

iii

© Ayman Ali Mohammad Hroub

2015

iv

To the memory of my mother

To the memory of my brother Abdul-Latif

To my wife

To my cute sons, Yamin and Abdul-Latif

v

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. xviii

Abstract.. xix

الرسالة ملخص .. xxi

CHAPTER 1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Terminology and Nomenclature .. 3

1.3 Dissertation Outline ... 7

1.4 Contributions ... 8

CHAPTER 2 STATE OF THE ART OF MULTICORE ARCHITECTURES 9

2.1 Intel Xeon Phi Coprocessor ... 9

2.1.1 Coprocessor’s Core .. 10

2.1.2 Interconnection Network .. 10

2.2 Intel Xeon CPU E5-2680 ... 12

2.3 TILE-Gx8072 Processor: Telira Processor .. 13

2.4 Intel’s 48-core SCC (Single-Chip Cloud Computer) Processor 15

2.5 Multi-node Multicore Architectures for Irregular Applications 15

vi

2.6 POWER7 ... 16

2.7 ARM Architecture ... 17

2.8 AMD Processors .. 17

2.9 Axel .. 18

2.10 Summary and Discussion ... 18

CHAPTER 3 COMPUTER ARCHITECTURE SIMULATION TECHNIQUES 21

3.1 Simulator Design Trade-offs ... 21

3.2 Architectural Simulation Techniques .. 24

3.2.1 Execution-Driven Simulations ... 24

3.2.2 Trace-Driven Simulations .. 27

3.2.3 User-Level vs. Full-System Simulations .. 28

3.2.4 Abstract vs. Detailed Simulations .. 30

3.2.5 Software vs. Hardware Simulators ... 32

CHAPTER 4 REVIEW OF EXISTING MULTICORE SIMULATORS 36

4.1 Software Simulators ... 36

4.1.1 GEM5 ... 36

4.1.2 Graphite .. 38

4.1.3 Sniper .. 40

4.1.4 PinPlay .. 42

vii

4.1.5 McSimA+ ... 46

4.1.6 SiMany ... 48

4.1.7 HORNET .. 49

4.1.8 Manifold ... 50

4.1.9 Transformer .. 51

4.1.10 COTSon .. 52

4.1.11 Summary and Discussion ... 52

4.2 FPGA-based Simulators .. 54

4.2.1 RAMP Gold .. 54

4.2.2 HAsim... 55

4.2.3 Arete ... 57

4.2.4 ScalableCore system 3.3 ... 58

4.2.5 Summary and Discussion ... 58

4.3 Hybrid Software/Hardware Simulators ... 61

4.3.1 PROTOFLEX ... 61

4.3.2 FAST .. 62

4.3.3 Summary and Discussion ... 63

CHAPTER 5 OVERVIEW OF THE PROPOSED SIMULATION FRAMEWORK 65

5.1 Basic Strategy .. 65

viii

5.2 Functional and Timing Models’ Implementation Options 67

5.3 FPGA-based Simulation Framework Design Options ... 68

5.3.1 Rigid FPGA-based Simulator ... 68

5.3.2 Fully-flexible FPGA-based Simulator .. 69

5.3.3 Quasi-flexibe FPGA-based Simulator .. 70

5.3.4 Summary... 74

5.4 HySim’s Architecture and Workflow .. 76

5.5 HySim’s Output ... 79

CHAPTER 6 COMPRESSED EXECUTION TRACE GENERATION 81

6.1 Introduction .. 81

6.2 The proposed Execution Trace Compression Technique 86

6.2.1 Basic Strategy ... 88

6.2.2 CET Encoding .. 92

6.2.3 Loop Recognition ... 99

6.2.4 CET Profiler ... 103

6.2.5 CET Code Generation .. 106

6.2.6 Emulation and CET Data Generation ... 111

6.2.7 System Calls Latency ... 112

6.3 Experimental Results ... 115

ix

6.3.1 Experimental Setup .. 115

6.4 Compression Ratio ... 118

6.5 Compression/Decompression Speed .. 133

CHAPTER 7 HYSIM TIMING MODEL .. 135

7.1 Bluespec SystemVerilog (BSV) .. 135

7.1.1 BSV Coding Productivity ... 136

7.1.2 BSV to Verilog Compilation .. 139

7.2 Timing Model Architecture ... 148

7.3 Timing Model’s Tile Architecture ... 151

7.3.1 HySim Core Model (CET Core)... 153

7.3.2 Timing Model’s Cache Memory .. 164

7.3.3 Target Cache Hierarchy Model .. 167

7.3.4 Timing Model’s Router .. 170

7.4 NoC Model .. 172

7.5 Multi-threading Management .. 172

7.5.1 Thread Scheduling on the Same Core .. 173

7.6 Inter-Thread Interactions ... 178

7.7 FPGA Implementation Details ... 179

7.7.1 Host-FPGA Communication .. 181

x

7.7.2 CET Cache Filling Circuit .. 184

7.7.3 FPGA Resources Consumption .. 187

CHAPTER 8 HYSIM EXPERIMENTAL RESULTS ... 191

8.1 Experimental Setup .. 191

8.1.1 Target Machine specifications .. 191

8.1.2 Real Hardware Execution Time Measurement ... 197

8.1.3 Benchmarks .. 198

8.2 Simulation Monitor .. 209

8.3 Evaluation of Simulation Speed .. 214

8.4 Evaluation of Simulation Accuracy ... 225

8.4.1 Absolute Accuracy Relative to Real Hardware .. 225

8.4.2 Speedup Accuracy .. 234

8.4.3 Base CPI Effect on Speedup ... 239

8.5 Limitations ... 242

CHAPTER 9 CONCLUSION AND FUTURE WORK ... 243

References .. 245

APPENDIX A: SOURCE CODE ... 251

A.1 CET Tool ... 251

A.2 HySim Timing Model .. 252

xi

Vitae ... 254

xii

LIST OF FIGURES

Figure 1: Intel Xeon Phi Interconnection Network [1] .. 11

Figure 2: TILE-Gx8072 Architecture [15] ... 14

Figure 3:Simulation diamond illustrates the trade-offs in simulator accuracy,

coverage, development [4] ... 23

Figure 4: High Level Block Diagram of PinPlay Framework Workflow 44

Figure 5: HySim Framework Structure .. 77

Figure 6: A Sample Simulation Results for One Thread .. 80

Figure 7: CET Tool Work Flow. .. 91

Figure 8: Branch Results' Chain of a Loop Candidate X86 Conditional Branch

Instruction ... 101

Figure 9: CET Profiler Flowchart ... 105

Figure 10: CET Code Generator Flowchart ... 108

Figure 11: Compression results for a simple C-code snippet. .. 110

Figure 12: System Time Histogram ... 114

Figure 13: Compression Ratio of Instruction Addresses Only Traces (IA) and

the Full Trace. ... 120

Figure 14: Compression Ratio vs Problem Size for 3 single-threaded benchmarks. 122

Figure 15: Compression Ratio Comparison between the CET Tool and SBC

Technique ... 127

Figure 16: Compression Time for CET and SBC Techniques ... 129

xiii

Figure 17: Decompression Time for CET and SBC Techniques 130

Figure 18: Compression Ratio vs Number of Threads ... 132

Figure 19: A Simple Adder BSV Code .. 141

Figure 20: The Auto Generated Verilog Code of the Simple Adder Interface 142

Figure 21: The Auto Generated Verilog Code of the Simple Adder Registers 143

Figure 22: The Auto Generated Verilog Code of the Simple Adder Rule

Scheduling and Execution ... 144

Figure 23 : Simple Adder Manually Written Verilog Code ... 146

Figure 24: A Top Level Logical View of HySim’s Timing Model 150

Figure 25: HySim’s Timing Model’s Tile Overview ... 152

Figure 26: CET Core Abstract Schematic .. 155

Figure 27: Loop Scheduling Unit Flowchart .. 163

Figure 28: CET Instruction and Data Caches ... 166

Figure 29: Unified L2 Cache Simplified Model ... 169

Figure 30: Router Block Diagram .. 171

Figure 31: Threads Management in Multithreaded Target Cores

(Interleaved and Blocked) .. 175

Figure 32: Threads Management in Multithreaded Target Cores (Simultaneous) 177

Figure 33: Virtex 6 XC6VLX550T FPGA Board .. 180

Figure 34: Data flow for the Ethernet Core. ... 183

Figure 35: High Level View of HySim Timing Model Interaction with the Main

Memory .. 186

Figure 36: The Output of lscpu Linux Command .. 192

xiv

Figure 37: Cache Hierarchy Architectural Specifications of "ThinkStation"

Workstation. ... 193

Figure 38: A Snapshot from a Sample Thread Profile ... 201

Figure 39: The Level of Parallelism for the Used Multi-threaded Benchmarks (I) 207

Figure 40: The Level of Parallelism for the Used Multi-threaded Benchmarks (II) 208

Figure 41: ChipScope Snapshot ... 210

Figure 42: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (I) .. 211

Figure 43: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (II) ... 212

Figure 44: A Snapshot of HySim Software Frontend Displaying Performance

Registers from the FPGA (III) .. 213

Figure 45: HySim Simulation Speed .. 216

Figure 46: HySim Absolute Accuracy Relative to Real Hardware

(Application Level) .. 226

Figure 47: Simulated Time (HySim + Sys) Relative to the Min and Max Total

Hardware Execution Time (I) ... 228

Figure 48: Simulated Time (HySim + Sys) Relative to the Min and Max Total

Hardware Execution Time (II) ... 229

Figure 49: Simulated Speedup Accuracy Relative to Real HW Speedup

(Application Level) (I) ... 235

Figure 50: Simulated Speedup Accuracy Relative to Real HW Speedup

(Application Level) (II) .. 236

xv

Figure 51: Simulated Speedup Accuracy Relative to Real HW Speedup

(System Level) (I) ... 237

Figure 52: Simulated Speedup Accuracy Relative to Real HW Speedup

(System Level) (II) ... 238

Figure 53: CPI Effect on Speedup (Application Level) (I) .. 240

Figure 54: CPI Effect on Speedup (Application Level) (II) ... 241

Figure 55: BSV Code Hierarchy .. 253

xvi

LIST OF TABLES

Table 1: Multicores' State of the Art Summary .. 20

Table 2: Summary of the FPGA-based Simulators .. 60

Table 3: Summary of the FPGA-based Hybrid Simulators .. 64

Table 4: HySim's Parameters and Their Default Values .. 72

Table 5: Pros and Cons of Different FPGA-based Simulation Framework

Design Options ... 75

Table 6: CET Code and Data format Summary ... 94

Table 7: Benchmarks and Their Input Sets .. 116

Table 8: Uncompressed and Compressed Traces Size and Compression Ratio 124

Table 9: Compression/Decompression Speed (MIPS) ... 134

Table 10: Comparison between the BSV Code Side and the Corresponding

Auto-generated Verilog Code Size ... 138

Table 11: FPGA Resources and Inferred Components are Identical for Both

Manually Written and Auto Generated Verilog Codes .. 147

Table 12: Actions Taken by CET Core for Different CET Instructions 158

Table 13: The Amount of FPGA Resources Consumed by One and 16 CET Tiles 188

Table 14: The Sizes of Different CET Caches for a Single CET Tile 190

Table 15: Target Machine Architectural Specifications ... 195

Table 16: Splash-2 Benchmarks and Their Input Sets ... 199

xvii

Table 17: CET Static Code Size for Different Threads .. 203

Table 18: Number of dynamically Executed Instructions and Load/Store

Percentages for Thread 0 .. 205

Table 19: Simulation and Simulated Time and Clock Cycles for a Single Thread 218

Table 20: Simulation and Simulated Time and Clock Cycles for 16 Threads 219

Table 21: FPGA Cycles to Target Cycles Ratios for HAsim and HySim 221

Table 22: HySim's Simulation Speed in MIPS Compared to HASim 223

Table 23: HySim Accuracy Relative to Interval and One-IPC Models 231

Table 24: Comparison between HySim and McSimA+ Accuracy 233

xviii

ACKNOWLEDGMENTS

I would like to thank the great university; King Fahd University of Petroleum

and Minerals for supporting this research and for offering me the opportunity to pursue

my graduate studies. Special thanks to the National Science, Technology and

Innovation Plan (NSTIP) for their generous funding of this research under project #12-

INF3015-04.

I wish to express my deep appreciation to my advisor, Dr. Muhammed Elrabaa

for his guidance, support, help, cooperation and constructive feedback. Dr. Elrabaa

dedicated a lot of his valuable time for me. He always provides me with brilliant ideas

and smart solutions. I am also very grateful to my dissertation committee members: Dr.

Aiman El-Maleh, Dr. Mahmood Niazi, Prof. Mayez Al-Mouhamed, and Dr.

Mohammad Alshayeb for their help and cooperation.

I would like to thank the co-investigators in our NSTIP project: Dr. Ahmad

Khayyat and Dr. Muhamed Mudawar for their help and participation in this research.

Also I want to thank my colleagues: Mr. Amran Al-Aghbari and Mr. Mohammed Al-

Asli for their participation in this project and helping us in FPGA design issues.

I want to thank Bluespec for providing us with a free license of their Bluespec

SystemVerilog compiler over the past three years.

I would like to thank my family for their support, patience, and encouragement. I

am so grateful to my father, my wife, my sons, my brothers, and my sisters.

xix

ABSTRACT

Full Name: Ayman Ali Mohammad Hroub

Thesis Title: HySim: A Hybrid Software/Hardware Simulation Framework for

Early Architectural Exploration of Chip Multiprocessors

Major Field: Computer Science and Engineering

Date of Degree: December, 2015

Simulation is the de facto tool for computer architecture performance evaluation.

It implies modeling the events of interest in the intended architecture to be evaluated.

Traditionally, software simulators have been used. Although such simulators are

inexpensive and flexible, they lack the required speed, especially for cycle-accurate

models. In the multicore era, processors became much more complex. They comprise

large number of cores, complex memory hierarchies, and complex interconnection

networks. Thus, the design space to be explored became much larger. Moreover, this kind

of architecture has a voluminous number of concurrent events. Therefore, there is a

crucial need for a very fast simulator even if it sacrifices degree of accuracy. In the early

stages, the goal is to compare different architectures rather than to have accurate

performance numbers. In this dissertation, we propose HySim, a hybrid

software/hardware simulation framework for early architectural exploration of chip

multiprocessors. It exploits the flexibility of software and the massive parallelism offered

xx

by the FPGAs. HySim is a two phase simulation framework. In the first phase, the

application is natively executed under Intel pin tool. The output of this phase is the

application’s execution trace. In the second phase, this trace is fed into an FPGA-based

timing model to perform timing simulation. As it is well known, the trace size is very

large to store, especially on FPGAs because they have limited storage resources.

Therefore, this trace is compressed on-the-fly into an executable format that can be

executed by the timing model. Thus, the contribution in this dissertation is twofold: (1) an

efficient trace compression technique with a compression ratio of up to 2987.9, (2) a very

fast simulation framework. HySim has been validated against real hardware using a subset

of SPLASH-2 and PARSEC benchmarks. The simulation results showed that HySim

speed is up to 2204.257 MIPS with 14% average absolute error relative to real hardware

execution time.

xxi

 الرسالةملخص

.أيمن علي محمد حروب الاسم الكامل:
للاستكشاف المبكر لبنية الرقائق ةالمادي ياتھايسم: إطار محاكاة ھجين من البرمجيات و العتادعنوان الرسالة:
 .متعددة المعالجات

 علوم و ھندسة الحاسب الآلي. التخصص:
.2015، كانون الأولتارخ الدرجة العلمية:

ھي الأداة الفعلية لتقييم أداء الحاسب. تتضمن المحاكاة بناء نموذج لمركبات الحاسب ذات الآلي حاسبمحاكاة بنية ال

التأثير على الأداء. لقد دأب الباحثون على استخدام المحاكيات البرمجية و ذلك بسبب مرونتھا و سھولة بنائھا و

اً. لقد الشديد و خصوصاً في حالة النماذج الدقيقة جدانخفاض تكلفتھا. ولكن في المقابل تتصف ھذه المحاكيات بالبطء

و خاصة في حقبة المعالجات متعددة الأنوية، فلقد أصبح المعالج يتكون من عدد كبير من ازدادت المعالجات تعقيداً

ھائلاً تعين على الباحث أن يستكشف عدداً ي فإنه . لذلكاً وية التي تربطھا شبكة معقدة و ازداد ھرم الذاكرة تعقيدنالأ

من خيارات التصميم لاختيار التصميم الأفضل أداءً. علاوةً على ذلك، فإن المعالجات متعددة الأنوية تحتوي على

كان ذلك عدد كبير من الأحداث المتوازية. لذلك أصبح ايجاد وسيلة محاكاة تتسم بسرعة كبيرة حاجة ملحة حتى لو

لمحاكاة. في مراحل التصميم الأولى يكون اھتمام المصمم من دقة المحاكي من أجل تسريع ا على حساب شيء

بمقارنة خيارات التصميم المختلفة مع بعضھا و استبعاد الخيارات غير المجدية أكثر من اھتمامه في الحصول على

متناھية الدقة. في ھذه الأطروحة نقترح ھايسم الذي ھو عبارة عن إطار محاكاة ھجين يتكون من نتائج أداء

و الناعمجيات و العتاديات المادية للاستكشاف المبكر لأداء الرقائق متعددة المعالجات. ھايسم يستغل التوازي البرم

المرحلة الأولى تتضمن تنفيذ . المحاكاة في ھايسم تتم على مرحلتين:)FPGAs(الـ الخشن الذي توفره أجھزة

رحلة ھي تتبع لتنفيذ التطبيق. في المرحلة الثانية يتم تسليم). نتيجة ھذه المpinالتطبيق على المعالج الأم تحت أداة (

 .)FPGA(الـ تتبع التطبيق لنموذج التوقيت المبني على

xxii

) التي تمتلك مساحات تخزين محدودة FPGA(الـ على و يتعذر تخزينه خاصةً اً لأن حجم تتبع التنفيذ كبير جد اً نظر

حجمه بحيث يتحول إلى شكل قابل للتنفيذ يمكن فھمه من قبل نموذج قمنا بتطوير تقنية لضغط ھذا التتبع و تقليص

حة ذو شقين: الشق الأول تقنية ضغط فعالة لضغط تتبعات التنفيذ حيث ون الابتكار في ھذه الأطرإالتوقيت. لذا ف

مرة في أحسن الأحوال. الشق الثاني يتضمن 2987.9 بـأصبح حجم التتبع المضغوط أصغر من حجمه الأصلي

ة باستخدام مجموعة من يعتاديات مادية حقيقبمقارنته من خلال إطار محاكاة سريع جداً. لقد تم التحقق من دقة ھايسم

مليون 2204.257. أظھرت النتائج أن سرعة ھايسم قد تصل إلى)SPLASH-2 and PARSECتطبيقات (

 ة.يالعتاديات المادية الحقيق مع مقارنةً % 14تعليمة في الثانية و أن معدل نسبة الخطأ المطلق حوالي

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Chip multi-processors (CMPs) have lately gained considerable popularity and

importance [1-3] . They have been identified as the only way to deliver high-performance

computing as the chip manufacturing technology scales down to the NANO scale. A CMP

consists of a large number of interconnected cores and a complex memory system on a

single chip. When developing such system, the architects need to explore a large design

space in the early stages to identify the type and number of cores, memory specifications

(number of cache levels, size, associativity, replacement policies, etc.), cache coherence

protocols, interconnection networks, etc.

 Moreover, software application developers need to explore different machine’s

configurations for their different algorithms’ implementations. Also they want to write

and test their software before the real machine becomes available. Thus, having a flexible

model of the machine, before it is fabricated, is of a great value to the applications’

developers.

CMPs’ large design space cannot be explored analytically due to the lack of

accuracy of this approach. Analytical evaluation might be useful for high level decisions,

2

e.g., to determine the area of interest in a huge design space [4]. Furthermore, hardware

prototyping of the target machine will take too much time and effort. Moreover, in the

early stages, the full machine’s specifications are not completely clear, which makes

hardware prototyping not an optimum option. Thus, there should be a way to capture the

key performance characteristics of the target machine, and provide the architect with a

quick feedback. This can be done via simulations.

A simulator models the events of interest in the architecture being investigated

(target architecture). Traditionally, single-threaded software simulators were used [5].

Although these simulators are flexible, easy to develop, and can be cycle-accurate, they

lack the required speed, especially when they are used for CMPs. Actually the simulation

slowdown grows at least linearly with the number of simulated cores when single-

threaded software simulators are used to simulate CMPs [6]. Because CMPs have too

many parallel events and hence processing these events sequentially means that a target

cycle requires too many host machine’s cycles (the machine that hosts the simulator) to be

simulated.

Researchers started exploiting the parallel structure of CMPs to develop parallel

software simulators that run on multicore host machines [7]. Although parallelizing

software simulators improved simulation speed, the communication among the different

cores of the host machine still limits achieving more simulation speedup.

In the last few years, researchers exploited the fine/coarse grained parallelism in

FPGAs (Field Programmable Gate Arrays) to accelerate computer architecture’s

simulation [8-11]. This is possible for two reasons: (1) the structural nature of CMPs

exhibits massive fine/coarse grained parallelism which makes them ideal candidates for

3

FPGA acceleration, (2) recent FPGAs [12, 13] have large number of logic cells and large

size of on-chip memory which makes them large enough to host CMPs’ simulators.

In this dissertation, I propose HySim, a user-level hybrid software/hardware

simulation framework for CMPs. It combines the flexibility of software with the speed

and accuracy of hardware (FPGAs). HySim’s implements a two-phase simulation

technique. In the first phase, the application is natively executed and instrumented under

Intel pin tool [14]. The output of this phase is the execution trace of the benchmark in a

compressed executable format that is architecture agnostic. In the second phase, the

compressed executable trace is fed to the FPGA-based timing model for timing simulation

of the target architecture.

1.2 Terminology and Nomenclature

 Application and workload are interchangeable in this dissertation.

 Application-level and user-level are interchangeable.

 BSV: Bluespec SystemVerilog. It is a high level fully synthesizable hardware

description language.

 CMP: Chip Multiprocessor.

 CPI: Clocks per Instruction, it refers to the average number of clock cycles a

processor needs to complete one instruction.

 CPU: Central Processing Unit of the computer. It is interchangeable with the term

core.

4

 Cycle-accurate: all memory, register, pipeline contents are accounted for

and updated per each target's clock cycle.

 DMA: Direct Memory Access.

 Fidelity: is not just simple accuracy, but refers to how much of the detailed

simulation events are recorded.

 FPGA: Field Programmable Gate Arrays, which is a configurable device that

hosts custom computing machines.

 Host Machine: refers to the machine that hosts the simulator, it can be an FPGA

or a computer. Everything related to such machine can be prefixed by the term

“host”, e.g., host clock cycle, which refers to the clock cycle period of this

machine. This term can be interchangeable with other terms, such as host

processor, host core, host computer, etc.

 Host Operating System, is the operating system running on the host machine.

 Host Thread: is a simulation thread, a thread of a multithreaded simulator that is

responsible for simulating a target core or any target architecture component.

 Host Thread Synchronization: refers to synchronizing the target clocks of the

target cores being simulated on distributed host cores.

 HySim: Hybrid Simulator

 “In-Core”: refers to the architectural features inside the processing core, e.g.,

functional units, issue logic, branch prediction, etc.

 Intel Pin [14]: is a user-level dynamic binary instrumentation framework for the

IA-32 and X86-64 instruction-set architectures. The tool that is implemented

5

under Pin is called a Pintool. Pintools can be used for dynamic programs analysis

in Linux, Android, and Windows environments. Pin allows a tool to insert C/C++

code in arbitrary places in the executable. The code is added dynamically while

the executable is running. It can intercept the program’s instructions one by one

and it has an access to the program symbols.

 Interval Simulation: it is a simulation technique based on a mechanistic

analytical model where the execution time is split into intervals by miss events,

such as: branch miss-predictions, load misses, etc. The functional model executes

the application’s instructions and identifies theses miss events. The executed

instructions and miss events are fed to the interval timing model. Then, the timing

model derives the timing of these instructions and misses events based on an

analytical model.

 IO: Input/Output.

 IPC: Instruction per Cycle, it refers to the average number of instructions a

processor can complete per one clock cycle. It is the reciprocal of CPI and it

represents the processor’s throughput.

 ISA: Instruction Set Architecture.

 KB, MB, GB: Kilobyte, megabyte, gigabyte, respectively.

 KIPS: Kilo Instructions per Second. It is used to measure a processor performance

in terms of its throughput, i.e., the average number of instructions that can be

executed in a unit of time. It can be used also to measure a simulator performance;

it shows the average number of instructions that can be simulated in a unit of time.

6

 L1, L2, L3 cache: Level1, level2, level3 cache, respectively.

 LLC: Last Level Cache. The cache memory closest to the main memory.

 MIPS: Million Instructions per Second. Same as KIPS.

 Native Execution: refers to executing the application on a real existing machine

which has the same ISA of the target machine.

 NoC: Network on Chip.

 OS: Operating System.

 QPI: Quick Path Interface,

 Simulated Time: is interchangeable with target execution time. It is the expected

execution time of the application on the machine being simulated.

 Simulation Speed: refers to how fast the simulator can evaluate the target

machine performance for a given application.

 Simulation Time: refers to the amount of time the simulator takes to evlaute the

target machine for a given application.

 SMP: Symmetric Multiprocessing.

 SMPD: Single Program Multiple Data.

 System-level and kernel-level are interchangeable.

 Target Architecture: refers to the architecture being investigated. The term target

is interchangeable with other terms, such as intended, simulated, and investigated.

Also the term architecture can be interchangeable with other terms, such as

machine and processor. Everything related to this architecture can be prefixed by

7

the term “target”, e.g., target clock cycle, target clock, target frequency, target

core, target thread, target cache hierarchy, target interconnection network, etc.

 “Un-Core”: refers to the architectural features outside the processing core, e.g.,

memory hierarchy and interconnection network.

 User: the term user in this dissertation refers to the person who eventually uses the

simulator. This person is usually a computer architecture researcher, software

developer, or a student.

 Verilog: a hardware description language.

 VHDL: VHSIC Hardware Description Language, where VHSIC stands for Very

High Speed Integrated Circuit.

1.3 Dissertation Outline

The rest of this dissertation is structured as follows:

Chapter two presents the state of the art of multicore architectures. This quick

survey is important to identify the features of the recent CMPs in order to support them in

our simulator. Chapter three introduces the reader to the computer architecture simulator

design trade-offs and different simulation techniques. Chapter four reviews the existing

multicore architectures’ simulators. Chapter five presents an overview of the proposed

simulation framework. It discusses the different options that we evaluated until we

reached the current version of HySim. Chapter six covers the proposed trace compression

technique. It surveys the existing trace compression techniques and presents the

8

experimental results of our proposed technique. HySim’s FPGA-based timing model is

detailed in chapter seven. Also chapter seven covers the FPGA implementation details of

HySim. Chapter eight discusses the experimental results of HySim. It shows the absolute

accuracy of HySim relative to real hardware and other simulators. Moreover, it shows the

speed of HySim and compares it with the speed of other simulators. Finally, we concluded

in chapter nine.

1.4 Contributions

This dissertation has two main contributions:

1. An efficient trace compression technique for multithreaded applications which

achieved a compression ratio of up to 2987.9 with compression speed of up to 789.1

MIPS.

2. HySim, which is a very fast trace-driven FPGA-accelerated simulation framework for

CMPs. HySim achieved a simulation speed of up to 2204.257 MIPS with 14%

average absolute error relative to real hardware execution time.

9

CHAPTER 2

STATE OF THE ART OF MULTICORE ARCHITECTURES

In order to determine the key features that should be supported by a new multicore

simulation framework, a survey of the most recent multi-core architectures was

conducted. This survey included both commercial and academic multi-core architectures.

A brief description of the surveyed architectures is provided below.

2.1 Intel Xeon Phi Coprocessor

Intel Xeon Phi coprocessor [1] is based on the Intel MIC (Many Integrated Cores)

architecture. Intel Xeon Phi coprocessor (consists of over 60 cores) is connected to the

Intel Xeon Phi processor (it is also called the host processor) through a PCIe (PCI

Express) bus. This configuration supports heterogeneous applications such that some parts

of the application run on the host processor and other parts run on the coprocessor. The

coprocessor’s cores can communicate with each other through PCIe, peer to peer

interconnect, or through a network card without any intervention from the host processor.

10

2.1.1 Coprocessor’s Core

Each core contains a 32 KB L1 private instruction cache, a 32 KB L1 private data

cache, and a 512 KB private unified L2 cache that is kept coherent by a global-distributed

tag directory. Each core has in-order short pipeline that is capable to support four threads

in hardware. Moreover, each core in the coprocessor has a VPU (Vector Processing Unit)

that features 512-bit SIMD (Single Instruction Multiple Data) instruction set. VPU

supports FMA (Fused Multiply-Add) instructions, SP (single precision) floating point

operations, DP (Double Precision) floating point operations, integer operations, gather

and scatter instructions, and it supports EMU (Extended Math Unit) that executes

operations, such as square root, reciprocal, log, etc. in a vector fashion.

2.1.2 Interconnection Network

Figure 1 shows that Xeon Phi coprocessor has a bidirectional ring interconnect.

Each direction consists of three independent rings, namely, (1) a 64-byte data ring, (2) an

address ring, which is much smaller than the data ring and it is used to transfer the

read/write commands and memory addresses, and (3) an acknowledgement ring, which is

the smallest one and it sends the flow control and coherence messages.

11

Figure 1: Intel Xeon Phi Interconnection Network [1]

12

Upon an L2 cache miss, the address is sent to the directories over the address ring.

If the block is found in another core’s L2 cache, the address is forwarded to that core’s L2

cache. If the block is not found in any core’s L2 cache, the core generates another address

request and queries the data from the main memory.

The number of requests and acknowledgements is larger than the number of data

blocks transferred over the network. Simulation results showed that the address and

acknowledgement rings would become a performance bottleneck beyond 32 cores [1].

Because address and acknowledgement rings are much less expensive than the data ring,

these two rings have been doubled to satisfy the bandwidth requirements of requests and

acknowledgments.

2.2 Intel Xeon CPU E5-2680

Each socket of Intel Xeon CPU E5-2680 processor [2] contains eight cores

interconnected via an un-buffered ring. Each core is 2-way multi-threaded. Different

sockets are interconnected via QPI (Quick Path Interface).

Regarding cache hierarchy, each core has a private 32KB L1data cache, a private

32 KB L1 instruction cache, and a 256 KB private unified (instructions and data) L2

cache. Each socked has an L3 unified cache of 20 MB that is shared among the eight

cores.

13

2.3 TILE-Gx8072 Processor: Telira Processor

TILE-Gx8072 [15] is a 72-core processor optimized for intelligent networking,

multimedia, and cloud applications. Figure 2 depicts TILE-Gx8072’s architecture. The 72

tiles are connected via a mesh NoC. Each tile comprises a processor core with three

pipelines, a 32 KB L1 private data cache, a 32 KB L1 private instruction cache, a 256 KB

L2 private and unified cache, and a non-blocking Terabit/sec switch to connect the tile

into the mesh. Telira processor has an 18 MB L3 cache that is shared and dynamically

distributed. This L3 cache is kept coherent via a directory-based cache coherence

protocol.

14

Figure 2: TILE-Gx8072 Architecture [15]

15

2.4 Intel’s 48-core SCC (Single-Chip Cloud Computer) Processor

SCC is a many-core processor produced by Intel [16]. It supports both message

passing and shared memory communication. Cache coherence is the responsibility of the

programmer. The memory architecture is composed of multiple distinct address spaces.

Each core has a private region and a shared region of the address space.

The 48 cores are organized in 24 dual-core tiles connected by a mesh

interconnection network. Each core has a 16 KB L1 instruction cache, a 16 KB L1 data

cache, and a 256 KB L2 unified cache. The cores are second generation Pentium

processors. They are simple and in-order execution cores. The two cores on a single tile

are connected via FSB (Front Side Bus).

2.5 Multi-node Multicore Architectures for Irregular Applications

Secchi et al. [17] introduced a multi-node multicore multi-threaded architecture

for irregular applications based on commodity processors. This architecture targets

irregular applications, such as data mining, knowledge discovery, and social networks

analysis. They were motivated by the fact that irregular applications do not scale well on

the cache-based processors, because these applications have poor spatial and temporal

locality due to the dynamic data structures, such as unbalanced trees and graphs. This

architecture has transparent hardware support for PGAS (Partitioned Global Address

Space) and hardware support for inter-thread synchronization.

16

This architecture has multiple nodes interconnected via an on-chip bus. Each node

comprises the following components:

1. Processor core: it has an in order pipeline, I-Cache and scratchpad memory. All cores

share a memory controller for the DDR3 RAM.

2. GMAS (Global Memory Access Scheduler): it provides the global address space

across multiple nodes of the system. It intercepts load/store operations (local and

remote) that the core issues. The requested memory address is decoded, if it is global,

then it is forwarded to the remote node through the network interface.

3. GNI (Global Network Interface): this module is responsible for interfacing the node

with the inter-node network.

4. GSYNC (Global Synchronization): this module is responsible for managing the lock

and un-lock operations on the memory addresses of the node.

2.6 POWER7

POWER7 processor [18] consists of eight cores. Each core is a 4-way SMT

(Simultaneous Multithreaded). The cache hierarchy consists of three levels, (1) 32 KB L1

instruction cache and 32 KB L1 data cache, (2) 256 KB L2 unified cache, and (3) 4 MB

local region of a 32-MB shared L3 cache. The on-chip components are interconnected via

a bus and the cache coherence is maintained through a snoop-based cache coherence

protocol.

17

2.7 ARM Architecture

ARM is a main player in providing high performance and low power configurable

IPs (Intellectual Properties) for SoCs (Systems on Chips) that are implemented in

embedded systems. ARM Cortex-A15 MPCore [19] implements ARMv7-A architecture

with some extensions, such as having advanced SIMD architecture for floating point and

integer vector operations.

 Cortex-A15 MPCore processor can be configured for up to four cores. Each core

has a fixed 32 KB L1 instruction and data caches. The L2 cache is shared and it has

configurable size of 512KB, 1MB, 2MB, or 4MB. The on-chip communication is

achieved via a bus. To maintain coherency among L1 data caches and the L2 cache, a

snoop-based hybrid MESI (Modified Exclusive Shared Invalid) and MOESI (Modified

Owned Exclusive Shared Invalid) protocols are used.

2.8 AMD Processors

AMD produces a verity of servers that can be used as HPC (High Performance

Computers) platforms, web servers, cloud servers, etc. AMD integrates from 4 to 16

processor cores on-chip with a cache hierarchy depth from two to three levels [9]. The on-

chip components interact with a direct interconnects architecture.

The AMD Phenom II X6 processor is the most advanced AMD desktop processor

[20]. It can be a quad-core and triple-core. These cores communicate on die rather than on

18

package for better performance. Each core has a private L2 cache of 512 KB. Moreover, a

shared cache of 6 MB or 4 MB is shared among all cores.

2.9 Axel

Axel [21] is a heterogeneous cluster produced at Imperial College in London. It is

a NNUS (Non-uniform Node Uniform System) system, i.e., each node contains different

PEs (Processing Elements), but all nodes are the same in the system.

Each node comprises a quad-core AMD Phenon processor, a 240-core Nvidia

Tesla, and an FPGA Vertex 5 LX 330T. The GPU and FPGA accelerators are connected

to the CPU through PCIe, whereas the inter-node communication is achieved through

Gigabit Ethernet through the NIC (Network Interface Card) on each node. AMD quad-

core [22] integrates four cores on-chip that are communicating directly. It has three levels

of caches, where L3 is shred among the four cores.

2.10 Summary and Discussion

This short survey revealed that the number of cores in the recent multicore

machines can be in tens. This number is expected to increase according to Moore’s law.

Also it showed that these cores are interconnected in different NoC topologies (mesh,

ring, bus). Moreover, this survey showed that most of the recent multicore machines have

19

up to three cache levels. Besides that, as the number of cores increases, the last level

cache (LLC) size increases. Table 1 summarizes the features of these machines.

Based on these findings, a new multicore simulator has to cover all of these

features. It has to model as many cores as possible. Also it should model a three-level

cache hierarchy in which the LLC size can reach tens of megabytes. Moreover, a new

multicore simulator has to support different NoC topologies and the most popular cache

coherence protocols.

20

Table 1: Multicores' State of the Art Summary

Processor No. Cores
No. threads

per core

No. Cache

Levels
NoC Topology

Intel’s Xeon Phi 61 4 2 Ring

Intel Xeon CPU

E5-2680
8 cores per socket 2 3

Ring per socket, QPI

across sockets

TILE-Gx8072 72 - 3 Mesh

Intel’s SCC 48 1 2 Mesh

Secchi

Architecture

(Irregular

Applications)

4-32 1-4 - On-chip Bus

IBM POWER7 8 4 3 Bus

ARM Cortex-

A15 MPCore
1-4 1 2 Bus

AMD Processors 4-16 - 2-3 Bus

Axel
16 x (Quad-core

CPU, FPGA, GPU)
-

3 levels in

the CPU

PCIe per node,

Gigabit Ethernet

across nodes

21

CHAPTER 3

COMPUTER ARCHITECTURE SIMULATION

TECHNIQUES

This chapter discusses computer architecture simulation trade-offs. It presents and

evaluates different simulation aspects that affect simulation speed, accuracy, and fidelity.

The different choices that were made in developing our simulation framework were

pointed out with a brief justification in appropriate places.

3.1 Simulator Design Trade-offs

An ideal simulator is a one that is very fast, cycle accurate, and easy to configure

in order to cover all configurations of the intended architecture. Unfortunately, this ideal

simulator simply does not exist, because its features are contradictory. For example, a

cycle accurate simulator implies modeling every component of the target machine

precisely, yet this precise modeling requires too much time to develop. Also it will be

very slow since for each target clock cycle, voluminous amount of things need to be

checked and updated.

22

Unfortunately, simplifying the simulator to reduce development and simulation

times also implies sacrificing simulation fidelity. Figure 3 shows the simulation diamond

which illustrates these trade-offs [4].

23

Figure 3:Simulation diamond illustrates the trade-offs in simulator accuracy, coverage, development [4]

24

Our key approach is to develop new techniques that circumvent the above

tradeoffs and allow us to retain good accuracy while speeding up the simulations

significantly.

3.2 Architectural Simulation Techniques

A computer architecture simulator is a bipartite consisting of a functional model

and a timing model of the target architecture. The functional model is responsible for the

correct execution of the application, i.e., it models the target ISA (Instruction Set

Architecture). On the other hand, the timing model captures the timing characteristics of

the target machine and it is responsible for performance evaluation of that machine.

This section presents the key different simulation techniques. Some of these

techniques are presented in pairs because they are counterparts.

3.2.1 Execution-Driven Simulations

In execution-driven simulators, the functional and timing models are combined

together. This combination achieves more accuracy because it guarantees that the time-

dependent events, such as thread interleaving in multi-threaded applications, are modeled

accurately. This combination ranges from integrating the functional and timing models

together in one entity to decoupling them into two separated interacting entities. In most

cases, configuring the target architecture implies changing the timing model only. Thus,

in decoupled simulators, the timing model can be replaced by another one easily.

25

However, in the integrated ones, modifications are not straightforward and they are error

prone.

Mauer et al. [23] classified execution-driven simulators into four categories based

on the degree of coupling between the functional and timing models:

1. Integrated, where the functional and timing models are tightly integrated together

as one entity. Although this kind of simulator can be very accurate, it is complex

to develop and maintain. It lacks modifiability, extensibility, and flexibility. E.g.,

GEM5 simulator [24].

2. Timing-directed, where the timing model directs the functional model. In other

words, the timing model asks the functional model to perform a specific task, e.g.,

executing an instruction, loading a datum into the cache, selecting a certain thread-

interleaving, etc. in the correct time. Thus, the functional model keeps the

architectural states such as registers and memory values and it waits for requests

from the timing model. An example of such simulator is Asim [25].

3. Functional-first, where the functional model runs ahead of the timing model and

feeds it with an instruction trace. This trace is fed on-the-fly, i.e., it does not need

to be stored. It can be fed through a UNIX pipe. This kind of simulator is faster

than timing-directed simulators because it allows the functional and timing models

to run simultaneously. However, in the timing-directed, the timing model runs and

when it needs any service from the functional model, it calls it.

For time-dependent events ordering, the functional model is able to roll back. For

example, the functional model executes the correct instruction path and it is not aware if

there is a branch miss-prediction, thus, when the timing model detects a branch miss-

26

prediction, it orders the functional model to roll back to the state prior to the branch. An

example of such simulator is COTSon [26].

4. Timing-first, it was defined by Mauer et al. in 2002 [23] as a new approach for

decoupling functional and timing models. TFsim full-system simulator [23] was

the first implementation of the timing-first simulation. In this approach, the

functionality of those instructions that are required for performance evaluation is

augmented into the timing model in conjunction with the main correct decoupled

functional model. Some advantages of this approach include reducing the

simulator development time and allowing for more detailed modeling of the

microarchitecture because part of the functional features is integrated into the

timing model. However, the functional part integrated into the timing model

does not perfectly model speculative instructions along miss-predicted paths and

inter-thread events. Therefore, the correct functional model is responsible for

repairing the timing model when it takes the wrong path. In timing-first

simulation, the timing model runs ahead of the functional model, i.e., the timing

model executes each dynamic instruction ahead of the functional model. When the

timing model commits an instruction, it invokes the correct functional model (the

decoupled functional model) to verify if the timing model deviates from the

correct execution path or not. If there is any deviation from the correct path, the

functional model corrects the timing model by loading the correct architectural

state into the timing model before it can proceed.

Simply, in timing-first simulators, the timing model can be considered as an

integrated execution-driven simulator. However, its functional part is not perfectly

27

reliable. Thus, the correct functional model acts as a reference for this simulator to repair

it whenever it deviates from the correct execution path.

3.2.2 Trace-Driven Simulations

Trace-driven simulators [27-29] completely separate the functional model from

the timing model. Trace-driven simulation is performed in two phases. In the first phase,

the application is functionally executed either natively or using a functional simulator

(simple ISA simulator). The result of this first phase is an execution trace that comprises

the executed instructions along with their corresponding memory references. In the

second phase, the trace is fed to the timing model of the target architecture to perform

timing simulation. This separation allows running the functional model only once and

using it many times for different target architecture configurations, thus increasing the

simulation speed and efficiency.

A trace-driven simulator can be a complete simulator for the whole computer

system or specific for a certain component, such as a branch predictor or instruction

cache. Trace fidelity refers to how many of the original execution events can be re-

constructed from the trace.

Although trace-driven simulators are easy to use and develop, they cannot capture

timing-dependent thread execution interleaving when they are used to simulate CMPs.

Since the trace is fixed, the threads’ ordering included in the trace is fixed too, but the

target architecture may have a different threads ordering. However, researchers and

architects continued to use trace-driven simulation for CMPs [28, 30, 31], because there

28

are ways around this drawback such as trying to manage parallelism dynamically during

timing simulation, e.g., [30].

Another major challenge of trace-driven simulation is the large size of trace files.

Although disk storage is currently inexpensive, the disk access time is still high.

Moreover, the situation is not improved when FPGAs are used for trace-driven simulation

due to their limited storage resources. This drawback has been greatly alleviated via trace

compression techniques [32-35].

Our proposed simulation framework (dubbed HySim) uses trace-driven simulation

methodology. However, HySim’s trace is greatly compressed in an executable code

format that can be directly interpreted by the timing model. All multi-threading related

events, such as, starting, pausing, waking, synchronizing, and terminating threads are

encoded into HySim’s compressed trace. Thus, though HySim is a trace-driven technique

since it separates the functional model from the timing model, it incorporates some

execution-driven features such as maintaining the correct ordering of multi-threading

events.

3.2.3 User-Level vs. Full-System Simulations

Simulators are classified based on whether they model an operating system (OS)

or not into full-system simulators, e.g., GEM5 [24], SimOS [36], and QEMU Embra

[37], or user-level simulators, e.g., Graphite [38] and Sniper [39].

A user-level simulator simulates only the user-level code of the workload,

whereas a full-system simulator simulates both the user-level and system-level codes,

29

i.e., a full computer system. Thus, this type of simulator should be able to boot an

unmodified commercial operating system. It looks to the user as a system emulator or a

virtual machine.

 User-level simulators might be sufficient for workloads consisting of limited

system-level code; however, a full-system simulator is far more accurate for workloads

with significant system-level code, such as, database servers, web servers, email servers,

etc. [4]. Moreover, missing the OS model from CMPs simulators may lead to inaccurate

performance numbers because multi-threaded applications are affected by the OS

scheduling and decisions [4]. However, developing a full-system simulator is far from

trivial because it has to cover a complete system.

The OS model has to be incorporated into the functional model to simulate

unmodified workloads and into the timing model to estimate the time spent in system

calls. Thus, to have an accurate full-system simulator, the simulator has to be execution-

driven in order to execute the system calls and evaluate their latencies directly. However,

in trace-driven simulators, the OS model can be incorporated into the functional model

and hence unmodified workloads can be functionally simulated. Regarding system calls,

they can be incorporated into the trace. Then the timing model either ignores them or

approximates their latencies based on a certain model, e.g., the user specifies the latencies

of the system calls. This is the strategy we adopted for HySim. The OS is implicitly

incorporated into HySim’s functional model through instrumented native execution (e.g.

using Intel’s pin instrumentation tool [14] or Valgrind [40]) with system calls encoded

into the generated trace. Though the timing model does not model a full OS, it accurately

simulates all threading-related function/library calls, such as, start, pause, wake a thread,

30

etc. Other non-critical OS calls are simply assigned constant latencies. All system calls’

codes are preserved and appear in HySim’s compressed trace. The current version of

HySim allows the user to specify the different system calls’ latencies.

3.2.4 Abstract vs. Detailed Simulations

The level of details in microarchitecture modeling is used to trade simulation

accuracy for speed. Simulators are classified based on this into abstract and detailed

simulators. As the term implies, abstract simulators have an abstract model of the core’s

microarchitecture, when speed is valued over accuracy, e.g., Graphite [38] and Sniper

[39]. In this approach, the focus of the simulator can remain on the “un-core” features,

namely, the memory hierarchy and interconnection network.

Abstract simulators are good for early architectural exploration [41] because they

provide the architect with a quick feedback on the performance trend of the target

architecture. There are many ways to abstract processors’ cores, such as, (1) One-IPC

model, which implies that the processor can complete only one instruction per clock

cycle, e.g., Graphite [38] and RAMP Gold [42], (2) Interval model [43], which is a

mechanistic analytical model where the execution time is split into intervals by miss

events, such as: branch miss-predictions, load misses, etc. The functional model executes

the application’s instructions and identifies theses miss events. The executed instructions

and miss events are fed to the interval timing model. Then, the timing model derives the

timing of these instructions and miss events based on an analytical model. This model

31

was implemented in Sniper simulator [39], (3) k-CPI model, which assumes that k clock

cycles are required to execute one instruction, e.g., Manifold [44].

At first glance, it seems that abstract models do not affect the accuracy of

evaluating the “un-core” features. In contrast, having unrealistic core’s model can affect

the accuracy of the “un-core” features because it can generate the “un-core” related events

in the wrong time and in the wrong rate. Examples of these events include cache misses

and coherence transactions.

In contrast, detailed simulators have cycle-accurate models of the

microarchitecture, e.g., Zestro simulator [45]. Although these simulators offer the

maximum fidelity, they have longer development and simulation time because they cover

the micro details of the target architecture. However, they are vital when there is a micro-

architectural innovation. On the other hand, if the innovation is on the “un-core” level

only and the target machine will be built from off-the-shelf cores, then abstract simulators

can be sufficient.

Since HySim is intended for early architectural exploration of CMPs, it abstracts

the core microarchitecture. The current version of HySim implements the basic-CPI

model, which refers to how many clock cycles the processor needs to complete one

instruction assuming an ideal cache hierarchy and NoC, i.e., no cache misses and no NoC

latency. Thus, the basic-CPI abstracts the “in-core” time, such as, computation time,

hazards’ penalties, branch miss-predictions’ penalties, etc. Regarding the “un-core” time,

it is added later via the timing model. The user can specify the value of the basic-CPI

based on some theory, previous experience, simulation results, published numbers, etc.

32

3.2.5 Software vs. Hardware Simulators

Simulators are classified based on their implementation technology into software,

hardware (FPGA-based) and hybrid types.

Software simulators are implemented purely as software. This category includes

sequential software simulators, e.g., GEM5 [24], and parallel software simulators, e.g.,

Graphite [38]. Hardware simulators are implemented on configurable hardware i.e.,

FPGA, e.g., Arete [9] and RAMP Gold [46]. In Hybrid simulators, some components are

implemented in software and others in hardware, e.g., PROTOFLEX [10] and FAST [47].

A sequential software simulator includes a single simulation thread that simulates

voluminous amount of parallel events of the target architecture sequentially. Thus, each

target clock cycle is simulated in too many host clock cycles. This number of host clock

cycles is proportional to the level of details included in the timing model and the size of

the target architecture. Simply, the simulation thread comprises a loop that iterates over

the target architecture model until the workload is completed. In each loop iteration, the

simulation thread traverses the target architecture’s model component by component

sequentially (the component can be a model of a physical component such as a cache

memory or a processor core, or it can be an algorithm such as cache replacement policy).

For each component, the simulation thread checks the type of event generated by this

component, calculates the penalty of this event, if any, and updates the model’s state

accordingly.

Based on the above, sequential simulators are not practical to simulate CMPs,

because CMPs have larger number of components and therefore larger number of parallel

33

events. Thus, adding more cores to the target architecture results in at least linear

simulation slowdown when a single-threaded software simulator is used [6]. One attempt

to improve the simulation speed of CMPs is to parallelize the sequential software

simulation. This parallelization implies that the software simulator comprises multiple

concurrent simulation threads. The components of the target architecture and hence the

parallel events are partitioned and each partition is assigned to a simulation thread. The

partition granularity is usually at the tile level, e.g., in Graphite [38], a simulation thread is

created to simulate one target tile and the OS scheduler is responsible for scheduling these

simulation threads. The tile typically comprises a processor core, a part of the memory

subsystem, and a network interface.

This parallelization achieved some speedup, e.g., in Graphite, simulating 1024

tiles on ten host machines achieved a speedup of 3.85, parallel Transformer [48] achieved

an average speed up of 35.3% over GEMS [49] sequential simulation. However, we

should not be much optimistic about this approach because even when the simulation is

parallelized, things are still sequential inside the single simulation thread. Moreover, if the

number of target cores and hence the number of simulation threads is greater than the

number of the available host cores, then the simulation threads have to be scheduled on

the available cores and not all of them can run concurrently.

The most important thing that should be considered when parallelizing software

simulators is that the target CMP should work as one unit to achieve higher accuracy.

Thus, the simulation threads have to communicate in order to be aware of the state of each

other; this is known as simulation thread synchronization. For cycle accurate simulation,

34

this synchronization has to be done after each target clock cycle, which prevents

achieving significant simulation speedup via software-based simulation parallelization.

Most of the existing parallel software simulators use loose synchronization, i.e.,

they scarify a degree of accuracy to gain more simulation speedup. In loose

synchronization, the simulation threads are synchronized upon a certain event or

periodically instead of synchronizing them after each target clock cycle, e.g., HORNET

uses periodic synchronization [50], Graphite uses lax synchronization [38], Sniper uses

barrier synchronization [39], and SiMany uses spatial synchronization [51]. These loose

synchronization techniques will covered in more details in the next chapter.

Recently, FPGAs appeared as ideal accelerators for CMPs’ simulators due to the

massive fine and coarse grained parallelism they offer. Using FPGAs, the concurrent

components of the target CMP can be mapped to concurrent models on the FPGA. Thus,

the parallel events of the target CMP can be simulated in parallel and hence the simulation

speed is greatly improved. Moreover, FPGAs are more realistic for CMP simulation

because the concurrent structure of the target CMP’s model resembles the target CMP

structure itself and hence higher accuracy is achieved. Although FPAG-based simulators

are faster than their software counterparts by orders of magnitude, there are three

drawbacks related to this approach:

1. Design Complexity: developing a hardware model of a multicore machine is

time-consuming and requires advanced skills in hardware design and verification.

However, this issue has been greatly alleviated due to high level hardware

description languages, such as SystemVerilog, Bluespec System Verilog, and

SystemC.

35

2. Lack of Flexibility: FPGA-based simulators lack flexibility and usability because

they require users to be able to implement designs on FPGAs. However, this issue

can be alleviated by developing a friendly software frontend that interacts with the

FPGA on the user’s behalf.

3. Limited FPFA Area: Although recent FPGAs are large enough to host

multicores’ simulators, FPGA area is still limited and hence it can only host a

model up to a certain limit. In order to host larger models, however, either

multiple FPGAs are used [9] [52] or a smaller model is timely-multiplexed among

a larger model’s components [46, 53]. It is important to note that the former

approach is costly, whereas the latter increases the simulation time and sacrifices a

degree of accuracy.

36

CHAPTER 4

REVIEW OF EXISTING MULTICORE SIMULATORS

Computer architecture simulation is an old open research problem. In 2006, Yi

and Lilja [54] surveyed the computer architecture simulation techniques at that time. This

chapter focuses on the recent major efforts in multicore architectures simulation. The

reviewed simulators in this chapter are classified based on their implementation

technology to software, FPGA-based, and hybrid simulators.

4.1 Software Simulators

This section presents some of the key multicore simulators that were implemented

as pure software.

4.1.1 GEM5

GEM5 [24, 55] is a full-system computer architecture simulation infrastructure

that merges the best aspects of M5 [56] and GEMS [49] simulators. M5 provides

configurable simulation framework, multiple ISAs, and multiple core models. GEMS

complements these features by providing a detailed and flexible memory system, multiple

cache coherence protocols, and different interconnect models. GEM5 was jointly

37

developed by multiple academic and industrial institutions including AMD, ARM, HP,

MIPS, Princeton, MIT, and the Universities of Michigan, Texas, and Wisconsin.

GEM5 offers the flexibility to the user to simulate the target architecture at

different levels of details and hence control the accuracy-speed trade-offs. To achieve

that, GEM5 provides different models of different levels of abstractions for the main

components of the target architecture, e.g., different CPU models and different memory

system models.

GEM5 supports different ISAs such as, ARM, ALPHA, MIPS, Power, SPARC,

and x86. Moreover, it supports four different CPU models, (1) AtomicSimple, which is a

simple un-pipelined one-IPC model that completes one instruction per clock cycle. (2)

TimingSimple, it is the same as AtomicSimple, but it simulates the timing of memory

references. (3) InOrder, it is an “execute-in-execute” accurate model of an in-order

pipelined CPU. (4) O3, it is an “execute-in-execute” accurate model of an out-of-order

pipelined CPU. “execute-in-execute” refers to that instructions are executed only in the

execution stage after all dependencies are resolved. . Thus, GEM5 is an example of

integrated execution-driven simulators. Although the last two models emphasized

accuracy, it was not claimed that they are cycle-accurate models.

GEM5 inherited two memory models, (1) Classic mode, which was inherited

from M5 [56] simulator. This model is easily configurable and fast. (2) Ruby model,

which was inherited from GEMS simulator [49]. It is a flexibly infrastructure that allows

accurately simulating different cache-coherent memory systems.

Regarding NoC modeling, Ruby memory model can create any NoC topology

since it is composed of point-to-point links. In a simple Python file, the connections

38

among the components are determined and shortest-path algorithms are used to generate

the routing tables. Ruby has two network models, (1) simple model, which models the

router and link latency and the link bandwidth. However, it does not model contention and

flow control. Thus, it sacrifices a degree of accuracy for the sake of faster simulation. (2)

Garnet model, which includes detailed router microarchitecture and a timing model of

contention and flow control. Garnet model is suitable for NoC studies.

GEM5 can operate in two modes, (1) Full-System mode, which models an

operating system, and the computer devices such as IO peripherals. It simulates user-level

and system-level codes. In this mode, GEM5 is capable to boot Linux operating system.

(2) System –call Emulation mode, which does not include a complete OS model.

Hoverer, it emulates most common system calls, such as reading from a file operation.

When a system call is encountered, gem5 traps and emulates that call, often by passing it

to the host operating system.

The current version of GEM5 is sequential. Thus, GEM5 suffers from long

simulation time, especially when it is used for detailed architectural models of CMPs.

Moreover, configuring the target architecture requires that the user has hands on

experience in Python, which is not always guaranteed.

4.1.2 Graphite

Graphite [38] was developed at MIT as a user-level parallel software simulation

infrastructure that targets multicore architectures. It is an open source distributed

simulator that runs on commodity Linux machines. Graphite is a functional-first

39

execution-driven simulator, in which the functional model runs ahead of the timing

model. It is a flexible and configurable simulator, which makes it convenient for the user

to explore many architectural alternatives. It has a modular architecture such that each

component is modeled as a separated module with well-defined interfaces. Thus, a new

target architecture instance can be configured via swapping the appropriate modules.

Graphite uses pin tool to functionally execute the workloads. The executed

instructions along with their information, e.g., memory references, are consumed by the

timing model. Graphite’s core model is an abstract in-order model that is responsible for

deriving the execution time of the workload on the target core via accumulating the

latencies of the different events. Thus, Graphite is not a cycle-accurate simulator because

it has a high level abstraction of the core model. When an “uncore” event occurs, the NoC

model computes the round-trip latency of the network message generated by this event,

e.g., a load miss event, then the memory model adds the memory access latency, and

finally the core model accumulates these latencies on the target execution time

Simulation in Graphite includes running a multithreaded application on the target

architecture defined in Graphite simulator. Each application thread is mapped onto a tile

in the target architecture and each target tile is mapped onto a Graphite host thread

(simulation thread). Graphite host threads are distributed on the cores of the distributed

host machines, and the host operating system scheduler is responsible for scheduling these

threads.

To achieve a higher simulation speed and scalability from the budget of simulation

fidelity, Graphite uses different loose synchronization techniques for synchronizing the

different target clocks. These techniques are based on what so called lax synchronization,

40

which allows the clocks of the different target cores to differ from each other and the true

synchronization occurs occasionally. One flavor of this lax synchronization is barrier

synchronization in which the simulation threads wait on a barrier after a certain number of

clock cycles specified by the user. This technique allows the user to trade accuracy for

speed as desired. The higher the frequency of this synchronization barrier the higher the

simulation accuracy and the lower the simulation speed.

Regarding Graphite speed, for SPLASH-2 benchmarks, the simulation time was

longer than the native execution time by 1751 times when one host machine was used.

However, this slowdown was reduced to 1213x when eight host machines were used.

4.1.3 Sniper

Sniper is a parallel software simulator proposed by Penry et al. [39] to simulate

multicore and multiprocessor systems. It was derived from Graphite simulator [38] by

adding the interval model [43] to Graphite. Sniper’s level of abstraction (interval

modeling) falls between the accurate-slow detailed microarchitecture models and the

inaccurate-fast abstract models, such as the one-IPC model.

The interval model is a mechanistic analytical model, where the execution time is

split into intervals by miss events, such as: branch miss-predictions, load misses, etc. Each

interval has two subintervals, (1) the busy subinterval, in which the core is doing useful

work, and (2) the non-busy subinterval, in which the core is idle.

Sniper models the timing for individual target cores. It maintains a window of

instructions per target core. This window corresponds to the reorder buffer in the out-of-

41

order cores and is used to detect the overlapping between the miss events and the long

latency load misses. The functional simulator (Graphite in this case) is responsible for

executing the instructions, detecting the miss events, and injecting them into the

instruction window’s tail. Thus, in addition to the functional execution of the application,

Sniper requires that the functional model has to model the functionality of different target

architecture’s components, such as the cache hierarchy and NoCs in order to detect the

miss events related to these components.

Sniper is considered a functional-first execution-driven simulator because the

functional model runs ahead of the timing model. Regarding OS modeling, Sniper is

considered a user-level simulator. However, it assigns constant latencies to some OS

related events, such as spinlocks

Sniper’s timing model derives the simulated time of a certain target core based on

the analytical interval model. It consumes and manipulates the executed instructions from

the instructions window’s head. If a miss event is encountered by the timing model, the

penalty of this miss event is added to the core’s simulated time. Otherwise, the

instructions are dispatched at the effective dispatch rate, and the simulated time is

incremented by the average instruction execution time that excludes miss events’

penalties.

Sniper has a unique feature, namely the CPI (Clock per Instruction) stack, which is

a stacked bar. It breaks up the target execution time into its different components, such as

computation time, synchronization time, cache misses’ penalties, etc. This feature is very

useful, because it explains where the execution time has been spent. It helps the software

developer to identify the performance bottleneck and therefore makes the suitable

42

improvements. Sniper achieved a speed of up to 2 MIPS with absolute average error of

25%, when it was validated against real hardware for a variety of multi-threaded

workloads.

4.1.4 PinPlay

PinPlay is a framework for deterministic regeneration of a program execution. It is

based on Intel pin dynamic binary instrumentation framework, namely pin. Its main

objective is to address the non-determinism in multithreaded program execution.

Successive runs of the same multithreaded program have different threads interleaving

and different shared memory access order. For debugging and computer architectural

simulation purposes, it is desired to have one deterministic execution of the program.

In Pinplay, the program is executed once and some information is recorded in

order to regenerate the same execution again and again. PinPlay comprises the following

two pin tools:

1. Logger: is a Pin tool that takes the binary program alongside its input set as

input. Then, the program is instrumented and natively executed under this Pin

tool. The logger captures the initial architecture state (initial memory image

and initial registers values) and non-deterministic events during a program

execution in a set of files called pinballs. Due to heavy instrumentation (every

instruction is instrumented), the logger is slower than native execution by 100-

200X.

43

2. Re-player: is another Pin tool that is run on the pinballs to deterministically

reproduce the execution that was captured by the logger. It can be combined

with an execution-driven architectural simulator to allow simulation based on

pinballs instead of the original program binary and hence perform apples-to-

apples comparison because the same execution is used in multiple simulations.

Moreover, it can be combined with a debugger to debug a deterministic

execution of a multithreaded program. The re-player is slower than native

execution by less than 50X.

Figure 4 shows a high-level block diagram that depicts the workflow of Pinplay.

44

Figure 4: High Level Block Diagram of PinPlay Framework Workflow

X86 binary
program +
input Set

Logger
pintool

 Initial Memory Image

 Initial registers’ values

 Registers’ values before and after a

system calls

 Shared memory access orders

 Memory values injections

 Execution orders between threads

Pinball

Re-player
pintool

Simulator Debugger

45

4.1.4.1 Pinballs

A Pinball is a user-level format that is created and consumed under Intel’s Pin

framework. It is a checkpoint produced by the logger. It can be loaded and replayed to

repeat the captured program execution. Pinball is self-contained, i.e., the binary program

and input data set are no longer required after logging. Pinball is not a trace and not a

sequence of static records. The difference between Pinball execution (replay) and the

original program execution is that in replay the system calls are skipped and only their

side effects (on the registers) are injected. Moreover, in replay, shared memory accesses

by multiple threads are forced to be in the captured order. Otherwise, replay is simply a

normal execution of the original program.

Therefore, a Pinball keeps only the information that is required to repeat the

captured execution. Pinball is organized into multiple text files. Some files are global (for

all threads) and some of them are per thread (each thread has its own copy of the file).

The following are the most important pinball files:

1. *.text, global, it contains the initial memory image.

2. *.sel (system effects log), per-thread, memory value injections tagged by

instruction counts, i.e., the injection occurs when the number of instructions

executed by the thread reaches the recorded value.

3. *.reg, per-thread, multiple register value records for initial register state,

registers differing from before and after system calls, etc.

4. *.race: per-thread: records to enforce shared memory access order between

threads. e.g., if the file is for thread i, the records are of the format ‘i counti

46

j icountj’ implying thread i must wait at instruction count counti till thread

j reaches instruction count icountj.

5. *.sync text, per-thread, records to enforce execution order between threads.

Its records have the same format as the *.race file.

4.1.4.2 PinPlay and Architectural Simulation

PinPlay can be combined with Pin-based simulators directly, such as Sniper. In

this case, PinPlay serves as a functional model of such simulator, i.e., it replays the

program (executes the pinball) and feeds the timing model with the executed instructions.

However, for non-Pin simulators, there should be a convertor between the PinPlay format

and the simulator format.

Since replay implies real execution of the program, Pinballs cannot be consumed

by trace-driven simulators because pinballs execution needs functional units that are

missing in such simulators.

4.1.5 McSimA+

McSimA+ [41] is a cycle-level detailed microarchitecture simulator for multicore

and emerging many-core processors. It was jointly developed by Seoul National

University and HP Labs. McSimA+ is a functional-first execution-driven simulator. The

functional model is based on native execution under Pin tool. The executed instructions

along with their information are injected to the event-driven timing model to derive the

execution time of the workload on the target processor.

47

McSimA+ is not a full-system simulator. However, it implements a thread

management layer to manage the target threads. Thus, McSimA+ falls between the

application-level and full-system simulators and hence it was called application-level+

simulator. They designed a special Pthread [57] library to be a part of McSimA+. This

library comprises two parts: (1) Pthread controller, which implements the Pthread

functionality, such as, thread creation, thread termination, and thread’s storage

management. (2) Pthread scheduler, which is responsible for scheduling the target threads

on the target cores, i.e., blocking and resuming the target threads.

The core microarchitecture is highly detailed in McSimA+; it has a variety of

detailed core models including single-threaded, multi-threaded, in-order, and out-of-order

cores. Moreover, the target memory hierarchy model is highly detailed. McSimA+

supports a flexible cache hierarchy model that allows the user to explore different

alternatives. Furthermore, McSimA+ supports multiple cache coherence protocols.

Regarding NoC model, McSimA+ supports different NoCs, such as, buses,

crossbars, and multi-hop NoCs of different topologies (ring and 2D mesh). Moreover,

McSimA+ models hierarchical NoCs, where the cores are grouped into local clusters and

these clusters are interconnected via a global NoC. McSimA+’s NoC model has links and

routers. The hop latency is a tunable parameter.

McSimA+ speed was not reported. Regarding accuracy, McSimA+ was validated

against a real hardware, namely Intel Xeon E5540 using SPLASH-2 benchmarks. They

compared the IPC computed by McSimA+ with the IPC resulted from the real hardware

and the average absolute error was 14.2%.

48

Our proposed framework has a thread management layer same to McSimA+, but it

is implemented in hardware (FPGA).

4.1.6 SiMany

SiMany is a discrete-event many-core simulator proposed by O. Certner et al. [51].

It supports task-based programming models, such as CILK and TBB (Threading Building

Blocks). Each target core is simulated via a different simulation thread. However, these

simulation threads are scheduled on a single host core. Thus, SiMany cannot be

considered as a parallel simulator.

 SiMany tried to increase the simulation speed by scarifying a lot of fidelity via

raising the level of abstraction of the core, cache hierarchy, and NoC models. Thus,

SiMany is not a cycle-accurate simulator. Moreover, SiMany has no OS model and no

ISA emulation. The program is natively executed on the host machine. Once an inter-

thread interaction is encountered, the timing model intervenes. Therefore, SiMany

focuses only on the concurrent interactions among the target cores. The regions among the

concurrent interaction points (the sequential parts of the code) are just executed natively,

i.e., they are ignored, which greatly reduces the simulation accuracy. SiMany can be

considered as a functional-first execution-driven simulator because the application runs

ahead of timing model interventions.

SiMany uses what so called Virtual Time (VT), which is the clock of the target

core. If all cores are perfectly synchronized, their VTs will be the same. However, VTs

are synchronized in a distributed fashion, called spatial synchronization. When a memory

49

access or remote request is issued by a core, it is initially stamped by the current value of

the VT of that core. The value of this time stamp is increased incrementally while this

request navigates through the model components.

In this spatial synchronization mechanism, the cores synchronize their VTs with

their neighbors only. When the request comes back to its initiator core, this core’s VT is

updated to the latest value of the request’s time stamp. Then this core sends a VT update

message to its immediate neighbors and this update propagates to the whole network.

If a core’s VT is greater than the VT of its neighbor by T, this core stalls until its

neighbor’s VT increases to be equal to its VT. This feature lowers the time drift between

cores under T, which is a parameter specified by the user. It represents speed/accuracy

tradeoff, the higher the T the faster and the less accurate the simulator, and vice versa is

true.

SiMany has been validated against UNISIM-based simulator [58]. It showed a

geometric mean of errors equals to 8.8% for 16 cores, 18.8% for 32 cores, and 22.9% for

64 cores. They claimed that SiMany speed is two or more orders of magnitude over the

existing approaches.

4.1.7 HORNET

HORNET is a cycle-level parallel software simulator for many-core architectures

proposed by P. Ren et al. [50]. It is a highly configurable simulator, which provides the

architect with the required flexibility to explore the architectural space.

50

HORNET supports three flavors of core models, (1) trace-driven packet injector,

which is suitable for simulating NoCs only, with this flavor, HORNET is considered as a

NoC trace-driven simulator. (2) Single-cycle in-order MIPS core models, and (3) Threads

of an executable run under Intel pin framework (native execution). In the last two models,

HORNET is considered a functional-first execution-driven simulator.

HORNET has a configurable memory system, in which the user can specify the

number of cache levels, sizes, private/shared, etc. Moreover, it implements MSI cache

coherence protocol.

Regarding NoC modeling, HORNET possesses a cycle-accurate NoC model. It

supports different topologies, such as ring and multilayer mesh. Also it supports both

static and adaptive routing. Furthermore, HORNET can operate in NoC mode only, where

the a trace is used to inject traffic to the NoC model

Periodic synchronization is used by HORNET to trade simulation speed for

accuracy. It includes synchronizing all simulation threads on a barrier periodically.

Increasing the synchronization period enhances the simulation speed from the accuracy

budget, and vice versa is true.

4.1.8 Manifold

Manifold is an open source parallel full-system software simulation framework for

multicores. It was proposed by J. Wang [44]. Manifold has a parallel simulation kernel as

well as a library of micro-architectural components, which offers the architect the

capability of building up a customized simulator from these micro- architectural

51

components. It supports a range of core models that includes cycle-accurate models,

analytical models, and k-CPI models. It uses parallel multicore emulator frontend to

execute binaries. Manifold supports cycle accurate NoC components and different

synchronization algorithms. Manifold’s mean simulation speed was 242.03

KIPS.Regarding speed and accuracy, Manifold is not just a simulator, it is a simulation

framework, and hence it supports both abstract and detailed components. Thus, the

constructed model speed and accuracy vary according to the level of abstraction selected.

4.1.9 Transformer

Transformer [48] is a cycle-accurate full system simulator for multicores based on

GEMS simulator [23]. It is a functional-first execution-driven simulator, where the

functional model runs ahead of the timing model in Transformer. The output of each

instruction executed by the functional model is fed to the timing model to evaluate its

timing.

Transformer provides an architecture-independent interface between the functional

and timing models to leverage simulator extensibility. In the case of functional-timing

divergence, for example, a miss-prediction occurs in the functional model and a correction

step is required, Transformer has a lightweight scheme to detect and recover from such

scenario.

Transformer has been compared against GEMS simulator. The sequential version

of Transformer achieved an average speedup of 8.4% over GEMS simulator. However,

52

the average speedup was 35.3% when the functional and timing models were parallelized

in a pipelined manner.

4.1.10 COTSon

COTSon [26] was jointly developed by HP Labs and AMD. It is a parallel

functional-first execution-driven full system simulation framework that targets cluster-

level systems of many cores. It uses AMD’s SiMNow simulator [59] for the functional

simulation of the benchmark on each node of the cluster. All events generated by the

functional simulator are fed to their timing models. It uses sampling techniques to

improve the simulation speed. COTSon can dynamically adjust speed and accuracy.

4.1.11 Summary and Discussion

In this section, nine sequential and parallel software simulators have been

reviewed. The flexibility and ease of development of software simulators compared to the

FPGA-based ones made them popular in computer architecture community. However, the

slowness of such simulators, especially when they target CMPs, pushed researchers to

investigate how to accelerate these simulators.

In this section, we noticed that researchers tried to alleviate the slowness of

software simulators in two ways, (1) scarifying a degree of accuracy via raising the level

of abstraction of the target architecture model. This includes using simple models of the

processor cores, NoCs, and memory subsystems. (2) Parallelizing such simulators and

running them on the existing parallel machines.

53

Unfortunately, the slowness drawback of software simulators still exists even after

these two solutions. Abstract models eliminate a fraction of the details to be simulated,

i.e., they reduce the number of parallel events occurring in a single target clock cycle;

however, this number is still high. Moreover, parallelizing software simulators partitions

these parallel events and assigns them to multiple parallel simulation threads. This

approach is supposed to achieve simulation speedup that is proportional to the

computation power of the host machine. However, this speedup is limited because the

parallel events are still simulated sequentially in the same simulation thread.

Another limiting factor of parallel simulators speedup is the inter-core

communication for synchronization. In parallel software simulators, each target core is

mapped to a simulation thread, such as in Graphite [38] and these simulation threads are

mapped to different host cores. For cycle-accuracy, the clocks of the different target cores

have to be perfectly synchronized. This means they have to communicate after each target

clock cycle, which collapses the simulator performance. To prevent this performance

degradation, the existing parallel software simulators, such as Graphite [38] and

HORNET [50] use loose synchronization techniques in which the different target clocks

can be synchronized periodically by letting the simulation threads wait on a

synchronization barrier every fixed number of clock cycles. Of course, rescuing the

performance via loose synchronization is from the accuracy budget.

Furthermore, in these simulators, the user is able to specify the time period

separating each two synchronization barriers to adjust the accuracy/speed trade-off. At

first glance, this looks as a good feature, although it is not. Because nothing will tell the

user how accurate the simulator became after tuning the synchronization period.

54

Based on the discussion above, we conclude that there is a need for a solution to

dramatically accelerate CMPs simulations. This solution is the FPGAs. The upcoming

couple of sections present some concrete examples of FPGA-accelerated simulators.

4.2 FPGA-based Simulators

This section presents the key FPGA-accelerated simulators in which both the

functional and timing models were hosted on FPGA.

4.2.1 RAMP Gold

RAMP Gold [8, 42] is a high-throughput and cycle-accurate FPGA-based

simulator for many-core architectures that was developed at UC Berkeley. It is a timing-

directed execution-driven simulator. Moreover, RAMP Gold is a full-system simulator

that is capable of booting Linux operating system. RAMP Gold uses host-multithreading,

it simulates 64 target cores on a single physical timing model using fine-grained time

multiplexing.

RAMP Gold decouples the functional model from the timing model. The former

executes the target ISA and maintains the architectural state, while the latter determines

the time required by the target machine to execute an instruction and schedules the threads

to be executed by the functional model.

It was claimed that RAMP Gold is a cycle-accurate simulator; although the NoC

and cache coherence models are missing from this simulator. Moreover, RAMP Gold

55

core’s model is just a simple one-IPC in-order single-issue core model that completes one

instruction per cycle except in the case of a data or instruction cache miss. On the other

hand, RAMP Gold has a detailed timing model of the cache hierarchy.

RAMP Gold achieved two orders of magnitude speedup over software simulators.

It simulated a target machine of 64 cores at almost 50 MIPS. In terms of FPGA resource

usage, RAMP Gold consumes 90% of the BRAM blocks, 25% of LUTs (LookUp Tables),

and 34% of the registers in a Virtex 5 LX110T FPGA. The functional model consumes

the significant part of the FPGA resources. These resources were consumed to implement

the core’s components, such as fetch unit, decode unit, register file, ALU, and floating

point units. Moreover, a significant amount of block RAMs were used to cache the input

data set of the application. Therefore, moving the functional model to software will

release these resources to build a more detailed and larger timing model.

4.2.2 HAsim

HAsim [53] was jointly developed by MIT and Intel. It is the FPGA-based

implementation of Asim software simulator [25]. HAsim is a highly-detailed simulator

that targets shared-memory multicore processors. It has a single highly detailed physical

core, a single cache, and a single router on a single FPGA. The cores’ internal states (the

program counters and the register files) are duplicated for each target core. HAsim is a

timing-directed execution-driven full system simulator. It currently supports the Alpha

ISA only.

56

HAsim simulates multiple target cores sequentially using fine-grained time

division multiplexing, i.e., the single physical core is multiplexed among multiple target

cores in a round robin manner. Each pipeline stage in the physical core can simulate a

different target core, i.e., the number of target cores that can be simulated simultaneously

is limited by the number of pipeline stages. This scheme is called host-multithreading,

which means that the simulator has multiple threads and each thread is responsible for one

target core. In FPGA-based simulators context, host-multithreading means the same

hardware component, such as core model or router model is timely multiplexed among

different target cores and the simulator keeps track of the architectural state of all of these

cores.

HAsim simulates the on-chip network of any topology through permutations using

a single physical router. For the message port in the ring network, the output from router0

is the input for router1, the output of router 1 is the input of router2, and so on. The output

from router N-1 is the input for router0. For the credit port, 0 goes to N-1, 1 to 0, 2 to 1,

and so on. This cross-router communication pattern is represented as a small permutation

that can be stored in a queue and a side buffer.

HAsim’s accuracy was not reported. Concerning simulation speed, for a single-

thread target architecture, HAsim used 11 FPGA cycles on average to simulate one target

cycle and the simulation rate was 4.54 MHz, i.e., it can simulate 4.54 million target cycles

on average per second. However, for sixteen threads, HAsim used 80 FPGA cycles on

average to simulate one target cycle and the simulation rate was 625 KHz. Regarding

FPGA resources; HAsim consumes 57% of the FPGA registers, 79% of LUTs, and 27%

of the BRAMs when 16 target cores are simulated on a Virtex 5 LX330T FPGA.

57

4.2.3 Arete

Arete [9] is an FPGA-based cycle-accurate simulator for multicore PowerPC

architecture. It is a full-system simulator that is capable to boot an off-the-shelf SMP

(Symmetric Multiprocessing) Linux to run unmodified applications, such as PARSEC

benchmark suite. Arete is an execution-driven simulator that tightly integrates the

functional and timing models together. Furthermore, Arete does not implement host-

multithreading, i.e., all target cores run concurrently which makes it more accurate.

Arete’s target architecture is tile-based. Each tile contains multiple PowerPC

cores. Each core has 10-stage in-order pipeline. Moreover, each tile has two cache levels,

where L2 is shared among all tile’s cores. Arete implements a bidirectional NoC, which

supports point-to-point topology. Also it implements a directory-based MSI (Modified,

Shared, and Invalid) cache coherence protocol.

For the efficient use of FPGA resources, the LI-BDN (Latency Insensitive

Bounded Data Networks) technique [60] was used. LI-BDN aims at reducing the FPGA

resources usage by using multiple FPGA clock cycles to simulate one target clock cycle.

Arete’s average speed was 55 MIPS for 8 cores on 4 FPGAs, and up to 11 MIPS

for one core on a single FPGA. In terms of FPGA resources consumption, Arete is

expensive because it covers all components of the target architecture in details. One

Virtex 5 FPGA can fit for up to two realistic PowerPC cores.

58

4.2.4 ScalableCore system 3.3

ScalableCore system 3.3 [52] is a cycle accurate FPGA-based full-system

simulator for mesh NoC-based tile architectures. The main goal was to achieve scalability,

i.e., the simulator allows adding more cores. They had two contributions:

1. Local Barrier Synchronization: to satisfy the cycle-accuracy, the newest simulation

state is transferred to the neighbor units in the next clock cycle. Each node will be

updated about its four neighbors only. This local barrier synchronization strategy

allows adding more cores without a need to increase the synchronization overhead.

2. Virtual Cycle: they used multiple FPGA cycles to implement one target cycle.

ScalableCore’s target architecture is the M-Core architecture, which is mesh NoC-

based tiled architecture. It consists of many homogenous cores. The communication

among the cores and the off-chip memory occurs through DMA (Direct Memory Access).

Each core is connected to its four neighbors.

In 100 nodes simulation, ScalableCore was 129 times faster than SimMc (software

counterpart simulator for M-Core running on Core i7 processor). Although this simulator

is scalable and cycle-accurate, it is very expensive because each target core needs to be

hosted in a separated FPGA device to avoid time division multiplexing.

4.2.5 Summary and Discussion

This section summarizes the findings of surveying the existing FPGA-based

simulators for multicores. Table 2 summarizes the main features of these simulators. All

59

of the existing simulators decouple the target cycle from the FPGA cycle (host cycle),

which allows the target cycle to be simulated in multiple FPGA cycles and hence less

FPGA resources.

From Table 2, it is clear that simulators without time multiplexing can simulate

only very few number of cores. This is because the functional model occupies a

significant area on the FPGA and the design components are not reused through time

multiplexing. Thus, it would be more efficient to implement the functional model as

software and move it to the PC. In this case, the CPU functional units are utilized to

functionally execute the application using the host’s native instructions and hence more

FPGA area is freed to host a larger timing model.

Although time multiplexing increases FPGA resources’ utilization, it sacrifices a

degree of fidelity. Because the state of only some core (s) can be visible at a single host

clock cycle and the states of other cores and the messages on the NoC are hidden, i.e., no

complete snapshot of the target architecture can be taken in the same host clock cycle.

None of the surveyed simulators modeled L3 cache, although the majority of

recent CMPs have this level, and it is in tens of megabytes. Adding L3 cache to these

simulators will dramatically reduce the number of cores that can be simulated, because L3

model will occupy a significant fraction of the FPGA BRAMs. This reemphasizes the

conclusion that the functional model has to be moved to the PC.

60

Table 2: Summary of the FPGA-based Simulators

Simulator
Time

Multiplexed

Core

Details
NoC

Cycle-

Accurate

Full

system

No. Target

Cores/FPGA

RAMP Gold Yes No No No Yes 64

HAsim Yes Yes Yes Yes No 16

Arete No Yes Yes Yes Yes 2

ScalableCore It can be Yes Yes Yes No 1

61

4.3 Hybrid Software/Hardware Simulators

This section presents two hybrid FPGA-accelerated simulators, namely,

PROTOFLEX and FAST.

4.3.1 PROTOFLEX

PROTOFLEX [10] is an FPGA-accelerated hybrid functional

simulation/emulation platform that was designed at Carnegie Mellon University. It does

not include a timing [61] model; however, it was intended to utilize FPGAs to accelerate

the functional simulation only. It provides the same functionality as Simics simulator [61].

The frequent behaviors (common operations), such as arithmetic operations are

emulated in hardware, and complex and infrequent behaviors, such as the I/O devices are

simulated as software. Hardware emulated and software simulated components of the

target system run concurrently on their respective hosts. PROTOFLEX is a full-system

simulator that is capable of booting Solaris 8 and running commercial workloads.

Moreover, it employs host-multithreading via time-multiplexing to simulate multiple

SPARC V9 cores.

Coupling PROTOFLEX with a software timing model will not accelerate

simulation because timing simulation is the most critical part and it supposed to be

targeted by simulation acceleration. In contrast, this coupling might slowdown the

simulation because the timing model will wait for responses from the FPGA to proceed.

62

In other words, in such hybrid approach, there will be a performance bottleneck on the

FPGA/PC boundary.

On the other hand, coupling PROTOFLEX with a hardware timing model on the

same FPGA makes the design larger and hence smaller target architecture can be

simulated without time division multiplexing.

Based on the discussion above, it is better to offload the functional part to native

execution to utilize the host machine resources to functionally execute the application and

saves the FPGA area to host larger timing models.

4.3.2 FAST

FAST is a hybrid software/hardware simulation methodology developed at The

University of Texas at Austin. It produces fast, complete and cycle accurate simulators. In

their first implementation [47], FAST supported single core simulation. It achieved an

average simulation speed of 1.2 MIPS. FAST consists of two parts, (1) simulator-level

speculative functional model implemented using a modified full- system software

simulator [62], and (2) timing model implemented on an FPGA. The functional model is

responsible for the ISA level simulation, whereas the timing model captures the micro-

architectural timing features of the target architecture.

In FAST, both functional and timing models run in parallel. The functional model

executes instructions independently from the timing model. Then, it passes the executed

instruction trace to the timing model, which simulates the timing of the executed

instructions according to the micro-architectural model. Thus, FAST is a functional-first

63

execution-driven simulator. FAST’s timing model affects the order of instruction

execution, when it detects a miss-speculation caused by the functional model; it corrects

the functional model by commanding it to roll-back and returns to the correct path.

4.3.3 Summary and Discussion

Table 3 summarizes the main features of the two reviewed hybrid simulators,

namely, FAST and PROTOFLEX.

As stated before, in hybrid simulators, either the functional or the timing model is

hosted on an FPGA and the other on a PC. Having these two models running

concurrently will reduce the simulator scalability and speed due to the intensive

communication on the FPGA/PC boundary. The situation gets worse when rolling back is

required to correct miss-speculations.

Again, it would be more efficient for PROTOFLEX to implement the functional

model as software and the timing model on the FPGA. In such implementation, the

functional units of the host machine are utilized to perform the complex arithmetic

operations and hence the whole FPGA can be utilized to simulate larger timing models.

64

Table 3: Summary of the FPGA-based Hybrid Simulators

Simulator
Functional

Model

Timing

Model

Time

Multiplexed

Core

Details
NoC

Cycle-

Accurate

Full

system

FAST Software FPGA No Yes No Yes Yes

PROTOFLEX FPGA Software Yes Yes No No Yes

65

CHAPTER 5

OVERVIEW OF THE PROPOSED SIMULATION

FRAMEWORK

This chapter presents the proposed simulation framework. It also summarizes all

the design decisions and trade-offs that have been evaluated to reach the current version

of the framework.

5.1 Basic Strategy

The basic strategy of the proposed simulation framework can be summarized as

follows:

1. Exploiting FPGAs to accelerate CMPs simulation while keeping FPGA design

issues transparent to the end user. This transparency is achieved via a software

layer between the user and the FPGA, i.e., users (such as computer architect and

application developers) won’t need to write HDL code (such as Verilog or

VHDL).

2. Modeling the largest possible target architecture on a single FPGA without time

division multiplexing. Therefore, the functional model has been implemented as

software, namely, using Intel pin instrumentation tool to free more FPGA

66

resources for a larger timing model. Thus, the proposed simulation framework is

hybrid and hence it is called HySim (Hybrid Simulator).

3. The functional and timing models are completely separated and hence there is no

communication bottleneck at the FPGA/PC boundary. The functional execution is

done first and then the execution trace is fed to the timing model later. Thus,

HySim is a trace-driven simulation framework.

4. To avoid storing large traces on the FPGA, the execution trace is compressed in an

executable code format called CET code (Compressed Executable Trace code).

The fraction of the trace that cannot be embedded into the CET code is kept

besides the CET code and called the CET data.

5. HySim’s timing model is able to interpret the CET code and data, and hence

regenerate the original execution events on-the-fly.

6. HySim implements a threads management layer. Therefore, the multi-threading

events such as, thread creation, termination, locking, and unlocking are encoded

into the CET code. Moreover, the timing model is capable of executing these

events and hence preserves the timing-dependent threads interleaving that is lost in

the traditional trace-driven simulators. Thus, HySim combines the convenience of

trace-driven and the accuracy of execution-driven simulators.

Since HySim is intended for early architectural exploration, there was no need for

a detailed microarchitecture model at this stage. Thus, an abstract base-CPI core model is

used. The base CPI includes the “incore’ time and excludes the “uncore” events. The

“incore” time includes computation time, miss-prediction penalties, hazards’ penalties,

etc. whereas the “uncore” one includes cache miss penalties, NoC latency, etc. The latter

67

is added during timing simulation. The base-CPI is a tunable architectural parameter.

Therefore, the base-CPI is added to the target core execution time for every instruction.

The timing of instructions that do not result in “uncore” miss events (e.g., ALU and

control instructions) is solely covered by the base-CPI. However, in the case of

instructions that cause “uncore” miss events, the penalty of these events are added to the

target execution time. E.g., in the case of a cache read miss, the access time of all

memories accessed to serve this event and the NoC latency, if any, is added to the target

core execution time in addition to the base-CPI.

5.2 Functional and Timing Models’ Implementation Options

In hybrid FPGA-accelerated simulators, there are two options for implementing

the decoupled functional and timing models:

1. Implementing the functional model on FPPGA and keeping the timing model in

software, e.g., PROTOFLEX [10]. In this option, timing simulation is not

accelerated and it remains sequential, although simulation acceleration is supposed

to be intended for the timing model. The only thing that can be accelerated in this

option is some complex arithmetic operations. Thus, this option was excluded

from our strategy.

2. Implementing the functional model in software and the timing model on FPGA,

e.g., FAST [47]. This option makes more sense because timing simulation will be

greatly accelerated. Moreover, the already existing functional units in the host

68

machine are utilized for functional execution (through native execution).

Therefore, we adopted this option.

After deciding how to implement the functional and timing models, we need to

determine how they interact. Running them simultaneously and letting them invoke each

other requires a high-bandwidth communication link between the FPGA and the PC.

Moreover, this link can be a performance bottleneck, especially when simulating a large

number of cores. Therefore, we decided to separate them completely and make HySim a

trace-driven simulator that can preserve the correct threads ordering during timing

simulation.

5.3 FPGA-based Simulation Framework Design Options

When FPGAs are used for computer architecture simulation acceleration, there is a

critical trade-off between the flexibility and usability of the simulator and its complexity.

The FPGA-accelerated simulator design options can be classified based on their flexibility

into three options, (1) rigid simulator, (2) fully-flexible simulator, (3) quasi-flexibly

simulator option which falls in between. The rest of this section delves into the details of

these three design options.

5.3.1 Rigid FPGA-based Simulator

A rigid FPGA-based simulator is a one that models a specific target architecture

(whether detailed or abstract). As such, it has no flexibility and new HDL code has to be

69

generated for every architectural change, synthesized and downloaded to the FPGA. This

means that an experiment would take about a full working day to implement. Besides the

significant time and effort required for customizing this simulator to another instance of

the design space, it requires that the user possesses advanced skills in circuit design and

hardware description languages, which is not guaranteed. Moreover, the user should be

familiar with FPGA platforms and synthesis tools. Furthermore, it requires resynthesizing

the design and reconfiguring the FPGA even for a slight change in the target architecture.

Thus, this approach has been excluded from our strategy.

5.3.2 Fully-flexible FPGA-based Simulator

In such a simulator, the base FPGA model is fixed and only run-time parameters

are used to change the model run-time behavior. Hence, running architectural experiments

involves only changing input parameters to the model. This requires the model to be

highly configurable and very inclusive of all possible variations, something very difficult

and costly with hardware models.

Initially, we targeted this ambitious approach, which offers full flexibility to the

user. In this approach, the FPGA design issues are completely transparent to the user, i.e.,

the framework is used as if no FPGA exists in the picture. Thus, the user does not need to

have any background in hardware design and verification. It allows the user to prepare a

new experiment with only several mouse clicks. Moreover, the design is synthesized only

once and also the FPGA is configured only once. To reach this level of flexibility, the

FPGA-based simulator should be very generic and a new instance of the design space can

70

be configured by changing the architectural parameters at runtime. This saves a lot of time

because design synthesis and FPGA configuration requires significant time, usually more

than the simulation time for some benchmarks or applications.

Although this simulator is a dream for the end user, developing such simulator is

too complex. Because building a very generic simulator that covers all instances of the

design space is not a trivial task. It will take a long time (usually in years) and require a

large team of skillful hardware engineers and computer architects. Moreover, such generic

simulator usually is very large and hence requires multiple expensive FPGAs to host it.

5.3.3 Quasi-flexibe FPGA-based Simulator

After realizing the complexity of the fully-flexible simulator, we decided to make

HySim less ambitious at this point, but much more flexible than the rigid one. In HySim,

the FPGA design issues are still transparent to the end user. It contains a Verilog template

of a shared-memory multicore architecture timing model. This template is used as a mold

to generate new timing models for different shared-memory multicore configurations. The

Verilog template contains a default timing model instance. A new timing model instance

can be generated by changing some parameters, e.g., cache size, number of cores, cache

associativity, etc. or by replacing the default modules by ready-made modules, e.g.,

changing the cache hierarchy from inclusive to exclusive or changing the last level cache

from private to shared, etc. according to the user’s input. This cuts down experimentation

set up time from days to few hours (most of the time is spent in the synthesis phase). The

user won’t have to write any HDL code.

71

This Verilog template was auto generated from a BSV code (Bluespec System

Verilog) [63] in which HySim’s timing model was developed. BSV is a very high level

and fully synthesizable hardware description language. We adopted BSV to reduce the

time and effort required to develop the timing model Verilog template.

Regarding design re-synthesis and FPGA reconfiguration, HySim has three types

of design parameters;

(1) Runtime parameters, which can be modified at runtime by passing their

values to the timing model through the FPGA’s ports. Thus, changing these parameters

does not require design re-synthesis and FPGA reconfiguration (exploring different design

points takes minutes).

(2) Reconfiguration parameters, changing these parameters require

resynthesizing the design and reconfiguring the FPGA.

(3) Post-simulation parameters, changing such parameters does not even require

re-simulation, such as, measuring the effect of changing the base-CPI, this parameter

affects only the “incore” time, which can be computed by multiplying the number of

executed instructions by the base-CPI. Thus the post-simulation parameters effect is

captured through calculations and not through re-simulation. Table 4 lists all of these

parameters with some description and default values. These default values are the values

assigned to the parameters in the Verilog template.

72

Table 4: HySim's Parameters and Their Default Values

Parameters

Category

Parameter Name Default Notes

Runtime

Parameters

Number of sockets 2

Cores per socket 8

Threads per core 4

Number of threads that

are scheduled on one

core.

L1 instruction cache

latency

3 cycles for data access,

1 cycle for tag access

L1 data cache latency
3 cycles for data access,

1 cycle for tag access

L2 cache latency
13 cycles for data access,

3 cycle for tag access

L3 cache latency
38 cycles for data access,

12 cycle for tag access

Main memory latency 175 cycles

Reorder buffer size 96

NoC topology Ring Ring or mesh.

Cache coherence

protocol
MSI

It can be MSI, MESI,

or MOESI, where M:

Modified, S: Shared, I:

Invalid, E: Exclusive,

O: Owned.

73

Re-

configuration

Parameters

Cache hierarchy inclusive

It can inclusive,

exclusive, or not

inclusive.

Cache line size 64 Bytes

L1 I–cache size 32 KB per core

L1 D–cache size 32 KB per core

L2 cache size 256 KB per core

L3 cache size 20 MB per socket

L1 instruction cache

associativity

8

L1 data cache

associativity

8

L2 cache associativity 8

L3 cache associativity 20

Post-

Simulation

Parameters

Base-CPI 0.5 clocks per instruction

Hop Latency 2 cycles

The latency of passing

through one node on

the NoC.

CPU frequency 1.2GHz

It is used to convert

from clock cycles to

seconds.

74

5.3.4 Summary

Table 5 summarizes the pros and cons of the three simulation framework design

options discussed above.

75

Table 5: Pros and Cons of Different FPGA-based Simulation Framework Design Options

Framework Pros Cons

Rigid

Simulator

 Quick to develop  Manual HDL code

customization

 Design re-synthesis and

FPGA reconfiguration

 Not transparent to the FPGA

design issues

Quasi-Flexible

Simulator

(HySim)

 Transparent to the FPGA

design issues

 Automatic HDL code

customization

 Moderate design size

 Moderate development time

 Occasional design re-

synthesis and FPGA

reconfiguration

Fully-Flexible

Simulator

 Transparent to the FPGA

design issues

 No HDL code

customization.

 No design re-synthesis and

FPGA reconfiguration

 Very large design size

 Very long development time

76

5.4 HySim’s Architecture and Workflow

Figure 5 shows a high level view of HySim’s architecture. It comprises two main

components, namely, the software frontend and hardware backend. The main purpose of

the software frontend is to provide a friendly software layer between the user and the

FPGA. Moreover, it contains the functional model of HySim (currently Intel pin tool) and

the trace compression tool (CET tool). On the other hand, the hardware backend is the

FPGA-based configurable timing model. It captures the timing characteristics of the target

architecture and derives the execution time of the user application on that architecture.

As shown in Figure 5, the software frontend comprises a tool suite that comprises

graphical user interface, Pin dynamic binary instrumentation tool [14], Xilinx ISE design

suite, CET tool, and the control panel.

77

Control Commands

Figure 5: HySim Framework Structure

INS or RTN
Object

Simulation Results

Configuration

Benchmark

CET Code/Data

Benchmark

Simulation Results

CET Code/Data

Verilog Bit Stream

Control Panel

Timing Model on
FPGA

Xilinx
Software

Intel Pin

Tool

User Software Frontend

CET Tool

Verilog
Template

BSV
Template

Verilog
Modules

Hardware Backend

78

The following procedure summarizes HySim’s complete cycle for performing one

simulation experiment from scratch:

1. The user selects the benchmark/application and specifies the target architecture’s

parameters.

2. The control panel modifies the timing model’s Verilog code’s template to generate a

timing model instance for the specified target architecture.

3. The Verilog code is fed to Xilinx software and the bit stream of the timing model

instance is generated.

4. The application is natively executed and dynamically instrumented via Intel pin tool.

5. Intel pin intercepts each instruction and routine and sends its information, such as

thread Id, instruction address, data memory address in the case of load/store, target

address in the case of control instruction, the conditional branch instruction result

(taken or not taken), etc. to the CET tool to generate the CET code and data of the

application on-the-fly, i.e., without waiting for the whole trace to be generated.

6. The bit stream and the CET code and data are downloaded onto the FPGA.

7. The timing model executes the CET code with the help of CET data to evaluate the

target architecture.

8. When simulation finishes, the control panel reads the simulation results from the

FPGA and displays them to the user.

79

5.5 HySim’s Output

HySim’s output includes the simulation results, namely, the excepted execution

time of the benchmark on the target machine (the simulated time). It also shows the

different components of this execution time, such as computation time, synchronization

time, data cache miss time, etc. Besides that, the simulation results include the number of

cache misses at each cache level. Figure 6 shows a snapshot of the simulation results for

one thread.

80

Figure 6: A Sample Simulation Results for One Thread

81

CHAPTER 6

COMPRESSED EXECUTION TRACE GENERATION

As explained in chapter 5, our proposed hybrid simulation platform is composed

of two parts; a SW frontend and a HW backend. The SW frontend generates a compressed

trace of the input application (using instrumentation). In this chapter, the proposed trace

generation and compression technique is described. After a brief description of the trace

compression problem and the major existing techniques, details of the different phases of

the proposed trace compression technique are provided. Experimental results for the

compression ratio and speed achieved by our technique compared to other published

techniques are presented at the end.

6.1 Introduction

Trace-driven simulation of computer systems has been widely used among

computer architects and application developers [29]. This is due to its convenience and

ease of implementation. A trace is generated once and can be used to carry out many

architectural explorations via simulations. Trace-driven simulation can reveal

considerable useful information, such as an application’s average clocks per instruction

(CPI), cache performance, locality of references, efficiency of branch prediction and pre-

fetching. A typical trace comprises the executed instructions along with their

82

corresponding memory references. A trace-driven simulator can be a complete simulator

for the whole computer system or specific for a certain component, such as a branch

predictor or instruction cache. Trace fidelity refers to how many of the original execution

events can be re-constructed from the trace.

In the multi-core era, researchers paid more attention to execution-driven

simulation than trace-driven simulation because trace-driven simulators do not capture

timing-dependent thread execution interleaving. However, researchers and architects

continued to use trace-driven simulation to simulate multi-threaded applications on multi-

core machines [28, 30, 31].

Another major challenge of trace-driven simulation is the large size of trace files.

Although disk storage is currently inexpensive, the disk access time is still high.

Moreover, the situation is not improved when FPGAs are used for trace-driven simulation

due to their limited storage resources.

Although existing trace compression techniques succeeded in achieving excellent

compression rates, these techniques still suffer from two drawbacks. First, all of these

techniques take the full original trace as input. Because the primary objective of trace

compression is to avoid having such large trace files, it would be more efficient to avoid

having them from the beginning. In other words, it would be more efficient to start

compression on-the-fly, i.e., during the original trace generation. The second drawback is

that some of these techniques, [32, 64], require a decompression stage to reproduce the

original trace. Decompression requires additional time and space and regenerates the huge

original trace.

83

In [33], the authors proposed a lossless trace compression technique that exploits

spatial and temporal locality. It performs an on-the-fly decompression. This technique is

limited to instructions and their addresses, i.e., data addresses are not covered. The

instructions’ addresses have been classified into two categories: (1) sequential addresses,

in which the difference between any two consecutive addresses is constant, and (2) non-

sequential addresses, in which the difference between them is variable.

The input trace consists of pairs of numbers. The first number is the instruction

address, and the second is the instruction itself. The output comprises three components:

(1) the static program instructions, any instruction is required is fetched from the static

program using the instruction address; (2) sequent address file, it consists of a very long

bit vector. Each bit corresponds to a trace element. If this bit is ‘0’, the corresponding

address is sequential. If it is ‘1’, the corresponding address is non-sequential. (3) A file

that contains the differences among the non-sequential addresses and can be compressed

further based on locality.

In [34], the authors proposed an address trace compression technique based on

loop detection. They used control flow analysis to detect loops in the address trace. They

only handled constant and varying-by-constant addresses. They detected them by

scanning the trace and finding the repeated patterns. The decompression stage implies

running these detected loops. This technique does not handle complex situations in which

loops have function calls and complex structures.

S. Budanur et al. [65] proposed a memory trace compression technique for SPMDs

(single program multiple data). Their technique is based on PRSD (power regular section

descriptors) [66, 67] abstractions but it is finer grained. They called it EPRSD (extended

84

PRSD). A pin based instrumentation tool (memtrace) takes an application as input and

generates the memory trace of it. The generated trace is compressed using EPRSD. The

memtrace tool runs as a set of MPI processes. Each process instruments an SPMD

program and outputs the trace into a pipe. The trace compressor consumes the trace from

the pipe. The compressor performs intra-thread compression utilizing the repetitive

patterns. After instrumentation terminates, it performs inter-thread compression by

factoring out the common parts among threads and finally performs inter-process merging

among all processes of the SMPD application. This technique requires a decompression

phase. It reduced the trace size by half for the AMG benchmark.

A. Janapsatya et al. [68] proposed a trace compression technique for instructions’

addresses alongside an instruction cache analysis method. Their main objective was not to

maximize the compression ratio but to accelerate trace processing. This technique is

limited to instructions’ addresses only. Their technique achieved a simulation speed up of

9.67 over the existing techniques, but the trace compression ratio was 2 to 10 times worse

than Gzip.

In [32], four VPC (value prediction-based compression) algorithms were

introduced, namely VPC1, VPC2, VPC3 and VPC4. In these algorithms, the input trace

consists of pairs of numbers. The first number is a 32-bit PC, and the second one is a 64-

bit extended data (ED). VPC algorithms use predictors to predict the next value based on

the previously observed values. If the next value is predicted correctly, the index of the

predictor that predicts it is output. The unpredicted values are output to a different

stream. If more than one predictor predicts a certain value, there are heuristics to select

the best one. For example, VPC1 uses Huffman encoding. If more than one predictor is

85

correct, then the shortest Huffman code is selected. Because the number of predictors is

small, the number of bits to encode the predictor’s index is smaller than the corresponding

trace element. Therefore, the trace is compressed. The same algorithm is applied in the

reverse manner to decompress the compressed trace.

A. Ketterlin et al. [69] proposed a lossless trace compression algorithm. The input

trace is a sequence of numbers. They scanned these numbers to detect loop nests using the

linear progressions of these numbers. The output of this algorithm is a sequence of loop

nests. This algorithm can handle simple loops only and is limited to data addresses. The

decompression implies running the obtained loop nests.

Martin Burtscher proposed TCgen [70], which is a tool that auto-generates a

value prediction-based trace compressor based on user specifications. The user describes

the trace format in text for TCgen that generates the optimized C code of the specified

trace compressor.

Kenneth C. Barr and Krste Asanovi´c [71] presented a technique to compress

branch trace information to be used in snapshot-based microarchitecture simulation. The

compressed trace can be used to warm up any arbitrary branch predictor’s state before

timing simulation of the snapshot. However, this technique is specific for branch

information.

Kenneth C. Barr et al. [72] proposed a technique for directory and cache state

reconstruction to accelerate sampled multiprocessor simulation. This reconstruction is like

warming up. They used a software structure called MTR (Memory Timestamp Record)

that can be updated during fast forwarding (functional simulator that updates the

architectural state in between sampling points). For each memory block (cache block),

86

there is an MTR record that registers the ID of the last processor that modified this block,

the time stamp of the last write operation, and an array of time stamps of the read

operations on the block (each timestamp per processor). During fast-forwarding, a

read/write operation will update the MTR record.

The directory and cache state reconstruction occurs right before each sampling

point. This is done in two steps: (1) determining the subset of blocks that are still cached.

(2) Check cross-processor interactions to determine which of these blocks should be valid

or dirty according to the cache coherence protocol. This technique works for sampled

execution-driven simulators and it does not work for trace-driven simulators.

Other techniques, such as [73], [74], and PinPlay [75] concern about deterministic

replay of the program by recording a fixed execution path for the non-deterministic

events, e.g., threads interleaving and memory operations order. This deterministic replay

is useful for software debugging and computer architecture simulation. However, since

replay implies real execution of the program, then these techniques do not work for trace-

driven simulators because real execution requires functional units that are missing in such

simulators.

6.2 The proposed Execution Trace Compression Technique

This dissertation presents a novel methodology for efficiently compressing

execution traces of multi-threaded applications running on multi-core architectures. A

special compressed execution trace (CET) format has been developed. It retains all the

low-level execution events (maximum fidelity), including threading events, with

87

minimum size and can be processed directly without decompression. Hence, HySim’s

timing model can reconstruct all the execution events in the correct order from a CET

trace including threading-related events (starting, sleeping, waking, synchronization, and

termination). Also, a complete tool suit that generates the CET trace has been

implemented and used to evaluate the proposed methodology.

The proposed trace compression method in this work translates a multi-threaded

input application’s or benchmark’s executable into another binary format called CET

code. The latter encodes the original application static code and the data required for

timing simulation in a compressed format. The data that cannot be compressed, i.e.

embedded into the CET code, is kept aside and is called CET data. So each thread of the

application is translated into five files, namely the CET code, branch results, jump

displacements, loop counters (in the case of inner loop whose counters do not follow a

certain pattern), and data addresses (for non-uniform data referencing). The resulting CET

code size is less than double the application’s executable size. The CET data file size

varies depending on the application. CET code and data are generated only once, for a

specific input program, and can be used to simulate many architectural configurations.

The only case in which the CET tool needs to be rerun for the same input program is

when the number of threads changes. However, if the number of cores of the target

machine changes and the number of threads is kept unchanged, then these threads are

rescheduled on the new target machine configuration.

The compressed trace is intended for simulation only, not for debugging. The

multi-threading synchronization events are captured in the compressed trace. The CET

format defines primitives to create, pause, resume, and terminate threads. These

88

primitives are used to implement barriers and locks/unlocks. Therefore, synchronization

barriers, access to critical sections, and atomic read-modify-write operations are captured

by the compressed trace

6.2.1 Basic Strategy

The basic strategy in the proposed compression technique is to remove all possible

redundancy, both in instructions and data memory references, from the input execution

trace while preserving fidelity. Our methodology implies constructing an executable static

code (CET code alongside its CET data) from the input trace with the following features:

1) CET code preserves the execution order (control flow) of the original program

without keeping any instructions’ addresses except the initial thread address.

2) Contiguous data addresses, where consecutive addresses differ by a constant

value, are captured in the CET code.

3) CET data includes:

a. Non-contiguous data addresses. Only the difference from the previous

address is encoded in the CET data, not the complete address. This

reduces the size of these references by at least 50%. The user specifies the

size of this field (default is 16 bits).

b. The results of conditional branch instructions (taken or not taken) when

the conditional branch is executed multiple times and it does not represent

a loop instruction. The size of this field is 1 bit.

89

c. Dynamic target addresses of unconditional jump, call and return

instructions. Only the displacement (in number of CET codes) between

the current instruction and target instruction is stored. The user specifies

the size of this field (default is 16 bits).

d. Loop counters (number of iterations) of the inner loops when the inner loop

has a different number of iterations per outer loop iteration and these

counters do not follow a certain pattern. The user specifies the size of this

field (default is 32 bits).

Thus, each thread of the application is translated into five files, namely the CET

code, branch results, jump displacements, loop counters, and non-contiguous data

addresses differences. The resulting CET code size is less than double the application’s

executable size. The CET data file size varies depending on the application. CET code

and data are generated only once, for a specific input program, and can be used to

simulate many architectural configurations. The only case in which the CET tool needs to

be rerun for the same input program is when the number of threads changes. However, if

the number of cores of the target machine changes and the number of threads is kept

unchanged, then these threads are rescheduled on the new machine configuration.

A specific tool has been developed to verify the effectiveness of the proposed CET

code generation methodology. It can be integrated with the trace generator, i.e., the

functional simulator or the instrumentation tool. This facilitates the start of compression

on-the-fly, i.e., while the program is being executed, or emulated, and the trace is being

generated, making our method extremely efficient in terms of time and memory

requirements.

90

Figure 7 shows the work flow of the proposed CET generation methodology. The

input is an executable file of the multithreaded program alongside its input data. This

input goes through a chain of phases, namely profiler, code generator and the emulator

and CET data generator. These three phases are repeated for all threads of the input

program. The final output of the tool comprises the CET code and data for each thread

separately. Producing separate CET codes and data for threads allows parallel processing

of these threads (e.g., via the timing model). Moreover, the CET tool generates a log file

of useful information for the user. It also generates the starting address of each thread.

The current version of CET tool supports X86 architecture only. The Intel Pin framework

[14] has been used for instrumentation. Other ISAs can be supported using other

instrumentation tools such as Valgrind [40].

91

Figure 7: CET Tool Work Flow.

Input Program

CET Code
Raw CET data

CET Code

Profiled
Code

Instruction
Results

Input Data
Intel Pin Tool

CET Profiler
CET Code
Generator

Emulator and
CET Data
Generator

CET Data

Log File

92

The rest of this sub-section delves into the different phases of the CET tool

6.2.2 CET Encoding

Instructions and function calls in the original execution trace are classified into

one of 18 unique categories that belong to six different classes. These 18 categories are

agnostic to any specific general purpose architecture. Each category is assigned a unique

CET code and has special arguments. Table 6 summarizes the different instruction

classes, categories, their CET code format, and their corresponding CET data (if any). In

addition to the CET codes’ formats shown in Table 6, the CET code contains the register

numbers of the corresponding original instruction. This is important to capture hazards in

the CET code. For example, the load instruction format can be: Load address, Rd, Ra;

where Rd and Ra are the destination and the source registers, respectively. The 6

instructions and function calls classes are:

1. Unconditional Branch Instructions: includes the unconditional jump instructions, as

well as the procedures’ calls and return instructions.

2. Conditional Branch Instructions: includes all conditional branches. These

instructions are used to encode loops.

3. Memory Instructions: includes all load and store operations.

4. Synchronization Function Calls: includes all system/library calls related to multi-

threading, such as: thread creation, thread termination synchronization barrier,

spinlock etc.

93

5. ALU Instructions: includes all ALU instructions of the original trace. They are

classified according to their latency, of course, their functional unit, such as: integer

ALU instructions, floating-point ALU instructions etc.

6. System calls: This class includes all other system calls not related to synchronization.

The unique system call identifier/number is encoded in the CET code using 10-bits.

This is more than sufficient for all existing operating systems where the number of

system calls does not exceed 500. For example, Linux system call identifiers are

available in many sites, e.g., [13].

94

Table 6: CET Code and Data format Summary

CET Code CET Code Format CET Data Description

Unconditional Branch Instructions

JUMP

None

jump/call/return

instructions that

always jump to

the same target

address

JUMP-M

jump’s

displacement

jump/call/return

instructions that

jump to

different targets

Conditional Branch Instructions

BRANCH

branch result

(Taken/Not

taken)

Normal

conditional

branch

instruction. The

BR bit records

whether the

branch was

taken

Op_code

5-bits

Op_code Displacement

5-bits 16-bits

Op_code Displacement

5-bits 16-bits
BR

1-bit

95

LOOP

None

Loop

instruction that

always has the

same counter

(Number of

iterations)

LOOP-C

None

Inner loop

instruction

whose counter

differs by

constant (INC)

each outer loop

iteration

LOOP-R

loop’s

counters

Inner loop

instruction

whose counter

differs by a

random value

each outer loop

iteration

Memory Instructions

LOAD/STORE

None

Load/store

instruction that

accesses the

Op_code Displacement

20-bits

Counter

16-bits5-bits

Op_code

5-bits

Op_code
32-bits

Address

5-bits

INC

3-bits

Op_code Displacement

20-bits

Counter
16-bits5-bits

96

same memory

location every

time it is

encountered

LOAD-C,

STORE-C

None

Load/store

instruction that

accesses a

contiguous

block of data in

memory e.g.,

vector. INC is

the size of the

data element

LOAD-NC,

STORE-NC

Data

addresses

Load/store

instruction that

accesses a non-

contiguous

(scattered)

block of data in

memory e.g.,

dynamic data

structure

Op_code

5-bits

Op_code
32-bits

Address

5-bits
INC

3-bits

97

Synchronization Function Calls

START None
Start a new

thread

PAUSE

None

Pause a thread

(corresponds to

lock, wait, and

sleep)

WAKE

None

Wake a

sleeping or

waiting thread

TERMINATE

None
Terminate a

thread

ALU Instructions

INT-ALU

None
Integer ALU

instruction

FP-ALU

None

Floating-Point

ALU

instruction

MULTIPLY

None

DIVIDE

None

Op_code Thread Id

10-bits5-bits

Op_code Thread Id

10-bits5-bits

Op_code Thread Id

10-bits5-bits

Op_code
5-bits

Op_code
5-bits

Op_code
5-bits

Op_code
5-bits

98

SYS_CALL

None

System calls

other than

thread-related

calls.

Op_code Sys Call Number

10-bits5-bits

99

6.2.3 Loop Recognition

X86 architecture has multiple explicit loop instructions, namely, LOOP, LOOPE,

LOOPNE, LOOPZ and LOOPNZ. These instructions are easily detected by the CET

profiler and turned into CET loops. However, compilers often use the conditional branch

instructions to translate loops. Therefore, there is a need to distinguish between the

conditional branch instructions that implement loops and other conditional branches.

Loops represent the main venue for an execution trace compression. Moreover,

detecting the X86 conditional branches that implement loops and translating them into

CET loops will minimize the size of CET data significantly. For example, if all X86

conditional branches are left as they are, then a loop of one million iterations will require

a storage of one million bits to store its branch’s results (taken or not taken). However,

with loop detection, this branch instruction is translated into a one CET loop instruction

whose number of iterations is embedded into its body.

Conditional branches implementing loops are distinguished from other conditional

branches using a two-phase algorithm. The first phase checks the loop candidacy, i.e.,

checks if a conditional branch can be a loop or not. The second phase occurs during the

CET code emulation stage. In this phase, the loop candidates are filtered. If a loop

candidate does not pass, it is switched back to a normal conditional branch. Thus, the

second phase is a correction step.

As noted above, the CET profiler stores the branch’s results of the conditional

branch instruction in a list. However, this list is compressed such that similar consecutive

100

results are stored in one node with a counter. The loop candidate will have a branch’s

results chain, as shown in Figure 8. Thus, an X86 conditional branch instruction is

considered as a loop candidate if it has the following behavior:

1. All not-taken nodes have a counter of one.

2. The last node must be a not-taken node.

3. The first node can be either taken or not-taken depending on if the loop is outer or

inner. Thus, the loop instruction has a flag bit to indicate if the first node is taken or not.

101

Figure 8: Branch Results' Chain of a Loop Candidate X86 Conditional Branch Instruction

T NT

Count = 1

T NT

Count = 1Count >= 1Count >= 1

102

This algorithm may consider some conditional branches as loops that were not

intended to be loops, e.g., if a conditional branch is executed twice, being taken the first

time and not taken the second time, then this algorithm considers it as a loop with one

iteration. This behavior, however, is still correct.

In the emulation phase, the generated CET code is functionally executed by the

CET emulator. The loop candidates are filtered in this phase. If a loop candidate does not

pass, it is switched back to a conditional branch instruction. A stack is used to schedule

the loops execution and to filter the loop candidates as follows:

1. Let S be a special stack of loop entries. In addition to its push and pop functions, S can

be scanned and an element can be removed from the middle.

2. The loop entry is a structure with two fields: instruction address and counter.

3. When a loop or loop candidate instruction I is encountered, do the following:

a. If I does not exist on S, push it.

b. Else, if I is the top element of S and its counter is not zero, decrement the

counter and branch.

c. Else, if I is the top element of S and its counter is zero, don’t branch and pop S

off.

d. Else, if I exists on S and it is not the top element, I is not a loop; it is removed

from S and switched back to a normal conditional branch.

103

6.2.4 CET Profiler

 In this phase, the application’s trace is generated using functional simulations or

native execution on the target machine itself. Using instrumentation, execution

information regarding the instructions is collected, e.g., memory references accessed by

the instruction in the case of load/store, branch results in the case of conditional branch

etc. The profiling output is an intermediate representation of the input program, in which

each instruction is represented as an object. This object contains all execution information

regarding the instruction. The input program is profiled dynamically by instrumenting

each instruction; when an instruction is encountered for the first time, a new object for

this instruction is created and mapped to a unique location in the profiled image. If the

same instruction address is encountered again later, its corresponding object is updated if

required.

Figure 9 shows a flowchart of the CET profiler. It comprises the following steps:

1. While the program is not finished, do the following:

2. Let I = next instruction or routine.

3. Execute I.

4. The analysis function corresponding to I is invoked.

5. If I does not exist in the profiled image, create a new object of I and add it to

the image.

6. Check the opcode of I:

a. If it is a memory instruction, add the memory address to the list of addresses of

I. If the number of addresses added thus far is fifty (this number can be a

104

parameter), check if the instruction is load/store, load/store-c or load/store-nc and

change its opcode accordingly. This early test accelerates compression and reduces

space. This is because the profiler does not wait to store the whole addresses’ list

and then checks the memory instruction type.

b. If it is a conditional branch instruction, add the branch result to the branch

results’ list (Taken or not taken).

c. If it is an unconditional jump, call or return instruction, add its target address to

the addresses’ list.

d. If it is an explicit loop instruction, increment its counter.

e. If it is an ALU instruction, add the corresponding opcode, such as: INT-ALU,

FP-ALU etc.

f. If it is a system, add SYS_CALL instruction.

g. If it is a synchronization function call, add the corresponding opcode, such as:

START, PAUSE, WAKE etc.

105

Figure 9: CET Profiler Flowchart

Y

Y N

N

Y

Y

N

N

Y

Start

I = Next instruction

Execute I

I in image?

N

Last Instruction
Reached?

End

Create an object for I
and map it to the image

If I is
Load/Store

Add its data address to its
addresses’ list

If I is Return
call/jump

I is branch

Add its target address to
its addresses’ list

Set its target address.
Add its branch result to
its branch results’ list

I is ALU/ Sync.
etc.

Y

N

If I is Loop Increment its counter

106

6.2.5 CET Code Generation

In this phase, the profiled image is refined and its instructions are replaced by the

corresponding CET codes. Figure 10 shows the flowchart of the CET code generator with

the following steps:

1. Let CetCode be a list of CET instructions.

2. For each instruction I in the profiled image, do the following:

3. If I is a loop:

a. If I has a constant counter:

CetCode.add(LOOP displacement, counter)

b. Else, if I has multiple different counters that follow a certain pattern i.e., it is an

inner loop whose number of iterations increases/decreases by a fixed value for

each new outer loop iteration:

CetCode.add(LOOP-C displacement, counter, increment)

c. Else, if I has multiple different counters that do not follow a certain pattern:

 CetCode.add(LOOP-R displacement)

4. If I is load/store (this step is done earlier in the profiler when the number of addresses

is 50 or above):

a. If it has only one memory address or multiple similar addresses:

CetCode.add(LOAD/STORE address)

b. If it has multiple memory addresses and the difference between these addresses is

constant:

CetCode.add(LOAD-C/STORE-C address, increment)

107

c. If it has multiple memory addresses and the difference between these addresses is

not constant:

CetCode.add(LOAD-NC/STORE-NC)

5. If I is an unconditional jump, return or call instruction:

a. If it has only one target address:

 CetCode.add(JUMP displacement)

b. If it has multiple target addresses:

CetCode.add(JUMP-M)

6. If I is a conditional branch instruction:

a. If it is always taken, CetCode.add(JUMP displacement)

b. If it is always not taken, CetCode.add(ALU-INT)

c. Else, CetCode.add(BRANCH displacement)

7. Otherwise, add I into CetCode as it is.

8. Dump CetCode into a text file in binary format.

The symbols in Figure 10 represent the following, I: Instruction, Ai: Address i, Ci:

Counter i, K: Constant.

108

Y

N

N

Y

N

N

Y

Y

Y

N

If I Load/Store

If I Branch

If I Jump,
Call, Return

If I Loop

Generate ALU, START,
PAUSE, WAKE, TERMINATE,

Generate
LOAD/STORE-

YY

Y Y

Y

Y Y

N N
#Addresse

s == 1
Ai+1 – Ai

== K

NN

Generate
JUMP

Always
Taken?

Always
not taken?

N

Generate JUMP

#Addresses
== 1

Generate JUMP_M

N N

Generate LOOP

#Counters
== 1

Ci+1 – Ci

== K

Generate
ALU-INT

Generate
BRANC

Generate LOOP-C Generate LOOP-R

Generate
LOAD/STORE-

Generate
LOAD/STORE

Program Finished?

Start

End

I = Next Instruction

Figure 10: CET Code Generator Flowchart

109

Figure 11 below shows the generated compressed execution trace for a small C-

code snippet (a loop to find the maximum of a 1 million integers array) to illustrate the

power of the proposed trace compression methodology. For this simple example, the

compression ratio is approximately 1 millionth (i.e., 0.000001).

110

Figure 11: Compression results for a simple C-code snippet.

This
segment
appears a
million
times in
the
original
trace

Original program snippet … Generated CET Code mnemonics…

111

6.2.6 Emulation and CET Data Generation

The generated CET code is emulated in this phase. The main purpose of this phase

is to generate the CET data in a file with proper sequential order (similar to a FIFO). In

other words, when processing the CET code (e.g., via a timing simulator), data required

by any CET instruction can be consumed from the CET data file sequentially in the

proper order in which they are needed. The other purpose of this step is to test the

correctness of the CET code and report any bugs if necessary.

The following is a brief description of the emulation and CET data generation

phase:

1. Let CetFifo be the corresponding CET data FIFO (e.g., Addresses FIFO and

branch results FIFO etc.).

2. Let pc = the initial address of the thread.

3. Let CetCode is the CET code memory.

4. While CetCode is not finished, do the following

5. Let I = CetCode(pc)

6. If I is a loop candidate that did not pass, switch it to a conditional branch.

7. If I is any branch instruction (JUMP, JUMP_M, BRANCH, LOOP etc), pc =

target address.

8. Else, pc = pc + 1

9. If I is LOAD-NC/STORE-NC:

a. CetFifo.enqueue(I.addresses.front).

b. I.addresses.dequeue.

112

10. Else, If I is BRANCH

a. CetFifo.enqueue(I.BranchResults.front).

b. I. BranchResults.dequeue.

11. Else, If I is JUMP_M

a. CetFifo.enqueue(I. addresses.front).

b. I. addresses.dequeue.

12. Else, If I is LOOP-R, and this is a new outer iteration:

a. CetFifo.enqueue(I. counters.front).

b. I. counters.dequeue.

13. Convert CETFifo to binary and output it.

6.2.7 System Calls Latency

As stated before, HySim timing model is a user-level model and hence it does not

simulate the system-level code, except for threading management, although CET code

encodes the system calls. However, we tried to quantify the approximate time consumed

by different system calls through reading Linux system time right before and after the

system call and taking the difference. We performed this experiment with the help of Intel

Pin instrumentation tool. This experiment aimed at grouping the different system calls

according to their latency and making this latency a tunable parameter. Unfortunately, we

observed that the same system call can have a different latency within the same

benchmark and across different benchmarks. This latency might be significant, i.e., it can

be in orders of magnitude.

113

We used the Linux time command to quantify the amount of execution time of the

application that is consumed by the system calls. A sample output of this command is as

follows:

0:02.00 real, 0.00 user, 0.00 sys

This command outputs three values, (1) real, which is the time elapsed between

the invocation and termination of the application, (2) user, the application time (user

space time), and (3) sys, which is the time consumed by the system calls. We noticed that

the system time of the application increases significantly by increasing the number of

threads. This is a natural observation because more threads require more work

(management and scheduling) from the operation system.

Figure 12 shows plots of the histogram of the system time for several numbers of

threads, namely, 1,2,4,8, and 16. The X-axis splits the system time into intervals and the

Y-axis shows the number (frequency) of benchmarks whose system time falls within this

interval. Then, we calculated the average system time for each number of threads to be

used by the timing model to compensate for the system time component.

114

Figure 12: System Time Histogram

115

6.3 Experimental Results

6.3.1 Experimental Setup

We evaluated the CET tool using a wide range of benchmarks that includes a

subset of Splash-2 [76], PARSEC [77], MediaBench I [78], and SECP CPU 2000 [79].

Table 7 lists the used benchmarks with their input sets. These experiments were run only

once on an Intel Xeon CPU E5-2680 machine. The CET tool has been evaluated in two

modes. (1) Instruction Addresses (IA) mode in which the baseline trace entry comprises

the instruction along with its address, i.e., (32-bit instruction address, 32-bit instruction).

(2) Full mode, in which the whole trace, instructions, instructions’ addresses and data

addresses (if any) are compressed, i.e., (32-bit instruction address, 32-bit instruction, [32-

bit data address]).

116

Table 7: Benchmarks and Their Input Sets

Benchmark Input Set

swaptions (small) 16 swaptions, 5,000 simulations

swaptions (medium) 32 swaptions, 10,000 simulations

swaptions (large) 64 swaptions, 20,000 simulations

Blackscholes (small) 4,096 options

Blackscholes (medium) 16,384 options

Blackscholes (large) 65,536 options

bodytrack (small) 4 cameras, 1 frame, 1,000 particles, 5 annealing layers

bodytrack (medium) 4 cameras, 2 frames, 2,000 particles, 5 annealing layers

bodytrack (large) 4 cameras, 4 frames, 4,000 particles, 5 annealing layers

LU 512×512 matrix

FFT 256K points

Ocean 258×258 ocean

Radix 256K integers

Water-sp 512 molecules

Water-nsq 512 molecules

cjpeg input_base_4CIF.ppm

117

g721decoder clinton.g721

g721encoder clinton.g721.pcm

pegwit_d/e Default

164.gzip, 179.art,

176.gcc, 181.mcf,

186.crafty, 300.twolf,

183.equake, 175.vpr,

and 256.bzip2

The first two billion instructions of the reference input

set.

118

We used two metrics to evaluate the CET tool. First, the compression ratio, this is

the most important metric for evaluating a compression tool. It shows how many times the

compressed trace is smaller than the uncompressed one. So it is calculated by dividing the

size of the uncompressed trace over the size of the compressed one. The latter is the

summation of the sizes of the CET code and CET data. In IA mode, each trace element

(executed instruction) in the uncompressed trace is 64-bit (32 bits for the instruction

address and 32 bits for the instruction itself) whereas it is 96-bit in the full mode; extra 32

bits are added to represent the data address, if any. The second metric is the compression

and decompression speed, which is expressed in MIPS, i.e., how many millions of

instructions of the execution trace can be compressed or uncompressed in one second.

Although compression speed is required, this metric is less important than the

compression ratio and decompression speed. Because the execution trace of a specific

application is compressed only once and used many times.

6.4 Compression Ratio

Figure 13 shows the compression ratio for the two modes. In general, IA mode has

a higher compression ratio than full mode, because IA mode ignores data memory

references. Thus, the compressed trace in IA mode does not include data addresses, which

are often the largest component of the compressed trace. However, full mode can achieve

higher compression ratio when the application has few non-contiguous load/store

addresses, such as ocean and blackscholes benchmarks. This is because the compressed

119

trace is nearly the same for the two modes, but the uncompressed trace is larger in the full

mode.

120

Figure 13: Compression Ratio of Instruction Addresses Only Traces (IA) and the Full Trace

121

Figure 14 shows the compression ratio versus different problem sizes (small,

medium and large) of three different single-threaded benchmarks. From this figure, it is

obvious that for the swaptions and blackscholes benchmarks, the compression ratio is

nearly constant for the three aforementioned problem sizes. However, it decreases when

the problem size is increased for the bodytrack benchmark.

Increasing the problem size increases the uncompressed trace size. However, the

effect of increasing the problem size on the compressed trace size depends on the

application structure, i.e., the distribution of the non-contiguous addresses or dynamic

unconditional jumps across the application. Thus, if the compressed trace size increases in

the same rate as the uncompressed one, the compression ratio is sustained. Otherwise, the

compression ratio might increase or decrease due to increasing the problem size.

122

Figure 14: Compression Ratio vs Problem Size for 3 single-threaded benchmarks.

123

The compression ratio achieved by the CET tool varies according to the

application’s structure, because it controls the content of the CET data. For example, large

number of non-contiguous memory addresses, dynamic function calls, dynamic

unconditional jumps, large number of conditional branches inside loop bodies etc. results

in a larger CET data and therefore lower compression ratio, and vice versa is true.

Table 8 lists the compression ratio archived by the CET tool in the two modes for

23 single-threaded benchmarks. Moreover, it shows the compressed and uncompressed

trace sizes. Our CET tool outperforms Ching-Wen Chen’s technique [33], which achieved

a compression ratio between 16.67 and 50. Chen’s technique has the same baseline trace

as our IA mode. This table shows that CET tool in IA mode achieved a better

compression ratio than Chen’s technique by at least one order of magnitude. Moreover, in

the full mode, the CET tool is still better by at least one order of magnitude for most of

the benchmarks. CET tool does not have any case worse than Chen’s technique.

Our CET tool in IA mode outperforms Ching-Wen Chen’s technique because it

handles the instruction addresses in a different manner. Their compressed trace contains a

very long bit vector, one bit per instruction, to indicate whether the current instruction’s

address is sequential or not. Furthermore, it included the differences among the non-

sequential instruction addresses. On the other hand, our compressed trace captures the

program flow control and hence when the CET code is executed the instruction addresses

are regenerated on-the-fly.

124

Table 8: Uncompressed and Compressed Traces Size and Compression Ratio

Benchmark Uncompressed

Trace Size

(MB)

Compressed

Trace Size

(MB)

(Full Mode)

Compressed

Trace Size

(MB)

(IA Mode)

CET

Compression

Ratio

(Full Mode)

CET

Compression

Ratio

(IA Mode)

swaptions 121298.2 262.96 131.40 461.2 615.4

Blackscholes 18721.4 6.27 6.27 2987.9 1992.0

bodytrack 153523.0 959.76 132.06 160.0 775.0

LU 5099.9 6.00 5.99 849.7 568.0

FFT 2486.6 2.64 0.76 940.1 2186.9

Ocean 5934.9 2.57 2.45 2304.8 1612.5

Radix 1066.1 4.05 0.04 263.5 20283.7

water.sp 3113.0 56.14 3.45 55.5 600.8

water.nsq 3525.4 61.70 3.98 57.1 589.9

cjpeg 580.0 8.82 0.28 65.6 1374.7

g721decoder 1649.2 3.78 3.10 436.1 354.2

g721encoder 5279.4 12.03 9.87 438.8 356.7

pegwit_d 106.5 3.78 3.10 49.8 22.9

pegwit_e 37.7 0.05 0.04 811.7 635.4

164.gzip 22888.2 463.32 33.97 49.4 449.3

179.art 22888.2 17.77 17.63 1288.1 865.3

176.gcc 22888.2 748.74 40.98 30.6 372.3

181.mcf 22888.2 272.70 44.42 83.9 343.5

186.crafty 22888.2 365.34 28.32 62.6 538.9

125

300.twolf 22888.2 649.48 37.40 35.2 408.0

183.equake 22888.2 636.22 9.18 36.0 1661.8

175.vpr 22888.2 634.85 30.91 36.1 493.7

256.bzip2 22888.2 499.72 31.82 45.8 479.5

Min 37.7 0.05 0.04 30.6 22.9

Max 153523.0 959.76 132.06 2987.9 20283.7

Average 22974.6 246.90 25.11 502.1 1633.9

126

Figure 15 compares the compression ratios achieved by the CET tool and the SBC

(Stream-Based Compression) technique [80] for a subset of SPEC CPU2000 benchmarks.

SBC uses a baseline trace whose entry is 38-bit whereas CET’s baseline trace entry is 96-

bit. This figure shows that in most cases both techniques achieved compression ratios

within the same order of magnitude. For some cases SBC is better and for other cases

CET is better. SBC compresses the trace in a different manner. It compresses both

instruction and data addresses by associating them with an instruction stream and stores

the stream identifiers, the data addresses strides, and their number of receptions in the

compressed trace. The stream identifier includes the starting address of the stream and the

stream length.

SBC tends to have a better compression ratio than the CET technique because it

has a variable stride length that ranges from zero to eight bytes. This variable stride length

saves storage significantly because the compressed trace will be very tight. However, this

variable stride length does not work for FPGAs because in FPGA the data have to be

aligned in order ensure quick access.

127

Figure 15: Compression Ratio Comparison between the CET Tool and SBC Technique

128

Moreover, SBC targets a specific simple trace type, namely, memory reference

only, whereas the CET tool target a more detailed trace. On the other hand, the CET tool

is much faster the SBC technique, i.e., it has a lower compression and decompression

time. Figure 16 and Figure 17 shows the compression and decompression time for the

CET and SBC techniques. From these figures, we notice that CET is faster than SBC by

orders of magnitude. This is because CET compresses the trace on-the-fly, i.e., it profiles

the application and retrieves the required CET data. One of the most time consuming-

actions in CET compression is to check whether the addresses of a certain load/store are

contiguous. However, this step has been accelerated by checking a small fraction of these

addresses which is enough. Regarding decompression, the simple compressed trace

structure generated by the CET tool made the decompression stage very efficient. It just

implies executing the CET code and once a CET datum is required, it will be ready on the

front of the corresponding FIFO, i.e., decompression does not imply complex decoding

steps.

129

Figure 16: Compression Time for CET and SBC Techniques

130

Figure 17: Decompression Time for CET and SBC Techniques

131

Figure 18 shows the full mode compression ratio of nine benchmarks for different

number of threads, namely, 1, 2, 4, 8 and 16 threads. In this experiment, the total

uncompressed and compressed traces’ sizes are the summations of the uncompressed and

compressed traces’ sizes of all threads, respectively. In most cases, the compression ratio

remains nearly constant as the number of threads increases. Because the application is

distributed on the available threads, the total uncompressed and compressed traces’ sizes

do not change markedly. However, the compression ratio decreases for the ocean

benchmark. This variation is due to the variation of the CET data size, especially the

number of non-contiguous addresses, when the number of threads changes.

132

Figure 18: Compression Ratio vs Number of Threads

133

6.5 Compression/Decompression Speed

Table 9 shows the trace compression speed achieved by the CET tool. The

maximum compression speed is 789.1 MIPS in the case of Bodytrack benchmark,

whereas the average speed is 186.4MIPS. Also this table shows that decompression much

faster than compression. This is natural because decompression just implies executing the

CET code. The compression speed depends on the benchmark’s structure, for example,

the longer the loop’s chains and addresses’ lists the slower the compression. This is

because CET tool will take more time to process such data.

134

Table 9: Compression/Decompression Speed (MIPS)

Benchmark Compression Speed Decompression Speed
Swaptions

623.5 10599.2
blackscholes

62.9 65.4
Bodytrack

789.1 1219.5
164.gzip

44.4 142.9
179.art

285.7 2000.0
181.mcf

22.2 35.7
186.crafty

19.4 125.0
300.twolf

40.8 153.8
183.equake

57.1 2000.0
175.vpr

46.5 333.3
256.bzip2

58.8 117.6
Min

19.4 35.7
Max

789.1 10599.2
Average

186.4 1526.6

135

CHAPTER 7

HYSIM TIMING MODEL

This chapter delves into the architecture and implementation issues of HySim

timing model. First, it presents the implementation technology we adopted to develop this

model, namely, Bluespec SystemVerilog (BSV) technology. Then, it explains the timing

model architecture and how the target machine performance is evaluated via this model.

7.1 Bluespec SystemVerilog (BSV)

We adopted BSV [63, 81, 82] to implement HySim FPGA-based timing model. It

is a modern, fully synthesizable language developed at MIT. BSV is a high level hardware

description language used in the design of electronic systems (ASICs, FPGAs and

systems). In BSV, the design behavior is expressed with Guarded Atomic Actions (rewrite

rules). BSV code is translated to Verilog via the BSC compiler. BSV allows the hardware

designer to focus on the overall architecture and leave the details to the compiler which is

designed and maintained by the RTL designers. Thus, BSV code is more on the

architecture level rather than on the RTL level. BSV was adopted to implement many of

the major FPGA-accelerated simulators, such as PROTOFLEX [10], HAsim [53], FAST

[47], and Arete [9].

136

BSV has a modular nature that allows designing the architecture as a set of

modules that are eventually turned into actual hardware. Each module can instantiate

other modules forming a module hierarchy, which simplifies the large and complex

systems. All BSV code should be organized into packages which are like namespaces.

The BSV compiler assumes that there is one package per file and the file name should be

<package name>.bsv. Each BSV module consists of zero or more sub-modules, rules to

operate on the sub-modules, and an interface to the surrounding hierarchy. The interface

comprises a set of methods to drive the signals and buses in and out the module.

A BSV rule basically consists of the rule condition and the rule body. The rule

condition is pure combinational logic. It evaluates to a single Boolean value. The rule can

fire only if this entry condition is true. The rule body consists of a set of actions that

operate on the state elements and it is also pure combinational logic.

7.1.1 BSV Coding Productivity

The level of abstraction in BSV makes the size of BSV code smaller than its

Verilog counterpart. Therefore, coding in BSV is more productive than coding in Verilog

because a shorter code will be written and hence fewer bugs appear. Table 10 lists the

BSV static code size and its corresponding auto-generated static Verilog code size

measured in the number of lines of code for all HySim’s timing model modules. The

number of code lines includes spaces and comments. This table shows that the BSV code

137

is smaller than the corresponding Verilog code for all modules. The BSV code is 3.34

times smaller than the Verilog code for the overall design.

138

Table 10: Comparison between the BSV Code Side and the Corresponding Auto-generated Verilog Code Size

Module Name
BSV Code Size

(lines of code)

Auto-generated

Verilog Code Size

(lines of code)

Verilog to

BSV Code

Size Ratio

Multi-core top module 268 1752 6.54

Tile top module 381 1602 4.20

Core 1456 5873 4.03

CET I-cache 145 436 3.01

CET D-cache 118 430 3.64

L1 D-cache model 406 953 2.35

L1 I-cache model 245 494 2.02

L2 cache model 613 1327 2.16

L3 cache model 749 1515 2.02

Router 314 1285 4.09

Total 4695 15667 3.34

139

7.1.2 BSV to Verilog Compilation

The BSC compiler translates the BSV code to Verilog as follows:

1. Interface methods are mapped to port lists in the generated Verilog code in a

straightforward manner.

2. CLK and RST_N input signals are added to the generated Verilog code’s port list.

3. For each input port, enable and ready signals are added to the generated Verilog

code’s port list.

4. For each output port, ready signal is added to the generated Verilog code’s port

list.

5. State elements are mapped to the generated Verilog code exactly as they are in the

BSV source. There is no state elements inference during BSV compilation.

6. Each module in the generated Verilog code has a corresponding module in the

BSV source. Module hierarchy is directly recognizable from the BSV code.

7. Each rule has a control path comprises CAN_FIRE and WILL_FIRE signals in

the generated Verilog. CAN_FIRE signal is the output of the rule condition and it

indicates whether the rule can fire at this clock cycle. On the other hand,

WILL_FIRE signal is the scheduled version of the signal, i.e., when WILL_FIRE

is true, then the rule will certainly fire at that clock cycle.

8. The combinational logic in the rule condition and the rule body appears in the

generated Verilog code as it is in the BSV source except some logic optimizations.

9. The BSC compiler adds scheduler logic and data path (multiplexers) when more

than one rule is competing for the same sub-module/state element.

140

Figure 19 shows a simple BSV example to illustrate the BSV code structure and

how it is translated to Verilog. The example is a simple adder circuit; it receives two

integers, namely, num1 and num2; stores them into registers, adds them, and finally

outputs the result. This example shows how the I/O ports are implemented via methods,

and how the internal registers are instantiated. Moreover, it shows the rule

performAddition. To fire this rule, both the implicit and explicit conditions should be

satisfied. This rule has one explicit condition, namely, the enable signal. Furthermore, it

has some implicit conditions related to the readiness of the registers’ values.

As mentioned before, the BSV interface methods are translated into the Verilog

module’s port list. Besides that, CLK, RST_N, enable, and ready signals are added to this

port list. Figure 20 shows the auto-generated Verilog code for this simple adder circuit

interface.

141

Figure 19: A Simple Adder BSV Code

142

Figure 20: The Auto Generated Verilog Code of the Simple Adder Interface

143

Figure 21 shows how the state elements (registers) are translated to Verilog directly.

Figure 21: The Auto Generated Verilog Code of the Simple Adder Registers

144

Figure 22 shows how the rule condition and body’s combinational logic is

translated to Verilog.

Figure 22: The Auto Generated Verilog Code of the Simple Adder Rule Scheduling and Execution

145

The above figures show the price of BSV coding simplicity, namely the huge size

of Verilog output even for such a small and simple example. Most of the output Verilog

code is simply wire assignment to other wires or constants. The FPGA logic synthesis tool

however, takes care of that. The code is further optimized to produce minimum HW on

the FPGA (through common sub-expression extraction, constants propagation, wire

renaming, and so on).

To demonstrate that the long auto-generated Verilog code eventually consumes the

same hardware resources and generates the same hardware modules as the manually

written counterpart, we manually wrote the Verilog code for this circuit that is shown in in

Figure 23. Then, we synthesized both codes (the manually written and the auto generated)

via Xilinx synthesis tool (XST) tool after setting Xilinx to optimize the design area. Table

11 shows the amount of FPGA resources consumed, and generated hardware modules for

the two Verilog codes. As this table shows, XST inferred exactly the same hardware from

these two codes and hence consumed the same FPGA resources.

146

Figure 23 : Simple Adder Manually Written Verilog Code

147

Table 11: FPGA Resources and Inferred Components are Identical for Both Manually Written and Auto
Generated Verilog Codes

Component
Count, auto

generated Verilog

Count, manually

written Verilog

Number of inferred adders 1 32-bit adder 1 32-bit adder

Number inferred of flip-flops 97 97

Number of slice LUTs 33 33

148

7.2 Timing Model Architecture

HySim’s timing model is an FPGA-based processor-like model. It receives the

benchmark or application, in the compressed trace format (CET code + CET data), from

the software frontend and stores it in an external SDRAM memory on the FPGA board.

Then, it interprets and executes the CET codes to perform timing simulation. HySim’s

timing model can be configured to capture the timing characteristics of shared-memory

multicore target architecture. Since the functional part has already been offloaded to a

standard PC (the benchmark or application is natively executed), the timing model does

not have functional units, such as, ALUs and floating-point units. Moreover, it does not

need to store the input set of the benchmark. This significantly alleviates the hardware

resources required to implement such model.

HySim’s timing model decouples the target’s clock (the clock of the multicore

system being simulated) from the host clock (FPGA clock). Hence, a number of target

cycles can be simulated in a different number of host cycles (that could be more or less).

This decoupling helps in minimizing both the simulation time and the hardware area of

the timing model. For example, an operation may take one target cycle can be simulated

in multiple host cycles, but with less hardware resources. On the other hand, an operation

may take several target cycles can be simulated in only one host cycle, which reduces the

simulation time.

The timing model has a tiled architecture and can be comprised of any number of

tiles as long as they can be hosted by the available FPGA resources. These tiles are

interconnected via a ring interconnection network. Ring topology was selected for HySim

149

timing model because it is simple to implement, consumes minimal resources and more

tiles can be easily added by simply inserting them in the ring. Each tile models a target

machine’s processing core, a fraction of the memory subsystem, and a NoC router.

Moreover, each tile contains special caches to cache CET code and data.

Figure 24 shows a top level logical view of HySim’s timing model. Tile 0 contains

the master core which executes the master thread that contains the sequential and parallel

regions of the benchmark or application. The remaining tiles contain the worker cores

which are responsible for executing the worker threads, i.e., the parallel regions. The

timing model is able to simulate a target multicore machine with a number of cores less

than or equals to those in the timing model itself without a need for time multiplexing.

Figure 24 shows an abstract view of the HySim’s timing model.

150

Tile 0

Tile 1

Tile 2

Tile 3

Tile 15

Tile 14

Tile 13

Memory Controller

Main Memory

Figure 24: A Top Level Logical View of HySim’s Timing Model

151

7.3 Timing Model’s Tile Architecture

As shown in Figure 25, HySim’s tile comprises a core model, CET code and data

caches, target architecture’s instruction and data cache models, and the NoC router. This

section details these components.

152

Coherence Transaction

Incoming
Coherence

Transaction

B
road

casted
T

ran
saction

Request Request

PC Data Address
L

ocal R
esponse

Instruction

Address

CET Instruction
Cache

L1 Instruction
Cache Model

Unified L2 Cache Model

Unified L3 Cache Slice Model

Router

G
lobal R

espon
se

Core Model

L1 Data Cache
Model

Outgoing
Coherence

Transaction

CET Data FIFOs

Figure 25: HySim’s Timing Model’s Tile Overview

153

7.3.1 HySim Core Model (CET Core)

As stated before, HySim currently focuses on the “uncore” features of the

multicore architectures. Thus, CET core is an abstract core model of the target core. The

target “in-core” timing is abstracted via the base CPI. CET core executes the CET code in

order to evaluate the performance of the target machine. It has an execution pipeline of

three stages: fetch, decode and execute. The fetch stage retrieves the next instruction

from the CET code cache into the core’s instruction queue. If the CET instruction is not

found in the CET instruction cache, the whole timing model stalls until this miss is

resolved.

Execution in the CET core context is different from the normal known execution.

In CET core, execution means an on-the-fly decompression of the compressed execution

trace of the application, and taking the appropriate actions for each dynamic instruction to

predict the execution time of this application on the target machine. Therefore, CET core

has to be equipped with the necessary logic for fetching and decoding CET instructions.

Moreover, it should contain the architectural parameters registers (to store the values of

the target architecture parameters, e.g., base CPI and cache access latencies), the different

performance counters (registers), and the necessary logic required to interact with these

registers.

Figure 26 shows an abstract schematic view of the CET core. It contains the

required control and data paths to execute the CET code and evaluate the expected

154

execution time. Also, it contains a unit to schedule the execution of the loop nests of the

CET code. This loop scheduling unit will be detailed in the next subsection.

155

 Figure 26: CET Core Abstract Schematic

Fetch Decode Execute

Architectural
Parameters

I-Queue

CET
Data

L3
Responses

Stall, Is_Branch

Target

Decode
Unit

CET

Code

Cache

PC

R0

R1

R2

R3

MUX

P0

P1

P2

P3

Performance
Registers

INC

 Stall Control

 Loop
Scheduling

 Performance
Registers
Update.

CET
Instruction

L2
Response

156

In order to execute the CET code and derive the target execution time, CET core

takes the appropriate actions for each dynamic instruction. These actions include updating

the performance counters, sending memory requests in the case of load/store to the target

cache hierarchy model, updating the program counter (PC) in the case of control

instructions, etc. Table 12 summarizes the different actions taken by the CET core for

different instructions. Loop instructions scheduling is explained in the next subsection.

Regarding target execution time derivation, each target processor core has a clock.

The application starts with the master thread, whose initial target clock is zero. Each time

a START instruction is encountered by the master thread, the next inactive CET core is

activated to simulate the new thread. The initial clock of this target core is set to the

current target clock of the master thread. For each barrier, (N-1) threads have the

instruction WAIT to wait on this barrier, where N is the total number of threads.

However, only one thread, namely the slowest one, has the instruction WAKE for that

barrier.

When the wake instruction is encountered by a thread, it sends a wake signal to

the other threads. This wake signal is a packet that contains the current target clock value

of the CET core running this thread. When this packet is received by a thread, it computes

the difference between the local target clock value and the value in the packet. This

difference is the waiting time of this thread on the synchronization barrier, and it is

accumulated to the local target clock. Then this thread is resumed. Thus, the tiles’ local

target clocks are synchronized on the synchronization barriers.

157

For each instruction, the CET core adds the base CPI to the target clock. This is

enough if the instruction did not result in miss events, e.g., D-cache or I-cache miss.

However, the CET core sends the address of each instruction to L1 I-cache to check

whether there is an instruction cache miss. Moreover, when a load or store instruction is

encountered, a cache coherence transaction is packed and sent to the L1 D-cache to check

whether there is a data cache miss. This transaction packet contains the initiator thread ID,

time stamp, the memory reference, the operation type (read or write), and a field to store

the number of navigated hops.

After this transaction navigates through the memory hierarchy, it comes back to

the initiator core. Then the initiator core updates the target clock and performance

registers based on the transaction result and the target architecture parameters after taking

into account the overlapping between the timing of independent miss events. More details

on memory hierarchy navigation are provided later in this chapter.

158

Table 12: Actions Taken by CET Core for Different CET Instructions

CET Opcode Action(s)

ALU, Sys-Call Just increment the PC (Program Counter).

JUMP
Add the displacement value (embedded into the CET

instruction body) to the current PC.

JUMP_M

1. Read the displacement value, which is the front of

displacements CET data FIFO.

2. Dequeue the displacements FIFO.

3. Add this displacement value to the current PC.

BRANCH

1. Read the branch result, which is the front of branches

CET data FIFO.

2. Dequeue the branches FIFO.

3. If the branch result is taken, add the displacement value

(embedded into the CET instruction body) to the current

PC.

4. If the branch result is not taken, just increment the PC.

LOOP

1. If this loop instruction is not on the top of the loop stack,

push an entry of this instruction on the loop stack. The

entry comprises the loop instruction address (i.e., the

instruction ID) and the loop counter -1 (the loop counter

is embedded into the CET instruction body).

159

2. If this loop instruction is the top element of the loop

stack and its current counter is not zero, add the

displacement value (embedded into the CET instruction

body) to the current PC and decrement the loop counter

on the top of the loop stack.

3. If this loop instruction is the top element of the loop

stack and its current counter is zero (the loop is done),

pop off the loop stack and increment the PC.

LOOP-C

Same as LOOP except when the loop instruction is

added to the loop stack, its counter is taken from the

instruction body and then the increment (stride) value is

added to this counter and the instruction is updated.

LOOP-R

Same as LOOP except when the loop instruction is

added to the loop stack, its new counter value is fetched

from the LOOP-R CET FIFO, and then this FIFO is

dequeued.

LOAD/STORE

1. Send a request to the L1 data cache. The request includes

the memory reference (embedded into the CET

instruction body) and the operation type (read or write).

2. When the response on this request arrives to the CET

core, it updates the target clock and performance

registers accordingly.

160

LOAD-C,

STORE-C

1. Send a request to the L1 data cache. The request includes

the memory reference (embedded into the CET

instruction body) and the operation type.

2. Add the increment value to the address field of the

instruction body.

3. Write back the updated instruction to the CET

instruction cache.

4. When the response on this request arrives to the CET

core, it updates the target clock and performance

registers accordingly.

LOAD-NC,

STORE-NC

1. Reads the address difference, which is the front of the

addresses CET data FIFO.

2. Dequeue the addresses FIFO.

3. Add this difference to the current address (embedded

into the CET instruction body).

4. Send a request to the L1 data cache.

5. Write back the updated instruction to the CET

instruction cache.

6. When the response on this request arrives to the CET

core, it updates the target clock and performance

161

registers accordingly.

START

1. This instruction appears in the master thread only.

2. It activates the next idle CET core to run the new thread.

3. The initial target clock value of the new thread is the

current target clock value of the master thread.

PAUSE
When it is encountered by a thread, it stalls until it

receives a wake signal.

WAKE

1. When it is encountered by a thread, it sends broadcasts a

wake signal.

2. When a wake signal is received by a thread, it resumes

execution.

TERMINATE
1. The CET core becomes idle.

2. The value of the target clock is sent to the master thread.

162

7.3.1.1 Loop Scheduling Unit

Although the loop counter value might be embedded into the CET code itself, it

cannot be decremented in the code body at runtime. Because the initial value of the loop

counter might be reused later in the case it is an inner loop. Also in the case of a loop-R

(as stated before, LOOP_R is an inner loop whose number of iterations across different

outer loop iterations does not follow a certain pattern, i.e., at each outer loop iteration, this

inner loop has a random number of iterations), the counter value is not embedded in the

code body because there is no single counter value. Thus, a stack is used to implement

CET loops. This stack is called the loop stack.

When a loop instruction is encountered and it is not on the top of the loop stack, an

entry of its counter and address is pushed on the loop stack. However, if the loop is on

the top of the stack, its counter is decremented and the PC value is set to the loop target

address, i.e., the address of the first instruction in the loop block. This is repeated until the

loop counter becomes 1. After that, the loop stack is popped off and the PC is updated to

the address of the instruction right after the loop instruction. The flowchart shown in

Figure 27 depicts how the loop scheduling unit works.

163

N

Y

N

Y

I.Address ==

S.top.address

S.push(I.Counter-1,
I.Address)

S.top.counter ==0

S.top.counter--

PC = I.Target

End

S.pop

PC = PC + INC

Start

I = Current Loop Instruction

Figure 27: Loop Scheduling Unit Flowchart

164

7.3.2 Timing Model’s Cache Memory

HySim’s timing model has an off-chip main memory on the FPGA board to store

the CET code and data of the application. The off-chip SDRAM is filled from the host

workstation through the Ethernet port. Moreover, each tile has on-chip caches to cache a

fraction of the CET code and data for quicker access. If the CET code and data of an

application do not fit in the CET main memory, although this is rare, then the whole CET

code and data are stored on the host PC disk and the FPGA board main memory works as

a second level cache. In this case, CET main memory is organized into pages and the PC

disk works as the virtual memory.

The CET code cache is implemented as a normal processor cache because the

instructions of the CET code are fetched in the same order as the original program. Thus,

the CET code cache is organized into cache blocks that are grouped into sets. On the other

hand, the CET data cache is implemented as FIFOs because CET data are consumed

sequentially. Since different CET data have different widths, they are implemented in

separate FIFOs, e.g., address difference FIFO and branch results FIFO. Figure 28 shows

a high level view of the timing model memory hierarchy.

The memory controller works as an interface between the CET caches and the

main memory. It receives instruction requests from the different tiles (in the case of CET

instruction miss) and schedules them to the main memory. Then it receives the responses

to these requests (instruction blocks) and passes them to the requesting tiles. Moreover, it

senses the IsEmpty and IsFull signals of all FIFOs of the different tiles. It brings the CET

data from the main memory and feeds them to the empty FIFOs. However, if none of the

165

FIFOs is empty, it pre-fetches CET data from the main memory and feeds it to the non-

full FIFOs.

166

C
E

T
 D

ata F
IF

O

CET Code Block Data Stream

Request

CET Instruction

Is Miss?

Address

CET Core

CET Code
Cache

Memory Controller

Is Full, Is Empty

CET Main Memory

Figure 28: CET Instruction and Data Caches

167

7.3.3 Target Cache Hierarchy Model

HySim supports a target cache hierarchy model of up to three cache levels. The

cache model only stores the data required for performance evaluation, such as: coherence

states and tags and the data required for cache replacement policy. The CET core issues a

request to the L1 data cache model when a load or store instruction is encountered.

Besides that, it issues a request to the L1 instruction cache model each time an instruction

is fetched.

If there is an L1 cache miss, then the request, either data or instruction, is

forwarded to the L2 cache level. The requested address is looked up into the L2 cache

model. If there is an L2 cache hit, the CET core adds the L1 cache’s tag access time and

the L2 cache’s data access time to the simulated time. On the other hand, if there is an L2

cache miss, a cache coherence transaction is formed and delivered to the router. The

router routes this transaction to the owner of the requested cache block across the ring,

and finally to the initiator CET core to update the simulated time.

If there is an L3 cache hit, then L1 and L2 caches’ tag access time and L3 cache

data access time is added to the simulated time. However, if there is an L3 cache miss, the

tag access time of L1, L2 and L3 caches is added to the simulated time in addition to the

main memory access time. Moreover, the NoC latency which is calculated based on the

number of hops traversed by the transaction (according to the target processor NoC

topology) is added to the simulated time as well. These penalties are added after

considering the overlapping among the independent events.

168

In the case of a cache miss, the cache model controller writes the tag and the

correct state of the missed cache block in any available cache line in the cache set to

mimic brining this data or instruction block from the lower level cache, i.e., the CET core

does not really need to wait for the cache access time which speeds up the simulation. If

there are no available cache lines in that set, then the replacement policy is applied to

evict a cache block.

When the coherence transaction reaches its target L3 slice, the cache coherence

protocol is applied. If this L3 slice has the requested block in a shared state, then it is the

owner of the requested block. Otherwise, it broadcasts the request on the ring to search

for the owner of the requested block, i.e., the tile which has the requested block in the

modified state. If invalidation is required, an invalidation request is broadcasted over the

ring and all copies of the block in L1 and L2 caches are invalidated.

Figure 29 shows a sample target cache hierarchy model for a 2-way set associative

L2 cache. It has three input queues: one to queue the instruction requests, another one to

queue the data requests and a third one to queue the coherence transaction requests. The

coherence transactions come to L2 to update coherence states, e.g., to invalidate or to

change from modified to shared state. The CET core stalls if any of these three queues

becomes full. However, these queues are large enough to reduce this stall time.

169

Tag 0

Tag 0

Tag 0

Tag 0

Response:
To the CET Core

Coherence Transaction:
To the Router

Instruction
Requests FIFO

Data Requests
FIFO

Coherence
Transactions FIFO

Port B Port A

Set 0

Set 1

 Set N-1

Set 2

Rep 0 State 0 Rep 1 State 1 Tag 1

Rep 0 State 0 Rep 1 State 1 Tag 1

Rep 0 State 0 Rep 1 State 1 Tag 1

Rep 0 State 0 Rep 1 State 1 Tag 1

Mux
Selector

Figure 29: Unified L2 Cache Simplified Model

170

7.3.4 Timing Model’s Router

The router module is the network interface of the tile. It is responsible for routing

the messages within the same tile and among different tiles. Figure 30 shows an

illustrative block diagram of the router. From this figure, this router has three input ports

and four output ports. Each input port has an input queue to store the incoming messages.

The messages from the different input queues are selected via a multiplexer on the router

in a round robin manner, i.e., every time a message from another queue is selected. The

input ports come from the following components:

1. L2 Cache: upon an L2 cache miss, a coherence transaction is packed and

delivered to the router to forward it.

2. L3 Cache: to forward any request issued by the home directory.

3. External port: receives messages from the previous tile.

The output ports are connected to the following components:

1. L1-Data and L2 Caches: to deliver the invalidation messages or coherence

transactions those change the cache block state from M to S.

2. L3: to deliver the coherence transactions to the home directory; which is

embedded into L3 cache.

3. CET Core: after the coherence transaction is served, it is delivered to its

initiator core. The initiator core adds any penalty incurred by this miss event.

4. External port which delivers messages to the next tile.

171

Figure 30: Router Block Diagram

To CET Core External

From L3

Mux

Routing

Algorithm

From L2

Selector

To L1, L2

To L3

External

172

7.4 NoC Model

The current version of HySim implements a simple NoC model. Although the

timing model’s tiles are connected via a ring, it can model a target processor with a

different topology. For each coherence transaction, the initiator CET core of this

transaction tracks how many hops are navigated by this transaction according to the target

processor’s NoC topology. Finally, the total latency of the transaction is calculated

according to an analytical model that depends on the number of hops. Currently, the

latency is calculated by multiplying the number of hops by the hop latency. The latter is a

tunable parameter.

7.5 Multi-threading Management

As stated before, the CET tool generates separate CET code and data files per

thread even if multiple threads are assigned to the same core. In HySim, these threads are

assigned to the available target cores’ models statically, e.g., threads 0 and 1 are assigned

to core 0, and so on. The number of threads per core is an architectural tunable parameter;

it refers to the maximum number of threads that can be processed by a single processor

core concurrently. Nevertheless, the total number of threads should equal the number of

target cores times the number of threads per core.

173

7.5.1 Thread Scheduling on the Same Core

Multiple threads can be scheduled on the same processor core in three ways [83],

(1) interleaved, an instruction of another thread is fetched and fed into the execution

pipeline at each clock cycle, (2) blocked, the instructions of a thread are executed

successively until a long latency event occurs which results in a context switch, (3)

simultaneous, the instructions are simultaneously issued from multiple threads to the

execution units of a superscalar.

Because instructions can be fetched from only one thread at a time in interleaved

and blocked multithreading techniques, HySim simulates these techniques by partitioning

the CET code and data caches of the CET core among the simulated threads assigned to

this core. In other words, the CET I-cache and CET data FIFOs are divided into equal-

sized partitions such that each partition belongs to a different thread. However, CET core

keeps a distinct context per simulated thread, this context includes a distinct loop stack

and registers to store the CET instruction and data memory addresses. On the other hand,

the target architecture memory model remains as is regardless the number of threads

assigned to the core.

Figure 31 depicts how multiple threads (in interleaved and blocked techniques)

can be scheduled on a single CET core. Multiplexers are used to determine the address of

which thread should be selected to access the CET code and data caches. The control

signal of these multiplexers is the active thread ID. Thread IDs are stored in a circular

queue, called thread queue. The active thread is the one whose ID is the first element of

174

this queue. When a certain thread is done, its ID entry is pooped off permanently from

the thread queue and hence it will not be scheduled anymore.

In interleaved multithreading technique, the context switch occurs after fetching

each instruction. Thus, this technique is a fine-grained multithreading technique. In

contrast, in blocked technique, the context switch occurs when the active thread generates

a long latency miss event. At each context switch, the thread queue is popped off and the

popped off element (current thread ID) is queued at the tail of this queue.

175

Read address 0

Read address 1

Read address 2

Read address 3

Write address 0

Write address 1

Write address 2

Write address 3

CET Instruction In CET Data In

CET Data Out

Thread Queue

CET Instruction Out

Thread 0

Thread 1

Thread 2

Thread 3

0123

Read address 0

Read address 1

Read address 2

Read address 3

Write address 0

Write address 1

Write address 2

Write address 3

Thread 0

Thread 1

Thread 2

Thread 3

Mux

Mux

Mux

Mux

Figure 31: Threads Management in Multithreaded Target Cores (Interleaved and Blocked)

176

In contrast, simulating a simultaneous multithreaded core (i.e., hardware threads)

requires replicating the fetch unit; decode logic, loop stack, latency computing logic, and

CET code and data caches. Replicating the CET cache is necessary because each FPGA

block RAM has only two ports. Thus, replicating the CET cache results in more efficient

access rather than queuing the requests and serving them serially. Figure 32 shows a

simple schematic that depicts how a simultaneous multithreaded core can be simulated in

HySim.

177

Figure 32: Threads Management in Multithreaded Target Cores (Simultaneous)

Requests to
L1 I-cache

Requests to
L1 D-cache

Requests to
L1 I-cache

Data out 1

Data out 0

Address in 1

Address in 0

Requests to
L1 D-cache

Data in 0

Instruction in 0
Instruction out 0

Address in 0

Thread 0 CET Data

Thread 0
CET I-cache

Fetch Unit 0

Decode Logic 0

Loop Stack 0

Data in 1

Instruction in 1
Instruction out 1

Address in 1

Thread 1 CET Data

Thread 1
CET I-cache

Fetch Unit 1

Decode Logic 1

Loop Stack 1

178

7.6 Inter-Thread Interactions

As stated before, HySim targets coherent shared memory multicores. Therefore, it

models a cache coherence protocol to capture the effect of coherency on the derived

parallel execution time. There is a local target clock per core model. Thus, each core

model derives the execution time on the corresponding target core individually. This

execution time includes the different latencies a target core might experience, such as,

computation time, cache miss penalties, NoC latency, and synchronization barrier waiting

time.

For example, assume core 0 wants to read a data block ‘A’ that is not cached in

any of the caches. Core 0 will look it up in its private L1 data cache, then L2 cache, and

finally in the L3 cache and a read cache miss occurs at each level. After that, this block is

brought from the main memory to the private caches of core 0 (L1 and L2) and the shared

L3 cache in the ‘shared’ state assuming that the cache hierarchy is inclusive. Then, core 0

will account for the cache misses penalties across the whole memory hierarchy. After

block ‘A’ is cached, assume that core 1 wants to write to this block, it will experience a

write miss. However, this block has already been cached. Therefore, core 1 will get it

from core 0 rather than from the main memory, i.e., a core-to-core communication

happens. According to the cache coherence protocol, an invalidation message is

broadcasted to the other cores to invalidate block ‘A’ that is eventually brought to core

1’s private caches in the ‘modified’ state. The state of block ‘A’ becomes ‘invalid’ in core

0 private caches and ‘modified’ in the shared L3 cache. However, if core 1 wants to read

block ‘A’ instead of writing to it, it will experience a read miss in its L1 and L2 private

179

caches and a read hit in L3 cache because block ‘A’ has already been brought from the

main memory by core 0. In this case, core 1 accounts for L1 and L2 misses and L3 hit

penalties only, i.e., it does not account for the main memory latency because it did not

access the main memory in this case.

Regarding synchronization barrier, HySim models a counter-based barrier. The

barrier is encoded in the CET code by the wait instruction. When a thread Ti reaches a

barrier, it increments the barrier counter and registers the time stamp TSi (the current

value of the core’s local target clock). When the last thread reaches the barrier, it resets

the barrier counter and broadcasts the time stamp T to other threads. After a thread Ti

receives the time stamp T, it calculates the difference between its TSi and T. This

difference between the two time stamps is the barrier waiting time for thread Ti.

Moreover, this leads to synchronizing the local target clocks of all cores.

7.7 FPGA Implementation Details

HySim timing model has been implemented on a Xilinx Virtex 6 XC6VLX550T

FPGA board, Figure 33. The maximum FPGA frequency achieved was ~170 MHz.

180

Figure 33: Virtex 6 XC6VLX550T FPGA Board

181

Since the DDR3 controller consumed a significant part of the XC6VLX550T

FPGA resources and lowered the frequency on which the FPGA operates, we decided to

keep the CET main memory (the whole CET code and data of the simulated application)

on the hosting workstation disk while caching a significant fraction of these data on the

FPGA (CET caches). Of course, the larger the CET caches the faster the simulation. The

size of CET caches is tunable. It can be adjusted to fit the application subject to the

constraint that the total size of these CET caches is less than or equal the size of the

available BRAMs (BRAMs are blocks of SRAMs embedded in the FPGA).

 Fortunately, we were able to cache all branches’ results on the FPGA.

Furthermore, for the majority of applications we profiled, the entire CET code size can be

cached too. Thus, the remaining CET data components that require caching are the non-

contiguous addresses, JUMP_M displacements, and random loop counters. Moreover,

since thread 0 (the master thread) contains both the sequential and parallel regions of the

application, it has a larger CET code and data size than the other threads. Hence, the CET

caches of CET core 0 (the master core which simulates thread 0) was made larger than the

CET caches of other cores.

7.7.1 Host-FPGA Communication

The Ethernet interface was used for the communications between the host

workstation containing the whole CET code and data and the FPGA running the timing

model. UDP (User Datagram Protocol) protocol has been adopted as the communication

protocol since it has a small header and can be routed safely through the network devices.

182

The communication circuit on the FPGA is explained in Figure 34. The Ethernet

core buffers the received packet at 125MHz speed, reads it from the buffer at the user

design speed, namely, 170 MHz, , buffers it again in the transmitting buffer (with

modification if needed) at the user design speed, and then sends a reply to the workstation

at 125MHz. The packet is thrown once received if it has a wrong CRC (Cyclic

Redundancy Check) or wrong MAC address. Thus, each user packet has an immediate

replay by a packet of the same size and same architecture.

183

Figure 34: Data flow for the Ethernet Core.

184

Each packet carries a list of read/write commands. It can target a block of

memory, one word in memory, or a register. Once the packet is received by the

communication circuit on the FPGA, all of the commands inside it are executed via the

Ethernet core. For the write commands, it writes the data without modifying the packet.

However, if it is a read command, then it replaces the data that follows the command by

the read one.

The modification on the packet header includes interchanging the

source/destination MAC addresses, source/destination IP addresses, the source/destination

port addresses, and put the payload checksum to zero to indicate that it is not calculated.

Each packet is originally an Ethernet packet that contains a UDP packet which in turn

contains a serial of command packets. The total Length of the packet should be more than

50 bytes and could reach around one thousand bytes.

7.7.2 CET Cache Filling Circuit

We implemented a circuit on the FPGA to monitor and fill the CET caches. This

circuit has been called the CET cache filling circuit. As stated above, the communication

between the workstation and this circuit is done through the Ethernet. Figure 35 shows

how this filling circuit interacts with the workstation and the HySim timing model. In

addition to these signals shown in this figure, there are handshaking signals for each data

and address bus. The cache filling circuit interacts with HySim tiles as follows:

1. Initially, the CET code and data caches are filled at FPGA configuration time.

185

2. The CET cache filling circuit maintains the current addresses of all CET

memories of each tile. i.e., for addresses data, conditional branch results, etc.

3. It keeps sensing the IsEmpty and IsFull signals of all tiles. Actually each CET

data FIFO on the tile has this pair of signals.

4. If the IsEmpty signal of a certain FIFO is set, then this FIFO is empty and the

filling circuit fetches the required data from the hosting workstation and updates

the data address associated with this FIFO.

5. If none of the FIFOs is empty, then the filling circuit pre-fetches CET data from

the hosting workstation for the FIFOS whose IsFull signals are zero, in a round

robin manner.

6. If the CET code size is not large and can be stored entirely on the FPGA

BRAMs which is a common situation, then the filling circuit has nothing to do

with the CET code cache because there will be no CET code misses. In this case,

the CET cache is just a normal memory that stores the CET instructions only,

i.e., there are no tags stored like in the normal caches.

7. However, if the CET code size is large and hence cannot be stored entirely on

the FPGA, which is a rare situation, then the filling circuit keeps listening for

CET instructions’ requests. Once it receives an instruction request, it fetches an

entire CET code block from the hosting workstation and delivers it to the

requesting tile.

186

Figure 35: High Level View of HySim Timing Model Interaction with the Main Memory

Ethernet MAC

Is Full

Data

Is Full

Is Empty
Instruction

Address
Instruction

Data
Address

Data
Block

Instruction
Address

Instruction
Block

.

CET Caches Filling Circuit

Tile 0 …

Data Is Empty
Instruction

Address

Instruction

Tile N-1

CET
Code

CET
Data

187

7.7.3 FPGA Resources Consumption

Table 13 shows the amount of FPGA resources consumed by sixteen tiles with and

without the CET cache filling circuit. These sixteen tiles model Xeon E5-2680 processor

[2]. This processor comprises two sockets. Each socket has eight cores. 32 KB L1 D-

cache, 32 KB L1 I-cache, and 256 KB unified L2 cache are private for each core. A 20

MB L3 unified cache per socket shared and distributed among the eight cores of each

socket. This table shows that the CET caches filling circuit consumes few FPGA

resources only.

188

Table 13: The Amount of FPGA Resources Consumed by One and 16 CET Tiles

FPGA Resource

Without CET Cache Filling

Circuit
With CET Cache Filling Circuit

Used Utilization Used Utilization

One CET Tile

Number of Slice Registers 2171 0% 2,306 1%

Number of Slice LUTs 9964 2% 2,306 1%

Number of Fully Used LUT-

FF Pairs

1704 16% 2,306 23%

Number of Block RAM/FIFO 39 6% 43 6%

Sixteen CET Tiles

Number of Slice Registers 30342 4% 45,709 6%

Number of Slice LUTs 142594 41% 139,694 40%

Number of Fully Used LUT-

FF Pairs

23894 16% 34,576 23%

Number of Block RAM/FIFO 517 81% 544 86%

189

We notice that the FPGA block RAMs is the most critical FPGA resource. It is

recommended to utilize all of the available block RAMs to maximize the CET caches size

and hence maximize the simulation speed. Moreover, Table 13 shows that most of the

registers and LUTs are still free; these free resources can be utilized to build larger CET

caches or more complex NoC and core models.

Table 14 shows the sizes of the different CET caches of a single CET tile. These

caches are large enough to minimize the CET caches miss rate. Moreover, the CET code

cache is large enough to accommodate the whole CET code for the majority of

applications which means no CET code misses. Fortunately, CET data are not required

per instruction, which means less pressure on the CET data caches. Another notice from

Table 14 is the size of LOOP_R counters cache is too small because they are consumed

very slowly, e.g., one loop counter might be sufficient for one million loop iterations.

190

Table 14: The Sizes of Different CET Caches for a Single CET Tile

CET Cache
Size

(Number of words x word width (bits))

CET Code Cache 13000 x 55

JUMP_M displacements 4096 x 17

Non-Contiguous Data Addresses Differences 8192 x 16

LOOP_R Counters 50 x 32

191

CHAPTER 8

HYSIM EXPERIMENTAL RESULTS

HySim has been evaluated using several benchmarks. This chapter delves into the

results of experiments we performed to evaluate HySim’s speed and accuracy. It presents

the simulation speed in MIPS and shows the ratio between the simulation and simulated

time. Moreover, it presents the absolute simulation accuracy relative to real existing

hardware execution and shows the ability of HySim to capture the performance trend of

the target architecture.

8.1 Experimental Setup

8.1.1 Target Machine specifications

HySim has been validated against a real hardware processor, namely Intel Xeon

CPU E5-2680 [2] on a “ThinkStation” workstation. Many of the architectural

specifications of this machine have been gathered from the machine itself using Linux

commands and from some on-line documentations, such as [84]. Figure 36 and Figure 37

show sample snapshots of the output of some Linux commands which have been used to

retrieve the machine’s specifications. Then, HySim timing model has been configured to

capture the machine’s specifications listed in Table 15.

192

Figure 36: The Output of lscpu Linux Command

193

Figure 37: Cache Hierarchy Architectural Specifications of "ThinkStation" Workstation.

194

Table 15 shows that the Xeon E5-2680 machine has two sockets interconnected

via a QPI (Quick Path Interface). Each socket has eight 2-way multithreaded cores. Each

core has a 32 KB L1 D-Cache, a 32 KB L1 I-Cache and a 256 KB unified cache. The

eight cores of each socket share a 20 MB L3 unified cache. This L3 cache is split into 10

slices. A ring interconnects the eight cores, the L3 cache’s slices, and it has stops for the

QPI and the memory agent of the socket.

195

Table 15: Target Machine Architectural Specifications

Parameter Value

Number of sockets 2

Cores per socket 8

CPU minimum frequency 1200 MHz

CPU maximum frequency 2.7 GHz

Threads per core 1

Architecture X86_64

Cache line size 64 Byte

L1 I–cache size 32 KB per core

L1 D–cache size 32 KB per core

L2 cache size 256 KB per core

L3 cache size 20 MB per socket

L1 instruction cache

associativity

8

L1 data cache associativity 8

L2 cache associativity 8

L3 cache associativity 20

L1 instruction cache latency 3 cycles data access (in the case of a hit),

196

1 cycle tag access(in the case of a miss)

L1 data cache latency 3 cycles data, 1 cycle tag access

L2 cache latency 12 cycles data, 3 cycles tag access

L3 cache latency 38 cycles data, 12 cycles tag access

Main memory latency ~175-350 Cycles [84]

Cache coherence protocol MSI

NoC model (per socket) Un-buffered ring

NoC across sockets QPI

Hop Latency 2 cycles

Reorder Buffer size 96

197

8.1.2 Real Hardware Execution Time Measurement

The execution time of the benchmarks on the existing real machine was measured

as follows:

1. The benchmarks were executed under Ubuntu 14.3 operating system.

2. The CPU frequency was fixed to 1200 MHz (the minimum frequency of the machine)

because the machine frequency can vary between 1200 MHz and 2700 MHz on

demand (for power and performance tradeoffs). We did that via cpufrequtils

software.

3. All measurements were taken in Linux Console Mode to alleviate the system

overhead on the measured execution time.

4. The benchmarks were run for 100 times successively and the running average was

considered.

5. The execution time has been measured using the Linux time command which shows

the amount of time spent in the application level code and system level code.

6. Hyper threading was disabled from the system setup to ensure that only one thread is

assigned to each core at a time.

7. Since disabling cache pre-fetching is not visible to the user in modern Intel processors,

we tried to approximately mimic the real machine by implementing a simple cache

pre-fetcher in HySim in which the next cache block is pre-fetched upon any cache

miss.

198

8.1.3 Benchmarks

HySim has been evaluated using a mix of Splash-2 workloads [76] and PARSEC

benchmarks suite [77]. Table 16 lists these benchmarks with their input set sizes used in

HySim’s evaluation.

199

Table 16: Splash-2 Benchmarks and Their Input Sets

Benchmark Input Set Size

Swaptions 16 swaptions, 5,000 simulations

Blackscholes 4,096 options

LU-cont 512×512 matrix

FFT 256K points

Ocean-cont 258×258 ocean

Radix 256K integers

Water-sp 512 molecules

Water-nsq 512 molecules

200

8.1.3.1 Benchmarks Profiling

These benchmarks have been executed natively under our Pin-based CET tool to

generate CET code and data for them. Besides that, the CET tool generates a profile for

each thread. This profile includes the thread ID, the starting address of the CET code, the

starting address of the thread’s original code in memory to simulate the I-cache, the

number of CET instructions and CET data, etc. Figure 38 shows a sample snapshot of

such profile.

201

Figure 38: A Snapshot from a Sample Thread Profile

202

Table 17 shows the static CET code size in number of CET instructions. It is

noticeable that thread 0 (the master thread) has the largest CET code size and also it

usually has the largest CET data size. This is normal because the master thread contains

both the sequential and parallel regions of the application. This information helps the user

to customize the CET cache sizes in order to minimize or even eliminate CET cache

misses and hence accelerate the simulation. However, customizing such caches requires

re-synthesizing the design and hence reconfiguring the FPGA.

203

Table 17: CET Static Code Size for Different Threads

Benchmark Thread 0 Thread 3 Thread 6 Thread 9 Thread 12 Thread 15

Swaptions 2992 2616 2612 2616 2616 2614

Blackscholes 1706 577 571 571 571 571

LU 8130 1379 1464 1328 1393 1388

FFT 7743 1556 1563 1808 1564 1530

Ocean 17159 7089 6606 6950 7083 7234

Radix 7375 1256 1439 1398 1251 1291

Water-sp 13349 2657 2641 2627 2642 2659

Water-nsq 12895 2453 2466 2538 2503 2499

204

The CET tool can tell the user the number of dynamically executed instructions

per thread and the percentages of different instructions, e.g., the percentage of loads and

stores. This information helps the user in analyzing the simulation results, e.g., correlating

the simulated time fraction in data memory with the percentage of loads in the

application, and so on. Table 18 shows the number of natively executed instructions and

load/store percentages for thread 0 for different benchmarks.

205

Table 18: Number of dynamically Executed Instructions and Load/Store Percentages for Thread 0

Benchmark
No. Dynamic

Instructions
No. Loads

%

Loads
No. Stores

%

Stores

Swaptions 663549677 204985515 31 40073815 6

Blackscholes 102274425 21565922 21 10824091 11

LU 445635023 143393009 32 69568782 16

FFT 217280607 45676848 21 29356648 14

Ocean 518596741 214901848 41 42604059 8

Radix 93158278 37128167 40 16824188 18

Water-sp 272018359 57730032 21 27385908 10

Water-nsq 308050190 63417694 21 29879723 10

206

Furthermore, the number of instructions natively executed per each thread reveals the

scalability of the application and whether the workload has been well balanced.

Figure 39 and Figure 40 show how instructions are distributed among the different

threads. The horizontal bars are divided into rectangles such that each rectangle represents

the number of dynamic instructions per thread. These rectangles from left to right

represent threads 0, 1, 2, 4, etc. The workload is well balanced for some benchmarks,

such as, radix and ocean. However, the load is not well balanced for other benchmarks,

such as, FFT and LU, where thread 0 executed much more instructions than the other

threads.

Load unbalancing can be because that the application itself has significant

inherently sequential parts, or due to bad programming, i.e., the programmer could not

identify all parallelism in the application. Load unbalancing limits the application

execution speedup because significant part of the program has to be executed sequentially

regardless the computation power of the machine. The same thing applies to HySim, load

unbalancing increases the simulation time of multi-threaded applications because

significant part of the application is simulated sequentially.

207

Figure 39: The Level of Parallelism for the Used Multi-threaded Benchmarks (I)

208

Figure 40: The Level of Parallelism for the Used Multi-threaded Benchmarks (II)

209

8.2 Simulation Monitor

As mentioned in chapter 7, HySim FPGA-based timing model has been

downloaded onto Xilinx Virtex 6 XC6VLX550T FPGA. Xilinx made a set of tools

implemented on the FPGA called ChipScope in order to probe he internal signals of the

design on the FPGA. Unfortunately, ChipScope occupies a significant area on the FPGA

and lowers the design frequency. Thus, we developed a software monitor as a part of

HySim’s software frontend to monitor the internal signals and registers of the design that

is being run on the FPGA. This software monitor interacts with the FPGA through its IO

ports and displays the values of the signals and registers dynamically. ChipScope was

used in the beginning to verify the software monitor, i.e., to make sure that this software

monitor displays the same values as ChipScope. Figure 41 shows a snapshot of

ChipScope. Figure 42, Figure 43, and Figure 44 show snapshots of the FPGA software

monitor.

210

Figure 41: ChipScope Snapshot

211

Figure 42: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (I)

212

Figure 43: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (II)

213

Figure 44: A Snapshot of HySim Software Frontend Displaying Performance Registers from the FPGA (III)

214

8.3 Evaluation of Simulation Speed

HySim simulation speed has been expressed in MIPS, which refers to the

simulator throughput, i.e., the average number of instructions that can be simulated per

second. Equation 1 shows how simulation speed in MIPS in calculated, and equation 2

shows how to calculate the simulation time.

Figure 45 shows HySim’s simulation speed in MIPS for different number of

threads, namely 1, 2, 4, 8, and 16 threads. For 16 threads, the minimum speed was

380.370 MIPS for FFT benchmark, the maximum speed is 2204.257 MIPS for ocean

benchmark, and the average speed is 1445.35 MIPS. The standard deviation of the

simulation speed for 16 threads is 732.43 MIPS. On the other hand, the maximum speed

achieved by the software simulator counterpart, namely Sniper [39] is 2 MIPS.

 (1)

 (2)

The low MIPS of the multithreaded version of FFT benchmark is interpreted by

the lack of load balancing. In 16-threaded FFT version, the number of instructions

executed by threads 0 is larger than the number of instructions executed by the worker

threads by at least eight times. Figure 45 shows that the simulation speed is doubled by

doubling the number of threads for the well balanced benchmarks, such as, radix,

215

blackscholes, oceans, etc. However, the simulation speed increases slightly by doubling

the number of thread for the poorly balanced threads, such as, LU and FFT. Moreover,

HySim simulation speed depends on the size of CET data of the application. Applications

with larger CET data are expected to have longer simulation time because more time will

be wasted on fetching these data.

216

Figure 45: HySim Simulation Speed

217

In addition to the MIPS metric, HySim simulation speed has been measured as a

ratio of the simulation time over the simulated time. Equation 3 shows how the simulated

time is calculated. The lower this ratio the faster the simulator because this means that the

simulation time is closer to the execution time on the real machine. Table 19 and Table

20 list the simulation and simulated time in seconds and in number of clock cycles for one

and sixteen threads, respectively. The average simulation to simulated time ratio for a

single-threaded application is 26.27 while it is 7.48 for sixteen threads. This is normal

because HySim timing model is parallel, and hence in the multi-threaded version of an

application, the workload is divided among the available simulation threads and therefore

takes less time to simulate.

 (3)

218

Table 19: Simulation and Simulated Time and Clock Cycles for a Single Thread

Benchmark
No. FPGA

Cycles

No. Target

Cycles
Ratio

Simulation

Time

(seconds)

Simulated

Time

(seconds)

Ratio

Swaptions 911358394 201794465 4.52 5.3609 0.1682 31.88

Blackscholes 125468628 95855246 1.31 0.7381 0.0799 9.24

LU 662625225 84166002 7.87 3.8978 0.0614 63.44

FFT 275808652 86269686 3.20 1.6224 0.0719 22.57

Ocean 621097304 387463764 1.60 3.6535 0.3229 11.32

Radix 108032053 75697089 1.43 0.6355 0.0631 10.07

Water-sp 395483683 91819472 4.31 2.3264 0.0765 30.40

Water-nsq 445211870 100646875 4.42 2.6189 0.0839 31.22

Min 1.31 9.24

Max 7.87 63.44

Average 3.58 26.27

219

Table 20: Simulation and Simulated Time and Clock Cycles for 16 Threads

Benchmark
No. FPGA

Cycles

No. Target

Cycles
Ratio

Simulation

Time

Simulated

Time
Ratio

Swaptions 56968656 27593286 2.06 0.3351 0.0230 14.57

Blackscholes 8539428 63287898 0.13 0.0502 0.0527 0.95

LU 102902102 77895629 1.32 0.6053 0.0649 9.32

FFT 97313098 46269866 2.10 0.5724 0.5724 1.00

Ocean 41751597 41746044 1.00 0.2456 0.0348 7.06

Radix 8099282 15450406 0.52 0.0476 0.0129 3.70

Water-sp 43840261 27638288 1.59 0.2579 0.0230 11.20

Water-nsq 55641136 32615519 1.71 0.3273 0.0272 12.04

Min 0.13 0.95

Max 2.10 14.57

Average 1.31 7.48

220

8.3.1.1 HySim’s Speed Compared to Other Simulators

The FPGA-based simulator, namely HAsim [53] used a simulation speed metric

called FMR (FPGA-cycle-to-Model-cycle Ratio) which means the ratio between

simulation and simulated time expressed in number of clock cycles. FMR is calculated

according to equation 4. This metric tells us the average number of FPGA cycles that is

needed to simulate one target cycle (model cycle). Thus, it can be used to measure the

simulation speed although the FPGA and the target machine work on two different

frequencies, in this metric, the lower the FMR the faster the simulator. HAsim reported

the minimum, maximum, and average FMR for a single-core and 16-cores target

architectures for a range of SPEC benchmarks. Although we used different benchmarks,

we compared our minimum, maximum, and average FMR with HAsim as shown in Table

21.

 (4)

This table shows that HySim is on average 3.07 times faster than HAsim for a

single thread and 61.07 times for sixteen threads. For a single thread, HySim is faster

because HAsim is an execution-driven simulator and it has a detailed core model and

hence significant part of the simulation time is spent on the core micro-architectural

details and on functional execution (computation, data read misses, etc.). Moreover, in 16

threads, HySim outperforms HAsim much more than in the single-thread version. This is

because HySim does not use time division multiplexing and hence the sixteen threads will

be simulated simultaneously. In contrast, in HAsim, only a number of threads equals to

the number of pipeline stages can be active simultaneously.

221

Table 21: FPGA Cycles to Target Cycles Ratios for HAsim and HySim

 Single Thread Sixteen Threads

Min Max Average Min Max Average

HAsim 5 27 11 16 218 80

HySim 1.31 7.87 3.58 0.13 2.1 1.31

HAsim/HySim

Ratio
3.82 3.43 3.07 123.08 103.81 61.07

222

HAsim’s performance was also reported as the number of target cycles that can be

simulated in one second. They referred to it as the simulation rate and it is measured in

hertz. They reported the minimum, maximum, and average values. This simulation rate

has been converted to MIPS assuming that that target architecture completes an average

of one instruction per one clock cycle. Since HAsim used Virtex 5 LX330T FPGA, we

synthesized our design on this FPGA in addition to the Virtex 6 one. The frequency of

HySim on Virtex 5 FPGA was ~137 MHz. Table 22 shows that HySim is much faster

than HAsim, especially for the 16 threads version. Again, HySim outperforms HAsim

because HySim does not use time division multiplexing, it does not have a detailed core

mode, and the functional part is executed prior to timing simulation.

223

Table 22: HySim's Simulation Speed in MIPS Compared to HASim

Single Thread Sixteen Threads

Min Max Average Min Max Average

HySim

(Virtex 6 FPGA)
114.33 146.60 129.25 380.37 2204.26 1445.35

HAsim 1.84 9.5 4.54 0.16 3.2 0.625

HySim/HAsim

Ratio
62.14 15.43 28.47 2,377.31 688.83 2,312.56

HySim

(Virtex 5 FPGA)
92.14 118.14 104.16 306.53 1776.37 1164.78

HAsim 1.84 9.5 4.54 0.16 3.2 0.625

HySim/HAsim

Ratio
50.08 12.44 22.94 1,915.81 555.16 1,863.65

224

In HAsim [53], the authors did not report accuracy results and they didn’t claim

cycle- accuracy. However, Arete [9] FPGA-based simulator was claimed as a cycle

accurate simulator. Although Arete is more accurate than HySim, it is much slower. Arete

speed was up to 11 MIPS for a single thread and an average of 55 MIPS for eight threads.

On the other hand, HySim has a maximum speed of 118.14 MIPS for a single thread and

an average speed of 663.23 MIPS for eight threads when it was synthesized on a Virtex 5

FPGA. Moreover, Arete is much more expensive than HySim in terms of FPGA

resources. In Arete, two PowerPC core models require an entire Virtex 5 FPGA. This is

because Arete is an execution-driven full system simulator and hence it requires a plenty

of FPGA resources to have a realistic model of the target architecture.

RAM Gold [46] is another FPGA-based simulator. It simulated a target machine

of 64 cores at almost 50 MIPS. On the other hand, HySim’s average speed was 1445.35

MIPS when it simulated 16 cores. As we noticed before, HySim’s speed in MIPS

increases by increasing the number of target cores. Thus, it is expected to increase by at

most four times when the target architecture is extended to 64 cores. Although RAM

Gold is much slower than HySim, it sacrifices a degree of accuracy. The NoC model and

the cache coherence are missing from RAMP Gold.

225

8.4 Evaluation of Simulation Accuracy

8.4.1 Absolute Accuracy Relative to Real Hardware

Figure 46 shows HySim’s absolute accuracy relative to the average real hardware

execution time. The black bold horizontal line in this figure represents the average

application-level hardware execution time. This figure shows that the execution time

predicted by HySim is in agreement with the average real hardware execution time. The

average absolute error for one and 16 threads is 14% with standard deviation 7.5% and

8%, respectively.

226

Figure 46: HySim Absolute Accuracy Relative to Real Hardware (Application Level)

227

 Figure 47 and Figure 48 show HySim’s simulated time relative to the minimum

and maximum real hardware execution time. This figure shows the amount of variation in

the measured hardware execution time for the 100 successive runs. For some cases, the

maximum execution time is almost twice the minimum one. However, in almost all cases,

HySim simulated time falls within the range of the measured hardware execution time.

228

Figure 47: Simulated Time (HySim + Sys) Relative to the Min and Max Total Hardware Execution Time (I)

229

Figure 48: Simulated Time (HySim + Sys) Relative to the Min and Max Total Hardware Execution Time (II)

230

Table 23 lists the absolute error values for one and sixteen threads of HySim,

Interval (Sniper), and one-IPC models Although HySim and Sniper simulated different

target architectures. It shows that HySim has the smallest average absolute error.

This table shows that HySim has a better average absolute error than Sniper

although both simulators nearly have the same level of abstraction. On the other hand,

Sniper has better absolute accuracy than HySim for some benchmarks as shown in this

table. Moreover, Sniper has 100% accuracy for some cases although it has a high level of

abstraction, which looks weird at first glance. These observations can be interpreted by

the fact that these reported error values are relative to the average measured execution

time. We had 100 runs and Sniper had 30 runs. As we have seen before, the measured

execution time can vary for the successive runs. Therefore, we reported HySim’s time, the

minimum and maximum measured hardware execution time.

In addition to that, for absolute error computation, we subtracted the system time

from the measured hardware execution time to ensure apples-to-apples comparison

because HySim is an application-level simulator. However, in Sniper, they didn’t mention

if their measured time includes the system time or not.

231

Table 23: HySim Accuracy Relative to Interval and One-IPC Models

Benchmark

1 Thread

 Absolute Error Relative to Hardware

(%)

16 Threads

 Absolute Error Relative to

Hardware (%)

HySiM

Interval

(Sniper)

[39]

One-IPC

[39]
HySiM

Interval

(Sniper)

[39]

One-IPC

[39]

LU 14 30 290 19 15 140

FFT 16 0 310 18 0 280

Ocean 15 0 290 15 20 190

Radix 2 10 25 17 50 60

Water-sp 17 3 90 11 15 70

Water-nsq 26 90 110 17 50 130

Average 15.00 22.17 185.83 16.17 25 145.00

232

McSimA+ is a many-core software simulator with detailed microarchitecture

modeling. Table 24 compares HySim accuracy with McSimA+ for five Splash-2

benchmarks. For this set of benchmarks, McSimA+ looks a little bit more accurate due to

the detailed microarchitecture model, although they reported an average absolute error of

14.2% for a larger set of benchmarks. However, they did not report McSimA+ speed

which is expected to be much lower than HySim’s speed because McSimA+ is a pure

software simulator and it has a detailed microarchitecture model.

233

Table 24: Comparison between HySim and McSimA+ Accuracy

Benchmark

1 Thread
Absolute Error Relative to

Hardware (%)
HySiM McSimA+

LU 14 5

FFT 16 0

Ocean 15 8

Radix 2 7

Water-sp 17 20

Average 12.8 8

234

8.4.2 Speedup Accuracy

Speedup accuracy is another metric; it shows the capability of the simulator to

capture the performance trend of a certain application on a certain machine. Speedup in

this context is defined as the execution time of the single-threaded version of the

application divided on the execution time of the multi-threaded version. In other words, it

is sequential time divided by the parallel time. Running the application using different

number of threads and then calculating speedup is an important experiment to the

computer architects and software designers. It tells how scalable the application on a

specific machine is. To see how much HySim is accurate in detecting the performance

trend of an application on a certain machine, we computed the speedup using the

measured real hardware execution time and the execution time derived by HySim.

Figure 49 and Figure 50compares between the speedup on the real hardware and

the speedup measured by HySim for application-level code. Moreover, Figure 51 and

Figure 52 show the same thing but for system-level code. We noticed that HySim nearly

detected the speedup curve in most cases.

The low speedup for some benchmarks such as FFT and LU can be interpreted by

the load unbalance. Moreover, in the majority of the benchmarks, the speedup drops when

the number of threads is increased to sixteen. This is normal because the sixteen threads

will be distributed across the two sockets of the processor and hence the coherence

transactions will incur longer delays, furthermore, the larger the number of threads the

longer the waiting time on the barriers.

235

Figure 49: Simulated Speedup Accuracy Relative to Real HW Speedup (Application Level) (I)

236

Figure 50: Simulated Speedup Accuracy Relative to Real HW Speedup (Application Level) (II)

237

Figure 51: Simulated Speedup Accuracy Relative to Real HW Speedup (System Level) (I)

238

Figure 52: Simulated Speedup Accuracy Relative to Real HW Speedup (System Level) (II)

239

8.4.3 Base CPI Effect on Speedup

Since the base CPI is a tunable parameter, improper values of this parameter are

expected to affect the absolute simulation accuracy. We measured the effect of base CPI

variations on the speedup. We made a ±25% variation in the base CPI values. Then, we

calculated the speedup for the three values of CPI (original CPI, CPI+, and CPI-). Figure

53 and Figure 54 show that the speedup is nearly constant when the base CPI is changed

because it is changed by a constant value for each number of threads.

240

Figure 53: CPI Effect on Speedup (Application Level) (I)

241

Figure 54: CPI Effect on Speedup (Application Level) (II)

242

8.5 Limitations

Although HySim is a very fast simulator with acceptable accuracy, it has the

following limitations:

1. HySim is a user-level simulator. Therefore, it is not reliable for workloads of

significant system-level code.

2. The base-CPI is a tunable parameter and hence it is a major source of error.

3. The NoC model is very simple. It only counts the number of hops traversed by the

network message and then calculates the message latency by multiplying the number

of hops by the hop latency, which is a tunable parameter. This model will work fine

for simple un-buffered NoCs.

4. The reported accuracy is relative to real hardware execution time which has some

uncertainty.

243

CHAPTER 9

CONCLUSION AND FUTURE WORK

In this dissertation, we studied the existing computer architecture simulation techniques

and the major recent computer architecture simulators. Based on this, we proposed

HySim, a hybrid software/hardware simulation framework for CMPs. We exploited Intel

pin tool to natively execute and instrument the application to be run on the target machine

model in order to generate a compressed executable trace of this application. The

proposed trace compression technique achieved a compression ratio of up to 2987.9. The

trace compression is done on-the-fly, i.e., the trace is compressed while it is being

generated and hence the original large trace is never stored as is.

Moreover, we exploited the fine and coarse grained parallelism offered by FPGAs

to accelerate computer architecture timing simulation. In other words, the voluminous

number of fine-grained parallel components of a CMP model has been simulated in

parallel. Thus, HySim is the fastest existing simulator with a speed of up to 2204.257

MIPS for 16-core target architecture. Although HySim is not a cycle-accurate simulator,

its accuracy is in agreement with the majority of the existing simulators. When HySim

accuracy has been validated against real hardware, the average absolute error was ~14%.

This work can be extended in many ways. It opened the doors for many

contributions. One of these extensions is to make this framework closer to the fully-usable

244

one. This implies exploiting the reaming free resources on the FPGA to have a more

generic model. In addition to that, the design can be extended and downloaded on

multiple FPGAs to simulate larger target architectures. Other extensions include having

an open source pool of architecture components that are used for building different target

architectures. Moreover, HySim accuracy can be improved by preserving the precedence

of memory operations.

REFERENCES

[1] I. C. George Chrysos. (2012). Intel® Xeon Phi™ Coprocessor - the Architecture.
Available: https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-
codename-knights-corner

[2] Intel® Xeon® Processor E5-2680 (20M Cache, 2.70 GHz, 8.00 GT/s Intel® QPI).
Available: http://ark.intel.com/products/64583/Intel-Xeon-Processor-E5-2680-
20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI

[3] "Telira."
[4] U. o. MarkD. Hill, Ed., Computer Architecture Performance Evaluation Methods

(SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE. Morgan &
Claypool, 2010, p.^pp. Pages.

[5] T. Austin, E. Larson, and D. Ernst, "SimpleScalar: an infrastructure for computer
system modeling," Computer, vol. 35, pp. 59-67, 2002.

[6] D. C. Hari Angepat, Eric S. Chung, James C. Hoe, FPGA-Accelerated Simulation
of Computer Systems, 2014.

[7] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle, D. I. August, and D.
Connors, "Exploiting parallelism and structure to accelerate the simulation of chip
multi-processors," in High-Performance Computer Architecture, 2006. The
Twelfth International Symposium on, 2006, pp. 29-40.

[8] Z. Tan, A. Waterman, H. Cook, S. Bird, K. Asanovi, and D. Patterson, "A case for
FAME: FPGA architecture model execution," SIGARCH Comput. Archit. News,
vol. 38, pp. 290-301, 2010.

[9] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind, "Fast and cycle-
accurate modeling of a multicore processor," in Performance Analysis of Systems
and Software (ISPASS), 2012 IEEE International Symposium on, 2012, pp. 178-
187.

[10] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and M. Ken, "PROToFLEX:
FPGA-accelerated Hybrid Functional Simulator," in Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-6.

[11] D. Chiou, S. Dam, K. Joonsoo, N. Patil, W. H. Reinhart, D. E. Johnson, and X.
Zheng, "The FAST methodology for high-speed SoC/computer simulation," in
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International
Conference on, 2007, pp. 295-302.

[12] Xilinx. Available: http://www.xilinx.com/
[13] Altera. Available: https://www.altera.com/
[14] S. B. (Intel). (2012). Pin - A Dynamic Binary Instrumentation Tool. Available:

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool

[15] (2013). Telira. Available: http://www.tilera.com/

246

[16] Borkar; G. Ruhl; S. Dighe, "The 48-core SCC processor: the programmer’s view,"
2010.

[17] S. Secchi, M. Ceriani, A. Tumeo, O. Villa, G. Palermo, and L. Raffo, "Exploring
hardware support for scaling irregular applications on multi-node multi-core
architectures," in Application-Specific Systems, Architectures and Processors
(ASAP), 2013 IEEE 24th International Conference on, 2013, pp. 309-313.

[18] R. K. B. S. W. J. S. M. Floyd, "POWER7: IBM’S NEXT-GENERATION
SERVER PROCESSOR," IEEE Computer Society, pp. 7-15, 2010.

[19] ARM. (2011-2012). Cortex-A15 MPCore Technical Reference Manual.
[20] "AMD Phenom™ II Processors."
[21] K. H. T. W. Luk, "Axel: A Heterogeneous Cluster with FPGAs and GPUs,"

FPGA’10, February 21–23 2010.
[22] AMD. (2009). Key Architectural Features of AMD Phenom™ X4 Quad-Core

Processors Available:
http://www.amd.com/us/products/desktop/processors/phenom/Pages/AMD-
phenom-processor-X4-features.aspx

[23] C. J. Mauer, M. D. Hill, and D. A. Wood, "Full-system timing-first simulation,"
SIGMETRICS Perform. Eval. Rev., vol. 30, pp. 108-116, 2002.

[24] The gem5 Simulator. Available: http://gem5.org/Main_Page
[25] J. Emer, P. Ahuja, E. Borch, A. Klauser, L. Chi-Keung, S. Manne, S. S.

Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan, "Asim: a
performance model framework," Computer, vol. 35, pp. 68-76, 2002.

[26] E. Argollo, A. Falc, #243, P. Faraboschi, M. Monchiero, and D. Ortega,
"COTSon: infrastructure for full system simulation," SIGOPS Oper. Syst. Rev.,
vol. 43, pp. 52-61, 2009.

[27] H. Lee, L. Jin, K. Lee, S. Demetriades, M. Moeng, and S. Cho, "Two-phase trace-
driven simulation (TPTS): a fast multicore processor architecture simulation
approach," Softw. Pract. Exper., vol. 40, pp. 239-258, 2010.

[28] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, and M. Hempstead,
"Synchrotrace: synchronization-aware architecture-agnostic traces for light-weight
multicore simulation," in Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium on, 2015, pp. 278-287.

[29] C. A. Prete, G. Prina, and L. Ricciardi, "A trace-driven simulator for performance
evaluation of cache-based multiprocessor systems," Parallel and Distributed
Systems, IEEE Transactions on, vol. 6, pp. 915-929, 1995.

[30] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero, "Trace-
driven simulation of multithreaded applications," in Performance Analysis of
Systems and Software (ISPASS), 2011 IEEE International Symposium on, 2011,
pp. 87-96.

[31] A. Butko, R. Garibotti, L. Ost, V. Lapotre, A. Gamatie, G. Sassatelli, and C.
Adeniyi-Jones, "A trace-driven approach for fast and accurate simulation of
manycore architectures," in Design Automation Conference (ASP-DAC), 2015
20th Asia and South Pacific, 2015, pp. 707-712.

247

[32] M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan, and N. B. Sam,
"The VPC trace-compression algorithms," Computers, IEEE Transactions on, vol.
54, pp. 1329-1344, 2005.

[33] C.-J. K. A. T.-J. L. CHING-WEN CHEN, "Efficient Trace File Compression
Design with Locality and Address Difference," JOURNAL OF INFORMATION
SCIENCE AND ENGINEERING, pp. 1055-1070, 2013.

[34] E. N. Elnozahy, "Address trace compression through loop detection and
reduction," presented at the Proceedings of the 1999 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems,
Atlanta, Georgia, USA, 1999.

[35] E. E. Johnson, H. Jiheng, and M. Baqar Zaidi, "Lossless trace compression,"
Computers, IEEE Transactions on, vol. 50, pp. 158-173, 2001.

[36] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, "Using the SimOS
machine simulator to study complex computer systems," ACM Trans. Model.
Comput. Simul., vol. 7, pp. 78-103, 1997.

[37] E. Witchel and M. Rosenblum, "Embra: fast and flexible machine simulation,"
SIGMETRICS Perform. Eval. Rev., vol. 24, pp. 68-79, 1996.

[38] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J.
Eastep, and A. Agarwal, "Graphite: A distributed parallel simulator for
multicores," in High Performance Computer Architecture (HPCA), 2010 IEEE
16th International Symposium on, 2010, pp. 1-12.

[39] T. E. Carlson, W. Heirman, and L. Eeckhout, "Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation," in High
Performance Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011, pp. 1-12.

[40] "Valgrind."
[41] A. Jung Ho, L. Sheng, O. Seongil, and N. P. Jouppi, "McSimA+: A manycore

simulator with application-level+ simulation and detailed microarchitecture
modeling," in Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on, 2013, pp. 74-85.

[42] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, K. Asanovi\,
and \#263, "RAMP gold: an FPGA-based architecture simulator for
multiprocessors," presented at the Proceedings of the 47th Design Automation
Conference, Anaheim, California, 2010.

[43] D. Genbrugge, S. Eyerman, and L. Eeckhout, "Interval simulation: Raising the
level of abstraction in architectural simulation," in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on, 2010, pp. 1-
12.

[44] W. Jun, J. Beu, R. Bheda, T. Conte, D. Zhenjiang, C. Kersey, M. Rasquinha, G.
Riley, W. Song, X. He, X. Peng, and S. Yalamanchili, "Manifold: A parallel
simulation framework for multicore systems," in Performance Analysis of Systems
and Software (ISPASS), 2014 IEEE International Symposium on, 2014, pp. 106-
115.

[45] G. H. Loh, S. Subramaniam, and X. Yuejian, "Zesto: A cycle-level simulator for
highly detailed microarchitecture exploration," in Performance Analysis of

248

Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on,
2009, pp. 53-64.

[46] T. Zhangxi, A. Waterman, R. Avizienis, L. Yunsup, H. Cook, D. Patterson, and K.
Asanovic, "RAMP gold: An FPGA-based architecture simulator for
multiprocessors," in Design Automation Conference (DAC), 2010 47th
ACM/IEEE, 2010, pp. 463-468.

[47] D. Chiou, S. Dam, K. Joonsoo, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,
and H. Angepat, "FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle-Accurate Simulators," in Microarchitecture, 2007. MICRO 2007.
40th Annual IEEE/ACM International Symposium on, 2007, pp. 249-261.

[48] F. Zhenman, M. Qinghao, Z. Keyong, L. Yi, H. Yibin, Z. Weihua, C. Haibo, L.
Jian, and Z. Binyu, "Transformer: A functional-driven cycle-accurate multicore
simulator," in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, 2012, pp. 106-114.

[49] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, "Multifacet's general
execution-driven multiprocessor simulator (GEMS) toolset," SIGARCH Comput.
Archit. News, vol. 33, pp. 92-99, 2005.

[50] R. Pengju, M. Lis, C. Myong Hyon, S. Keun Sup, C. W. Fletcher, O. Khan, Z.
Nanning, and S. Devadas, "HORNET: A Cycle-Level Multicore Simulator,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 31, pp. 890-903, 2012.

[51] O. Certner, L. Zheng, A. Raman, and O. Temam, "A Very Fast Simulator for
Exploring the Many-Core Future," in Parallel & Distributed Processing
Symposium (IPDPS), 2011 IEEE International, 2011, pp. 443-454.

[52] S. Takamaeda-Yamazaki, S. Sano, Y. Sakaguchi, N. Fujieda, and K. Kise,
"ScalableCore System: A Scalable Many-Core Simulator by Employing over 100
FPGAs," in Reconfigurable Computing: Architectures, Tools and Applications.
vol. 7199, O. S. Choy, R. C. Cheung, P. Athanas, and K. Sano, Eds., ed: Springer
Berlin Heidelberg, 2012, pp. 138-150.

[53] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, "HAsim: FPGA-based
high-detail multicore simulation using time-division multiplexing," in High
Performance Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, 2011, pp. 406-417.

[54] J. J. Yi and D. J. Lilja, "Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations," Computers, IEEE
Transactions on, vol. 55, pp. 268-280, 2006.

[55] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N.
Vaish, M. D. Hill, and D. A. Wood, "The gem5 simulator," SIGARCH Comput.
Archit. News, vol. 39, pp. 1-7, 2011.

[56] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, "The M5 Simulator: Modeling Networked Systems," Micro, IEEE, vol.
26, pp. 52-60, 2006.

249

[57] D. R. Butenhof, Programming with POSIX threads: Addison-Wesley Longman
Publishing Co., Inc., 1997.

[58] D. August, J. Chang, S. Girbal, D. Gracia-Perez, G. Mouchard, D. Penry, O.
Temam, and N. Vachharajani, "UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative Development,"
Computer Architecture Letters, vol. 6, pp. 45-48, 2007.

[59] R. Bedicheck, "SimNow: Fast platform simulation purely in software," in Hot
Chips.

[60] M. Vijayaraghavan and Arvind, "Bounded Dataflow Networks and Latency-
Insensitive circuits," in Formal Methods and Models for Co-Design, 2009.
MEMOCODE '09. 7th IEEE/ACM International Conference on, 2009, pp. 171-
180.

[61] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J.
Hogberg, F. Larsson, A. Moestedt, and B. Werner, "Simics: A full system
simulation platform," Computer, vol. 35, pp. 50-58, 2002.

[62] S. Dam, K. Joonsoo, and D. Chiou, "QUICK: A flexible full-system functional
model," in Performance Analysis of Systems and Software, 2009. ISPASS 2009.
IEEE International Symposium on, 2009, pp. 249-258.

[63] bluespec. Available: http://www.bluespec.com/
[64] S. Kanev and R. Cohn, "Portable trace compression through instruction

interpretation," presented at the Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software, 2011.

[65] S. Budanur, F. Mueller, and T. Gamblin, "Memory Trace Compression and Replay
for SPMD Systems Using Extended PRSDs," Comput. J., vol. 55, pp. 206-217,
2012.

[66] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo,
"METRIC: tracking down inefficiencies in the memory hierarchy via binary
rewriting," in Code Generation and Optimization, 2003. CGO 2003. International
Symposium on, 2003, pp. 289-300.

[67] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. d. Supinski, "ScalaTrace:
Scalable compression and replay of communication traces for high-performance
computing," J. Parallel Distrib. Comput., vol. 69, pp. 696-710, 2009.

[68] A. Janapsatya, A. Ignjatovic, and J. Henkel, "Instruction Trace Compression for
Rapid Instruction Cache Simulation," in Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE '07, 2007, pp. 1-6.

[69] A. Ketterlin and P. Clauss, "Prediction and trace compression of data access
addresses through nested loop recognition," presented at the Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and optimization,
Boston, MA, USA, 2008.

[70] TCgen 2.0: A Tool to Automatically Generate Lossless Trace Compressors 2006.
[71] K. C. Barr and K. Asanovic, "Branch trace compression for snapshot-based

simulation," in Performance Analysis of Systems and Software, 2006 IEEE
International Symposium on, 2006, pp. 25-36.

[72] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic, "Accelerating Multiprocessor
Simulation with a Memory Timestamp Record," in Performance Analysis of

250

Systems and Software, 2005. ISPASS 2005. IEEE International Symposium on,
2005, pp. 66-77.

[73] M. Xu, M. D. Hill, and R. Bodik, "A regulated transitive reduction (RTR) for
longer memory race recording," SIGOPS Oper. Syst. Rev., vol. 40, pp. 49-60,
2006.

[74] M. Xu, R. Bodik, and M. D. Hill, "A "flight data recorder" for enabling full-
system multiprocessor deterministic replay," SIGARCH Comput. Archit. News,
vol. 31, pp. 122-135, 2003.

[75] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, "PinPlay: a framework
for deterministic replay and reproducible analysis of parallel programs," presented
at the Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, Toronto, Ontario, Canada, 2010.

[76] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, "The SPLASH-2
programs: characterization and methodological considerations," in Computer
Architecture, 1995. Proceedings., 22nd Annual International Symposium on, 1995,
pp. 24-36.

[77] PARSEC. Available: http://parsec.cs.princeton.edu/
[78] MediaBench. Available: http://euler.slu.edu/~fritts/mediabench/
[79] Standard Performance Evaluation Corporation. Available:

https://www.spec.org/cpu2000/
[80] A. Milenkovi, and M. Milenkovi, "An efficient single-pass trace compression

technique utilizing instruction streams," ACM Trans. Model. Comput. Simul., vol.
17, p. 2, 2007.

[81] R. S. N. a. K. Czeck. (2010). BSV by Example, The next-generation language for
electronic system design.

[82] Arvind and R. Nikhil, "Hands-on Introduction to Bluespec System Verilog
(BSV)," in Formal Methods and Models for Co-Design, 2008. MEMOCODE
2008. 6th ACM/IEEE International Conference on, 2008, pp. 205-206.

[83] B. R. T. Ungerer, and J. Šilc, "Multithreaded Processors," The Computer Journal,
pp. 320-348, 2002.

[84] (2015). Stampede Virtual Workshop, Multi-Core Optimization Available:
http://www.cac.cornell.edu/Stampede/CodeOptimization/multicore.aspx

251

APPENDIX A: SOURCE CODE

This appendix presents an overview of the source code that has been written in this

dissertation. It includes the CET tool C++ code and the hardware description code of

HySim’s timing model in BSV and the corresponding auto-generated Verilog code. Click

here for the full source code.

A.1 CET Tool

The CET tool source code comprises nearly 2800 lines of C++ code. In addition to

the instrumentation and analysis functions, CET tool has different functions for

application profiling, CET code generation, CET data generation, and application log

generation. CET tool has two main objects, namely, the thread object and the instruction

object.

The thread object stores all information regarding each thread. This includes

thread ID, CET code starting address, original code starting address (initial PC value),

CET code, CET data, and some statistics, such as, the number of instructions of each type

and the sizes of different CET data components.

252

The instruction object stores all information regarding each instruction. Thus, the

CET code is a list of instruction objects. The most important fields of the instruction

object are:

1. opcode.

2. Instruction address.

3. Branch results counters to count the taken/not taken in the case of a conditional

branch instruction.

4. List of addresses to store the data references of load/store instructions and target

addresses in the case of branch instructions.

5. List of counters to store the number of iterations for inner loop instructions.

A.2 HySim Timing Model

HySim timing model has a hierarchal modular design. The top module

(MultiCore.bsv) is the module where the CET tiles are instantiated and interconnected.

Each tile comprises a core model, L1 D-cache model, L1 I-cache model, L2 cache model,

L3 cache model, NoC router model, and cache memories to cache CET code and CET

data. Figure 55shows the hierarchal view of the BSV code.

253

Figure 55: BSV Code Hierarchy

VITAE

Name: Ayman Ali Mohammad Hroub

Nationality: Palestinian

Date of Birth: September 19th, 1984

 Email : ahroub@gmail.com

Address: Hebron, Palestine

Academic Background: Ayman received his B.Sc. degree in Computer Systems

Engineering from Birzeit University in 2008. Then Ayman worked as a software

application developer for more than one year. In September 2009, Ayman joined

King Fahd University of Petroleum and Minerals (KFUPM) as a research assistant

to pursue his M.Sc. degree in Computer Engineering. In June 2011, Ayman earned

his M.Sc. in Computer Engineering from KFUPM. Then Ayman started his career

as a lecturer-B at KFUPM to pursue his PhD in Computer Science and

Engineering. Ayman Completed his in December 2015.

Ayman research interests include developing novel multicore architectures and

efficient models for evaluating the performance of such architectures. Ayman co-authored

the following six papers:

1. Ayman Hroub, Muhammad E. S. Elrabaa, Muhamed F. Mudawar, Ahmad Khayyat.

Efficient Execution Trace Compression Technique for Multi-Core Architectural

Simulation. Submitted to ACM transactions on Modeling and Computer Simulation,

2016.

2. Muhammad E. S. Elrabaa, Ayman Hroub, Muhamed F. Mudawar, Ahmad Khayyat.

A very fast trace-based simulation platform for chip-multiprocessors architectural

explorations. submitted to IEEE Transactions on Parallel and Distributed Systems,

2015

3. M. Alshayeb, M. E. S. Elrabaa, Ayman Hroub, A. Al-Aghbari, A. H. El-Maleh, A.

Bouhraoua. Towards a Test Definition Language for Integrated Circuits. Journal of

Circuits, Systems and Computers (JSCS), 2014.

4. M. Niazi, S.Mahmood, M. Alshayeb, Ayman Hroub. An Empirical Investigation of

Challenges of the Existing Tools Used in Global Software Development Projects. IET

Software, 2014.

5. M. Niazi, S.Mahmood, M. Alshayeb, Ayman Hroub. Challenges of the Existing

Tools Used in Global Software Development Projects. The Seventh International

Conference on Advances in Human-oriented and Personalized Mechanisms,

Technologies, and Services (CENTRIC) Oct. 12 - 16, 2014 - Nice, France.

6. M. Mudawar and Ayman Hroub, Clustering Cores for Parallel Thread Execution,

2nd International Conference on Advanced Computing and Communications (ACC-

2012), June 27-29, 2012, Los Angeles, California, USA.

	Cover
	Signatures
	Ayman_PhD Dissertation.pdf

