
--.--<r.H

E.x
Eft*F
*
*
E###g
E
*H

E
+i##
E.x
##
+H
*
Et

EFFtrCIENT SEISMIC IMAGING CI*,

I{EXAGOI{ALLY SAMPLED DATA

BY

MOHAMMED SHAHABUIII-} IN

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERATS

DHAHRAN, SAUDI ARABIA

ln Portiol Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
ln

ELECTRICAL ENGINEERING

DECEMBER 2015
*H
#
*
E.sI

ffi1



KING FAHD I]NIVtrRSITY OF PtrTROLEUh,I Ez I{II{trR,ALS
DHAHRAN 3126i. SAUDI ARABIA

DtrANSHIP OF GRADUATtr STUDItrS

This thesis. rtritten bv MOHAMMED SHAHABUDDIN under the clirection

of his tiresis adviser and appror.ed b-v his thesis cornrnittee. lias been presented

to and accepted 1l' the Dean of Gracluater Studies. in 1>artial fulfilhnent of tire
requiretnerits lor the degree of MASTER OF SCIENCE IN ELECTRICAL
ENGINEERING.

Dr. Abdellaiif Al-Shr&ail {}Iember)t
I

%Ifdrc'yrff,v:
Dr. Azzedine Zerguine (Member)

Dr. \\rail A. llousa (Aclviserr)

Dr. Ali A. A1-Shaiki

Depar'trnerit Chairrnan

Dr. Salarrr A. Znnuno

Dean of Graduate Studies

Date



©Mohammed Shahabuddin
2015

iii



Dedication

To my beloved father,

who always strived for excellence
in education

iv



ACKNOWLEDGMENTS

In the name of Allah, The Compassionate The Merciful

I would like to thank Allah (S.W.T) for His mercy and compassion, peace and

blessing be upon His messenger the last Prophet Mohammad (p.b.u.h).

I would like to thank my advisor Dr. Wail A. Mousa for his guidance and

direction throughout this master thesis, it was his passion that motivated me to

finish this master’s thesis. I thank my committee members Dr. Azzedine Zerguine,

Professor, EE Dept. and Dr. Abdellatif Al-Shuhail, Associate Professor, ES Dept.

for their constructive support. I want to express my gratitude to Dr. Abdellatif

Al-Shuhail, Dr. Saleh Al-Dossary (Saudi Aramco) and Dr. Gino Ananos (Saudi

Aramco) for providing the quintessential dataset for this research.

The financial support provided by the King Fahd University of Petroleum

& Minerals is greatly appreciated. I have to thank Dr. Ali Al-Shaiki, Chairman

EE Dept. for providing the much needed support at the apt time.

I would like to pay my gratitude to my beloved father, may Allah accept

v



him and grant him place in Jannat-ul-Firdous, for all the love and care he

provided. I would like to thank my beloved mother, for her patience, when her

only son wasn’t around. I pray to Allah the Almighty to bless her with constant

happiness, health and long life. I have to thank my sisters for their persuasion

and love throughout my life, without their motivation I wouldn’t have joined the

M.S. program. My deepest gratitude to my uncle Mr. Mirza Ghouse Baig, CE

Dept. KFUPM for his guidance and knowledge.

Finally I would like to thank Mr. Yahiya Naveed for being a mentor and

friend throughout my stay at KFUPM. Special thanks to Mr. Haroon Ashraf, who

did the hard work of creating basic and essential codes for hexagonal processing.

I thank all the member of the Seismic Exploration and Analysis (SEA) Group for

their suggestions and contributions towards this thesis.

Last but not the least, I thank my friends here at KFUPM, they’re the

family away from home. I would like to pass my gratitude to all my friends in my

country for being there when I needed them the most.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES ix

LIST OF FIGURES x

ABSTRACT (ENGLISH) xv

ABSTRACT (ARABIC) xvii

CHAPTER 1 INTRODUCTION 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 BACKGROUND 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Reflection Seismology . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Land/Marine Acquisition . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 2D vs 3D Seismic Acquisition . . . . . . . . . . . . . . . . 8

2.4 Seismic Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Migration Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Seismic Imaging Techniques . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Phase Shift plus Interpolation (PSPI) Technique . . . . . . 17

2.6.2 The PSPI Algorithm . . . . . . . . . . . . . . . . . . . . . 18

2.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 24

vii



2.7 Hexagonal Data processing . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 Hexagonal Data Handling . . . . . . . . . . . . . . . . . . 32

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

CHAPTER 3 HEXAGONAL PHASE SHIFT PLUS INTERPO-

LATION WITH HEXAGONALLY SAMPLED DATA 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Spiral Architecture (SA) . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 3D Hexagonal Phase Shift Plus Interpolation (HPSPI) in SA . . . 47

3.4 The Computational Complexity of HPSPI in SA . . . . . . . . . . 50

3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 The 3D seismic migration synthetic experiments . . . . . . 50

3.5.2 Application to 3D SEG/EAGE salt model . . . . . . . . . 51

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

CHAPTER 4 3D DEPTH MIGRATION USING MCCLELLAN

TRANSFORMATION IN SPIRAL ARCHITECTURE 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 3D Seismic Imaging using 2D FIR Filters in SA . . . . . . . . . . 70

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

CHAPTER 5 CONCLUSIONS 81

5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES 83

VITAE 92

viii



LIST OF TABLES

2.1 Sampling efficiency comparison for the three monohedral tiling. . 34

3.1 Comparison of number of flops (for the complex multiplications,

real-complex multiplications and complex additions) at a depth

slice of stacked data for migrating the 3D SEG/EAGE salt model,

using rectangular and hexagonal PSPI methods (with 200 reference

velocities and 2048 fourier transform points). . . . . . . . . . . . 53

ix



LIST OF FIGURES

2.1 Exploration Seismology. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Project economics comparison for seismic survey with 3D and with-

out 3D. The higher probability of success in a 3D survey reduces

the costs by reducing the number of wells drilled (courtesy of [1]). 9

2.3 An out-of-plane diffractor in 2D vs 3D, the data in the red traces

provides the unambiguous direction and position of the diffractor

(courtesy of [2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Typical 3D land acquisition layout using rectangular grids (courtesy

of [1]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Huygens Principle (modified after [3]). . . . . . . . . . . . . . . . 12

2.6 The apparent dip with a dip angle β when migrated moves up-dip

(courtesy of [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Various seismic imaging techniques. . . . . . . . . . . . . . . . . . 16

2.8 The Phase Shift Plus Interpolation (PSPI) algorithm. . . . . . . . 20

2.9 Inline section (69) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 25

2.10 Inline section (99) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 26

2.11 Crossline section (87) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 27

2.12 Crossline section (126) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 28

x



2.13 Depth section (29) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 29

2.14 Depth section (43) of (a) SEG/EAGE salt model, (b) Migration

result using rectangular phase shift plus interpolation. . . . . . . . 30

2.15 Types of monohedral tiling (a) triangular, (b) rectangular and (c)

hexagonal, covering the Euclidean plane regularly without gaps. . 33

2.16 (a) square with 8 folds of symmetry, (b) hexagon with 12 folds of

symmetry (courtesy of [4]). . . . . . . . . . . . . . . . . . . . . . . 35

2.17 a circularly band limited signal inscribed in (a) square and (b)

hexagon. Inaccurate representation of circle is 27.3% and 10.2% by

square and hexagon respectively. (courtesy of [5]). . . . . . . . . . 36

2.18 Seismic band region (a) In the kx − ky − ω space, (b) In the k − ω

plane and (c) in the kx − ky plane (courtesy of [6]). . . . . . . . . 37

2.19 Shows (a) hexagonal acquisition layout using rectangular bins, (b)

zoomed layout. The shot locations are represented by squares and

receiver by circles (courtesy of [1]). . . . . . . . . . . . . . . . . . 38

2.20 Hexagonal acquisition layout using hexagonal bins (courtesy of [6]). 39

2.21 Hexagonal indexing in the Bh coordinate system for aggregate level

0, 1 and 2 (courtesy of [4]). . . . . . . . . . . . . . . . . . . . . . . 39

3.1 (a) 2D data represention in spiral architecture, (b) stored as 1D

vector (courtesy of [7]). . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 (a) 3D data represention in spiral architecture, (b) stored as 2D

array (Modified after [7]). . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Flow chart of Hexagonal Phase Shift Plus Interpolation. . . . . . 48

xi



3.4 Impulse response comparison of RPSPI with HPSPI, with ∆z =

2m, ∆x = 10m, ∆y = 10m, ∆t = 4ms, and c = 1000m/s. The

maximum frequency is 50 Hz using (a) In-line section of impulse

response migrated using rectangular PSPI, (b) In-line section of im-

pulse response migrated using hexagonal PSPI, (c) and (d) show the

depth slices of migrated image using rectangular PSPI and hexag-

onal PSPI respectively. . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Inline section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 54

3.6 Inline section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 55

3.7 Crossline section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 56

3.8 Crossline section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 57

3.9 Depth section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 58

3.10 Depth section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) migrated section using rectangular PSPI, (d)

migrated section using hexagonal PSPI in SA. . . . . . . . . . . . 59

3.11 Challenging parts of the depth slice of SEG/EAGE salt model are

highlighted by rectangles. The rectangle on top and bottom will

be referred as box-1 and box-2 respectively. . . . . . . . . . . . . . 60

xii



3.12 Zoomed area SEG/EAGE salt model, (a) − (b) rectangular veloc-

ity model for box-1 and box-2, (c) − (d) migrated section using

rectangular PSPI, (e) − (f) migrated section using hexagonal PSPI

in SA. It can be observed that hexagonal PSPI represent curves

much better than rectangular version. . . . . . . . . . . . . . . . . 61

3.13 Challenging parts of the depth slice of SEG/EAGE salt model are

highlighted by rectangles. The rectangle on top and bottom will

be referred as box-1 and box-2 respectively. . . . . . . . . . . . . . 62

3.14 Zoomed area SEG/EAGE salt model (a) − (b) rectangular velocity

model for box-1 and box-2, (c) − (d) migrated section using rect-

angular PSPI, (e) − (f) migrated section using hexagonal PSPI in

SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.15 Cross-line section of SEG/EAGE salt model (a) original, (b) hexag-

onally sampled, (c) zoomed section of the original model, (d)

zoomed section of hexagonally sampled model. The hexagonally

sampled model is smeared and blurred, as the rectangular model is

of low resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Chebyshev structure for designing 2-D FIR digital filters from 1-D

odd length filters (courtesy of [8]). . . . . . . . . . . . . . . . . . . 71

4.2 Hale’s McClellan tranformation filter for rectangular grids (a) orig-

inal, (b) improved, where c ≈ 0.0255 (courtesy of [9]). . . . . . . . 74

4.3 Hedley’s McClellan tranformation filter for hexagonal grids (a) orig-

inal, (b) improved, where a ≈ −0.708, b ≈ 0.454, c ≈ −0.00942 and

d ≈ 0.00692 (courtesy of [10]). . . . . . . . . . . . . . . . . . . . . 75

4.4 Proposed McClellan transformation filter for hexagonal grids in SA

(a) original, where a ≈ −0.333, b ≈ 0.222, (b) improved, where

a ≈ −0.354, b ≈ 0.227, c ≈ −0.00471 and d ≈ 0.00346. . . . . . . 76

4.5 Depth slice of the 3D seismic migration of impulse response using

Hale-McClellan transformation filter (a) original, (b) improved. . . 77

xiii



4.6 2D Filter response (a) improved McClellan transformation as in [9]

, (b) proposed improved McClellan transformation in SA. . . . . . 78

4.7 Depth slice of the 3D seismic migration of impulse response using

proposed McClellan transformation filter in SA (a) original, (b)

improved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xiv



THESIS ABSTRACT

NAME: Mohammed Shahabuddin

TITLE OF STUDY: Efficient Seismic Imaging of Hexagonally Sampled Data

MAJOR FIELD: Electrical Engineering

DATE OF DEGREE: December 2015

Natural resources such as oil and gas, hidden in subsurface structures are ex-

tremely important in our daily lives. In order to meet the demand it is required

to employ higher resolution imaging techniques for better estimation of the re-

serves. Thus amount of data processing has increased exponentially. Hexagonally

sampling serves as a solution, requiring lesser number of samples to represent

same information. Seismic data is circularly band limited in the wave-number

domain. Hexagonal spatial sampling is the optimum technique for seismic data.

Researchers have proposed various methods to address hexagonal data cells, be-

cause of their non-orthogonal alignment. Spiral Architecture (SA) has proven to

be the most optimal addressing scheme proposed for hexagonal data addressing. In

this research, three dimensional (3D) post-stack depth imaging is performed us-

ing the Phase Shift Plus Interpolation (PSPI) technique for hexagonally sampled
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data in Spiral Architecture (SA). The modified algorithm saves 80% computational

time compared to the conventional rectangular approach. Further, another method

of seismic imaging is explored. Two dimensional (2D) Hexagonal FIR filters are

designed using McClellan Transformations. Since a hexagon is a better approxi-

mation to a circle, the designed hexagonal 2D filters have an improved response

compared to the rectangular counterparts, besides the evident computational sav-

ings.
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CHAPTER 1

INTRODUCTION

The developments in the modern era, depend heavily on oil and gas resources to

meet their energy requirements. These resources are buried deep down the earth

surface and require drilling up to the depth of kilometres beneath the surface.

This extraction process is very costly, thus, there is a need for an accurate

estimation of the reserves. The seismic exploration process finds possible drilling

locations for oil and gas. For oil production it is important to obtain a clear and

accurate image of the subsurface [11, 12]. This can be done using a method called

exploration seismology. This technique involves creating an artificial earthquake

which sends the seismic waves down the earth surface. These waves are reflected

at the boundaries of different layers in the subsurface. The reflections are

recorded on the subsurface using recording devices such as geophones. There is

a need to process this acquired seismic data, as the received data is effected by

noise, thereby we use some digital signal processing techniques to improve the

data [11, 13].
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Digital signal processing has proven to be very useful in many fields such

as sonar, radar, medical, communication, seismology etc. Seismic Imaging

determines the structure of the interior of the earth from the data received at the

surface.

The major constraints in seismic digital signal processing arise from the

huge data acquired, in order to obtain high resolution imaging. The number of

receiver lines to be used during the acquisition, has jumped from less than 100 in

1970 to about 200,000 receiver channels today. It is estimated to reach about 1

million by 2020 [14]. A typical seismic exploration data, now a days, is fully done

in three-dimensions (3D), where the receivers are laid based on the rectangular

grids. The seismic data usually would be in TeraBytes (TB’s), spanning multiple

hard disks.

Researchers in the past have found that two-dimensional (2D) hexagonal

sampling is much efficient than the usual (2D) rectangular sampling and

would require 13.4% fewer samples [15]. Hexagonal sampling has the alternate

rows/columns placed half sample interval with respect to the other rows/columns

and it has six equidistant neighbours and has natural symmetry. Hexagonal

sampling offers the best approximation to circularly band limited signals,

seismic signals in wavenumber domain are circularly band-limited and thus, it is

2



more appropriate to use hexagonal sampling than rectangular for seismic data

acquisition. Eventually requiring lesser computational requirements and storage.

1.1 Thesis Contributions

The structural geometry of a hexagon is 50% more symmetric than a square,

exhibiting a 12 fold symmetry compared to 8 fold symmetry of a rectangle.

This is the primary reason for the efficiency of hexagonal sampling technique.

Each pixel in a rectangular grid has four nearest neighbours and four diagonal

neighbours, which are farther. While in a hexagonal grid each pixel will have six

equidistant neighbours. This increases the sampling efficiency of a hexagonal grid.

Several attempts were made to employ the advantage of the hexagonal

sampling in the field of image processing and seismic data processing, which

employ the rectangular addressing techniques to deal with hexagonal data. These

approaches achieve the savings in terms of number of samples processed, but the

computational power requirement was high.

Spiral architecture (SA) for hexagonal data was proposed by Sheridan in 1996

[16]. SA introduces a special addressing algorithm, which uniquely identifies

each hexagon of the structure with a base-7 index. This allows a 2D data to be

represented in 1D, likewise a 3D data is represented as 2D.
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In this thesis, we propose a 3D seismic migration technique based on the spiral

architecture. This is a first attempt to deal with 3D seismic imaging algorithm

using the spiral architecture. The computational efficiency of the hexagonal

processing is explored. Phase Shift Plus Interpolation (PSPI) migration technique

is used to image hexagonally sampled seismic data. The 3D PSPI in SA was

tested using the impulse cube and more challenging 3D stacked SEG/EAGE

seismic data set.

Computational cost of 3D explicit depth migration of seismic data is high.

Another method to migrate 3D seismic data is by convolving spatially varying

two-dimensional (2D) filters with the data for each angular frequency (ω). In

this thesis an attempt is made to migrate the hexagonally sampled the seismic

data using the McClellan transformation filters in SA. Again, this is tested on the

synthetic data sets, in order to prove the spiral architecture concept.

1.2 Thesis Organization

This thesis is structured as follows, Chapter 2 provides an introduction and back-

ground of the seismic imaging techniques, where the PSPI technique is discussed

in details. Also, the fundamental concepts of the spiral architecture are explained.

Chapter 3 deals with the PSPI migration technique for the spiral architecture and

the imaging results and efficiency of the algorithm are discussed. In Chapter 4,

seismic imaging is performed as a filtering process using the McClellan transfor-

4



mation filters in spiral architecture. Finally, conclusions and future works are

provided in Chapter 5.
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CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter deals with the concept of seismic exploration and analysis using

traditional rectangular grids. The advantages of 3D seismic imaging over 2D are

discussed. Hexagonal grid acquisition and its relevance to circularly band-limited

seismic signals is explained. The data handling in hexagonal grid is explored using

spiral architecture. Simulation results are shown for the existing techniques.

2.2 Reflection Seismology

Relection seismology is the technique to estimate the properties of the subsurface

of the earth using the principles of seismology. The seismic waves are produced

by creating an artificial earthquake on the surface, these waves are reflected from

various layers in the subsurface and the reflections are recorded at the surface using

geophones. The process involves seismic acquisition, processing and interpretation

6



to obtain the subsurface image.

Figure 2.1: Exploration Seismology.

2.3 Land/Marine Acquisition

For a land acquisition, geophones are used as receivers, which are laid on the

surface in lines at regular intervals called as receivers lines (denoted as x), sources

are shot in the cross-line direction (denoted as y). During a marine acquisition,

the receiver lines are called streamers, which has hydrophones located at regular

intervals, floating on the water surface and can go 6-8 KM long. Air guns are used

as sources in marine seismic. Multiple receiver lines can be laid at regular intervals

leading to 3D seismic aquisition, while in a 2D acquisition only one receiver line

is used.
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2.3.1 2D vs 3D Seismic Acquisition

The increase in information and accuracy provided by 3D over the 2D seismic

has propelled the industry to 3D seismology. Success ratios have increased for

the oil companies by using 3D seismic. An increase in the success rate from 13%

to 44% in just 5 years was reported by a large oil company in a world wide study

by employing 3D seismology [17]. Even a small increase in the success ratio of

drilling wells with a 3-D survey (e.g., 1:5) versus without a 3-D survey (e.g., 1:6)

could justify the cost of a 3-D survey (Figure 2.2). Assume drilling 6 wells at a

dry hole cost of $500,000 each versus drilling 5 wells at a cost of $500,000 each

with 3-D data, it would still save $500,000.

In a 2D seismic survey, the earth is assumed to be a cylinder, with its axis

orthogonal to the survey, accuracy of the 2D survey depends on the fulfillment

of this assumption. Whenever this assumption is not satisfied, the 2D seismic

interpretation yields a distorted image. In Figure 2.3, the point diffractor R3D is

out of plane with respect to the 2D acquisition direction. It creates reflections

that are incorrectly back-propagated in the earth along the vertical plane and

imaged at wrong location R2D. To correctly image, 3D imaging needs to be

applied to back-propagate along the orthogonal plane.

A typical (rectangular) layout of 3D land acquisition is depicted in Figure

2.4. The receiver lines are represented as horizontal blue lines spaced at regular

8



Figure 2.2: Project economics comparison for seismic survey with 3D and without
3D. The higher probability of success in a 3D survey reduces the costs by reducing
the number of wells drilled (courtesy of [1]).

intervals, this spacing is called Receiver Interval (RI), while the source lines are

represented by vertical red lines separated by Source Intervals (SI). Each receiver

line is separated by Receiver Line Interval (RLI), while source lines are separated

by Source Line Interval (SLI), more details are explained in [1].

2.4 Seismic Migration

Seismic migration is the process by which seismic events are geometrically re-

located in either space or time to the location the event occurred in the subsurface,

rather than the location that it was recorded at the surface, thereby creating a

more accurate image of the subsurface. This process overcomes the limitations of

9



Figure 2.3: An out-of-plane diffractor in 2D vs 3D, the data in the red traces
provides the unambiguous direction and position of the diffractor (courtesy of
[2]).

Figure 2.4: Typical 3D land acquisition layout using rectangular grids (courtesy
of [1]).

geophysical methods restricted by areas of complex geology, such as: faults, salt

bodies and folding.

10



2.5 Migration Principle

Huygens principle is the basis of migration [18]. This can be explained by the

harbor example shown in Figure 2.5. Assume that a calm breeze is coming from

the ocean and an observer is at the beach where a barrier that exists at a certain

distance from the beach and has a gap (hole) for water to pass through. Then,

one will observe that the gap on the barrier acts as a secondary source and has

generated semi-circular wavefronts that are propagating towards the beach. Now,

assume that we did not know about the barrier, we lay our receiver cables along

the beach and record in time the approaching waves.

We apply the same principle into reflection seismology by imagining that each

point in the geological interface acts as secondary source in response to incident

wavefield. This is called the exploding reflector model [19]. Consider a point

scattering in a medium as shown in Figure 2.5. The minimum travel time is given

by:

to =
2z

v
, (2.1)

where z the depth of scattering and v is the velocity of wave propagation. Now,

we assume that the velocity is constant and the source and receiver are at the

same location (zero-offset).The travel time as function of distance x can be given

by [19]:

t (x) =
2
√
x2 + z2

v
. (2.2)
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Figure 2.5: Huygens Principle (modified after [3]).

By squaring and substitution, we obtain:

t(x)2

t20
− 4x2

v2t20
= 1. (2.3)

This shows that the travel time curve for a scattered arrival has hyperbolic

form with the apex directly pointing towards the secondary source as shown in

12



Figure 2.5.

Now if one considers a series of such scatter points in the barriers which

generates diffraction hyperbolas. Following Huygens Principle, these hyperbolas

sum coherently only at the time of reflection, while their later contribution’s

cancel out. However, if the reflector vanishes at some point there will be a

diffracted arrival from the endpoint which will show up in the zero-offset data.

This creates an artifact in the structure, which might be falsely interpreted as

a structure. Hence, such sections requires migration in order to remove such

artifacts.

Another important aim of migration is to map the apparent dip that is seen

on the zero - offset to the true dip. The true dip angle is always grater that the

apparent angle [20]. Consider a reflector at an angle of θ the earth as shown in

Figure 2.6. The zero offset travel time for a wavefield propagating from distance

x down to the reflector and back up again is given by t = 2r/v , where r is the

wavefield path length and is equal to xsin θ. Now, to compare the apparent dip

and the true dip we have to travel time to depth via Eq.(2.1). In the un-migrated

depth section z = xsin θ, from Figure 2.6 one can obtain slope of the event,

which is equal to the tangent of the apparent dip angle say β.

Therefore,

tan β = sin θ. (2.4)
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Figure 2.6: The apparent dip with a dip angle β when migrated moves up-dip
(courtesy of [3]).

This shows that the apparent dip angle is always less than true angle.

Hence, we can say that migration moves up dip the reflectors. In addition,

the length of the reflector in the geological section is shorter than in the

time section. Thus migration also shortens reflector. In short migration fo-

cuses energy by collapsing diffraction as well as it correctly shortens, steepens

and moves reflectors up-dip. These are the main objectives of seismic imaging [21].
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2.6 Seismic Imaging Techniques

There are many migration techniques that are available from the literature. In

the early stages of reflection seismology, migration was performed by hand and

it was called compass migration [3]. It was used by the interpreters before the

computerized versions were available. Later on a new method was introduced by

Karcher called Hagedoorn migration which was valid only for constant velocities

[22]. It was simply relying on spreading the energy along the semicircles and let

waveform reconstruction compose the reflector position, it however provides a

valuable insight to the migration process [18]. Kirchhoff migration (summation

operator) is considered to be the best but its implementation part varies from a

very simple algorithm to one that is complex. This scheme sums the energy along

the diffraction. The Fourier transform (F − K) migration was introduced by

Stolt in 1978 [23]. This method is ideal when it comes to constant velocities and

will migrate accurately to 90 degrees. Finite difference method was introduced

in order to find the data on (n + 1)th layer based on nth layer. Methods based

on phase shift were developed by Gazdag by using 2-D Fourier transform. This

method is appropriate for the depth migration. Phase shift migration [24]

is unconditionally stable, which applies phase shift in Fourier domain to the

extrapolated wave field [25, 24, 26, 27]. The main drawback of this method

is that, it requires a constants velocity medium or a medium which is just a

function of depth. Phase Shift plus interpolation (PSPI) is one of the forms of

phase-shift method that allows lateral velocity changes. There are few techniques
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available in the literature that works by switching their domains back and fourth

by fixing one dimension in one particular domain. Figure 2.7 shows the flow

chart of various imaging techniques.

Figure 2.7: Various seismic imaging techniques.

Here, we start with the acoustic data in 3D, which is given as p(x, y, z, t) in a

medium with a constant material density and velocity v. The following represents

the partial differential equation (PDE) that governs the propagation of p(x, y, z, t)

[24]:

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

1

v2

∂2p

∂t2
, (2.5)

where x is the crossline direction and y is the inline direction and z represents the

depth direction and t is the time. The wavefield p(x, y, z, t) can be expressed in

the frequency domain as follows:
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p (x, y, z, t) =

∫ ∫ +∞∫
−∞

P (kx, ky, z, ω) exp [−i (ωt− kxx+ kyy)] dkxdkydω, (2.6)

where ω is frequency and kx and ky are wavenumbers in x and y direction.

By substituting Eq.(2.6) in Eq.(2.5) we obtain:

∂2P

∂z2
=

(
ω2

v2
− k2

x − k2
y

)
P, (2.7)

which holds true for all kx, ky and ω.

If v is constant, the solution to the above equation is given by:

P (kx, ky, z = ∆z, ω) = P (kx, ky, z = 0, ω) eikz∆z, (2.8)

where

kz = ±
√
ω2

v2
− k2

x − k2
y. (2.9)

Equation 2.8 holds good for v(z) as long as ∆z is small enough.

2.6.1 Phase Shift plus Interpolation (PSPI) Technique

In case of complex geological structures, where lateral velocities have considerable

variations, the phase shift method of migration does not work well. Hence, a

new method is introduced to incorporate the lateral velocity variations, called

Phase Shift plus Interpolation (PSPI). In PSPI, we use a number of reference
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velocities to extrapolate the wavefield to next depth. The accuracy of the obtained

result depends upon the number of reference velocities used at each depth [28].

The basic idea of PSPI, is to select several reference velocities at each depth to

account for the lateral velocity variations in each extrapolation step and obtain

multi-reference wavefield in the frequency-wavenumber domain. Based on the

relationship between local velocities and the reference velocities, we obtain a final

image by interpolating the reference wavefield.

The important features of PSPI are:

� This method allows lateral velocity changes.

� This method computes a number of sub-layers at different velocities for the

next depth level.

� Each new layer is inverse Fourier transformed into (ω, x, y) domain sub

layer.

� The output layer is interpolated from the different velocity sub-layers using

the appropriate lateral velocity.

� The new layer is transformed back to the (ω, kx, ky) domain for the next

downward step.

The PSPI method is described more clearly by Gazdag [24].

2.6.2 The PSPI Algorithm

PSPI assumes that the wavefield at point (xk, yk) is equivalent to reference wave

field as long as the velocity in this point v(kx, ky) equals to reference velocity vi.
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The implementation of PSPI involves three steps:

� Initial phase shift is applied to the wavefield.

� Phase shift is applied to set of reference wavefield using reference velocities.

� After we obtain these reference wavefield, we approximate P (x, y, z, w) by

linearly interpolating over reference wave fields if v(kx, ky) is close to vi.

The flow chart for the PSPI is shown in Figure 2.8 To maintain a high accuracy

for small dip, laterally varying time-shift is applied in space frequency domain.

P (kx, ky, z, ω) = P (x, y, z, ω) ei
ω

v(x,y)
∆z. (2.10)

This means that this extra time shift will be compensated later in (k−ω) domain,

i.e., the phase shift term now changes to e(ikz∆z−i ω
v(x,y)

∆z) instead of eikz∆z when

extrapolating to the next depth.

Two conditions degrade the performance of migration algorithm:

� Insufficient sampling of the data along the shot axis.

� Lateral velocity variations.

The Computational Complexity for acoustic PSPI

The computational cost for imaging using PSPI using NFFT FFT points and nref

velocities at each depth slice is given by [24, 8].

For complex multiplications,

PSPI − COSTX = 2NFFT × nref + (nref + 2)× NFFT

2
log2NFFT , (2.11)
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Figure 2.8: The Phase Shift Plus Interpolation (PSPI) algorithm.
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For complex additions,

PSPI − COST+ = (nref + 2)×NFFT log2NFFT . (2.12)

In both cases, each complex multiplication requires six flops whereas, each

complex addition requires two flops as given in [29].

Selection of Reference Velocities

Selection of reference velocities is one of the important criteria in implementing

PSPI technique. For efficient computation of depth imaging, there should be a

minimum number of reference velocities. Also, for the accurate computation of

the wavefield extrapolation the reference velocities should be close to the velocity

model [30, 28, 31]. There are many methods that are available for selection of

reference velocities like geometric progression method [31], statistical method [28],

peak search method [28], etc. Here, we are going to discuss the two basic methods

they are:

Geometric Progression Method

This method was introduced by Gazdag and Sguazzero [24]. In this method, the

ratio of maximum and minimum velocity is found at some depth (let’s say R).

A factor called ρ the common ratio for which the consecutive reference velocities

form a geometric progression is found. The number of reference velocities m is

determined by the smallest integer as follows:
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ρm−1 ≥ R. (2.13)

Therefore, we obtain:

m =


ln R
ln ρ

+ 1, if ln R
ln ρ

is an integer⌊
ln R
ln ρ

+ 1
⌋

+ 1, if
⌊

ln R
ln ρ

+ 1
⌋

is not an integer,

(2.14)

where b.c denotes the integer part of the real number. Then the consecu-

tive reference velocities are chosen as v1, v2, v3, . . . vm−1vm,wherev1 = vmin and

v1, v2, v3, . . . vm−1vm,wherev1 = vmin.

Based on this we have,

vmax ≤ vm < ρvmax. (2.15)

Statistical Method

This method was introduced by Bagaini [31]. Here, we take the minimum

and maximum velocities from the velocity model and denote them as vmax and

vmin, respectively. We divide the velocity range [vmax, vmin] into L subintervals

[c0c1) , [c1, c2) . . . [cL−2, cL−1) , [cL−1, cL] based on:

ci = vmin +
i (vmax − vmin)

L
. (2.16)
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Suppose in the velocity model we have nx lateral velocities v (xl, z),

(l = 1, 2, . . . nx), at some depth. These velocities will fall into one of the

above L subintervals. Let ni denote the number of velocities that fall into

this interval [c0c1) , [c1, c2) . . . [cL−2, cL−1) and nL−1 is the number of reference

velocities falling into the interval [cL−1, cL].

Let Pi denote probability density at each bin and the sum of probability is equal

to 1. Pi = ni

nx
, i = 0, 1, 2, . . . ,L − 1.. Note that 0 ≤ Pi ≤ 1 and

L−1∑
i=0

Pi = 1. Then

we construct a number:

B = exp

[∑
Pi 6=0

ln Pi
−Pi

]
=
∏
Pi 6=0

Pi
−Pi (2.17)

.

Using the Hardy, Littlewood and Poylas inequality it can be shown that :

1 ≤ B ≤ L. (2.18)

Finally the number of reference velocities can be chosen as

m = B + b0.5c+ 1, (2.19)

Where b.c denotes the integer part of the real number. Therefore, using the
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above inequality we have:

2 ≤ m ≤ L + 1. (2.20)

Now to determine the reference velocities we use Y0 = 0 and

Yj =
j−1∑
i=0

Pi, j = 1, 2, 3, . . . L. We then set v0 = vmin if there exist any j

such that Yj <
i

m−1
≤ Yj+1, then the reference velocities can be determined as

follows:

vi = cj +
i

m−1
− Yj

Yj+1 − Yj
(cj+1 − cj) , i = 1, 2, . . .m− 1. (2.21)

Then we have the m reference velocities

v0, v1, v2, . . . vm−1.

2.6.3 Simulation Results

The stacked 3D SEG/EAGE salt model data set is migrated using 3D Rectangular

PSPI for a depth step ∆z = 20 m, in-line and cross-line intervals ∆x = ∆y = 40

m, time sampling interval ∆t = 0.008 s, f = 50 Hz. Figures 2.10 − 2.11 show

two cross-line slices of migrated sections. Also, two slices of the in-line section are

shown in Figures 2.12− 2.13. Depth slices are shown in Figures 2.14− 2.15.
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Figure 2.9: Inline section (69) of (a) SEG/EAGE salt model, (b) Migration result
using rectangular phase shift plus interpolation.
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Figure 2.10: Inline section (99) of (a) SEG/EAGE salt model, (b) Migration result
using rectangular phase shift plus interpolation.
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Figure 2.11: Crossline section (87) of (a) SEG/EAGE salt model, (b) Migration
result using rectangular phase shift plus interpolation.
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Figure 2.12: Crossline section (126) of (a) SEG/EAGE salt model, (b) Migration
result using rectangular phase shift plus interpolation.
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Figure 2.13: Depth section (29) of (a) SEG/EAGE salt model, (b) Migration
result using rectangular phase shift plus interpolation.
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Figure 2.14: Depth section (43) of (a) SEG/EAGE salt model, (b) Migration
result using rectangular phase shift plus interpolation.
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2.7 Hexagonal Data processing

Two dimensional spatial signal sampling can be considered as tiling of Euclidean

plane. Sampling can be achieved by dividing the Euclidean plane into regular and

reproducible tiles, then analyzing the signal in each tile [4]. If all the tiles have

same shape and size then its called monohedral tiling. Only three monohedral

tilings are possible as shown in Figure 2.15.

From Figure 2.17, it is evident that for circularly band-limited signals

hexagonal sampling is the more efficient than rectangular, as hexagon is better

approximation to a circle [6]. Further, among the three monohedral tiling

schemes, hexagonal scheme has higher sampling efficiency as shown in Table 2.1.

The mean sampling density in the spatial domain is less for hexagonal

sampling. Generally, it can be shown that mean sampling density is proportional

to the area of the assumed band shape [5]. The mean sampling density for the

rectangular approach is greater in the spatial domain than for the hexagonal

case. Thereby, for a circularly band limited signals, hexagonal sampling uses

13.4% fewer samples than rectangular [15].

Bardan [6] showed that the frequency-wavenumber (f − kx− ky) response of a

3-D seismic data set can be approximated by a domain bounded by two cones i.e.

for each frequency slice, the 2-D wavenumber spectra are circularly band limited
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as shown in Figure 2.18. Thus, hexagonal sampling is the ideal for seismic data

acquisition.

2.7.1 Hexagonal Data Handling

Many approaches were proposed to deal with the hexagonal data, most of

them were based on the rectangular sampling. One method proposed was to

shift alternate rows by half the pixel distance, the result is like a brick wall.

Overington [4] observed that hexagonal lattice can be approximated by a brick

wall of rectangle with 8 × 7 aspect ratio. Laine [32] followed the quincunx

sampling with linear interpolation to double the size in the horizontal direction

and triple in the vertical direction, to emphasize the hexagonal arrangement.

A better scheme to address hexagonal grids would be to use coordinate axes

along the axes of symmetry of hexagon, Her [33] proposed approximation

using three coordinate axes scheme where the axes were 120◦ apart. Burt [34]

proposed the Bh coordinate axes scheme with two non-orthogonal axes at 120◦

apart as shown in Figure 2.21, all these methods were inefficient in processing data.

Sheridan introduced Spiral Architecture (SA) for hexagonal data indexing [16,

4], which uses base-7 indexing i.e. indexes go from 0 to 6 and then 10 to 66, as

shown in Figure 3.1. It is described in more detail in the Section 3.3. For further

details readers are encouraged to read [4].
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Figure 2.15: Types of monohedral tiling (a) triangular, (b) rectangular and (c)
hexagonal, covering the Euclidean plane regularly without gaps.
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Tessellation Sampling Efficiency
Triangular <= 60.46 %

Rectangular <= 78.56 %
Hexagonal 90.69 %

Table 2.1: Sampling efficiency comparison for the three monohedral tiling.
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(a)

(b)

Figure 2.16: (a) square with 8 folds of symmetry, (b) hexagon with 12 folds of
symmetry (courtesy of [4]).
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(a)

(b)

Figure 2.17: a circularly band limited signal inscribed in (a) square and (b)
hexagon. Inaccurate representation of circle is 27.3% and 10.2% by square and
hexagon respectively. (courtesy of [5]).
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Figure 2.18: Seismic band region (a) In the kx − ky − ω space, (b) In the k − ω
plane and (c) in the kx − ky plane (courtesy of [6]).
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(a)

(b)

Figure 2.19: Shows (a) hexagonal acquisition layout using rectangular bins, (b)
zoomed layout. The shot locations are represented by squares and receiver by
circles (courtesy of [1]).
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Figure 2.20: Hexagonal acquisition layout using hexagonal bins (courtesy of [6]).

Figure 2.21: Hexagonal indexing in the Bh coordinate system for aggregate level
0, 1 and 2 (courtesy of [4]).
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2.8 Summary

This chapter describes the flow of seismic migration process, starting from the

acquisition geometry to processing/imaging. The 3D PSPI imaging technique is

developed and the 3D SEG/EAGE salt model data set is migrated and results

are shown. The PSPI imaging technique though yields better quality of images

requires higher computation resources. The chapter also describes that the hexag-

onal seismic acquisition is better choice than the conventional approach. This will

be illustrated in the next chapter.
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CHAPTER 3

HEXAGONAL PHASE SHIFT

PLUS INTERPOLATION WITH

HEXAGONALLY SAMPLED

DATA

3.1 Introduction

The 3D seismic acquisition techniques were not very popular until the 1970’s due

to the computation complexity involved in processing of the 3D data. With the

advent of modern computing capabilities 3D seismic data acquisition has become

an economical solution [1], reducing the exploration risks. The information and

accuracy of 3D seismic imaging has catapulted the industry to switch from 2D

to 3D seismic data acquisition [2]. The demand for higher resolution of seismic
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data has also seen a substantial increase in the past four decades [14], employing

large number of receiver channels, the data so acquired is enormous and requires

optimal processing techniques to be used.

One-way wave equation migration (OWE) techniques have been very popular

for their easy of computational complexity [35]. One of the OWE techniques

is the phase shift plus interpolation (PSPI) migration introduced by [24], it is

very accurate and can account for the lateral velocity variations, when sufficient

number of reference velocities are used. Bagaini [36] proposed a statistical

method for selection of optimal number of reference velocities.

The migration techniques have mostly been used in the grids where the in-line

and cross-line directions are designed as orthogonal. However, researchers have

developed migration techniques for the non-orthogonal sampling grids in the past

because of their higher sampling and computational efficiency [37, 6, 38, 39, 40].

Hexagonal grid sampling is one of the very widely used non-orthogonal techniques.

It has been proved to be 13.4% more efficient than the rectangular sampling in 2D

by Mersereau [15]. Bardan showed that the frequency-wavenumber (f − kx − ky)

response of a 3-D seismic data set can be approximated by a domain bounded by

two cones i.e. for each frequency slice, the 2-D wavenumber spectra are circularly

band limited [6]. The optimal sampling technique for circularly band limited

signals is the hexagonal grid [15]. Thus, an ideal scheme for sampling seismic
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data is by using hexagonal grids [6, 41]. In this chapter, we use the 3D PSPI

imaging for its accuracy, along with statistical method for reference velocities

selection, to migrate 3D hexagonally sampled data using spiral architecture. We

show that it is more efficient than the rectangular counterpart.

3.2 Spiral Architecture (SA)

In the work carried out by [42, 10, 6, 41, 43, 44, 45] attempts were made to process

hexagonal seismic data. Since in-line and cross-line axes are not orthogonal, it

was difficult to give each hexagonal sample a location and thus a semi-hexagonal

process was proposed to handle the location of samples [32, 33].

Researchers in the field of image processing and computer vision proposed

various indexing schemes for the hexagonal grids [4, 46, 47, 48, 49, 50, 16] from

zero insertion between samples, to interpolating alternate rows to produce shifted

rows forming a hexagon [32], in the process doubling the amount of data which

is undesirable, moreover the wavenumber response of the filters will be aliased

due to zero insertion. Others proposed that better choice of axes is along the

axes of symmetry of the hexagon [51, 52, 33], all these methods were inefficient

in processing data.

Sheridan introduced Spiral Architecture (SA) for hexagonal data indexing
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[16, 4]. The SA uses base-7 indexing. The indexes go from 0 to 6 and then

10 to 66. The indexing starts with 0 at the center instead of a corner in the

rectangular scheme. The hexagonal grid with 0 index is called as aggregate level

‘0’, surrounded by index 1 to 6, which forms aggregate level ‘1’, with 7 elements.

The aggregate level ‘2’ is formed by repeating the level ‘1’ aggregate six times

around it and would have 72 samples, as shown in Figure 3.1.

A major benefit of SA is that 2D data can be stored and processed as 1D

data based on the 1D addresses. This is illustrated as the 2D data in Figure 3.1

(a) is stored in SA as 1D vector shown in Figure 3.1 (b). This means that a 2D

operations on data, like convolution, fourier transform would now become 1D,

thus the processing would be much more efficient in time. Furthermore, because

of the 12 fold symmetry exhibited by the hexagonal structure against the 8 fold

symmetry of rectangle, it can represent a curvature much more efficiently than a

rectangular structure, producing better results for seismic interpreters.
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(a)

(b)

Figure 3.1: (a) 2D data represention in spiral architecture, (b) stored as 1D vector
(courtesy of [7]).
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(a)

(b)

Figure 3.2: (a) 3D data represention in spiral architecture, (b) stored as 2D array
(Modified after [7]).
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3.3 3D Hexagonal Phase Shift Plus Interpola-

tion (HPSPI) in SA

PSPI is a migration method that can deal with strong lateral velocity variations

[24]. Several reference velocities are used in each extrapolation step to account

for the lateral velocity variation and obtain the multi-reference wavefields in the

f-k domain. The final image is obtained by interpolating the reference wavefields

in the frequency-space domain. We start with the PSPI equations in rectangular

domain proposed by [24]:

P0(x, y, z, ω) = P (x, y, z, ω) ei
ω

v(x,y,z) , (3.1)

and

P ∗(kx, ky, z + dz, ω) = P0(kx, ky, z, ω) e
i(kz− ω

vref
)dz
, (3.2)

where

kz =

√(
ω

vref

)2

− (k2
x + k2

y). (3.3)

Equation 3.2 defines the wave extrapolation for next depth in PSPI. The 3D

data set and velocity model is represented in spiral architecture as 2D matrix

as shown in Figure 3.2, where the sp represents the spiral dimension and t or z

represents the rectangular dimension. It should be noted that the data is spiral

only in first dimension of the 2D data.
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Figure 3.3: Flow chart of Hexagonal Phase Shift Plus Interpolation.
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As shown in Figure 3.3, the hexagonal data in time t is converted to frequency

domain using the rectangular FFT. Initial phase shift is applied to account for

lateral velocity variations [24] and then Hexagonal Fast Fourier Transform (HFFT)

is applied [4] to the spiral data, to get into the f − k domain. Second time phase

shift is applied, followed by Hexagonal Inverse Fast Fourier Transform (HIFFT)

and interpolation to obtain the extrapolation for the next depth.

The Equations 3.1−3.3, can be rewritten for the hexagonal data as,

P0(sp, z, ω) = P (sp, z, ω) ei
ω

v(sp,z) , (3.4)

P (ksp, z + dz, ω) = P0(ksp, z, ω) e
i(kz− ω

vref
)dz
, (3.5)

where

kz =

√√√√( ω

vref

)2

−

(
k2
x + k2

y

(
∆x

∆y

)2
)
. (3.6)

In Equation 3.6, the additional term ∆x
∆y

is added as the ∆x 6= ∆y, i.e., the

cross-line interval is not equal to in-line interval in hexagonal sampling, [53, 54].

Note that the choice of reference velocities is very crucial for the PSPI accuracy.

We have used Bagaini’s statistical method for reference velocity selection, which

has been explained in Chapter 2. The hexagonally sampled velocity model at

a given depth would be a vector. Thus, the statistical method is effective in

determining the reference velocities.

49



3.4 The Computational Complexity of HPSPI

in SA

The computational cost of imaging with HPSPI using N -point Hexagonal Fast

Fourier Transform (NHFFT ) and n reference velocities (nref ) at each depth slice

can be computed in the similar lines as that of [4, 8, 24]. For complex multiplica-

tions:

HPSPI − COSTX = 2NHFFT × nref + (nref + 2)×NHFFT log7NHFFT , (3.7)

while for complex additions,

HPSPI − COST+ = (nref + 2)× (NHFFT − 1) log7NHFFT . (3.8)

In both cases, each complex multiplication requires six flops, while each complex

addition requires two flops, as given in [29].

3.5 Simulation Results

3.5.1 The 3D seismic migration synthetic experiments

The hexagonal PSPI in spiral architecture is tested by migrating a hexagonally

sampled impulse cube with a Ricker wavelet of frequency 45 Hz centered at 0.512

s. The in-line and cross-line intervals are ∆x = 10m, ∆y = 10m respectively.
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Time step ∆t = 4ms and constant velocity c = 1000m/s. The depth step used

is ∆z = 2m. With a maximum frequency of 50 Hz. The impulse response of the

hexagonal PSPI in SA is compared with that of the rectangular PSPI as shown

in Figure 3.4. The representation of the circle in the depth slice is more accurate

for the hexagonal PSPI.

3.5.2 Application to 3D SEG/EAGE salt model

In order to test the proposed imaging technique, we use the SEG/EAGE salt

model data set, as it is challenging to image. The salt body is embedded in

sediments with smoothly varying velocities [55]. We have taken a subset of the

3-D model with dimensions, 201 × 250 × 250 traces in the z, x and y directions

respectively. A zero-offset data is generated with 250 traces and the time record

length is 4 s (500 time samples per trace).

The SEG/EAGE salt model data set is migrated using rectangular 3D PSPI.

The data set is hexagonally sampled before migrating with the hexagonal 3D PSPI

technique. MATLAB 2014 is used on a machine with 20 parallel CPU cores to do

the task. The machine time required is shown in Table 3.1. Slices of 3D migrated

section using the rectangular and hexagonal PSPI techniques are shown in Figure

3.5−3.10.
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Figure 3.4: Impulse response comparison of RPSPI with HPSPI, with ∆z = 2m,
∆x = 10m, ∆y = 10m, ∆t = 4ms, and c = 1000m/s. The maximum frequency
is 50 Hz using (a) In-line section of impulse response migrated using rectangular
PSPI, (b) In-line section of impulse response migrated using hexagonal PSPI,
(c) and (d) show the depth slices of migrated image using rectangular PSPI and
hexagonal PSPI respectively.
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Technique ×s Flops Savings% Time(hrs)

Rec. PSPI 33,492,992 - 48

Hex. PSPI 14,601,462 56.4 8

Table 3.1: Comparison of number of flops (for the complex multiplications, real-
complex multiplications and complex additions) at a depth slice of stacked data
for migrating the 3D SEG/EAGE salt model, using rectangular and hexagonal
PSPI methods (with 200 reference velocities and 2048 fourier transform points).
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Figure 3.5: Inline section of SEG/EAGE salt model (a) original, (b) hexagonally
sampled, (c) migrated section using rectangular PSPI, (d) migrated section using
hexagonal PSPI in SA.
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Figure 3.6: Inline section of SEG/EAGE salt model (a) original, (b) hexagonally
sampled, (c) migrated section using rectangular PSPI, (d) migrated section using
hexagonal PSPI in SA.
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Figure 3.7: Crossline section of SEG/EAGE salt model (a) original, (b) hexago-
nally sampled, (c) migrated section using rectangular PSPI, (d) migrated section
using hexagonal PSPI in SA.
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Figure 3.8: Crossline section of SEG/EAGE salt model (a) original, (b) hexago-
nally sampled, (c) migrated section using rectangular PSPI, (d) migrated section
using hexagonal PSPI in SA.
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Figure 3.9: Depth section of SEG/EAGE salt model (a) original, (b) hexagonally
sampled, (c) migrated section using rectangular PSPI, (d) migrated section using
hexagonal PSPI in SA.

58



Offset (m)

O
ff

se
t (

m
)

Depth section of 3D SEG/EAGE salt model

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) (b)

Offset (m)

O
ff

se
t (

m
)

Depth section of 3D migrated section using RPSPI

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(c) (d)

Figure 3.10: Depth section of SEG/EAGE salt model (a) original, (b) hexagonally
sampled, (c) migrated section using rectangular PSPI, (d) migrated section using
hexagonal PSPI in SA.
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Figure 3.11: Challenging parts of the depth slice of SEG/EAGE salt model are
highlighted by rectangles. The rectangle on top and bottom will be referred as
box-1 and box-2 respectively.
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Figure 3.12: Zoomed area SEG/EAGE salt model, (a) − (b) rectangular velocity
model for box-1 and box-2, (c) − (d) migrated section using rectangular PSPI,
(e) − (f) migrated section using hexagonal PSPI in SA. It can be observed that
hexagonal PSPI represent curves much better than rectangular version.
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Figure 3.13: Challenging parts of the depth slice of SEG/EAGE salt model are
highlighted by rectangles. The rectangle on top and bottom will be referred as
box-1 and box-2 respectively.

62



Depth section of 3D SEG/EAGE salt model

(a)

Depth section of 3D SEG/EAGE salt model

(b)

Depth section of 3D migration using RPSPI

(c)

Depth section of 3D migration using RPSPI

(d)

(e) (f)

Figure 3.14: Zoomed area SEG/EAGE salt model (a) − (b) rectangular velocity
model for box-1 and box-2, (c) − (d) migrated section using rectangular PSPI,
(e) − (f) migrated section using hexagonal PSPI in SA.
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3.6 Discussions

The 3D seismic data set for SEG/EAGE model was not available. Courtesy of

Dr. Saleh Al-Dossary and Dr. Gino Ananos (Saudi ARAMCO), the 3D stacked

seismic data for this research was obtained. The authors greatly appreciate their

contribution towards this research. However, the model obtained is a down sam-

pled version of the SEG/EAGE salt model. Further, for this research, the data

has to be hexagonally sampled. The hexagonal resampling is done for each depth

slice of the 3D model and seismic section. The sampling is very accurate as such,

but due to the low resolution of the data, the hexagonally sampled data suffers

blurring along the depth direction, as shown in the Figure 3.15. The results are

subsequently effected.
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Figure 3.15: Cross-line section of SEG/EAGE salt model (a) original, (b) hexag-
onally sampled, (c) zoomed section of the original model, (d) zoomed section
of hexagonally sampled model. The hexagonally sampled model is smeared and
blurred, as the rectangular model is of low resolution.
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3.7 Conclusions

The seismic migration techniques for hexagonally sampled data is proposed and as

an example PSPI technique is used. The proposed method is shown to be efficient

both in terms of time and computational savings. Further a comparison with

the rectangular technique is made in terms of impulse response and migration

of SEG/EAGE salt model data set. The results demonstrate that hexagonally

sampled data can be easily migrated and the results are at par with the rectangular

counterpart.
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CHAPTER 4

3D DEPTH MIGRATION

USING MCCLELLAN

TRANSFORMATION IN

SPIRAL ARCHITECTURE

4.1 Introduction

High computational cost of 3D explicit depth migration has motivated researchers

to propose different methods for migration of seismic data. The depth extrapola-

tion is the important step, which constitutes to the large number of computations

performed during the migration process. One of the methods proposed is to use

spatially varying two-dimensional (2D) filters called as phase filters or wavefield

extrapolators, which can be convolved with the data for each frequency (ω).
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A circularly symmetric filter for depth extrapolation is given by Gazdag phase

shift operator for depth extrapolation as,

Hd(kx, ky) ≈ e(i∆z)

√(ω
v

)2

− (k2
x + k2

y) (4.1)

where kx and ky are the inline and crossline wavenumbers respectively and ∆z is

the depth step [10]. The computational cost of convolving data with 2D filters is

proportional to N2 (where N is the number of coefficients in the corresponding 1D

filter). Short extrapolation filters are needed to handle strong lateral variations

in the velocities accurately, while long filter lengths are required in case of steep

dips. Short length filters have lesser computational requirements, thus they

are more desirable. The computational cost can be reduced by splitting the

3-D extrapolation into cascade of 1-D convolutions in the inline and crossline

directions, to be proportional to N. However, splitting results in errors which

depend significantly on reflector dip and azimuth [56].

Hale [9] used McClellan transformations to preserve the accuracy of the

2-D extrapolation filters along with the efficiency of splitting. Using McClellan

transformations symmetric 1D extrapolation filters can be converted to circularly

symmetric 2D extrapolation filters. We have designed 1D wavefield extrapolators

using modified projection onto convex sets [55]. McClellan transformations are

an approximation to circularly symmetric filters, the accuracy can be improved
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at an increasing cost of filter implementation.

Hexagonal sampling grids has been proved to be more efficient for circularly

band-limited seismic data [6, 5]. In 1992, Hedley [10] proposed McClellan

transformations on hexagonal grids to improve the accuracy at a reduction in

the cost of implementation. However the hexagonal implementation was done

based on the rectangular approach, the computational efficiency of the hexagonal

sampling grid can be further improved using the spiral architecture proposed

by Sheridan [16], which uses base-7 indexing for spiral addresses. Particularly

the ability to represent and store a 2D data in the form of 1D vector in the

spiral architecture, is the essence of its computational improvement over the

rectangular approach to handle hexagonal data. Furthermore, a true hexagon

is more symmetric than a rectangle, which means that quality of images for

interpretation will be better.

We propose to use the hexagonal McClellan transformations on hexagonal

sampling grids using the spiral architecture to further improve the computational

efficiency and accuracy.
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4.2 3D Seismic Imaging using 2D FIR Filters in

SA

The depth extrapolation is performed, one angular frequency ω0] at a time, using

3D extrapolation filters. The wavenumber response Hd(kx, ky) can be obtained

from 1D wavenumber response Hd(kx) using the McClellan transformation. The

impulse response of an odd length 1-D FIR filter as proposed by McClellan and

Chan [57] is:

Hd(kx) = h[0] + 2

N+1
2
−1∑

n=1

h[n]Cn(cos(nk)). (4.2)

where, Cn(x) is the nth order Chebyshev polynomial in x and k is wavenumber.

McClellan transformation is defined as [58]:

cos(nk) = Acos(nkx) +Bcos(nky) + Ccos(nkx)cos(nky) +D = F (kx, ky). (4.3)

where, A,B,C and D are filter transformation parameters. Applying Equation

4.3 to Equation 4.2, we obtain:

Hd(kx, ky) = h[0] + 2

N+1
2
−1∑

n=1

h[n]Cn(F (kx, ky)). (4.4)

where,

Cn(F ) = 2FCn− 1(F )− Cn−2(F ), n ≥ 2 (4.5)
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Figure 4.1: Chebyshev structure for designing 2-D FIR digital filters from 1-D
odd length filters (courtesy of [8]).

The 2-D migration filters are circularly symmetric as given by Equation 4.1,

these equations can be implemented by replacing cos(nk) with F (kx, ky) =

cos(n
√
kx2 + ky2) [57, 58]. An exact representation of F (kx, ky) is compu-

tational expensive [57]. Therefore, an approximation can be done by using

A = B = C = −D = 1
2

in Equation 4.3 to obtain,

F (kx, ky) = −1 +
1

2
(1 + cos(nkx))(1 + cos(nky)). (4.6)

The 2-D FIR filter given by Equation 4.6 can be represented as 2-D compact FIR

filter as shown in Figure 4.2 (a). However, this filter exhibits increasing error with

increase in k, for kx ≈ ky. Hale [9] improved this FIR filter design by adding extra

terms to the Equation 4.6 as given by,

F (kx, ky) = −1+
1

2
(1+cos(nkx))(1+cos(nky))−

c

2
(1−cos(2nkx))(1−cos(2nky)).

(4.7)

where, c ≈ 0.0255 [10]. The compact 2-D improved McClellan filter given by
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Equation 4.7 is shown in Figure 4.2 (b). The response of the improved McClellan

filter is shown in Figure 4.6 (a).

Hedley [10] proposed the McClellan transformation approach for hexagonally

sampled data. As hexagonal sampling is more efficient than rectangular sam-

pling, with savings upto 13.4%. The hexagonal McClellan transformation filter

proposed by Hedley is shown in Figure 4.3. However, the approach uses shifted

rows to form a hexagon as proposed by Laine [32]. This method is not efficient

and hinders the computational efficiency of hexagonal sampling scheme.

Spiral architecture (SA) proposed by Sheridan is the most efficient addressing

scheme for hexagonal grids [16]. The 2-D FIR filter design in SA is more efficient

as the filter coefficients can be stored and process as 1D vector. Since, the 1-D

filter is symmetric and has odd length, we only process with half the coefficients,

it is easier to process signals that are centered in SA than conventional cartesian

method, as the spiral address index starts from the center.

Hedley proposed to sample rectangular data into hexagonal, prior to applying

the FIR filters and resample data back to rectangular domain for viewing

purposes. However, we propose to sample data hexagonally only once prior to

the processing, as the SA data can be viewed directly without needing to revert

to rectangular domain. [59].
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The hexagonal McClellan filter proposed by Hedley [10] as shown in Figure

4.3, can be easily represented in spiral architecture as shown in Figure 4.4. A

comparison of the filter response of the rectangular and hexagonal McClellan

filter is shown in Figure 4.6. The response of hexagonal filter is more circular

than the rectangular version.

4.3 Simulation Results

A set of 2-D hexagonal extrapolators are developed for a depth step ∆z = 2 m,

in- line and cross-line ∆x = ∆y = 10 m, time sampling interval ∆t = 0.004 s,

ω = 50π rad/s, and c = 1000 m/s.We migrated a 3D zero-offset section with 1100

m for the in-line and cross-line apertures, up to a maximum frequency of 45 Hz.

This time-space section contained one zero-phase Ricker wavelet centered at 0.512

s at x = y = 0. Figure 4.5 shows depth slices of the migrated impulse cube using

Hale’s McClellan filter original and improved respectively. Figure 4.7 shows the

depth slices of the migrated impulse cube using the hexagonal McClellan filters

in spiral architecture. The result of the hexagonal McClellan filter is sharp and

more accurate than the rectangular version.
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(a)

(b)

Figure 4.2: Hale’s McClellan tranformation filter for rectangular grids (a) original,
(b) improved, where c ≈ 0.0255 (courtesy of [9]).
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(a)

(b)

Figure 4.3: Hedley’s McClellan tranformation filter for hexagonal grids (a) origi-
nal, (b) improved, where a ≈ −0.708, b ≈ 0.454, c ≈ −0.00942 and d ≈ 0.00692
(courtesy of [10]).
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(a)

(b)

Figure 4.4: Proposed McClellan transformation filter for hexagonal grids in SA
(a) original, where a ≈ −0.333, b ≈ 0.222, (b) improved, where a ≈ −0.354,
b ≈ 0.227, c ≈ −0.00471 and d ≈ 0.00346.
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Figure 4.5: Depth slice of the 3D seismic migration of impulse response using
Hale-McClellan transformation filter (a) original, (b) improved.
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(a)

(b)

Figure 4.6: 2D Filter response (a) improved McClellan transformation as in [9] ,
(b) proposed improved McClellan transformation in SA.
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(a)

(b)

Figure 4.7: Depth slice of the 3D seismic migration of impulse response using
proposed McClellan transformation filter in SA (a) original, (b) improved.
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4.4 Conclusions

McClellan Transformation filters in spiral architecture have been implemented and

tested. An impulse cube is migrated using the original and improved McClellan

filter in rectangular and spiral architecture. The migration results of hexagonal

McClellan transformation is much better than the rectangular counterpart. The

computational requirement using the spiral architecture is much less than the

rectangular technique, with better quality of images.
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CHAPTER 5

CONCLUSIONS

In this research work, the computational complexity of handling huge seismic

data is considered and solved using the hexagonal sampling technique, for proof

of concept Phase Shift Plus Interpolation (PSPI) migration is performed on

the impulse cube and the benchmark 3D SEG/EAGE dataset. The results are

better for depth slices in the hexagonal scheme. The imaging for the in-line and

cross-line sections is very close to the rectangular version. The quality of HPSPI

migrated section of the SEG/EAGE salt model suffers because of blurring of the

hexagonally sampled input seismic data. The shown clearly in Figure 3.15

Open source hexagonally acquired seismic data was not available. It would

take a very long time and effort to create a seismic data section with hexagonal

grids, the rectangular data was hexagonally sampled and used, to prove the

concept of the proposed technique. Better results can be obtained when the data

is truly acquired using hexagonal grids.
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Furthermore, in this thesis, stable extrapolators are designed, for explicit depth

extrapolation of 3D wavefields using McClellan transformation filters in spiral

architecture.

5.1 Future Works

This work can be extended for the prestack imaging of the seismic data for

better quality of the images, without any limitations. Since the resampling of the

seismic data is not ideal, seismic data generation should be done using hexagonal

grids prior to applying hexagonal migration techniques.

Reverse Time Migration (RTM) is more computationally expensive than PSPI

and yields imaging with better accuracy in complex geological conditions. It would

be interesting to see the RTM imaging in hexagonal grids using spiral architecture.

Furthermore, sparse FIR filters can be used to image seismic data using hexag-

onal spiral architecture. Sparse filters can further reduce the computational time.

Since, the computational time for algorithms coded in lower level languages (than

MATLAB) is less, hexagonal migration codes can be easily ported to languages

such as C, Python, etc. which would be essential for Prestack imaging as the time

required would grow exponentially.
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