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ABSTRACT 

 
Full Name : [AALIM MOTASIM AALIM MUSTAFA] 

Thesis Title : [VIBRATION OF AN AXIALLY MOVING CURVED WEB ] 

Major Field : [MECHANICAL ENGINEERING] 

Date of Degree : [May 2015] 

 
This thesis presents a study on vibration of an axially moving web following a curved path. 

The web is considered as a simply supported beam travelling axially on a curved guide that 

consists of a combination of linear and nonlinear elastic supports. The main objective of 

this work is to investigate the effect of the path curvature on the moving beam vibration 

and investigate the effect of different parameters on the system’s dynamic response. These 

parameters include axial speed, applied tension, degree of curvature of the path and 

stiffness of the path supports. The Galerkin decomposition with a first mode-shape of a 

straight a pinned-pinned basis function is utilized to realize a mathematical model that 

describes the static and dynamic behaviors of the axially moving curved beam.  

Numerical solutions of the developed model are obtained using a fourth-order Runge-Kutta 

algorithm under MATLAB environment. Fundamental frequencies are calculated results 

for axially moving curved beams and compared with those for axially moving straight 

beam. Amplitude-frequency curves are developed to study forced vibration of the axially 

moving curved beam under an external force excitation. Poincaré sections and bifurcation 

diagrams are obtained for three cases: primary, sub-harmonic, and super-harmonic 

resonance excitations. It is found that the natural frequency of an axially moving beam 
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travelling on a curved elastic support is higher than that of its axially moving straight beam 

for all considered cases of different path curvatures and different degrees of support 

stiffness. Forced vibrations of an axially moving beam on a curved elastic support are 

considered under harmonic excitation. Using the excitation amplitude as a controlling 

parameter over a wide range of variation, while keeping the excitation frequency fixed, it 

is found that the system exhibits many types of bifurcations, including period doubling 

bifurcation, period four bifurcation and many jumps. Compared to an axially moving beam 

resting on a straight elastic support, the axially moving curved beam showed earlier 

bifurcation and more swarming bifurcation diagram.   
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 ملخص الرسالة

 
 

 عال معتص عال مصطفى  :ااس الكامل
 

ان الرسالة يا  :عن  اهتزاز جائز منحني متحر أف
 

ندسة الميكانيكية التخصص:  ال
 

مية  2015 ماي :تاريخ الدرجة الع

 
 

اس ع  حث يع  ا ال ي  له ح أف عم يمس  ي ح ئز اع ع أنه ال. م م ج ع ز ع  ت  م

ي بسيط ح ي ع مس م ح أف بضم من ،  ي اس  ن حث ه  ا ال سي من ه دف اأس ا خطي. ال خطي 

ءااتأثي  زا ع  نح امل م ئزالاه اس تأثي ع ح   ب الال امل هي: ال ع اس ع . ه الع س

ي ، ح ء،  ئزالشد ع ال  ال س  صاب  انح بضال ل . ال ش كين ل ل ي ج دا   زاها اأتم اس

ئز م بسيط ج ع ز ع  ت سي م ا أس ح  كد ئز ال ف س ال ي ت ئز ال ك ل ل الح ع أش ال

ي ح ي ع مس م  .أف

نجإي الحل العد تم  مي  ا دا خ س ك  ب ل الح ع . -ل تا مج م ن سياأ اال تم حسك في ب  س

ح ف مس  ئز ال ي ل ح ئز تت م ل ال ئج مع ح ن ال م م ح ع اس  تم الح ع. ال

ي قي ال  ح ئز –م زا ال اس اه . تم الحتحت تأثي ق خ ال لد ي  عجي ان طط ب  هم

. غ ال ي  نين الع ع ال سي  م نين اأس : ال ا طط ال لثا ح سي  م ئز لجد أ ال اأس

ح ف مس  يمال س ه  ال ي سي  ل ي أك من ال اأس ح ل قيم  م بضل س  صاب ال ء ال تم  .انح

جي اع ال ي ال اف جي ب  .ع أن إث ت يت ت ال ال م في اث ح جي  ال ي مد محد فتس ال ال

طط تم إ .ت ي م زا عي  عد من ال ب  ، ئي ن  ث يم م مس ع ح ع  ئز ال حظ أ  مع ال ئز ال ل

ع ي ي ح ح ف مس ال .ل ال ف ت أشد كث من أس ،   ع في  ح ت
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1   CHAPTER 1 

Introduction 

1.1. Motivation 

In roll-to-roll (R2R) systems, flexible materials can be transported on rollers under or 

through processing machinery where processing operations, such as stamping, printing, 

coating, sputtering, etc., are performed to obtain a finished product. Figure 1.1 shows a 

R2R system with chemical processes on a moving substrate (web). 

 

 

Figure 1.1 Different process on a moving substrate [1] 
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Figure 1.2 shows a casting process for copper based bi-metal strips. The blue box in the 

figure illustrates three processes performed on the moving metal sheet. 

 

Figure 1.2 Casting process for moving copper based metal [2] 

 

In case of straight web, the moving web is supported only by two rolls at the ends, the 

process is likely to be accomplished with low quality. Vibration of the web can be caused 

by the force applied from a certain process in the transverse direction.  

Supporting the web in the domain between rolls can stabilize the moving substrate. If the 

support between the rolls is made curved (concave or convex), it allows more web 

processing capabilities compared to the straight support. In this thesis, we consider the case 
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of making a moving web to follow a curved path defined by intermediate support of the 

web when performing different industrial processes. 

The idea of using curved intermediate support may also be effective if the span between 

the rolls is long, which could make the web to be subjected to wrinkling. Especially, in 

case of thin webs such as paper webs or sheet metallic web applications, as shown in 

Figure 1.3. 

 

Figure 1.3  Wrinkles in paper web [3] 

 

Furthermore, applications of axially moving webs resting on curved intermediate support 

is applied in fitness equipment. Figure 1.4 shows Wood-way® Curve treadmill which is a 

non-motorized treadmill powered solely by user’s legs. 
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A quote from the manufacturer states: “ The difference between a regular treadmill and the 

new curved design is that, in curved powerless treadmills the user have to be the power of 

the machine, so he is utilizing more muscles, making the whole effect more like running 

outside” [4]. 

 

Figure 1.4 Wood-way Curve treadmill [4] 
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1.2. Roll to Roll Systems 

In the last decades, there have been many applications which employed roll-to-roll (R2R) 

technology for mass production in applications such as power transmission belts, plastic 

films, chain drives, high speed magnetic tapes, paper sheets under processing, and steel 

strips. In many of these processes, the web motion can be modeled in the form of axially 

moving structural components. In these systems, the application of roll-to-roll processing 

yields better performance and supports mass production and high speed automation. The 

regions where material has to pass over a free span, without additional support, (e.g. 

between two rolls), are particularly interesting. These are the positions where system’s 

dynamic could cause quality problems or even web breaks, because of high vibration 

amplitudes. 

In R2R systems, mechanical vibrations (particularly in the transverse direction) of web 

materials between rolls have been a main quality and productivity limiting factor. If the 

vibration amplitude becomes sufficiently large or its excitation frequency matches the 

eigen frequencies of the web, it may result in excessive vibrations. Material failure due to 

excessive vibration wastes product and time, limiting the process productivity. Since the 

quality requirement as well as productivity in a production line is a key factor, Active 

vibration reduction has the potential to greatly increase process productivity by eliminating 

vibration-induced process failures. In axially moving systems, the transverse vibration of 

the moving web often causes a serious problem in achieving good quality. 
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Vibrations are inevitable in every complex machine that has many moving parts. In R2R 

systems there are many sources of vibration, e.g., roller eccentricity, tension variations, 

irregular speed of the driving motor, web-roller adhesion, defective bearings, vibration of 

the press foundation and environmental disturbances [5] . 

It is significantly important to control the tension and the speed in the web feeding. A 

tension control system of moving web is inherently sensitive to external disturbances 

during operation, and the time-varying torque of the driving motors can cause severe 

tension variation. According to actual working conditions, the tension control system may 

be subjected to many uncertainties, such as a periodic disturbance from the eccentricity of 

the driving pulley, a time-varying radius of the unwinding/rewinding rollers, or 

misalignment of rollers.  

To ensure smooth production, all rollers in different sections must operate at exactly the 

same speed; in other words, the corresponding driving gears in different stages must rotate 

synchronously without phase variance. In practice, however, owing to, for example, 

vibrations, gear damage and run-out, the rotation speed of these gears may vary. If transport 

speed at which axially moving web moves during manufacturing and processing reach high 

values, this can lead to resonance vibrations, instability or web fluttering. This behavior 

can result in web breaking during its motion.  

To ensure that the operating system is under stable working conditions, full analysis of its 

dynamics has to be performed. Complete knowledge of the dynamical behavior allows the 

prediction and control of instabilities. Study of the transverse vibrations becomes a key to 

avoid possible resulting fatigue, failure, and low production quality. 
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1.3. Thesis Objectives  

The main objectives of this thesis are the following: 

1- To study free vibration of a simply supported axially moving beam following a 

curved path. This will be through determination of fundamental frequencies and 

critical speeds of the system. 

2- To investigate the effect of curvature of the intermediate support on the system’s 

response and fundamental frequency, by comparing the case of straight support 

without curvature. 

3- To study the effect of system’s parameters on the system’s response. These 

parameters are: axial speed, applied tension, and the stiffness of the intermediate 

supports. 

4- To study forced vibration of the axially moving beam. The system’s response is 

studied through amplitude frequency curves, Poincare´ sections and bifurcation 

diagrams. We will consider the primary, sub-harmonic and super-harmonic 

resonances. 
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1.4. Thesis Overview 

This thesis is organized as follows: In Chapter 2, we will present some literature on the 

area of axially moving materials and explain our contribution to this field. In Chapter 3, 

the model of the axially moving beam on a curved path used in this work will be presented 

in details. In Chapter 4, we include results on free vibration of the axially moving beam in 

terms of fundamental frequencies and critical speeds. In Chapter 5, forced vibration of the 

axially moving beam will be discussed. We consider cases of primary resonance, sub-

harmonic and super-harmonic resonances. The results will be presented in terms of 

amplitude frequency curves, Poincaré sections and bifurcation diagrams of the system. In 

Chapter 6, we summarize our work outcomes and present some recommendations for 

future research. 
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2 CHAPTER 2 

Literature Review 

Nonlinear dynamics of axially moving materials is a very rich topic. It has been studied for 

over 50 years [6] due to expanding fields of application. In this chapter we will make a 

review of the work done in this area. Section 2.1 includes introduction of axially moving 

materials. Section 2.2 includes studies on axially moving beams. Section 2.3 covers studies 

on axially moving beams supported by elastic foundations. Section 2.4 explains the 

contribution of this thesis in the field. 

2.1. Axially moving materials 

Axially moving materials can represent many engineering devices such as power 

transmission belts, elevator cables, plastic films, magnetic tapes, paper sheets, textile 

fibers, and band saws. Any continuous and flexible material that transport axially between 

two rolls can be described as a web. The unwinder/winder systems handling web materials 

such as papers, textiles, metal strips, metal foils, plastic films, etc. are very common in the 

industry, because they represent a more convenient way of transporting and processing a 

product from one form to another. Printing, coating and drying are examples of operations 

that can be performed in sections of a production line. One of the main objectives in web 

handling machinery is to reach an expected web speed while maintaining the web stability 

and proper tension [7]. 
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Despite many advantages of these devices, noise and vibrations, particularly transverse 

vibrations, associated with the devices have limited their applications. Therefore, 

understanding transverse vibrations of axially moving materials is important for the design 

of these devices. A good theoretical model should account for large displacements and 

should be capable of simulating wrinkles, which is essentially a post-buckling 

phenomenon. 

In literature, some researchers consider a moving web as a moving string with small cross 

section area and a one dimension body. Other researchers prefer to model the web as a 

moving membrane with two dimensions. Many researchers in literature consider beam 

model with three dimensions. This could be the most realistic model of axially moving 

materials in the cases of metal sheets and conveyor belts. In this work we will consider the 

model of a beam to study behavior and dynamics of a moving web. 

2.2. Vibrations in axially moving beams 

 In the early 1990s, Wickert and Mote [8] published a study on classical vibration analysis 

of axially moving continua. They modeled R2R webs as an axially moving strings and then 

as axially moving beams. They derived the equations of motion within the context of linear 

theory. They concluded that linear analyses cannot accurately predict the response in high 

speed regimes. 

Wickert [9] studied the free nonlinear vibration of an axially moving elastic tensioned beam 

over subcritical and supercritical speed ranges. He considered transverse and longitudinal 

vibrations of a beam moving at a constant speed. Two coupled, nonlinear differential 
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equations described the beam motion along the longitudinal and transverse directions were 

derived using Hamilton's principle. He introduced a simplification that consisted of 

expressing the dynamic component of the longitudinal stress in transverse equation. He 

referred to results of experiments on the basis of which it was stated that longitudinal 

perturbations propagated much faster than the transverse ones within the technologically 

usable range of beam model parameters [10].  

Chakraborty et al. [11] studied the non-linear modes and the associated natural frequencies 

of a travelling beam moving with a constant speed between two simply supported ends. 

They studied the hardening type nonlinearity exhibited by the system. 

Öz et al. [12] investigated the response of an axially accelerating, elastic, tensioned beam. 

They assumed a time-dependent velocity to vary harmonically about a constant mean 

velocity. The influence of small fluctuations of velocity was investigated. They found that 

instabilities occur when the frequency of velocity fluctuations was close to two times the 

natural frequency of the system moving with a constant speed.  

The same authors presented a study [13] on the nonlinear vibration of the beam with time 

dependent velocity. Based on the frequency of speed fluctuations, they studied four cases 

of speed variations: Zero fluctuation frequency, double the natural frequency, and near to 

both cases.   

Pellicano and Vestroni [14] analyzed the dynamic behavior of a simply supported beam 

subjected to a constant  axial tension and speed. The system was studied in the subcritical 
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and supercritical speed ranges with emphasis on the stability of the global dynamics of the 

system. 

Chen et al. [15] considered the case of viscoelastic of beam. They investigated dynamic 

stability for the case of transverse parametric vibration of an axially accelerating 

viscoelastic tensioned beam. The material of the beam was described by the Kelvin model. 

The axial speed pattern was assumed as a simple harmonic variation about the constant 

mean speed. They presented numerical examples to demonstrate the effects of the dynamic 

viscosity, mean axial speed and tension on beam stability. 

Ghayesh and  Balar [16] studied the non-linear vibration and stability of an axially moving 

viscoelastic beam using the method of multiple scales. They investigated the effects of 

system’s parameters on the time dependent amplitude, nonlinear frequency, vibrational 

response, frequency response, stability, and bifurcation points of the system.  

Chen and Ding [17] investigated coupled vibration of an axially moving viscoelastic beam 

subjected to external transverse loads. Numerical results demonstrated the steady state 

periodic responses for transverse vibration, and starting of resonance phenomena when the 

external load frequency approaches one of the linear natural frequencies. The effect of 

material parameters and excitation parameters on the amplitude of the steady state 

responses were examined. 

Ding and Chen [18] investigated natural frequencies of planar vibration of an axially 

moving beam in the supercritical  speed ranges. The natural frequencies were calculated 

by applying Galerkin’s method to the coupled longitudinal - transverse governing 
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equations. They presented the dependence of the first two natural frequencies on the axial 

speed for different flexural stiffness values. 

Ghayesh [19] studied the forced vibration of an axially moving Kelvin–Voigt viscoelastic 

beam. Using Galerkin’s approximation, he studied the response of the system in the sub 

critical regime, with and without internal resonance. The amplitude frequency responses 

and bifurcation diagrams of Poincare´ maps were presented for several values of the 

system’s parameters.  

Ding and Chen [20]  investigated natural frequencies of nonlinear planar vibration of an 

axially moving beam numerically via Fast Fourier transform (FFT). The numerical results 

were compared with the first two natural frequencies of linear free transverse vibration of 

the beam. Results for the effect of the nonlinear coefficient on the first natural frequencies 

of nonlinear free transverse vibration was presented. 

Huang et al. [21] analyzed the nonlinear vibration of an axially moving beam subjected to 

periodic force excitations. They concentrated on the stability and bifurcations of periodic 

solutions of the beam with internal resonance when the excitation frequency, Ω, was near 

the first two natural frequencies of the first and second modes of vibration and also with 

sub-harmonic internal resonance of a three to one ratio. 

Ghayesh and Amabili [22] investigated the nonlinear forced vibration of an axially moving 

viscoelastic beam over the buckled state, a phenomenon occurs when the system lose its 

stability via a pitchfork bifurcation at a sufficiently large axial speed, known as the critical 

speed. They found that when the beam speed is in the supercritical regime, the system is 
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beyond the first instability. They examined system’s responses for the cases with and 

without internal resonances of the beam. 

Chen and Tang [23] studied the parametric stability of axially accelerating viscoelastic 

beam subjected to varying tension due to the axial acceleration of the beam. They discussed 

the assumption that, the tension is longitudinally uniform cannot be exactly held. It was an 

approximation that makes the governing equations mathematically easy to handle. So they 

investigated the parametric stability of an axially accelerating viscoelastic beam with the 

recognition of longitudinally varying tension. 

Ghayesh et al. [24] examined the nonlinear dynamics of an axially accelerating beam in 

the subcritical speed regime. The analyses included the system tuned to a three to one 

internal resonance, as well as for the case where there was no resonance. They employed a 

numerical technique “the pseudo arc length continuation technique” as well as direct time 

integration. They also used a larger number of degrees of freedom in the Galerkin’s 

discretization in order to analyze modal interactions. 

Farokhi et al. [25] investigated the nonlinear forced dynamics of an axially moving beam 

numerically taking into account the in plane and out-of-plane motions. The nonlinear 

partial differential equations governing the motion of the system were derived via 

Hamilton’s principle. Then, the Galerkin’s scheme was introduced to these partial 

differential equations yielding a set of second order nonlinear ordinary differential 

equations with coupled terms. The bifurcation diagrams were obtained by changing either 

the forcing amplitude of the external excitations or the axial speed as bifurcation parameter. 
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Ghayesh and Amabili [26] studied the nonlinear dynamics of an axially moving beam with 

time dependent axial speed. They investigated the nonlinear resonant response of the 

system in the subcritical speed regime and global dynamical behavior. Galerkin’s 

technique was used to discretize nonlinear partial differential equation of motion and 

reduced it to a set of ordinary differential equations (ODEs) by choosing the basis functions 

to be eigen functions of a stationary beam. Moreover, they studied the global nonlinear 

dynamics of the system through frequency response curves as well as bifurcation diagrams 

of the Poincare´ maps. 

Seddighi and Eipakchi [27] studied the natural frequency and critical speed of an axially 

moving viscoelastic beam. The natural frequencies and the critical speed were determined 

by the assumption of axial speed characterized as a simple harmonic variation about a 

constant mean speed. By a parametric study, the effects of mechanical and geometrical 

parameters on the natural frequency and critical speed were investigated. 

Ghayesh et al. [28] investigated the coupled nonlinear dynamics of an axially moving 

viscoelastic beam with time dependent axial speed. The equations of motion for both the 

transverse and longitudinal motions were obtained using Newton’s second law of motion 

and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt 

energy dissipation mechanism was employed in the modeling of the viscoelastic beam 

material. Furthermore, the Galerkin’s method was applied to the coupled nonlinear partial 

differential equation. 

Yang and Zhang [29] investigated the nonlinear vibrations of an axially moving beam 

considering the coupling of the longitudinal and transversal motion. Their study was 
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conducted to determine the internal resonance in the system and its relation to axial speed 

and other system’s parameters. They considered harmonic external excitations in both 

transverse and longitudinal directions.   

Recently, Marynowski and Kapitaniak [30] presented a review paper on the field of axially 

moving materials dynamics. The paper contains a brief overview of the most important 

studies on the dynamics of axially moving string-like and beam-like systems. It also 

includes a comparative analysis of some results that have been published by other authors 

in the field. 

Sahoo et al. [31] studied the nonlinear transverse vibration of a beam moving with a 

harmonically fluctuating velocity and subjected to parametric excitation at a frequency 

close to twice the natural frequency in the presence of internal resonance. 

2.3. Axially moving beam with elastic supports 

There were few researchers, who studied the case in which the beam is supported by elastic 

foundation. Most of them modeled the elastic foundation as a nonlinear spring placed 

somewhere under the moving beam.  

Bădatli et al. [32] studied the transverse vibrations of an axially accelerating beam resting 

on simple supports. The supports were at the two ends, and there was a support in between. 

The axial velocity was assumed as a sinusoidal function of time varying about a constant 

mean speed. Natural frequencies of the system were obtained for different locations of the 

third support. 
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Ghayesh [33] invistigated the forced nonlinear vibrations of an axially moving beam 

additionally supported by a non-linear spring and subjected to a distributed harmonic 

excitation. The sub-critical response was examined when the excitation frequency was near 

the first natural frequency for both systems, with and without internal resonances. For 

different spring support coefficients, the system displayed very rich dynamical behaviour 

involving periodic, quasi-periodic, period-2, period-3, and chaotic motions. The author 

extended his work in his paper [34] to involve the effect of intermediate spring support of 

a viscolelastic axially moving beam. 

Ghayesh et al. [35] investigated the nonlinear coupled longitudinal and transverse 

vibrations and stability of an axially moving beam supported by an intermediate spring. 

The beam was subjected to a distributed harmonic external force. Park and Chung [36] 

studied the transverse vibration of an axially moving finite length beam with two points 

were supported by rotating rollers. The rollers were modeled as uniaxial springs in the 

transverse direction. The variations of the natural frequencies and mode shapes are 

investigated for the variations of the support stiffness and position. 
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2.4.  Contribution 

To the best of the author’s knowledge, there is no published work for the effect of path 

curvature on the vibration of axially moving materials. Therefore, the focus of the present 

study is on transverse vibrations of an axially moving beam following a curved path as 

shown in figure 2.1. 

 

Figure 2.1 Model of the moving beam following a curved path 
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3 CHAPTER 3 

Analytical Model  

In this chapter, equations of motion are derived for an axially moving beam following a 

curved path. The Hamilton’s Principle is used to derive the transverse vibration equation 

then, Galerkin’s decomposition is applied to solve the beam equation. 

3.1. Axially moving curved beam 

Using a Cartesian frame of references (x-z), Figure 3.1 shows a beam traveling with an 

axial speed  and following a curved path. The curved path is defined by slightly curved 

smooth support with a combination effect of linear and nonlinear of stiffnesses � and � . 

There is an axial tension � applied to the beam. The beam is subjected to an external 

harmonic force in the transverse direction =  cos Ω  , where F is the amplitude and Ω is the frequency of excitation, t represents time coordinate.  

For the axially moving beam with the characteristics presented above, the free vibration of 

the beam and effect of system’s parameters on the fundamental frequency of the beam will 

be investigated. Forced vibration of the beam considering primary resonance, sub-

harmonic and super-harmonic resonances, will be also studied. 
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Figure 3.1 Simply supported axially moving beam following a curved path 

 

The beam is modeled as a simply supported beam satisfying the following boundary 

conditions:  

 , = �, =  
(3.1)  

 , = �, =  , , = �, =   
(3.2)  

Where u is axial displacement and w is transverse displacement, and the subscript x 

represents a derivative with respect to the x coordinate. 
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3.2. Strain 

Let � be the initial position of a point on the element at distance  in the axial direction 

and distance  in the transverse direction as it is illustrated in figure 3.2. The final position 

of the point �  after deformation is � with displacments and � . 

 

Figure 3.2 A segment of the beam with initial curvature, before and after deformation 

 

Let us consider a differential element of length  that starts at point � . The point is 

displaced a distance  and  in the axial and transverse directions, respectively. The 

element length is getting deformed to   with components  and �  axially and 

transversely, respectively. Thus, the new coordinates of point �  is:  
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=  +  

� =  +  
(3.3)  

Where Z represents the initial curvature of the beam caused by the curvature of the support. 

Differentiating equation (3.3) with respect to x, we obtain: 

 

= ( + )  

� =  ( + )  

(3.4) 

Therefore, after deformation we can express the length of the element, ds, as follows: 

 

= √ + �   
= √ + �� + ��� + ��   dx 

= √ + + +   dx 

(3.5) 

Where the subscript notation denotes partial differentiation with respect to . 

Expanding equation (3.5) and assuming the slop of the initial rise of the curved beam to be 

small compared to unity ( i.e., ≈ ) [37] , we get the elongation of the differential 

element as 
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 − = (√ + + + +   − )   
(3.6) 

Using the elongation of the deformed element, the strain of the deformed element is defined 

as  

 = − = √ + + + +   −  
(3.7) 

Expanding equation (3.7) in a binomial series [38] yields: 

 
= {  [ + + +  ]−  [ + + +  ] + ⋯ } (3.8)  

If one retains up to the quadratic terms in the displacement gradient and  we obtain 

the non-linear strain as 

 = + +   
(3.9) 

3.3. The Kinetic Energy 

The longitudinal and transverse velocity components can be derived by differentiating 

equations (3.4) with respect to time:  

 = ( + ) +   
(3.10)  
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Where the longitudinal velocity =  +  + , and 

 
� =  ( + ) +  +   (3.11)  

where the transverse velocity = +  +  

The kinetic energy is then formulated as [39]: 

 =  � ∫ {[ +  + ] + [ +  + ] } �
 

(3.12) 

Where  � is the constant mass per unit length of the beam material. 

3.4. The strain Energy 

The strain energy of the beam due to its elastic deformation, axial tension and the energy 

of the linear and nonlinear supports is given by [39]: 

 = ∫ [� +   � +   � +  �  + �  ]  �
  

(3.13) 

3.5. Hamilton Principle Application 

The Hamilton Principle states that for a particular period of time for a conservative 

mechanical system, the integral of the Lagrangian (difference between the Kinetic and the 

Potential energy) of the system is stationary [39].  
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∫ � − � + W  dt =t
t  

(3.14) 

where T represents kinetic energy, U represents strain energy and W is the non-

conservative work exerted on the system. To apply Hamilton’s Principle, Let us expand 

equation (3.12) for the kinetic energy: 

 

=  �  ∫ { +    +  +  + + +�
   +    +  +      }   (3.15) 

The kinetic energy variation is obtained by integrating by parts over time all terms of 

equation (3.15). The detailed integrations are illustrated in the Appendix. Thus,  

 

∫  =
  �∫

{  
  
  ∫  � +   [  ] � +   [ ] � −  ∫   �+ [ ] � +  [ ] � + [  ] � − ∫   �+∫  � +  [  ] �  −  ∫   �+ [  ] � − ∫   �+  [  ] �  − ∫   � }  

  
  dt  (3.16)  

 

 �∫ � dttt = ∫ {−∫ utt u dxL  −  v ∫ ut  u dxL −ttv ∫ u  u dx − ∫ wtt w dxLL −  v ∫ wt  w dxL −
v ∫ w  w dx − v ∫ Z  w dxLL }    

(3.17)  
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Now, expanding equation (3.13) to get the potential energy variation by integrating by parts 

over time all terms of equation (3.13). The detailed integrations are illustrated in the 

Appendix. The potential energy variation is given by 

 

∫ � dt =tt

 ∫

{  
   
  
   
   
 P[ u] L+ P  [w  w] L  − P∫ w  w dxL + P[ Z  w] L − � ∫ Z  w dxL + EA  [ u + w  + w  Z  u] L  −− EA∫ u + w  + w  Z u dxL+ EA  [ u + w  + w  Z  w  w] L  −− EA∫ [ u + w +w  Z  w ] w dxL+ EA  [ u + w +w  Z   Z  w] L  −− EA∫ [ u + w +w  Z  Z ] w dxL+ EI  [w  w ] L− EI  [w  w] L+EI∫ w  w dx + k ∫ w w dx + k ∫ w  w dxLLL }  

   
  
   
   
 

tt d   
(3.18) 

 

 

∫ �  dttt = ∫ {− P∫ w  w dx −  � ∫ Z  w dxLL −ttEA∫ u + w  + w  Z u dx − EA∫ [ u + w +LL
w  Z  w ] w dx − EA∫ [ u + w +w  Z  Z ] w dx +L
EI∫ w  w dx + k ∫ w w dx + k ∫ w  w dxLLL }   

(3.19)  
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The variation of non-conservative forces is given by considering the external harmonic 

force in the transverse direction and the viscous damping coefficient  �  times the transverse 

speed  as follows: 

 ∫ � = ∫  cos Ω − �  w  (3.20) 

Substituting Equations (3.17), (3.19) and (3.20) in the Hamilton Principle Equation (3.14), 

we get 

 

ρ A∫ {−∫ utt u dxL  −  v ∫ ut  u dxL − v ∫ u  u dx −Ltt∫ wtt w dxL −  v ∫ wt  w dxL − v ∫ w  w dxL −
 v ∫ Z  w dxL }  − ∫ {− P∫ w  w dx −  � ∫ Z  w dxLL −ttEA∫ u + w  + w  Z u dx − EA∫ [ u + w +LL
w  Z  w ] w dx − EA∫ [ u + w +w  Z  Z ] w dx +L
EI∫ w  w dx + k ∫ w w dx + k ∫ w  w dxLLL } +
 cos Ω  − ∫ �  w =   

(3.21)  

Because Equation (3.21) must hold for any arbitrary  ,  and , , the integrand 

part must be zero, which gives the governing equations of motion for transverse and 

longitudinal vibrations of the beam. Gathering the terms with coefficient “ u” and 

multiplying by −   , we obtain 
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 ρ A utt +  ρ A v ut + ρ A v  u − EA u + w  + w  Z =   (3.22) 

 

Also, gathering the terms with coefficient “ w” and multiplying by − , we obtain 

 

 ρ A wtt +  v ρ A wt + v  ρ A w +  v − P w −  P Z + � wt + EI w + k  w + k  w − EA [ u + w  + w  Z w ] −
EA [ u + w +w  Z  Z ] =   cos Ω   

(3.23)  

Equations (3.22) and (3.23) represent, respectively, the longitudinal and transverse 

governing equations describing vibration of the beam. In order to solve these equations, 

we introduce the following non-dimensional parameters for normalization: 

 u∗ = uL         w∗ = wL            Z∗ = ZL        x∗ = xL              t∗ = t� 
(3.24) 

Substituting expressions in (3.24) into Equations (3.22) and (3.23) and multiplying by L/P 

yields 

 

 � L� �  � ∗� ∗  +  ρ A  LP T  � ∗� ∗ � ∗ + ρ A �  � ∗� ∗ − EA�  �� ∗ {� ∗� ∗ +
 � ∗� ∗ + � ∗� ∗  ��∗� ∗} =   

(3.25)  

and  
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 � L� �  � ∗� ∗ +  ρ A  LP T  � ∗� ∗ � ∗ + ρ A �  � ∗� ∗ +  ρ A � � �∗� ∗ −
� ∗� ∗ −  � Z∗� ∗ +   � L P T  � ∗� ∗ + EIPL  �4 ∗� ∗4 +� L�  ∗ +
� L4�  ∗ − EA �  �� ∗ {(� ∗� ∗ +  � ∗� ∗ + � ∗� ∗  ��∗� ∗) � ∗� ∗} −
EA�  �� ∗ {(� ∗� ∗ +  � ∗� ∗ + � ∗� ∗  ��∗� ∗) ��∗� ∗} =   � � cos Ω � ∗   

(3.26)  

Using the non-dimensional parameters defined in table (3.1), simplifying equations (3.25) 

and (3.26) and dropping the asterisk notations for brevity give 

  utt  +   ut +  u −  �� {u + w +w  } =   
(3.27)  

   

 

 wtt +   wt + c −  w +  c − Z +  � wt +
�  w + �  w + �  w −  �� { u + w +
w  w } −  �� { u + w +w  Z } = G cos Ω t   

(3.28)  
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Table 3.1 The Non-dimensional parameters 

Parameter Definition 

=  √ ��  The transport speed parameter 

= √ ��  The longitudinal stiffness parameter 

� = √ ���  The flexural stiffness parameter 

= √ ���  Time dimensionless parameter 

� = �  ��  The linear coefficient of the curved foundation 

� = �  ��  The nonlinear coefficient of the curved foundation 

�∗ = � ��  The damping parameter 

=   � �  External force amplitude 

Ω∗ = Ω � External force frequency 
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We can suppress the appearance of  in the transverse vibration equation (3.28) using the 

approximation given in [9]. It is assumed that the influence of longitudinal inertia is small, 

then, equation (3.27) is given by:  

 (u + w  + w  Z ) =  (3.29)  

and the axial strain is approximated to: 

 
∂u∂x = =  ∫ ( w + w  Z )�

 (3.30)  

Substituting equations (3.29) and (3.30) into equation (3.28) we get: 

 

wtt +   wt + c −  w +  c −  Z +  � wt + �  w + �  w + �  w − w +  Z ∫ w +w   = G cos Ω t   
(3.31) 
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3.6. Galerkin’s method 

In order to solve equation (3.31), the Galerkin’s method is applied to the equation of motion 

to discretize it into a set of nonlinear ordinary differential equations. Hence, the eigen 

functions of a simply supported beam are chosen as the basis functions for the following 

separation of variables technique: 

 w , = ∅  �   
(3.32)  

where ∅  is the mode shape of the transverse motion of a simply supported beam given 

by equation (3.33)  

 ∅ =  sin (� � ) 

(3.33) 

where i is the number of vibration mode, and �  represents the time function for the 

transverse direction. 

The curvature  of the path followed by the beam is assumed to have a half-sine wave 

Accordingly, the formula that describes the curvature shape is: 

 =   sin �  
(3.34) 

with an amplitude  at the center to describe the degree of curvature, i.e. if  is zero, then 

we deal with a straight beam, if  is greater than one then the beam has a curved shape 

which is upward curvature (as seen in figure 3.3). 
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Figure 3.3 Curved path configuration with curvature amplitude ‘ e ’ 

 

Our assumption for the curvature function goes along with literature in this topic. The idea 

of curvature in literature is studied for stationary beams only by few researchers [40]–[43]. 

In all of these papers, a sinusoidal curvature function was assumed.  

Substitute equations (3.33) and (3.34) and their derivatives into equation (3.31), we get the 

transverse vibration equation as: 

 

�  sin  � + [� +  − +    � +
   �   ] � sin   +    cos   � + sin  [   e −
+    � +    �  +  �  � + �] =   

(3.35)  

Multiplying the resulting equation by the first mode shape �   , then integrating with 

respect to  over the domain from 0 to 1, and multiplying by 2, the transverse vibration 

equation is simplified into 
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� +  �  � + [� +  − +    � +    ] � +[   ] � + [    +  �  ] �  +  −  =   

(3.36)  

Finally, we get the final form of the equation describing free transverse vibration in time 

coordinate as: 

 � +  �  � +  � + � +  � +   −  =   
(3.37)  

Where: 

 = � = [� + − +   � +    ] 
(3.38) 

 = [    ] 
(3.39) 

 = [    +  �  ]  
(3.40)  

Equation (3.38) represents a second-order inhomogeneous nonlinear differential equation, 

which has both quadratic and cubic nonlinearity. The first coefficient  represents the 

squared first "fundamental" natural frequency of beam vibration in transverse direction. 

The second coefficient  is responsible of the quadratic nonlinearity in the equation due 

the curvature . The third coefficient  represent the cubic nonlinearity comes from mid-

plan stretching of the beam about its neutral axis while it vibrates and from the nonlinear 

elastic foundation parameter � . 
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4 CHAPTER 4 

Free vibration of axially moving beam moving in a 

curved path 

For studying the free vibration case, let us consider a simply supported axially moving 

beam following a curved path. Let us consider a steel beam with the properties shown in 

Table 4.1.  

Table 4.1 System parameters 

Parameter Definition 

� =   Length of the beam 

=   Width of the beam 

ℎ =   Thickness of the beam 

ρ = . ∗  � /  Density of the beam material 

E = . ∗  �/  Modulus of elasticity of the beam 

� =  �/  The linear stiffness of the foundations 

� =  �/  The nonlinear stiffness of the foundations 
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The curved path has an amplitude ranges from     at the middle of the beam. The 

path is supported by an elastic foundation with a combination of linear and nonlinear 

stiffnesses. The beam travels axially with a speed = /  and subjected to an axial 

tension � =  �. 

This chapter include a discussion on the free vibration of the beam. In sections 4.1 to 4.6 

we consider the first mode of vibration and discuss system nonlinearities, natural 

frequency, critical speed, wave form, and phase portrait for transverse vibration of the 

beam.  

4.1. System Nonlinearities 

Nonlinear systems are characterized by the fact that the superposition principle does not 

apply. In general, nonlinearities in structural mechanics arise in many different ways and 

take different forms including material, geometric, inertial, and frictional nonlinearities. 

Material nonlinearities exist in systems which exhibit nonlinear stress - strain relationships, 

such as the elastic - plastic behavior. Geometric nonlinearities arise from nonlinear strain 

- displacement relationships. Sources of this type of nonlinearity include mid-plane 

stretching, large curvatures of structural elements, and large rotation of elements. Inertia 

nonlinearities arise as a result of concentrated or distributed masses. Friction nonlinearities, 

arise, for example, from dry friction, stick slip, and hysteresis [44]. 

The governing equation of the axially moving beam, equation 3.37 includes two nonlinear 

terms associated with the quadratic and cubic terms. The first one is due to the curvature 
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of the path of the axially moving beam, while the second one is due to the tension or 

stretching of the beam’s neutral axis during vibration in addition to the nonlinear elastic 

foundation parameter. 

The coefficients of the nonlinear terms are functions of many parameters. Figure 4.1 shows 

the effect of path of axial motion curvature on the coefficient of quadratic nonlinearity. By 

increasing the curvature of the beam the coefficient of quadratic nonlinearity increases 

linearly.  

Figure 4.2 shows the effect of nonlinear stiffness of the path supports in the coefficient of 

cubic nonlinearity. By increasing the stiffness of the supports the coefficient of cubic 

nonlinearity increases linearly.  

From figures 4.1 and 4.2 we can see the nonlinear terms coefficients are relatively high, 

with power  which produce stiff second ordinary differential equation. An ordinary 

differential equation problem is stiff if the solution varies slowly, but there are nearby 

solutions that vary rapidly, so small steps must be used carefully to obtain satisfactory 

numerical solution. 

To get an accurate solution we increased the simulation time to  seconds and reduced 

the time intervals to .  of a second. We used absolute and relative tolerances 

equals  −  to guarantee more accuracy. Relative tolerance is a measure of the error 

relative to the size of each solution component. Roughly, it controls the number of correct 

digits in all solution components, except those that are smaller than thresholds of absolute 

tolerance.  
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Figure 4.1 Coefficient of quadratic nonlinearity versus curvature amplitude 

 

Figure 4.2 Coefficient of cubic nonlinearity versus nonlinear stiffness of the support at curvature amplitude e=2 
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4.2. Natural frequency 

In this section, the combined effects of geometrical and other parameters including axial 

tension, axial velocity and support stiffnesses on the natural frequency of an axially moving 

beam on a curved elastic support are investigated.  

The fundamental frequency is given by equation (3.39). Figure 4.3 shows the effect of 

curvature amplitude e on the fundamental natural frequency. The natural frequency 

increases with increasing the amplitude of beam curvature. We can compare the natural 

frequency of a straight beam with the case when the beam is supported by a curved path 

for different values of curvature. We realize that the natural frequency is much higher for 

the beam following a curved path. This is due to the fact that the natural frequency equation 

contains a term of amplitude of curvature multiplied by flexural stiffness parameter 

multiplied by   which causes higher frequencies. These products magnify the natural 

frequency.  
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Figure 4.3 Frequency versus path curvature amplitude ‘e ’ 

 

Figure 4.4 shows the effect of curvature on the natural frequency for different values of 

axial tension of the beam, P. It is clearly seen that the curvature produces a significant 

increase in the natural frequency when higher tension is applied. While in case of straight 

beam where =  the increase in axial tension slightly affect the fundamental frequency. 
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Figure 4.4 Frequency versus path curvature amplitude for different values of axial tension 

 

Figure 4.5 shows the effect of curvature on the natural frequency for different values of 

axial speed. As the amplitude of path curvature increases the effect of axial speed on natural 

frequency is reduced.  

Figure 4.6 shows the effect of applied axial tension, P on the fundamental frequency for 

different values of speed. It is clear that increasing axial tension decreases the natural 

frequency. The figure is plotted when curvature =  . While for higher values of 

curvature amplitude, changing axial speed does not make notable difference.  
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Figure 4.5 Frequency versus path curvature amplitude for different values of axial speed  

 

Figure 4.6 Frequency versus axial tension for different values of speed � =  �� � = �  �/� 
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Figure 4.7 shows the effect of applied axial tension, P, on the natural frequency for different 

values of stiffness of the path supports. The variation in frequency caused by changing 

stiffness is small compared to the main system parameters [axial speed and axial tension]. 

We realize that the figure is plotted when curvature =  , and for higher values of 

curvature the effect of changing stiffness of the supports is very small. 

 

Figure 4.7 Frequency versus tension for different values of stiffness of path supports at curvature amplitude  � =  �� 
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4.3. Critical speed  

The critical speed of a moving beam is the value that makes the fundamental frequency 

vanish [45]. It corresponds to the equilibrium solution for equation (3.31).If we set equation 

(3.39) to zero, we get an expression for the critical speed �∗ 
 �∗ = √[� + +   � +    ] (4.1)  

Figure 4.8 shows the variation of critical speed with fundamental frequency for an axially 

moving beam with e=1 mm, P=100 N, � =  �/  the natural frequency vanishes at 

dimensionless speed of .   which is equivalent to  / . 

 

Figure 4.8 Fundamental frequency versus axial speed; at curvature amplitude e=1 mm, P=100 N, � =�  �/� 
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Figure 4.9 shows the relationship between critical speed and amplitude of path curvature. 

If we compare the case when, � =  �, the dimensionless critical speed of a straight 

beam will be 2.5 equivalent to ( .  / ) while the same beam supported by a curved path 

with an amplitude =   with stiffness of the supporting path � =  �/   � =  �/   will increase the dimensionless critical speed to be 3.6 

equivalent to ( .  / ). These are a high values compared to normal working speed in 

R2R systems for material handling in general [46] which is about 2.5 m/s, or specifically  

less than 10 m/s  for newspaper printing [5].  

 

Figure 4.9 Critical speed versus curvature amplitude of the path; at P=100 N, � = �  �/� 
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To show the effect of curvature on the critical speed, we plot the relationship between 

fundamental frequency and dimensionless speed for different values of curvature 

amplitude as shown in figure 4.10. We note that higher values of curvature amplitudes 

corresponds to higher values of critical speeds. 

 

Figure 4.10 Natural frequency versus axial speed, at P=100 N, � = �  �/� for different values of curvature 

amplitudes 

 

 

 

 

 



47 
 

Figure 4.11 shows the relation between dimensionless critical speed and applied axial 

tension. The critical speed decreases as axial tension increases. 

 

Figure 4.11 Critical speed versus applied tension; at e=1 mm, � = �  �/� 
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4.4. Waveform and Phase portrait 

Waveforms and phase portraits can be observed to discern chaotic behaviors from regular 

behaviors of dynamical systems. In this section, we plot the waveform and the phase 

portrait for free vibration of an axially moving beam in transverse direction. We use a beam 

with the parameters given in table 4.1.  

Generally, visualization of time waveforms is a straightforward method for dynamic 

system analysis because periodic waveforms represent a pattern. Chaotic waveforms 

appear to be shaking. In other words, Waveforms of equilibrium or periodic behaviors are 

regular while the waveform of a chaotic behavior is irregular. 

The phase portrait is the geometric representation of the system trajectories in the phase 

plane, and involves coordinate frames defined by the independent variables that describe 

the system dynamics where all possible states can be represented. Showing phase portraits 

are an important tool for the study of dynamic systems, and reveal information such as 

whether an attractor, or a limit cycle is present for a chosen parameter values. While a 

stationary system is represented by a fixed point in the phase plane, a periodic system 

presents a closed orbit (limit cycle). A chaotic behavior is characterized by irregular 

trajectories confined to a well-defined region in the phase plane, known as stranger 

attractor, where orbits never repeat the same trajectory.  
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 Effect of path curvature 

To investigate the effect of the curved elastic support on the vibration of an axially moving 

beam, let us first show system’s response for the case of a straight elastic support with zero 

amplitude of curvature. Figure 4.12 shows the waveform and phase portrait for a straight 

axially moving vibrating beam. Assuming initial conditions as � =   , � =  , we 

realize that the response does not exceed the initial displacement. The wave form and the 

phase portrait show a typical characteristics of a periodic motion where the beam oscillates 

between negative and positive   from the horizontal datum.  

.  

Figure 4.12 Time history and phase portrait for transverse vibration at e= 0  

In figure 4.13 we impose an amplitude of path curvature of 1 cm. One can see the 

downward shift in the response to give higher values in the negative direction. The effect 
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Figure 4.13 Time history and phase portrait for transverse vibration at e= 1 cm , k1=1.5*10^5 , k2=10  k1 
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Figure 4.14 Time history and phase portrait for transverse vibration at e=2 cm, k1=8*10^5 , k2=10  k1 
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Figure 4.15 Time history and phase portrait for transverse vibration at e=2 cm , k1=1.8*10^5 , k2=10  k1 

 

Figure 4.16 Time history and phase portrait for transverse motion at e=2 cm , k1=1.5*10^5 , k2=10  k1 
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5 CHAPTER 5 

Forced vibration of axially moving beam moving in a 

curved path 

Let us consider a simply supported axially moving beam following a curved path, with the 

properties shown in Table 4.1.  

The curved path is assumed to be a sinusoidal and have an amplitude between  and  . 

The curved path is considered as an elastic foundation with a combination of linear and 

nonlinear stiffness coefficients. The beam is traveling axially at a speed of = /  and 

subjected to an axial tension of � =  �. There is also an external force acting on the 

surface of the beam in the transverse direction =  cos Ω . 

In this chapter, we study forced vibration of the beam. Section 5.1 includes frequency 

response curves for primary resonance excitation and show the effect of changing system’s 

parameters. In section 5.2 to 5.5 we analyze the dynamic response of the system through 

time history, Phase portrait, Poincaré section and bifurcation diagrams. We consider three 

cases: primary resonance, sub-harmonic and super-harmonic resonances. 
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5.1. Frequency response curves 

The equation of motion of forced vibration reads as 

 � +  � � + a � + b � + d � = cos  ω  (5.1)  

In order to derive the frequency response equation, the harmonic balance method [47] is 

implemented to the second order time domain equation (5.1) where F is the amplitude of 

the external force and ω is the excitation frequency. Note that the equation describes the 

first mode of vibration.  

The harmonic balance method is used to determine the approximate periodic solutions of 

nonlinear differential equations. If a periodic solution does exist, it may be sought in the 

form of a Fourier series, whose coefficients are determined by requiring the series to satisfy 

the equation of motion. However, in order to avoid solving an infinite system of algebraic 

equations, it is better to approximate the solution by finite sums of trigonometric functions, 

i.e. 

 � =   ̅ sin  ω +  ̅  cos  ω  (5.2)  

Substituting equation (5.2) into the governing equation (5.1), we get 

 

[− ̅ � sin  ω −  ̅� cos  ω ] + � [ ̅ � cos  ω − ̅ � sin  ω  ] + a [  ̅ sin  ω +  ̅  cos  ω ] +b [  ̅ sin  ω +  ̅  cos  ω ] = cos  ω   
(5.3) 
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Equating the coefficients of each sin  ω  terms to zero, and the coefficients of each cos  ω  terms to F, leads to two algebraic equations. We ignore the second and third-

order harmonic terms  ω ,   ω  and concentrate on the fundamental frequency  

 

− ̅ � −  �  ̅ω + a ̅ +  ̅ (̅ + ̅ ) =  

− ̅ � +  �  ̅ω + a ̅ +   ̅ ( ̅ + ̅ ) =  

(5.4)  

Define the amplitude of oscillation � = √̅ + ̅  and substitute it into equations (5.4), 

square both of the resulted equations to get the frequency response relation between 

frequency (ω) and amplitude of oscillation (A) 

 �  � +  �  −  �  � + − � + � +� =   (5.5)  

Simplifying equation (5.5), we get 

 [� − (  � + − � )� + (  � + ) ] =  (�)  (5.6)  

By solving equation (5.6) we get the frequency response curve for the system. Figure 5.1 

shows a linear frequency curve in which we observe that the curve is vertical and the 

maximum amplitude occurs at a frequency equals to the fundamental frequency. The effect 

of nonlinear terms in the transverse vibration equation bends the curve away from the linear 

case as shown in figure 5.2.  

 



56 
 

 

Figure 5.1 Frequency response curve of linear vibration, at e=1 cm 

 

Figure 5.2 Frequency response curve of  nonlinear vibration, at e=1 cm 
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The dashed lines in figures 5.1 and 5.2 are called the "Backbone" curves which represent 

the free vibration frequency curve and it is independent of the force amplitude or the 

damping coefficient [48]. 

If we compare the nonlinear and linear vibrations of the system in terms of frequency 

response curves figure 5.1 and 5.2, respectively, we realize that multi solutions exist at 

some specific ranges in the forced vibration curve [figure 5.1], for example, the system has 

three solutions at a frequency equals to 55. 

The effect of damping on the frequency response is shown in figure 5.3. As damping 

increases, the maximum amplitude decreases, while the overall frequency response profile 

is maintained. 

 

Figure 5.3 Frequency response curves at different damping coefficients, at e=1 cm 
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Figure 5.4 shows the effect of axial speed on the frequency response curve. By increasing 

the axial speed we realize a tendency toward nonlinear hardening effect in the system. In 

such behavior, increasing amplitude, results in increasing the resonance frequency. The 

response curve becomes asymmetric and leans towards higher frequencies. 

 

Figure 5.4 Frequency response curves at different axial speed, at e=1 cm 
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Figure 5.5 shows the effect of amplitude of the excitation force. It is noted that the higher 

force amplitude results in a higher vibration amplitude over the entire frequency spectrum. 

 

Figure 5.5 Frequency response curves at different force amplitudes, at e=1 cm 
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5.2. Dynamic response  

In this section, we investigate the response of an axially moving beam following a curved 

path subjected to distributed-harmonic external force excitation. We assume that the 

transverse harmonic excitation is uniform over the length of the beam. The excitation 

frequency equals to or multiplier of the fundamental frequency of the first vibration mode. 

It is appropriate to define some of the terminology used in the literature concerning 

nonlinear resonances. Consider a distributed parameter system with natural 

frequencies ��, where n is the mode number. The system is subjected to an external 

harmonic excitation of frequency Ω . A primary resonance of the nth mode occurs if the 

excitation frequency is close to the natural frequency of that mode (i.e., Ω ≅ ��). A sub-

harmonic resonance of the order /� of the nth mode occurs if Ω ≅ k ��, where � is an 

integer. On the other hand, a super-harmonic resonance of order k of the nth mode occurs 

if Ω ≅ ��/� [44].  
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 Poincaré Section 

Poincaré section consists of a 2D plane that intersects the steady-state trajectories, 

sometimes referred to as the attractor, converting a continuous flow into a discrete time 

mapping. By observing the distribution of the discrete points on the Poincaré section, we 

can identify system’s behavior. 

The trajectory, or orbit, of an object x is sampled periodically, as indicated by the squared 

section in figure 5.6. The rate of change for the object is determined for each intersection 

of its orbit with the section. This set of values can then be used to analyze the long term 

stability of the system [49].  

 

Figure 5.6 Poincare´ section illustration, periodic orbit cross the section [50] 

 

The red point �−  is the start of original cycle of the system, called the limit cycle of the 

system, since the system will return to this point every (T) seconds or the period. In contrary 

to the case of bifurcation or chaos, every period of oscillation (T) the object x will cross 
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different points in the plane, which will generate a "randomly" distributed points in the 

displacement speed plane. 

 Bifurcation diagrams 

In the nonlinear systems, it is possible to have several solutions to a differential equation. 

The number of solutions depends mainly on the parameters that describe the system, 

however, a small change in any of these parameters may lead to a significant change in the 

number of solutions and the nature of them as well. That is what is called the "sensitivity" 

of the system to its parameter’s change. 

Because the qualitative dynamic behavior of a system changes with the parameter 

variations, a global description of the system involves the knowledge of all possible 

behaviors for several parameter values. The bifurcation diagram is a graphical 

representation of sampled attractors in a Poincaré section and provides a good visual 

summary of the transitions between different types of motion that can occur when one 

parameter of the system is varied. This provides an easy identification method of how the 

system’s qualitative behavior changes. A typical bifurcation diagram has a horizontal axis 

that corresponds to the varring parameter (force, stiffness, speed, etc.) and a vertical axis 

that corresponds to the sampled steady-state values of one of the system’s variables. A 

large number of data samples are captured using a Poincaré section for each value of the 

chosen bifurcation parameter and plotted in the bifurcation diagram. By this method we 

can observe the evolution of the solution as the bifurcation parameter is changed. 
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Many phenomena are observed in such diagram. Jump phenomena appear as a sudden 

change in the path of oscillation or a discontinuity in the bifurcation diagram. Some 

systems are jumping several times as the bifurcation parameter is changed, or a switching 

behavior of the system from one solution to another. 

5.3. Primary resonance excitation (Ω = ω) 

We set the frequency of the excitation external force to a fundamental frequency of the 

system, which depends on system’s parameters as mentioned in chapter 4. The bifurcation 

diagram is constructed for a straight axially moving beam as shown in figure 5.7 to examine 

system’s response. We consider the external force amplitude as a bifurcation parameter. A 

quick look at the bifurcation diagram indicates that the system gives one solution for force 

ranges up to around  �, and then the diagram starts to bifurcate, generating multiple 

solutions. 

 

Figure 5.7 bifurcation diagram at primary resonance, at e=0 
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In contrast, Figure 5.8 shows the bifurcation diagram for the axially moving beam 

following a curved path, with an amplitude of curvature of 1 mm. In this case, the diagram 

starts bifurcation earlier when the force amplitude is about 2 N.  The Force-displacement 

diagram exhibits many types of bifurcations, the response undergoes period four 

bifurcation at force amplitude 2 N, period doubling bifurcation around 3 N and 6 N force 

amplitudes. 

 

Figure 5.8 bifurcation diagram at primary resonance, at e=1 mm 
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same amplitude of curvature of 1 mm results in a period four bifurcation as shown in figure 

5.10. The phase portrait has four different cycles and the wave form has many different 

amplitudes and frequencies compared to figure 5.9.   

 

Figure 5.9 Phase portrait, Poincaré section and time history at primary resonance for � = . � �, at e=1 mm 

 

Figure 5.10 Phase portrait, Poincaré section and time history at primary resonance for � =  �, at e=1 mm 
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5.4. Sub-harmonic resonance excitation (Ω = 2 ω) 

The frequency of the external force is set to double of the fundamental frequency of the 

system. Let us make a comparison between two cases: axially moving straight beam and 

axially moving beam following curved path with amplitude of 1 mm in Figure 5.11 and 

5.12, respectively. For axially moving straight beam, there is only one solution up to 4.6 N 

force amplitude in which system has a period- five motion and another bifurcation around 

7 N force amplitude. While the curvature causes the system’ bifurcation to occur earlier at 

3 N force amplitudes, and has another two bifurcations at 5 N and 7 N force amplitudes. 

 

Figure 5.11 bifurcation diagram at sub-harmonic resonance, at e=0 
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Figure 5.12 bifurcation diagram at sub-harmonic resonance, at e=1 mm 
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5.5. Super-harmonic resonance excitation (Ω = 0.5 ω) 

The frequency of the external force is set to half of the natural frequency of the system. 

Figure 5.13 shows the bifurcation diagram for axially moving straight beam. The Force-

displacement diagram exhibits one jump when the force amplitude = 5.2 N, and does not 

show any bifurcation until F= 8 N. 

 

Figure 5.13 bifurcation diagram at super-harmonic resonance, at e=0 
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Figure 5.14 bifurcation diagram at super-harmonic resonance, at e=1 mm 
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6 CHAPTER 6 

Conclusion and Future Outlook 

6.1. Conclusion 

Equations of motion for an axially moving beam following a curved path was derived using 

Hamilton principle and then Galerkin’s method was used to discretize the coupled 

equations of motion. We studied free vibration of the beam and examined the effect of 

system parameters on the natural frequency of the first mode shape vibration.  

From the results obtained, considering the vibration of an axially moving beam resting on 

an elastic curved support, the effect of curvature produced an in-periodicity appears in the 

system’s response as an increase in the downward displacement of beam vibration. The 

special case of vibration of axially moving straight beam exhibited equal oscillations up 

and down around the horizontal neutral line.  

The natural frequency of an axially moving beam travelling on a curved elastic support 

was higher than the natural frequency of its straight counterpart beam. This increase was 

due to new terms introduced to the model by path curvature and linear and nonlinear 

stiffnesses of the supports. The fundamental frequency increased dramatically with slight 

increase in elastic support curvature. 
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Forced vibration of the beam was also studied in three cases: primary resonance, sub-

harmonic resonance and super-harmonic resonance excitations. The forced vibration of an 

axially moving beam on a curved elastic support exhibited many types of bifurcation, the 

response undergone period doubling bifurcation, period four bifurcation and many jumps. 

The effect of support curvature was shown to cause the system to start bifurcation very 

earlier compared with the case of an axially moving beam resting on a straight elastic 

support. 

6.2. Future Recommendations 

Following are recommended potential extensions for future work based on the conclusions 

reached during this investigation: 

1- Studying the model of a viscoelastic beam, to include viscoelastic thin films, paper 

sheets and PET sheets. 

2- Extending the model into micro scale to include applications of printed electronic 

circuits and other micro-level applications.  

3- Studying different configurations of the moving beam, by changing material, 

geometry and system’s parameter. 

4- Deriving exact relation between speed and tension in roll to roll systems. And 

examine the effect of curvature on that system. 
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Appendix 

Kinetic energy terms 

=  �  ∫ { +    +  +  + + +    +    +�
 +      }   

keeping the constant 
ρ A

 for all terms and plug it later in The Hamilton Principle. 

1- ∫ ut   dxL
 

 

This term will be integrated with respect to time on The Hamilton Principle. But we can 

do it now and make the result ready for use without integration. 

 = ∫ ∫ ut ut  dtt
t  dxL

 

 = ∫ [ut u] tt − ∫ utt u dtt
t  dxL

 

= −∫ ∫ utt u dxL  dtt
t  

= −∫ utt dxL
 

 

2- ∫  ut v +  u  dxL
 

= ∫  v ut dxL +∫  v ut u  dxL
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∫  v ut dxL =  v [ut x] L 

∫  v ut u  dxL = v [ut u] L  − v∫ ut  u dxL   
 

3- ∫ v  + u  dxL
 

= v ∫  + u + u   dxL
 

v ∫  dxL = v [x] L 

v ∫  u  dxL =  v [u] L 

v ∫  u u  dxL = v [u  u] L  − v ∫ u  u dxL
 

4- ∫ wt  dxL
 

This term also like the first term will be integrated with respect to time on The Hamilton 

Principle. But we can do it now and make the result ready for use without integration. 

= ∫ ∫ wt wt  dtt
t  dxL

 

 

= ∫ [wt w] tt − ∫ wtt w dtt
t  dxL
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= −∫ ∫ wtt w dxL  dtt
t  

= −∫ wtt dxL
 

5- ∫  wt v w  dxL
 

=  v[wt w] L  −  v∫ wt  w dxL
 

 

6-  ∫     dxL
 =   ∫    dxL

 

 =  [wt Z] L  − ∫ w t Z dxL
 

 

7- ∫ v  w  dxL
 

= v ∫  w  w   dxL
 

 = v [w  w] L  − v ∫ w  w dxL
 

8- ∫      dxL
 

=  v [Z  w] L  − v ∫ Z  w dxL
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Potential energy terms 

= ∫ [� +   � +   � +  �  + �  ]  �
 

1- ∫ �  �
 = � ∫  + +    �

  

� ∫   � = �[ ] �  
�∫   � = � [  ] �  − �∫   �

 

� ∫    � = �[  ] �  − � ∫   �
  

2-  EA∫   dxL
 

 

= EA∫  u + w +w  Z u + w  + w  Z  dxL
  

 

= EA∫  u u + w +w  Z   dxL + EA∫  x u + w +w  Z   dxL +EA∫  w  Z u + w +w  Z   dxL
  

 

EA∫  u u + w +w  Z   dxL = EA  [ u + w  + w  Z  u] L  − EA∫ u +Lw  + w  Z u dx  
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EA∫  x  w u + w +w  Z   dxL = EA  [ u + w  + w  Z  w   ] L  −EA∫ [ u + w +w  Z  w ]   dxL
  

EA∫   Z + +    = EA  [ + +     ] �  −�EA∫ [ + +   ]  �
  

3-  E I ∫ w  dxL
 � ∫    � = �  [  ] �  − � ∫   �

  

� ∫   � = �  [  ] �  − � ∫   �    
� ∫  � = �  [  ] � − �  [  ] � + � ∫   �

  

4-  k ∫ w  dxL
 =  � ∫   �

  

5-   k ∫ w  dxL
 =  � ∫   �

  

Derivatives of used functions 

w = �  �  cos  �    
w = −�  �  sin  �    
w = −�  �  cos  �   

w = �  �  sin  �   
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u = �  �  cos  �    
u =  −�  �  sin  �    
Z =  �  cos  �    
Z =  −  �  sin  �    
wt = �  sin  �   

wtt = �  sin  �   

wt = �  �  cos  �   

ut = �  sin  �   

utt = �  sin  �   

ut = �  �  cos  �   

∫ sin   =    

∫ sin   sin   � =   

∫ sin   cos   � =   

∫ sin  cos   =    

∫ sin   =    
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