(IR e e e S e 3 e e e o e e e e e ol el e el o
HySim: A Hybrid Software/Hardware Simulation

\

’1\

A

 [Framework for Early Architectural Exploration of

Chip Multiprocessors

(3¢ Il Je 1 e ot
PR e P SE e T S RS

G
s BY
RS,
-._(j .
o Ayman Ali Mohammad Hroub
=
:%f A Dissertation Presented to the

DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

t
\

(9 e Vel e o e o e e

A N A A PN A A I PN AN

::g‘: DOCTOR OF PHILOSOPHY

By In

:‘?; COMPUTER SCIENCE AND ENGINEERING

B

b December 2015 B
& L
T T S S S s S

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN- 31261, SAUDI ARABIA
DEANSHIP OF GRADUATE STUDIES

This thesis, written by Ayman Ali Mohammad Hroub under the direction of his thesis
advisor and approved by his thesis committee, has been presented and accepted by the

Dean of Graduate Studies, in partial fulfillment of the requirements for the degree of PhID

Dr. Muhammad Elrabaa
(Advisor)

Dr. Adel F. Ahmed

in Computer Science and Engineering.

Dr. Aiman El-Maleh

Department Chairman (Member)
B2 M st el
7 ‘ N *
Prof. Salam A. Zummo \ i S Dr. Mahmood Niazi

Dean of Graduate Studie"‘s-‘;_‘:': 2 (Member)

R o, 7

Prof. Mayez Al-Mouhamed
Date (Member)

/{/ /HS A
- d

Dr. Mohammad Alshayeb
(Member)

© Ayman Ali Mohammad Hroub

2015

To the memory of my mother

To the memory of my brother Abdul-Latif

To my wife

To my cute sons, Yamin and Abdul-Latif

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... XViii
AADSIIACT. ... Xix
RO PRSPPSO XXi
CHAPTER 1 INTRODUCTION ..ottt 1
1.1 IMIOTIVALION. ..ottt bbb 1
1.2 Terminology and NOMENCIALUIEcoveiiiiiiiicie e 3
1.3 DiSSertation OULHNEcoiviiiiiiieisi e 7
1.4 CONHDULIONS ... 8
CHAPTER 2 STATE OF THE ART OF MULTICORE ARCHITECTURES. 9
2.1 Intel Xeon PNi COPIOCESSONcviiuiiiieeieiiiesiee sttt sttt 9
2.1.1 COPIrOCESSOI™S COME .uviiiuiiieiiiieesiiieesiteessiteessireessbaeesbee s sbe e e ssbee e snbeeesnbeeesraee e e 10
2.1.2 Interconnection NEIWOIKccociiiiieiiiiieici e s 10

2.2 Intel Xeon CPU E5-2680........c.cccoiiiiiiiiiiiinieieie et 12
2.3 TILE-GXx8072 Processor: Telira PrOCESSOrcccoieiiririeriiniieieiesiesie e 13
2.4 Intel’s 48-core SCC (Single-Chip Cloud Computer) Processorcc.ccocveueee. 15
2.5 Multi-node Multicore Architectures for Irregular Applications............c.ccoceene. 15

Vv

2.6 POWERT ... 16

2.7 ARM ATICNITECIUIE ...t 17
2.8 AIMD PrOCESSOISeiiieiiiitisiiesie ettt n e ne s 17
2.9 AXEL ettt reene s 18
2.10 SumMmMary and DISCUSSIONc.ccuiiieiiieieeiie ettt st nee e sre e 18
CHAPTER 3 COMPUTER ARCHITECTURE SIMULATION TECHNIQUES............. 21
3.1 Simulator Design Trade-0ffScccoeiiiiiiieicre e 21
3.2 Architectural Simulation TECANIQUEScccuevverieiierieie e 24
3.2.1 Execution-Driven SIMUIAtioNS ..o 24
3.2.2 Trace-Driven SIMUIAtIONS ..o 27
3.2.3 User-Level vs. Full-System SIMUIations............cccooerieneeniiin e 28
3.2.4 Abstract vs. Detailed SIMUIAtionscccooviiiieiniice e 30
3.25 Software vs. Hardware SIMUIAtOrs..........cccocviiiiiciininecescce e 32
CHAPTER 4 REVIEW OF EXISTING MULTICORE SIMULATORS.......ccccooviiieiene 36
4.1 SOftWare SIMUIBLOTS.ccveiiiiiiicieee s 36
411 GEMS e 36
A €1 - o] 1| (- OSSR 38
G T T o =] ST SSR 40
A.1.4 PINPIAY ..cuiiiiiiece ettt eeaenre s 42

Vi

415 MCSIMAT .o 46

A4.1.6 SIMANY .ooiieieeee e nre e e nren 48
417 HORNET ..ot et 49
4.1.8 MaNITOIA ...coiiiiiieee s 50
A4.1.9 TrANSTOIMEL ...ttt 51
110 COTSON ...ttt ettt et b e se e be e snr e e nbeesnneenee s 52
4.1.11 Summary and DISCUSSIONcveerieeieiierieeieseeseeie e siaessesseesreesae e sseeses 52
4.2 FPGA-based SIMUIALOIScccoviiiiiiiiicisiseees s 54
o R = ¥ AN Y/ €T] o BSOS 54
B.2.2 HASIM. ..o 55
B.2.3 ATBLE .o 57
4.2.4 ScalableCore SYStEM 3.3.......iciiieiicce e s 58
4.25 Summary and DISCUSSIONc.ccueiieerueieerireiesieseeieseesieessesseesraessesneesseeses 58
4.3 Hybrid Software/Hardware SIMUlatorscccocoiiiiniiininiceece e 61
4.3 1 PROTOFLEX ... ittt b et e 61
A.3.2 B AST bbb neene e 62
4.3.3 Summary and DiSCUSSIONcccueiueiiueiieiireie e seesie et sre e sreesre e sre e 63
CHAPTER 5 OVERVIEW OF THE PROPOSED SIMULATION FRAMEWORK 65
5.1 BaSIC SrALEOY ..vvevverieiiieiieeieseeste et e e e st e e ta et et e e e re e e e enne s 65

vii

5.2 Functional and Timing Models’ Implementation Optionsccccceveevveiiennenn 67

5.3 FPGA-based Simulation Framework Design Options...........cccccvvveviverenivesnennnns 68
5.3.1 Rigid FPGA-based SIMUIALOr..........cccooiiiiiiiiiei e 68
5.3.2 Fully-flexible FPGA-based SImulator.............ccccoviiiininiiiceee 69
5.3.3 Quasi-flexibe FPGA-based SImulator...........ccoeeviiiiiiieiiiieccee e, 70
5.3:4 SUMIMAIY ..ciiiiiiiiiieeeiie ettt sttt ab e sb e e srb e e st e e e nnb e e e sraeeenes 74

5.4 HySim’s Architecture and WOrkFIOWccceviiieiieie e 76

5.5 HYSIM’S OULPUL.....ceiiieiieie ettt ra e re e sneenne s 79

CHAPTER 6 COMPRESSED EXECUTION TRACE GENERATION........cccoooveviininne 81

6.1 INEOTUCTION. ...ttt 81

6.2 The proposed Execution Trace Compression TeChniqueccocceveeneeiierinnnens 86
6.2.1 BaSIC SLrAtEQYccveiieeiecie ittt 88
6.2.2 CET ENCOAING ...ccvviiiieieeiesiesie et se e e et e e ta e e e e saeenaesneenne s 92
6.2.3 LOOP RECOGNITION ...t 99
6.2.4 CET PrOfIlEr ..o 103
6.2.5 CET C0de GENEIALIONeovieiieiiieiiteitesie et 106
6.2.6 Emulation and CET Data Generation.............ccocereirererineneneieseseseeenes 111
6.2.7 System CallsS LAteNCYcccveiuiiieiieiie e 112

6.3 EXperimental RESUILScccouiiieiieie e 115

6.3.1 EXPerimental SEIUDcccoiveiiiieiieie e 115

R S @0 4 o] =1S3] [0 I U1 o S 118
6.5 Compression/DecompressSion SPEEA.........cccviveiererierirerieieie e 133
CHAPTER 7 HYSIM TIMING MODELcooiiiiiieiieieeeee e 135
7.1 Bluespec SystemVerilog (BSV) ..o s 135
7.1.1 BSV Coding ProdUCHIVILYcccceiiieiiieeciese e 136
7.1.2 BSV to Verilog Compilation.........cccccveveiieiieiniie e 139
7.2 Timing Model ArChiteCIUIecoveiieece e 148
7.3 Timing Model’s Tile ArChiteCtUIe..........ccciiiiiiieee e 151
7.3.1 HySim Core Model (CET COr€).....ccccueruerierieriieie et 153
7.3.2 Timing Model’s Cache Memory ..o 164
7.3.3 Target Cache Hierarchy Modelccccoveiieiiiie i 167
7.3.4 Timing MOdel’s ROULETcccviieiieiieee e 170
T4 NOC MOEI ... 172
7.5 Multi-threading Managementcoirieeiiiene e 172
7.5.1 Thread Scheduling on the Same COreccoocveieiieninie s 173
7.6 Inter-Thread INTEraCtioNnScccooeiiiiiirieine e 178
7.7 FPGA Implementation Details............ccccovveiiiiiiiieiiice e 179
7.7.1 HOSt-FPGA COMMUNICALIONccveviiiiiiiriieisie e 181

7.7.2 CET Cache Filling CirCUIL.........ccociviiieiicie e 184

7.7.3 FPGA Resources CONSUMPLIONccveieereiierreieseesieeiesieesieseesrneseeenee s 187
CHAPTER 8 HYSIM EXPERIMENTAL RESULTS......cooiiiiiiieeeee e 191
8.1 EXPerimental SEIUPcooviiiieieie e 191
8.1.1 Target Machine SPecCifiCatiONS...........cceeerierieriiie e 191
8.1.2 Real Hardware Execution Time Measurement..........ccoceovrerereeenesernnnnnns 197
8.1.3 BENCNMAIKSooiiiiiiiicci e 198

8.2 SIMUIALION MONITOT ..o 209
8.3 Evaluation of SImulation SPEedccceiiiiiiiine e 214
8.4 Evaluation of SIMUlation ACCUIACYcceeiiiieiiiiieeie e 225
8.4.1 Absolute Accuracy Relative to Real Hardware............cccccoovveviiiiieiiiecinnns 225
8.4.2 SPEEUUP ACCUIACYeoiveereiirieireeieeeesteesteeseestaestesseesteesseessessaestessesreesreeneeans 234
8.4.3 Base CPI Effect 0n SpPeedup........cccevveveiiieiieii e 239

8.5 LIMITALIONS ..t 242
CHAPTER 9 CONCLUSION AND FUTURE WORKccooiiiiiiiienie e 243
RETEIEICES ...t b bbbt eneas 245
APPENDIX A: SOURCE CODE.........ooiiiiiieiieeeee e 251
ALL CET TOO! ottt ettt sttt ens 251
A.2 HYySim Timing MOGEL...........oiieieeiecece e 252

Xi

LIST OF FIGURES

Figure 1: Intel Xeon Phi Interconnection Network [1]ccooceeeiienininnieienieseee e 11
Figure 2: TILE-GX8072 ArchiteCture [15]cccooieiieiiiie et 14

Figure 3:Simulation diamond illustrates the trade-offs in simulator accuracy,

coverage, deVelopmeNnt [4] ... 23
Figure 4: High Level Block Diagram of PinPlay Framework Workflow 44
Figure 5: HySim Framework STTUCTUIEcovveiiiiiiiee e 77
Figure 6: A Sample Simulation Results for One Thread............cccooeviiiiiieniniiiieiceee 80
Figure 7: CET TOOI WOIK FIOW.cciiiiiiiiiieeceee e 91

Figure 8: Branch Results' Chain of a Loop Candidate X86 Conditional Branch

INSEIUCTION ...t ettt ne e e 101
Figure 9: CET Profiler FIOWCNAIT.........ccooiiieiie e 105
Figure 10: CET Code Generator FIOWCNArtccceiiiiiiiiiieiee e 108
Figure 11: Compression results for a simple C-code SNIppet.........ccocceevviirieenenienieniens 110
Figure 12: System Time HiStOGIamMcccueiiiriiiieiieii et 114

Figure 13: Compression Ratio of Instruction Addresses Only Traces (IA) and

the FUIL TTACE. .. .ot 120
Figure 14: Compression Ratio vs Problem Size for 3 single-threaded benchmarks. 122
Figure 15: Compression Ratio Comparison between the CET Tool and SBC

TECNNIGUE .. ettt et e b et nre e te st e 127

Figure 16: Compression Time for CET and SBC TeChniquUeS...........cccooervriniiinienennnns 129

Xii

Figure 17: Decompression Time for CET and SBC TechniquUescccoovvvereeiieieennnns 130

Figure 18: Compression Ratio vs Number of Threads..........ccccoccvvvvevinveiiinvneie e 132
Figure 19: A Simple Adder BSV COOEcooveiiiieiieie e 141
Figure 20: The Auto Generated Verilog Code of the Simple Adder Interface 142
Figure 21: The Auto Generated Verilog Code of the Simple Adder Registers............... 143

Figure 22: The Auto Generated Verilog Code of the Simple Adder Rule

Scheduling and EXECULIONc.ooiiiiiiieiicsie e 144
Figure 23 : Simple Adder Manually Written Verilog Code...........cccoveieiineiineniseenns 146
Figure 24: A Top Level Logical View of HySim’s Timing Modelccocvvivninnnnnns 150
Figure 25: HySim’s Timing Model’s Tile OVErvIeWc.ccocviiiieienine e 152
Figure 26: CET Core ADStract SChematiC.........cccovvieiiriieiiiiie e 155
Figure 27: Loop Scheduling Unit FIOWCharT...........cccooiiiiiiiiiiiiccce e 163
Figure 28: CET Instruction and Data CacChes............cccooviiiiiiniiiiieec e 166
Figure 29: Unified L2 Cache Simplified Model............ccoooiiiiiiiiiics 169
Figure 30: Router BIOCK DIaQramcccooiiirieieiiiiesie e 171

Figure 31: Threads Management in Multithreaded Target Cores

(Interleaved and BIOCKE)cccoiuiriiiiiiiiisieeee s 175
Figure 32: Threads Management in Multithreaded Target Cores (Simultaneous)........... 177
Figure 33: Virtex 6 XCOVLX550T FPGA BOArdccccevirirenieieieiesie e 180
Figure 34: Data flow for the Ethernet Core..........cooviiiiiiiiiiceeee e 183

Figure 35: High Level View of HySim Timing Model Interaction with the Main

Figure 36: The Output of Iscpu Linux Commandccovririniieienenene e 192
Xiii

Figure 37: Cache Hierarchy Architectural Specifications of "ThinkStation"

WWOPKSEALION. ... 193
Figure 38: A Snapshot from a Sample Thread Profileccccceoveiiivv i, 201
Figure 39: The Level of Parallelism for the Used Multi-threaded Benchmarks (1) 207
Figure 40: The Level of Parallelism for the Used Multi-threaded Benchmarks (I1)........ 208
Figure 41: ChipSCOPe SNaPSNOToiviiiiiiiiicee e 210

Figure 42: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (1) ...cc.oooiiiiiiieeeee e 211
Figure 43: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (1)ccoiiiiiieee e 212
Figure 44: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (1) ..ot 213
Figure 45: HySim Simulation SPEEA..........ccooiiiiiiiiiieie e 216
Figure 46: HySim Absolute Accuracy Relative to Real Hardware

(APPHICALION LEVEL) ..o 226
Figure 47: Simulated Time (HySim + Sys) Relative to the Min and Max Total

Hardware EXeCUution TIME (1)..c..cceiiiiiiiiiieiee e 228
Figure 48: Simulated Time (HySim + Sys) Relative to the Min and Max Total

Hardware EXecution TImMe (1) ...ccooiiiiiiiiiieeec e 229
Figure 49: Simulated Speedup Accuracy Relative to Real HW Speedup

(ApPPlICAtioN LEVEL) (1) c.veieeiieieieee e 235
Figure 50: Simulated Speedup Accuracy Relative to Real HW Speedup

(ApPlICation LEVEL) (1) oo 236

Figure 51: Simulated Speedup Accuracy Relative to Real HW Speedup
(SYSEEM LEVEI) (1).eeeereieciesieee ettt 237

Figure 52: Simulated Speedup Accuracy Relative to Real HW Speedup

(SYSEEM LEVEI) (1) oottt 238
Figure 53: CPI Effect on Speedup (Application Level) (1)cccoovvveieiieiieicec e 240
Figure 54: CPI Effect on Speedup (Application Level) (1) ..., 241
Figure 55: BSV C0ode HIBIarChYccccooiiiiiiieieiciese e 253

XV

LIST OF TABLES

Table 1: Multicores' State of the Art SUMMAIY..........ccccoveviiie i 20
Table 2: Summary of the FPGA-based SIMUIAtOrScccoevieieiiiiic e 60
Table 3: Summary of the FPGA-based Hybrid Simulators.............cccoveviveveiicie e 64
Table 4: HySim's Parameters and Their Default Values...........c.cccccoovveiieviiciiecnce 72

Table 5: Pros and Cons of Different FPGA-based Simulation Framework

DESIGN OPLIONS ...ttt et e s e et e e esneenreenee e 75
Table 6: CET Code and Data format SUMMArYccccoveviiiieiieene e 94
Table 7: Benchmarks and Their INPUL SELSccoveii i 116
Table 8: Uncompressed and Compressed Traces Size and Compression Ratio 124
Table 9: Compression/Decompression Speed (MIPS)ccccocvvviveveiieiieie e 134

Table 10: Comparison between the BSV Code Side and the Corresponding
Auto-generated Verilog Code SIZe.......ccooveeiieieeieiie e 138
Table 11: FPGA Resources and Inferred Components are Identical for Both
Manually Written and Auto Generated Verilog Codes........ccccovvvevviieiveieiiinnnnns 147
Table 12: Actions Taken by CET Core for Different CET Instructionscccceeu..... 158

Table 13: The Amount of FPGA Resources Consumed by One and 16 CET Tiles 188

Table 14: The Sizes of Different CET Caches for a Single CET Tilecccccovevvvvvennen. 190
Table 15: Target Machine Architectural Specifications............ccccceviveieiieii e 195
Table 16: Splash-2 Benchmarks and Their INpUt SetScccevvvevveie i 199

XVi

Table 17: CET Static Code Size for Different Threads..........ccoccvvvvveveneneniieniseneeen 203
Table 18: Number of dynamically Executed Instructions and Load/Store
Percentages for Thread O........cccvoveiieieiie e 205

Table 19: Simulation and Simulated Time and Clock Cycles for a Single Thread.......... 218

Table 20: Simulation and Simulated Time and Clock Cycles for 16 Threads................. 219
Table 21: FPGA Cycles to Target Cycles Ratios for HAsim and HySim........................ 221
Table 22: HySim's Simulation Speed in MIPS Compared t0 HASIMccccoovivninnne. 223
Table 23: HySim Accuracy Relative to Interval and One-IPC Modelsccccccerueneee. 231
Table 24: Comparison between HySim and McSimA+ ACCUIACY.......cccccververeervereeaneenn 233

XVii

ACKNOWLEDGMENTS

I would like to thank the great university; King Fahd University of Petroleum
and Minerals for supporting this research and for offering me the opportunity to pursue
my graduate studies. Special thanks to the National Science, Technology and
Innovation Plan (NSTIP) for their generous funding of this research under project #12-
INF3015-04.

I wish to express my deep appreciation to my advisor, Dr. Muhammed Elrabaa
for his guidance, support, help, cooperation and constructive feedback. Dr. Elrabaa
dedicated a lot of his valuable time for me. He always provides me with brilliant ideas
and smart solutions. |1 am also very grateful to my dissertation committee members: Dr.
Aiman El-Maleh, Dr. Mahmood Niazi, Prof. Mayez Al-Mouhamed, and Dr.
Mohammad Alshayeb for their help and cooperation.

I would like to thank the co-investigators in our NSTIP project: Dr. Ahmad
Khayyat and Dr. Muhamed Mudawar for their help and participation in this research.
Also | want to thank my colleagues: Mr. Amran Al-Aghbari and Mr. Mohammed Al-
Asli for their participation in this project and helping us in FPGA design issues.

I want to thank Bluespec for providing us with a free license of their Bluespec
SystemVerilog compiler over the past three years.

I would like to thank my family for their support, patience, and encouragement. |

am so grateful to my father, my wife, my sons, my brothers, and my sisters.

xviii

ABSTRACT

Full Name: Ayman Ali Mohammad Hroub

Thesis Title: HySim: A Hybrid Software/Hardware Simulation Framework for

Early Architectural Exploration of Chip Multiprocessors

Major Field: Computer Science and Engineering

Date of Degree: December, 2015

Simulation is the de facto tool for computer architecture performance evaluation.
It implies modeling the events of interest in the intended architecture to be evaluated.
Traditionally, software simulators have been used. Although such simulators are
inexpensive and flexible, they lack the required speed, especially for cycle-accurate
models. In the multicore era, processors became much more complex. They comprise
large number of cores, complex memory hierarchies, and complex interconnection
networks. Thus, the design space to be explored became much larger. Moreover, this kind
of architecture has a voluminous number of concurrent events. Therefore, there is a
crucial need for a very fast simulator even if it sacrifices degree of accuracy. In the early
stages, the goal is to compare different architectures rather than to have accurate
performance numbers. In this dissertation, we propose HySim, a hybrid
software/hardware simulation framework for early architectural exploration of chip
multiprocessors. It exploits the flexibility of software and the massive parallelism offered

Xix

by the FPGAs. HySim is a two phase simulation framework. In the first phase, the
application is natively executed under Intel pin tool. The output of this phase is the
application’s execution trace. In the second phase, this trace is fed into an FPGA-based
timing model to perform timing simulation. As it is well known, the trace size is very
large to store, especially on FPGAs because they have limited storage resources.
Therefore, this trace is compressed on-the-fly into an executable format that can be
executed by the timing model. Thus, the contribution in this dissertation is twofold: (1) an
efficient trace compression technique with a compression ratio of up to 2987.9, (2) a very
fast simulation framework. HySim has been validated against real hardware using a subset
of SPLASH-2 and PARSEC benchmarks. The simulation results showed that HySim
speed is up to 2204.257 MIPS with 14% average absolute error relative to real hardware

execution time.

XX

Alu) adla

a deaa e Gl 1 dalSl) an)

G Lad Sl GLESiSU Lald) claliall 5 Clime) (et SSae) cads Al o gl
alalleall 322204

Y sl dnia ?Jk‘ ruaadll)

2015 «J5V1 oS dalal) da) ¢S
Al culall Gl CJJA-I PRI AL PN | PSS RSV PN | glal ﬁuﬂ Aalaal) 31aY) L) ‘_A;ﬂ\ cualadl A 3Slaa
5 Ll e 5 Wi e o clld 5 Lmaall clSladl aladind e gald) Gl adl o) et
A Tas dadall 3l s 3 Lo ad 5) edadly cilSlaall oda ot Jilaal) o (K15 | LgualSs jalads)
Oo S 230 (e 0 5Sh aellaall sl Sil8 Ay 51 Badete Clallaall s 8 Aals 5 Taad clallaall sl)

Sila Tase CadSing o Gl e cpaty 48 Gl Taat 5 SIAN 2 a 21331 5 sakee 480l Leday 55) &y 55Y)

e sind eV saeie clalladl 8 @l e S le plal Jumd) apaaill HLEAY apealll G LA (e
Gy S o) s dale dala 5 S Ao ant lSlase Al g Sy raal @Al 450 gl Slaal) e S dae
aasadl alaial ¢5S JY) aaaill Jal je A BSaall oy dal e Sl 38 e b s e
Slo Jpanll & aalaia) G ST sl pe il JLAN slaiinl 5 Lpany ge Adlitall ppanaill il LA 2 liay
0o OSh O Slae) ge sole s Gl awls o da g kYl ol 8 AR dalie el il
5 el gl Jriy andla Ciladleall sadxie @8 oY Suall CLASEL Lpalall Cilaliall 5 syl
285 el (oY) s el oila e e 2B awla 8 5Saal) ((FPGAS) Q) 36l o855) gaall
atles oy Al Als pal) 8 adail) 2l o s Als el 238 Aagii (pin)) s AV el e Gl

(FPGA)) e Sl 1 gl 73 gl gail) 2

XXi

8353na (a3 cilalus dllic i) (FPGA) I e dals aijas 5k 5 lan o€ 2l o ana o Tk
Tasad JB (e dngd Sy 2l B8 JS8) Jsathy Cum dena (il 5 ol 13 Jasial 4085 shaiy Ll
Cua 3l e Jaial Alled Jaria 405 JoY1 BAl oS 5d A gyl oda 8 ISLYI 8 1A < gl
Oaaly S 33 Al sl 33 e 2087.9 o L) deas (e sial b griad) auill aaa ol
0 Ao sana alaRTuly Adda Duole Claling 435 Hlie DA (e aunls 483 e BTN 23 31 Tan o e 5SLae)
05t 2204.257 Y Jaai 38 sl Ao o o il ekl (SPLASH-2 and PARSEC) iyl

Adial) Lokl il e Ajlie %14 s laal Uadll Lo Jaee o 5 4gl) 3 deges

XXii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Chip multi-processors (CMPs) have lately gained considerable popularity and
importance [1-3] . They have been identified as the only way to deliver high-performance
computing as the chip manufacturing technology scales down to the NANO scale. A CMP
consists of a large number of interconnected cores and a complex memory system on a
single chip. When developing such system, the architects need to explore a large design
space in the early stages to identify the type and number of cores, memory specifications
(number of cache levels, size, associativity, replacement policies, etc.), cache coherence
protocols, interconnection networks, etc.

Moreover, software application developers need to explore different machine’s
configurations for their different algorithms’ implementations. Also they want to write
and test their software before the real machine becomes available. Thus, having a flexible
model of the machine, before it is fabricated, is of a great value to the applications’
developers.

CMPs’ large design space cannot be explored analytically due to the lack of

accuracy of this approach. Analytical evaluation might be useful for high level decisions,

2
e.g., to determine the area of interest in a huge design space [4]. Furthermore, hardware
prototyping of the target machine will take too much time and effort. Moreover, in the
early stages, the full machine’s specifications are not completely clear, which makes
hardware prototyping not an optimum option. Thus, there should be a way to capture the
key performance characteristics of the target machine, and provide the architect with a
quick feedback. This can be done via simulations.

A simulator models the events of interest in the architecture being investigated
(target architecture). Traditionally, single-threaded software simulators were used [5].
Although these simulators are flexible, easy to develop, and can be cycle-accurate, they
lack the required speed, especially when they are used for CMPs. Actually the simulation
slowdown grows at least linearly with the number of simulated cores when single-
threaded software simulators are used to simulate CMPs [6]. Because CMPs have too
many parallel events and hence processing these events sequentially means that a target
cycle requires too many host machine’s cycles (the machine that hosts the simulator) to be
simulated.

Researchers started exploiting the parallel structure of CMPs to develop parallel
software simulators that run on multicore host machines [7]. Although parallelizing
software simulators improved simulation speed, the communication among the different
cores of the host machine still limits achieving more simulation speedup.

In the last few years, researchers exploited the fine/coarse grained parallelism in
FPGAs (Field Programmable Gate Arrays) to accelerate computer architecture’s
simulation [8-11]. This is possible for two reasons: (1) the structural nature of CMPs

exhibits massive fine/coarse grained parallelism which makes them ideal candidates for

3
FPGA acceleration, (2) recent FPGAs [12, 13] have large number of logic cells and large
size of on-chip memory which makes them large enough to host CMPs’ simulators.

In this dissertation, I propose HySim, a user-level hybrid software/hardware
simulation framework for CMPs. It combines the flexibility of software with the speed
and accuracy of hardware (FPGAs). HySim’s implements a two-phase simulation
technique. In the first phase, the application is natively executed and instrumented under
Intel pin tool [14]. The output of this phase is the execution trace of the benchmark in a
compressed executable format that is architecture agnostic. In the second phase, the
compressed executable trace is fed to the FPGA-based timing model for timing simulation

of the target architecture.

1.2 Terminology and Nomenclature

e Application and workload are interchangeable in this dissertation.

e Application-level and user-level are interchangeable.

e BSV: Bluespec SystemVerilog. It is a high level fully synthesizable hardware
description language.

e CMP: Chip Multiprocessor.

e CPI: Clocks per Instruction, it refers to the average number of clock cycles a
processor needs to complete one instruction.

e CPU: Central Processing Unit of the computer. It is interchangeable with the term

core.

4
Cycle-accurate: all memory, register, pipeline contents are accounted for
and updated per each target's clock cycle.

DMA: Direct Memory Access.

Fidelity: is not just simple accuracy, but refers to how much of the detailed
simulation events are recorded.

FPGA: Field Programmable Gate Arrays, which is a configurable device that
hosts custom computing machines.

Host Machine: refers to the machine that hosts the simulator, it can be an FPGA
or a computer. Everything related to such machine can be prefixed by the term
“host”, e.g., host clock cycle, which refers to the clock cycle period of this
machine. This term can be interchangeable with other terms, such as host
processor, host core, host computer, etc.

Host Operating System, is the operating system running on the host machine.
Host Thread: is a simulation thread, a thread of a multithreaded simulator that is
responsible for simulating a target core or any target architecture component.

Host Thread Synchronization: refers to synchronizing the target clocks of the
target cores being simulated on distributed host cores.

HySim: Hybrid Simulator

“In-Core”: refers to the architectural features inside the processing core, e.g.,
functional units, issue logic, branch prediction, etc.

Intel Pin [14]: is a user-level dynamic binary instrumentation framework for the

IA-32 and X86-64 instruction-set architectures. The tool that is implemented

5
under Pin is called a Pintool. Pintools can be used for dynamic programs analysis
in Linux, Android, and Windows environments. Pin allows a tool to insert C/C++
code in arbitrary places in the executable. The code is added dynamically while
the executable is running. It can intercept the program’s instructions one by one
and it has an access to the program symbols.

Interval Simulation: it is a simulation technique based on a mechanistic
analytical model where the execution time is split into intervals by miss events,
such as: branch miss-predictions, load misses, etc. The functional model executes
the application’s instructions and identifies theses miss events. The executed
instructions and miss events are fed to the interval timing model. Then, the timing
model derives the timing of these instructions and misses events based on an
analytical model.

10: Input/Output.

IPC: Instruction per Cycle, it refers to the average number of instructions a
processor can complete per one clock cycle. It is the reciprocal of CPI and it
represents the processor’s throughput.

ISA: Instruction Set Architecture.

KB, MB, GB: Kilobyte, megabyte, gigabyte, respectively.

KIPS: Kilo Instructions per Second. It is used to measure a processor performance
in terms of its throughput, i.e., the average number of instructions that can be
executed in a unit of time. It can be used also to measure a simulator performance;

it shows the average number of instructions that can be simulated in a unit of time.

L1, L2, L3 cache: Levell, level2, level3 cache, respectively.

LLC: Last Level Cache. The cache memory closest to the main memory.

MIPS: Million Instructions per Second. Same as KIPS.

Native Execution: refers to executing the application on a real existing machine
which has the same ISA of the target machine.

NoC: Network on Chip.

OS: Operating System.

QPI: Quick Path Interface,

Simulated Time: is interchangeable with target execution time. It is the expected
execution time of the application on the machine being simulated.

Simulation Speed: refers to how fast the simulator can evaluate the target
machine performance for a given application.

Simulation Time: refers to the amount of time the simulator takes to evlaute the
target machine for a given application.

SMP: Symmetric Multiprocessing.

SMPD: Single Program Multiple Data.

System-level and kernel-level are interchangeable.

Target Architecture: refers to the architecture being investigated. The term target
is interchangeable with other terms, such as intended, simulated, and investigated.
Also the term architecture can be interchangeable with other terms, such as

machine and processor. Everything related to this architecture can be prefixed by

1.3

7
the term “target”, e.g., target clock cycle, target clock, target frequency, target
core, target thread, target cache hierarchy, target interconnection network, etc.
“Un-Core”: refers to the architectural features outside the processing core, e.g.,
memory hierarchy and interconnection network.

User: the term user in this dissertation refers to the person who eventually uses the
simulator. This person is usually a computer architecture researcher, software
developer, or a student.

Verilog: a hardware description language.

VHDL: VHSIC Hardware Description Language, where VHSIC stands for Very

High Speed Integrated Circuit.

Dissertation Outline

The rest of this dissertation is structured as follows:

Chapter two presents the state of the art of multicore architectures. This quick

survey is important to identify the features of the recent CMPs in order to support them in

our simulator. Chapter three introduces the reader to the computer architecture simulator

design trade-offs and different simulation techniques. Chapter four reviews the existing

multicore architectures’ simulators. Chapter five presents an overview of the proposed

simulation framework. It discusses the different options that we evaluated until we

reached the current version of HySim. Chapter six covers the proposed trace compression

technique. It surveys the existing trace compression techniques and presents the

8
experimental results of our proposed technique. HySim’s FPGA-based timing model is
detailed in chapter seven. Also chapter seven covers the FPGA implementation details of
HySim. Chapter eight discusses the experimental results of HySim. It shows the absolute
accuracy of HySim relative to real hardware and other simulators. Moreover, it shows the
speed of HySim and compares it with the speed of other simulators. Finally, we concluded

in chapter nine.

1.4 Contributions

This dissertation has two main contributions:

1. An efficient trace compression technique for multithreaded applications which
achieved a compression ratio of up to 2987.9 with compression speed of up to 789.1
MIPS.

2. HySim, which is a very fast trace-driven FPGA-accelerated simulation framework for
CMPs. HySim achieved a simulation speed of up to 2204.257 MIPS with 14%

average absolute error relative to real hardware execution time.

CHAPTER 2

STATE OF THE ART OF MULTICORE ARCHITECTURES

In order to determine the key features that should be supported by a new multicore
simulation framework, a survey of the most recent multi-core architectures was
conducted. This survey included both commercial and academic multi-core architectures.

A brief description of the surveyed architectures is provided below.

2.1 Intel Xeon Phi Coprocessor

Intel Xeon Phi coprocessor [1] is based on the Intel MIC (Many Integrated Cores)
architecture. Intel Xeon Phi coprocessor (consists of over 60 cores) is connected to the
Intel Xeon Phi processor (it is also called the host processor) through a PCle (PCI
Express) bus. This configuration supports heterogeneous applications such that some parts
of the application run on the host processor and other parts run on the coprocessor. The
coprocessor’s cores can communicate with each other through PCle, peer to peer

interconnect, or through a network card without any intervention from the host processor.

10

2.1.1 Coprocessor’s Core

Each core contains a 32 KB L1 private instruction cache, a 32 KB L1 private data
cache, and a 512 KB private unified L2 cache that is kept coherent by a global-distributed
tag directory. Each core has in-order short pipeline that is capable to support four threads
in hardware. Moreover, each core in the coprocessor has a VPU (Vector Processing Unit)
that features 512-bit SIMD (Single Instruction Multiple Data) instruction set. VPU
supports FMA (Fused Multiply-Add) instructions, SP (single precision) floating point
operations, DP (Double Precision) floating point operations, integer operations, gather
and scatter instructions, and it supports EMU (Extended Math Unit) that executes

operations, such as square root, reciprocal, log, etc. in a vector fashion.

2.1.2 Interconnection Network

Figure 1 shows that Xeon Phi coprocessor has a bidirectional ring interconnect.
Each direction consists of three independent rings, namely, (1) a 64-byte data ring, (2) an
address ring, which is much smaller than the data ring and it is used to transfer the
read/write commands and memory addresses, and (3) an acknowledgement ring, which is

the smallest one and it sends the flow control and coherence messages.

Figure 1: Intel Xeon Phi Interconnection Network [1]

11

Command and Address

Coherence and Credits

12

Upon an L2 cache miss, the address is sent to the directories over the address ring.

If the block is found in another core’s L2 cache, the address is forwarded to that core’s L2
cache. If the block is not found in any core’s L2 cache, the core generates another address

request and queries the data from the main memory.

The number of requests and acknowledgements is larger than the number of data
blocks transferred over the network. Simulation results showed that the address and
acknowledgement rings would become a performance bottleneck beyond 32 cores [1].
Because address and acknowledgement rings are much less expensive than the data ring,
these two rings have been doubled to satisfy the bandwidth requirements of requests and

acknowledgments.

2.2 Intel Xeon CPU E5-2680

Each socket of Intel Xeon CPU E5-2680 processor [2] contains eight cores
interconnected via an un-buffered ring. Each core is 2-way multi-threaded. Different

sockets are interconnected via QPI (Quick Path Interface).

Regarding cache hierarchy, each core has a private 32KB L1data cache, a private
32 KB L1 instruction cache, and a 256 KB private unified (instructions and data) L2
cache. Each socked has an L3 unified cache of 20 MB that is shared among the eight

cores.

13

2.3 TILE-Gx8072 Processor: Telira Processor

TILE-Gx8072 [15] is a 72-core processor optimized for intelligent networking,
multimedia, and cloud applications. Figure 2 depicts TILE-Gx8072’s architecture. The 72
tiles are connected via a mesh NoC. Each tile comprises a processor core with three
pipelines, a 32 KB L1 private data cache, a 32 KB L1 private instruction cache, a 256 KB
L2 private and unified cache, and a non-blocking Terabit/sec switch to connect the tile
into the mesh. Telira processor has an 18 MB L3 cache that is shared and dynamically
distributed. This L3 cache is kept coherent via a directory-based cache coherence

protocol.

24-Lanes

DDR3 Controller

L1 111 11

DDR3 Controller

DDR3 Controller

{111

Network I/O

IIIII LT {118

DDR3 Controller

32-Lanes

Figure 2: TILE-Gx8072 Architecture [15]

14

15

2.4 Intel’s 48-core SCC (Single-Chip Cloud Computer) Processor

SCC is a many-core processor produced by Intel [16]. It supports both message
passing and shared memory communication. Cache coherence is the responsibility of the
programmer. The memory architecture is composed of multiple distinct address spaces.

Each core has a private region and a shared region of the address space.

The 48 cores are organized in 24 dual-core tiles connected by a mesh
interconnection network. Each core has a 16 KB L1 instruction cache, a 16 KB L1 data
cache, and a 256 KB L2 unified cache. The cores are second generation Pentium
processors. They are simple and in-order execution cores. The two cores on a single tile

are connected via FSB (Front Side Bus).

2.5 Multi-node Multicore Architectures for Irregular Applications

Secchi et al. [17] introduced a multi-node multicore multi-threaded architecture
for irregular applications based on commodity processors. This architecture targets
irregular applications, such as data mining, knowledge discovery, and social networks
analysis. They were motivated by the fact that irregular applications do not scale well on
the cache-based processors, because these applications have poor spatial and temporal
locality due to the dynamic data structures, such as unbalanced trees and graphs. This
architecture has transparent hardware support for PGAS (Partitioned Global Address

Space) and hardware support for inter-thread synchronization.

16
This architecture has multiple nodes interconnected via an on-chip bus. Each node

comprises the following components:

1. Processor core: it has an in order pipeline, I-Cache and scratchpad memory. All cores
share a memory controller for the DDR3 RAM.

2. GMAS (Global Memory Access Scheduler): it provides the global address space
across multiple nodes of the system. It intercepts load/store operations (local and
remote) that the core issues. The requested memory address is decoded, if it is global,
then it is forwarded to the remote node through the network interface.

3. GNI (Global Network Interface): this module is responsible for interfacing the node
with the inter-node network.

4. GSYNC (Global Synchronization): this module is responsible for managing the lock

and un-lock operations on the memory addresses of the node.

2.6 POWER7

POWER7 processor [18] consists of eight cores. Each core is a 4-way SMT
(Simultaneous Multithreaded). The cache hierarchy consists of three levels, (1) 32 KB L1
instruction cache and 32 KB L1 data cache, (2) 256 KB L2 unified cache, and (3) 4 MB
local region of a 32-MB shared L3 cache. The on-chip components are interconnected via
a bus and the cache coherence is maintained through a snoop-based cache coherence

protocol.

17

2.7 ARM Architecture

ARM is a main player in providing high performance and low power configurable
IPs (Intellectual Properties) for SoCs (Systems on Chips) that are implemented in
embedded systems. ARM Cortex-A15 MPCore [19] implements ARMv7-A architecture
with some extensions, such as having advanced SIMD architecture for floating point and

integer vector operations.

Cortex-Al15 MPCore processor can be configured for up to four cores. Each core
has a fixed 32 KB L1 instruction and data caches. The L2 cache is shared and it has
configurable size of 512KB, 1MB, 2MB, or 4MB. The on-chip communication is
achieved via a bus. To maintain coherency among L1 data caches and the L2 cache, a
snoop-based hybrid MESI (Modified Exclusive Shared Invalid) and MOESI (Modified

Owned Exclusive Shared Invalid) protocols are used.

2.8 AMD Processors

AMD produces a verity of servers that can be used as HPC (High Performance
Computers) platforms, web servers, cloud servers, etc. AMD integrates from 4 to 16
processor cores on-chip with a cache hierarchy depth from two to three levels [9]. The on-

chip components interact with a direct interconnects architecture.

The AMD Phenom 11 X6 processor is the most advanced AMD desktop processor

[20]. It can be a quad-core and triple-core. These cores communicate on die rather than on

18
package for better performance. Each core has a private L2 cache of 512 KB. Moreover, a

shared cache of 6 MB or 4 MB is shared among all cores.

2.9 Axel

Axel [21] is a heterogeneous cluster produced at Imperial College in London. It is
a NNUS (Non-uniform Node Uniform System) system, i.e., each node contains different

PEs (Processing Elements), but all nodes are the same in the system.

Each node comprises a quad-core AMD Phenon processor, a 240-core Nvidia
Tesla, and an FPGA Vertex 5 LX 330T. The GPU and FPGA accelerators are connected
to the CPU through PCle, whereas the inter-node communication is achieved through
Gigabit Ethernet through the NIC (Network Interface Card) on each node. AMD quad-
core [22] integrates four cores on-chip that are communicating directly. It has three levels

of caches, where L3 is shred among the four cores.

2.10 Summary and Discussion

This short survey revealed that the number of cores in the recent multicore
machines can be in tens. This number is expected to increase according to Moore’s law.
Also it showed that these cores are interconnected in different NoC topologies (mesh,

ring, bus). Moreover, this survey showed that most of the recent multicore machines have

19
up to three cache levels. Besides that, as the number of cores increases, the last level

cache (LLC) size increases. Table 1 summarizes the features of these machines.

Based on these findings, a new multicore simulator has to cover all of these
features. It has to model as many cores as possible. Also it should model a three-level
cache hierarchy in which the LLC size can reach tens of megabytes. Moreover, a new
multicore simulator has to support different NoC topologies and the most popular cache

coherence protocols.

Table 1: Multicores' State of the Art Summary

20

No. threads | No. Cache
Processor No. Cores NoC Topology
per core Levels
Intel’s Xeon Phi 61 4 2 Ring
Intel Xeon CPU Ring per socket, QPI
8 cores per socket 2 3

E5-2680 across sockets
TILE-Gx8072 72 - 3 Mesh
Intel’s SCC 48 1 2 Mesh
Secchi
Architecture

4-32 1-4 - On-chip Bus
(Irregular
Applications)
IBM POWER?7 8 4 3 Bus
ARM Cortex-

1-4 1 2 Bus
A15 MPCore
AMD Processors 4-16 - 2-3 Bus

PCle per node,
16 x (Quad-core 3 levelsin
Axel - Gigabit Ethernet
CPU, FPGA, GPU) the CPU

across nodes

CHAPTER 3

COMPUTER ARCHITECTURE SIMULATION

TECHNIQUES

This chapter discusses computer architecture simulation trade-offs. It presents and
evaluates different simulation aspects that affect simulation speed, accuracy, and fidelity.
The different choices that were made in developing our simulation framework were

pointed out with a brief justification in appropriate places.

3.1 Simulator Design Trade-offs

An ideal simulator is a one that is very fast, cycle accurate, and easy to configure
in order to cover all configurations of the intended architecture. Unfortunately, this ideal
simulator simply does not exist, because its features are contradictory. For example, a
cycle accurate simulator implies modeling every component of the target machine
precisely, yet this precise modeling requires too much time to develop. Also it will be
very slow since for each target clock cycle, voluminous amount of things need to be

checked and updated.

21

22
Unfortunately, simplifying the simulator to reduce development and simulation
times also implies sacrificing simulation fidelity. Figure 3 shows the simulation diamond

which illustrates these trade-offs [4].

daccuracy

development evaluation
time time

coverage

Figure 3:Simulation diamond illustrates the trade-offs in simulator accuracy, coverage, development [4]

23

24
Our key approach is to develop new techniques that circumvent the above
tradeoffs and allow us to retain good accuracy while speeding up the simulations

significantly.

3.2 Architectural Simulation Techniques

A computer architecture simulator is a bipartite consisting of a functional model
and a timing model of the target architecture. The functional model is responsible for the
correct execution of the application, i.e., it models the target ISA (Instruction Set
Architecture). On the other hand, the timing model captures the timing characteristics of
the target machine and it is responsible for performance evaluation of that machine.

This section presents the key different simulation techniques. Some of these

techniques are presented in pairs because they are counterparts.

3.2.1 Execution-Driven Simulations

In execution-driven simulators, the functional and timing models are combined
together. This combination achieves more accuracy because it guarantees that the time-
dependent events, such as thread interleaving in multi-threaded applications, are modeled
accurately. This combination ranges from integrating the functional and timing models
together in one entity to decoupling them into two separated interacting entities. In most
cases, configuring the target architecture implies changing the timing model only. Thus,

in decoupled simulators, the timing model can be replaced by another one easily.

25
However, in the integrated ones, modifications are not straightforward and they are error
prone.
Mauer et al. [23] classified execution-driven simulators into four categories based
on the degree of coupling between the functional and timing models:

1. Integrated, where the functional and timing models are tightly integrated together
as one entity. Although this kind of simulator can be very accurate, it is complex
to develop and maintain. It lacks modifiability, extensibility, and flexibility. E.g.,
GEMD5 simulator [24].

2. Timing-directed, where the timing model directs the functional model. In other
words, the timing model asks the functional model to perform a specific task, e.g.,
executing an instruction, loading a datum into the cache, selecting a certain thread-
interleaving, etc. in the correct time. Thus, the functional model keeps the
architectural states such as registers and memory values and it waits for requests
from the timing model. An example of such simulator is Asim [25].

3. Functional-first, where the functional model runs ahead of the timing model and
feeds it with an instruction trace. This trace is fed on-the-fly, i.e., it does not need
to be stored. It can be fed through a UNIX pipe. This kind of simulator is faster
than timing-directed simulators because it allows the functional and timing models
to run simultaneously. However, in the timing-directed, the timing model runs and
when it needs any service from the functional model, it calls it.

For time-dependent events ordering, the functional model is able to roll back. For
example, the functional model executes the correct instruction path and it is not aware if

there is a branch miss-prediction, thus, when the timing model detects a branch miss-

26
prediction, it orders the functional model to roll back to the state prior to the branch. An
example of such simulator is COTSon [26].

4. Timing-first, it was defined by Mauer et al. in 2002 [23] as a new approach for
decoupling functional and timing models. TFsim full-system simulator [23] was
the first implementation of the timing-first simulation. In this approach, the
functionality of those instructions that are required for performance evaluation is
augmented into the timing model in conjunction with the main correct decoupled
functional model. Some advantages of this approach include reducing the
simulator development time and allowing for more detailed modeling of the
microarchitecture because part of the functional features is integrated into the
timing model. However, the functional part integrated into the timing model
does not perfectly model speculative instructions along miss-predicted paths and
inter-thread events. Therefore, the correct functional model is responsible for
repairing the timing model when it takes the wrong path. In timing-first
simulation, the timing model runs ahead of the functional model, i.e., the timing
model executes each dynamic instruction ahead of the functional model. When the
timing model commits an instruction, it invokes the correct functional model (the
decoupled functional model) to verify if the timing model deviates from the
correct execution path or not. If there is any deviation from the correct path, the
functional model corrects the timing model by loading the correct architectural
state into the timing model before it can proceed.

Simply, in timing-first simulators, the timing model can be considered as an

integrated execution-driven simulator. However, its functional part is not perfectly

27
reliable. Thus, the correct functional model acts as a reference for this simulator to repair

it whenever it deviates from the correct execution path.

3.2.2 Trace-Driven Simulations

Trace-driven simulators [27-29] completely separate the functional model from
the timing model. Trace-driven simulation is performed in two phases. In the first phase,
the application is functionally executed either natively or using a functional simulator
(simple ISA simulator). The result of this first phase is an execution trace that comprises
the executed instructions along with their corresponding memory references. In the
second phase, the trace is fed to the timing model of the target architecture to perform
timing simulation. This separation allows running the functional model only once and
using it many times for different target architecture configurations, thus increasing the
simulation speed and efficiency.

A trace-driven simulator can be a complete simulator for the whole computer
system or specific for a certain component, such as a branch predictor or instruction
cache. Trace fidelity refers to how many of the original execution events can be re-
constructed from the trace.

Although trace-driven simulators are easy to use and develop, they cannot capture
timing-dependent thread execution interleaving when they are used to simulate CMPs.
Since the trace is fixed, the threads’ ordering included in the trace is fixed too, but the
target architecture may have a different threads ordering. However, researchers and

architects continued to use trace-driven simulation for CMPs [28, 30, 31], because there

28
are ways around this drawback such as trying to manage parallelism dynamically during
timing simulation, e.g., [30].

Another major challenge of trace-driven simulation is the large size of trace files.
Although disk storage is currently inexpensive, the disk access time is still high.
Moreover, the situation is not improved when FPGAs are used for trace-driven simulation
due to their limited storage resources. This drawback has been greatly alleviated via trace
compression techniques [32-35].

Our proposed simulation framework (dubbed HySim) uses trace-driven simulation
methodology. However, HySim’s trace is greatly compressed in an executable code
format that can be directly interpreted by the timing model. All multi-threading related
events, such as, starting, pausing, waking, synchronizing, and terminating threads are
encoded into HySim’s compressed trace. Thus, though HySim is a trace-driven technique
since it separates the functional model from the timing model, it incorporates some
execution-driven features such as maintaining the correct ordering of multi-threading

events.

3.2.3 User-Level vs. Full-System Simulations

Simulators are classified based on whether they model an operating system (OS)
or not into full-system simulators, e.g., GEM5 [24], SimOS [36], and QEMU Embra
[37], or user-level simulators, e.g., Graphite [38] and Sniper [39].

A user-level simulator simulates only the user-level code of the workload,

whereas a full-system simulator simulates both the user-level and system-level codes,

29
i.e.,, a full computer system. Thus, this type of simulator should be able to boot an
unmodified commercial operating system. It looks to the user as a system emulator or a
virtual machine.

User-level simulators might be sufficient for workloads consisting of limited
system-level code; however, a full-system simulator is far more accurate for workloads
with significant system-level code, such as, database servers, web servers, email servers,
etc. [4]. Moreover, missing the OS model from CMPs simulators may lead to inaccurate
performance numbers because multi-threaded applications are affected by the OS
scheduling and decisions [4]. However, developing a full-system simulator is far from
trivial because it has to cover a complete system.

The OS model has to be incorporated into the functional model to simulate
unmodified workloads and into the timing model to estimate the time spent in system
calls. Thus, to have an accurate full-system simulator, the simulator has to be execution-
driven in order to execute the system calls and evaluate their latencies directly. However,
in trace-driven simulators, the OS model can be incorporated into the functional model
and hence unmodified workloads can be functionally simulated. Regarding system calls,
they can be incorporated into the trace. Then the timing model either ignores them or
approximates their latencies based on a certain model, e.g., the user specifies the latencies
of the system calls. This is the strategy we adopted for HySim. The OS is implicitly
incorporated into HySim’s functional model through instrumented native execution (e.g.
using Intel’s pin instrumentation tool [14] or Valgrind [40]) with system calls encoded
into the generated trace. Though the timing model does not model a full OS, it accurately

simulates all threading-related function/library calls, such as, start, pause, wake a thread,

30
etc. Other non-critical OS calls are simply assigned constant latencies. All system calls’
codes are preserved and appear in HySim’s compressed trace. The current version of

HySim allows the user to specify the different system calls’ latencies.

3.2.4 Abstract vs. Detailed Simulations

The level of details in microarchitecture modeling is used to trade simulation
accuracy for speed. Simulators are classified based on this into abstract and detailed
simulators. As the term implies, abstract simulators have an abstract model of the core’s
microarchitecture, when speed is valued over accuracy, e.g., Graphite [38] and Sniper
[39]. In this approach, the focus of the simulator can remain on the “un-core” features,
namely, the memory hierarchy and interconnection network.

Abstract simulators are good for early architectural exploration [41] because they
provide the architect with a quick feedback on the performance trend of the target
architecture. There are many ways to abstract processors’ cores, such as, (1) One-IPC
model, which implies that the processor can complete only one instruction per clock
cycle, e.g., Graphite [38] and RAMP Gold [42], (2) Interval model [43], which is a
mechanistic analytical model where the execution time is split into intervals by miss
events, such as: branch miss-predictions, load misses, etc. The functional model executes
the application’s instructions and identifies theses miss events. The executed instructions
and miss events are fed to the interval timing model. Then, the timing model derives the

timing of these instructions and miss events based on an analytical model. This model

31
was implemented in Sniper simulator [39], (3) k-CPI model, which assumes that k clock
cycles are required to execute one instruction, e.g., Manifold [44].

At first glance, it seems that abstract models do not affect the accuracy of
evaluating the “un-core” features. In contrast, having unrealistic core’s model can affect
the accuracy of the “un-core” features because it can generate the “un-core” related events
in the wrong time and in the wrong rate. Examples of these events include cache misses
and coherence transactions.

In contrast, detailed simulators have cycle-accurate models of the
microarchitecture, e.g., Zestro simulator [45]. Although these simulators offer the
maximum fidelity, they have longer development and simulation time because they cover
the micro details of the target architecture. However, they are vital when there is a micro-
architectural innovation. On the other hand, if the innovation is on the “un-core” level
only and the target machine will be built from off-the-shelf cores, then abstract simulators
can be sufficient.

Since HySim is intended for early architectural exploration of CMPs, it abstracts
the core microarchitecture. The current version of HySim implements the basic-CPI
model, which refers to how many clock cycles the processor needs to complete one
instruction assuming an ideal cache hierarchy and NoC, i.e., no cache misses and no NoC
latency. Thus, the basic-CPI abstracts the “in-core” time, such as, computation time,
hazards’ penalties, branch miss-predictions’ penalties, etc. Regarding the “un-core” time,
it is added later via the timing model. The user can specify the value of the basic-CPI

based on some theory, previous experience, simulation results, published numbers, etc.

32

3.2.5 Software vs. Hardware Simulators

Simulators are classified based on their implementation technology into software,
hardware (FPGA-based) and hybrid types.

Software simulators are implemented purely as software. This category includes
sequential software simulators, e.g., GEM5 [24], and parallel software simulators, e.g.,
Graphite [38]. Hardware simulators are implemented on configurable hardware i.e.,
FPGA, e.g., Arete [9] and RAMP Gold [46]. In Hybrid simulators, some components are
implemented in software and others in hardware, e.g., PROTOFLEX [10] and FAST [47].

A sequential software simulator includes a single simulation thread that simulates
voluminous amount of parallel events of the target architecture sequentially. Thus, each
target clock cycle is simulated in too many host clock cycles. This number of host clock
cycles is proportional to the level of details included in the timing model and the size of
the target architecture. Simply, the simulation thread comprises a loop that iterates over
the target architecture model until the workload is completed. In each loop iteration, the
simulation thread traverses the target architecture’s model component by component
sequentially (the component can be a model of a physical component such as a cache
memory or a processor core, or it can be an algorithm such as cache replacement policy).
For each component, the simulation thread checks the type of event generated by this
component, calculates the penalty of this event, if any, and updates the model’s state
accordingly.

Based on the above, sequential simulators are not practical to simulate CMPs,

because CMPs have larger number of components and therefore larger number of parallel

33
events. Thus, adding more cores to the target architecture results in at least linear
simulation slowdown when a single-threaded software simulator is used [6]. One attempt
to improve the simulation speed of CMPs is to parallelize the sequential software
simulation. This parallelization implies that the software simulator comprises multiple
concurrent simulation threads. The components of the target architecture and hence the
parallel events are partitioned and each partition is assigned to a simulation thread. The
partition granularity is usually at the tile level, e.g., in Graphite [38], a simulation thread is
created to simulate one target tile and the OS scheduler is responsible for scheduling these
simulation threads. The tile typically comprises a processor core, a part of the memory
subsystem, and a network interface.

This parallelization achieved some speedup, e.g., in Graphite, simulating 1024
tiles on ten host machines achieved a speedup of 3.85, parallel Transformer [48] achieved
an average speed up of 35.3% over GEMS [49] sequential simulation. However, we
should not be much optimistic about this approach because even when the simulation is
parallelized, things are still sequential inside the single simulation thread. Moreover, if the
number of target cores and hence the number of simulation threads is greater than the
number of the available host cores, then the simulation threads have to be scheduled on
the available cores and not all of them can run concurrently.

The most important thing that should be considered when parallelizing software
simulators is that the target CMP should work as one unit to achieve higher accuracy.
Thus, the simulation threads have to communicate in order to be aware of the state of each

other; this is known as simulation thread synchronization. For cycle accurate simulation,

34
this synchronization has to be done after each target clock cycle, which prevents
achieving significant simulation speedup via software-based simulation parallelization.

Most of the existing parallel software simulators use loose synchronization, i.e.,
they scarify a degree of accuracy to gain more simulation speedup. In loose
synchronization, the simulation threads are synchronized upon a certain event or
periodically instead of synchronizing them after each target clock cycle, e.g., HORNET
uses periodic synchronization [50], Graphite uses lax synchronization [38], Sniper uses
barrier synchronization [39], and SiMany uses spatial synchronization [51]. These loose
synchronization techniques will covered in more details in the next chapter.

Recently, FPGAs appeared as ideal accelerators for CMPs’ simulators due to the
massive fine and coarse grained parallelism they offer. Using FPGASs, the concurrent
components of the target CMP can be mapped to concurrent models on the FPGA. Thus,
the parallel events of the target CMP can be simulated in parallel and hence the simulation
speed is greatly improved. Moreover, FPGAs are more realistic for CMP simulation
because the concurrent structure of the target CMP’s model resembles the target CMP
structure itself and hence higher accuracy is achieved. Although FPAG-based simulators
are faster than their software counterparts by orders of magnitude, there are three
drawbacks related to this approach:

1. Design Complexity: developing a hardware model of a multicore machine is
time-consuming and requires advanced skills in hardware design and verification.
However, this issue has been greatly alleviated due to high level hardware
description languages, such as SystemVerilog, Bluespec System Verilog, and

SystemC.

35

2. Lack of Flexibility: FPGA-based simulators lack flexibility and usability because
they require users to be able to implement designs on FPGAs. However, this issue
can be alleviated by developing a friendly software frontend that interacts with the
FPGA on the user’s behalf.

3. Limited FPFA Area: Although recent FPGAs are large enough to host
multicores’ simulators, FPGA area is still limited and hence it can only host a
model up to a certain limit. In order to host larger models, however, either
multiple FPGAs are used [9] [52] or a smaller model is timely-multiplexed among
a larger model’s components [46, 53]. It is important to note that the former
approach is costly, whereas the latter increases the simulation time and sacrifices a

degree of accuracy.

CHAPTER 4

REVIEW OF EXISTING MULTICORE SIMULATORS

Computer architecture simulation is an old open research problem. In 2006, Yi
and Lilja [54] surveyed the computer architecture simulation techniques at that time. This
chapter focuses on the recent major efforts in multicore architectures simulation. The
reviewed simulators in this chapter are classified based on their implementation

technology to software, FPGA-based, and hybrid simulators.

4.1 Software Simulators

This section presents some of the key multicore simulators that were implemented

as pure software.

4.1.1 GEMS

GEMS5 [24, 55] is a full-system computer architecture simulation infrastructure
that merges the best aspects of M5 [56] and GEMS [49] simulators. M5 provides
configurable simulation framework, multiple ISAs, and multiple core models. GEMS
complements these features by providing a detailed and flexible memory system, multiple

cache coherence protocols, and different interconnect models. GEM5 was jointly

36

37
developed by multiple academic and industrial institutions including AMD, ARM, HP,
MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin.

GEMS5 offers the flexibility to the user to simulate the target architecture at
different levels of details and hence control the accuracy-speed trade-offs. To achieve
that, GEM5 provides different models of different levels of abstractions for the main
components of the target architecture, e.g., different CPU models and different memory
system models.

GEMS5 supports different ISAs such as, ARM, ALPHA, MIPS, Power, SPARC,
and x86. Moreover, it supports four different CPU models, (1) AtomicSimple, which is a
simple un-pipelined one-IPC model that completes one instruction per clock cycle. (2)
TimingSimple, it is the same as AtomicSimple, but it simulates the timing of memory
references. (3) InOrder, it is an “execute-in-execute” accurate model of an in-order
pipelined CPU. (4) O3, it is an “execute-in-execute” accurate model of an out-of-order
pipelined CPU. “execute-in-execute” refers to that instructions are executed only in the
execution stage after all dependencies are resolved. . Thus, GEM5 is an example of
integrated execution-driven simulators. Although the last two models emphasized
accuracy, it was not claimed that they are cycle-accurate models.

GEMS5 inherited two memory models, (1) Classic mode, which was inherited
from M5 [56] simulator. This model is easily configurable and fast. (2) Ruby model,
which was inherited from GEMS simulator [49]. It is a flexibly infrastructure that allows
accurately simulating different cache-coherent memory systems.

Regarding NoC modeling, Ruby memory model can create any NoC topology

since it is composed of point-to-point links. In a simple Python file, the connections

38
among the components are determined and shortest-path algorithms are used to generate
the routing tables. Ruby has two network models, (1) simple model, which models the
router and link latency and the link bandwidth. However, it does not model contention and
flow control. Thus, it sacrifices a degree of accuracy for the sake of faster simulation. (2)
Garnet model, which includes detailed router microarchitecture and a timing model of
contention and flow control. Garnet model is suitable for NoC studies.

GEMS5 can operate in two modes, (1) Full-System mode, which models an
operating system, and the computer devices such as 10 peripherals. It simulates user-level
and system-level codes. In this mode, GEMD5 is capable to boot Linux operating system.
(2) System —call Emulation mode, which does not include a complete OS model.
Hoverer, it emulates most common system calls, such as reading from a file operation.
When a system call is encountered, gem5 traps and emulates that call, often by passing it
to the host operating system.

The current version of GEM5 is sequential. Thus, GEM5 suffers from long
simulation time, especially when it is used for detailed architectural models of CMPs.
Moreover, configuring the target architecture requires that the user has hands on

experience in Python, which is not always guaranteed.

4.1.2 Graphite

Graphite [38] was developed at MIT as a user-level parallel software simulation
infrastructure that targets multicore architectures. It is an open source distributed

simulator that runs on commodity Linux machines. Graphite is a functional-first

39
execution-driven simulator, in which the functional model runs ahead of the timing
model. It is a flexible and configurable simulator, which makes it convenient for the user
to explore many architectural alternatives. It has a modular architecture such that each
component is modeled as a separated module with well-defined interfaces. Thus, a new
target architecture instance can be configured via swapping the appropriate modules.

Graphite uses pin tool to functionally execute the workloads. The executed
instructions along with their information, e.g., memory references, are consumed by the
timing model. Graphite’s core model is an abstract in-order model that is responsible for
deriving the execution time of the workload on the target core via accumulating the
latencies of the different events. Thus, Graphite is not a cycle-accurate simulator because
it has a high level abstraction of the core model. When an “uncore” event occurs, the NoC
model computes the round-trip latency of the network message generated by this event,
e.g., a load miss event, then the memory model adds the memory access latency, and
finally the core model accumulates these latencies on the target execution time

Simulation in Graphite includes running a multithreaded application on the target
architecture defined in Graphite simulator. Each application thread is mapped onto a tile
in the target architecture and each target tile is mapped onto a Graphite host thread
(simulation thread). Graphite host threads are distributed on the cores of the distributed
host machines, and the host operating system scheduler is responsible for scheduling these
threads.

To achieve a higher simulation speed and scalability from the budget of simulation
fidelity, Graphite uses different loose synchronization techniques for synchronizing the

different target clocks. These techniques are based on what so called lax synchronization,

40
which allows the clocks of the different target cores to differ from each other and the true
synchronization occurs occasionally. One flavor of this lax synchronization is barrier
synchronization in which the simulation threads wait on a barrier after a certain number of
clock cycles specified by the user. This technique allows the user to trade accuracy for
speed as desired. The higher the frequency of this synchronization barrier the higher the
simulation accuracy and the lower the simulation speed.

Regarding Graphite speed, for SPLASH-2 benchmarks, the simulation time was
longer than the native execution time by 1751 times when one host machine was used.

However, this slowdown was reduced to 1213x when eight host machines were used.

4.1.3 Sniper

Sniper is a parallel software simulator proposed by Penry et al. [39] to simulate
multicore and multiprocessor systems. It was derived from Graphite simulator [38] by
adding the interval model [43] to Graphite. Sniper’s level of abstraction (interval
modeling) falls between the accurate-slow detailed microarchitecture models and the
inaccurate-fast abstract models, such as the one-IPC model.

The interval model is a mechanistic analytical model, where the execution time is
split into intervals by miss events, such as: branch miss-predictions, load misses, etc. Each
interval has two subintervals, (1) the busy subinterval, in which the core is doing useful
work, and (2) the non-busy subinterval, in which the core is idle.

Sniper models the timing for individual target cores. It maintains a window of

instructions per target core. This window corresponds to the reorder buffer in the out-of-

41
order cores and is used to detect the overlapping between the miss events and the long
latency load misses. The functional simulator (Graphite in this case) is responsible for
executing the instructions, detecting the miss events, and injecting them into the
instruction window’s tail. Thus, in addition to the functional execution of the application,
Sniper requires that the functional model has to model the functionality of different target
architecture’s components, such as the cache hierarchy and NoCs in order to detect the
miss events related to these components.

Sniper is considered a functional-first execution-driven simulator because the
functional model runs ahead of the timing model. Regarding OS modeling, Sniper is
considered a user-level simulator. However, it assigns constant latencies to some OS
related events, such as spinlocks

Sniper’s timing model derives the simulated time of a certain target core based on
the analytical interval model. It consumes and manipulates the executed instructions from
the instructions window’s head. If a miss event is encountered by the timing model, the
penalty of this miss event is added to the core’s simulated time. Otherwise, the
instructions are dispatched at the effective dispatch rate, and the simulated time is
incremented by the average instruction execution time that excludes miss events’
penalties.

Sniper has a unique feature, namely the CPI (Clock per Instruction) stack, which is
a stacked bar. It breaks up the target execution time into its different components, such as
computation time, synchronization time, cache misses’ penalties, etc. This feature is very
useful, because it explains where the execution time has been spent. It helps the software

developer to identify the performance bottleneck and therefore makes the suitable

42
improvements. Sniper achieved a speed of up to 2 MIPS with absolute average error of
25%, when it was validated against real hardware for a variety of multi-threaded

workloads.

4.1.4 PinPlay

PinPlay is a framework for deterministic regeneration of a program execution. It is
based on Intel pin dynamic binary instrumentation framework, namely pin. Its main
objective is to address the non-determinism in multithreaded program execution.
Successive runs of the same multithreaded program have different threads interleaving
and different shared memory access order. For debugging and computer architectural
simulation purposes, it is desired to have one deterministic execution of the program.

In Pinplay, the program is executed once and some information is recorded in
order to regenerate the same execution again and again. PinPlay comprises the following
two pin tools:

1. Logger: is a Pin tool that takes the binary program alongside its input set as
input. Then, the program is instrumented and natively executed under this Pin
tool. The logger captures the initial architecture state (initial memory image
and initial registers values) and non-deterministic events during a program
execution in a set of files called pinballs. Due to heavy instrumentation (every
instruction is instrumented), the logger is slower than native execution by 100-

200X.

43
2. Re-player: is another Pin tool that is run on the pinballs to deterministically
reproduce the execution that was captured by the logger. It can be combined
with an execution-driven architectural simulator to allow simulation based on
pinballs instead of the original program binary and hence perform apples-to-
apples comparison because the same execution is used in multiple simulations.
Moreover, it can be combined with a debugger to debug a deterministic
execution of a multithreaded program. The re-player is slower than native
execution by less than 50X.

Figure 4 shows a high-level block diagram that depicts the workflow of Pinplay.

44

Pinball

Figure 4: High Level Block Diagram of PinPlay Framework Workflow

45

4.1.4.1 Pinballs

A Pinball is a user-level format that is created and consumed under Intel’s Pin
framework. It is a checkpoint produced by the logger. It can be loaded and replayed to
repeat the captured program execution. Pinball is self-contained, i.e., the binary program
and input data set are no longer required after logging. Pinball is not a trace and not a
sequence of static records. The difference between Pinball execution (replay) and the
original program execution is that in replay the system calls are skipped and only their
side effects (on the registers) are injected. Moreover, in replay, shared memory accesses
by multiple threads are forced to be in the captured order. Otherwise, replay is simply a
normal execution of the original program.

Therefore, a Pinball keeps only the information that is required to repeat the
captured execution. Pinball is organized into multiple text files. Some files are global (for
all threads) and some of them are per thread (each thread has its own copy of the file).
The following are the most important pinball files:

1. *.text, global, it contains the initial memory image.

2. *.sel (system effects log), per-thread, memory value injections tagged by
instruction counts, i.e., the injection occurs when the number of instructions
executed by the thread reaches the recorded value.

3. *.reg, per-thread, multiple register value records for initial register state,
registers differing from before and after system calls, etc.

4. *.race: per-thread: records to enforce shared memory access order between

threads. e.g., if the file is for thread i, the records are of the format ‘i counti

46

J icountj” implying thread i must wait at instruction count counti till thread

j reaches instruction count icountj.

5. *.sync text, per-thread, records to enforce execution order between threads.

Its records have the same format as the *.race file.

4.1.4.2 PinPlay and Architectural Simulation

PinPlay can be combined with Pin-based simulators directly, such as Sniper. In
this case, PinPlay serves as a functional model of such simulator, i.e., it replays the
program (executes the pinball) and feeds the timing model with the executed instructions.
However, for non-Pin simulators, there should be a convertor between the PinPlay format
and the simulator format.

Since replay implies real execution of the program, Pinballs cannot be consumed
by trace-driven simulators because pinballs execution needs functional units that are

missing in such simulators.

4.1.5 McSimA+

McSimA+ [41] is a cycle-level detailed microarchitecture simulator for multicore
and emerging many-core processors. It was jointly developed by Seoul National
University and HP Labs. McSimA+ is a functional-first execution-driven simulator. The
functional model is based on native execution under Pin tool. The executed instructions
along with their information are injected to the event-driven timing model to derive the

execution time of the workload on the target processor.

47

McSimA+ is not a full-system simulator. However, it implements a thread
management layer to manage the target threads. Thus, McSimA+ falls between the
application-level and full-system simulators and hence it was called application-level+
simulator. They designed a special Pthread [57] library to be a part of McSimA+. This
library comprises two parts: (1) Pthread controller, which implements the Pthread
functionality, such as, thread creation, thread termination, and thread’s storage
management. (2) Pthread scheduler, which is responsible for scheduling the target threads
on the target cores, i.e., blocking and resuming the target threads.

The core microarchitecture is highly detailed in McSimA+; it has a variety of
detailed core models including single-threaded, multi-threaded, in-order, and out-of-order
cores. Moreover, the target memory hierarchy model is highly detailed. McSimA+
supports a flexible cache hierarchy model that allows the user to explore different
alternatives. Furthermore, McSimA+ supports multiple cache coherence protocols.

Regarding NoC model, McSimA+ supports different NoCs, such as, buses,
crossbars, and multi-hop NoCs of different topologies (ring and 2D mesh). Moreover,
McSimA+ models hierarchical NoCs, where the cores are grouped into local clusters and
these clusters are interconnected via a global NoC. McSimA+’s NoC model has links and
routers. The hop latency is a tunable parameter.

McSimA+ speed was not reported. Regarding accuracy, McSimA+ was validated
against a real hardware, namely Intel Xeon E5540 using SPLASH-2 benchmarks. They
compared the IPC computed by McSimA+ with the IPC resulted from the real hardware

and the average absolute error was 14.2%.

48
Our proposed framework has a thread management layer same to McSimA+, but it

is implemented in hardware (FPGA).

4.1.6 SiMany

SiMany is a discrete-event many-core simulator proposed by O. Certner et al. [51].
It supports task-based programming models, such as CILK and TBB (Threading Building
Blocks). Each target core is simulated via a different simulation thread. However, these
simulation threads are scheduled on a single host core. Thus, SiMany cannot be
considered as a parallel simulator.

SiMany tried to increase the simulation speed by scarifying a lot of fidelity via
raising the level of abstraction of the core, cache hierarchy, and NoC models. Thus,
SiMany is not a cycle-accurate simulator. Moreover, SiMany has no OS model and no
ISA emulation. The program is natively executed on the host machine. Once an inter-
thread interaction is encountered, the timing model intervenes. Therefore, SiMany
focuses only on the concurrent interactions among the target cores. The regions among the
concurrent interaction points (the sequential parts of the code) are just executed natively,
i.e., they are ignored, which greatly reduces the simulation accuracy. SiMany can be
considered as a functional-first execution-driven simulator because the application runs
ahead of timing model interventions.

SiMany uses what so called Virtual Time (VT), which is the clock of the target
core. If all cores are perfectly synchronized, their VTs will be the same. However, VTs

are synchronized in a distributed fashion, called spatial synchronization. When a memory

49
access or remote request is issued by a core, it is initially stamped by the current value of
the VT of that core. The value of this time stamp is increased incrementally while this
request navigates through the model components.

In this spatial synchronization mechanism, the cores synchronize their VTs with
their neighbors only. When the request comes back to its initiator core, this core’s VT is
updated to the latest value of the request’s time stamp. Then this core sends a VT update
message to its immediate neighbors and this update propagates to the whole network.

If a core’s VT is greater than the VT of its neighbor by T, this core stalls until its
neighbor’s VT increases to be equal to its VT. This feature lowers the time drift between
cores under T, which is a parameter specified by the user. It represents speed/accuracy
tradeoff, the higher the T the faster and the less accurate the simulator, and vice versa is
true.

SiMany has been validated against UNISIM-based simulator [58]. It showed a
geometric mean of errors equals to 8.8% for 16 cores, 18.8% for 32 cores, and 22.9% for
64 cores. They claimed that SiMany speed is two or more orders of magnitude over the

existing approaches.

4.1.7 HORNET

HORNET is a cycle-level parallel software simulator for many-core architectures
proposed by P. Ren et al. [50]. It is a highly configurable simulator, which provides the

architect with the required flexibility to explore the architectural space.

50

HORNET supports three flavors of core models, (1) trace-driven packet injector,
which is suitable for simulating NoCs only, with this flavor, HORNET is considered as a
NoC trace-driven simulator. (2) Single-cycle in-order MIPS core models, and (3) Threads
of an executable run under Intel pin framework (native execution). In the last two models,
HORNET is considered a functional-first execution-driven simulator.

HORNET has a configurable memory system, in which the user can specify the
number of cache levels, sizes, private/shared, etc. Moreover, it implements MSI cache
coherence protocol.

Regarding NoC modeling, HORNET possesses a cycle-accurate NoC model. It
supports different topologies, such as ring and multilayer mesh. Also it supports both
static and adaptive routing. Furthermore, HORNET can operate in NoC mode only, where
the a trace is used to inject traffic to the NoC model

Periodic synchronization is used by HORNET to trade simulation speed for
accuracy. It includes synchronizing all simulation threads on a barrier periodically.
Increasing the synchronization period enhances the simulation speed from the accuracy

budget, and vice versa is true.

4.1.8 Manifold

Manifold is an open source parallel full-system software simulation framewaork for
multicores. It was proposed by J. Wang [44]. Manifold has a parallel simulation kernel as
well as a library of micro-architectural components, which offers the architect the

capability of building up a customized simulator from these micro- architectural

ol
components. It supports a range of core models that includes cycle-accurate models,
analytical models, and k-CPl models. It uses parallel multicore emulator frontend to
execute binaries. Manifold supports cycle accurate NoC components and different
synchronization algorithms. Manifold’s mean simulation speed was 242.03
KIPS.Regarding speed and accuracy, Manifold is not just a simulator, it is a simulation
framework, and hence it supports both abstract and detailed components. Thus, the

constructed model speed and accuracy vary according to the level of abstraction selected.

4.1.9 Transformer

Transformer [48] is a cycle-accurate full system simulator for multicores based on
GEMS simulator [23]. It is a functional-first execution-driven simulator, where the
functional model runs ahead of the timing model in Transformer. The output of each
instruction executed by the functional model is fed to the timing model to evaluate its
timing.

Transformer provides an architecture-independent interface between the functional
and timing models to leverage simulator extensibility. In the case of functional-timing
divergence, for example, a miss-prediction occurs in the functional model and a correction
step is required, Transformer has a lightweight scheme to detect and recover from such
scenario.

Transformer has been compared against GEMS simulator. The sequential version

of Transformer achieved an average speedup of 8.4% over GEMS simulator. However,

52
the average speedup was 35.3% when the functional and timing models were parallelized

in a pipelined manner.

4.1.10 COTSon

COTSon [26] was jointly developed by HP Labs and AMD. It is a parallel
functional-first execution-driven full system simulation framework that targets cluster-
level systems of many cores. It uses AMD’s SiMNow simulator [59] for the functional
simulation of the benchmark on each node of the cluster. All events generated by the
functional simulator are fed to their timing models. It uses sampling techniques to

improve the simulation speed. COTSon can dynamically adjust speed and accuracy.

4.1.11 Summary and Discussion

In this section, nine sequential and parallel software simulators have been
reviewed. The flexibility and ease of development of software simulators compared to the
FPGA-based ones made them popular in computer architecture community. However, the
slowness of such simulators, especially when they target CMPs, pushed researchers to
investigate how to accelerate these simulators.

In this section, we noticed that researchers tried to alleviate the slowness of
software simulators in two ways, (1) scarifying a degree of accuracy via raising the level
of abstraction of the target architecture model. This includes using simple models of the
processor cores, NoCs, and memory subsystems. (2) Parallelizing such simulators and

running them on the existing parallel machines.

53

Unfortunately, the slowness drawback of software simulators still exists even after
these two solutions. Abstract models eliminate a fraction of the details to be simulated,
i.e., they reduce the number of parallel events occurring in a single target clock cycle;
however, this number is still high. Moreover, parallelizing software simulators partitions
these parallel events and assigns them to multiple parallel simulation threads. This
approach is supposed to achieve simulation speedup that is proportional to the
computation power of the host machine. However, this speedup is limited because the
parallel events are still simulated sequentially in the same simulation thread.

Another limiting factor of parallel simulators speedup is the inter-core
communication for synchronization. In parallel software simulators, each target core is
mapped to a simulation thread, such as in Graphite [38] and these simulation threads are
mapped to different host cores. For cycle-accuracy, the clocks of the different target cores
have to be perfectly synchronized. This means they have to communicate after each target
clock cycle, which collapses the simulator performance. To prevent this performance
degradation, the existing parallel software simulators, such as Graphite [38] and
HORNET [50] use loose synchronization techniques in which the different target clocks
can be synchronized periodically by letting the simulation threads wait on a
synchronization barrier every fixed number of clock cycles. Of course, rescuing the
performance via loose synchronization is from the accuracy budget.

Furthermore, in these simulators, the user is able to specify the time period
separating each two synchronization barriers to adjust the accuracy/speed trade-off. At
first glance, this looks as a good feature, although it is not. Because nothing will tell the

user how accurate the simulator became after tuning the synchronization period.

54
Based on the discussion above, we conclude that there is a need for a solution to
dramatically accelerate CMPs simulations. This solution is the FPGAs. The upcoming

couple of sections present some concrete examples of FPGA-accelerated simulators.

4.2 FPGA-based Simulators

This section presents the key FPGA-accelerated simulators in which both the

functional and timing models were hosted on FPGA.

4.2.1 RAMP Gold

RAMP Gold [8, 42] is a high-throughput and cycle-accurate FPGA-based
simulator for many-core architectures that was developed at UC Berkeley. It is a timing-
directed execution-driven simulator. Moreover, RAMP Gold is a full-system simulator
that is capable of booting Linux operating system. RAMP Gold uses host-multithreading,
it simulates 64 target cores on a single physical timing model using fine-grained time
multiplexing.

RAMP Gold decouples the functional model from the timing model. The former
executes the target ISA and maintains the architectural state, while the latter determines
the time required by the target machine to execute an instruction and schedules the threads
to be executed by the functional model.

It was claimed that RAMP Gold is a cycle-accurate simulator; although the NoC

and cache coherence models are missing from this simulator. Moreover, RAMP Gold

55
core’s model is just a simple one-IPC in-order single-issue core model that completes one
instruction per cycle except in the case of a data or instruction cache miss. On the other
hand, RAMP Gold has a detailed timing model of the cache hierarchy.

RAMP Gold achieved two orders of magnitude speedup over software simulators.
It simulated a target machine of 64 cores at almost 50 MIPS. In terms of FPGA resource
usage, RAMP Gold consumes 90% of the BRAM blocks, 25% of LUTs (LookUp Tables),
and 34% of the registers in a Virtex 5 LX110T FPGA. The functional model consumes
the significant part of the FPGA resources. These resources were consumed to implement
the core’s components, such as fetch unit, decode unit, register file, ALU, and floating
point units. Moreover, a significant amount of block RAMs were used to cache the input
data set of the application. Therefore, moving the functional model to software will

release these resources to build a more detailed and larger timing model.

4.2.2 HAsIim

HAsim [53] was jointly developed by MIT and Intel. It is the FPGA-based
implementation of Asim software simulator [25]. HAsim is a highly-detailed simulator
that targets shared-memory multicore processors. It has a single highly detailed physical
core, a single cache, and a single router on a single FPGA. The cores’ internal states (the
program counters and the register files) are duplicated for each target core. HAsim is a
timing-directed execution-driven full system simulator. It currently supports the Alpha

ISA only.

56

HAsim simulates multiple target cores sequentially using fine-grained time
division multiplexing, i.e., the single physical core is multiplexed among multiple target
cores in a round robin manner. Each pipeline stage in the physical core can simulate a
different target core, i.e., the number of target cores that can be simulated simultaneously
is limited by the number of pipeline stages. This scheme is called host-multithreading,
which means that the simulator has multiple threads and each thread is responsible for one
target core. In FPGA-based simulators context, host-multithreading means the same
hardware component, such as core model or router model is timely multiplexed among
different target cores and the simulator keeps track of the architectural state of all of these
cores.

HAsim simulates the on-chip network of any topology through permutations using
a single physical router. For the message port in the ring network, the output from router0
is the input for routerl, the output of router 1 is the input of router2, and so on. The output
from router N-1 is the input for router0. For the credit port, 0 goes to N-1, 1 to 0, 2 to 1,
and so on. This cross-router communication pattern is represented as a small permutation
that can be stored in a queue and a side buffer.

HAsim’s accuracy was not reported. Concerning simulation speed, for a single-
thread target architecture, HAsim used 11 FPGA cycles on average to simulate one target
cycle and the simulation rate was 4.54 MHz, i.e., it can simulate 4.54 million target cycles
on average per second. However, for sixteen threads, HAsim used 80 FPGA cycles on
average to simulate one target cycle and the simulation rate was 625 KHz. Regarding
FPGA resources; HAsim consumes 57% of the FPGA registers, 79% of LUTSs, and 27%

of the BRAMSs when 16 target cores are simulated on a Virtex 5 LX330T FPGA.

S7

4.2.3 Arete

Arete [9] is an FPGA-based cycle-accurate simulator for multicore PowerPC
architecture. It is a full-system simulator that is capable to boot an off-the-shelf SMP
(Symmetric Multiprocessing) Linux to run unmodified applications, such as PARSEC
benchmark suite. Arete is an execution-driven simulator that tightly integrates the
functional and timing models together. Furthermore, Arete does not implement host-
multithreading, i.e., all target cores run concurrently which makes it more accurate.

Arete’s target architecture is tile-based. Each tile contains multiple PowerPC
cores. Each core has 10-stage in-order pipeline. Moreover, each tile has two cache levels,
where L2 is shared among all tile’s cores. Arete implements a bidirectional NoC, which
supports point-to-point topology. Also it implements a directory-based MSI (Modified,
Shared, and Invalid) cache coherence protocol.

For the efficient use of FPGA resources, the LI-BDN (Latency Insensitive
Bounded Data Networks) technique [60] was used. LI-BDN aims at reducing the FPGA
resources usage by using multiple FPGA clock cycles to simulate one target clock cycle.

Arete’s average speed was 55 MIPS for 8 cores on 4 FPGAs, and up to 11 MIPS
for one core on a single FPGA. In terms of FPGA resources consumption, Arete is
expensive because it covers all components of the target architecture in details. One

Virtex 5 FPGA can fit for up to two realistic PowerPC cores.

58

4.2.4 ScalableCore system 3.3

ScalableCore system 3.3 [52] is a cycle accurate FPGA-based full-system
simulator for mesh NoC-based tile architectures. The main goal was to achieve scalability,
i.e., the simulator allows adding more cores. They had two contributions:

1. Local Barrier Synchronization: to satisfy the cycle-accuracy, the newest simulation
state is transferred to the neighbor units in the next clock cycle. Each node will be
updated about its four neighbors only. This local barrier synchronization strategy
allows adding more cores without a need to increase the synchronization overhead.

2. Virtual Cycle: they used multiple FPGA cycles to implement one target cycle.

ScalableCore’s target architecture is the M-Core architecture, which is mesh NoC-
based tiled architecture. It consists of many homogenous cores. The communication
among the cores and the off-chip memory occurs through DMA (Direct Memory Access).
Each core is connected to its four neighbors.

In 100 nodes simulation, ScalableCore was 129 times faster than SimMc (software
counterpart simulator for M-Core running on Core i7 processor). Although this simulator
is scalable and cycle-accurate, it is very expensive because each target core needs to be

hosted in a separated FPGA device to avoid time division multiplexing.

4.2.5 Summary and Discussion

This section summarizes the findings of surveying the existing FPGA-based

simulators for multicores. Table 2 summarizes the main features of these simulators. All

59
of the existing simulators decouple the target cycle from the FPGA cycle (host cycle),
which allows the target cycle to be simulated in multiple FPGA cycles and hence less
FPGA resources.

From Table 2, it is clear that simulators without time multiplexing can simulate
only very few number of cores. This is because the functional model occupies a
significant area on the FPGA and the design components are not reused through time
multiplexing. Thus, it would be more efficient to implement the functional model as
software and move it to the PC. In this case, the CPU functional units are utilized to
functionally execute the application using the host’s native instructions and hence more
FPGA area is freed to host a larger timing model.

Although time multiplexing increases FPGA resources’ utilization, it sacrifices a
degree of fidelity. Because the state of only some core (s) can be visible at a single host
clock cycle and the states of other cores and the messages on the NoC are hidden, i.e., no
complete snapshot of the target architecture can be taken in the same host clock cycle.

None of the surveyed simulators modeled L3 cache, although the majority of
recent CMPs have this level, and it is in tens of megabytes. Adding L3 cache to these
simulators will dramatically reduce the number of cores that can be simulated, because L3
model will occupy a significant fraction of the FPGA BRAMs. This reemphasizes the

conclusion that the functional model has to be moved to the PC.

60

Table 2: Summary of the FPGA-based Simulators
Time Core Cycle- Full No. Target
Simulator NoC
Multiplexed | Details Accurate | system | Cores/FPGA
RAMP Gold Yes No No No Yes 64
HAsim Yes Yes Yes Yes No 16
Arete No Yes Yes Yes Yes 2
ScalableCore It can be Yes Yes Yes No 1

61

4.3 Hybrid Software/Hardware Simulators

This section presents two hybrid FPGA-accelerated simulators, namely,

PROTOFLEX and FAST.

4.3.1 PROTOFLEX

PROTOFLEX [10] is an FPGA-accelerated hybrid functional
simulation/emulation platform that was designed at Carnegie Mellon University. It does
not include a timing [61] model; however, it was intended to utilize FPGAs to accelerate
the functional simulation only. It provides the same functionality as Simics simulator [61].

The frequent behaviors (common operations), such as arithmetic operations are
emulated in hardware, and complex and infrequent behaviors, such as the 1/O devices are
simulated as software. Hardware emulated and software simulated components of the
target system run concurrently on their respective hosts. PROTOFLEX is a full-system
simulator that is capable of booting Solaris 8 and running commercial workloads.
Moreover, it employs host-multithreading via time-multiplexing to simulate multiple
SPARC V9 cores.

Coupling PROTOFLEX with a software timing model will not accelerate
simulation because timing simulation is the most critical part and it supposed to be
targeted by simulation acceleration. In contrast, this coupling might slowdown the

simulation because the timing model will wait for responses from the FPGA to proceed.

62
In other words, in such hybrid approach, there will be a performance bottleneck on the
FPGA/PC boundary.

On the other hand, coupling PROTOFLEX with a hardware timing model on the
same FPGA makes the design larger and hence smaller target architecture can be
simulated without time division multiplexing.

Based on the discussion above, it is better to offload the functional part to native
execution to utilize the host machine resources to functionally execute the application and

saves the FPGA area to host larger timing models.

4.3.2 FAST

FAST is a hybrid software/hardware simulation methodology developed at The
University of Texas at Austin. It produces fast, complete and cycle accurate simulators. In
their first implementation [47], FAST supported single core simulation. It achieved an
average simulation speed of 1.2 MIPS. FAST consists of two parts, (1) simulator-level
speculative functional model implemented using a modified full- system software
simulator [62], and (2) timing model implemented on an FPGA. The functional model is
responsible for the ISA level simulation, whereas the timing model captures the micro-
architectural timing features of the target architecture.

In FAST, both functional and timing models run in parallel. The functional model
executes instructions independently from the timing model. Then, it passes the executed
instruction trace to the timing model, which simulates the timing of the executed

instructions according to the micro-architectural model. Thus, FAST is a functional-first

63
execution-driven simulator. FAST’s timing model affects the order of instruction
execution, when it detects a miss-speculation caused by the functional model; it corrects

the functional model by commanding it to roll-back and returns to the correct path.

4.3.3 Summary and Discussion

Table 3 summarizes the main features of the two reviewed hybrid simulators,
namely, FAST and PROTOFLEX.

As stated before, in hybrid simulators, either the functional or the timing model is
hosted on an FPGA and the other on a PC. Having these two models running
concurrently will reduce the simulator scalability and speed due to the intensive
communication on the FPGA/PC boundary. The situation gets worse when rolling back is
required to correct miss-speculations.

Again, it would be more efficient for PROTOFLEX to implement the functional
model as software and the timing model on the FPGA. In such implementation, the
functional units of the host machine are utilized to perform the complex arithmetic

operations and hence the whole FPGA can be utilized to simulate larger timing models.

Table 3: Summary of the FPGA-based Hybrid Simulators

64

Functional | Timing Time Core Cycle- Full
Simulator NoC
Model Model | Multiplexed | Details Accurate | system
FAST Software FPGA No Yes No Yes Yes
PROTOFLEX FPGA Software Yes Yes No No Yes

CHAPTER 5

OVERVIEW OF THE PROPOSED SIMULATION

FRAMEWORK

This chapter presents the proposed simulation framework. It also summarizes all
the design decisions and trade-offs that have been evaluated to reach the current version

of the framework.

5.1 Basic Strategy

The basic strategy of the proposed simulation framework can be summarized as
follows:

1. Exploiting FPGAs to accelerate CMPs simulation while keeping FPGA design
issues transparent to the end user. This transparency is achieved via a software
layer between the user and the FPGA, i.e., users (such as computer architect and
application developers) won’t need to write HDL code (such as Verilog or
VHDL).

2. Modeling the largest possible target architecture on a single FPGA without time
division multiplexing. Therefore, the functional model has been implemented as

software, namely, using Intel pin instrumentation tool to free more FPGA

65

66
resources for a larger timing model. Thus, the proposed simulation framework is
hybrid and hence it is called HySim (Hybrid Simulator).

3. The functional and timing models are completely separated and hence there is no
communication bottleneck at the FPGA/PC boundary. The functional execution is
done first and then the execution trace is fed to the timing model later. Thus,
HySim is a trace-driven simulation framework.

4. To avoid storing large traces on the FPGA, the execution trace is compressed in an
executable code format called CET code (Compressed Executable Trace code).
The fraction of the trace that cannot be embedded into the CET code is kept
besides the CET code and called the CET data.

5. HySim’s timing model is able to interpret the CET code and data, and hence
regenerate the original execution events on-the-fly.

6. HySim implements a threads management layer. Therefore, the multi-threading
events such as, thread creation, termination, locking, and unlocking are encoded
into the CET code. Moreover, the timing model is capable of executing these
events and hence preserves the timing-dependent threads interleaving that is lost in
the traditional trace-driven simulators. Thus, HySim combines the convenience of
trace-driven and the accuracy of execution-driven simulators.

Since HySim is intended for early architectural exploration, there was no need for
a detailed microarchitecture model at this stage. Thus, an abstract base-CPI core model is
used. The base CPI includes the “incore’ time and excludes the “uncore” events. The
“incore” time includes computation time, miss-prediction penalties, hazards’ penalties,

etc. whereas the “uncore” one includes cache miss penalties, NoC latency, etc. The latter

67
is added during timing simulation. The base-CPI is a tunable architectural parameter.
Therefore, the base-CPI is added to the target core execution time for every instruction.
The timing of instructions that do not result in “uncore” miss events (e.g., ALU and
control instructions) is solely covered by the base-CPl. However, in the case of
instructions that cause “uncore” miss events, the penalty of these events are added to the
target execution time. E.g., in the case of a cache read miss, the access time of all
memories accessed to serve this event and the NoC latency, if any, is added to the target

core execution time in addition to the base-CPl.

5.2 Functional and Timing Models’ Implementation Options

In hybrid FPGA-accelerated simulators, there are two options for implementing
the decoupled functional and timing models:

1. Implementing the functional model on FPPGA and keeping the timing model in
software, e.g., PROTOFLEX [10]. In this option, timing simulation is not
accelerated and it remains sequential, although simulation acceleration is supposed
to be intended for the timing model. The only thing that can be accelerated in this
option is some complex arithmetic operations. Thus, this option was excluded
from our strategy.

2. Implementing the functional model in software and the timing model on FPGA,
e.g., FAST [47]. This option makes more sense because timing simulation will be

greatly accelerated. Moreover, the already existing functional units in the host

68
machine are utilized for functional execution (through native execution).
Therefore, we adopted this option.

After deciding how to implement the functional and timing models, we need to
determine how they interact. Running them simultaneously and letting them invoke each
other requires a high-bandwidth communication link between the FPGA and the PC.
Moreover, this link can be a performance bottleneck, especially when simulating a large
number of cores. Therefore, we decided to separate them completely and make HySim a
trace-driven simulator that can preserve the correct threads ordering during timing

simulation.

5.3 FPGA-based Simulation Framework Design Options

When FPGAs are used for computer architecture simulation acceleration, there is a
critical trade-off between the flexibility and usability of the simulator and its complexity.
The FPGA-accelerated simulator design options can be classified based on their flexibility
into three options, (1) rigid simulator, (2) fully-flexible simulator, (3) quasi-flexibly
simulator option which falls in between. The rest of this section delves into the details of

these three design options.

5.3.1 Rigid FPGA-based Simulator

A rigid FPGA-based simulator is a one that models a specific target architecture

(whether detailed or abstract). As such, it has no flexibility and new HDL code has to be

69
generated for every architectural change, synthesized and downloaded to the FPGA. This
means that an experiment would take about a full working day to implement. Besides the
significant time and effort required for customizing this simulator to another instance of
the design space, it requires that the user possesses advanced skills in circuit design and
hardware description languages, which is not guaranteed. Moreover, the user should be
familiar with FPGA platforms and synthesis tools. Furthermore, it requires resynthesizing
the design and reconfiguring the FPGA even for a slight change in the target architecture.

Thus, this approach has been excluded from our strategy.

5.3.2 Fully-flexible FPGA-based Simulator

In such a simulator, the base FPGA model is fixed and only run-time parameters
are used to change the model run-time behavior. Hence, running architectural experiments
involves only changing input parameters to the model. This requires the model to be
highly configurable and very inclusive of all possible variations, something very difficult
and costly with hardware models.

Initially, we targeted this ambitious approach, which offers full flexibility to the
user. In this approach, the FPGA design issues are completely transparent to the user, i.e.,
the framework is used as if no FPGA exists in the picture. Thus, the user does not need to
have any background in hardware design and verification. It allows the user to prepare a
new experiment with only several mouse clicks. Moreover, the design is synthesized only
once and also the FPGA is configured only once. To reach this level of flexibility, the

FPGA-based simulator should be very generic and a new instance of the design space can

70
be configured by changing the architectural parameters at runtime. This saves a lot of time
because design synthesis and FPGA configuration requires significant time, usually more
than the simulation time for some benchmarks or applications.

Although this simulator is a dream for the end user, developing such simulator is
too complex. Because building a very generic simulator that covers all instances of the
design space is not a trivial task. It will take a long time (usually in years) and require a
large team of skillful hardware engineers and computer architects. Moreover, such generic

simulator usually is very large and hence requires multiple expensive FPGAS to host it.

5.3.3 Quasi-flexibe FPGA-based Simulator

After realizing the complexity of the fully-flexible simulator, we decided to make
HySim less ambitious at this point, but much more flexible than the rigid one. In HySim,
the FPGA design issues are still transparent to the end user. It contains a Verilog template
of a shared-memory multicore architecture timing model. This template is used as a mold
to generate new timing models for different shared-memory multicore configurations. The
Verilog template contains a default timing model instance. A new timing model instance
can be generated by changing some parameters, e.g., cache size, number of cores, cache
associativity, etc. or by replacing the default modules by ready-made modules, e.g.,
changing the cache hierarchy from inclusive to exclusive or changing the last level cache
from private to shared, etc. according to the user’s input. This cuts down experimentation
set up time from days to few hours (most of the time is spent in the synthesis phase). The

user won’t have to write any HDL code.

71

This Verilog template was auto generated from a BSV code (Bluespec System
Verilog) [63] in which HySim’s timing model was developed. BSV is a very high level
and fully synthesizable hardware description language. We adopted BSV to reduce the
time and effort required to develop the timing model Verilog template.

Regarding design re-synthesis and FPGA reconfiguration, HySim has three types
of design parameters;

(1) Runtime parameters, which can be modified at runtime by passing their
values to the timing model through the FPGA'’s ports. Thus, changing these parameters
does not require design re-synthesis and FPGA reconfiguration (exploring different design
points takes minutes).

(2) Reconfiguration parameters, changing these parameters require
resynthesizing the design and reconfiguring the FPGA.

(3) Post-simulation parameters, changing such parameters does not even require
re-simulation, such as, measuring the effect of changing the base-CPlI, this parameter
affects only the “incore” time, which can be computed by multiplying the number of
executed instructions by the base-CPl. Thus the post-simulation parameters effect is
captured through calculations and not through re-simulation. Table 4 lists all of these
parameters with some description and default values. These default values are the values

assigned to the parameters in the Verilog template.

72

Table 4: HySim's Parameters and Their Default Values

Parameters Parameter Name Default Notes
Category
Number of sockets 2
Cores per socket 8
Number of threads that
Threads per core 4 are scheduled on one
core.
L1 instruction cache 3 cycles for data access,
latency 1 cycle for tag access
3 cycles for data access,
L1 data cache latency
1 cycle for tag access
13 cycles for data access,
L2 cache latency
Runtime 3 cycle for tag access
Parameters 38 cycles for data access,
L3 cache latency
12 cycle for tag access
Main memory latency 175 cycles
Reorder buffer size 96
NoC topology Ring Ring or mesh.
It can be MSI, MESI,
or MOESI, where M:
MSI

protocol

Invalid, E: Exclusive,
O: Owned.

73

Cache hierarchy

inclusive

It can inclusive,
exclusive, or not

inclusive.

Cache line size

64 Bytes

L1 I-cache size

32 KB per core

L1 D—cache size

32 KB per core

L2 cache size

256 KB per core

L3 cache size

20 MB per socket

Re-
configuration | L1 instruction cache 8
Parameters | associativity
L1 data cache 8
associativity
L2 cache associativity 8
L3 cache associativity 20
Base-CPI 0.5 clocks per instruction
The latency of passing
Post- Hop Latency 2 cycles through one node on
Simulation the NoC.
Parameters -
It is used to convert
CPU frequency 1.2GHz from clock cycles to

seconds.

74

5.3.4 Summary

Table 5 summarizes the pros and cons of the three simulation framework design

options discussed above.

Table 5: Pros and Cons of Different FPGA-based Simulation Framework Design Options

Framework Pros Cons
e Quick to develop Manual HDL code
customization
Rigid Design re-synthesis and
Simulator

FPGA reconfiguration
Not transparent to the FPGA

design issues

Quasi-Flexible

e Transparent to the FPGA
design issues

e Automatic HDL code

Occasional design re-
synthesis and FPGA

reconfiguration

Simulator
. customization
(HySim)
e Moderate design size
e Moderate development time
e Transparent to the FPGA Very large design size
design issues Very long development time
Fully-Flexible e No HDL code
Simulator

customization.
e No design re-synthesis and

FPGA reconfiguration

75

76

5.4 HySim’s Architecture and Workflow

Figure 5 shows a high level view of HySim’s architecture. It comprises two main
components, namely, the software frontend and hardware backend. The main purpose of
the software frontend is to provide a friendly software layer between the user and the
FPGA. Moreover, it contains the functional model of HySim (currently Intel pin tool) and
the trace compression tool (CET tool). On the other hand, the hardware backend is the
FPGA-based configurable timing model. It captures the timing characteristics of the target
architecture and derives the execution time of the user application on that architecture.

As shown in Figure 5, the software frontend comprises a tool suite that comprises
graphical user interface, Pin dynamic binary instrumentation tool [14], Xilinx ISE design

suite, CET tool, and the control panel.

User Software Frontend Hardware Backend
_A AL A

' N ~ N

Verilog Bit Stream

Benchmark sy

Configuration CET Code/Data

Control Commands =— . .
Simulation Results

Simulation Results

Benchmark

CET Code/Data

INS or RTN
Object

Figure 5: HySim Framework Structure

77

78
The following procedure summarizes HySim’s complete cycle for performing one
simulation experiment from scratch:
1. The user selects the benchmark/application and specifies the target architecture’s
parameters.
2. The control panel modifies the timing model’s Verilog code’s template to generate a
timing model instance for the specified target architecture.
3. The Verilog code is fed to Xilinx software and the bit stream of the timing model
instance is generated.
4. The application is natively executed and dynamically instrumented via Intel pin tool.
5. Intel pin intercepts each instruction and routine and sends its information, such as
thread 1d, instruction address, data memory address in the case of load/store, target
address in the case of control instruction, the conditional branch instruction result
(taken or not taken), etc. to the CET tool to generate the CET code and data of the
application on-the-fly, i.e., without waiting for the whole trace to be generated.
6. The bit stream and the CET code and data are downloaded onto the FPGA.
7. The timing model executes the CET code with the help of CET data to evaluate the
target architecture.
8. When simulation finishes, the control panel reads the simulation results from the

FPGA and displays them to the user.

79

5.5 HySim’s Output

HySim’s output includes the simulation results, namely, the excepted execution
time of the benchmark on the target machine (the simulated time). It also shows the
different components of this execution time, such as computation time, synchronization
time, data cache miss time, etc. Besides that, the simulation results include the number of
cache misses at each cache level. Figure 6 shows a snapshot of the simulation results for

one thread.

Humber of L1 instruction cache misses 1433502
Humker of L1 data cache read misses 1120648
Humber of L2 data cache misses 601942
Humber of L2 instruction cache misses 1332863
HNumbker of L3 data cache misses 4010
Humber of L3 instruction cache misses 256536

Total data cache miss time (target clock cycles) 16317045

Total instruction cache miss time (target clock cycles)

Synchronization Time (target clock cycles) a

Simulation Time (FPGA clock cycles) 445211870

Instructicn Count 308036697

Mumber of Hops 5673440

Target Processor Clock Value 92642027

64978082

Figure 6: A Sample Simulation Results for One Thread

80

CHAPTER 6

COMPRESSED EXECUTION TRACE GENERATION

As explained in chapter 5, our proposed hybrid simulation platform is composed
of two parts; a SW frontend and a HW backend. The SW frontend generates a compressed
trace of the input application (using instrumentation). In this chapter, the proposed trace
generation and compression technique is described. After a brief description of the trace
compression problem and the major existing techniques, details of the different phases of
the proposed trace compression technique are provided. Experimental results for the
compression ratio and speed achieved by our technique compared to other published

techniques are presented at the end.

6.1 Introduction

Trace-driven simulation of computer systems has been widely used among
computer architects and application developers [29]. This is due to its convenience and
ease of implementation. A trace is generated once and can be used to carry out many
architectural explorations via simulations. Trace-driven simulation can reveal
considerable useful information, such as an application’s average clocks per instruction
(CPI), cache performance, locality of references, efficiency of branch prediction and pre-

fetching. A typical trace comprises the executed instructions along with their

81

82
corresponding memory references. A trace-driven simulator can be a complete simulator
for the whole computer system or specific for a certain component, such as a branch
predictor or instruction cache. Trace fidelity refers to how many of the original execution
events can be re-constructed from the trace.

In the multi-core era, researchers paid more attention to execution-driven
simulation than trace-driven simulation because trace-driven simulators do not capture
timing-dependent thread execution interleaving. However, researchers and architects
continued to use trace-driven simulation to simulate multi-threaded applications on multi-
core machines [28, 30, 31].

Another major challenge of trace-driven simulation is the large size of trace files.
Although disk storage is currently inexpensive, the disk access time is still high.
Moreover, the situation is not improved when FPGAs are used for trace-driven simulation
due to their limited storage resources.

Although existing trace compression techniques succeeded in achieving excellent
compression rates, these techniques still suffer from two drawbacks. First, all of these
techniques take the full original trace as input. Because the primary objective of trace
compression is to avoid having such large trace files, it would be more efficient to avoid
having them from the beginning. In other words, it would be more efficient to start
compression on-the-fly, i.e., during the original trace generation. The second drawback is
that some of these techniques, [32, 64], require a decompression stage to reproduce the
original trace. Decompression requires additional time and space and regenerates the huge

original trace.

83

In [33], the authors proposed a lossless trace compression technique that exploits
spatial and temporal locality. It performs an on-the-fly decompression. This technique is
limited to instructions and their addresses, i.e., data addresses are not covered. The
instructions’ addresses have been classified into two categories: (1) sequential addresses,
in which the difference between any two consecutive addresses is constant, and (2) non-
sequential addresses, in which the difference between them is variable.

The input trace consists of pairs of numbers. The first number is the instruction
address, and the second is the instruction itself. The output comprises three components:
(1) the static program instructions, any instruction is required is fetched from the static
program using the instruction address; (2) sequent address file, it consists of a very long
bit vector. Each bit corresponds to a trace element. If this bit is ‘0’, the corresponding
address is sequential. If it is ‘1’, the corresponding address is non-sequential. (3) A file
that contains the differences among the non-sequential addresses and can be compressed
further based on locality.

In [34], the authors proposed an address trace compression technique based on
loop detection. They used control flow analysis to detect loops in the address trace. They
only handled constant and varying-by-constant addresses. They detected them by
scanning the trace and finding the repeated patterns. The decompression stage implies
running these detected loops. This technique does not handle complex situations in which
loops have function calls and complex structures.

S. Budanur et al. [65] proposed a memory trace compression technique for SPMDs
(single program multiple data). Their technique is based on PRSD (power regular section

descriptors) [66, 67] abstractions but it is finer grained. They called it EPRSD (extended

84
PRSD). A pin based instrumentation tool (memtrace) takes an application as input and
generates the memory trace of it. The generated trace is compressed using EPRSD. The
memtrace tool runs as a set of MPI processes. Each process instruments an SPMD
program and outputs the trace into a pipe. The trace compressor consumes the trace from
the pipe. The compressor performs intra-thread compression utilizing the repetitive
patterns. After instrumentation terminates, it performs inter-thread compression by
factoring out the common parts among threads and finally performs inter-process merging
among all processes of the SMPD application. This technique requires a decompression
phase. It reduced the trace size by half for the AMG benchmark.

A. Janapsatya et al. [68] proposed a trace compression technique for instructions’
addresses alongside an instruction cache analysis method. Their main objective was not to
maximize the compression ratio but to accelerate trace processing. This technique is
limited to instructions’ addresses only. Their technique achieved a simulation speed up of
9.67 over the existing techniques, but the trace compression ratio was 2 to 10 times worse
than Gzip.

In [32], four VPC (value prediction-based compression) algorithms were
introduced, namely VPC1, VPC2, VPC3 and VPC4. In these algorithms, the input trace
consists of pairs of numbers. The first number is a 32-bit PC, and the second one is a 64-
bit extended data (ED). VPC algorithms use predictors to predict the next value based on
the previously observed values. If the next value is predicted correctly, the index of the
predictor that predicts it is output. The unpredicted values are output to a different
stream. If more than one predictor predicts a certain value, there are heuristics to select

the best one. For example, VPC1 uses Huffman encoding. If more than one predictor is

85
correct, then the shortest Huffman code is selected. Because the number of predictors is
small, the number of bits to encode the predictor’s index is smaller than the corresponding
trace element. Therefore, the trace is compressed. The same algorithm is applied in the
reverse manner to decompress the compressed trace.

A. Ketterlin et al. [69] proposed a lossless trace compression algorithm. The input
trace is a sequence of numbers. They scanned these numbers to detect loop nests using the
linear progressions of these numbers. The output of this algorithm is a sequence of loop
nests. This algorithm can handle simple loops only and is limited to data addresses. The
decompression implies running the obtained loop nests.

Martin Burtscher proposed TCgen [70], which is a tool that auto-generates a
value prediction-based trace compressor based on user specifications. The user describes
the trace format in text for TCgen that generates the optimized C code of the specified
trace compressor.

Kenneth C. Barr and Krste Asanovi'c [71] presented a technique to compress
branch trace information to be used in snapshot-based microarchitecture simulation. The
compressed trace can be used to warm up any arbitrary branch predictor’s state before
timing simulation of the snapshot. However, this technique is specific for branch
information.

Kenneth C. Barr et al. [72] proposed a technique for directory and cache state
reconstruction to accelerate sampled multiprocessor simulation. This reconstruction is like
warming up. They used a software structure called MTR (Memory Timestamp Record)
that can be updated during fast forwarding (functional simulator that updates the

architectural state in between sampling points). For each memory block (cache block),

86
there is an MTR record that registers the ID of the last processor that modified this block,
the time stamp of the last write operation, and an array of time stamps of the read
operations on the block (each timestamp per processor). During fast-forwarding, a
read/write operation will update the MTR record.

The directory and cache state reconstruction occurs right before each sampling
point. This is done in two steps: (1) determining the subset of blocks that are still cached.
(2) Check cross-processor interactions to determine which of these blocks should be valid
or dirty according to the cache coherence protocol. This technique works for sampled
execution-driven simulators and it does not work for trace-driven simulators.

Other techniques, such as [73], [74], and PinPlay [75] concern about deterministic
replay of the program by recording a fixed execution path for the non-deterministic
events, e.g., threads interleaving and memory operations order. This deterministic replay
is useful for software debugging and computer architecture simulation. However, since
replay implies real execution of the program, then these techniques do not work for trace-
driven simulators because real execution requires functional units that are missing in such

simulators.

6.2 The proposed Execution Trace Compression Technique

This dissertation presents a novel methodology for efficiently compressing
execution traces of multi-threaded applications running on multi-core architectures. A
special compressed execution trace (CET) format has been developed. It retains all the

low-level execution events (maximum fidelity), including threading events, with

87
minimum size and can be processed directly without decompression. Hence, HySim’s
timing model can reconstruct all the execution events in the correct order from a CET
trace including threading-related events (starting, sleeping, waking, synchronization, and
termination). Also, a complete tool suit that generates the CET trace has been
implemented and used to evaluate the proposed methodology.

The proposed trace compression method in this work translates a multi-threaded
input application’s or benchmark’s executable into another binary format called CET
code. The latter encodes the original application static code and the data required for
timing simulation in a compressed format. The data that cannot be compressed, i.e.
embedded into the CET code, is kept aside and is called CET data. So each thread of the
application is translated into five files, namely the CET code, branch results, jump
displacements, loop counters (in the case of inner loop whose counters do not follow a
certain pattern), and data addresses (for non-uniform data referencing). The resulting CET
code size is less than double the application’s executable size. The CET data file size
varies depending on the application. CET code and data are generated only once, for a
specific input program, and can be used to simulate many architectural configurations.
The only case in which the CET tool needs to be rerun for the same input program is
when the number of threads changes. However, if the number of cores of the target
machine changes and the number of threads is kept unchanged, then these threads are
rescheduled on the new target machine configuration.

The compressed trace is intended for simulation only, not for debugging. The
multi-threading synchronization events are captured in the compressed trace. The CET

format defines primitives to create, pause, resume, and terminate threads. These

88
primitives are used to implement barriers and locks/unlocks. Therefore, synchronization
barriers, access to critical sections, and atomic read-modify-write operations are captured

by the compressed trace

6.2.1 Basic Strategy

The basic strategy in the proposed compression technique is to remove all possible
redundancy, both in instructions and data memory references, from the input execution
trace while preserving fidelity. Our methodology implies constructing an executable static
code (CET code alongside its CET data) from the input trace with the following features:

1) CET code preserves the execution order (control flow) of the original program

without keeping any instructions’ addresses except the initial thread address.

2) Contiguous data addresses, where consecutive addresses differ by a constant

value, are captured in the CET code.

3) CET data includes:

a. Non-contiguous data addresses. Only the difference from the previous
address is encoded in the CET data, not the complete address. This
reduces the size of these references by at least 50%. The user specifies the
size of this field (default is 16 bits).

b. The results of conditional branch instructions (taken or not taken) when
the conditional branch is executed multiple times and it does not represent

a loop instruction. The size of this field is 1 bit.

89

c. Dynamic target addresses of unconditional jump, call and return
instructions. Only the displacement (in number of CET codes) between
the current instruction and target instruction is stored. The user specifies
the size of this field (default is 16 bits).

d. Loop counters (number of iterations) of the inner loops when the inner loop
has a different number of iterations per outer loop iteration and these
counters do not follow a certain pattern. The user specifies the size of this
field (default is 32 bits).

Thus, each thread of the application is translated into five files, namely the CET
code, branch results, jump displacements, loop counters, and non-contiguous data
addresses differences. The resulting CET code size is less than double the application’s
executable size. The CET data file size varies depending on the application. CET code
and data are generated only once, for a specific input program, and can be used to
simulate many architectural configurations. The only case in which the CET tool needs to
be rerun for the same input program is when the number of threads changes. However, if
the number of cores of the target machine changes and the number of threads is kept
unchanged, then these threads are rescheduled on the new machine configuration.

A specific tool has been developed to verify the effectiveness of the proposed CET
code generation methodology. It can be integrated with the trace generator, i.e., the
functional simulator or the instrumentation tool. This facilitates the start of compression
on-the-fly, i.e., while the program is being executed, or emulated, and the trace is being
generated, making our method extremely efficient in terms of time and memory

requirements.

90

Figure 7 shows the work flow of the proposed CET generation methodology. The

input is an executable file of the multithreaded program alongside its input data. This
input goes through a chain of phases, namely profiler, code generator and the emulator
and CET data generator. These three phases are repeated for all threads of the input
program. The final output of the tool comprises the CET code and data for each thread
separately. Producing separate CET codes and data for threads allows parallel processing
of these threads (e.g., via the timing model). Moreover, the CET tool generates a log file
of useful information for the user. It also generates the starting address of each thread.
The current version of CET tool supports X86 architecture only. The Intel Pin framework
[14] has been used for instrumentation. Other ISAs can be supported using other

instrumentation tools such as Valgrind [40].

91

Profiled
Code

CET Code

CET Code
Raw CET data

Instruction
Results

Input Program
CET Data

Input Data

!

Log File

Figure 7: CET Tool Work Flow.

92

The rest of this sub-section delves into the different phases of the CET tool

6.2.2 CET Encoding

Instructions and function calls in the original execution trace are classified into
one of 18 unique categories that belong to six different classes. These 18 categories are
agnostic to any specific general purpose architecture. Each category is assigned a unique
CET code and has special arguments. Table 6 summarizes the different instruction
classes, categories, their CET code format, and their corresponding CET data (if any). In
addition to the CET codes’ formats shown in Table 6, the CET code contains the register
numbers of the corresponding original instruction. This is important to capture hazards in
the CET code. For example, the load instruction format can be: Load address, Rd, Ra;
where Rd and Ra are the destination and the source registers, respectively. The 6
instructions and function calls classes are:

1. Unconditional Branch Instructions: includes the unconditional jump instructions, as
well as the procedures’ calls and return instructions.

2. Conditional Branch Instructions: includes all conditional branches. These
instructions are used to encode loops.

3. Memory Instructions: includes all load and store operations.

4. Synchronization Function Calls: includes all system/library calls related to multi-
threading, such as: thread creation, thread termination synchronization barrier,

spinlock etc.

93

5. ALU Instructions: includes all ALU instructions of the original trace. They are
classified according to their latency, of course, their functional unit, such as: integer
ALU instructions, floating-point ALU instructions etc.

6. System calls: This class includes all other system calls not related to synchronization.
The unique system call identifier/number is encoded in the CET code using 10-bits.
This is more than sufficient for all existing operating systems where the number of
system calls does not exceed 500. For example, Linux system call identifiers are

available in many sites, e.g., [13].

Table 6: CET Code and Data format Summary

94

CET Code CET Code Format CET Data

Description

Unconditional Branch Instructions

5-bits 16-bits

jump/call/return

instructions that

JUMP Op_code [Displacement None always jump to
the same target
address
jump/call/return

5-bits jump’s instructions that

JUMP-M
displacement

jump to

different targets

Conditional Branch Instructions

branch result

5-bits 16-bits 1-bit
| Op_code | Displacement| BR |

BRANCH (Taken/Not

taken)

Normal

conditional

branch

instruction. The

BR bit records

whether the

branch was

taken

95

Loop

instruction that

5-bits 16-bits 20-bits always has the
LOOP Op_code |Displacement| Counter None
same counter
(Number of
iterations)
Inner loop
instruction
whose counter
LOOP-C 5-bits 16-bits 20-bits 3-bits None differs by
Op_code | Displacement| Counter [INC|
constant (INC)
each outer loop
iteration
Inner loop
instruction
whose counter
5-bits loop’s
LOOP-R differs by a
- counters
random value
each outer loop
iteration
Memory Instructions

Load/store

LOAD/STORE 5-bits 32-bits None | instruction that

Op_code Address

accesses the

96

same memory
location every
time it is

encountered

LOAD-C,

STORE-C

5-bits

32-hits

3-bits

Op_code

Address

||Nc|

None

Load/store
instruction that
accesses a
contiguous
block of data in
memory e.g.,
vector. INC is
the size of the

data element

LOAD-NC,

STORE-NC

5-bits

Data

addresses

Load/store
instruction that
accesses a non-
contiguous
(scattered)
block of data in
memory e.g.,
dynamic data

structure

97

Synchronization Function Calls

Start a new
START None
thread
Pause a thread
s 6 bite Lobits None (corresponds to
[Op_code [Thread Id lock, wait, and
sleep)
Woake a
WAKE 5-bits 10-bits None sleeping or
Op_code | Thread Id
waiting thread
Termin
TERMINATE Sbits _ 10-bits None erminale @
Op_code | Thread Id thread
ALU Instructions
_ Integer ALU
INT-ALU 5-bits None
instruction
Floating-Point
5-bits
FP-ALU None ALU
instruction
5-bits
MULTIPLY None
DIVIDE 5-bits None

Op_code

98

SYS_CALL

5-bits 10-bits

[Op_code [Sys Call Number

None

System calls
other than
thread-related

calls.

99

6.2.3 Loop Recognition

X86 architecture has multiple explicit loop instructions, namely, LOOP, LOOPE,
LOOPNE, LOOPZ and LOOPNZ. These instructions are easily detected by the CET
profiler and turned into CET loops. However, compilers often use the conditional branch
instructions to translate loops. Therefore, there is a need to distinguish between the
conditional branch instructions that implement loops and other conditional branches.

Loops represent the main venue for an execution trace compression. Moreover,
detecting the X86 conditional branches that implement loops and translating them into
CET loops will minimize the size of CET data significantly. For example, if all X86
conditional branches are left as they are, then a loop of one million iterations will require
a storage of one million bits to store its branch’s results (taken or not taken). However,
with loop detection, this branch instruction is translated into a one CET loop instruction
whose number of iterations is embedded into its body.

Conditional branches implementing loops are distinguished from other conditional
branches using a two-phase algorithm. The first phase checks the loop candidacy, i.e.,
checks if a conditional branch can be a loop or not. The second phase occurs during the
CET code emulation stage. In this phase, the loop candidates are filtered. If a loop
candidate does not pass, it is switched back to a normal conditional branch. Thus, the
second phase is a correction step.

As noted above, the CET profiler stores the branch’s results of the conditional

branch instruction in a list. However, this list is compressed such that similar consecutive

100
results are stored in one node with a counter. The loop candidate will have a branch’s
results chain, as shown in Figure 8. Thus, an X86 conditional branch instruction is
considered as a loop candidate if it has the following behavior:

1. All not-taken nodes have a counter of one.
2. The last node must be a not-taken node.
3. The first node can be either taken or not-taken depending on if the loop is outer or

inner. Thus, the loop instruction has a flag bit to indicate if the first node is taken or not.

101

T NT T NT

\ 4

Count>=1 Count=1 Count>=1 Count=1

Figure 8: Branch Results' Chain of a Loop Candidate X86 Conditional Branch Instruction

102
This algorithm may consider some conditional branches as loops that were not
intended to be loops, e.g., if a conditional branch is executed twice, being taken the first
time and not taken the second time, then this algorithm considers it as a loop with one
iteration. This behavior, however, is still correct.
In the emulation phase, the generated CET code is functionally executed by the
CET emulator. The loop candidates are filtered in this phase. If a loop candidate does not
pass, it is switched back to a conditional branch instruction. A stack is used to schedule
the loops execution and to filter the loop candidates as follows:
1. Let S be a special stack of loop entries. In addition to its push and pop functions, S can
be scanned and an element can be removed from the middle.
2. The loop entry is a structure with two fields: instruction address and counter.
3. When a loop or loop candidate instruction I is encountered, do the following:
a. If I does not exist on S, push it.
b. Else, if | is the top element of S and its counter is not zero, decrement the
counter and branch.
c. Else, if I is the top element of S and its counter is zero, don’t branch and pop S
off.
d. Else, if I exists on S and it is not the top element, | is not a loop; it is removed

from S and switched back to a normal conditional branch.

103

6.2.4 CET Profiler

In this phase, the application’s trace is generated using functional simulations or
native execution on the target machine itself. Using instrumentation, execution
information regarding the instructions is collected, e.g., memory references accessed by
the instruction in the case of load/store, branch results in the case of conditional branch
etc. The profiling output is an intermediate representation of the input program, in which
each instruction is represented as an object. This object contains all execution information
regarding the instruction. The input program is profiled dynamically by instrumenting
each instruction; when an instruction is encountered for the first time, a new object for
this instruction is created and mapped to a unique location in the profiled image. If the
same instruction address is encountered again later, its corresponding object is updated if
required.

Figure 9 shows a flowchart of the CET profiler. It comprises the following steps:

1. While the program is not finished, do the following:

2. Let I = next instruction or routine.

3. Execute I.

4. The analysis function corresponding to I is invoked.

5. If I does not exist in the profiled image, create a new object of | and add it to
the image.

6. Check the opcode of I:
a. If it is a memory instruction, add the memory address to the list of addresses of

I. If the number of addresses added thus far is fifty (this number can be a

104
parameter), check if the instruction is load/store, load/store-c or load/store-nc and
change its opcode accordingly. This early test accelerates compression and reduces
space. This is because the profiler does not wait to store the whole addresses’ list
and then checks the memory instruction type.

If it is a conditional branch instruction, add the branch result to the branch
results’ list (Taken or not taken).

If it is an unconditional jump, call or return instruction, add its target address to
the addresses’ list.

If it is an explicit loop instruction, increment its counter.

If it is an ALU instruction, add the corresponding opcode, such as: INT-ALU,
FP-ALU etc.

If it is a system, add SYS_CALL instruction.

If it is a synchronization function call, add the corresponding opcode, such as:

START, PAUSE, WAKE etc.

Last Instruction

105

Reached?
N

I = Next instruction

\ 4

Execute |

Add its data address to its

addresses’ list

Iflis

Create an object for |
and map it to the image

Load/Store

Increment its counter

Add its target address to
its addresses’ list

Set its target address.

Add its branch result to
its branch results’ list

If I is Return
call/jump

I is ALU/ Sync.
etc.

End

Figure 9: CET Profiler Flowchart

106

6.2.5 CET Code Generation

In this phase, the profiled image is refined and its instructions are replaced by the

corresponding CET codes. Figure 10 shows the flowchart of the CET code generator with

the following steps:

1.

2.

Let CetCode be a list of CET instructions.

For each instruction I in the profiled image, do the following:

If 1 'is a loop:

a.

If I has a constant counter:

CetCode.add(LOOP displacement, counter)

Else, if 1 has multiple different counters that follow a certain pattern i.e., it is an
inner loop whose number of iterations increases/decreases by a fixed value for

each new outer loop iteration:

CetCode.add(LOOP-C displacement, counter, increment)

Else, if I has multiple different counters that do not follow a certain pattern:

CetCode.add(LOOP-R displacement)

If 1 is load/store (this step is done earlier in the profiler when the number of addresses

is 50 or above):

a.

If it has only one memory address or multiple similar addresses:
CetCode.add(LOAD/STORE address)

If it has multiple memory addresses and the difference between these addresses is
constant:

CetCode.add(LOAD-C/STORE-C address, increment)

107
c. If it has multiple memory addresses and the difference between these addresses is

not constant:
CetCode.add(LOAD-NC/STORE-NC)
5. If I is an unconditional jump, return or call instruction:

a. Ifithas only one target address:

CetCode.add(JUMP displacement)

b. If it has multiple target addresses:

CetCode.add (JUMP-M)
6. If I is a conditional branch instruction:
a. Ifitisalways taken, CetCode.add(JUMP displacement)
b. Ifitisalways not taken, CetCode .add(ALU-INT)
c. Else, CetCode.add(BRANCH displacement)
7. Otherwise, add I into CetCode as it is.

8. Dump CetCode into a text file in binary format.

The symbols in Figure 10 represent the following, I: Instruction, Ai: Address i, Ci:

Counter i, K: Constant.

108

A

Program Finished?

I = Next Instruction

v

If | Load/Store

#Addresse
S ==

A

Generate Generate Generate
LOAD/STORE LOAD/STORE- LOAD/STORE-
T | |

Always
not taken?

Always
Taken?

If I Branch

y

Generate
JUMP Generate Generate
ALU-INT BRANC

If I Jump, #Addresses

Generate JUMP_M

Call, Return

Generate JUMP

#Counters
=1

\ 4

Generate ALU, START,

Generate LOOP

PAUSE, WAKE, TERMINATE, Generate LOOP-C Generate LOOP-R

> End

Figure 10: CET Code Generator Flowchart

109

Figure 11 below shows the generated compressed execution trace for a small C-

code snippet (a loop to find the maximum of a 1 million integers array) to illustrate the
power of the proposed trace compression methodology. For this simple example, the

compression ratio is approximately 1 millionth (i.e., 0.000001).

110

Original program snippet ...

int main ()

{

int array][1:
int max = array[C0]:

for{int 1 = C0; 1 <
if{arrav[i] > max)

max = array[i];

retorn O;

v

i+4)

Generated CET Code mnemonics...

LOLAD Rd, Ra:
STORE Ra, Eb:
STCRE Ra, Eb:
JUMP . , Ra:

rﬂﬁﬁ """"""" Rd, Ra: |

:ALU Rd, Ra, Eb: :

| LCAD-C . , Bd, Ran

' LoAD Rd, Ra: '

| BRANCH =, : 1

| LOBD Rd, Ra: :

| ALU Rd, Ra, Rb; '

| LOAD-NC, Rd, Ra: 1

| STORE Ra, EBb: :

:LGAD Rd, Ra: :

) LOAD Rd, Ra: I

|Loop_ 11, 1000000, i _______ :
LLU Rd, Ra, Rb:

LOAD Rd, Ra:

This
segment
appears a
million
times in
the
original
trace

Figure 11: Compression results for a simple C-code snippet.

111

6.2.6 Emulation and CET Data Generation

The generated CET code is emulated in this phase. The main purpose of this phase
is to generate the CET data in a file with proper sequential order (similar to a FIFO). In
other words, when processing the CET code (e.g., via a timing simulator), data required
by any CET instruction can be consumed from the CET data file sequentially in the
proper order in which they are needed. The other purpose of this step is to test the
correctness of the CET code and report any bugs if necessary.

The following is a brief description of the emulation and CET data generation

phase:

1. Let CetFifo be the corresponding CET data FIFO (e.g., Addresses FIFO and
branch results FIFO etc.).

2. Let pc = the initial address of the thread.

3. Let CetCode is the CET code memory.

4. While CetCode is not finished, do the following

5. Let | = CetCode(pc)

6. If I isaloop candidate that did not pass, switch it to a conditional branch.

7. If I is any branch instruction (JUMP, JUMP_M, BRANCH, LOOP etc), pc =
target address.

8. Else,pc=pc+1

9. If1is LOAD-NC/STORE-NC:

a. CetFifo.enqueue(l.addresses.front).

b. l.addresses.dequeue.

112

10. Else, If I is BRANCH

a. CetFifo.enqueue(l.BranchResults.front).

b. 1. BranchResults.dequeue.
11. Else, If I is JUMP_M

a. CetFifo.enqueue(l. addresses.front).

b. 1. addresses.dequeue.
12. Else, If 1 is LOOP-R, and this is a new outer iteration:

a. CetFifo.enqueue(l. counters.front).

b. 1. counters.dequeue.

13. Convert CETFifo to binary and output it.

6.2.7 System Calls Latency

As stated before, HySim timing model is a user-level model and hence it does not
simulate the system-level code, except for threading management, although CET code
encodes the system calls. However, we tried to quantify the approximate time consumed
by different system calls through reading Linux system time right before and after the
system call and taking the difference. We performed this experiment with the help of Intel
Pin instrumentation tool. This experiment aimed at grouping the different system calls
according to their latency and making this latency a tunable parameter. Unfortunately, we
observed that the same system call can have a different latency within the same
benchmark and across different benchmarks. This latency might be significant, i.e., it can

be in orders of magnitude.

113

We used the Linux time command to quantify the amount of execution time of the
application that is consumed by the system calls. A sample output of this command is as
follows:

0:02.00 real, 0.00 user, 0.00 sys

This command outputs three values, (1) real, which is the time elapsed between
the invocation and termination of the application, (2) user, the application time (user
space time), and (3) sys, which is the time consumed by the system calls. We noticed that
the system time of the application increases significantly by increasing the number of
threads. This is a natural observation because more threads require more work
(management and scheduling) from the operation system.

Figure 12 shows plots of the histogram of the system time for several numbers of
threads, namely, 1,2,4,8, and 16. The X-axis splits the system time into intervals and the
Y-axis shows the number (frequency) of benchmarks whose system time falls within this
interval. Then, we calculated the average system time for each number of threads to be

used by the timing model to compensate for the system time component.

114

[= IR TV T

1 Thread 2 Threads 4 Threads

5 4

4 3

: 2

N 1

0 0
RO S | SIS F S
o&' @P@ chs N Q&Q@P@ @% 0@,0@?@ @*

8 Threads 16 Threads
5 4
4 3
3
: 2
1 1
0 0
o 0 & 0 9 0 &
& PO & PO
o o o o i
F QY v & P & g
oY o o o Q7 oY o o

Figure 12: System Time Histogram

115

6.3 Experimental Results

6.3.1 Experimental Setup

We evaluated the CET tool using a wide range of benchmarks that includes a
subset of Splash-2 [76], PARSEC [77], MediaBench I [78], and SECP CPU 2000 [79].
Table 7 lists the used benchmarks with their input sets. These experiments were run only
once on an Intel Xeon CPU E5-2680 machine. The CET tool has been evaluated in two
modes. (1) Instruction Addresses (IA) mode in which the baseline trace entry comprises
the instruction along with its address, i.e., (32-bit instruction address, 32-bit instruction).
(2) Full mode, in which the whole trace, instructions, instructions’ addresses and data
addresses (if any) are compressed, i.e., (32-bit instruction address, 32-bit instruction, [32-

bit data address]).

116

Table 7: Benchmarks and Their Input Sets

Benchmark Input Set
swaptions (small) 16 swaptions, 5,000 simulations
swaptions (medium) 32 swaptions, 10,000 simulations
swaptions (large) 64 swaptions, 20,000 simulations
Blackscholes (small) 4,096 options
Blackscholes (medium) 16,384 options
Blackscholes (large) 65,536 options
bodytrack (small) 4 cameras, 1 frame, 1,000 particles, 5 annealing layers
bodytrack (medium) 4 cameras, 2 frames, 2,000 particles, 5 annealing layers
bodytrack (large) 4 cameras, 4 frames, 4,000 particles, 5 annealing layers
LU 512x512 matrix
FFT 256K points
Ocean 258x258 ocean
Radix 256K integers
Water-sp 512 molecules
Water-nsq 512 molecules
cjpeg input_base_4CIF.ppm

g721decoder clinton.g721
g721encoder clinton.g721.pcm
pegwit_d/e Default

164.9zip, 179.art,
176.gcc, 181.mcf,
186.crafty, 300.twolf,
183.equake, 175.vpr,

and 256.bzip2

The first two billion instructions of the reference input

set.

117

118

We used two metrics to evaluate the CET tool. First, the compression ratio, this is

the most important metric for evaluating a compression tool. 1t shows how many times the
compressed trace is smaller than the uncompressed one. So it is calculated by dividing the
size of the uncompressed trace over the size of the compressed one. The latter is the
summation of the sizes of the CET code and CET data. In IA mode, each trace element
(executed instruction) in the uncompressed trace is 64-bit (32 bits for the instruction
address and 32 bits for the instruction itself) whereas it is 96-bit in the full mode; extra 32
bits are added to represent the data address, if any. The second metric is the compression
and decompression speed, which is expressed in MIPS, i.e., how many millions of
instructions of the execution trace can be compressed or uncompressed in one second.
Although compression speed is required, this metric is less important than the
compression ratio and decompression speed. Because the execution trace of a specific

application is compressed only once and used many times.

6.4 Compression Ratio

Figure 13 shows the compression ratio for the two modes. In general, IA mode has
a higher compression ratio than full mode, because 1A mode ignores data memory
references. Thus, the compressed trace in 1A mode does not include data addresses, which
are often the largest component of the compressed trace. However, full mode can achieve
higher compression ratio when the application has few non-contiguous load/store

addresses, such as ocean and blackscholes benchmarks. This is because the compressed

119
trace is nearly the same for the two modes, but the uncompressed trace is larger in the full

mode.

120

B Full Mode

IA Mode

100000

10000

1000

T
=
=]
—

oney uoissaisdwon

zdizq'osz
1da'get
aenba ggT
HOMY 00€
Aye19gt
PWIst
208941
He'gLT

diz8 o1

2 umdad

p umdad
J1apoouares/d
12podapr /8
gadl
bsu-ialem
ds 1a1eM
Xipel

ueado

144

ni
yoellApoq
s3|0Yd35yde|q
suolldems

Figure 13: Compression Ratio of Instruction Addresses Only Traces (IA) and the Full Trace

121

Figure 14 shows the compression ratio versus different problem sizes (small,
medium and large) of three different single-threaded benchmarks. From this figure, it is
obvious that for the swaptions and blackscholes benchmarks, the compression ratio is
nearly constant for the three aforementioned problem sizes. However, it decreases when
the problem size is increased for the bodytrack benchmark.

Increasing the problem size increases the uncompressed trace size. However, the
effect of increasing the problem size on the compressed trace size depends on the
application structure, i.e., the distribution of the non-contiguous addresses or dynamic
unconditional jumps across the application. Thus, if the compressed trace size increases in
the same rate as the uncompressed one, the compression ratio is sustained. Otherwise, the

compression ratio might increase or decrease due to increasing the problem size.

Compression Ratio

3500

3000

2500

2000

1500

1000

500

mSmall

Medium

= large

=

swaptions

blackscholes

bodytrack

Figure 14: Compression Ratio vs Problem Size for 3 single-threaded benchmarks.

122

123

The compression ratio achieved by the CET tool varies according to the
application’s structure, because it controls the content of the CET data. For example, large
number of non-contiguous memory addresses, dynamic function calls, dynamic
unconditional jumps, large number of conditional branches inside loop bodies etc. results
in a larger CET data and therefore lower compression ratio, and vice versa is true.

Table 8 lists the compression ratio archived by the CET tool in the two modes for
23 single-threaded benchmarks. Moreover, it shows the compressed and uncompressed
trace sizes. Our CET tool outperforms Ching-Wen Chen’s technique [33], which achieved
a compression ratio between 16.67 and 50. Chen’s technique has the same baseline trace
as our IA mode. This table shows that CET tool in IA mode achieved a better
compression ratio than Chen’s technique by at least one order of magnitude. Moreover, in
the full mode, the CET tool is still better by at least one order of magnitude for most of
the benchmarks. CET tool does not have any case worse than Chen’s technique.

Our CET tool in 1A mode outperforms Ching-Wen Chen’s technique because it
handles the instruction addresses in a different manner. Their compressed trace contains a
very long bit vector, one bit per instruction, to indicate whether the current instruction’s
address is sequential or not. Furthermore, it included the differences among the non-
sequential instruction addresses. On the other hand, our compressed trace captures the
program flow control and hence when the CET code is executed the instruction addresses

are regenerated on-the-fly.

124

Table 8: Uncompressed and Compressed Traces Size and Compression Ratio

Benchmark | Uncompressed | Compressed | Compressed CET CET
Trace Size Trace Size Trace Size | Compression | Compression
(MB) (MB) (MB) Ratio Ratio
(Full Mode) | (IA Mode) (Full Mode) (IA Mode)
swaptions 121298.2 262.96 131.40 461.2 615.4
Blackscholes 18721.4 6.27 6.27 2987.9 1992.0
bodytrack 153523.0 959.76 132.06 160.0 775.0
LU 5099.9 6.00 5.99 849.7 568.0
FFT 2486.6 2.64 0.76 940.1 2186.9
Ocean 5934.9 2.57 2.45 2304.8 16125
Radix 1066.1 4.05 0.04 263.5 20283.7
water.sp 3113.0 56.14 3.45 555 600.8
water.nsq 3525.4 61.70 3.98 57.1 589.9
cjpeg 580.0 8.82 0.28 65.6 1374.7
g721decoder 1649.2 3.78 3.10 436.1 354.2
g721encoder 5279.4 12.03 9.87 438.8 356.7
pegwit_d 106.5 3.78 3.10 49.8 22.9
pegwit_e 37.7 0.05 0.04 811.7 635.4
164.9zip 22888.2 463.32 33.97 49.4 449.3
179.art 22888.2 17.77 17.63 1288.1 865.3
176.gcc 22888.2 748.74 40.98 30.6 372.3
181.mcf 22888.2 272.70 44.42 83.9 343.5
186.crafty 22888.2 365.34 28.32 62.6 538.9

125

300.twolf 22888.2 649.48 37.40 35.2 408.0
183.equake 22888.2 636.22 9.18 36.0 1661.8
175.vpr 22888.2 634.85 30.91 36.1 493.7
256.bzip2 22888.2 499.72 31.82 45.8 479.5
Min 37.7 0.05 0.04 30.6 22.9
Max 153523.0 959.76 132.06 2987.9 20283.7
Average 22974.6 246.90 25.11 502.1 1633.9

126

Figure 15 compares the compression ratios achieved by the CET tool and the SBC
(Stream-Based Compression) technique [80] for a subset of SPEC CPU2000 benchmarks.
SBC uses a baseline trace whose entry is 38-bit whereas CET’s baseline trace entry is 96-
bit. This figure shows that in most cases both techniques achieved compression ratios
within the same order of magnitude. For some cases SBC is better and for other cases
CET is better. SBC compresses the trace in a different manner. It compresses both
instruction and data addresses by associating them with an instruction stream and stores
the stream identifiers, the data addresses strides, and their number of receptions in the
compressed trace. The stream identifier includes the starting address of the stream and the
stream length.

SBC tends to have a better compression ratio than the CET technique because it
has a variable stride length that ranges from zero to eight bytes. This variable stride length
saves storage significantly because the compressed trace will be very tight. However, this
variable stride length does not work for FPGAs because in FPGA the data have to be

aligned in order ensure quick access.

127

Compression Ratio

10000

1000

100

10

§
\ . .
| " N N % N N 3 ESBC
< CET
Q‘,}}Q Q‘,bé' qg_,b 6\6 %{C\ .,3\0\9\ ’Sl_G
& 3 -\’,\‘o % ¢ ng\' &
N v & o, &

Figure 15: Compression Ratio Comparison between the CET Tool and SBC Technique

128

Moreover, SBC targets a specific simple trace type, namely, memory reference

only, whereas the CET tool target a more detailed trace. On the other hand, the CET tool
is much faster the SBC technique, i.e., it has a lower compression and decompression
time. Figure 16 and Figure 17 shows the compression and decompression time for the
CET and SBC techniques. From these figures, we notice that CET is faster than SBC by
orders of magnitude. This is because CET compresses the trace on-the-fly, i.e., it profiles
the application and retrieves the required CET data. One of the most time consuming-
actions in CET compression is to check whether the addresses of a certain load/store are
contiguous. However, this step has been accelerated by checking a small fraction of these
addresses which is enough. Regarding decompression, the simple compressed trace
structure generated by the CET tool made the decompression stage very efficient. It just
implies executing the CET code and once a CET datum is required, it will be ready on the
front of the corresponding FIFO, i.e., decompression does not imply complex decoding

steps.

129

% SBC
mCET

50000500 7

ws

s

A 7

§§ %

10000

o —

m m -

-
-

(spuodas) awi] uoissasdwo)

%\\\\N\\g\“ .

Figure 16: Compression Time for CET and SBC Techniques

130

SBC
mCET

MAARRRRRNRRRRRIRRRRRNN
AN

Z//wﬁﬂﬁw/%

120

m o o o o o
S o0 o <t ™~
(spuodas) awi] uoissardwodraqg

Figure 17: Decompression Time for CET and SBC Techniques

131

Figure 18 shows the full mode compression ratio of nine benchmarks for different
number of threads, namely, 1, 2, 4, 8 and 16 threads. In this experiment, the total
uncompressed and compressed traces’ sizes are the summations of the uncompressed and
compressed traces’ sizes of all threads, respectively. In most cases, the compression ratio
remains nearly constant as the number of threads increases. Because the application is
distributed on the available threads, the total uncompressed and compressed traces’ sizes
do not change markedly. However, the compression ratio decreases for the ocean
benchmark. This variation is due to the variation of the CET data size, especially the

number of non-contiguous addresses, when the number of threads changes.

132

B 1 Thread
2 Threads

4 Threads

1 8 Threads

16 Threads

oney uoissaisdwon

Figure 18: Compression Ratio vs Number of Threads

133

6.5 Compression/Decompression Speed

Table 9 shows the trace compression speed achieved by the CET tool. The
maximum compression speed is 789.1 MIPS in the case of Bodytrack benchmark,
whereas the average speed is 186.4MIPS. Also this table shows that decompression much
faster than compression. This is natural because decompression just implies executing the
CET code. The compression speed depends on the benchmark’s structure, for example,
the longer the loop’s chains and addresses’ lists the slower the compression. This is

because CET tool will take more time to process such data.

Table 9: Compression/Decompression Speed (MIPS)

Benchmark Compression Speed | Decompression Speed

Swaptions

623.5 10599.2
blackscholes

62.9 65.4
Bodytrack

789.1 1219.5
164.gzi

gzIp 44.4 142.9

179.art

285.7 2000.0
181.mcf

22.2 35.7
186.crafty

19.4 125.0
300.twolf

40.8 153.8
183.equake

57.1 2000.0
175.vpr

46.5 333.3
256.bzip2

58.8 117.6
Min

19.4 35.7
Max

789.1 10599.2
Average

186.4 1526.6

134

CHAPTER 7

HYSIM TIMING MODEL

This chapter delves into the architecture and implementation issues of HySim
timing model. First, it presents the implementation technology we adopted to develop this
model, namely, Bluespec SystemVerilog (BSV) technology. Then, it explains the timing

model architecture and how the target machine performance is evaluated via this model.

7.1 Bluespec SystemVerilog (BSV)

We adopted BSV [63, 81, 82] to implement HySim FPGA-based timing model. It
is a modern, fully synthesizable language developed at MIT. BSV is a high level hardware
description language used in the design of electronic systems (ASICs, FPGAs and
systems). In BSV, the design behavior is expressed with Guarded Atomic Actions (rewrite
rules). BSV code is translated to Verilog via the BSC compiler. BSV allows the hardware
designer to focus on the overall architecture and leave the details to the compiler which is
designed and maintained by the RTL designers. Thus, BSV code is more on the
architecture level rather than on the RTL level. BSV was adopted to implement many of
the major FPGA-accelerated simulators, such as PROTOFLEX [10], HAsim [53], FAST

[47], and Arete [9].

135

136

BSV has a modular nature that allows designing the architecture as a set of
modules that are eventually turned into actual hardware. Each module can instantiate
other modules forming a module hierarchy, which simplifies the large and complex
systems. All BSV code should be organized into packages which are like namespaces.
The BSV compiler assumes that there is one package per file and the file name should be
<package name>.bsv. Each BSV module consists of zero or more sub-modules, rules to
operate on the sub-modules, and an interface to the surrounding hierarchy. The interface
comprises a set of methods to drive the signals and buses in and out the module.

A BSV rule basically consists of the rule condition and the rule body. The rule
condition is pure combinational logic. It evaluates to a single Boolean value. The rule can
fire only if this entry condition is true. The rule body consists of a set of actions that

operate on the state elements and it is also pure combinational logic.

7.1.1 BSV Coding Productivity

The level of abstraction in BSV makes the size of BSV code smaller than its
Verilog counterpart. Therefore, coding in BSV is more productive than coding in Verilog
because a shorter code will be written and hence fewer bugs appear. Table 10 lists the
BSV static code size and its corresponding auto-generated static Verilog code size
measured in the number of lines of code for all HySim’s timing model modules. The

number of code lines includes spaces and comments. This table shows that the BSV code

137
is smaller than the corresponding Verilog code for all modules. The BSV code is 3.34

times smaller than the Verilog code for the overall design.

138

Table 10: Comparison between the BSV Code Side and the Corresponding Auto-generated Verilog Code Size

Auto-generated Verilog to
BSYV Code Size
Module Name Verilog Code Size | BSV Code
(lines of code)
(lines of code) Size Ratio
Multi-core top module 268 1752 6.54
Tile top module 381 1602 4.20
Core 1456 5873 4.03
CET I-cache 145 436 3.01
CET D-cache 118 430 3.64
L1 D-cache model 406 953 2.35
L1 I-cache model 245 494 2.02
L2 cache model 613 1327 2.16
L3 cache model 749 1515 2.02
Router 314 1285 4.09
Total 4695 15667 3.34

7.1.2

139

BSYV to Verilog Compilation

The BSC compiler translates the BSV code to Verilog as follows:

Interface methods are mapped to port lists in the generated Verilog code in a
straightforward manner.

CLK and RST_N input signals are added to the generated Verilog code’s port list.
For each input port, enable and ready signals are added to the generated Verilog
code’s port list.

For each output port, ready signal is added to the generated Verilog code’s port
list.

State elements are mapped to the generated Verilog code exactly as they are in the
BSV source. There is no state elements inference during BSV compilation.

Each module in the generated Verilog code has a corresponding module in the
BSV source. Module hierarchy is directly recognizable from the BSV code.

Each rule has a control path comprises CAN_FIRE and WILL_FIRE signals in
the generated Verilog. CAN_FIRE signal is the output of the rule condition and it
indicates whether the rule can fire at this clock cycle. On the other hand,
WILL_FIRE signal is the scheduled version of the signal, i.e., when WILL_FIRE
is true, then the rule will certainly fire at that clock cycle.

The combinational logic in the rule condition and the rule body appears in the
generated Verilog code as it is in the BSV source except some logic optimizations.
The BSC compiler adds scheduler logic and data path (multiplexers) when more

than one rule is competing for the same sub-module/state element.

140
Figure 19 shows a simple BSV example to illustrate the BSV code structure and
how it is translated to Verilog. The example is a simple adder circuit; it receives two
integers, namely, numl1l and num2; stores them into registers, adds them, and finally
outputs the result. This example shows how the I/O ports are implemented via methods,
and how the internal registers are instantiated. Moreover, it shows the rule
performAddition. To fire this rule, both the implicit and explicit conditions should be
satisfied. This rule has one explicit condition, namely, the enable signal. Furthermore, it
has some implicit conditions related to the readiness of the registers’ values.
As mentioned before, the BSV interface methods are translated into the Verilog
module’s port list. Besides that, CLK, RST_N, enable, and ready signals are added to this
port list. Figure 20 shows the auto-generated Verilog code for this simple adder circuit

interface.

141

package SimpleAdder;
interface AdderInterface;

method Action putNuml(int numl);
method Action putNum2(int num2);
method Action putEnable(Bool e);
method int getSum();

endinterface

(* synthesize #)
module mkAdder (AdderInterface);

Reg#(Bool) en <- mkReg(False);
Reg#(int) numberl <- mkReg(@);
Reg#(int) number2 <- mkReg(@);
Reg#(int) sum <- mkReg(®);

rule performAddition(en == True);
sum == numberl + number2;
endrule

method Action putNuml(int numl);
numberl == numl;
endmethod

method Action putNum2(int num2});
number2 <= num2;
endmethod

method Action putEnable(Bool e);
en <= g;
endmethod

method int getSum();
return sum;
endmethod

endmodule: mkAdder
endpackage: SimpleAdder

Figure 19: A Simple Adder BSV Code

142

module mkAdder (CLK,
RST_N,

putMuml numl,
EN_putNuml,
RDY_putMNuml,

putMum2 num2,
EM_putNum2z,
RDY_putMNumZ ,

putEnable_e,
ENM_putEnable,
RDY_putEnable,

getSum,
RDY_ getSum};

input CLK;
inmput RST_N;

// action method putMumil
input [321 : ®] putNuml_numi;
inmput EN_putMuml;

output RDY_putNuml;

// action method putMNum2
input [31 : @] putNumZ2_num2;
input EN_putNum2;

output RDY_putNum2;

// action method putEnable
input putEnable_e;

input EN_putEnable;
output RDY_putEnable;

J// value method getSum
output [31 : 8] getSum;
output RDY_ getSum;

Figure 20: The Auto Generated Verilog Code of the Simple Adder Interface

143

Figure 21 shows how the state elements (registers) are translated to Verilog directly.

// register en
reg en;
wire enSD_IN, enSEN;

// register numberi

reg [31 : 8] numberl;

wire [31 : 8] numberi1SD_IN;
wire numberl1SEN;

/| register number2

reg [31 : 8] number2;

wire [31 : O] number25D_IN;
wire number2SEN;

// register sum

reg [31 : O] sum;

wire [31 : 8] sumS$SD_IN;
wire sumSEN:

Figure 21: The Auto Generated Verilog Code of the Simple Adder Registers

144

Figure 22 shows how the rule condition and body’s combinational logic is

translated to Verilog.

// rule RL_performaddition

/] rule scheduling signals assign CAN_FIRE_RL_performAddition = en ;
wire CAN_FIRE_RL_performAddition, assign WILL_FIRE_RL_performAddition = en ;
CAN_FIRE_putEnable,
CAN_FIRE_putNuml, // register en
CAN_FIRE_putNum2, o assign enSD_IN = putEnable_e ;
WILL_FIRE_RL_performAddition, assign enSEN = EN_putEnable ;
WILL_FIRE_putEnable, B ’
WILL_FIRE_puthuml, /{ register numberi

WILL_FIRE_putNum2; assign number1$D_IN = putNuml_numl ;

// action method putNuni assign number1$EN = EN_putNuml ;

assign RDY_putNumi = 1'd1 ; // register number2

assign CAN_FIRE_putNuml = 1'd1 ; assign number2$D_IN = putNum2_num2 ;
assign WILL_FIRE_putNuml = EN_putNuml ; assign number2SEN = EN_putNum2 ;

// action method putNum2 // register sum

assign RDY_putNum2 = 1'd1l ;
assign CAN_FIRE_putNum2 = 1'd1 ;
assign WILL_FIRE_putMum2 = EN_putMum2 ;

assign sum$D_IN = numberl + number2 ;
assign sum$EN = en ;

always@(posedge CLK)
// action method putEnable begin

assign RDY_putEnable = 1'd1 ; if (!RST_N)
assign CAN_FIRE_putEnable = 1'd1 ; begin
assign WILL_FIRE_putEnable = EN_putEnable ; en <= 'BSV_ASSIGNMENT DELAY 1'de;
numberl <= "BSV_ASSIGNMENT_DELAY 32'd0;
// value method getSum number2 <= "BSV_ASSIGNMENT DELAY 32'do;
assign getSum = sum ; sum <= "BSV_ASSIGNMENT_DELAY 32'de;
assign RDY_getSum = 1'd1 ; end
else
begin

if (en$EN) en <= ‘BSV_ASSIGNMENT_DELAY enS$D_IN;
if (number1$EN) number1l <= "BSV_ASSIGNMENT_DELAY number1SD_IN;
if (number2SEN) number2 <= "BSV_ASSIGNMENT_DELAY number2SD_IN;
if (SumSEN) sum <= “BSV_ASSIGNMENT DELAY sumSD_IN;
end
end

Figure 22: The Auto Generated Verilog Code of the Simple Adder Rule Scheduling and Execution

145

The above figures show the price of BSV coding simplicity, namely the huge size

of Verilog output even for such a small and simple example. Most of the output Verilog
code is simply wire assignment to other wires or constants. The FPGA logic synthesis tool
however, takes care of that. The code is further optimized to produce minimum HW on
the FPGA (through common sub-expression extraction, constants propagation, wire

renaming, and so on).

To demonstrate that the long auto-generated Verilog code eventually consumes the
same hardware resources and generates the same hardware modules as the manually
written counterpart, we manually wrote the Verilog code for this circuit that is shown in in
Figure 23. Then, we synthesized both codes (the manually written and the auto generated)
via Xilinx synthesis tool (XST) tool after setting Xilinx to optimize the design area. Table
11 shows the amount of FPGA resources consumed, and generated hardware modules for
the two Verilog codes. As this table shows, XST inferred exactly the same hardware from

these two codes and hence consumed the same FPGA resources.

module mkAdder(
input
input

input
input

input
input

input
input

CLK,
RST_N,

enable,
EN_enable,

[31:0] numl,
EN_numl,

[31:0] num2,
EN_num2,

output reg [31:0] sum,
output EN_sum

reg en, [31:0] number1, number2 ;

always @ (posedge CLK)

if(IRST_N)

begin
en == 0;
numberl <= 0:
number2 <= 0

if (en) sum <= number1l + number2z;

sum <= 8;
end
else begin
if (EN_enable) en <= enable;
if (EN_numl) number1l <= numil ;
if (EN_num2) number2 <= num2 ;
end
endmodule

Figure 23 : Simple Adder Manually Written Verilog Code

146

147

Table 11: FPGA Resources and Inferred Components are Identical for Both Manually Written and Auto

Generated Verilog Codes

Component

Count, auto

generated Verilog

Count, manually

written Verilog

Number of inferred adders

1 32-bit adder

1 32-bit adder

Number inferred of flip-flops

97

97

Number of slice LUTSs

33

33

148

7.2 Timing Model Architecture

HySim’s timing model is an FPGA-based processor-like model. It receives the
benchmark or application, in the compressed trace format (CET code + CET data), from
the software frontend and stores it in an external SDRAM memory on the FPGA board.
Then, it interprets and executes the CET codes to perform timing simulation. HySim’s
timing model can be configured to capture the timing characteristics of shared-memory
multicore target architecture. Since the functional part has already been offloaded to a
standard PC (the benchmark or application is natively executed), the timing model does
not have functional units, such as, ALUs and floating-point units. Moreover, it does not
need to store the input set of the benchmark. This significantly alleviates the hardware
resources required to implement such model.

HySim’s timing model decouples the target’s clock (the clock of the multicore
system being simulated) from the host clock (FPGA clock). Hence, a number of target
cycles can be simulated in a different number of host cycles (that could be more or less).
This decoupling helps in minimizing both the simulation time and the hardware area of
the timing model. For example, an operation may take one target cycle can be simulated
in multiple host cycles, but with less hardware resources. On the other hand, an operation
may take several target cycles can be simulated in only one host cycle, which reduces the
simulation time.

The timing model has a tiled architecture and can be comprised of any number of
tiles as long as they can be hosted by the available FPGA resources. These tiles are

interconnected via a ring interconnection network. Ring topology was selected for HySim

149
timing model because it is simple to implement, consumes minimal resources and more
tiles can be easily added by simply inserting them in the ring. Each tile models a target
machine’s processing core, a fraction of the memory subsystem, and a NoC router.
Moreover, each tile contains special caches to cache CET code and data.

Figure 24 shows a top level logical view of HySim’s timing model. Tile O contains
the master core which executes the master thread that contains the sequential and parallel
regions of the benchmark or application. The remaining tiles contain the worker cores
which are responsible for executing the worker threads, i.e., the parallel regions. The
timing model is able to simulate a target multicore machine with a number of cores less
than or equals to those in the timing model itself without a need for time multiplexing.

Figure 24 shows an abstract view of the HySim’s timing model.

150

Figure 24: A Top Level Logical View of HySim’s Timing Model

151

7.3 Timing Model’s Tile Architecture

As shown in Figure 25, HySim’s tile comprises a core model, CET code and data
caches, target architecture’s instruction and data cache models, and the NoC router. This

section details these components.

152

CET Data FIFOs

Address
—

Instruction

Data Address
£
2 g
g —
g 2
N
=]
1 :
g 2 o4
= =
& 2
Request Request &
2
-
o
=%
-
]
&0
=
w
1)
<8
Coherence Transaction g'
Incoming Outgoing
Coherence > Coherence
Transaction Transaction

Figure 25: HySim’s Timing Model’s Tile Overview

153

7.3.1 HySim Core Model (CET Core)

As stated before, HySim currently focuses on the “uncore” features of the
multicore architectures. Thus, CET core is an abstract core model of the target core. The
target “in-core” timing is abstracted via the base CPl. CET core executes the CET code in
order to evaluate the performance of the target machine. It has an execution pipeline of
three stages: fetch, decode and execute. The fetch stage retrieves the next instruction
from the CET code cache into the core’s instruction queue. If the CET instruction is not
found in the CET instruction cache, the whole timing model stalls until this miss is
resolved.

Execution in the CET core context is different from the normal known execution.
In CET core, execution means an on-the-fly decompression of the compressed execution
trace of the application, and taking the appropriate actions for each dynamic instruction to
predict the execution time of this application on the target machine. Therefore, CET core
has to be equipped with the necessary logic for fetching and decoding CET instructions.
Moreover, it should contain the architectural parameters registers (to store the values of
the target architecture parameters, e.g., base CPI and cache access latencies), the different
performance counters (registers), and the necessary logic required to interact with these
registers.

Figure 26 shows an abstract schematic view of the CET core. It contains the

required control and data paths to execute the CET code and evaluate the expected

154
execution time. Also, it contains a unit to schedule the execution of the loop nests of the

CET code. This loop scheduling unit will be detailed in the next subsection.

155

CET

Code

Cache

Fetch Decode Execute
| 1 |
1 1 1 1 1
L2 L3
Response Responses
INC
_
PC |€=— MUX l 1
Target
€
A
Stall, Is_Branch
e Stall Control CET
e Loop Data
Scheduling
e Performance q
CET Registers
I-Queue Decode >
Q Instruction . Update.
I ; Unit >
RO PO
R1 P1
R2 P2
R3 P3
Performance Architectural
Registers Parameters

Figure 26: CET Core Abstract Schematic

156

In order to execute the CET code and derive the target execution time, CET core
takes the appropriate actions for each dynamic instruction. These actions include updating
the performance counters, sending memory requests in the case of load/store to the target
cache hierarchy model, updating the program counter (PC) in the case of control
instructions, etc. Table 12 summarizes the different actions taken by the CET core for
different instructions. Loop instructions scheduling is explained in the next subsection.

Regarding target execution time derivation, each target processor core has a clock.
The application starts with the master thread, whose initial target clock is zero. Each time
a START instruction is encountered by the master thread, the next inactive CET core is
activated to simulate the new thread. The initial clock of this target core is set to the
current target clock of the master thread. For each barrier, (N-1) threads have the
instruction WAIT to wait on this barrier, where N is the total number of threads.
However, only one thread, namely the slowest one, has the instruction WAKE for that
barrier.

When the wake instruction is encountered by a thread, it sends a wake signal to
the other threads. This wake signal is a packet that contains the current target clock value
of the CET core running this thread. When this packet is received by a thread, it computes
the difference between the local target clock value and the value in the packet. This
difference is the waiting time of this thread on the synchronization barrier, and it is
accumulated to the local target clock. Then this thread is resumed. Thus, the tiles’ local

target clocks are synchronized on the synchronization barriers.

157

For each instruction, the CET core adds the base CPI to the target clock. This is
enough if the instruction did not result in miss events, e.g., D-cache or I-cache miss.
However, the CET core sends the address of each instruction to L1 I-cache to check
whether there is an instruction cache miss. Moreover, when a load or store instruction is
encountered, a cache coherence transaction is packed and sent to the L1 D-cache to check
whether there is a data cache miss. This transaction packet contains the initiator thread 1D,
time stamp, the memory reference, the operation type (read or write), and a field to store
the number of navigated hops.

After this transaction navigates through the memory hierarchy, it comes back to
the initiator core. Then the initiator core updates the target clock and performance
registers based on the transaction result and the target architecture parameters after taking
into account the overlapping between the timing of independent miss events. More details

on memory hierarchy navigation are provided later in this chapter.

158

Table 12: Actions Taken by CET Core for Different CET Instructions

CET Opcode Action(s)

ALU, Sys-Call Just increment the PC (Program Counter).

Add the displacement value (embedded into the CET
JUMP

instruction body) to the current PC.

1. Read the displacement value, which is the front of
displacements CET data FIFO.

JUMP_M

2. Dequeue the displacements FIFO.

3. Add this displacement value to the current PC.

1. Read the branch result, which is the front of branches
CET data FIFO.

2. Dequeue the branches FIFO.

BRANCH 3. If the branch result is taken, add the displacement value

(embedded into the CET instruction body) to the current

PC.

4. If the branch result is not taken, just increment the PC.

1. If this loop instruction is not on the top of the loop stack,
push an entry of this instruction on the loop stack. The
LooP entry comprises the loop instruction address (i.e., the

instruction ID) and the loop counter -1 (the loop counter

is embedded into the CET instruction body).

If this loop instruction is the top element of the loop
stack and its current counter is not zero, add the
displacement value (embedded into the CET instruction
body) to the current PC and decrement the loop counter
on the top of the loop stack.

If this loop instruction is the top element of the loop
stack and its current counter is zero (the loop is done),

pop off the loop stack and increment the PC.

LOOP-C

Same as LOOP except when the loop instruction is

added to the loop stack, its counter is taken from the

instruction body and then the increment (stride) value is

added to this counter and the instruction is updated.

LOOP-R

Same as LOOP except when the loop instruction is

added to the loop stack, its new counter value is fetched

from the LOOP-R CET FIFO, and then this FIFO is

dequeued.

LOAD/STORE

1.

Send a request to the L1 data cache. The request includes
the memory reference (embedded into the CET
instruction body) and the operation type (read or write).

When the response on this request arrives to the CET
core, it updates the target clock and performance

registers accordingly.

159

LOAD-C,

STORE-C

Send a request to the L1 data cache. The request includes
the memory reference (embedded into the CET

instruction body) and the operation type.

. Add the increment value to the address field of the

instruction body.

. Write back the updated instruction to the CET

instruction cache.

. When the response on this request arrives to the CET

core, it updates the target clock and performance

registers accordingly.

LOAD-NC,

STORE-NC

Reads the address difference, which is the front of the
addresses CET data FIFO.

Dequeue the addresses FIFO.

. Add this difference to the current address (embedded

into the CET instruction body).

Send a request to the L1 data cache.

. Write back the updated instruction to the CET

instruction cache.

. When the response on this request arrives to the CET

core, it updates the target clock and performance

160

161

registers accordingly.
1. This instruction appears in the master thread only.
2. It activates the next idle CET core to run the new thread.
START
3. The initial target clock value of the new thread is the
current target clock value of the master thread.
When it is encountered by a thread, it stalls until it
PAUSE
receives a wake signal.
1. When it is encountered by a thread, it sends broadcasts a
wake signal.
WAKE
2. When a wake signal is received by a thread, it resumes
execution.
1. The CET core becomes idle.
TERMINATE
2. The value of the target clock is sent to the master thread.

162

7.3.1.1 Loop Scheduling Unit

Although the loop counter value might be embedded into the CET code itself, it
cannot be decremented in the code body at runtime. Because the initial value of the loop
counter might be reused later in the case it is an inner loop. Also in the case of a loop-R
(as stated before, LOOP_R is an inner loop whose number of iterations across different
outer loop iterations does not follow a certain pattern, i.e., at each outer loop iteration, this
inner loop has a random number of iterations), the counter value is not embedded in the
code body because there is no single counter value. Thus, a stack is used to implement
CET loops. This stack is called the loop stack.

When a loop instruction is encountered and it is not on the top of the loop stack, an
entry of its counter and address is pushed on the loop stack. However, if the loop is on
the top of the stack, its counter is decremented and the PC value is set to the loop target
address, i.e., the address of the first instruction in the loop block. This is repeated until the
loop counter becomes 1. After that, the loop stack is popped off and the PC is updated to
the address of the instruction right after the loop instruction. The flowchart shown in

Figure 27 depicts how the loop scheduling unit works.

163

Start

$

I = Current Loop Instruction

I.Address ==

S.top.address

S.push(l.Counter-1,
I.Address)

S.pop

]

PC=PC+INC

S.top.counter ==

S.top.counter--

\ 4

PC = I.Target

/I-E.nd

Figure 27: Loop Scheduling Unit Flowchart

164

7.3.2 Timing Model’s Cache Memory

HySim’s timing model has an off-chip main memory on the FPGA board to store
the CET code and data of the application. The off-chip SDRAM is filled from the host
workstation through the Ethernet port. Moreover, each tile has on-chip caches to cache a
fraction of the CET code and data for quicker access. If the CET code and data of an
application do not fit in the CET main memory, although this is rare, then the whole CET
code and data are stored on the host PC disk and the FPGA board main memory works as
a second level cache. In this case, CET main memory is organized into pages and the PC
disk works as the virtual memory.

The CET code cache is implemented as a normal processor cache because the
instructions of the CET code are fetched in the same order as the original program. Thus,
the CET code cache is organized into cache blocks that are grouped into sets. On the other
hand, the CET data cache is implemented as FIFOs because CET data are consumed
sequentially. Since different CET data have different widths, they are implemented in
separate FIFOs, e.g., address difference FIFO and branch results FIFO. Figure 28 shows
a high level view of the timing model memory hierarchy.

The memory controller works as an interface between the CET caches and the
main memory. It receives instruction requests from the different tiles (in the case of CET
instruction miss) and schedules them to the main memory. Then it receives the responses
to these requests (instruction blocks) and passes them to the requesting tiles. Moreover, it
senses the IsEmpty and IsFull signals of all FIFOs of the different tiles. It brings the CET

data from the main memory and feeds them to the empty FIFOs. However, if none of the

165
FIFOs is empty, it pre-fetches CET data from the main memory and feeds it to the non-

full FIFOs.

Request Is Full, 1s Empty

CET Code Block Data Stream

Address

CET Instruction

OJA14 &red LAD

Is Miss?

Figure 28: CET Instruction and Data Caches

166

167

7.3.3 Target Cache Hierarchy Model

HySim supports a target cache hierarchy model of up to three cache levels. The
cache model only stores the data required for performance evaluation, such as: coherence
states and tags and the data required for cache replacement policy. The CET core issues a
request to the L1 data cache model when a load or store instruction is encountered.
Besides that, it issues a request to the L1 instruction cache model each time an instruction
is fetched.

If there is an L1 cache miss, then the request, either data or instruction, is
forwarded to the L2 cache level. The requested address is looked up into the L2 cache
model. If there is an L2 cache hit, the CET core adds the L1 cache’s tag access time and
the L2 cache’s data access time to the simulated time. On the other hand, if there is an L2
cache miss, a cache coherence transaction is formed and delivered to the router. The
router routes this transaction to the owner of the requested cache block across the ring,
and finally to the initiator CET core to update the simulated time.

If there is an L3 cache hit, then L1 and L2 caches’ tag access time and L3 cache
data access time is added to the simulated time. However, if there is an L3 cache miss, the
tag access time of L1, L2 and L3 caches is added to the simulated time in addition to the
main memory access time. Moreover, the NoC latency which is calculated based on the
number of hops traversed by the transaction (according to the target processor NoC
topology) is added to the simulated time as well. These penalties are added after

considering the overlapping among the independent events.

168

In the case of a cache miss, the cache model controller writes the tag and the
correct state of the missed cache block in any available cache line in the cache set to
mimic brining this data or instruction block from the lower level cache, i.e., the CET core
does not really need to wait for the cache access time which speeds up the simulation. If
there are no available cache lines in that set, then the replacement policy is applied to
evict a cache block.

When the coherence transaction reaches its target L3 slice, the cache coherence
protocol is applied. If this L3 slice has the requested block in a shared state, then it is the
owner of the requested block. Otherwise, it broadcasts the request on the ring to search
for the owner of the requested block, i.e., the tile which has the requested block in the
modified state. If invalidation is required, an invalidation request is broadcasted over the
ring and all copies of the block in L1 and L2 caches are invalidated.

Figure 29 shows a sample target cache hierarchy model for a 2-way set associative
L2 cache. It has three input queues: one to queue the instruction requests, another one to
queue the data requests and a third one to queue the coherence transaction requests. The
coherence transactions come to L2 to update coherence states, e.g., to invalidate or to
change from modified to shared state. The CET core stalls if any of these three queues

becomes full. However, these queues are large enough to reduce this stall time.

169

Instruction Data Requests Coherence
Requests FIFO FIFO Transactions FIFO

Selector ———— > %

Port A Port B

Set 0

Set 1

Set 2

Response: Coherence Transaction:
To the CET Core To the Router

Figure 29: Unified L2 Cache Simplified Model

170

7.3.4 Timing Model’s Router

The router module is the network interface of the tile. It is responsible for routing
the messages within the same tile and among different tiles. Figure 30 shows an
illustrative block diagram of the router. From this figure, this router has three input ports
and four output ports. Each input port has an input queue to store the incoming messages.
The messages from the different input queues are selected via a multiplexer on the router
in a round robin manner, i.e., every time a message from another queue is selected. The
input ports come from the following components:

1. L2 Cache: upon an L2 cache miss, a coherence transaction is packed and
delivered to the router to forward it.
2. L3 Cache: to forward any request issued by the home directory.

3. External port: receives messages from the previous tile.

The output ports are connected to the following components:

1. L1-Data and L2 Caches: to deliver the invalidation messages or coherence
transactions those change the cache block state from M to S.

2. L3: to deliver the coherence transactions to the home directory; which is
embedded into L3 cache.

3. CET Core: after the coherence transaction is served, it is delivered to its
initiator core. The initiator core adds any penalty incurred by this miss event.

4. External port which delivers messages to the next tile.

171

From L2

To L1, L2
To L3
To CET Core

External

Selector

Figure 30: Router Block Diagram

172

7.4 NoC Model

The current version of HySim implements a simple NoC model. Although the
timing model’s tiles are connected via a ring, it can model a target processor with a
different topology. For each coherence transaction, the initiator CET core of this
transaction tracks how many hops are navigated by this transaction according to the target
processor’s NoC topology. Finally, the total latency of the transaction is calculated
according to an analytical model that depends on the number of hops. Currently, the
latency is calculated by multiplying the number of hops by the hop latency. The latter is a

tunable parameter.

7.5 Multi-threading Management

As stated before, the CET tool generates separate CET code and data files per
thread even if multiple threads are assigned to the same core. In HySim, these threads are
assigned to the available target cores’ models statically, e.g., threads 0 and 1 are assigned
to core 0, and so on. The number of threads per core is an architectural tunable parameter;
it refers to the maximum number of threads that can be processed by a single processor
core concurrently. Nevertheless, the total number of threads should equal the number of

target cores times the number of threads per core.

173

7.5.1 Thread Scheduling on the Same Core

Multiple threads can be scheduled on the same processor core in three ways [83],
(1) interleaved, an instruction of another thread is fetched and fed into the execution
pipeline at each clock cycle, (2) blocked, the instructions of a thread are executed
successively until a long latency event occurs which results in a context switch, (3)
simultaneous, the instructions are simultaneously issued from multiple threads to the
execution units of a superscalar.

Because instructions can be fetched from only one thread at a time in interleaved
and blocked multithreading techniques, HySim simulates these techniques by partitioning
the CET code and data caches of the CET core among the simulated threads assigned to
this core. In other words, the CET I-cache and CET data FIFOs are divided into equal-
sized partitions such that each partition belongs to a different thread. However, CET core
keeps a distinct context per simulated thread, this context includes a distinct loop stack
and registers to store the CET instruction and data memory addresses. On the other hand,
the target architecture memory model remains as is regardless the number of threads
assigned to the core.

Figure 31 depicts how multiple threads (in interleaved and blocked techniques)
can be scheduled on a single CET core. Multiplexers are used to determine the address of
which thread should be selected to access the CET code and data caches. The control
signal of these multiplexers is the active thread ID. Thread IDs are stored in a circular

queue, called thread queue. The active thread is the one whose ID is the first element of

174
this queue. When a certain thread is done, its ID entry is pooped off permanently from
the thread queue and hence it will not be scheduled anymore.

In interleaved multithreading technique, the context switch occurs after fetching
each instruction. Thus, this technique is a fine-grained multithreading technique. In
contrast, in blocked technique, the context switch occurs when the active thread generates
a long latency miss event. At each context switch, the thread queue is popped off and the

popped off element (current thread 1D) is queued at the tail of this queue.

175

Thread Queue

o—
CET Data Out CET Instruction Out

®
Read address 0 Read address 0
Read address 1 Read address 1
Read address 2 Read address 2
Read address 3 Read address 3
Write address 0 Write address 0
Write address 1 Write address 1
Write address 2 Write address 2
Write address 3 Write address 3

CET Data In @ CET Instruction In

Figure 31: Threads Management in Multithreaded Target Cores (Interleaved and Blocked)

176

In contrast, simulating a simultaneous multithreaded core (i.e., hardware threads)
requires replicating the fetch unit; decode logic, loop stack, latency computing logic, and
CET code and data caches. Replicating the CET cache is necessary because each FPGA
block RAM has only two ports. Thus, replicating the CET cache results in more efficient
access rather than queuing the requests and serving them serially. Figure 32 shows a
simple schematic that depicts how a simultaneous multithreaded core can be simulated in

HySim.

Thread 0 CET Data

Data out 0
Datain 0)

Address in 0
Instruction in (0 s—

Instruction out 0

Address in (=—

Requests to Requests to
L1 D-cache L1 I-cache

Thread 1 CET Data

Data in 1 Data out 1

Address in 1
Instruction in 1 se—

Instruction out 1

Address in 1 —

Requests to Requests to

L1 D-cache L1 I-cache

Figure 32: Threads Management in Multithreaded Target Cores (Simultaneous)

177

178

7.6 Inter-Thread Interactions

As stated before, HySim targets coherent shared memory multicores. Therefore, it
models a cache coherence protocol to capture the effect of coherency on the derived
parallel execution time. There is a local target clock per core model. Thus, each core
model derives the execution time on the corresponding target core individually. This
execution time includes the different latencies a target core might experience, such as,
computation time, cache miss penalties, NoC latency, and synchronization barrier waiting
time.

For example, assume core 0 wants to read a data block ‘A’ that is not cached in
any of the caches. Core 0 will look it up in its private L1 data cache, then L2 cache, and
finally in the L3 cache and a read cache miss occurs at each level. After that, this block is
brought from the main memory to the private caches of core 0 (L1 and L2) and the shared
L3 cache in the “shared’ state assuming that the cache hierarchy is inclusive. Then, core 0
will account for the cache misses penalties across the whole memory hierarchy. After
block ‘A’ is cached, assume that core 1 wants to write to this block, it will experience a
write miss. However, this block has already been cached. Therefore, core 1 will get it
from core 0 rather than from the main memory, i.e., a core-to-core communication
happens. According to the cache coherence protocol, an invalidation message is
broadcasted to the other cores to invalidate block ‘A’ that is eventually brought to core
1’s private caches in the ‘modified’ state. The state of block ‘A’ becomes “invalid’ in core
0 private caches and ‘modified’ in the shared L3 cache. However, if core 1 wants to read

block ‘A’ instead of writing to it, it will experience a read miss in its L1 and L2 private

179
caches and a read hit in L3 cache because block ‘A’ has already been brought from the
main memory by core 0. In this case, core 1 accounts for L1 and L2 misses and L3 hit
penalties only, i.e., it does not account for the main memory latency because it did not
access the main memory in this case.

Regarding synchronization barrier, HySim models a counter-based barrier. The
barrier is encoded in the CET code by the wait instruction. When a thread Ti reaches a
barrier, it increments the barrier counter and registers the time stamp TSi (the current
value of the core’s local target clock). When the last thread reaches the barrier, it resets
the barrier counter and broadcasts the time stamp T to other threads. After a thread Ti
receives the time stamp T, it calculates the difference between its TSi and T. This
difference between the two time stamps is the barrier waiting time for thread Ti.

Moreover, this leads to synchronizing the local target clocks of all cores.

7.7 FPGA Implementation Details

HySim timing model has been implemented on a Xilinx Virtex 6 XC6VLX550T

FPGA board, Figure 33. The maximum FPGA frequency achieved was ~170 MHz.

180

-

[elewd

#1000

'

Figure 33: Virtex 6 XC6VLXS50T FPGA Board

181

Since the DDR3 controller consumed a significant part of the XC6VLX550T
FPGA resources and lowered the frequency on which the FPGA operates, we decided to
keep the CET main memory (the whole CET code and data of the simulated application)
on the hosting workstation disk while caching a significant fraction of these data on the
FPGA (CET caches). Of course, the larger the CET caches the faster the simulation. The
size of CET caches is tunable. It can be adjusted to fit the application subject to the
constraint that the total size of these CET caches is less than or equal the size of the
available BRAMs (BRAMs are blocks of SRAMs embedded in the FPGA).

Fortunately, we were able to cache all branches’ results on the FPGA.
Furthermore, for the majority of applications we profiled, the entire CET code size can be
cached too. Thus, the remaining CET data components that require caching are the non-
contiguous addresses, JUMP_M displacements, and random loop counters. Moreover,
since thread 0 (the master thread) contains both the sequential and parallel regions of the
application, it has a larger CET code and data size than the other threads. Hence, the CET
caches of CET core 0 (the master core which simulates thread 0) was made larger than the

CET caches of other cores.

7.7.1 Host-FPGA Communication

The Ethernet interface was used for the communications between the host
workstation containing the whole CET code and data and the FPGA running the timing
model. UDP (User Datagram Protocol) protocol has been adopted as the communication

protocol since it has a small header and can be routed safely through the network devices.

182

The communication circuit on the FPGA is explained in Figure 34. The Ethernet

core buffers the received packet at 125MHz speed, reads it from the buffer at the user
design speed, namely, 170 MHz, , buffers it again in the transmitting buffer (with
modification if needed) at the user design speed, and then sends a reply to the workstation
at 125MHz. The packet is thrown once received if it has a wrong CRC (Cyclic
Redundancy Check) or wrong MAC address. Thus, each user packet has an immediate

replay by a packet of the same size and same architecture.

183

Plug

LT

125Mhz x 8hits GMII 125hihz x 8bits

| =1Ghps | (PHYinterface] | =1Ghps |

Ethernet ‘

Receiver Transmitter

o, o ol

Buffer 3 Replier | Buffer

Figure 34: Data flow for the Ethernet Core.

184

Each packet carries a list of read/write commands. It can target a block of
memory, one word in memory, or a register. Once the packet is received by the
communication circuit on the FPGA, all of the commands inside it are executed via the
Ethernet core. For the write commands, it writes the data without modifying the packet.
However, if it is a read command, then it replaces the data that follows the command by
the read one.

The modification on the packet header includes interchanging the
source/destination MAC addresses, source/destination IP addresses, the source/destination
port addresses, and put the payload checksum to zero to indicate that it is not calculated.
Each packet is originally an Ethernet packet that contains a UDP packet which in turn
contains a serial of command packets. The total Length of the packet should be more than

50 bytes and could reach around one thousand bytes.

7.7.2 CET Cache Filling Circuit

We implemented a circuit on the FPGA to monitor and fill the CET caches. This
circuit has been called the CET cache filling circuit. As stated above, the communication
between the workstation and this circuit is done through the Ethernet. Figure 35 shows
how this filling circuit interacts with the workstation and the HySim timing model. In
addition to these signals shown in this figure, there are handshaking signals for each data
and address bus. The cache filling circuit interacts with HySim tiles as follows:

1. Initially, the CET code and data caches are filled at FPGA configuration time.

185
. The CET cache filling circuit maintains the current addresses of all CET
memories of each tile. i.e., for addresses data, conditional branch results, etc.

It keeps sensing the IsEmpty and IsFull signals of all tiles. Actually each CET
data FIFO on the tile has this pair of signals.

If the IsEmpty signal of a certain FIFO is set, then this FIFO is empty and the
filling circuit fetches the required data from the hosting workstation and updates
the data address associated with this FIFO.

If none of the FIFOs is empty, then the filling circuit pre-fetches CET data from
the hosting workstation for the FIFOS whose IsFull signals are zero, in a round
robin manner.

If the CET code size is not large and can be stored entirely on the FPGA
BRAMs which is a common situation, then the filling circuit has nothing to do
with the CET code cache because there will be no CET code misses. In this case,
the CET cache is just a normal memory that stores the CET instructions only,
i.e., there are no tags stored like in the normal caches.

However, if the CET code size is large and hence cannot be stored entirely on
the FPGA, which is a rare situation, then the filling circuit keeps listening for
CET instructions’ requests. Once it receives an instruction request, it fetches an
entire CET code block from the hosting workstation and delivers it to the

requesting tile.

186

CET CET
Code Data
Ethernet MAC
’
’
’
’
A A ’
’
Instruction Instruction Data Data /l
Block Address Block Address ’
’
’

______ -—-f-- b - /

Instruction Instruction
Instruction Is Empty Ipstruction

Address Address

Figure 35: High Level View of HySim Timing Model Interaction with the Main Memory

187

7.7.3 FPGA Resources Consumption

Table 13 shows the amount of FPGA resources consumed by sixteen tiles with and
without the CET cache filling circuit. These sixteen tiles model Xeon E5-2680 processor
[2]. This processor comprises two sockets. Each socket has eight cores. 32 KB L1 D-
cache, 32 KB L1 I-cache, and 256 KB unified L2 cache are private for each core. A 20
MB L3 unified cache per socket shared and distributed among the eight cores of each
socket. This table shows that the CET caches filling circuit consumes few FPGA

resources only.

188

Table 13: The Amount of FPGA Resources Consumed by One and 16 CET Tiles

Without CET Cache Filling

With CET Cache Filling Circuit

FPGA Resource Circuit
Used Utilization Used Utilization
One CET Tile

Number of Slice Registers 2171 0% 2,306 1%
Number of Slice LUTs 9964 2% 2,306 1%
Number of Fully Used LUT- 1704 16% 2,306 23%
FF Pairs

Number of Block RAM/FIFO 39 6% 43 6%

Sixteen CET Tiles

Number of Slice Registers 30342 4% 45,709 6%
Number of Slice LUTs 142594 41% 139,694 40%
Number of Fully Used LUT- 23894 16% 34,576 23%
FF Pairs

Number of Block RAM/FIFO 517 81% 544 86%

189

We notice that the FPGA block RAMs is the most critical FPGA resource. It is
recommended to utilize all of the available block RAMs to maximize the CET caches size
and hence maximize the simulation speed. Moreover, Table 13 shows that most of the
registers and LUTSs are still free; these free resources can be utilized to build larger CET
caches or more complex NoC and core models.

Table 14 shows the sizes of the different CET caches of a single CET tile. These
caches are large enough to minimize the CET caches miss rate. Moreover, the CET code
cache is large enough to accommodate the whole CET code for the majority of
applications which means no CET code misses. Fortunately, CET data are not required
per instruction, which means less pressure on the CET data caches. Another notice from
Table 14 is the size of LOOP_R counters cache is too small because they are consumed

very slowly, e.g., one loop counter might be sufficient for one million loop iterations.

190

Table 14: The Sizes of Different CET Caches for a Single CET Tile

CET Cache

Size

(Number of words x word width (bits))

CET Code Cache 13000 x 55
JUMP_M displacements 4096 x 17
Non-Contiguous Data Addresses Differences 8192 x 16

LOOP_R Counters

50 x 32

CHAPTER 8

HYSIM EXPERIMENTAL RESULTS

HySim has been evaluated using several benchmarks. This chapter delves into the
results of experiments we performed to evaluate HySim’s speed and accuracy. It presents
the simulation speed in MIPS and shows the ratio between the simulation and simulated
time. Moreover, it presents the absolute simulation accuracy relative to real existing
hardware execution and shows the ability of HySim to capture the performance trend of

the target architecture.

8.1 Experimental Setup

8.1.1 Target Machine specifications

HySim has been validated against a real hardware processor, namely Intel Xeon
CPU E5-2680 [2] on a *“ThinkStation” workstation. Many of the architectural
specifications of this machine have been gathered from the machine itself using Linux
commands and from some on-line documentations, such as [84]. Figure 36 and Figure 37
show sample snapshots of the output of some Linux commands which have been used to
retrieve the machine’s specifications. Then, HySim timing model has been configured to

capture the machine’s specifications listed in Table 15.

191

192

ayman@ayman-ThinkStation-D30:~% lscpu
Architecture: X86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32

On-line CPU(s) list: 0-31
Thread(s) per core: .

Core(s) per socket: 8

Socket(s): 2

NUMA node(s): |

Vendor ID: GenuinelIntel
CPU family: 6

Model: 45

Stepping: 7

CPU MHz: 1200.000
BogoMIPS: 5401.42
Virtualization: VT-x

L1d cache: 32K

L11 cache: 32K

L2 cache: 256K

L3 cache: 20480K

NUMA node® CPU(s): 8-31
ayman@ayman-ThinkStation-D30:~5
ayman@ayman-Thinkstation-D30:~5
ayman@ayman-ThinkStation-D38:~5% I

Figure 36: The Output of Iscpu Linux Command

193

ayman@ayman-ThinkStation-D30:~5 grep . /sys/devices/system/cpu/cpu®/cache/index*/*

ayman@ayman-ThinkStation-D30:~5$ I

Figure 37: Cache Hierarchy Architectural Specifications of "ThinkStation" Workstation.

194

Table 15 shows that the Xeon E5-2680 machine has two sockets interconnected

via a QPI (Quick Path Interface). Each socket has eight 2-way multithreaded cores. Each
core has a 32 KB L1 D-Cache, a 32 KB L1 I-Cache and a 256 KB unified cache. The
eight cores of each socket share a 20 MB L3 unified cache. This L3 cache is split into 10
slices. A ring interconnects the eight cores, the L3 cache’s slices, and it has stops for the

QPI and the memory agent of the socket.

Table 15: Target Machine Architectural Specifications

Parameter Value
Number of sockets 2
Cores per socket 8
CPU minimum frequency 1200 MHz
CPU maximum frequency 2.7 GHz
Threads per core 1
Architecture X86_64
Cache line size 64 Byte

L1 I-cache size

32 KB per core

L1 D—cache size

32 KB per core

L2 cache size

256 KB per core

L3 cache size

20 MB per socket

L1 instruction cache 8
associativity

L1 data cache associativity 8
L2 cache associativity 8
L3 cache associativity 20

L1 instruction cache latency

3 cycles data access (in the case of a hit),

195

1 cycle tag access(in the case of a miss)

L1 data cache latency

3 cycles data, 1 cycle tag access

L2 cache latency

12 cycles data, 3 cycles tag access

L3 cache latency

38 cycles data, 12 cycles tag access

Main memory latency

~175-350 Cycles [84]

Cache coherence protocol

MSI

NoC model (per socket)

Un-buffered ring

NoC across sockets QPI
Hop Latency 2 cycles
Reorder Buffer size 96

196

197

8.1.2 Real Hardware Execution Time Measurement

The execution time of the benchmarks on the existing real machine was measured

as follows:

1.

2.

The benchmarks were executed under Ubuntu 14.3 operating system.

The CPU frequency was fixed to 1200 MHz (the minimum frequency of the machine)
because the machine frequency can vary between 1200 MHz and 2700 MHz on
demand (for power and performance tradeoffs). We did that via cpufrequtils
software.

All measurements were taken in Linux Console Mode to alleviate the system
overhead on the measured execution time.

The benchmarks were run for 100 times successively and the running average was
considered.

The execution time has been measured using the Linux time command which shows
the amount of time spent in the application level code and system level code.

Hyper threading was disabled from the system setup to ensure that only one thread is
assigned to each core at a time.

Since disabling cache pre-fetching is not visible to the user in modern Intel processors,
we tried to approximately mimic the real machine by implementing a simple cache
pre-fetcher in HySim in which the next cache block is pre-fetched upon any cache

miss.

198

8.1.3 Benchmarks

HySim has been evaluated using a mix of Splash-2 workloads [76] and PARSEC
benchmarks suite [77]. Table 16 lists these benchmarks with their input set sizes used in

HySim’s evaluation.

Table 16: Splash-2 Benchmarks and Their Input Sets

Benchmark

Input Set Size

Swaptions

16 swaptions, 5,000 simulations

Blackscholes

4,096 options

LU-cont 512x512 matrix
FFT 256K points
Ocean-cont 258x258 ocean
Radix 256K integers
Water-sp 512 molecules

Water-nsq

512 molecules

199

200

8.1.3.1 Benchmarks Profiling

These benchmarks have been executed natively under our Pin-based CET tool to
generate CET code and data for them. Besides that, the CET tool generates a profile for
each thread. This profile includes the thread ID, the starting address of the CET code, the
starting address of the thread’s original code in memory to simulate the I-cache, the
number of CET instructions and CET data, etc. Figure 38 shows a sample snapshot of

such profile.

Initial

Initial

Hurker of

Humber

Humker

Number

Number

Hurker

Humbker

Humber

BC = 1344652036

CET Index = 1337

CET Instructicns = 1373

f Natively Executed Instructions = 997689748

f Load Imstructions = 31713749

f Store Imnsatructions = 15604940

f Syatem Calls = 145

I CET Addresses = 4372

branch results = 12776075

[jump m displacements = 727408

Figure 38: A Snapshot from a Sample Thread Profile

201

202

Table 17 shows the static CET code size in number of CET instructions. It is
noticeable that thread 0 (the master thread) has the largest CET code size and also it
usually has the largest CET data size. This is normal because the master thread contains
both the sequential and parallel regions of the application. This information helps the user
to customize the CET cache sizes in order to minimize or even eliminate CET cache
misses and hence accelerate the simulation. However, customizing such caches requires

re-synthesizing the design and hence reconfiguring the FPGA.

Table 17: CET Static Code Size for Different Threads

203

Benchmark | 1yr3q0 | Thread3 | Thread6 | Thread9 | Thread 12 | Thread 15
Swaptions 2992 2616 2612 2616 2616 2614
Blackscholes | 1706 577 571 571 571 571
LU 8130 1379 1464 1328 1393 1388
FFT 7743 1556 1563 1808 1564 1530
Ocean 17159 7089 6606 6950 7083 7234
Radix 7375 1256 1439 1398 1251 1291
Water-sp 13349 2657 2641 2627 2642 2659
Water-nsq 12895 2453 2466 2538 2503 2499

204

The CET tool can tell the user the number of dynamically executed instructions

per thread and the percentages of different instructions, e.g., the percentage of loads and
stores. This information helps the user in analyzing the simulation results, e.g., correlating
the simulated time fraction in data memory with the percentage of loads in the
application, and so on. Table 18 shows the number of natively executed instructions and

load/store percentages for thread O for different benchmarks.

Table 18: Number of dynamically Executed Instructions and Load/Store Percentages for Thread 0

Benchmark

No. Dynamic

Y%

Y%

No. Loads No. Stores
Instructions Loads Stores
Swaptions 663549677 | 204985515 | 31 40073815 6
Blackscholes | 102274425 21565922 21 10824091 11
LU 445635023 | 143393009 | 32 69568782 16
FFT 217280607 45676848 21 29356648 14
Ocean 518596741 | 214901848 | 41 42604059 8
Radix 93158278 37128167 40 16824188 18
Water-sp 272018359 57730032 21 27385908 10
Water-nsq 308050190 63417694 21 29879723 10

205

206
Furthermore, the number of instructions natively executed per each thread reveals the
scalability of the application and whether the workload has been well balanced.

Figure 39 and Figure 40 show how instructions are distributed among the different
threads. The horizontal bars are divided into rectangles such that each rectangle represents
the number of dynamic instructions per thread. These rectangles from left to right
represent threads 0, 1, 2, 4, etc. The workload is well balanced for some benchmarks,
such as, radix and ocean. However, the load is not well balanced for other benchmarks,
such as, FFT and LU, where thread 0 executed much more instructions than the other
threads.

Load unbalancing can be because that the application itself has significant
inherently sequential parts, or due to bad programming, i.e., the programmer could not
identify all parallelism in the application. Load unbalancing limits the application
execution speedup because significant part of the program has to be executed sequentially
regardless the computation power of the machine. The same thing applies to HySim, load
unbalancing increases the simulation time of multi-threaded applications because

significant part of the application is simulated sequentially.

Radix FFT
16 /B RE 16 W/ A AR
3 3
.E; B v//ARR//ARR// BBt/ /AR E WAl 7
i: W7] fl: & L S R)
RN — = Vs ieassens
0.00 5umjlcm_uu mcr,m&,mu_m 0 1cmclu]m mnl}uum
Instruction Count Instruction Count
Blackscholes Water-SP
16 /BB /R 16 /B R
3 3
.E; W T E B /AR RRL//RBE//RBR
flz W77, fl: s W R/
RN — RN —
1] Ei]I;]}l]] 1cml}cmu 1] mnémm ECH]}EH]]}D
Instruction Count Instruction Count

Figure 39: The Level of Parallelism for the Used Multi-threaded Benchmarks (I)

207

Water-nsq LU
s EREEEEEA 1s AR AR E/R A
: :
E B YRR AR R A E B Al R R
5 5
-E 4 [/ BEER s BaRs -E 4 [R s s /R
z z
2 s AR 2 Y AR
li] 200000000 400000000] 200000000 400000000
Instruction Count Instruction Count
Swaptions Ocean
s /WA BN/ 15 ER/a/R/R R
B B
E B /R AR A E B AR R
5 5
-E 4 [/ AEEna . s Bana -E 4 [BaRs. s AEER
z z
2 A AR RRRRa 2 A RN
li] 500000000] 200000000 400000000
Instruction Count Instruction Count

Figure 40: The Level of Parallelism for the Used Multi-threaded Benchmarks (II)

208

209

8.2 Simulation Monitor

As mentioned in chapter 7, HySim FPGA-based timing model has been
downloaded onto Xilinx Virtex 6 XC6VLX550T FPGA. Xilinx made a set of tools
implemented on the FPGA called ChipScope in order to probe he internal signals of the
design on the FPGA. Unfortunately, ChipScope occupies a significant area on the FPGA
and lowers the design frequency. Thus, we developed a software monitor as a part of
HySim’s software frontend to monitor the internal signals and registers of the design that
is being run on the FPGA. This software monitor interacts with the FPGA through its 10
ports and displays the values of the signals and registers dynamically. ChipScope was
used in the beginning to verify the software monitor, i.e., to make sure that this software
monitor displays the same values as ChipScope. Figure 41 shows a snapshot of
ChipScope. Figure 42, Figure 43, and Figure 44 show snapshots of the FPGA software

monitor.

210

ChipScope Pro Analyzer [new praject]

Elle Miew JIAGChain Device InggerSetup Warelorm Window Help

| Trigger Fun Mode: [Binnhs

T 0 0 0 - B

—
New Project P CGVLASSUT) A LA}
Syssliem Mosilor Cansale T o 85 o 00
§ UNIT.O MylLAD (L&) ‘HusSignal X o 1 L |
Triggar Setup
Wi /finish 4 1
Listing | /T4 1e0g grebane i 1
Bus Plot
§ UNIT T MyLAT (L8 /tileligetbone n 1
Trigger Getup | ftileZfyeibone i 1
it
Listing | stiledsgetbone b1
Bus Flot o
#iled gellnstreclionCounst Z1BTL(2187| pal:tal
- LINIT 2 MyLAZ (LA | e
Trigger Setun = fe11e0_mmber(Hops 176 170 170
; Imj‘”‘ | & ftilel_mmberUrLIDataCacheReaditisses 55| 8% 55
Bus Plot & fliled mudecd L1TsstcuctionC schellisses 93] 693 L]
AU s s =
x o= jtd el _mmber(/Dot acachei ases 55| &g 55
Simats: DCV: 0 UNIT: 0 |
‘o Dai Part | | = reaten_mmervmLatastructioncachersses sz 527 537
o= Trigger Ports | = ftilen_mmher(L Datacachetiases 54| 54 54
& ftilel_mumbertfLIInstructiontachelisses 269|269 2151
|° Aliled tolall2DatadccessTine 165 165] 185
o= jEi1ed_totall 2TeatructioniccessTine an71 4071 4071
| & ftilen_totallibataiccessTine 540 540 510
& fLiled tolallilsstructionfccessTime 2880
|} = med1en_tatairaistemorybatahreeaaTine 13935] 1393 13834
& ftiled Lot i 0| 0| n =
| I KN I ETHET I I
‘avaform captured Jul 17, 2015 3:33:50 AM Ha Ofd|r| &(X-D)s|]

Figure 41: ChipScope Snapshot

211

Main | Settings |
| il E'"Dty | Send | ‘ o ‘ ‘ e ‘ | Infialize BRAMs P1 ‘ Empty Memories Vector: Finished Cores Vector: C‘I‘)\mgﬂd gap&ar:z:«a‘ 0
Memories Files lihﬁaﬁzeﬁﬂms P2 ‘l 0000000000000000_0000000000000000_0000000000000000 ‘ ‘ 1111111111111111 | @ Pt @ s
CETmemory width: 11| Benchmark Folder: |C:\Users\amran\Desktop \waternsq 1 E2] Compare Rosit: Felse, theties = 33837
info Tile00 Tile01 Tie2 Tie03 Tie4 Tie05 Tile06 Tie07 Tie08 Tie03 Tie10 Tile11 Tie12 Tle 13 Tield Tie15

Instruction Cournt 37420593 | 18,075,382 | 18386826 18,066,612 | 18393649 18.068,363 | 18391.417| 18,074,127 | 18,366,950 | 17.982827 18.891.374 | 18514,031| 19435093 19,046,153 | 19.962.969 | 19.577.932
Number of Hops 977.231| 294429| 248166 217.258| 221922| 253847| 309275| 384260 405876 319906 255699 243247| 243766| 359900 412257| 674977
humber of L1 Data Cache Read Msses 1114% | 73469 76301 77034| 77637 B1558| 95465| 77.772| 83728 76488| 83881 82589 82182 79.360| 90677 75500
Number of L1 Instruction Cache Misses 344042| 99,166/ 100.608| 99.018| 100443| 98725 100.895| 99276| 108671| 106626 109512| 107.877| 110.418| 108737| 111460| 109.860
Number of L2 Data Cache Misses 48,045 2680| 10583 10861 10274| 11478 11150 11586 11726 11236 11529 10780| 11182 10115 9757 9,804
Number of L2 Instruction Cache Misses 278179 97128 98.210| 96951| 98111| 96716 98489 97274| 103266 101543 104008| 103258| 105090| 103642| 106260| 104968
Humber of L3 Data Cache Misses 2328 573 507 744 593 825 £36 840 601 1427 531 539 454 463 450 502
Number of L3 Instruction Cache Misses 160,206 216 133 401 181 246 31 1,141 137 1044 777 4202 3537) 15835 12434 35362
Total L2 Data Access Time 1083900 998.115| 1.017.399| 1.027578| 1.041267| 1085622| 1.298.175| 1.027.428| 1.115208| 1012488 1.119.867| 1709.475| 1098426 1.069.020| 1243071| 1.017.252
Tetal L2 Instruction Access Time 1822482 321954 330600| 321858 329313 320283| 331557 321.852| 390.873| 380874 394584| 379.059| 395190 387.351| 396780 388284
Total L3 Instruction Access Time 5535506 3781728 3826188| 3.769.460| 3820790 3747.390| 3338432| 3760557 4.023401| 3929.901| 4033779 3505204| 3595337| 3581083| 3781.814| 3068254
Total L3 Data Access Time 1844931 321123| 338424 394203 383489 423756 414666 427.884| 439.835| 396821 434237 403049| 423322 381058| 367473 358998
Tetal Main Memory Data Access Time 574918 150.699| 133341 132552| 155959| 216449| 170.161| 214082| 158063 328.224| 122821 107.304| 22881 74429 112301 132026
Total Main Memory Instruction Access Time | 36749516 | 49.970| 33927 47.866| 12887 94417 8342 36031 17.095| 243061 173580 934702 777.165| 3644654| 2893260 8.144321
Addresses Memory Reading address 1889271 1903635 1889223 1903467 1889197 1903580 1889254 1903572 1889312 1.50365¢ 1389400 1803817 1.889.430 8
Branch Memory Reacing Address 2061488 2106343 2053849 2107.596 2060243 210 2060.722 2099435 2034862 215559 | 2092149 2214463 2149442

Displacement Memory Reading Address 57138, 58393 57137 58384 57139 58 57122 58385 57137 58391 57,142 s Ak

Addresses Memory Wirting Address 10.027.161 | 10.027.161

Branch Memory Wiiting Address 10,027,161 43,066,32.

Displacement Memory Wting Address 10.027.161 | 10.027.161

Addresses Memory Data 10.027.161 | 43.066.32.

Branch Memory Deta 10,027,161

Displacement Memory Data 10,027,161

Figure 42: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (I)

tabPagel |tabPage2

212

‘ Fill Empty | | — ‘ ‘ a | rond ‘ Empty Memories Vector: Finished Cores Vector Tining Fepreserion

Memories on = | oooooooooooooooo_oooooooooooooooo_ooooooooooooooon || 1111111111111111 | O Stict ©) Hexadecimal

® Last ® Decimal

CET memory width D Benchmark Folder: [C:\Users\amrari\Deskiop) 16cores \Debug'waternsquared |

Info TlelD Tiedl Tiel2 Tie03 Tie04 TheDS Tie05 TisD7 TieOE Tie03 Tield Tiell Tiel2 Tie1d Tield Tiels
Instruction Court 136692

Number of Hops

Number of L1 Data Cache Read Misses | 188 104 104 104 104 104 1391 105 105 104 2843|4002 43 108 103 104
Number of L1 Instruction Cache Msses | 735, 776 775 776 77 776 1051 763 77 7 1144 778 77 77 fd 7
Number of L2 Data Cache Misses 139 104 104 104 104 104 163 105 105 104 119 52 42 105 103 E]
Number of L2 Instruction Cache Misses | 551 757 757 757 752 757 765 744 757 757 761 758 757 757 757 747
Number of L3 Data Cache Misses 12 n 1 13 33 8 159 n 70 7 75 106 24 10 94 10
Number of L3 Instruction Cache Missss | 152 275 1 0 128 2 14 126 23 239 2 0 0 [] 0 0
Total L2 Data Access Time 1152 312 312 312 312 312 18909 315 315 312 341217 [59406 216 315) n
Total L2 Instruction Access Time 4413 2556 2556 2556 2541 2556 6585 2517 2556 2571 8028 2574 2571 2571 2571 2591
Total L3 Instruction Access Time. 1520 19832 20407 25445 (24017 |30167 |29351 (25084 21061 17976 20504 (29484 29445 29445 (29445 | 23406
Total L3 Data Access Time 2524 3737 1375 3679 2280 3824 4476 3776 1597 3853 2778 2113 1254 3805 1291 3532
Total Main Memry Data Access Time | 28667 | 2893 263 1841 9153 2104 40239 [2893 237 1841 19462 26826 |5786 2630 2189|2630
Total Main Memory Instruction Access Time | 2367] 263 [] U0 |5 3682 B |0 [} 263]] 0 0 []
Addresses Memory Reading address

Branch Memory Reading Address 15033 ; 1 15033

Displacement Memory Reading Address 5 5 1 1465 g 1 1486

Figure 43: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (II)

213
[sewtcovmosomeMtossogmes |

Main | Settings |
E B EEE Covoasisizi] Qo O e O
| Initiaize BRAMs P2 | = = ® Last @® Decimal

CETmemory width: [11 | Benchmark Folder: |C/\Users\amran\Desktop'Radic-16 | compens et T, Hpickets = 1562

info Tiell Tl Tiel2 T3 Tiel4 Tieds TieDs Til7 Tl T3 Tield Tiell Tl2 Tie13 Tield Tils
Instructon Cour 6699102 | 6181906 6.330.950| 6240484| 6478.723| 6240575| 6387.631| 6298,069| 6626355 62404%8| 6388404 6297595 6535774 6297000 | GAd6038| 6354605
Number of Hops 41| 15597 14468| 23306 12445 15000 1025093 19824 22011| 17609 15296 747.843| 751081 860660 19.698| 1330707
Number of L1 Dats Cache Read Misses s452| 10871 12088 1158 45322 1041| 45030| 11728] 1133%| n2e2| 1ie43] 11280) 14z 1321 11918] 11@m
Number of L1 Instruction Cache Misses 9331 5,500 5729 5,680 5,800 5,693 375124 5721 5875 5,684 5759 375,200 374,950 375207 5,795 375,156
Number o L2 Data Cache Msses 78 57 799 570 576 82 579 577 576 689 827 6e8) 576 803 575
Number o L2 nstruction Cache Misses 8827| 5500 5729 5680| 5800 5693 370084| 5721 587%5| 5634 5759 370160| 363950 370167 5795 316
Number o L3 Data Cache Msses 618 4 a2 413 43 s w2 523 P 408 24 0 P 417 533 419
Number o L3 Instruction Cache Misses 272 214 HIE 82 87 1 520 190 7 62 142 0 s £l a0
Total L2 et Access Time 1253344 157853| 171432] 166530| 672818 1s6751| 668502 168996 163,113| 160862 164721 160844| 162730 162303 169082 167520
Total L2 Insruction Access Time 34041 18500) 17987) 17040| 17400 17078 1785852 17163 17625 17.052] 17277) 1186080| 1185450 1186101 17.385| 1125948
Total L3 Insruction Acosss Time 262585 208234 222087| 1e8s18| 22322 219504 14432212 205139 223537 221183) 222764 14432122| 14425401 14239469 223665 | 14411256
Total L3 Data Access Time 10826 5407 14887 5308 6163 15867 613 733 6056 10238 15862 10601| 11713 6042 160s4| 6140
Total Main Memory Data Access Time 106597 123873 111512) 1083%6| 1137 115383 1130s0] 2893 113353 106515 111512 15720| 112301 108882 69163| 107830
Totsl Man Memory bstruction Access Tme | 599114| 55230 10.257| 84160| 15760 18147 5260| 145965 42863| 4208 12361 24985) 20514 768486 10520 85001
Adresses Memory Reading address 142871 131720 131873 132070| 131s4s| 131811) 131893 131885| 131874 131958 131824| 131821 131828 131847| 131824
Branch Memory Reading Address 201360 131511 148025| 139752| 184400 139748| 156158 147963 180807 139741 156178 147.342| 172671 147900 164382| 156108
Displacemert Memory Reading Address 66350 65648 65650 65637 65682) 65657 65664 65640) 65661) 65631| 65650 G5634| 65668 65645 65663| 6563
Addresses Memory Witing Address 10,027,161 | 10,027,161

Branch Memory Witing Address 10,027,161 |43.086.32...

Dsplacemert Memory Witing Address | 10.027.161 | 10,027,161

Addresses Memory Data 10,027,161 | 43,066,32.

Branch Memory Data 10,027.161

Dplacemert Memory Dats 10027161

Figure 44: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (III)

214

8.3 Evaluation of Simulation Speed

HySim simulation speed has been expressed in MIPS, which refers to the
simulator throughput, i.e., the average number of instructions that can be simulated per
second. Equation 1 shows how simulation speed in MIPS in calculated, and equation 2
shows how to calculate the simulation time.

Figure 45 shows HySim’s simulation speed in MIPS for different number of
threads, namely 1, 2, 4, 8, and 16 threads. For 16 threads, the minimum speed was
380.370 MIPS for FFT benchmark, the maximum speed is 2204.257 MIPS for ocean
benchmark, and the average speed is 1445.35 MIPS. The standard deviation of the
simulation speed for 16 threads is 732.43 MIPS. On the other hand, the maximum speed

achieved by the software simulator counterpart, namely Sniper [39] is 2 MIPS.

i i o Fofalmstruchon Lownt
Fhrwelotfun Speed o MIFY = T ey e a)

— Mumderof FFGA Creliz
Fimulatfon Time = TFEA Femmmey @)

The low MIPS of the multithreaded version of FFT benchmark is interpreted by
the lack of load balancing. In 16-threaded FFT version, the number of instructions
executed by threads O is larger than the number of instructions executed by the worker
threads by at least eight times. Figure 45 shows that the simulation speed is doubled by

doubling the number of threads for the well balanced benchmarks, such as, radix,

215
blackscholes, oceans, etc. However, the simulation speed increases slightly by doubling
the number of thread for the poorly balanced threads, such as, LU and FFT. Moreover,
HySim simulation speed depends on the size of CET data of the application. Applications
with larger CET data are expected to have longer simulation time because more time will

be wasted on fetching these data.

216

Simulation Speed (MIPS)

:

:

1000

Simulation Speed (MIPS)

w
8

*, 1 Thread
8 2 Threads
=4 Threads
8 Threads
B 16 Threads

Figure 45: HySim Simulation Speed

217

In addition to the MIPS metric, HySim simulation speed has been measured as a

ratio of the simulation time over the simulated time. Equation 3 shows how the simulated
time is calculated. The lower this ratio the faster the simulator because this means that the
simulation time is closer to the execution time on the real machine. Table 19 and Table
20 list the simulation and simulated time in seconds and in number of clock cycles for one
and sixteen threads, respectively. The average simulation to simulated time ratio for a
single-threaded application is 26.27 while it is 7.48 for sixteen threads. This is normal
because HySim timing model is parallel, and hence in the multi-threaded version of an
application, the workload is divided among the available simulation threads and therefore

takes less time to simulate.

Numdar of TorgetCycles

Fhmulated Thne = Torget MochingFraganaey, " 3)

Table 19: Simulation and Simulated Time and Clock Cycles for a Single Thread

Simulation | Simulated
No. FPGA | No. Target
Benchmark Ratio Time Time Ratio
Cycles Cycles

(seconds) | (seconds)
Swaptions 911358394 201794465 4.52 5.3609 0.1682 31.88
Blackscholes | 125468628 95855246 131 0.7381 0.0799 9.24
LU 662625225 84166002 7.87 3.8978 0.0614 63.44
FFT 275808652 86269686 3.20 1.6224 0.0719 22.57
Ocean 621097304 387463764 1.60 3.6535 0.3229 11.32
Radix 108032053 75697089 1.43 0.6355 0.0631 10.07
Water-sp 395483683 91819472 4.31 2.3264 0.0765 30.40
Water-nsq 445211870 100646875 4.42 2.6189 0.0839 31.22
Min 1.31 9.24
Max 7.87 63.44
Average 3.58 26.27

218

Table 20: Simulation and Simulated Time and Clock Cycles for 16 Threads

219

No. FPGA | No. Target Simulation | Simulated
Benchmark Ratio Ratio
Cycles Cycles Time Time

Swaptions 56968656 | 27593286 | 2.06 0.3351 0.0230 14.57
Blackscholes | 8539428 63287898 | 0.13 0.0502 0.0527 0.95
LU 102902102 | 77895629 | 1.32 0.6053 0.0649 9.32
FFT 97313098 | 46269866 | 2.10 0.5724 0.5724 1.00
Ocean 41751597 | 41746044 | 1.00 0.2456 0.0348 7.06
Radix 8099282 15450406 | 0.52 0.0476 0.0129 3.70
Water-sp 43840261 | 27638288 | 1.59 0.2579 0.0230 11.20
Water-nsq 55641136 | 32615519 | 1.71 0.3273 0.0272 12.04
Min 0.13 0.95
Max 2.10 14.57
Average 1.31 7.48

220

8.3.1.1 HySim’s Speed Compared to Other Simulators

The FPGA-based simulator, namely HAsim [53] used a simulation speed metric
called FMR (FPGA-cycle-to-Model-cycle Ratio) which means the ratio between
simulation and simulated time expressed in number of clock cycles. FMR is calculated
according to equation 4. This metric tells us the average number of FPGA cycles that is
needed to simulate one target cycle (model cycle). Thus, it can be used to measure the
simulation speed although the FPGA and the target machine work on two different
frequencies, in this metric, the lower the FMR the faster the simulator. HAsim reported
the minimum, maximum, and average FMR for a single-core and 16-cores target
architectures for a range of SPEC benchmarks. Although we used different benchmarks,
we compared our minimum, maximum, and average FMR with HAsim as shown in Table

21.
FME = .-'f."umttrr'ﬁ EFGEACycles

e TR e e @)

This table shows that HySim is on average 3.07 times faster than HAsim for a
single thread and 61.07 times for sixteen threads. For a single thread, HySim is faster
because HAsim is an execution-driven simulator and it has a detailed core model and
hence significant part of the simulation time is spent on the core micro-architectural
details and on functional execution (computation, data read misses, etc.). Moreover, in 16
threads, HySim outperforms HAsim much more than in the single-thread version. This is
because HySim does not use time division multiplexing and hence the sixteen threads will
be simulated simultaneously. In contrast, in HAsim, only a number of threads equals to

the number of pipeline stages can be active simultaneously.

221

Table 21: FPGA Cycles to Target Cycles Ratios for HAsim and HySim

Single Thread Sixteen Threads

Min Max Average Min Max | Average

HAsim 5 27 11 16 218 80
HySim 1.31 7.87 3.58 0.13 21 131
HAsim/HySim
3.82 3.43 3.07 123.08 | 103.81 61.07

Ratio

222

HAsim’s performance was also reported as the number of target cycles that can be
simulated in one second. They referred to it as the simulation rate and it is measured in
hertz. They reported the minimum, maximum, and average values. This simulation rate
has been converted to MIPS assuming that that target architecture completes an average
of one instruction per one clock cycle. Since HAsim used Virtex 5 LX330T FPGA, we
synthesized our design on this FPGA in addition to the Virtex 6 one. The frequency of
HySim on Virtex 5 FPGA was ~137 MHz. Table 22 shows that HySim is much faster
than HAsim, especially for the 16 threads version. Again, HySim outperforms HAsim
because HySim does not use time division multiplexing, it does not have a detailed core

mode, and the functional part is executed prior to timing simulation.

223

Table 22: HySim's Simulation Speed in MIPS Compared to HASim

Single Thread Sixteen Threads
Min Max | Average Min Max Average
HySim
114.33 | 146.60 | 129.25 380.37 | 2204.26 | 1445.35
(Virtex 6 FPGA)
HAsim 1.84 95 4.54 0.16 3.2 0.625
HySim/HAsim
62.14 | 1543 28.47 2,377.31 | 688.83 | 2,312.56
Ratio
HySim
92.14 | 118.14 | 104.16 306.53 | 1776.37 | 1164.78
(Virtex 5 FPGA)
HAsim 1.84 95 4.54 0.16 3.2 0.625
HySim/HAsim
50.08 | 12.44 22.94 1,915.81 | 555.16 | 1,863.65
Ratio

224
In HAsim [53], the authors did not report accuracy results and they didn’t claim
cycle- accuracy. However, Arete [9] FPGA-based simulator was claimed as a cycle
accurate simulator. Although Arete is more accurate than HySim, it is much slower. Arete
speed was up to 11 MIPS for a single thread and an average of 55 MIPS for eight threads.
On the other hand, HySim has a maximum speed of 118.14 MIPS for a single thread and
an average speed of 663.23 MIPS for eight threads when it was synthesized on a Virtex 5
FPGA. Moreover, Arete is much more expensive than HySim in terms of FPGA
resources. In Arete, two PowerPC core models require an entire Virtex 5 FPGA. This is
because Arete is an execution-driven full system simulator and hence it requires a plenty
of FPGA resources to have a realistic model of the target architecture.
RAM Gold [46] is another FPGA-based simulator. It simulated a target machine
of 64 cores at almost 50 MIPS. On the other hand, HySim’s average speed was 1445.35
MIPS when it simulated 16 cores. As we noticed before, HySim’s speed in MIPS
increases by increasing the number of target cores. Thus, it is expected to increase by at
most four times when the target architecture is extended to 64 cores. Although RAM
Gold is much slower than HySim, it sacrifices a degree of accuracy. The NoC model and

the cache coherence are missing from RAMP Gold.

225

8.4 Evaluation of Simulation Accuracy

8.4.1 Absolute Accuracy Relative to Real Hardware

Figure 46 shows HySim’s absolute accuracy relative to the average real hardware
execution time. The black bold horizontal line in this figure represents the average
application-level hardware execution time. This figure shows that the execution time
predicted by HySim is in agreement with the average real hardware execution time. The
average absolute error for one and 16 threads is 14% with standard deviation 7.5% and

8%, respectively.

HySim Accuracy Relative to HW Execution

Time
160%
140% :
120% R /=0 E R —=
100% - =—J —— — :
4 = = = A :,:1
80% = i . E - o =
60% - = = R e R
40% = v e wes R
20% = v e wes R
0% - =] = 5 = o) u} =]
S & N & & N &
Ay S <@ Y o o
o 2 <% 'DQ
F oo @ &
Q}’b

1Thread

= 2 Threads
@ 4 Threads
m 8 Threads

%, 16 Threads

Figure 46: HySim Absolute Accuracy Relative to Real Hardware (Application Level)

226

227

Figure 47 and Figure 48 show HySim’s simulated time relative to the minimum

and maximum real hardware execution time. This figure shows the amount of variation in
the measured hardware execution time for the 100 successive runs. For some cases, the
maximum execution time is almost twice the minimum one. However, in almost all cases,

HySim simulated time falls within the range of the measured hardware execution time.

Radix

1 2 4 3
No. Threads

18 1 2 4 B8
No. Threads

228

Blackscholes

Water-SP

1 2 4 3
No. Threads

Time {yeconds)

18 1 2 4 B8
No. Threads

B Min HW (App + Sys)

B HySim + 5ys « Max HW (&pp + 5vs)

Figure 47: Simulated Time (HySim + Sys) Relative to the Min and Max Total Hardware Execution Time (I)

229

Water-nsq

0.12

0.10

N
>
\

1 2 4 B 16
No. Threads

1 2 4 8 16 2 4 8 16
No. Threads No. Threads
Swaptions Ocean
0.35
0.30 N
-E 0.25 *
5 N
@ 020 ™ 3
N
~— 0.15 ™
N
,

2 4 B 16
No. Threads

B Min HW (App + Sys) M HySim + Sys

W Max HW [App + 5ys)

Figure 48: Simulated Time (HySim + Sys) Relative to the Min and Max Total Hardware Execution Time (II)

230

Table 23 lists the absolute error values for one and sixteen threads of HySim,
Interval (Sniper), and one-IPC models Although HySim and Sniper simulated different
target architectures. It shows that HySim has the smallest average absolute error.

This table shows that HySim has a better average absolute error than Sniper
although both simulators nearly have the same level of abstraction. On the other hand,
Sniper has better absolute accuracy than HySim for some benchmarks as shown in this
table. Moreover, Sniper has 100% accuracy for some cases although it has a high level of
abstraction, which looks weird at first glance. These observations can be interpreted by
the fact that these reported error values are relative to the average measured execution
time. We had 100 runs and Sniper had 30 runs. As we have seen before, the measured
execution time can vary for the successive runs. Therefore, we reported HySim’s time, the
minimum and maximum measured hardware execution time.

In addition to that, for absolute error computation, we subtracted the system time
from the measured hardware execution time to ensure apples-to-apples comparison
because HySim is an application-level simulator. However, in Sniper, they didn’t mention

if their measured time includes the system time or not.

Table 23: HySim Accuracy Relative to Interval and One-IPC Models

231

1 Thread 16 Threads
Absolute Error Relative to Hardware Absolute Error Relative to
(%) Hardware (%)
Benchmark
Interval Interval
One-IPC One-IPC
HySiM (Sniper) HySiM (Sniper)
[39] [39]
[39] [39]
LU 14 30 290 19 15 140
FFT 16 0 310 18 0 280
Ocean 15 0 290 15 20 190
Radix 2 10 25 17 50 60
Water-sp 17 3 90 11 15 70
Water-nsq 26 90 110 17 50 130
Average 15.00 22.17 185.83 16.17 25 145.00

232

McSimA+ is a many-core software simulator with detailed microarchitecture
modeling. Table 24 compares HySim accuracy with McSimA+ for five Splash-2
benchmarks. For this set of benchmarks, McSimA+ looks a little bit more accurate due to
the detailed microarchitecture model, although they reported an average absolute error of
14.2% for a larger set of benchmarks. However, they did not report McSimA+ speed
which is expected to be much lower than HySim’s speed because McSimA+ is a pure

software simulator and it has a detailed microarchitecture model.

Table 24: Comparison between HySim and McSimA+ Accuracy

1 Thread
Benchmark Absolute Error Relative to
Hardware (%)

HySiM McSimA+
LU 14 5
FFT 16 0
Ocean 15)
Radix 2 7
Water-sp 17 20
Average 12.8 8

233

234

8.4.2 Speedup Accuracy

Speedup accuracy is another metric; it shows the capability of the simulator to
capture the performance trend of a certain application on a certain machine. Speedup in
this context is defined as the execution time of the single-threaded version of the
application divided on the execution time of the multi-threaded version. In other words, it
is sequential time divided by the parallel time. Running the application using different
number of threads and then calculating speedup is an important experiment to the
computer architects and software designers. It tells how scalable the application on a
specific machine is. To see how much HySim is accurate in detecting the performance
trend of an application on a certain machine, we computed the speedup using the
measured real hardware execution time and the execution time derived by HySim.

Figure 49 and Figure 50compares between the speedup on the real hardware and
the speedup measured by HySim for application-level code. Moreover, Figure 51 and
Figure 52 show the same thing but for system-level code. We noticed that HySim nearly
detected the speedup curve in most cases.

The low speedup for some benchmarks such as FFT and LU can be interpreted by
the load unbalance. Moreover, in the majority of the benchmarks, the speedup drops when
the number of threads is increased to sixteen. This is normal because the sixteen threads
will be distributed across the two sockets of the processor and hence the coherence
transactions will incur longer delays, furthermore, the larger the number of threads the

longer the waiting time on the barriers.

\

Speedup
(¥4
Speedup

Radix FFT

. .l

=]

g

0 0
1 2 4 3 16 1 2 4 3 16
MNumber of Threads Number of Threads
Blckscholes Water-SP
4 4
3 4 &
3 3 r
o a3
22 3 /
% 2 §° J 4
w , w7
11 \ 1 ——I/
1 1
o} 0
1 2 4 3 16 1 2 4 3 16
Mumber of Threads Number of Threads

=#=Hy3im =fl=HW [App)

Figure 49: Simulated Speedup Accuracy Relative to Real HW Speedup (Application Level) (I)

235

236

Water-nsq LU
4 2
2 2
s |
,’ 1
a3 // o) e Ny
= = ‘._
T2 / T1
g g
[T Wi
1
1 .
0
1 0
0 0
1 2 4 B3 i6 1 2 4 3 16
Mumber of Threads MNumber of Threads
Swaptions Ocean
3 10
7 9 A
3
B
.s /4 .
'E 4 /// 'E 5 /f
g 2, /{
[W
5 V/
2
2
17 1 —j
0 0
1 2 4 B3 i6 1 2 4 3 16
Number of Threads Number of Threads
=b=Hy5im =f=HW (App)

Figure 50: Simulated Speedup Accuracy Relative to Real HW Speedup (Application Level) (II)

Radix FFT
4 2
3 1)"‘_
3 1 /
: / .
- -
1
1 _4./ o
1 0
0 (8]
1 2 4 a2 16 1 2 4 B8 16
Number of Threads Mumber of Threads
Blckscholes Water-SP
4 4
3 3
3 /\ 3 .. E\:——
2, 2, /
- -
i ? N :‘; 2 4
1 1 —/
1 1
0 (8]
1 2 4 3 16 1 2 4 3 16
Number of Threads Mumber of Threads

=#=HySim + Sys =fl=HW (Total)

Figure 51: Simulated Speedup Accuracy Relative to Real HW Speedup (System Level) (I)

237

Water-nsq LU
4 2
3 1 - 1
3 " 1 :7\'\\\
-
2, /4 N \Y
E T1
B2 £
w wol
11 0
1 o
0 o
1 2 4 8 16 1 2 4 8 16
Number of Threads Number of Threads
Swaptions Ocean
7 4
6 /;:-'7 2
< 3
. / ‘s 7/
g /4 i / ¥
ks L
2 1 ——l/
17 1
0 o
1 2 4 8 16 1 2 4 8 16
Number of Threads Number of Threads
=#=Hy5im + Sys =lll=HW (Total)

Figure 52: Simulated Speedup Accuracy Relative to Real HW Speedup (System Level) (II)

238

239

8.4.3 Base CPI Effect on Speedup

Since the base CPI is a tunable parameter, improper values of this parameter are
expected to affect the absolute simulation accuracy. We measured the effect of base CPI
variations on the speedup. We made a £25% variation in the base CPI values. Then, we
calculated the speedup for the three values of CPI (original CPI, CPI+, and CPI-). Figure
53 and Figure 54 show that the speedup is nearly constant when the base CPI is changed

because it is changed by a constant value for each number of threads.

Radix FFT
B 3
5 f 2 ﬁ
4
= s2
3 P 3
g 2,
(%] [%]
2
1 4 1
0 0
2 4 3 i6 1 2 4 3 i6
Number of Threads Number of Threads
Blckscholes Water-SP
4 4
3 4 ﬁ
= &
3’ 3, /
B2 £
w w3
1 1 4
1 1
0 0
2 4 3 i6 1 2 4 3 i6
Number of Threads Number of Threads
== CP| =lll=CPH =2=CPl

Figure 53: CPI Effect on Speedup (Application Level) (I)

240

241

Water-nsq LU
4 2
2 2
5 /~a ;
2 ,/ = N
T2 T1-
g B
w2 w
1
1 —
0
1 0
0 0
1 2 4 8 16 1 2 4 8 16
Mumber of Threads Number of Threads
Swaptions Ocean
g 10
- /-—I_ 9
8
6
/ 7
25 2 s
Eq / 'E- 5
w3 w 4
3
2
2
1- 1 AI/{
0 0
1 2 4 g 16 1 2 4 g 16
MNumber of Threads Number of Threads

== CPl =fll=CPH == P}

Figure 54: CPI Effect on Speedup (Application Level) (II)

242

8.5 Limitations

Although HySim is a very fast simulator with acceptable accuracy, it has the
following limitations:

1. HySim is a user-level simulator. Therefore, it is not reliable for workloads of
significant system-level code.

2. The base-CPlI is a tunable parameter and hence it is a major source of error.

3. The NoC model is very simple. It only counts the number of hops traversed by the
network message and then calculates the message latency by multiplying the number
of hops by the hop latency, which is a tunable parameter. This model will work fine
for simple un-buffered NoCs.

4. The reported accuracy is relative to real hardware execution time which has some

uncertainty.

CHAPTER 9

CONCLUSION AND FUTURE WORK

In this dissertation, we studied the existing computer architecture simulation techniques
and the major recent computer architecture simulators. Based on this, we proposed
HySim, a hybrid software/hardware simulation framework for CMPs. We exploited Intel
pin tool to natively execute and instrument the application to be run on the target machine
model in order to generate a compressed executable trace of this application. The
proposed trace compression technique achieved a compression ratio of up to 2987.9. The
trace compression is done on-the-fly, i.e., the trace is compressed while it is being

generated and hence the original large trace is never stored as is.

Moreover, we exploited the fine and coarse grained parallelism offered by FPGAs
to accelerate computer architecture timing simulation. In other words, the voluminous
number of fine-grained parallel components of a CMP model has been simulated in
parallel. Thus, HySim is the fastest existing simulator with a speed of up to 2204.257
MIPS for 16-core target architecture. Although HySim is not a cycle-accurate simulator,
its accuracy is in agreement with the majority of the existing simulators. When HySim
accuracy has been validated against real hardware, the average absolute error was ~14%.

This work can be extended in many ways. It opened the doors for many

contributions. One of these extensions is to make this framework closer to the fully-usable

243

244
one. This implies exploiting the reaming free resources on the FPGA to have a more
generic model. In addition to that, the design can be extended and downloaded on
multiple FPGAs to simulate larger target architectures. Other extensions include having
an open source pool of architecture components that are used for building different target
architectures. Moreover, HySim accuracy can be improved by preserving the precedence

of memory operations.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

REFERENCES

I. C. George Chrysos. (2012). Intel® Xeon Phi™ Coprocessor - the Architecture.
Available: https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
codename-knights-corner

Intel® Xeon® Processor E5-2680 (20M Cache, 2.70 GHz, 8.00 GT/s Intel® QPI).
Available: http://ark.intel.com/products/64583/Intel-Xeon-Processor-E5-2680-
20M-Cache-2_70-GHz-8 00-GTs-Intel-QPI

"Telira."

U. 0. MarkD. Hill, Ed., Computer Architecture Performance Evaluation Methods
(SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE. Morgan &
Claypool, 2010, p."pp. Pages.

T. Austin, E. Larson, and D. Ernst, "SimpleScalar: an infrastructure for computer
system modeling," Computer, vol. 35, pp. 59-67, 2002.

D. C. Hari Angepat, Eric S. Chung, James C. Hoe, FPGA-Accelerated Simulation
of Computer Systems, 2014.

D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D.
Connors, "Exploiting parallelism and structure to accelerate the simulation of chip
multi-processors,” in High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, 2006, pp. 29-40.

Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovi, and D. Patterson, "A case for
FAME: FPGA architecture model execution,” SIGARCH Comput. Archit. News,
vol. 38, pp. 290-301, 2010.

A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind, "Fast and cycle-
accurate modeling of a multicore processor,” in Performance Analysis of Systems
and Software (ISPASS), 2012 IEEE International Symposium on, 2012, pp. 178-
187.

E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and M. Ken, "PROToFLEX:
FPGA-accelerated Hybrid Functional Simulator,” in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-6.
D. Chiou, S. Dam, K. Joonsoo, N. Patil, W. H. Reinhart, D. E. Johnson, and X.
Zheng, "The FAST methodology for high-speed SoC/computer simulation,” in
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on, 2007, pp. 295-302.

Xilinx. Available: http://www.xilinx.com/

Altera. Available: https://www.altera.com/

S. B. (Intel). (2012). Pin - A Dynamic Binary Instrumentation Tool. Available:
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool

(2013). Telira. Available: http://www.tilera.com/

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

246

Borkar; G. Ruhl; S. Dighe, "The 48-core SCC processor: the programmer’s view,"
2010.

S. Secchi, M. Ceriani, A. Tumeo, O. Villa, G. Palermo, and L. Raffo, "Exploring
hardware support for scaling irregular applications on multi-node multi-core
architectures,” in Application-Specific Systems, Architectures and Processors
(ASAP), 2013 IEEE 24th International Conference on, 2013, pp. 309-313.

R. K. B.S.W. J. S. M. Floyd, "POWER7: IBM’S NEXT-GENERATION
SERVER PROCESSOR," IEEE Computer Society, pp. 7-15, 2010.

ARM. (2011-2012). Cortex-A15 MPCore Technical Reference Manual.

"AMD Phenom™ |1 Processors."

K. H. T. W. Luk, "Axel: A Heterogeneous Cluster with FPGAs and GPUs,"
FPGA’10, February 21-23 2010.

AMD. (2009). Key Architectural Features of AMD Phenom™ X4 Quad-Core
Processors Available:
http://www.amd.com/us/products/desktop/processors/phenom/Pages/AMD-
phenom-processor-X4-features.aspx

C. J. Mauer, M. D. Hill, and D. A. Wood, "Full-system timing-first simulation,"
SIGMETRICS Perform. Eval. Rev., vol. 30, pp. 108-116, 2002.

The gem5 Simulator. Available: http://gem5.org/Main_Page

J. Emer, P. Ahuja, E. Borch, A. Klauser, L. Chi-Keung, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan, "Asim: a
performance model framework,” Computer, vol. 35, pp. 68-76, 2002.

E. Argollo, A. Falc, #243, P. Faraboschi, M. Monchiero, and D. Ortega,
"COTSon: infrastructure for full system simulation,” SIGOPS Oper. Syst. Rev.,
vol. 43, pp. 52-61, 2009.

H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho, "Two-phase trace-
driven simulation (TPTS): a fast multicore processor architecture simulation
approach,” Softw. Pract. Exper., vol. 40, pp. 239-258, 2010.

S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, and M. Hempstead,
"Synchrotrace: synchronization-aware architecture-agnostic traces for light-weight
multicore simulation,” in Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, 2015, pp. 278-287.

C. A. Prete, G. Prina, and L. Ricciardi, "A trace-driven simulator for performance
evaluation of cache-based multiprocessor systems,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 6, pp. 915-929, 1995.

A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero, "Trace-
driven simulation of multithreaded applications,” in Performance Analysis of
Systems and Software (ISPASS), 2011 IEEE International Symposium on, 2011,
pp. 87-96.

A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatie, G. Sassatelli, and C.
Adeniyi-Jones, "A trace-driven approach for fast and accurate simulation of
manycore architectures,” in Design Automation Conference (ASP-DAC), 2015
20th Asia and South Pacific, 2015, pp. 707-712.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

247

M. Burtscher, 1. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and N. B. Sam,
"The VPC trace-compression algorithms,” Computers, IEEE Transactions on, vol.
54, pp. 1329-1344, 2005.

C.-J. K. A. T.-J. L. CHING-WEN CHEN, "Efficient Trace File Compression
Design with Locality and Address Difference,” JOURNAL OF INFORMATION
SCIENCE AND ENGINEERING, pp. 1055-1070, 2013.

E. N. Elnozahy, "Address trace compression through loop detection and
reduction,” presented at the Proceedings of the 1999 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
Atlanta, Georgia, USA, 1999.

E. E. Johnson, H. Jiheng, and M. Baqgar Zaidi, "Lossless trace compression,™
Computers, IEEE Transactions on, vol. 50, pp. 158-173, 2001.

M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, "Using the SimOS
machine simulator to study complex computer systems,” ACM Trans. Model.
Comput. Simul., vol. 7, pp. 78-103, 1997.

E. Witchel and M. Rosenblum, "Embra: fast and flexible machine simulation,”
SIGMETRICS Perform. Eval. Rev., vol. 24, pp. 68-79, 1996.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J.
Eastep, and A. Agarwal, "Graphite: A distributed parallel simulator for
multicores,” in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, 2010, pp. 1-12.

T. E. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,” in High
Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011, pp. 1-12.

"Valgrind."

A. Jung Ho, L. Sheng, O. Seongil, and N. P. Jouppi, "McSimA+: A manycore
simulator with application-level+ simulation and detailed microarchitecture
modeling," in Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on, 2013, pp. 74-85.

Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, K. Asanovi\,
and 263, "RAMP gold: an FPGA-based architecture simulator for
multiprocessors,” presented at the Proceedings of the 47th Design Automation
Conference, Anaheim, California, 2010.

D. Genbrugge, S. Eyerman, and L. Eeckhout, "Interval simulation: Raising the
level of abstraction in architectural simulation,” in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on, 2010, pp. 1-
12.

W. Jun, J. Beu, R. Bheda, T. Conte, D. Zhenjiang, C. Kersey, M. Rasquinha, G.
Riley, W. Song, X. He, X. Peng, and S. Yalamanchili, "Manifold: A parallel
simulation framework for multicore systems,” in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, 2014, pp. 106-
115.

G. H. Loh, S. Subramaniam, and X. Yuejian, "Zesto: A cycle-level simulator for
highly detailed microarchitecture exploration,” in Performance Analysis of

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

248

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,
2009, pp. 53-64.

T. Zhangxi, A. Waterman, R. Avizienis, L. Yunsup, H. Cook, D. Patterson, and K.
Asanovic, "RAMP gold: An FPGA-based architecture simulator for
multiprocessors,” in Design Automation Conference (DAC), 2010 47th
ACM/IEEE, 2010, pp. 463-468.

D. Chiou, S. Dam, K. Joonsoo, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,
and H. Angepat, "FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle-Accurate Simulators,” in Microarchitecture, 2007. MICRO 2007.
40th Annual IEEE/ACM International Symposium on, 2007, pp. 249-261.

F. Zhenman, M. Qinghao, Z. Keyong, L. Yi, H. Yibin, Z. Weihua, C. Haibo, L.
Jian, and Z. Binyu, "Transformer: A functional-driven cycle-accurate multicore
simulator,” in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, 2012, pp. 106-114.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, "Multifacet's general
execution-driven multiprocessor simulator (GEMS) toolset,” SIGARCH Comput.
Archit. News, vol. 33, pp. 92-99, 2005.

R. Pengju, M. Lis, C. Myong Hyon, S. Keun Sup, C. W. Fletcher, O. Khan, Z.
Nanning, and S. Devadas, "HORNET: A Cycle-Level Multicore Simulator,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 31, pp. 890-903, 2012.

O. Certner, L. Zheng, A. Raman, and O. Temam, "A Very Fast Simulator for
Exploring the Many-Core Future,”" in Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International, 2011, pp. 443-454.

S. Takamaeda-Yamazaki, S. Sano, Y. Sakaguchi, N. Fujieda, and K. Kise,
"ScalableCore System: A Scalable Many-Core Simulator by Employing over 100
FPGAs," in Reconfigurable Computing: Architectures, Tools and Applications.
vol. 7199, O. S. Choy, R. C. Cheung, P. Athanas, and K. Sano, Eds., ed: Springer
Berlin Heidelberg, 2012, pp. 138-150.

M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, "HAsim: FPGA-based
high-detail multicore simulation using time-division multiplexing,” in High
Performance Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, 2011, pp. 406-417.

J.J. Yiand D. J. Lilja, "Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations,” Computers, IEEE
Transactions on, vol. 55, pp. 268-280, 2006.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N.
Vaish, M. D. Hill, and D. A. Wood, "The gem5 simulator,” SIGARCH Comput.
Archit. News, vol. 39, pp. 1-7, 2011.

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, "The M5 Simulator: Modeling Networked Systems," Micro, IEEE, vol.
26, pp. 52-60, 2006.

[57]

[58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]
[71]

[72]

249

D. R. Butenhof, Programming with POSIX threads: Addison-Wesley Longman
Publishing Co., Inc., 1997.

D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. Penry, O.
Temam, and N. Vachharajani, "UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative Development,”
Computer Architecture Letters, vol. 6, pp. 45-48, 2007.

R. Bedicheck, "SimNow: Fast platform simulation purely in software," in Hot
Chips.

M. Vijayaraghavan and Arvind, "Bounded Dataflow Networks and Latency-
Insensitive circuits,” in Formal Methods and Models for Co-Design, 2009.
MEMOCODE '09. 7th IEEE/ACM International Conference on, 2009, pp. 171-
180.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner, "Simics: A full system
simulation platform," Computer, vol. 35, pp. 50-58, 2002.

S. Dam, K. Joonsoo, and D. Chiou, "QUICK: A flexible full-system functional
model," in Performance Analysis of Systems and Software, 2009. ISPASS 20009.
IEEE International Symposium on, 2009, pp. 249-258.

bluespec. Available: http://www.bluespec.com/

S. Kanev and R. Cohn, "Portable trace compression through instruction
interpretation,” presented at the Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software, 2011.

S. Budanur, F. Mueller, and T. Gamblin, "Memory Trace Compression and Replay
for SPMD Systems Using Extended PRSDs," Comput. J., vol. 55, pp. 206-217,
2012.

J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Y00,
"METRIC: tracking down inefficiencies in the memory hierarchy via binary
rewriting,” in Code Generation and Optimization, 2003. CGO 2003. International
Symposium on, 2003, pp. 289-300.

M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. d. Supinski, "ScalaTrace:
Scalable compression and replay of communication traces for high-performance
computing,” J. Parallel Distrib. Comput., vol. 69, pp. 696-710, 2009.

A. Janapsatya, A. Ignjatovic, and J. Henkel, "Instruction Trace Compression for
Rapid Instruction Cache Simulation,” in Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE '07, 2007, pp. 1-6.

A. Ketterlin and P. Clauss, "Prediction and trace compression of data access
addresses through nested loop recognition,” presented at the Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and optimization,
Boston, MA, USA, 2008.

TCgen 2.0: A Tool to Automatically Generate Lossless Trace Compressors 2006.
K. C. Barr and K. Asanovic, "Branch trace compression for snapshot-based
simulation,” in Performance Analysis of Systems and Software, 2006 IEEE
International Symposium on, 2006, pp. 25-36.

K. C. Barr, H. Pan, M. Zhang, and K. Asanovic, "Accelerating Multiprocessor
Simulation with a Memory Timestamp Record," in Performance Analysis of

[73]

[74]

[75]

[76]

[77]
[78]
[79]

[80]

[81]

[82]

[83]

[84]

250

Systems and Software, 2005. ISPASS 2005. IEEE International Symposium on,
2005, pp. 66-77.

M. Xu, M. D. Hill, and R. Bodik, "A regulated transitive reduction (RTR) for
longer memory race recording,” SIGOPS Oper. Syst. Rev., vol. 40, pp. 49-60,
2006.

M. Xu, R. Bodik, and M. D. Hill, "A "flight data recorder" for enabling full-
system multiprocessor deterministic replay,” SIGARCH Comput. Archit. News,
vol. 31, pp. 122-135, 2003.

H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, "PinPlay: a framework
for deterministic replay and reproducible analysis of parallel programs,” presented
at the Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, Toronto, Ontario, Canada, 2010.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, "The SPLASH-2
programs: characterization and methodological considerations,” in Computer
Architecture, 1995. Proceedings., 22nd Annual International Symposium on, 1995,
pp. 24-36.

PARSEC. Available: http://parsec.cs.princeton.edu/

MediaBench. Available: http://euler.slu.edu/~fritts/mediabench/

Standard Performance Evaluation Corporation. Available:
https://www.spec.org/cpu2000/

A. Milenkovi, and M. Milenkovi, "An efficient single-pass trace compression
technique utilizing instruction streams,” ACM Trans. Model. Comput. Simul., vol.
17, p. 2, 2007.

R. S. N. a. K. Czeck. (2010). BSV by Example, The next-generation language for
electronic system design.

Arvind and R. Nikhil, "Hands-on Introduction to Bluespec System Verilog
(BSV)," in Formal Methods and Models for Co-Design, 2008. MEMOCODE
2008. 6th ACM/IEEE International Conference on, 2008, pp. 205-206.

B. R. T. Ungerer, and J. Silc, "Multithreaded Processors," The Computer Journal,
pp. 320-348, 2002.

(2015). Stampede Virtual Workshop, Multi-Core Optimization Available:
http://www.cac.cornell.edu/Stampede/CodeOptimization/multicore.aspx

251

APPENDIX A: SOURCE CODE

This appendix presents an overview of the source code that has been written in this
dissertation. It includes the CET tool C++ code and the hardware description code of
HySim’s timing model in BSV and the corresponding auto-generated Verilog code. Click

here for the full source code.

A.1 CET Tool

The CET tool source code comprises nearly 2800 lines of C++ code. In addition to
the instrumentation and analysis functions, CET tool has different functions for
application profiling, CET code generation, CET data generation, and application log
generation. CET tool has two main objects, namely, the thread object and the instruction
object.

The thread object stores all information regarding each thread. This includes
thread ID, CET code starting address, original code starting address (initial PC value),
CET code, CET data, and some statistics, such as, the number of instructions of each type

and the sizes of different CET data components.

252
The instruction object stores all information regarding each instruction. Thus, the
CET code is a list of instruction objects. The most important fields of the instruction
object are:
1. opcode.
2. Instruction address.
3. Branch results counters to count the taken/not taken in the case of a conditional
branch instruction.
4. List of addresses to store the data references of load/store instructions and target
addresses in the case of branch instructions.

5. List of counters to store the number of iterations for inner loop instructions.

A.2 HySim Timing Model

HySim timing model has a hierarchal modular design. The top module
(MultiCore.bsv) is the module where the CET tiles are instantiated and interconnected.
Each tile comprises a core model, L1 D-cache model, L1 I-cache model, L2 cache model,
L3 cache model, NoC router model, and cache memories to cache CET code and CET

data. Figure 55shows the hierarchal view of the BSV code.

MultiCore.hsv

Tlle.hsv

— Core.hsv

— InstructionMemory.hsv

— CETMemeory.hsv

— LlInstructlonCacheModel.hsv

— L1DataCacheModel.bsv

— L2CacheModel.bsv

— L3CacheModel.hsv

— Router.hsv

Figure 55: BSV Code Hierarchy

253

VITAE

Name: Ayman Ali Mohammad Hroub
Nationality: Palestinian

Date of Birth: September 19", 1984
Email : ahroub@gmail.com

Address: Hebron, Palestine

Academic Background: Ayman received his B.Sc. degree in Computer Systems
Engineering from Birzeit University in 2008. Then Ayman worked as a software
application developer for more than one year. In September 2009, Ayman joined
King Fahd University of Petroleum and Minerals (KFUPM) as a research assistant
to pursue his M.Sc. degree in Computer Engineering. In June 2011, Ayman earned
his M.Sc. in Computer Engineering from KFUPM. Then Ayman started his career
as a lecturer-B at KFUPM to pursue his PhD in Computer Science and

Engineering. Ayman Completed his in December 2015.

Ayman research interests include developing novel multicore architectures and
efficient models for evaluating the performance of such architectures. Ayman co-authored
the following six papers:

1. Ayman Hroub, Muhammad E. S. Elrabaa, Muhamed F. Mudawar, Ahmad Khayyat.

Efficient Execution Trace Compression Technique for Multi-Core Architectural

Simulation. Submitted to ACM transactions on Modeling and Computer Simulation,
2016.

Muhammad E. S. Elrabaa, Ayman Hroub, Muhamed F. Mudawar, Ahmad Khayyat.
A very fast trace-based simulation platform for chip-multiprocessors architectural
explorations. submitted to IEEE Transactions on Parallel and Distributed Systems,
2015

M. Alshayeb, M. E. S. Elrabaa, Ayman Hroub, A. Al-Aghbari, A. H. EI-Maleh, A.
Bouhraoua. Towards a Test Definition Language for Integrated Circuits. Journal of
Circuits, Systems and Computers (JSCS), 2014.

M. Niazi, S.Mahmood, M. Alshayeb, Ayman Hroub. An Empirical Investigation of
Challenges of the Existing Tools Used in Global Software Development Projects. IET
Software, 2014.

M. Niazi, S.Mahmood, M. Alshayeb, Ayman Hroub. Challenges of the Existing
Tools Used in Global Software Development Projects. The Seventh International
Conference on Advances in Human-oriented and Personalized Mechanisms,
Technologies, and Services (CENTRIC) Oct. 12 - 16, 2014 - Nice, France.

M. Mudawar and Ayman Hroub, Clustering Cores for Parallel Thread Execution,
2nd International Conference on Advanced Computing and Communications (ACC-
2012), June 27-29, 2012, Los Angeles, California, USA.

	Cover
	Signatures
	Ayman_PhD Dissertation.pdf

