with external services (called
sites), and may publish values during its execution. An expression
may also halt, explicitly indicating that its execution is complete.

Simple expressions are built up into more complex ones by using
combinators and by defining functions."[Kit13]

A.1.2 Expressions

Looking at Figure 2.1 showing the grammar of the Orc calculus, the following
grammar defined in K syntax is almost identical. There are a few extra semantic
elements that K allows to define within the syntax module. The first is precedence,

106

denoted by the >operator. As is clearly stated in the Orc paper, the order of
precedence of the four combinators from higher to lower is: Sequential, Parallel,
Pruning, Otherwise. In addition, we prefer for simpler expressions to be matched
before complex ones; so, we put on top, Arg and Call.

The second semantic element that is defined within the syntax module of K
is right- or left-associativity, and strictness. It is important to note that for
the parallel operator, being fully-associative, defining it here as right-associative
is to help in parsing. In other words, it is defined this way only for technical
reasons that become clear when we define the rules later.

strict means that the terms in the right hand side of the production must
be evaluated before the production is matched. strict can also take integer
arguments denoting, by order from left to right which non-terminals are strict.

syntax Pgm ::= Exp
| ExpDefs Exp

syntax Exp ::= Arg
> Exp > Param > Exp [right]

| Exp » Exp [right]
> Exp | Exp [right]
> Exp < Param < Exp [left]

| Exp » Exp [left]
> Exp ; Exp [left]

syntax ExpDefs ::= List{ExpDef, “”}

syntax ExpDef ::= Decl := Exp

syntax Decl ::= ExpId(Params)

syntax ExpId ::= Id

A.1.3 Parameters and Arguments

Arguments are what is called Actual Parameters in the Orc grammar, while our
Parameters are what they called Formal Parameters.

syntax Arg ::= Val
| clock

| Id
| Tuple
| Call

syntax Param ::= Id

107

A.1.4 Site Calls and Expression Calls

syntax Call ::= SiteCall
| Handle
| ExpCall

syntax SiteCall ::= SiteId(Args) [strict(2)]

syntax ExpCall ::= ExpId(Args)

syntax Handle ::= FreeHandle
| PubHandle
| SilentHandle
| TimedHandle

syntax FreeHandle ::= handle (SiteCall)

syntax PubHandle ::= pubHandle (Val)

syntax SilentHandle ::= silentHandle (SiteCall)

syntax TimedHandle ::= timedHandle (Int, SiteCall, Arg)
| timedHandle (Int, SiteCall)

syntax SiteId ::= ISiteId

syntax SiteId ::= TSiteId

A.1.5 Values

syntax Val ::= Int
| Float
| Bool
| String
| signal

| stop

A.1.6 KResult

To tell K what sorts are accepted as final evaluations of a k cell, we declare them
as the K built-in syntactic category KResult. Note that Val is not accepted as
a final evaluation because it is syntactic sugar for a call to let(v) where v is of

108

sort Val. However, silentHandle is accepted because otherwise the program
will get stuck on sites that never respond.

syntax KResult ::= SilentHandle

A.1.7 Secondary Syntax Productions

Variable is also a K built-in syntactic category that is necessary when using the
substitution module.

syntax Variable ::= Id
Sites/Expressions may publish a tuple of values. So, we declare lists to handle

that in rules ahead.

syntax Exps ::= List{Exp, “, ”}

syntax Args ::= List{Arg, “, ”} [strict]

syntax Params ::= List{Param, “, ”}

syntax Vals ::= List{Val, “, ”}

syntax Ids ::= List{Id, “, ”}

syntax Tuple ::= < Vals > [strict]
Here we declare the parentheses used for grouping as brackets.

syntax Exp ::= (Exp) [bracket]
Thread managing functions

syntax KItem ::= killed (K)

syntax Exp ::= prllCompMgr (Int)

syntax Exp ::= seqCompMgr (Param, Exp, Int)

syntax Exp ::= prunCompMgr (Param)

syntax Exp ::= othrCompMgr (Exp)
Convert Orc Tuple to KList

syntax List ::= tuple2Klist (Tuple) [function]

tuple2Klist (< V :Val, Vs:Vals >)

ListItem (V) tuple2Klist (< Vs >)

109

[anywhere]

tuple2Klist (< •Vals >)

•List

[anywhere]

end module

A.2 Main Orc Module

module ORC

A.2.1 Configuration

A configuration in K is simply a state. Here we define the structure of our
configuration. We call each XML-like element declared below a cell. We declare
a cell thread with multiplicity *, that is zero, one, or more. Enclosed in thread
is the main cell k. k is the computation cell where we execute our program. We
handle Orc productions from inside the k cell as we will see later.

• The context cell is for mapping variables to values.

• The publish cell is for keeping published values of each thread, and
gPublish is for globally published values.

• props holds thread management flags.

• varReqs helps manage context sharing.

• gVars holds environment control and synchronization variables.

• The in and out cells are respectively the standard input and output
streams.

• defs holds the expressions defined at the beginning of the Orc program.

Each cell is declared with an initial value. The $PGM variable tells K that
this is where we want our program to go. So by default, the first state would
hold a single thread with the k cell holding the whole Orc program as the Pgm
non-terminal defined in the syntax module.

configuration:

110

0

tid

$PGM :Pgm
k

•Map

context

•List

publish

-1

parentId

•Set

props

•List

varReqs

thread*

threads

""

defId

•Params

defParams

•K

body

def*

defs

•List

gPublish

.Map

gVars

•List

in

•List

out

$V :Bool

verbose

T

An orphan rule whose only purpose is to delete threads marked as ‘killed’.
Only a few rules in the whole definition kill threads, but we chose to centralize
deletion of threads at this rule because it only deletes threads if ‘verbose’ is
false. Sometimes we need to see all the threads that were created throughout
the execution, so we make ‘verbose’ true.

Cleanup-Killed

killed (—)
k

thread

•Bag

false

verbose

[structural]

end module

A.3 Expression Definitions and Calls

module ORC-EXPDEF

111

Translate expression definitions to def cells.
Expression-Definition-Prep-1

ExpId:ExpId(DefParams:Params) := Body:Exp Ds:ExpDefs

Ds

E :Exp

k

0

tid

thread

•Bag

ExpId
defId

DefParams
defParams

Body
body

def

[structural]

Expression-Definition-Prep-2
•ExpDefs E :Exp

E
[structural]

Replace an expression call with the predefined exp body and populate the
expCall cell

Expression-Call-Prep-1-Create

ExpId:ExpId(Args:Args)

expCallPrep (Args, Body, DefParams)

k

thread

ExpId
defId

DefParams
defParams

Body
body

def

[structural]

Define functions needed for expression calls.

112

syntax Exp ::= expCallPrep (Args, Exp, Params) [function]

syntax Arg ::= Param2Arg (Param) [function]
Param-To-Arg

Param2Arg (P:Id)

P
[anywhere, function]

A rule that uses substitution for expression calls. This runs recursively
substituting each parameter in the body with the corresponding argument.

Expression-Call-Prep-2-Substitute

expCallPrep (A:Arg, As:Args, Body, P:Param, Ps:Params)

expCallPrep (As, Body[A / Param2Arg (P)], Ps)

k

thread

This rule ends the recursion.
Expression-Call-Prep-3-End

expCallPrep (•Args, Body, •Params)

(Body)

k

thread

end module

A.4 Time

The semantics of our time model are inspired by those of real-time Maude
described in [ÖM07]. We implemented two time modules, one that sequentially
applies delta, and another that can do it concurrently. Only one of these two
can be active at a time even though we list both of them here.

A.4.1 Concurrent Time Module

module ORC-TIME

113

Tick-Clock

A:Bag
threads

"time.ticked" 7→ false

true

"time.clock" 7→ Clk:Int

Clk +Int 1

"time.limit" 7→ TL:Int

gVars

requires Clk <Int TL
∧Bool¬Bool(anySiteCall (A))
∧Bool¬Bool(anyFreeHandle (A))
∧Bool¬Bool(anyPubHandle (A))
∧Bool anyTimedHandle (A)
∧Bool¬Bool(anyAppliedDelta (A))

[transition]

Apply-Delta

timedHandle (I :Int, SC , A)

timedHandle (I −Int 1, SC , A)

k

S :Set •Set

SetItem ("applied_delta")

props

thread

"time.ticked" 7→ true

gVars

requires I >Int 0 ∧Bool ¬Bool("applied_delta" in S)
[structural]

Delta-Done

A:Bag
threads

"time.ticked" 7→ true

false

gVars

requires allAppliedDelta (A)
[structural]

114

Reset-TimedHandles

—:TimedHandle

k

SetItem ("applied_delta")
•Set

props

thread

"time.ticked" 7→ false

gVars

[structural]

TimedHandle-Outro

timedHandle (0, —, V :Val)

pubHandle (V)

k

"time.ticked" 7→ false

gVars

[structural]

end module

A.4.2 Sequential Time Module

module ORC-TIMESEQ

The semantics of our time model are inspired by those of real-time Maude
described in [ÖM07].

The δ function applies on the whole environment and then moved down the
thread tree being applied on individual expressions.

syntax Bag ::= δ (Bag)

syntax Exp ::= δ (Exp)
Apply delta to the whole bag of threads if it has at least one timed thread.

syntax KItem ::= bag (Bag)
Apply-Delta-Globally

115

C :Bag
timedHandle (T :Int, SC , A)
k

thread B:Bag

δ

C
timedHandle (T , SC , A)
k

thread B

threads

"is_delta_applied" 7→ false

true

gVars

requires T >Int 0

[structural]

After delta is applied to the whole bag of threads, the following two rules run
repeatedly on all threads. Exactly one of these two rules will match each thread.
The first is for untimed threads, and the second is for timed threads.

Delta-On-Thread-1-Skip-1

δ

 •K

k C :Bag

thread B:Bag

•K

k C

thread δ (B)

threads

"threads_applied_delta" 7→ I1 :Int

I1 +Int 1

"threads_executed_delta" 7→ I2 :Int

I2 +Int 1

gVars

[structural]

116

Delta-On-Thread-1-Skip-2

δ

 E :Exp
k C :Bag

thread B:Bag

E

k C

thread δ (B)

threads

"threads_applied_delta" 7→ I1 :Int

I1 +Int 1

"threads_executed_delta" 7→ I2 :Int

I2 +Int 1

gVars

requires isT imedHandle(E) 6=K true

[structural]

Delta-On-Thread-2-Hold

δ

 timedHandle (T :Int, SC , A)
k C :Bag

thread B:Bag

δ (timedHandle (T , SC , A))
k C

thread δ (B)

threads

"threads_applied_delta" 7→ I :Int

I +Int 1

gVars

requires T >Int 0

[structural]

After δ has finished running on the whole environment, perform a clock tick,

117

i.e., advance the clock by one time unit.
Mark-Delta-Done

δ

(

•Bag

)

•Bag

threads

"is_delta_executed" 7→ false

true

gVars

[structural]

Tick-Clock

"is_delta_applied" 7→ true

false

"is_delta_executed" 7→ true

false

"time.clock" 7→ I :Int

I +Int 1

gVars

"threads_applied_delta" 7→ TsAppdδ:Int

0

"threads_executed_delta" 7→ TsExecdδ:Int

0

gVars

"time.limit" 7→ TimeLimit:Int

gVars

requires TsAppdδ ==Int TsExecdδ ∧Bool I <Int TimeLimit
[transition]

δ applying on handles of timed sites.
Time-Handle-One-Tick

δ (timedHandle (I :Int, SC :SiteCall, A))

timedHandle (I −Int 1, SC , A)

k

S :Set •Set

SetItem ("applied_delta")

props

thread

"threads_executed_delta" 7→ N :Int

N +Int 1

gVars

118

requires I >Int 0 ∧Bool ¬Bool"applied_delta" in S
[structural]

Time-Handle-Outro

timedHandle (0, —, V :Val)

pubHandle (V)

k

thread

[structural]

end module

A.5 Local Site Identifiers

module ORC-ISITES

Orc has some built-in sites. We call these local sites. Here, we syntactically
declare the Identifiers (names) of these local sites and give semantics to each.
We divide them into Internal, and Timed sites. This division is not based on any
particular syntactic or semantic difference; It only provides better organization.

A.5.1 Internal Sites

Signal Signal Publishes the signal value immediately. It is the same as
if(true)

syntax ISiteId ::= Signal

Site-Signal

handle (Signal(—))

pubHandle (signal)
[anywhere]

Stop The expression stop, when executed, halts immediately. And any site
call with an argument stop halts as well. A site halting simply means that its
execution is complete.

Val-stop-1

A:Arg, stop

stop

[anywhere]

119

Val-stop-2

stop, A:Arg

stop

[anywhere]

Val-stop-3

—:SiteId(stop)

•K

[anywhere]

let publishes a tuple consisting of the values of its arguments.

syntax ISiteId ::= let

Site-Let

handle (let(V :Val))

pubHandle (V)
[structural]

print prints text to the console, then publishes signal, then halts.

syntax ISiteId ::= print

Site-Print-1

handle (print(V :Val, Vs:Vals

Vs

))

k

•List

ListItem (V)

out

[structural]

Site-Print-2

handle (print(•Args))

pubHandle (signal)
[macro]

Prompt The Prompt site asks the user for text input. Prompt("username:")

presents a prompt with the text username:, receives a line of input, publishes
that line of input as a string, and then halts.

syntax ISiteId ::= Prompt

Site-Prompt-1

120

Prompt(S :String
•K

)

k

•List

ListItem (S)

out

[structural]

Site-Prompt-2

Prompt(•Args)

S

k

ListItem (S :String)
•List

in

[structural]

if(b) where b is boolean, publishes a signal if b is true and it remains silent
(i.e., does not respond) if b is false.

syntax ISiteId ::= if

Site-If-true

handle (if(true))

pubHandle (signal)
[macro]

Site-If-false

handle (if(false))

silentHandle (if(false))
[macro]

We make a site ifNot for convenience.

syntax ISiteId ::= ifNot

Site-IfNot

handle (ifNot(B:Bool))

handle (if(¬BoolB))
[macro]

zero should just be silent.

syntax ISiteId ::= zero

handle (zero(•Args))

silentHandle (zero(•Args))
[macro]

121

Define sites that exclusively use the count global variable. count.inc incre-
ments the count while count.read publishes the current count.

syntax ISiteId ::= count.inc

syntax ISiteId ::= count.read

count.inc

handle (count.inc(•Args))

pubHandle (signal)

k

"count" 7→ C :Int

C +Int 1

gVars

[structural]

count.read

handle (count.read(•Args))

pubHandle (C)

k

"count" 7→ C :Int

gVars

[structural]

end module

A.5.2 Timer Sites

module ORC-TSITES

"The timer sites—Clock, Atimer and Rtimer—are used for computa-
tions involving time. Time is measured locally by the server on which
the computation is performed. Since the timer is a local site, the
client experiences no network delay in calling the timer or receiving
a response from it; this means that the signal from the timer can be
delivered at exactly the right moment. With t = 0, Rtimer responds
immediately. Sites Atimer and Rtimer differ only in having absolute
and relative values of time as their arguments, respectively."[MC07]

Clock publishes the current time. Even though it is a timer site, it does not
affect the time, so we define it as an internal site instead, so that it doesn’t
receive the "timed" property thus by not requiring its own δ rule.

syntax ISiteId ::= Clock

122

Val-clock

clock

Clock(•Args)
[macro]

Site-Clock

handle (Clock(•Args))

pubHandle (T)

k

"time.clock" 7→ T :Int

gVars

[structural]

δ applying on handles of timed sites.
The semantics of the Rtimer and Atimer sites are only realizable through the

δ function.
Rtimer(t) publishes a signal after t time units.

syntax TSiteId ::= Rtimer

Rtimer

handle (Rtimer(I :Int))

timedHandle (I , Rtimer(0), signal)

k

[structural]

Atimer(t) publishes a signal at time t.

We write Atimer in terms of Rtimer

syntax TSiteId ::= Atimer

Atimer

handle (Atimer(T :Int))

timedHandle (T −Int Clk, Atimer(0), signal)

k

"time.clock" 7→ Clk:Int

gVars

requires T >Int Clk
[structural]

end module

123

A.6 Math Sites

module ORC_MATH

syntax ISiteId ::= Add

handle (Add(I1 :Int, I2 :Int))

pubHandle (I1 +Int I2)
[structural]

syntax ISiteId ::= Incr

handle (Incr(I :Int))

pubHandle (I +Int 1)
[structural]

syntax ISiteId ::= Decr

handle (Decr(I :Int))

pubHandle (I −Int 1)
[structural]

syntax ISiteId ::= Sum

handle (Sum(I1 :Int, I2 :Int, As:Args))

handle (Sum(I1 +Int I2, As))
[macro()]

handle (Sum(I :Int, •Args))

pubHandle (I)
[structural]

syntax ISiteId ::= Sqrt

handle (Sqrt(I1 :Float))

pubHandle (rootFloat (I1 , 2))

124

[structural]

syntax ISiteId ::= Root

handle (Root(I1 :Float, I2 :Int))

pubHandle (rootFloat (I1 , I2))
[structural]

syntax ISiteId ::= Mul

handle (Mul(I1 :Int, I2 :Int))

pubHandle (I1 ∗Int I2)
[structural]

syntax ISiteId ::= Sub

handle (Sub(I1 :Int, I2 :Int))

pubHandle (I1 −Int I2)
[structural]

syntax ISiteId ::= Div

handle (Div(I1 :Int, I2 :Int))

pubHandle (I1 ÷Int I2)
requires I2 6=K 0

[structural]

syntax ISiteId ::= Mod

handle (Mod(I1 :Int, I2 :Int))

pubHandle (I1 %Int I2)
requires I2 6=K 0

[structural]

syntax ISiteId ::= Floor

125

handle (Floor(V :Float))

pubHandle (floorFloat (V))
[structural]

syntax ISiteId ::= Ceil

handle (Ceil(V :Float))

pubHandle (ceilFloat (V))
[structural]

syntax ISiteId ::= Round

handle (Round(V :Float, I1 :Int, I2 :Int))

pubHandle (roundFloat (V , I1 , I2))
[structural]

syntax ISiteId ::= Abs

handle (Abs(V :Float))

pubHandle (absFloat (V))
[structural]

syntax ISiteId ::= Exp

handle (Exp(V :Float))

pubHandle (expFloat (V))
[structural]

syntax ISiteId ::= LogFloat

handle (LogFloat(V :Float))

pubHandle (logFloat (V))
[structural]

syntax ISiteId ::= SinFloat

126

handle (SinFloat(V :Float))

pubHandle (sinFloat (V))
[structural]

syntax ISiteId ::= CosFloat

handle (CosFloat(V :Float))

pubHandle (cosFloat (V))
[structural]

syntax ISiteId ::= TanFloat

handle (TanFloat(V :Float))

pubHandle (tanFloat (V))
[structural]

syntax ISiteId ::= AsinFloat

handle (AsinFloat(V :Float))

pubHandle (asinFloat (V))
[structural]

syntax ISiteId ::= AcosFloat

handle (AcosFloat(V :Float))

pubHandle (acosFloat (V))
[structural]

syntax ISiteId ::= AtanFloat

handle (AtanFloat(V :Float))

pubHandle (atanFloat (V))
[structural]

syntax ISiteId ::= Atan2Float

127

handle (Atan2Float(V1 :Float, V2 :Float))

pubHandle (atan2Float (V1 , V2))
[structural]

syntax ISiteId ::= MaxFloat

handle (MaxFloat(V1 :Float, V2 :Float))

pubHandle (maxFloat (V1 , V2))
[structural]

syntax ISiteId ::= MinFloat

handle (MinFloat(V1 :Float, V2 :Float))

pubHandle (minFloat (V1 , V2))
[structural]

syntax ISiteId ::= Equals

handle (Equals(I1 :Int, I2 :Int))

pubHandle (I1 =K I2)
[structural]

syntax ISiteId ::= Gr

handle (Gr(I1 :Int, I2 :Int))

pubHandle (I1 >Int I2)
[structural]

syntax ISiteId ::= GrEq

handle (GrEq(I1 :Int, I2 :Int))

pubHandle (I1 ≥Int I2)
[structural]

syntax ISiteId ::= Ls

128

handle (Ls(I1 :Int, I2 :Int))

pubHandle (I1 <Int I2)
[structural]

syntax ISiteId ::= LsEq

handle (LsEq(I1 :Int, I2 :Int))

pubHandle (I1 ≤Int I2)
[structural]

end module

A.7 Bot Environment

module ORC-ROBOT

Define a special category of sites that deals with locks

syntax Arg ::= bot_lock

syntax TSiteId ::= BotTSite

A.7.1 Internal Bot Sites

syntax ISiteId ::= bot.mapInit

mapinit-1

handle (bot.mapInit(•Args))

pubHandle (signal)

k

•Map

("bot.map_size" 7→ ListItem (5) ListItem (5)) ("bot.map_obstacles" 7→ •List)

gVars

[structural]

129

mapinit-2

handle (bot.mapInit(T :Tuple))

pubHandle (signal)

k

•Map

("bot.map_size" 7→ tuple2Klist (T)) ("bot.map_obstacles" 7→ •List)

gVars

[structural]

syntax ISiteId ::= bot.init

bot.init-1

handle (bot.init(•Args))

handle (bot.init("Default"))

k

[macro]

bot.init-2

130

handle (bot.init(S :String))

pubHandle (S)

k

•Map

(botStr (S , "position") 7→ ListItem (1) ListItem (1))

gVars

•Map

(botStr (S , "direction") 7→ ListItem (0) ListItem (1))

gVars

•Map

(botStr (S , "bot_lock") 7→ false)

gVars

•Map

(botStr (S , "is_bumper_hit") 7→ false)

gVars

•Map

(botStr (S , "wall_indicator") 7→ ListItem (-1) ListItem (-1))

gVars

•Map

(botStr (S , "block_indicator") 7→ ListItem (-1) ListItem (-1))

gVars

[structural]

bot.init-3

handle (bot.init(T1 :Tuple, T2 :Tuple))

handle (bot.init("Default", T1, T2))

k

[macro]

bot.init-4

131

handle (bot.init(S :String, T1 :Tuple, T2 :Tuple))

pubHandle (S)

k

•Map

(botStr (S , "position") 7→ tuple2Klist (T1))

gVars

•Map

(botStr (S , "direction") 7→ tuple2Klist (T2))

gVars

•Map

(botStr (S , "bot_lock") 7→ false)

gVars

•Map

(botStr (S , "is_bumper_hit") 7→ false)

gVars

•Map

(botStr (S , "wall_indicator") 7→ ListItem (-1) ListItem (-1))

gVars

•Map

(botStr (S , "block_indicator") 7→ ListItem (-1) ListItem (-1))

gVars

[structural]

syntax ISiteId ::= bot.setPosition

bot.setPosition

handle (bot.setPosition(S :String, T :Tuple))

pubHandle (signal)

k

132

botStr (S , "position") 7→ —

tuple2Klist (T)

gVars

[structural]

syntax ISiteId ::= bot.setDirection

bot.setDirection

handle (bot.setDirection(S :String, T :Tuple))

pubHandle (signal)

k

botStr (S , "direction") 7→ —

tuple2Klist (T)

gVars

[structural]

syntax ISiteId ::= bot.setObstacles

syntax KItem ::= addObstacle (Tuple)
bot.setObstacles

handle (bot.setObstacles(As:Args))

handle (bot.addObstacles(As))

k

"bot.map_obstacles" 7→ L:List
•List

gVars

[structural]

syntax ISiteId ::= bot.addObstacles

bot.addObstacles-1

handle (bot.addObstacles(T :Tuple, As:Args))

addObstacle (T) y handle (bot.addObstacles(As))

k

[structural]

bot.addObstacles-2

133

handle (bot.addObstacles(•Args))

pubHandle (signal)

k

[structural]

bot.addObstacles-3

addObstacle (T :Tuple)
•K

k

"bot.map_obstacles" 7→ L:List •List

ListItem (tuple2Klist (T))

gVars

[structural]

syntax KItem ::= botMoved (String, Bool) [function]
botMoved

botMoved (S , —)

signal

k

Lock:String 7→ true

false

gVars

Wall:String 7→ —:List

ListItem (-1) ListItem (-1)

gVars

Block:String 7→ —:List

ListItem (-1) ListItem (-1)

gVars

134

requires Lock ==String botStr (S , "bot_lock")
∧BoolWall ==String botStr (S , "wall_indicator")
∧BoolBlock ==String botStr (S , "block_indicator")

[structural]

syntax String ::= botStr (String, String) [function]
botStr

botStr (S1 , S2)

"bot." +String S1 +String "." +String S2
[anywhere]

A.7.2 Timed Bot Sites

Define scan site

syntax BotTSite ::= bot.scan

bot.scan-1

handle (bot.scan(•Args))

handle (bot.scan("Default"))

k

[macro]

bot.scan-2

handle (bot.scan(S :String))

timedHandle (1, bot.scan(S), bot_lock)

k

[structural]

bot.scan-3

timedHandle (0, bot.scan(S), bot_lock)

timedHandle (0, bot.scan(S), Condition)

k

("bot.map_size" 7→ Dims:List)
gVars

("bot.map_obstacles" 7→ Obs:List)
gVars

135

(PosStr 7→ Pos:List)
gVars

(DirStr 7→ Dir :List)
gVars

requires
PosStr==StringbotStr(S ,"position")
∧BoolDirStr ==String botStr (S , "direction")
∧BoolCondition ==Bool (checkWall (vSub (vAdd (Pos, Dir), Dims))
∨Bool checkBlock (vAdd (Pos, Dir), Obs))

[structural]

Define step forward site

syntax BotTSite ::= bot.stepFwd

syntax Bool ::= checkWall (List) [function]

syntax Bool ::= checkBlock (List, List) [function]
bot.stepFwd-1

handle (bot.stepFwd(•Args))

handle (bot.stepFwd("Default"))

k

[macro]

bot-stepFwd-2

handle (bot.stepFwd(S :String))

timedHandle (3, bot.stepFwd(S), bot_lock)

k

Lock 7→ false

true

Bumper 7→ —

false

gVars

(PosStr 7→ Pos:List)
gVars

(DirStr 7→ Dir :List)
gVars

136

Wall 7→ —:List

vSub (vAdd (Pos, Dir), Dims)

gVars

Block 7→ —:List

vAdd (Pos, Dir)

gVars

("bot.map_obstacles" 7→ Obs:List)
gVars

("bot.map_size" 7→ Dims:List)
gVars

requires Lock ==String botStr (S , "bot_lock")
∧BoolBumper ==String botStr (S , "is_bumper_hit")
∧BoolPosStr ==String botStr (S , "position")
∧BoolDirStr ==String botStr (S , "direction")
∧BoolWall ==String botStr (S , "wall_indicator")
∧BoolBlock ==String botStr (S , "block_indicator")

[transition]

checkWall

checkWall (WI)

1 in WI
[anywhere, function]

checkBlock

checkBlock (BI , Obs)

BI in Obs
[anywhere, function]

Stepped forward and not hit a wall or block
Step-Done-No-Hit

timedHandle (0, bot.stepFwd(S :String), —)

botMoved (S , true)

k

137

PosStr 7→ Pos

vAdd (Pos, Dir)

gVars

(DirStr 7→ Dir)
gVars

("bot.map_obstacles" 7→ Obs:List)
gVars

(Wall 7→ WL:List)
gVars

(Block 7→ BI :List)
gVars

requires (¬Bool1 in WL
∧Bool¬BoolBI in Obs
∧Bool(PosStr ==String botStr (S , "position"))
∧Bool(DirStr ==String botStr (S , "direction"))
∧Bool(Wall ==String botStr (S , "wall_indicator"))
∧Bool(Block ==String botStr (S , "block_indicator"))

[structural]

Tried to step forward but hit a wall or block
No-Step-Cause-Hit

timedHandle (0, bot.stepFwd(S :String), —)

botMoved (S , true)

k

Bumper 7→ —

true

gVars

"bot.map_obstacles" 7→ Obs:List
gVars

Wall 7→ WL:List

gVars

138

Block 7→ BI :List

gVars

requires (1 in WL ∨Bool BI in Obs)
∧Bool(Bumper ==String botStr (S , "is_bumper_hit"))
∧Bool(Wall ==String botStr (S , "wall_indicator"))
∧Bool(Block ==String botStr (S , "block_indicator"))

[structural]

Rotate right (clockwise)

syntax BotTSite ::= bot.rotateRight

bot-rotateRight-1

handle (bot.rotateRight(•Args))

handle (bot.rotateRight("Default"))

k

[macro]

bot-rotateRight-2

handle (bot.rotateRight(S :String))

timedHandle (1, bot.rotateRight(S), bot_lock)

k

Lock 7→ false

true

gVars

requires Lock ==String botStr (S , "bot_lock")
[transition]

bot-rotateRight-3

timedHandle (0, bot.rotateRight(S :String), —)

botMoved (S , true)

k

DirStr 7→ Direction

cw (Direction)

Bumper 7→ —

false

gVars

requires (Bumper ==String botStr (S , "is_bumper_hit"))
∧Bool(DirStr ==String botStr (S , "direction"))

[structural]

Rotate left (counter-clockwise)

139

syntax BotTSite ::= bot.rotateLeft

bot-rotateLeft-1

handle (bot.rotateLeft(•Args))

handle (bot.rotateLeft("Default"))

k

[macro]

bot-rotateLeft-2

handle (bot.rotateLeft(S :String))

timedHandle (1, bot.rotateLeft(S), bot_lock)

k

Lock 7→ false

true

gVars

requires Lock ==String botStr (S , "bot_lock")
[transition]

bot-rotateLeft-3

timedHandle (0, bot.rotateLeft(S :String), —)

botMoved (S , true)

k

DirStr 7→ Direction

ccw (Direction)

Bumper 7→ —

false

gVars

requires (Bumper ==String botStr (S , "is_bumper_hit"))
∧Bool(DirStr ==String botStr (S , "direction"))

[structural]

Generic rule to stop execution if lock on robot
bot-locked

handle (Site:BotTSite(S :String))

silentHandle (Site(S))

k

Lock 7→ true

gVars

requires Lock ==String botStr (S , "bot_lock")
[structural]

Functions to process rotating the robot

syntax List ::= cw (List) [function]

140

cw (ListItem (-1) ListItem (0))

ListItem (0) ListItem (1)
[anywhere, function]

cw (ListItem (0) ListItem (-1))

ListItem (-1) ListItem (0)
[anywhere, function]

cw (ListItem (1) ListItem (0))

ListItem (0) ListItem (-1)
[anywhere, function]

cw (ListItem (0) ListItem (1))

ListItem (1) ListItem (0)
[anywhere, function]

syntax List ::= ccw (List) [function]

ccw (ListItem (0) ListItem (1))

ListItem (-1) ListItem (0)
[anywhere, function]

ccw (ListItem (-1) ListItem (0))

ListItem (0) ListItem (-1)
[anywhere, function]

ccw (ListItem (0) ListItem (-1))

ListItem (1) ListItem (0)
[anywhere, function]

ccw (ListItem (1) ListItem (0))

ListItem (0) ListItem (1)
[anywhere, function]

141

end module

A.8 LTL Model Checking

module ORC-LTL

An input program can be a LTL Formula (this is needed for parsing purposes)

syntax Pgm ::= LtlFormula
We extend Orc expressions with labeled expressions to be able to specify inside

an Orc program, using LTL formulas, when an expressions is reached.

syntax Exp ::= Id : Exp
The imported module MODEL-CHECKER-HOOKS is a K interface to the Maude

module defining the syntax for the model-checker. In addition to this interface,
we have to define the atomic propositions. Here we define a small set of such
propositions. The semantics for these propositions will be given in the next
module.

syntax Prop ::= Id
| gVarEqTo (String, Val)
| gVarEqTo (String, Tuple)
| gVarEqTo (String, List)
| isGPublished (Int)

This module combines the semantics of Orc with an interface to the model-
checker, given by the module LTL-HOOKS. The states of the transition system
that will be be model-checked are given by the configurations of Orc programs,
which are of sort Bag.

Semantics of the labeled expressions:
LTL-Labeled-Exp-1

L:Id : E :Exp

E
[transition]

In order to give semantics to the proposition gVarEqTo, we use auxiliary func-
tions like gVarGet that returns a certain value from inside a given configuration:

syntax Arg ::= gVarGet (Bag, String) [function]
LTL-gVarGet

142

gVarGet

S :String 7→ A:Arg
gVars

T

generatedTop , S

A

syntax List ::= gPublishGet (Bag) [function]
LTL-gPublishGet

gPublishGet

L:List

gPublish

T

generatedTop

L

We are ready now to give the semantics for atomic propositions:
LTL-gVarEqTo

B:Bag |=Ltl gVarEqTo (S :String, V :Val)

true

requires gVarGet (B, S) =K V
[anywhere, ltl]

LTL-gVarEqTo

gVarEqTo (S :String, T :Tuple)

gVarEqTo (S , tuple2Klist (T))
[macro]

LTL-gVarEqTo

B:Bag |=Ltl gVarEqTo (S :String, L:List)

true

requires gVarGet (B, S) =K L
[anywhere, ltl]

LTL-isGPublished

B:Bag |=Ltl isGPublished (I :Int)

true

requires I in gPublishGet (B)

143

[anywhere, ltl]

LTL-Label-evaluation

L:Id : E :Exp
k

thread

threads

T

generatedTop |=Ltl L

true

[anywhere]

end module

A.9 Predicates

module ORC-PREDICATES

These functions are used in side conditions of other rules to find if a certain
type of thread exists in the current configuration.

Is there any thread that has a site call that hasn’t been made?

syntax Bool ::= anySiteCall (Bag) [function]

anySiteCall

—:Bag

—:SiteCall

k

thread

true

144

anySiteCall

—:Bag

—
k

thread

false

[owise]

Is there any thread that has an unprocessed handle?

syntax Bool ::= anyFreeHandle (Bag) [function]

anyFreeHandle

—:Bag

—:FreeHandle

k

thread

true

anyFreeHandle

—:Bag

—
k

thread

false

[owise]

Is there any thread that has a handle ready to publish a value?

syntax Bool ::= anyPubHandle (Bag) [function]

anyPubHandle

—:Bag

—:PubHandle

k

thread

true

145

anyPubHandle

—:Bag

—
k

thread

false

[owise]

Is there any thread that has a timed handle

syntax Bool ::= anyTimedHandle (Bag) [function]

anyTimedHandle

—:Bag

timedHandle (I :Int, —, —)
k

thread

true

requires I >Int 0

anyTimedHandle

—:Bag

—
k

thread

false

[owise]

anyTimedHandle

—:Bag

timedHandle (0, —, —)
k

thread

false

Is there any thread that hasn’t yet applied delta

syntax Bool ::= anyNotAppliedDelta (Bag) [function]

146

anyNotAppliedDelta

—:Bag

—:TimedHandle

k

S :Set

props

thread

true

requires ¬Bool"applied_delta" in S

anyNotAppliedDelta

—:Bag

—
k

—
props

thread

false

[owise]

This is equivalent to notBool anyNotAppliedDelta

syntax Bool ::= allAppliedDelta (Bag) [function]

allAppliedDelta

—:Bag

—:TimedHandle

k

S :Set

props

thread

false

requires ¬Bool"applied_delta" in S

allAppliedDelta

—:Bag

—
k

—
props

thread

true

[owise]

Is there any thread that has the applied_delta flag on and is not reset?

syntax Bool ::= anyAppliedDelta (Bag) [function]

147

anyAppliedDelta

—:Bag

—:TimedHandle

k

SetItem ("applied_delta")
props

thread

true

anyAppliedDelta

—:Bag

—
k

—
props

thread

false

[owise]

end module

148

B

A
p

p
e

n
d

i
x

Testing Examples

This appendix contains all test examples used for validation. It contains 86
examples. A summary of it can be found in Table 4.3. Each example has three
main elements.

• What it tests.

• The commands used to execute it.

• The expected output.

• The Orc program itself.

• Some discussion as needed.

All of these examples have been executed using the shown commands and their
results matched the expected output shown.

B.1 Combinators

Example B.1.1. Parallel
Tests basic parallel expression.

1 Add (0 ,1) | Add (0 ,2) | Add (0 ,3)

Command Expected output

krun Publishes 1, 2 and 3.

149

Example B.1.2. Sequential
Tests basic sequential expression.

1 (Add (0 ,3)) > x > Add(x ,4) > y > print(y)

Command Expected output

krun Prints 7 and publishes signal.

Example B.1.3. Parallel and Sequential
Tests parallel spawning of threads.

1 (Add (0 ,1) | Add (0 ,2)) > x > Add(x ,3)

Command Expected output

krun Publishes 4 and 5.

Example B.1.4. Parallel and Sequential
Tests passing parameters in a nested sequential composition.

1 (Add (0 ,1) | Add (0 ,2)) > x > (Add(x ,1) > y > Add(x,y))

Command Expected output

krun Publishes 3 and 5.

Example B.1.5. Parallel and Sequential
On top of basic testing of parallel spawning, it tests precedence of sequential

over parallel.

1 (Add (0 ,1) | Add (0 ,2)) > x > Add(x ,1) | print (100)

Command Expected output

krun Prints 100 and publishes 2, 3 and a signal.

Example B.1.6. Parallel and Sequential
A bigger example but basically tests the same things. It imitates the first few

iterations of a Fibonacci function.

150

Command Expected output

krun Publishes 5 and 8.

1 (Add (0 ,1) | Add (0 ,2)) > x > (Add(x ,1) > y > (Add(x,y) > z

> Add(y,z)))

Example B.1.7. Parallel and Pruning
Tests basic pruning of a parallel expression.

Command Expected output

krun --search --pattern

"<gPublish> L:List </gPublish>"

Two solutions for L: 11 and 21.

1 Add(x ,1) < x < (Add (0 ,20) | Add (0 ,10))

Example B.1.8. Parallel and Pruning
Tests basic pruning of a parallel expression, and the precedence of parallel

over pruning.

Command Expected output

krun --search --pattern

"<gPublish> L:List </gPublish>"

Four solutions for L: 11, 21, 31 and 41.

1 Add(x ,1) < x < Add (0 ,10) | Add (0 ,20) | Add (0 ,30) | Add

(0 ,40)

Example B.1.9. Parallel, Sequential and Pruning
Tests parallel spawning and pruning as well as precedence.

1 print(y) < y < (Add (0 ,1) | Add (0 ,2)) > x > Add(x ,3)

Example B.1.10. Pruning
Tests basic pruning.

Command Expected output

krun Publishes 2.

151

Command Expected output

krun Prints either 4 or 5.

krun --search --pattern

"<out> L:List </out>"

Two solutions for L: 4 and 5.

krun --ltlmc

"<>Ltl isPrinted(4)"

true

1 Add(x ,1) < x < Add (0 ,1)

Example B.1.11. Pruning
Tests basic pruning, but more importantly tests the variable lookup mechanism

that requests variable from parents.

Command Expected output

krun Publishes 5.

1 (Add(f1 ,f2) < f2 < Add(f1 ,1)) < f1 < Add (1 ,1)

Example B.1.12. Pruning
Similar to Example B.1.6, but uses pruning instead of sequential. More

importantly, it tests variable lookup and scope sharing.

Command Expected output

krun Publishes 8.

1 ((Add(f2 ,f3) < f3 < Add(f1 ,f2)) < f2 < Add(f1 ,1)) < f1 <

Add (1 ,1)

Example B.1.13. Pruning
This example is almost the same as Example B.1.12 except that its brackets

have been rearranged. This tests variable lookup and scope sharing and ensures
that no incorrect scope sharing is occurring because in this case, the program
should in fact not find a value and should get stuck. See the details in the code’s
comments.

152

Command Expected output

krun Gets stuck.

1 (Add(f2 ,f3) < f3 < (Add(f1 ,f2) < f2 < Add(f1 ,1))) < f1 <

Add (1 ,1)

2
3 /* Here is how it is structured

4
5 prunMgr (f1)

6 / \

7 prunMgr (f3) 1+1

8 / \

9 This f2 --------> f2+f3 prunMgr (f2)

10 is stuck. / \

11 It should not f1+f2 1+f1

12 see the value

13 provided by

14 prunMgr (f2).

15
16 */

Example B.1.14. Otherwise

1 print (" Success !") ; print (" Failure !")

Example B.1.15. Otherwise

1 stop ; print (" Success !")

B.2 LTL Model Checking

Here are basic examples that use only constants and the four operators to check
if ltlmc functionality is working.

Example B.2.1.

153

Command Expected output

krun --ltlmc

"<>Ltl isGPublished(3)"

true.

krun --ltlmc

"[]Ltl isGPublished(3)"

true.

krun --ltlmc

"gVarEqTo(\"clock\",0)"

true.

1 Add (1,r) < r < 2

Example B.2.2.

Command Expected output

krun --ltlmc

"<>Ltl isGPublished(3)"

true.

krun --ltlmc

"[]Ltl isGPublished(3)"

Gives a counter example
showing mid-execution
configuration where 3

hasn’t been published yet.

krun --ltlmc

"gVarEqTo(\"clock\",0)"

true.

1 1 | 2 | 3

Example B.2.3.

Command Expected output

krun --ltlmc

"<>Ltl isGPublished(3)"

true.

krun --ltlmc

"<>Ltl []Ltl isGPublished(3)"

true.

krun --ltlmc

"[]Ltl <>Ltl isGPublished(3)"

true.

154

1 1 | 2 >> 3

B.3 Expression Definition and Calling

Example B.3.1. Basic Definition and Call
Tests basic expression definition and call.

Command Expected output

krun Prints 6 and publishes signal.

1 SumAndPrint (a,b,c) := Sum(a,b,c) > x > print(x)

2 SumAndPrint (1 ,2 ,3)

Example B.3.2. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Scope of variables, i.e, vars with the same name don’t mix up.

Command Expected output

krun Prints 5 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 Sum2(x,y) := Sum3(x,y ,0)

3 Sum2 (2 ,3) > x > print(x)

Example B.3.3. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Scope of variables, i.e, vars with the same name don’t mix up.

Command Expected output

krun Prints 10 and publishes signal.

155

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 Sum2(a1 ,a2) := Sum3(a1 ,a2 ,0)

3 (Sum2 (4,f1) < f1 < Sum3 (1 ,2 ,3)) > x > print(x)

This example is more complex than Example B.3.2 because it has one more
layer in the expression calling stack. To debug this, let us take the topmost
pruning expression. It has two child threads. Call them left and right. After one
step of execution, we’ll have two threads:

1 left:

2 tid =1

3 Add(x,a) < a < Add(y,z)

4 a1 -> 4

5 a2 -> f1

6 x -> a1

7 y -> a2

8 z -> 0

9
10 right:

11 tid =2

12 Add(x,a) < a < Add(y,z)

13 x -> 1

14 y -> 2

15 z -> 3

left publishes 6 up. Now in the next execution step, right (2) gives f1 -> 6

to left (1), but if left copied context from right or manager, then it overwrites
things. Next step, here is what we have:

1 left:

2 tid =1

3 Add(x,a) < a < Add(y,z)

4 a1 -> 4

5 a2 -> f1

6 x -> a1

7 y -> a2

8 z -> 0

9 f1 -> 6

10
11 right:

12 tid =2

13 Add(x,a) < a < Add(y,z)

14 x -> 1

15 y -> 2

16 z -> 3

Example B.3.4. Nested Definition and Call
Tests:

• Nested expression definition and call.

156

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

Command Expected output

krun Prints 15 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 print(x) < x < (Sum3 (4,5,x) < x < Sum3 (1 ,2 ,3))

This example tests that the two x’s are not confused. So it should print 15,
because if they were confused, it would print 13.

Example B.3.5. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

Command Expected output

krun Prints 15 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 print(f2) < f2 < (Sum3 (4,5,x) < x < Sum3 (1 ,2 ,3))

Similarly to the previous example, this should print 15 and not 13.

Example B.3.6. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

Command Expected output

krun Prints 15 and publishes signal.

157

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 print(x) < x < (Sum3 (4,5,f1) < f1 < Sum3 (1 ,2 ,3))

Similar to the previous example, but with increased complexity.

Example B.3.7. Nested Definition and Call
Tests:

• Correct parsing and precedence among operators.

• Nested expression definition and call.

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

Command Expected output

krun Prints 15 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 print(x) < x < Sum3 (4,5,f1) < f1 < Sum3 (1 ,2 ,3)

Similar to the previous example, but with no parentheses.

Example B.3.8. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

• Value passing through sequential and pruning expressions.

Command Expected output

krun Prints 15 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 (Sum3 (4,5,f1) < f1 < Sum3 (1 ,2 ,3)) > x > print(x)

This changes pruning from the previous example to sequential to make sure that
scope sharing and value passing is done correctly through pruning as well as
sequential expressions.

158

Example B.3.9. Nested Definition and Call
Tests:

• Nested expression definition and call.

• Calling inside a nested pruning expression.

• Scope of variables by calling with identical variable names.

Command Expected output

krun Prints 15 and publishes signal.

1 Sum3(x,y,z) := Add(x,a) < a < Add(y,z)

2 (Sum3 (4,5,x) < x < Sum3 (1 ,2 ,3)) > f2 > print(f2)

This has a small variable name change over the previous example to test if the
name would be confused with the one in the definition.

Example B.3.10. Factorial
Tests recursion through the factorial function.

1 // Define factorial

2 Factorial (x) := (((if(r) < r < Equals (x ,0)) >> 1) | ((if(r

) < r < Gr(x ,0)) >> (Mul(a,x) < a < (Factorial (b) < b <

Sub(x ,1)))))

3
4 // Call factorial (5)

5 Factorial (5) > f > print(f)

B.4 Time

Example B.4.1. Tests time through the sites Rtimer and Clock.

Command Expected output

krun Publishes two signal’s and a 1. Clock reaches 3.

1 Rtimer (3) | Rtimer (2) | Add (0 ,1)

Example B.4.2. Tests time through the sites Rtimer and Clock.

159

Command Expected output

krun Prints 3 and publishes signal.

1 Rtimer (3) >> (print(x) < x < clock)

Example B.4.3. Tests time through the sites Atimer, Rtimer and Clock.

Command Expected output

krun Prints 6 and publishes signal.

1 Atimer (3) >> Atimer (4) >> Atimer (5) >> Rtimer (1) >> (print

(x) < x < clock)

Example B.4.4. Tests time. In particular, it test a subtle point in the semantics
that publishing has higher precedence than passing time.

Command Expected output

krun Publishes 3.

krun --ltlmc

"<>Ltl isGPublished(3)"

true

1 (1|1|1) >> count.inc () >> zero () | Rtimer (1) >> count.read

()

Before one time unit passes, all ready publishes should be done. That will
increment count to 3, and then after one time unit passes, count.read() is
called and it publishes 3. If it published less than that, then it means that time
has passed before publishing.

B.5 Robot Environment

Apart from the examples shown in Chapter 5, the following examples were tested
on the robot module. Some of these examples define and use the following
expressions (which I put here instead of repeating inside every example code):

1 ChangeLane (b) := ((bot. rotateRight (b) >> bot. stepFwd (b) >>

bot. rotateLeft (b)) | (bot. rotateLeft (b) >> bot. stepFwd

(b) >> bot. rotateRight (b)))

160

2 SmartStep (b) := bot.scan(b) > isBlocked > (ifNot(

isBlocked) >> bot. stepFwd (b) | if(isBlocked) >>

ChangeLane (b))

3 SmartStep4Ever (b) := SmartStep (b) >> SmartStep4Ever (b)

Example B.5.1.

1 bot.init () >> bot. stepFwd () >> bot. stepFwd () >> bot.

rotateLeft () >> bot. stepFwd ()

Example B.5.2.

1 // test with search : --search --pattern "<gVars >... \" bot.

myCow. direction \" |-> Dir </gVars >". should give three

solutions . one where the robot rotates right , one

rotates left , one moves forward .

2 bot. mapInit () >> bot.init (" myCow ") >> (bot. rotateRight ("

myCow ") | bot. rotateLeft (" myCow ") | bot. stepFwd (" myCow

"))

Example B.5.3.

1 // Use krun without search . This will initialize two

robots and move each one step forward .

2 bot. mapInit () >> (bot.init (" myCow ") | bot.init (" yourCow "))

> x > (bot. stepFwd (x))

Example B.5.4.

1 // Both bots will move one step forward . Next , put blocks

and see if ’if ’ works.

2 bot. mapInit () >> (bot.init (" myCow ") | bot.init (" yourCow "))

> x > SmartStep (x)

Example B.5.5.

1 // this will initialize two bots but they both will be in

the same position , the default position . They should

both collide with the obstacle

2 bot. mapInit () >> bot. setObstacles (<1,5>) >> (bot.init ("

myCow ") | bot.init (" yourCow ")) > x > bot. stepFwd (x)

161

Example B.5.6.

1 // this will move both bots. yourCow will hit but mine won

’t.

2 bot. mapInit () >> bot. setObstacles (<5,1>,<7,2>) >> (bot.

init (" myCow ") | bot.init (" yourCow ",<5,0>,<0,1>)) > x >

bot. stepFwd (x)

B.5.1 Testing the State Search

Example B.5.7.

1 // yourCow will change lane. test with search to see it

end up in two places , changing lane once to the left

and once to the right. Through the next few examples ,

we build up from a less complex version to a more

complex one , debugging ’search ’ because it is taking

long. krun is working fine though .

2 bot. mapInit () >> bot. setObstacles (<5,1>) >> (bot.init ("

myCow ") | bot.init (" yourCow ",<5,0>,<0,1>)) > x >

SmartStep (x)

Example B.5.8.

1 // search working as expected with sequential delta.

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> (

bot.init (" myCow ",<0,3>,<1,0>) | bot.init (" yourCow

",<2,0>,<0,1>)) > x > (bot. rotateRight (x) | bot.

rotateLeft (x))

Example B.5.9.

1 // search working . Next , add one more smart step

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) > x > SmartStep (x)

Example B.5.10.

1 // search works but takes around 10 minutes

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) > x > (SmartStep (x) >>

SmartStep (x))

162

Example B.5.11.

1 // In this one , search took exactly 9 minutes

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) >> SmartStep (" yourCow ") >>

SmartStep (" yourCow ")

Example B.5.12.

1 // search gives an error after 22 minutes . probably out of

memory because of the maude backend .

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) >> SmartStep (" yourCow ") >>

SmartStep (" yourCow ") >> SmartStep (" yourCow ")

Example B.5.13.

1 // simplified the previous example but still search is

running forever .

2 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> (

bot.init (" myCow ",<0,3>,<1,0>) | bot.init (" yourCow

",<2,0>,<0,1>)) > x > SmartStep (x)

Example B.5.14.

1 // Using the recursive expressions that goes forever

causes search to take forever as well

2 bot. mapInit () >> (bot.init (" myCow ") | bot.init (" yourCow "))

> x > SmartStep4Ever (x)

B.5.2 Testing LTL Model Checking

The following examples helped fix problems with time and synchronization. LTL
model checking used to run for upto 20 minutes in some of these examples, and
sometimes even go out of memory. Now it takes a matter of seconds.

Example B.5.15.

1 // test with: --ltlmc "<>Ltl gVarEqTo (\" bot. yourCow .

is_bumper_hit \", false)"

2 // ltlmc successful in a matter of seconds , returns true.

3 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) >> SmartStep (" yourCow ") >>

SmartStep (" yourCow ") >> SmartStep (" yourCow ")

163

Example B.5.16.

1 // test with: --ltlmc "<>Ltl gVarEqTo (\" bot. yourCow .

is_bumper_hit \", false)"

2 // ltlmc successful in a matter of seconds , returns true.

3 bot. mapInit () >> bot. setObstacles (<5,1>) >> (bot.init ("

myCow ") | bot.init (" yourCow ",<5,0>,<0,1>)) > x >

SmartStep (x) // ltlmc taking forever

Example B.5.17.

1 // test with: --ltlmc "[] Ltl <>Ltl gVarEqTo (\" bot. yourCow .

is_bumper_hit \", false)"

2 // ltlmc also takes a matter of seconds , return true.

3 bot. mapInit (<6,6>) >> bot. setObstacles (<2,1>,<4,2>) >> bot

.init (" yourCow ",<2,0>,<0,1>) > x > (SmartStep (x) >>

SmartStep (x))

Example B.5.18.

1 // this example runs correctly , but search will run

forever .

2 Bot_FwdForever () := bot. stepFwd () >> Bot_FwdForever ()

3 bot. mapInit () >> bot.init () >> Bot_FwdForever ()

Example B.5.19.

1 // tests nondeterminism in robot movement

2 Bot_2Fwd () := Bot_MoveFwd () >> Bot_MoveFwd ()

3 Bot_FwdForever () := Bot_MoveFwd () >> Bot_FwdForever ()

4 Bot_ChangeCourse () := (Bot_TurnLeft () | Bot_TurnRight ())

>> Bot_MoveFwd () >> (Bot_TurnLeft () | Bot_TurnRight ())

5 Bot_ManeuverAround () := Bot_TurnLeft () >> Bot_MoveFwd () >>

Bot_TurnRight () | Bot_TurnRight () >> Bot_MoveFwd () >>

Bot_TurnLeft ()

6 Bot_Protocol () := Bot_Scan () >> (if(ObstacleAhead ()) >>

Bot_ManeuverAround () | if(Not(ObstacleAhead ()))) >>

Bot_MoveFwd () >> Bot_Protocol ()

7 // Bot_Setup () := Bot_Init () >> Bot_SetObstacles

([2 ,5] ,[1 ,4] ,[1 ,6])

8
9 Bot_Init () >> Bot_Protocol ()

Example B.5.20.

164

1 // test using:

2 // krun --search --pattern "<gVars > M:Map </gVars >"

3 DummyExp (a,b) := Add(a,b)

4 bot.init () >> (bot. turnRight () | bot. turnLeft () | bot.

moveFwd ()) // WORKING ! test with search . should give

three solutions . one where the robot turns right , one

turns left , one moves forward .

Example B.5.21.

1 RandomMove () := Bot_MoveFwd () | Bot_TurnLeft () >>

Bot_MoveFwd () | Bot_TurnRight () >> Bot_MoveFwd ()

2 Bot_Init () >> RandomMove () >> RandomMove ()

Example B.5.22.

1 // this tests bot initialization and setting the

environment

2 bot.init () >> bot. setObstacles (<1,5>) >> bot. moveFwd ()

Example B.5.23.

1 FwdForever (thisBot) := bot. moveFwd (thisBot) >> FwdForever (

thisBot)

2 bot. mapInit (<10 ,10 >) >> bot. setObstacles (<5,2>) >> (bot.

init (<0,5>) | bot.init (<5,0>)) > myCow > FwdForever (

myCow)

B.6 Publishing and Number of Solutions

This set of examples were made with the goal of understanding the behavior of
the --search command with regard to the publishing rule, which resembles the
only observable transition in these examples. After all the testing and debugging,
simplifying the example to pin-point any inconsistencies seen in its behavior,
the conclusion drawn was that the order at which the transition rule applies for
different threads is what makes a more-than-expected number of solutions.

All the examples in this subsection are tested using the command:
krun test.orc --search --pattern "<gPublish> L:List </gPublish>".

Example B.6.1.

165

1 // imitates recursive calls. tests propagation of variable

mappings .

2 signal >> if(false) | signal >> if(false) | Add(b ,1) < b < 1

Example B.6.2.

1 // Publishes 2 and 3

2 if(false) | ((Add(b ,1) | (Add(b ,1) < b < Add(b ,1))) < b <

let (1))

Example B.6.3.

1 // Publishes 2, 3, 4. Gives 6 solutions .

2 if(false) | ((Add(b ,1) | ((Add(b ,1) | (Add(b ,1) < b <

Add(b ,1))) < b < Add(b ,1))) < b < let (1))

Example B.6.4. This outputs 2, 3, 4. It’s two transitions more than the
previous example because of the two sequential operations. This gives 56
solutions. This means that the change from Example B.6.5 to Example B.6.6
increased the solutions and tid numbers. Let’s minimize to pin-point the
problem.

1 signal >> if(false) | signal >> ((Add(b ,1) | ((Add(b ,1) |

(Add(b ,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < Let

(1))

Example B.6.5. Minimizing from Example B.6.4. This gave 6 solutions.

1 if(false) | signal >> ((Add(b ,1) | ((Add(b ,1) | (Add(b

,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < 1)

Example B.6.6. Example 3.3 minimizing from Example B.6.4. this gave 50
solutions.

1 signal >> if(false) | ((Add(b ,1) | ((Add(b ,1) | (Add(b

,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < 1)

Example B.6.7. Minimizing from Example B.6.6 by removing top pruning.
This gave 1 solution.

1 signal >> if(false) | (Add(b ,1) | ((Add(b ,1) | (Add(b ,1)

< b < Add(b ,1))) < b < Add(b ,1)))

Example B.6.8. Minimizing from Example B.6.6 by removing mid pruning.
This gave 27 solutions.

166

1 signal >> if(false) | (Add(b ,1) | ((Add(b ,1) | (Add(b ,1)

< b < Add(b ,1)))) < b < 1)

Example B.6.9. Minimizing from Example B.6.8 by removing bottom pruning.
This gave 9 solutions.

1 signal >> if(false) | (Add(b ,1) | Add(b ,1) | Add(b ,1) < b <

1)

Example B.6.10. Minimizing from Example B.6.9. This gives 1 solution.

1 Add(b ,1) | Add(b ,1) | Add(b ,1) < b < 1

Example B.6.11. Minimizing from Example B.6.9. This gives 5 solutions.

1 signal >> if(false) | Add(b ,1) | Add(b ,1) < b < 1

Example B.6.12. Minimizing from Example B.6.11. This gives one solution.
This helped in the debugging since it used to give 3 solutions. This is probably
as minimal as it could get.

1 signal >> if(false) | Add(b ,1) < b < 1

Example B.6.13. This gives two solutions.

1 signal >> if(false) | 1

Example B.6.14. This gives two solutions.

1 signal >> if(false) | 1

Example B.6.15. This gives two solutions.

1 signal >> if(false) | signal >> if(false)

Example B.6.16. This one is derived from Example B.6.12.

1 0 >> 3 | b < b < 1

B.7 Stressing State Search

Because publishing is defined as an observable transition, running search on
two publishes in parallel will yield two solutions because of the permutations of
the order of publishing. This means that the number of solutions will increase
exponentially with respect to the number of publishes in parallel. The following
set of examples was designed to find the limit of search.

167

Example B.7.1. This outputs 2, 3 and 4. Here we added more sequential
operations. It has 12 concurrent publish transitions.

1 signal >> if(false) | signal >> ((signal >> Add(b ,1) |

signal >> ((signal >> Add(b ,1) | signal >> (Add(b ,1) <

b < Add(b ,1))) < b < Add(b ,1))) < b < Let (1))

Example B.7.2. This has one less publish. It has 11 concurrent publishes.
Here, --search-final gave 1295 solutions while --search --depth 5 gave 149
solutions.

1 signal >> if(false) | signal >> ((Add(b ,1) | signal >> ((

signal >> Add(b ,1) | signal >> (Add(b ,1) < b < Add(b ,1)

)) < b < Add(b ,1))) < b < let (1))

B.8 Variable Lookup

Having designed our own mechanism for variable lookup and scope sharing, this
specific part needed rigorous testing and debugging. The following series of
examples was made to trace and debug problems with that module, to refine
the theory behind it and to optimize its mechanism. Ultimately, these examples
were leading to the recursive factorial program.

B.8.1 Phase 1

We have a subset of three examples that have a pruning operation at different
levels.

Example B.8.1. This outputs 10 and the topmost pruning prunes everything
else. To see the value of the pruning that is below it, we change something
as seen in the next example. After that, we allow the pruning below that in
Example B.8.3 and see the result of the bottom-most pruning.

1 signal >> if(false) | signal >> (Mul(a ,5) < a < ((signal

>> Add(b ,1) | signal >> (Mul(a ,5) < a < ((signal >>

Add(b ,1) | signal >> (Mul(a ,5) < a < (Add(b ,1) < b <

Add(b ,1)))) < b < Add(b ,1)))) < b < let (1)))

Example B.8.2. Outputs two solutions: 500 and 75

1 signal >> if(false) | signal >> (Mul(a ,5) < a < ((signal

>> freeze | signal >> (Mul(a ,5) < a < ((signal >> Add(

b ,1) | signal >> (Mul(a ,5) < a < (Add(b ,1) < b < Add(b

,1)))) < b < Add(b ,1)))) < b < let (1)))

Example B.8.3. Outputs 500.

168

1 signal >> if(false) | signal >> (Mul(a ,5) < a < ((signal

>> freeze | signal >> (Mul(a ,5) < a < ((signal >>

freeze | signal >> (Mul(a ,5) < a < (Add(b ,1) < b < Add(

b ,1)))) < b < Add(b ,1)))) < b < let (1)))

B.8.2 Phase 2

Now we remove freeze.

Example B.8.4. Outputs three solutions: 10, 75, 500.

1 signal >> if(false) | (Mul(a ,5) < a < ((signal >> Add(b ,1)

| (Mul(a ,5) < a < ((signal >> Add(b ,1) | (Mul(a ,5) <

a < (Add(b ,1) < b < Add(b ,1)))) < b < Add(b ,1)))) < b

< let (1)))

Example B.8.5. Outputs two solutions: 75 and 500.

1 signal >> if(false) | (Mul(a ,5) < a < ((signal >> if(false

) | (Mul(a ,5) < a < ((signal >> Add(b ,1) | (Mul(a ,5)

< a < (Add(b ,1) < b < Add(b ,1)))) < b < Add(b ,1)))) <

b < let (1)))

Example B.8.6. Outputs one solution: 500.

1 signal >> if(false) | (Mul(a ,5) < a < ((signal >> if(false

) | (Mul(a ,5) < a < ((signal >> if(false) | (Mul(a ,5)

< a < (Add(b ,1) < b < Add(b ,1)))) < b < Add(b ,1)))) <

b < let (1)))

B.8.3 Phase 3

Now we remove signal’s.

Example B.8.7. Outputs three solutions: 10, 75 and 500.

1 if(false) | (Mul(a ,5) < a < ((Add(b ,1) | (Mul(a ,5) < a <

((Add(b ,1) | (Mul(a ,5) < a < (Add(b ,1) < b < Add(b ,1)

))) < b < Add(b ,1)))) < b < 1))

Example B.8.8. Outputs two solutions: 75 and 500.

1 if(false) | (Mul(a ,5) < a < ((if(false) | (Mul(a ,5) < a <

((Add(b ,1) | (Mul(a ,5) < a < (Add(b ,1) < b < Add(b

,1)))) < b < Add(b ,1)))) < b < 1))

Example B.8.9. Outputs one solution: 500.

169

1 if(false) | (Mul(a ,5) < a < ((if(false) | (Mul(a ,5) < a <

((if(false) | (Mul(a ,5) < a < (Add(b ,1) < b < Add(b

,1)))) < b < Add(b ,1)))) < b < 1))

B.8.4 Phase 4

These also have the same pattern. Let’s simplify more.

Example B.8.10. Outputs three solutions: 10, 15 and 20.

1 if(false) | (Mul(a ,5) < a < ((Add(b ,1) | ((Add(b ,1) | (

Add(b ,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < 1))

Example B.8.11. Outputs two solutions: 15 and 20.

1 if(false) | (Mul(a ,5) < a < ((if(false) | ((Add(b ,1) | (

Add(b ,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < 1))

Example B.8.12. Outputs one solution: 20.

1 if(false) | (Mul(a ,5) < a < ((if(false) | ((if(false) |

(Add(b ,1) < b < Add(b ,1))) < b < Add(b ,1))) < b < 1)

)

B.8.5 Final Simplification

Example B.8.13. Outputs two solutions: 15 and 20.

1 if(false) | ((if(false) | ((Add(b ,1) | Add(b ,1)) < b <

Add(b ,1))) < b < 1)

170

	Acknowledgment
	Contents
	List of Figures
	List of Tables
	List of K Rules
	Abstract
	Arabic Abstract
	Introduction
	Problem Description
	Approach
	Contribution
	Outline

	Background
	Service Orchestration
	Orc
	Time in Orc
	Orc Examples

	Formal Specification and Verification
	SOS-based Frameworks
	Small-step SOS
	Big-step SOS
	Modularity in SOS

	The Chemical Abstract Machine (CHAM) BerryBB:1992
	Rewriting Logic MeseguerM:1992
	Maude ClavelCDELMMT:2007

	The K Framework
	Concepts Inspired by Other Frameworks
	Overview of K Rules
	Main Features of K
	The K Tool
	Advantages over Maude in defining configurations
	Advantages over SOS in modularity
	Final words about K

	Formal Verification techniques

	Designing a Formal Semantics of Orc
	Combinators
	Parallel Combinator
	Sequential Combinator
	Pruning Combinator
	Otherwise Combinator

	From Abstract Managers to Publishing
	Abstraction of Manager Threads
	Publishing

	Time

	K Semantics of Orc
	Syntax Module
	Expression Definitions
	Parameters and Arguments
	Calls and Handles
	Values
	Manager Functions
	Semantic Elements in Syntax

	Main Module
	Combinators Module
	Parallel Combinator
	Thread Properties
	Cell Shapes on the Rewritten Side
	Creating New Threads
	Halted Thread Cleanup
	Modularity in Thread Management

	Sequential Combinator
	The Spawning Rule
	Handling the Operator
	Cleanup: Right-side Instances
	Cleanup: Manager and Left-side Child

	Pruning Combinator
	The Pruning Operation
	De-sugaring the Operator
	Pruning Cleanup

	Otherwise Combinator
	Otherwise Halting and Cleanup

	Recap
	Synchronization
	Site-Call Management
	Publishing
	Publishing to Parents

	Variable Lookup
	Variable Requests

	Time
	The Function
	Implemented Time Modules
	Sequential Time Module
	Concurrent Time Module

	Predicate Functions
	Expression Definition and Expression Calls
	Expression Definitions
	Expression Calling

	Testing and Validation

	Executing the Semantics
	Case Study: Robot Movement
	Semantics of Robot Sites
	Running the Programs

	Various Key Programs
	Conclusion

	Related Work
	Service Composition
	Approaches to Service Composition
	Service-based computations
	BPEL4WS jordan2007web

	Verification of Service Composition Frameworks

	Orc-related
	Formal Semantics of Orc
	Token semantics of Orc
	Concurrent Semantics of Orc

	Verification of Orc
	Dong et al., 2014 dong2014towards
	Defining Orc in Maude

	Summary and Comparison

	Work done in K

	Conclusion
	Limitations
	Observable Transitions and State Space Explosion
	Threats to Validity
	Untested Cases
	Human Error

	Future Work
	A Formal Comparison
	Extending the Case Study
	Making a Test Suite
	Real Time

	Vita
	Select Modules of the K-Orc Definition
	Syntax Module
	The Orc Calculus
	Expressions
	Parameters and Arguments
	Site Calls and Expression Calls
	Values
	KResult
	Secondary Syntax Productions

	Main Orc Module
	Configuration

	Expression Definitions and Calls
	Time
	Concurrent Time Module
	Sequential Time Module

	Local Site Identifiers
	Internal Sites
	Timer Sites

	Math Sites
	Bot Environment
	Internal Bot Sites
	Timed Bot Sites

	LTL Model Checking
	Predicates

	Testing Examples
	Combinators
	LTL Model Checking
	Expression Definition and Calling
	Time
	Robot Environment
	Testing the State Search
	Testing LTL Model Checking

	Publishing and Number of Solutions
	Stressing State Search
	Variable Lookup
	Phase 1
	Phase 2
	Phase 3
	Phase 4
	Final Simplification

