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Markov Decision Process (MDP) models have been widely used in decision making under 

uncertainty.  MDP has been applied in various fields of study – healthcare, maintenance 

management, transportations problems, production planning, robotics, and others. 

In this thesis, two related-problems are addressed.  First, an MDP model for reverse 

logistics (RL) published in the International Journal of Production Research, 2007 is 

studied, and corrected. A counter example is provided to show that the set of claimed 

sufficient conditions, to guarantee the existence of threshold policy, are incorrect. The 

correct way of approaching the problem is provided, and a new set of sufficient conditions 

for two-period planning horizon are provided, yet, the n-period problem is believed to be 

very complicated and difficult to characterize. 

In the second part of the thesis, a generic MDP capacity planning model, which can be used 

in forward logistics capacity planning, is provided.  The optimal policy is characterized 

over two different partially ordered state space, and based on the optimal policy’s structural 

properties, a revised value iteration algorithm is provided. 
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ABSTRACT (ARABIC) 

 ملخص الرسالة
  
  

  جزیم عبدالجلیل  :الاسم الكامل
  

  نموذج ماركوفي متعدد الحالات للخدمات اللوجستیة في ادارة سلاسل الامداد :عنوان الرسالة
  

  ھندسة النظم التخصص:
  

  2015دیسمبر   :تاریخ الدرجة العلمیة
 

النماذج الماركوفیة كاملة المشاھدة من الطرق واسعة الانتشار لنمذجة الانظمة متعددة الحالات، وذلك لدعم اتخاذ نعتبر 

القرارات المثلى في حالة عدم الیقین. لقد تم استخدام النماذج الماركوفیة في العدید من المجالات، مثل ادارة الصیانة، 

 الكثیر.النقل، تخطیط الانتاج، الروبوتات وغیرھا 

في المجلة العالمیة  2007في ھذا البحث تمت دراسة مسألتین ذوات صلة. الأولى تتعلق بأحد الأبحاث المنشورة في عام 

لبحوث الانتاج. حیث طور بعض الباحثین نظریة وشروط لضمان الحصول على قرارات منتظمة الترتیب لنموذج 

جستیة العكسیة ضمن ادارة سلاسل الامداد. في ھذه الدراسة ماركوفي متعدد الحالات، یعنى النموذج بتمثیل الخدمات اللو

تم نقض تلك النظریة بواسطة مثال ریاضي، ثم تم تعدیل شروط النظریة الأصلیة و تصحیحھا، وذلك بعد توضیح 

 الطریقة الصحیحة الواجب اتباعھا وسبب الخطا في النظریة الأصلیة. 

ة، تم تطویر نموذج ماركوفي متعدد الحالات كأداة دعم قرار تخطیط الخدمات اللوجستیة في الجزء الثاني من الأطروح

ضمن سلاسل الامداد، تم تطویر نظریات و شروط جدیدة على عناصر المسألة وذلك  لترتیب القرارات المثلى على 

ل سریعة وفعالة.وأخیرا تمت الاستفادة من خصائص المسألة للحصول على طریقة ح .عناصر المجال للمسألة



1 
 

1 CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This research addresses the application of Markov Decision Process (MDP) in logistics.  

By logistics capacity, we refer to the resources that enable us to meet the logistics demand.  

Consider a distribution warehouse, where the key resources represent the number of trucks 

used for distribution.  Assuming random demand, a dynamic decision making framework 

is needed to deal with this capacity planning problem.  The objective is to determine the 

optimal capacity level for each time epoch (decision making point) of the future; taking 

uncertainty into consideration.  An MDP model facilitates the mathematical formulation of 

such a problem.  

For a company marketing a product, logistics operations can be divided into Forward 

Logistics (FL) and Reverse Logistics (RL).  Forward logistics involves the operations of 

furnishing the customers with their demand for the product.  By contrast, Reverse Logistics 

(RL) involves the operations of facilitating the return of the products from the customers.  

There are many differences between the nature of FL and RL in terms of forecasting, 

costing, product quality etc., which makes it a complex operation (Tibben-Lembke and 

Rogers 2002).  The reason for the returns could be numerous – repair, planned service, 

disposal, technical update, environmental responsibilities and so on (Nikolaou, 
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Evangelinos, and Allan 2013).  From a general standpoint, FL is linked with revenue 

generating operations, and RL with expenses.  But if a company does not maintain a robust 

RL system it can lose its customers to other competitors (Rogers and Tibben‐Lembke 

2001).   

 

1.2 General Statement of the problem  

In this research, we address two problems.  The first, a reverse logistics problem available 

in the literature is studied and corrected.  In the second, an MDP model for forward logistics 

is presented and structural properties proved.   

Here we give a brief description of the two problems: 

1.2.1 A note on Serrato et al. (2007), and a corrected proof  

Serrato et al. (2007) proposed a Markov Decision Process (MDP) model, to determine 

whether a company is to perform its reverse logistics activities either in-house, or by 

outsourcing them.  In this part, through a counter example, it is shown that the theorem in 

Serrato et al. (2007) does not guarantee the existence of a structured optimal decision 

policy.  Then, a new set of sufficient conditions are developed to guarantee the existence 

of structured optimal policy for a two-period problem. 

1.2.2 An MDP model to optimize logistics capacity in forward logistics  

In the second section of the thesis, a general MDP model is presented for optimizing 

logistics capacity for forward logistics.  Further, the structural properties existing in the 
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model under very realistic assumptions are investigated.  The advantages of the structural 

properties in terms of computational effort is quantified and presented. 

This general MDP model formulation and its structural properties are not only useful in 

optimizing logistics capacity, but also, it can be applied to other areas of Supply Chain 

Management (SCM). 

 

1.3 Motivation 

The motivations for pursuing this thesis are as follows: 

1. The advantages of supply chain management include: improving resource 

allocation and customer satisfaction, reducing inventory and total cost of 

production, increasing system efficiency and profit margin, and more. 

2. MDP has proven efficiency in dynamic decision making environments. 

3. To the best of our knowledge, most MDP structural properties, especially for MDP 

models defined over multi-dimension sate space, are based on strict assumptions 

on the model parameters, which is not the case here. 

4. To the best of our knowledge, the proposed mathematical model and its cost 

elements does not exist in the literature. 
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1.4 Thesis Objectives  

1. To reproduce the results of Serrato et al. (2007)  and fix few mistakes in their work. 

This include: 

- Through a counter example the conditions in the addressed paper are shown to be 

insufficient to guarantee structured optimal policy. 

- To correct the cost structure of the addressed paper. 

- Propose a new set of sufficient conditions, to guarantee a threshold policy in case 

of a two-period problem, and highlight the complexity of the problem in case of a 

multiperiod problem. 

2. To formulate an MDP model for capacity planning, which can be utilized to 

determine the optimal capacity levels in forward logistics. . 

3. Prove the existence of structured policy for the model in 2, over two different 

partially ordered state space, under very realistic assumptions on the proposed 

model parameters. 

4. Present advantages of the developed structural properties and their uniqueness in 

comparison to the similar results found in the literature. 

 

1.5 Thesis Contributions  

1. Improving the work of Serrato et al. (2007),and highlighting the complexity of the 

problem to guarantee existence of threshold policy.  Also, obtaining a set of 

conditions that guarantee threshold policy for a two-period problem. 
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2. Formulation of a general MDP model that can be utilized in other applications.  

Proving the existence of a structured optimal decision policy for the developed 

model over two different partially ordered state space. 

 

1.6 Thesis Organization  

The rest of this thesis is organized as follows: In chapter 2, an introduction to MDP 

modelling is provided, this is to introduce the reader to the different elements of the 

MDP.  In chapter 3, we provide a literature review which focuses on the applications of 

MDP in supply chain.  In chapter 4, Serrato et al. (2007) is addressed and revised.  In 

chapter 5, a general MDP model to optimize logistics capacity is proposed.  In chapter 6, 

the conclusion of this thesis work and some suggested future work is presented. 
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2 CHAPTER 2 

MARKOV DECISION PROCESS 

In this chapter, an introduction to the Markov Decision Process (MDP) is provided 

 

2.1 Introduction  

 

MDP provides a mathematical framework for dynamic programming.  Problems where 

the outcomes are partly in the control of the decision maker and partly random can be 

formulated as an MDP model. 

When a system’s condition may be completely described by a set of information, it 

(information) is attributed to its state.  In a Markov chain, the state transitions follow 

Markovian property. Thus, an MDP is a Markov chain whose state transitions can be 

influenced by a decision maker. 

 

2.2 Elements of an MDP model 

 

1. Decision Epochs �: These are points in time where actions are applied to the 

system.  In discrete time problems, decision epochs are discrete, and the time 

between epochs are usually fixed.  In continuous time problems, the decision 

epoch are usually random points in time when specific events occur. 
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2. State space �: At each decision epoch, the status of the system is fully described 

by its state �.  It consists of all relevant information – system variables, events and 

actions; required to completely explain the system transitions and rewards on 

application of an action.  The set of all possible states for a system is its state 

space. 

 

3. Action space �: At every decision epoch, the decision maker observes the state of 

the system, and chooses an action � that influence state transition and rewards.  

The set of all actions available to the decision maker, in a given state, is called the 

action space for that state �� . 

 

4. Rewards ��(�, �): At a decision epoch �, when an action is chosen, the decision 

maker receives a reward, that is dependent on the current state and chosen action.  

The reward may also be dependent on the next state, in this case expected reward 

can be calculated using probability theory. 

 

5. State transition probability ��(��|�, �): is defined as the probability that a system 

will hold a particular state �� in the next decision epoch given its current state � 

and chosen action �. 

 

2.3 Decision rules and policies in MDP  
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Given the state and time epoch, a decision rule specifies what action to implement.  The 

decision rule is Markovian; because information on the previous system states is 

immaterial in deciding the action at an epoch.  ��: � →  �� 

A policy specifies the decision rule to be implemented at every decision epoch and 

system state.  Hence a policy is a sequence of decision rules. A policy is said to be 

stationary if it is the same for all epochs. 

 

2.4 Objective in MDP modeling  

 

An objective is the maximization (or minimization) of total expected rewards (costs) 

during the planning horizon.  Different possible objectives for an MDP model are 

 Maximize (minimize) total expected rewards (costs), 

 Maximize (minimize) discounted sum of rewards. 

 

2.5 Solution Methodology  

 

A finite horizon MDP model can be solved using backward value iteration method, 

wherein the decision maker takes into advantage the Markovian property of the MDP 

model, as in the current and future rewards are independent of past states of the system.  

In value iteration methodology, the decision maker derives the optimum action, and 

optimum reward starting from the last epoch, and works his way back to the first epoch 
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of the planning horizon.  Doing which, he obtains the optimum action for the current 

system, and also a mapping of the optimum actions to different possible states in the 

future epochs. 

Evaluating an MDP model by value iteration is an arduous task and will require huge 

computational effort for large problems.  But if it can be ascertained that the solution 

policy will follow a structure, say the action will be monotonically increasing or 

decreasing, the computational effort required for determining the optimal policy, will 

reduce significantly because the whole range of actions need not be probed in such cases.  

Several theorems have been developed in this regards (Puterman 2009). 

 

2.6 Applications of the MDP  

 

MDP is used extensively in describing dynamic decision making problems in many fields 

of study. In his surveys, White (1985, 1988, 1993) listed out many areas of MDP 

application, to name a few: 

 Water Resources 

 Maintenance Operations 

 Inventory management 

 Finance 

 Robotics 
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 Manufacturing 

A google search on MDP gives about 700,000 results at the time of this research, this 

shows how widely it is being used. 
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3 CHAPTER 3 

LITERATURE REVIEW 

3.1 Introduction  

 

This chapter gives an idea of the various applications of MDP in optimizing SCM 

operations.  The significance of the study of existence of structural properties in the 

decision policies is highlighted in this chapter.  

Supply chain is a mapping of operations between different dependent businesses entities 

namely suppliers, manufacturers, distributors and retailers, that work ultimately for 

meeting the demands of customers in the most efficient and profitable manner. 

Supply chain consists of a comprehensive group of activities, ranging from the 

procurement of raw materials, to manufacturing of products, satisfying/ furnishing 

customer demands and managing returns (if any).   

Planning is required for every activity at different levels.  The levels of supply chain 

management (SCM) decision making is often divided to three levels namely: 

 Strategic Planning 

Strategic planning are high level planning keeping the organization’s mission in 

mind.  The planning is usually done by company stakeholders.  The scope of the 

planning is usually for long periods.  Strategic plans serve as input to tactical 

management and operational planning levels 
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 Tactical Management 

Tactical planning focuses on the implementation of the strategic plans.  It is done 

usually by mid-level managers. 

 Operational level 

Operational plans define the routine functioning and decisions of an industry.  A 

clear cut plan on what decisions to take for the employees for their activities that 

will be in accordance to the strategic plans developed. 

The application of MDP models in determining decision policies in different areas of 

supply chain is vast.  In this literature review we focus on the application of MDP models 

in the tactical management and operational level planning of different sections of supply 

chain. 

 

3.2 MDP models in Tactical management planning  

 

Manufacturing problems: 

Chien et al. (2012) works on a problem where several different type of a product (semi-

conductor) are produced.  Through empirical data the demand transition matrix was 

obtained for different demand states for each product.  The machines have capacity for its 

respective product which maybe migrated to other products for a transfer rate and cost.  

The objective is to minimize the expected discounted cost over a finite horizon.  The cost 

components include capacity shortage cost, capacity idling cost and capacity migration 

cost.  The capacity expansion and migration decisions are made in each epoch.  The model 

incorporates a lead time in the implementation of the expansion decision during which no 
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decision can be made in further changing its capacity.  The paper does not investigate for 

existence of any structure in the optimum decision policy. 

He (He) takes a different take to the problem definition in Chien et al. (2012), here each 

product requires different operations for its production and the machines are categorized 

as per the operations they perform.  The decisions are made for changing capacity of each 

machine type and also assignment of of machines to different operations.  Costs are 

incurred for changing machine capacity, switching machine operations, inventory holding 

and for machine operations.  The objective is to minimize the  expected cost over a finite 

horizon.  Solution is determined by backward value iteration and the paper does not 

investigate for existence of any structure in the optimum decision policy. 

Wu and Chuang (2010) works on making optimal capacity decisions for a production 

industry considering price and demand fluctuations.  The problem considers an industry 

making 2 products. There are two machines in the industry.  One machine (dedicated) is 

used solely for the purpose of producing one product.  A second machine is flexible and 

can produce either of the two products.  The manner/ policy by which the machine capacity 

are allocated is fixed.  That is the flexible machine will first use its capacity to satisfy the 

demand for the product that can only be manufactured by it before allocating its capacity 

to the other product.  The action is the purchase quantity of each machine type at each 

epoch.  The objective is to maximize profit in a finite horizon.  The rewards include profits 

by selling products, purchase cost for increasing machines, shortage cost for not meeting 

demand, idling cost of machines and salvage value at the end of planning horizon.  A more 

efficient algorithm than the standard backward value iteration algorithm was used to 

determine optimum decision policy.  Structural properties in optimal solution was proof. 
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Ahiska and Kurtul (2014) considers a system where the product can be manufactured new 

or can be remanufactured from recovered units/ returned units.  The demand and prices for 

manufactured and remanufactured items are different.  As expected remanufactured items 

will cost lower to manufactured items.  The demands for manufactured and remanufactured 

items and the number of returns at each period are stochastic and independent to each other.  

The paper also studies the effect of one-way substitution, which is once the remanufactured 

items are used up, its demand can be fulfilled by manufactured items sold at the price of 

remanufactured items.  The decision to be made at each time epoch is the number of items 

to be manufactured and remanufactured.  The problem is solved as an infinite horizon 

MDP.  Howard Morton policy iteration (1971) method is applied to find optimal decision 

policy. 

Garcia- Alvarado et al. (2014) introduces a manufacturing model that also aims at reducing 

the amount of carbon emissions to the atmosphere.  This is done by making it a part of the 

total cost function and also by putting constraints on the decision variables.  Different types 

of decision policies were analyzed.  The paper does not study for any structural properties 

in the optimum policy. 

Procurement: 

Li (2013) deals with inventory systems with reverse logistics where the demand and returns 

are Markovian.  Both finite and infinite horizon scenarios are addressed in the paper.  

Existence of structural decision policies were proved. 

De Cuypere et al. (2013), an optimal order quantity is determined by accommodating 

fluctuations in demand and market price.  The lead time is considered stochastic and no 
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backlogging is allowed in the model.  There can be no more than one ongoing order at any 

time and the demand is always unit item in this model.  The time between two order 

deliveries is taken to be distributed geometrically and the demand is Bernoulli distributed.  

Price fluctuations is represented by three parameters that define the mean price as well as 

the spread (variation).  The actions at decision epochs being the number of items to be 

placed in order.  The objective is to minimize the long term discounted cost.  The system 

state is explained by three variables – the onhand inventory, the present price level and the 

units in order.  The paper does not study for any structural properties in the optimum 

decision policy. 

Bendre and Nielsen (2013) works on a similar problem as De Cuypere et al. (2013), he 

analyzes the problem considering different properties for lead times.  No structural 

properties were established. 

Chen et al. (2010) model consists of a central warehouse whose inventory is replenished 

by the supplier/ manufacturer and the warehouse satisfies the demands of its subsidiaries.  

The action is taken every month on the set of delivery quantities for the subsidiaries from 

the warehouse and for the warehouse from the supplier.  The system state is defined by the 

inventory levels at the subsidiaries and at the warehouse.  The objective is to minimize 

long run expected discount cost over an infinite horizon.  The costs include transportation 

costs from supplier to warehouse and warehouse to customers, warehouse operating costs, 

holding costs for warehouse and its subsidiaries, penalty cost for failing in meeting the 

subsidiary demand.  Hence the inventory policy is to be modelled for both the warehouse 

and the subsidiaries.  The paper used a modified policy iteration algorithm with action 

elimination procedures to help reach a near optimal solution. 
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Sales: 

Thomas (1974), in his paper works on a model where the demand is dependent on the 

selling price.  It reasonably assumes that the probability density function of demand 

stochastically reduces with increase in demand.  Decision is made on the selling price and 

production amount in this finite horizon model.  The state is represented by the inventory 

level.  The objective is to minimize discounted cost in finite horizon.    The costs incurred 

involves the revenue costs (negative), holding and backlog costs.  The optimal policy was 

initially conjectured to be a structured type where production decision follows an (s,S) 

policy and the price decision follows with respect to it.  But with some counterexamples it 

was suggested that the initial structured policy may only be assured under certain 

assumptions. 

Federgruen (1999) work is a generalization of Thomas (1974) and provides a complete 

study of the MDP model.  The paper studies separately cases for bi-directional price change 

and price markdowns.  The paper addresses both finite and infinite horizon problems.  The 

system state in the MDP at each period is represented by in-hand inventory.  At every 

period decision is made on the inventory (units to order) and the pricing of the goods.  The 

objective is to maximize the profits.  The paper addresses optimal policies for several 

objectives – finite horizon discounted expected profit, infinite horizon discounted expected 

profit, and average expected profit.  The costs involved are inventory holding costs, 

backordering costs, unit ordering costs and sales revenues.  The paper proves the existence 

of structured policy through submodularity and convexity of its reward function and hence 

designs a modified value iteration technique to reach faster optimal decision policy. 
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3.3 MDP models in Operational level planning  

 

Procurement: 

In Kingsman (1969), the retailer is to determine a purchasing policy when the commodity 

costs are stochastic.  The paper takes the case where the demand for the coming periods is 

perfectly forecasted but the commodity prices changes.  The decision maker is to decide 

on the optimal order quantity.  The objective is to minimize the expected cost of procuring 

a commodity over a finite horizon.   Cost components are purchasing and inventory holding 

costs.  The system state is explained by 2 variables - the inventory and the current price.  

The new system state depend on the decision made and the last state.  The action is to 

decide the number of goods to purchase.  The optimal decision policy are price breaks that 

decide how much period demands should the inventory purchase be done for.   

Kalymon (1971) worked on a similar problem as Kingsman (1969)  structure but the 

demand was uncertain and the commodity price varied following Markovian property.  The 

states are described by current inventory and present price.  The actions consist of two parts 

- (i) Is there any purchasing done in the epoch (ii) If yes, how much quantity will be 

ordered.  The objective is to minimise the expected discounted cost. Cost components are 

purchasing cost, holding cost and shortage costs.  Both finite and infinite planning horizon 

models studied.  Structural properties are realized and exploited to reduce the 

computational effort in determining optimum decision policy.  

Golabi (1985) problem was similar to Kingsman (1969), deals with deterministic demand 

and no shortages/ back ordering allowed.  The differences being he considered period 

dependent cost components, addressed both finite and infinite horizon problems and also 
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investigates the structural properties in the optimal decision policies.  The ordering cost 

probability distribution may have different parameters for different time periods.  States 

are represented as stocks in hand and the realized order price.  The decision maker is to 

decide how many units to order each period.  The objective is to minimizing average 

expected costs.  Costs include ordering and inventory costs.  The optimal decision policy 

is represented in terms of price breaks similar to Kingsman (1969). 

Snyder (1975), worked on a continuous time review stock model to find optimal order 

quantities for a supplier with fixed lead times.  The supplier makes order decisions each 

time it realizes a demand.  The demand quantities are independent and identically 

distributed probability density function.  The demand realization times are independent of 

the demand quantity and also follows an independent and identically distributed probability 

density function.  The continuous time problem was reduced to a discrete stage MDP 

model.   The state is defined by the system inventory.  The decision is the amount of units 

to order at every inventory review point.  The objective is to minimize expected cost over 

a finite horizon.  Cost components are fixed ordering cost, variable order cost, inventory 

costs and backlog costs.  The optimal policy was conjectured depending on the fixed 

ordering cost.  If the fixed ordering order cost is 0, the optimum policy will tend to maintain 

an ideal system inventory; else it will follow an (s,S) ordering policy. 

Puranam and Katehakis (2014) works on a problem where the firm builds up inventory by 

participating in auctions in order to fulfil its market demands.  There are two phases in each 

cycle, in the first cycle bidding takes place in fixed number of auctions.  The number of 

bidders in each bid is uncertain but is known right before the auction.   In each bid, every 

person seals their bid amount in a sealed document and the person who makes the highest 
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bid wins and his inventory increases by one unit.  After all the bids take place phase 1 is 

complete, in phase two the demands are realized and it follows an independent identical 

distribution every period.  The objective is to maximize the expected present value of profit 

for an infinite planning horizon through an optimal strategy. The models incorporates 

penalty for demands not fulfilled.  The sales price is fixed and if any units are not sold they 

are stored in inventory incurring a holding cost.  States are represented as a triplet – number 

of remaining auctions, number of bidders and current inventory level. In phase 2, the first 

two components of the state will be 0.  In phase 1 the action is the bid amount, while in 

phase 2 there is no action.  The paper derives the structural properties of the decision policy 

under certain assumptions. 

Feng et al. (2014) works on a multi-product system with correlated demand and joint-

replenishment costs for products.  Products are divided into groups depending on their 

characteristics and each group experiences Poisson arrivals of demand.  The number of 

units of each product in a particular demand has a joint density distribution.  The problem 

has been formulated as an infinite horizon MDP to compute optimal policies.  The structure 

of the optimum policy was analyzed through numerous numerical examples to assist 

developing an algorithm to reach a near-optimal decision policy. 

Ahiska et al. (2013) works on a problem where we have one retailer who has two sources 

for its goods.  One of which is a reliable source and the other is an unreliable one.  The 

unreliable source may not meet the order but it has a lesser unit cost for the goods.  If order 

has been made and not fulfilled the retailer incurs the loss of fixed ordering cost.  The status 

of the unreliable source follows Markovian property.  The decision maker has to decide 

how many goods to order from each source to meet its stochastic demand.  The objective 
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is to minimise the expected cost per period over an infinite horizon.  The cost components 

includes fixed ordering costs, unit purchasing costs, inventory costs, backordering costs 

and lost sales costs.  The problem has been modelled as an MDP with state defined as two 

random variables, the inventory of the retailer and the status of the unreliable source.  The 

paper studies the structure of the optimum policies through numerical examples. 

Transportation, shipments, freight: 

Kleywegt et al. (2002) uses MDP to address a problem where daily inventory routing 

decision is to be made by the supplier by taking into consideration the inventory levels at 

its customers, customer stochastic demands and supplier transportation constraints.  The 

supplier decides on the quantity of goods to be transported to each customer.  The 

constraints are the number of vehicles available and their capacity, the inventory limits at 

the customers, time constraints (as delivery to different customers will take different 

times).  The paper considers only direct deliveries that is transportation starts from the 

supplier to a single customer and then back.  This assumption reduces the dimension of the 

action space to help solve the model.  Nonetheless, the model is applicable for several 

practical scenarios.  The hard problem was subdivided into sub-problems to get near 

optimal policies.  The objective being to maximize the expected discounted value (revenue 

minus costs) over an infinite horizon.  Cost components are sales revenues at each 

customer, inventory holding costs, transportation costs different for each customer and also 

depends on number of dispatches, and shortage cost.  A general MDP model with states as 

the customer inventories and the actions as the transport quantities will be difficult to solve 

and will require huge computational time due to the large state and action space.  The paper 

suggests different algorithms to find near optimal policies and help in value approximations 
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of the optimal values.  In the proposed algorithms, the problem is first divided into sub-

problems for each customer assigning different transportation constraints and then the 

value function is approximated by solving the system as a knapsack problem that assigns 

transportation resources to each customer.  MDP state in submodels is explained by 

customer inventories and number of visits available to each customer.  In a Later paper 

Kleywegt et al. (2004) removed this assumption of direct deliveries making the problem 

NP hard. 

Loading/ unloading 

Rida (2014) proposed an MDP model to optimize loading/ unloading operations of trucks 

at different locations.  In the problem defined, the containers on ships are unloaded using 

quay crane into trucks which then travel to the yard for offloading using yard crane.  The 

crane service times are taken as exponential and the truck arrival rate at the crane queues 

are taken as Poisson distribution.  The actions are taken with respect to addition/ reduction 

of shuttle trucks and allocation/ liberation of yard crane.  Costs are incurred when trucks 

wait in the queue and when the cranes wait on the trucks.  The objective is to minimize the 

expected discounted cost over an infinite horizon.  The system state in the MDP 

formulation is represented by the shuttle trucks in each crane queues.  The paper does not 

study for any structure in the optimum policy.  The optimum policy is determined by 

application of either value  iteration/ policy iteration techniques. 

Kang, et al. (2008) also works optimizing loading acivities at the ports.   Similar to Rida 

(2014), containers are offloaded at berth onto trucks which are then transported to yard for 

storage.  The operation speed and bottlenecks depend on the number of active quayside 
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cranes at the berth, the number of gantry cranes at the yard and the total number of trucks 

active for the system. The decision is made on the number of cranes at offloading and 

loading ends and on the number of trucks in the system.  The objective is to minimize the 

total cost in unloading and storage of a given number of containers in a horizon subject to 

uncertainty.  Cost function varies from Rida (2014) as it focusses on operation costs.  

Existence of structural properties were not evaluated. 

Higginson and Bookbinder (1995) provides a MDP model to work on shipment 

consolidation, scenarios where decisions has to be made to satisfy demands either 

immediately or to keep accumulating demand till the transportation trucks are more filled 

for dispatch.  The paper considers costs for keeping inventory for delayed shipments and 

costs for dispatching shipments.  The paper does not prove the existence of any structured 

policy but conclude it through several numerical examples. 

Hoffmann (2013) presents an aircraft cargo management problem.  The aircraft has limited 

capacity in volume and weight.  There is a fixed set of orders that can be realized during 

the planning horizon.  Each order has its own volume and weight demands.  Every period 

will see only one order demand being requested.  The probability for each order is given.  

Acceptance of an order will result in reduction in the aircraft’s cargo’s availability in 

volume and weight for the subsequent periods.  Each order has its own per unit margin 

income.  The income is calculated either by an order’s weight or volume requirement 

depending on which gives a better income.  This is made possible by making use of a 

standard shipping weight to volume ratio.  The decision maker is to decide to accept an 

order or reject it.  The system state is defined in each epoch by available weight and 

volume.  Through counterexamples the author proves that certain types of structured 
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decision policy will not exist.  The paper proposes certain heuristic methods to get near-

optimal decision policies. 

Production, manufacturing and rationing 

In White (1965), we have a manufacturing process that is not perfect and the number of 

defectives is stochastic.  The manufacturer gets an order quantity from a customer for a 

fixed number of good/quality products.  The decision maker decides how much to produce 

taking into consideration expected defectives.  If the demand is not met completely by non-

defective products, another batch has to be processed to meet the remaining demand. The 

objective is to minimize the expected cost in meeting the customer’s demand.  Cost 

components are setup costs (fixed) and production cost (variable). System state is 

represented by the number of non-defective units remaining to be sent to the customer. The 

new state depends on the previous state, decision made and the defectives realized in the 

manufacturing process.  MDP model is that of an absorbing state stochastic dynamic 

program.  The optimal production sizes are determined by backward value iteration. 

Huang and Iravani (2007) addresses a scenario with single manufacturer and two retailer 

scenario where goods are produced by manufacturer and kept in their storage.  Each retailer 

demands goods from the manufacturer when their inventory is depleted (reorder point = 

0).  The order size for each retailer may be different but fixed.  No backlogging is allowed 

in the model, if the manufacturer does not have the goods in inventory, it looks into 

alternate sources and facilitates the fulfilment of the retailer order.  This would incur a 

penalty cost and can be different values for each retailers. The objective is to minimize the 

total discounted cost over a finite time horizon.  Cost components are Inventory holding 
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costs, and shortfall costs.  The decision epochs are the demand arrival instances from the 

retailers and the production completion instances of the manufacturer.   The state space are 

represented as the club of three inventories – the manufacturer and the two retailers.  The 

manufacturer is to make decision on how to meet the demands of the retailers and when it 

should stop production or resume.  Hence there are three decisions for the decision maker 

– 1.) keep the manufacturing system idle, 2.) production of goods and 3.) rationing goods 

as required when an order is received from the retailer.  The retailer inventory is available 

for manufacturer to facilitate decision making.  The customers arriving at the retailers 

follow independent Poisson process.  When an order is received from a retailer that has 

relatively low penalty cost it may be optimal to fulfil only a part of it from the 

manufacturers inventory if we expect orders from retailer with a higher penalty cost which 

warrants importance of fulfilling them internally.  Lead time for order fulfillment is taken 

as negligible.  Existence of structured policy for production and rationing was shown based 

on the supermodularity and convexity of the cost function.  Helper et al. (2010)  works on 

a similar model and analyses the effect of different levels of information sharing between 

supplier and its 2 retailers.  Unlike Huang and Iravani (2007) where rationing policy is a 

decision, here a fixed rationing policy is used.  The paper considers a lead time of one time 

period to meet retailer demands and does not study the existence of any structured decision 

policy. 

Benjaafar and Elhafsi (2012) MDP model deals with a supplier serving two different 

customer classes.  One class consist of patient customers in the sense backordering is 

possible with their orders, the other is impatient, that is if the order for them is not 

immediately realized the sale is lost.  In both the classes customers arrive following Poisson 
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process with different rates.  Processing times for goods follow exponential distribution.  

Since decision are made each time a demand is requested and when production is complete, 

the problem is inherently a continuous time MDP.  Uniformization is used to convert 

continuous time MDP to discrete time MDP.  The states are defined by 2 variables – onhand 

inventory and backorder levels.  Decisions to be made on realizing an order are: should 

order requests be processed (fulfilled), backordered (for patient class) or should it be 

rejected.   In addition, decision is to be made if items are to be produced and how should 

they be allocated once ready – kept in inventory or to satisfy a backorder.  Cost components 

in the system are inventory costs, backordering costs, and rejection costs (same for lost 

sales).  The objective is to minimize infinite horizon discounted cost.   The decision policy 

for both production and allocation are completely characterized by threshold regions of the 

state space.  This structured policy is enabled by the submodularity of the cost function.   

The paper proposes 5 heuristic methods that enables availing easier and practical inventory 

policies.  These heuristics were compared with the optimal policies to give insight on their 

effectiveness. 

Lin et al.(2014) gives an MDP formulation for an industry manufacturing different types 

of a given product (in this case-TFT-LCDs) using a set of common and specific resources.  

Each product type has its own Markovian demand.  The industry has multiple 

manufacturing locations that can together work to meet the demand.  Each manufacturing 

location may have its own type of raw materials (LCD sheet size).   At each location there 

are tools dedicated for the production of each product.  The tools for the same product may 

be different at different locations.  Thus because of different sheet sizes and tool for the 

same product, the sheets are converted into goods at different consumption rates at each 
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location.  The profit in meeting a particular product demand can hence be different for 

different locations.     The maximum production amount of a particular product in a period 

at a particular location is dependent on the capacity of the product tool as well as how the 

sheets (raw material) available at the location are allocated for different product types.  The 

objective is to maximize overall profit in a finite horizon.  The MDP state is defined by the 

quantity of each product tool available at different locations and demand state for each 

product.  The action taken at each epoch are the purchasing of product tools at locations 

and tool allocation at every location to meet experienced demand.  The optimal policy is 

determined by backward value iteration.  Existence of any structured policy was not 

analyzed in the paper. 

Sinha and Krishnamurthy () optimize an assemble to order production system furnishing 

multiple products.  Each product having its subcomponents that can be processed either in-

house or externally.  The in-house facility has its own service rates and production costs 

for the different subcomponents it can manufacture.  The external facility’s service rates 

and costs for the subcomponents processing are provided for decision making.  

Subcomponents are stored in their buffer locations and when an order is received they are 

assembled instantaneously to give the product.  The objective is to minimize the cost per 

unit time over an infinite horizon.  Cost incurred for inventory, backlogging, and 

production.  The actions are use of the in-house and external production facilities – the 

capacity in use and its configuration to which subcomponents they process.  Solving the 

general model makes the computations tedious and impractical.  For simplicity and ease in 

finding solution, the system was divided into subsystem and optimization done over each 
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subsystem.  Through numerical examples insights were given on the structural properties 

of the model. 

Pang et al. (2014) considers a firm following make-to-stock production system for single 

product satisfying multiple demand classes.  Demands from different classes follow 

Poisson distribution.  On demand arrival the decision is made to accept or reject the demand 

request.  A lost sales cost is incurred either when a demand request is rejected or when 

there is no inventory to meet the demand.  If a demand is entertained the customer pays a 

price that is dependent on the demand class.  The size of the production batch is fixed.  The 

processing time for each batch is uncertain and follows a density function such that its 

failure rate increases over time.  The objective is to maximize the expected discounted 

profit over an infinite horizon.  The model incorporates fixed and variable costs for 

production, lost sales cost, inventory holding costs and revenues from sales.  The actions 

made at each time epoch are rationing of demand requests and production order decision 

in case of no outstanding orders.  The structure of the optimal policy for production and 

rationing was characterized.  For production, an optimal policy follows a reorder point, and 

for rationing policy, it depends on time dependent critical inventory levels for each demand 

class. 

Tiemessen et al. (2014) works on an industry with one production line that processes 

multiple products.  Goods produced are stocked and used when demands are realized.  

Demand follows Poisson distribution and the lead time at production line is exponentially 

distributed at different rates for different products.  Backlogging is allowed when stock-

out happens.  The model does not attribute for switching costs and switching times.  The 

objective is to minimize average inventory holding and backorder costs in an infinite 
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horizon.  The decision maker decides the product being processed in the production line.  

The system state in the MDP model is the inventory of each product and the product in 

process at the production line.  Decision epochs are at every instant a demand is 

experienced or when a production is complete.  To facilitate determination of optimal 

policies the continuous time MDP is transformed to discrete time MDP through 

uniformization.  The optimal structure was attained by relative value iteration and studied 

empirically.  Deviation in the objective function when using base stock policies were 

empirically studied.  Structural properties were analyzed using numerical examples and 

heuristic methods were proposed for determining near-optimal decision policies. 

Nakashima et al. (2004) accounts for a single product production facility that supports 

remanufacturing, that is goods are also returned back by consumers for reprocessing, this 

may be repair of defective items, replacement of parts or simply servicing.  And the amount 

of goods coming for remanufacturing is taken as a fixed percentage of goods in use by 

customers which is referred to as virtual memory.  The goods coming for remanufacturing 

are automatically processed and added to inventory.  The decision maker is to decide the 

number of goods to manufacture (new) at each epoch.  The model allows backordering and 

objective is to minimize expected cost per period.  Structural properties of optimal decision 

policy are not analyzed. 

Sebnem Ahiska and King (2010) addresses a single product recoverable manufacturing 

system.  The demand and goods returned are stochastic.  There may be capacity constraints 

at remanufacturing or manufacturing inventory locations.  The lead times and cost 

components for manufacturing and remanufacturing were varied and their effects in 

solution were studied.  The objective being to reduce effective cost per unit time in a long 
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run.  Cost components include setup, unit production and holding costs each for 

manufacturing and remanufacturing process, Backordering costs, disposal costs for 

recoverable units, and cost due to lost sales.  The decision at the epochs are to decide how 

many goods should be produced new and how many should be reworked.  The paper 

compares near-optimal structured decision policies that are easy to implement with the 

optimum policies to give insights.  In Ahiska and King (2010), the trends in the demand 

and return rates during a product’s life cycle is addressed to facilitate manufacturing/ 

remanufacturing decisions.   

Vercraene and Gayon  (2013) model represents a production system requiring a sequence 

of operations and where returns are join in any stage of the production line.  Each 

production stage has its own lead time that is exponentially distributed.  After each stage 

the in-manufacture item is stored at a buffer till required by the next stage.  Customer 

demands are realized following a Poisson process.  Returned goods can join at any stage 

depending on the reason of its return.  Thus returns are modelled as Poisson process with 

different parameter at each stage.  The decision policy defines when to produce at each 

stage in this infinite horizon model.  The paper analyzes the structure of the optimum 

policy. 

Vila-Parrish et al. (2012) deals with the production of perishable goods.  At the start of the 

planning horizon raw materials are purchased and kept in inventory.  The raw materials 

have relatively long shelf life and their purchase is done only at the end of its shelf life 

which is taken as one cycle.  Decisions made on processing of perishable goods from the 

raw materials.  In case the demand in the period is greater than the goods produced, it may 

be addressed in two scenarios.  One way being expediting the goods from an external 
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source, and the second way:  immediate processing of goods in-house provided the raw 

materials are available, if not they are acquired from external source.  Each scenario is 

taken as a different problem.  The quantity of raw materials to be purchased at the 

beginning of the planning horizon and the number of goods (having a shelf life of only one 

period) to be processed at each period are decision variables in this problem.  The objective 

is to reduce the expected cost per cycle in this finite horizon problem.  Structural properties 

of the optimal decision policy were proved.  In an earlier work Vila-Parrish et al. (2008), 

the problem was such that different patient classes had different demand distributions for 

a medicine.  Patients get admitted to the hospital following Poisson distribution with 

different rates at different patient classes.  In time the patients may transition between 

different classes or stay in the same class or may exit the system (absorbing node).  This is 

represented as a markov chain.  At the start of each period decision is made as to the number 

of medicines to process and quantity of raw materials to be placed in order.  In case of 

stockout of finished goods, there is a penalty per unit.  If the raw material is also unavailable 

the penalty is larger.  The objective is to minimize the cost over the finite planning horizon.  

The decision policies were suggested by simulation. 

Haijema et al. (2005) considers a problem where there are two types of demand for a 

perishable product (blood platelets in a blood bank).  One is a general demand independent 

of product age (as long as it is within shelf life), the second demand is for fresh inventory.  

First in- first out policy (FIFO) is used for the first demand while the second demand is 

met by last in first out (LIFO) policy.  Both the demands are taken as Poisson distributions 

with different rates.  The action taken is the production decision at start of every period.  

The objective is to minimize the expected cost per week in an infinite horizon.  The system 
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state in MDP formulation is the inventory levels by age.   The complexity is very large to 

find optimal policies by value iteration.  Near optimal policies are obtained through 

simulation.  Two production policies were proposed that are near optimal and easy to 

implement.  Their value functions were compared to give insights on the same. 

Iravani, et al. (2012) considers a firm produces two levels of a single product (can be high 

quality and low quality).  The production time for each follows exponential distribution.  

The demands for each product type follows Poisson distribution.  The firm produces only 

one item at a time.  The demand for low quality item may be substituted by high quality 

item.  The decision maker decides on demand substitution and production decisions.  The 

objective is to minimize the firm’s total discounted cost over an infinite horizon.  The paper 

studies the structural properties of the optimum decision policy. 

Other Perishable inventory operations 

Parlar (1985) considers the case where a vendor deals with perishable goods that has age 

based selling price.  Goods are taken to expire after two periods.  The selling costs for new 

items and one period old items are different and their demands to customers are also 

different.  The Problem takes into account the consideration that some customers (given by 

a fixed probability) will be satisfied with the alternative (older or newer product) if their 

preferred goods (new/ one period old) are not available.  Original demand for each age 

class is random and represented by a probability distribution function.  Each period 

decision is to be made of the number of new items to process/ order.  The objective is to 

maximize the expected profit per unit time for an infinite time horizon.   Cost components 
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are age based sales cost and order cost per unit.   The paper using linear programming 

approach to determine optimum decision policy for the modelled MDP. 

Haijema (2014) considered inventory policies for perishable goods with fixed shelf lives 

which required to take into account the age of the product and not just the quantity available 

when making orders.  Demand is taken to be uncertain.  Orders are made at the start of the 

period and received half-way into the period.  Disposal of expired items are done at the end 

of each period.  Each period is divided into 2 epochs.  The start of the first epoch is when 

the order is placed for goods.  The second epoch starts with the receipt of these goods and 

at its end, decision is made on the number of goods to dispose.  Both amount of goods to 

order and dispose are decision variables.  The objective function in this discrete time 

infinite horizon MDP is to minimize the expected cost per unit time.  The cost component 

contains inventory costs, shortage costs, discount on aged goods and disposal costs.  The 

state space has 3 parts: day of the week, period epoch and an age based inventory vector 

that helps track of the goods as per their remaining shelf lives.  Depending on the type of 

organization/ industry the usage policy may be first in first out (FIFO) or Last in first out 

(LIFO).  The optimal decisions were found by value iteration method as described in 

Puterman (2009).  Results for 5 different policy types were tabulated and compared. 

Sales planning: 

Wu et al. (2011)  considers a firm selling different levels of a single product (differentiated 

in quality).  Each quality level goods cater to different customer group and have different 

uncertain demands.  Downward demand substitution is allowed.  The decision maker 
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decides how a demand request is fulfilled.  The objective is to maximize expected profit in 

a finite horizon.  The structural properties of the optimum decision policy was studied.   

Tiemessen and Van Houtum (2013) optimizes the scheduling of a repair center catering to 

a single product with different parts.  Each part is kept in stock for replacement in the event 

a failure occurs.  Failure of these parts follow a Poisson distribution each having their 

respective error rate.  When a failure occurs the part is replaced and the failed part is placed 

in queue for repair, repair time for each part is exponentially distributed.  If there is no 

stock of the part for replacement, backorder takes place and the system is in downtime till 

the part is furnished. The decision maker decides on the part being worked by the repair 

center.  The objective is to attain a repair policy such that the annual average downtime is 

minimized.  The paper analyze certain heuristic policies. 

In Zhang and Kallesen (2008) we have two competitors marketing the same product.  The 

problem is modelled in the perspective of one of the competitor.  Customer choose the 

competitor with the lowest price every period.  The probability of a customer arriving in a 

period depends on the minimum price offered in the period.  The decision maker decides 

the selling price for a period.  The objective is to maximize the revenue in a finite time 

horizon.  System state represented by the inventory of the decision maker’s company, and 

the price offered its competitor.  Structural properties in decision policy were not analyzed. 

Van Wijk et al. (2013) addresses a setup where we have several warehouses and the 

customer demands at different regions are facilitated at the appropriate warehouse.  Each 

warehouse inventory are replenished by i.i.d (independent and identically distributed) 

exponential lead times.  Of the set of warehouses, we have one quick response warehouse 
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that in addition to facilitating customer demands has the ability to supply goods to other 

warehouses when their inventory has depleted to help furnish their demands.  Customer 

demands at the local warehouses and quick response warehouse follow a poison process.  

The warehouses follow a base stock policy, the local warehouses and the quick response 

warehouse inventory experience one for one replenishment from a central supplier (or 

warehouse) with infinite inventory.  When a local warehouse runs out, its demand may be 

fulfilled by a quick response warehouse (QRW) for a penalty cost if the QRW has 

inventory.  In case the QRW does not have inventory or does not choose to fulfill a 

particular demand request from a local warehouse, the demand is fulfilled externally by 

emergency procedure (EP) at a higher penalty cost.  The objective is to minimize the long 

run cost per unit time.  The cost components are inventory costs at local warehouses and 

QRW, Quick response costs, and Emergency procedure costs.  Taking into consideration 

expected customer demands to itself and the demand priorities for other warehouses, the 

quick response warehouse is to decide on whether to satisfy a request or not.  The lead 

times for replenishment are exponentially distributed.  Existence of structural properties 

were proved by showing the supermodularity and convexity of the value function. 

 

  



35 
 

4 CHAPTER 4 

A NOTE ON SERRATO et al. (2007), AND A 

CORRECTED PROOF  

 

4.1 Introduction  

 

The purpose of this chapter is to correct the work of Serrato et al. (2007) presented in the 

paper titled “A Markov decision model to evaluate outsourcing in reverse logistics” 

published in the International journal of Production Research.  In this paper, Serrato et al. 

(2007) presented their MDP formulation and presented a result for the existence of 

structural properties which is not correct and deserved correction.  Section 4.3, states the 

results of Serrato et al. (2007) and shows it to be incorrect with a counter example.   In 

section 4.2, the nomenclature, model assumptions, and the MDP formulation are 

presented as in Serrato et al. (2007).  In section 4.4, a corrected formulation is proposed, 

which is in line with the reward definition stated in Serrato et al. (2007).  New sufficient 

conditions to guarantee the existence of a threshold optimal policy for the two-period 

problem are presented in section 4.5. In section 4.6, we give the conclusion for this 

chapter. 
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4.2 Overview of Serrato et al. (2007) 

 

This section provides a summary of the notations, assumptions, and model definitions as 

in Serrato et al. (2007) 

 

4.2.1 Nomenclature  

The notations in Serrato et al. (2007) are as follows: 

��: Reverse Logistics (RL) capacity held by the firm at the beginning of period � 

L: Length of the product life cycle: Duration of sales for a product. 

��: Number of units sold and not returned at the end of period �, ��  =  ��  −  �� 

�: The probability that an unreturned sold item is returned in the next period  

��: Amount of units sold by the firm during period �. 

��: Cumulative sales experienced by the firm upto period �,  

�� =  � ��

�

���

 

�: Length of the planning horizon, � = L+W 

�: Decision epoch, �=1,…,  � − 1, where the decision epoch � represents the end of 

period � 

��: Cumulative number of units returned upto period �, 
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�� =  � ��

�

���

 

W: Duration of time the returns for the product are managed after the sales period. 

��: Number of units returned in period �. 

��: Binomial Random variable with parameters � and �: The number of successes in � 

Bernoulli trials with probability of success = �. 

 

4.2.2 Problem Definition and Model Assumptions  

Serrato et al. (2007) considered the problem of making the decision of outsourcing (reverse 

Logistics) RL activities through a third party by studying the system parameters, namely, 

the existing system capacity and total items returned.  When a company makes this strategic 

decision, the contract with the third party lasts till the end of the planning horizon (�).  

Serrato et al. (2007) proposed an MDP formulation for this problem with the objective of 

maximizing the profits. 

The assumptions and conditions in Serrato et al. (2007) are as follows: 

1. The sales in each period is known. 

2. Every item that is sold and not yet returned has a fixed probability of return � in 

the following period. 

3. The capacity of the firm’s reverse logistics (RL) is taken as continuous. 

4. If the returns exceeds the RL capacity, a penalty is incurred to facilitate its 

disposal or emergency service.  No returns are carried forward to the next period. 
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5. If it is decided that the RL operations are continued internally, the capacity will be 

made equal to the expected returns in the following period. 

6. Once RL is outsourced, the firm’s capacity is salvaged and the decision is held for 

the remaining planning horizon(�). 

7. All product returns after the planning horizon will incur a penalty, as the internal 

RL capacity is salvaged at the end of time �, and any third party RL contract, if 

undertaken, expires at the end of �. 

 

4.2.3 Model Definition and formulation: 

An MDP model consists of system states, actions, transition probabilities and reward/ cost 

functions as presented in Puterman (2009). Next we define these as in Serrato et al. (2007). 

States: At any time epoch, �, of the planning horizon �, the system state is described by 

two state variables - the firm’s RL capacity and the total number of goods returned until 

time � (��, ��).  The states are taken as partially ordered with respect to �� in the MDP 

model.  At the beginning (� = 0), the system state is assumed to be (��, 0). 

Actions: The decision maker has two possible actions at the end of each time epoch.  

Action is described by ‘�’. 

��(�, �): Is the action at the end of time �, when the system is in state(��, ��). 

�=0: RL continues to be done internally.  The firm’s capacity is changed to the expected 

number of returns in the next period i.e. ���� = E[��] = ��� . 
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�=1: RL is outsourced till the end of the study horizon.  The firm’s capacity is set to 0 and 

remains unchanged for the rest of the planning horizon, ���� = ���� = ⋯ �� = 0. 

Transition Probabilities: 

Now the state transition probabilities are defined, i.e. the probability of a future system 

state (in the next decision epoch) given the current system state and the action taken.  

Considering the fixed return probability � (assumption 2), the transition probabilities 

follow a binomial distribution.  Let �����
= �� be the probability of getting � successes 

in �� Bernoulli trials, then 

 

����[(���, �� + �)|(��, ��), 0]

=  �
�����

= �� = �
��

� � ��(1 − �)���� ��� � = 0,1, .., ��

0 ��ℎ������
 

(4.1) 

Given state (��, ��) and action 0 (continue internal RL), the probability of having � 

returns in the next period; hence ���� = �� + �, is given by equation 4.1, where �� 

represents the items that have been sold but not yet returned by the customers 

(�� = �� − ��). This can be computed, as the sales in each period is perfectly forecasted 

(assumption 1).  As per assumption 5, we see that the new capacity is equal to the 

expected number of returns in the next epoch (���� = ���).  

����[(0, �� + �)|(��, ��), 1]

= �
�����

= �� = �
��

� � ��(1 − �)���� ��� � = 0,1, .., ��

0 ��ℎ������
 

(4.2) 

In case of opting for external RL, the system capacity is set to 0 as per assumption 6.  

Rewards and model dynamics: 
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Cost components: 

�� : Cost of increasing the firm’s capacity by one unit – unit investment cost: ($/ capacity 

unit) 

�� : Cost of decreasing the firm’s capacity by one unit – unit disinvestment cost: ($/ 

capacity unit) 

�� : Fixed internal capacity maintenance cost.  ($/ capacity unit/ period) 

�� : Labour cost. Processing cost per item returned under internal RL ($/ unit) 

�� : Shortage cost. Penalty or emergency cost incurred per unit of the demand exceeding 

system capacity under internal RL.  Penalty cost is also incurred by the system for the 

units returned after the planning horizon. ($/ unit) 

�� : Capacity salvage value.  Revenue, in salvaging unit capacity, of the system when 

shifting to third party RL or when salvaging capacity at the end of the planning horizon 

($/ unit) 

�� : Outsourcing cost.  Processing cost per item returned under external RL ($/ unit) 

At the end of each period, the decision maker decides, either, to continue RL internally, 

or opt for third party RL for the remaining planning horizon (�).  The expected reward in 

the subsequent period is dependent on the system state and the decision made. 

The reward function is represented as ����[(��, ��), �].   

����[(��, ��), �] is the expected reward in period � +1, after choosing an action � at the 

end of period �, when the system is in state (��, ��). 
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The reward function for decision �=0, i.e continuing reverse logistics internally, is given 

as 

����[(��, ��), 0] 

= − ��(��� − ��)�− ��(�� −  ���)�−  �����

− ���[���(����, ���)]−  ���[(���� −  ���)�] 

Here the first term, ��, accounts for costs incurred for an increase in capacity 

(investment); the second term, ��, for any decrease in capacity (disinvestment); the third 

term, ��, for maintenance of the system capacity; the fourth term; ��, the cost in 

processing the RL in the period, � +1, and the fifth term, ��,  the penalty in case the 

number of returns exceeds the system’s capacity in the period, � +1, as returns are not 

carried forward to the next period (assumption 4).  The equation can be rewritten by 

substituting ���
 for ����  to give: 

 

����[(��, ��), 0] 

= − ��(��� − ��)�− ��(�� −  ���)�−  �����

− �����������
, �����−  ��� �����

−  ����
�

� 

(4.3) 

The expected reward function for decision �=1, which assumes outsourcing of RL 

operations until the end of the planning horizon, is given in Serrato et al. (2007) as: 

 ����[(��, ��), 1]=  ���� −  �� ��� −  � ��(1 − (1 − �)���)

�

�����

� (4.4) 
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In the above equation the first term, ��, accounts for salvaging the system’s capacity.  The 

second term, ��, accounts for the expected outsourcing cost for the entire remaining 

planning horizon. 

Terminal reward is taken as 

 ����[(��, ��), �]=  ��(��, ��) =  ���� −  ���� (4.5) 

The terminal reward accounts for the revenue in salvaging any remaining capacity, ��, 

and the penalty costs in processing the remaining items after the study horizon ��. 

Given an initial system state (k0, 0), the decision maker must determine the decision rule 

at the end of each period that will maximize the total expected reward.  The value 

function that gives the expected reward from the end of period � till the end of the study 

horizon, when following optimum decision policy, is given as ��(��, ��): 

 

��(��, ��)

= ��� �
����[(��, ��), 0]+  � �����(���, �� + �)| (��, ��), 0�����(���, �� + �)

��

���

����[(��, ��), 1]

 
(4.6) 

This function can be rewritten as: 

 ��(��, ��) =  ��� �
����[(��, ��), 0]+  � �����

= ������(���, �� + �)

��

���

����[(��, ��), 1]

 (4.7) 

Let the expected reward when opting for internal RL at period � be ���(��, ��), 0� and 

the expected reward when opting for external RL at period � be ���(��, ��), 1�. Then,  
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���(��, ��), 0� = ����[(��, ��), 0]+  � �����
= ������(���, �� + �)

��

���

 

���(��, ��), 1� = ����[(��, ��), 1] 

The optimal policies can be determined using the backward-value iteration policy 

algorithm (Puterman 2009). 

 

4.3  A counter example to Serrato et al. (2007) 

 

In this section we list the sufficient conditions stated in Serrato et al. (2007) to guarantee 

a structured optimal policy.  Then, we provide a counter example when the conditions 

hold true, however, the resulting optimal decision policy is not structured. 

 

4.3.1 Sufficient conditions in the paper  

Serrato et al. (2007) states that, under the following cost assumptions and bounds on the 

item’s return probability, there exists a structured optimal policy. 

The assumptions: 

�� ≥ |��|  �� ≥ ��  �� < ��  �� < ��  ��≥ �� + �� + �� 

The bounds on the return probability are given as: 

� ≥  
�� −  ��

�� −  �� −  �� −  ��
 

� ≤  
�� −  ��

 �� +  ��
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Under these conditions, the optimal decision policy is stated to be a monotone, non-

decreasing in the system states partially ordered, over the cumulative units returned, w.  

That is, for a given period, if the optimal action for state (�1, �1) is to outsource RL 

activities to a third party (�=1), then for all states (�2, �2), such that �2 = �1 and �2 ≥

�1, the optimal policy will be to outsource RL activities, �=1.  Next, we provide a two-

period, � = 2, counter example to show that these conditions are insufficient to guarantee 

a structured optimal policy as defined earlier. 

 

4.3.2 Counter-example  

Consider the following two-period problem, with initial conditions, cost parameters, and 

a return probability given as: 

� = 2; ��=20; ��=18; ��=20; ��=30; ��=150; ��=0; ��=100; 

10 items already sold before the start of the planning horizon. 

Hence, S=��=�� = �� = ��=10; �� = 0, �� = 0 

�=0.65; ��=2; 

We see that all the conditions stated in section 4.2.1 are satisfied: 

For � = 2; equations 4.5 and 4.7 become: 

��(��, ��) = ���� − ��(�� − ��)  
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��(��, ��) =  ���

⎩
⎨

⎧���(��, ��), 0� = ��[(��, ��), 0]+  � �(�� = �)��(���, �� + �)

�

���

���(��, ��), 1� = ��[(��, ��), 1]

 

As in the original paper, the solution for the problem was obtained using the value iteration 

algorithm: 

Table 1: Counter-example result 

 

The solution gives the following unstructured optimal decision rule ��(�, �): 

For all w≠7, optimum action is: a=1 (3rd party RL) 

For ‘w’=7, optimum action is: a=0 (internal RL)  

Hence, we arrive at a three-region policy, contrary to the, at most, two-region policy 

implied by (Serrato et al. (Serrato, Ryan, and Gaytán 2007)). 

 

4.3.3 Explanation of this contradiction  

The conditions in Theorem 4.7.4 in Puterman (2009) followed by Serrato et al. (2007) are 

sufficient to ascertain superadditivity of optimal value functions over a fully ordered state 

space.  Since the stated definition in Serrato et al. (2007) is a partially ordered set, in terms 

of cumulative returned items, ��, the proof need not stay valid, especially when the partial 

order doesn’t survive to the next period.  Consider the optimality equation 4.7: 
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��(��, ��) =  ��� �
����[(��, ��), 0]+  � �����

= ������(���, �� + �)

��

���

����[(��, ��), 1]

 

Since a change in � also influences the system’s capacity in the next period, 

����(���, �� + �), under an internal RL action, the new system state (���, �� + �  ) does 

not belong to the defined partial order.  This is why Puterman’s Theorem 4.7.4 is not 

sufficient for Serrato’s problem. 

 

4.4 Modified Formulation  

 

In this section we correct a formula in Serrato et al. (2007). 

When the decision is made to outsource RL activities, the paper by Serrato et al. (2007) 

follows that the decision is upheld till the end of the planning horizon (equation 4.4). The 

correct formulation of the expected reward function when opting for external RL should 

be: 

 

����[(��, ��), 1]

=  ����

−  �� ���(1 − (1 − �)���) +  � ��(1 − (1 − �)���)

�

�����

�

−  �� ���(1 − �)��� +  � ��(1 − �)���

�

�����

� 

 

(4.8) 
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Where the, c6, term accounts for revenue in salvaging capacity, the term, c7, accounts for 

the RL costs for the expected returns till the end of the study horizon and, c5, applies to 

the cost of managing the expected returns after the study horizon (assumption 7). 

 

4.5 Structured optimal policy for a two period model  

In this section, we provide a new set of sufficient conditions that guarantee the existence 

of an optimal monotone policy for Serrato’s model.  The optimal policy is characterized 

over the state space, partially ordered over the cumulative units returned, as discussed in 

section 2. 

The nomenclature, reward function and model dynamics are as explained in the previous 

sections. 

4.5.1 Model Formulation  

For the final period, T=2, the value function described in equation 4.5 will be: 

 ��(�, �) = ��� − ��� (4.9) 

For the first period (T=1), the optimal value function from equation 4.7 is given as: 

 

��(�, �)

=  ���

⎩
⎨

⎧���(�, �), 0� = ��[(�, �), 0]+  � �(�� = �)��(��, � + �)

�

���

���(�, �), 1� = ��[(�, �), 1]

 
(4.10) 
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Where ��[(�, �), 0] is the expected reward in � =2, when doing RL internally from 

equation 4.3  

 
��[(�, �), 0] = − ��(�� − �)�− ��(� −  ��)�−  ����

− ���[min(��, ��)] −  ���[(�� −  ��)�] 
(4.11) 

��  is a random variable of the number of successes in � Bernoulli trials with the 

probability of success being �. 

��[(�, �), 1] is the expected reward when doing RL externally, from equation 4.8 

 ��[(�, �), 1]=  ��� −  ���� −  ��(�(1 − �) +  ��) (4.12) 

∑ �(�� = �)��(��, � + �)�
���  in equation 4.10 can be simplified using equation 4.9, as 

follows: 

� �(�� = �)��(��, � + �)

�

���

= � �(�� = �)����� − ��(�� − � − �)�

�

���

 

 � �(�� = �)��(��, � + �)

�

���

= ���� −  ��(�� − � − ��) (4.13) 

Next, we provide new set of sufficient conditions that guarantee a structured policy for 

this two-period problem. 

4.5.2 Structured policy  

In this section we state sufficient conditions on the problem parameters, that will guarantee 

the existence of a structured optimal policy. 
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We put forward the following Lemmas, not presented in Serrato et al. (2007), for the 

purpose of proving the main result as presented in Proposition 1. 

Lemma 1:  

If g is a superadditive function on X × Y, and for each x ∈ X, max
�∈�

�(�, �) exists. Then: 

�(�) = ��� ��� ∈ arg max
�∈�

�(�, �)� 

is monotone nondecreasing in �. 

This lemma is stated and proved in Puterman (2009)(Lemma 4.7.1). 

Lemma 2: 

If �(�� = �) is the Binomial probability of getting � successes in � Bernoulli trials, when 

the probability of a success is �, then: 

�(�� = �) ≤ max (�, 1 − �) 

Proof: Given in the appendix of this chapter – Section 4.6 

Lemma 3: 

If �(�� > �) is the probability of getting more than � successes in � Bernoulli trials, when 

the probability of a success in a Bernoulli trial is �, then: 

�(���� > �) =  �(�� > �) + ��(�� = �) 

Proof: Given in the appendix of this chapter – Section 4.6 
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Lemma 4: 

If �(�� > �) is the probability of getting more than � successes in � Bernoulli trials, when 

the probability of a success in a Bernoulli trial is  �, then: 

�(���� > �) =  �(�� > � − 1) − (1 − �)�(�� = �) 

Proof: Given in the appendix of this chapter – Section 4.6 

Other Lemmas:  

For the Binomial distribution where: 

�: Number of Bernoulli trials 

��: Random variable representing the number of successes in ‘n’ Bernoulli trials 

�: The probability of success in a Bernoulli trial 

We have the following relation: 

Lemma 5: �[���(��, ��)]− �[���(����, (� + 1)�)] ≥ − � ∀ � > 0 

Lemma 6: �[���(��, ��)]− �[���(����, (� + 1)�)]=  − �� when � = 0 

Lemma 7: �[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥  − �(1 − �).max (�, 1 − �) 

∀ � > 0 

Lemma 8: �[(�� −  ��)�]− �[(���� −  (� + 1)�)�]=  − �(1 − �) for � = 0 

Proofs: Given in the appendix of this chapter – Section 4.6 
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Proposition 1: 

If: 

(1 − �) max (�, 1 − �) ≤
�� +  �� − �� −  �� − ��

 ��
 

� ≥
�� +  �� + �� − �� −  ��

 �� − ��
 

Then, for the two-period problem, there exists an optimum decision policy ��(�, �), non-

decreasing in (�, �), where (�, �) is partially ordered with respect to �. 

That is, for a given period if the optimal action for state (�1, �1) is to outsource RL 

activities to third party, � = 1, then for all states (�2, �2), such that �2 = �1, and �2 ≥

�1, the optimal policy will be to outsource RL activities. 

Proof: 

The model formulation is as follows: 

 

��(�, �)

=  ���

⎩
⎨

⎧���(�, �), 0� = ��[(�, �), 0]+  � �(�� = �)��(��, � + �)

�

���

���(�, �), 1� = ��[(�, �), 1]

 
(4.14) 

For simplicity, we have removed the time subscripts on the state definition (equation 

4.10. 

As per lemma 1, if ���(�, �), �� is a superadditive function in W × A, then there exists a 

monotone non-decreasing policy in W. 
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Further, superadditivity of ���(�, �), �� in W × A means 

����(�, �), 1� − ���(�, �), 0�� − ����(�, � − �), 1� − ���(�, � − �), 0�� ≥ 0 

For all � and �. 

The above condition is valid for all � and � if the equation holds true for all � and � = 1. 

This can be easily shown by induction. 

Hence, showing: 

����(�, �), 1� − ���(�, �), 0�� − ����(�, � − 1), 1� − ���(�, � − 1), 0�� ≥ 0, 

implies superadditivity of ���(�, �), �� in W × A.  Expanding [��(�, �, 1) −

��(�, �, 0)]− [��(�, � − 1, 1) − ��(�, � − 1, 0)], using equation 38, we find: 

 

= ��[(�, �), 1]− ��[(�, � − 1), 1]

− ���[(�, �), 0]+  � �(�� = �)��(��, � + �)

�

���

− ��[(�, � − 1), 0]−  � �(���� = �)��(��, � + � − 1)

���

���

� 

(4.15) 

Substituting equations 4.9, 4.11, 4.12, 4.13 in 4.15 and simplifying, we get: 

 [��(�, �, 1) − ��(�, �, 0)]− [��(�, � − 1, 1) − ��(�, � − 1, 0)] (4.16) 
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= ��� + �� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)�

− (� −  (� + 1)�)�]− ���

+ ��(�[���(��, ��)]

− �[���(����, (� + 1)�)])+  ��(�[(�� −  ��)�]

− �[(���� −  (� + 1)�)�]) +  ��� 

Now, we intend to find the conditions that will guarantee the non-negativity of equation 

4.16.  For this purpose we divide the equation into three parts: 

Part1:���− ��� +  ���.  

Part 2: �� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)� − (� −  (� + 1)�)�] 

Finding the lower bound of part 2, we have three possible cases: 

Case 1: � >  (� + 1)� > �� gives 

�� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)� − (� −  (� + 1)�)�]= ��� 

Case 2: (� + 1)� >  � > �� gives 

�� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)� − (� −  (� + 1)�)�]

= (�� + ��)(� − ��) − ��� 

Case 3: (� + 1)� >  �� >  � gives 

�� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)� − (� −  (� + 1)�)�]= − ��� 

Hence, taking the least lower bound value for part 2: 
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��� ��� �(�� − �)� − �(� + 1)� − ��
�

� + ��[(� −  ��)�

− (� −  (� + 1)�)�]� ≥ − ��� 

(4.17) 

Part 3:  

����[���(��, ��)]− �[���(����, (� + 1)�)]�+  ����[(�� −  ��)�]

− �[(���� −  (� + 1)�)�]� 

 

This part has two cases: 

Case 1: when � > 0 using Lemma 5 and Lemma 7 we get 

 

��������[���(��, ��)]− �[���(����, (� + 1)�)]�+  ����[(�� −  ��)�]

− �[(���� −  (� + 1)�)�]��  

≥ − ���− ���(1 − �).max(�, 1 − �) 

(4.18) 

Case 2: when � = 0 using Lemma 6 and Lemma 8 we get 

 

��������[���(��, ��)]− �[���(����, (� + 1)�)]�+  ����[(�� −  ��)�]

− �[(���� −  (� + 1)�)�]�� ≥ − ����− ���(1 − �)  

(4.19) 

Hence, we get two conditions, � ≠ 0 and � = 0 

Condition 1: when � ≠ 0.  Substituting equations 4.17, 4.18 in equation 4.16, we get: 

��� − ���− ��� − ���− ���(1 − �).max (�, 1 − �) +  ��� ≥ 0 

Gives: 
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(1 − �) max (�, 1 − �) ≤
�� +  �� − �� −  �� − ��

 ��
 

Condition 2: when � = 0. Substituting equations 4.17, 4.19 in equation 4.16, we get: 

��� − ���− ��� − ����− ���(1 − �) +  ��� ≥ 0 

This gives 

� ≥
�� +  �� + ��− �� −  ��

  �� −  ��
 

Hence, if the problem’s parameters in the two-period problem satisfy the following 

conditions:  

 (1 − �) max (�, 1 − �) ≤
�� +  �� − �� −  �� − ��

 ��
 (4.20) 

 � ≥
�� +  �� + ��− �� −  ��

  �� −  ��
 (4.21) 

then ���(�, �), �� will be superadditive in W × A, and there exists a monotone non-

decreasing policy in W. 

4.5.3 Numerical Example  

Consider the following problem two period problem with cost parameters and return 

probability. 

T=2; ��=20; ��=14; ��=20; ��=30; ��=150; ��=17; ��=90; 

S=10; 10 items already sold at the start of planning horizon. 

r=0.75; ko=2; 
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We see that the sufficient conditions are satisfied – equations 4.20 & 4.21 

(1 − �) max(�, 1 − �) ≤
�� +  �� − �� −  �� − ��

 ��
 

� ≥
�� +  �� + ��− �� −  ��

  �� −  ��
 

 And there exists a structured monotone nondecreasing policy in w. 

Table 2: Numerical example for structured policy for two period problem 

 

For �<9, the optimum action is � = 0 (internal RL)  

For �≥9, the optimum action is � = 1 (3rd party RL) 

 

4.6 Conclusion  

Serrato et al. (2007) is the first paper to model reverse logistics outsourcing decision 

using Markov Decision Process. In this chapter, we provide a counterexample to show 

that the addressed paper’s theorem does not guarantee the existence of a structured 

optimal policy.  For a two-period problem, we put forward a new set of sufficient 

conditions to guarantee existence of structured optimal policy.  Still, the study of an n-
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period problem is extremely challenging, and left as an open problem. 

 

4.7 Chapter 4 Appendix 

Lemma 2: 

If �(�� = �) is the Binomial probability of getting � successes in � Bernoulli trials, when 

the probability of a success is �, then: 

�(�� = �) ≤ max (�, 1 − �) 

Proof: 

Conditioning on the outcome of the first trial: 

�(�� = �) =   �(���� = �)(1 − �) + �(���� = � − 1)� 

Since both �(��) and � ∈ [0,1], it follows that:  

 �(�� = �) ≤ max ( �(���� = �), �(���� = � − 1)) (4.22) 

Similarly, we have in the same principle: 

 �(���� = �) ≤ max (�(���� = �), �(���� = � − 1)) (4.23) 

 �(���� = � − 1) ≤ max (�(���� = � − 1), �(���� = � − 2)) (4.24) 

From equations 4.22, 4.23 and 4.24 we get: 

�(�� = �) ≤ max (�(���� = �), �(���� = � − 1))

≤  max ((���� = �), �(���� = � − 1), �(���� = � − 2)) 
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By induction, we have: 

�(�� = �) ≤ max (�(���� = �), �(���� = � − 1))

≤  max ((���� = �), �(���� = � − 1), �(���� = � − 2)) ≤ ⋯

≤ max ��(�� = 0), �(�� = 1)� 

Hence: 

 �(�� = �) ≤ max (�, 1 − �) (4.25) 

Lemma 3: 

If �(�� > �) is the probability of getting more than � successes in � Bernoulli trials, when 

the probability of a success in a Bernoulli trial is �, then: 

�(���� > �) =  �(�� > �) + ��(�� = �) 

Proof: 

Conditioning on the outcome of first trial, we have: 

 
�(���� > �) = �(���� > �|�� = �������)�

+ �(���� > �|�� = �������)(1 − �) 
(4.26) 

= �(�� ≥ �)� + �(�� > �)(1 − �) 

Simplifying, we get: 

 �(���� > �) =  �(�� > �) + ��(�� = �) (4.27) 

This completes the proof of Lemma 3 
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Lemma 4: 

If �(�� > �) is the probability of getting more than � successes in � Bernoulli trials, when 

the probability of a success in a Bernoulli trial is  �, then: 

�(���� > �) =  �(�� > � − 1) − (1 − �)�(�� = �) 

Proof: 

From Lemma 3, we have: 

 �(���� > �) =  �(�� > �) + ��(�� = �) (4.28) 

We know that: 

 �(�� > �) =  �(�� > � − 1) −  �(�� = �) (4.29) 

Substituting equation 4.29 in equation 4.28, we get: 

�(���� > �) =  �(�� > � − 1) −  �(�� = �) + ��(�� = �) 

�(���� > �) =  �(�� > � − 1) − (1 − �)�(�� = �) 

This completes the proof of Lemma 4 

Other Lemmas:  

For the Binomial distribution where: 

�: Number of Bernoulli trials 

��: Random variable representing the number of successes in ‘n’ Bernoulli trials 
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�: The probability of success in a Bernoulli trial 

We have the following relation: 

Lemma 5: �[���(��, ��)]− �[���(����, (� + 1)�)] ≥ − � ∀ � > 0 

Lemma 6: �[���(��, ��)]− �[���(����, (� + 1)�)]=  − �� when � = 0 

Lemma 7: �[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥  − �(1 − �).max (�, 1 − �) 

∀ � > 0 

Lemma 8: �[(�� −  ��)�]− �[(���� −  (� + 1)�)�]=  − �(1 − �) for � = 0 

Proofs: 

Proof Lemma 5: 

�[���(��, ��)]− �[���(����, (� + 1)�)] 

Note that: 

 �[���(��, ��)]= � � �(�� = �)

⌊��⌋

���

+ �� �(�� > ⌊��⌋) (4.30) 

Where ⌊��⌋is the floor of ��. 

Similarly we can write for �[���(����, (� + 1)�)]: 

 

�[���(����, (� + 1)�)]

= � � �(���� = �)

⌊(���)�⌋

���

+ (� + 1)� �(���� > ⌊(� + 1)�⌋) 

(4.31) 
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Conditioning on the outcome of the first Bernoulli trial, �(���� = �) can be expressed 

as: 

 �(���� = �) =   �(�� = �)(1 − �) + �(�� = � − 1)� (4.32) 

Substituting 4.32 in 4.31, we get: 

 

�[���(����, (� + 1)�)]

= � � (�(�� = �)(1 − �) + �(�� = � − 1)�)

⌊(���)�⌋

���

 

+ (� + 1)� �(���� > ⌊(� + 1)�⌋) 

(4.33) 

To express �(���� > ⌊(� + 1)�⌋) in equation 4.25 in terms of  �(�� > ⌊��⌋), we 

consider the two cases:  ⌊��⌋ = ⌊(� + 1)�⌋ and ⌊��⌋ ≠ ⌊(� + 1)�⌋. 

Case 1: ⌊��⌋ = ⌊(� + 1)�⌋ 

Using Lemma 3 for �(���� > ⌊(� + 1)�⌋), we have: 

 �(���� > ⌊(� + 1)�⌋) = �(�� > ⌊��⌋) + �(�� = ⌊��⌋)� (4.34) 

Substituting 4.34 in 4.33 gives: 

 

�[���(����, (� + 1)�)]

= � � (�(�� = �)(1 − �) + �(�� = � − 1)�)

⌊(���)�⌋

���

 

+ (� + 1)� (�(�� > ⌊��⌋) + �(�� = ⌊��⌋)�) 

(4.35) 

Now, deducting 4.35 from 4.30: 
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�[���(��, ��)]− �[���(����, (� + 1)�)]  

= �� � �(�� = �) + �� �(�� > ⌊��⌋)

⌊��⌋

���

�

− �� � (�(�� = �)(1 − �) + �(�� = � − 1)�)

⌊��⌋

���

+ (� + 1)� (�(�� > ⌊��⌋) + �(�� = ⌊��⌋)�)� 

Simplifying, 

 

�[���(��, ��)]− �[���(����, (� + 1)�)]

= � �� �(�� = �)

⌊��⌋

���

− � �� �(�� = � − 1)

⌊��⌋

���

− ��(�� > ⌊��⌋) − (� + 1)���(�� = ⌊��⌋) 

(4.36) 

Combining the first two terms in equation 4.36, we get: 

�[���(��, ��)]− �[���(����, (� + 1)�)]

= � � �� − (� + 1)� �(�� = �)

⌊��⌋��

���

+ ⌊��⌋��(�� = ⌊��⌋)

− ��(�� > ⌊��⌋) − (� + 1)���(�� = ⌊��⌋) 

= − ��(�� < ⌊��⌋) + ⌊��⌋��(�� = ⌊��⌋) − ��(�� > ⌊��⌋) − (� + 1)���(�� = ⌊��⌋) 

= − ��1 − �(�� = ⌊��⌋)� + ⌊��⌋��(�� = ⌊��⌋) − (� + 1)���(�� = ⌊��⌋) 
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 = − � + ��(�� = ⌊��⌋)(⌊��⌋ − (� + 1)� + 1) (4.37) 

Since we are studying the case ⌊��⌋ = ⌊(� + 1)�⌋, the last equality follows 

 

Figure 1:  Lemma 5, case 1 

Figure 1 shows that that the value of (⌊��⌋ − (� + 1)� + 1) in equation 4.37 is less than 

or equal to (1 − �) and greater than or equal to 0. 

Thus, we get: 

�[���(��, ��)]− �[���(����, (� + 1)�)]

= − � + ��(�� = ⌊��⌋)(⌊��⌋ − (� + 1)� + 1) ≥ − � 

This completes case 1. 

Case 2: ⌊��⌋ + 1 = ⌊(� + 1)�⌋ 

Using Lemma 4 for �(���� > ⌊(� + 1)�⌋), we have: 

 �(���� > ⌊(� + 1)�⌋) = �(�� > ⌊��⌋) − �(�� = ⌊��⌋ + 1)(1 − �) (4.38) 

Substituting 4.38 in 4.33, gives: 
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�[���(����, (� + 1)�)]

= � � (�(�� = �)(1 − �) + �(�� = � − 1)�)

⌊��⌋��

���

+ (� + 1)� ��(�� > ⌊��⌋) − �(�� = ⌊��⌋ + 1)(1 − �)� 

(4.39) 

Now, deducting 4.39 from 4.30: 

= �� � �(�� = �) + �� �(�� > ⌊��⌋)

⌊��⌋

���

�

− � � � (�(�� = �)(1 − �) + �(�� = � − 1)�)

⌊��⌋��

���

+ (� + 1)� ��(�� > ⌊��⌋) − �(�� = ⌊��⌋ + 1)(1 − �)�� 

Simplifying: 

= � �� �(�� = �)

⌊��⌋��

���

− � �� �(�� = � − 1)

⌊��⌋��

���

− (⌊��⌋ + 1)�(�� = ⌊��⌋ + 1)

− ��(�� > ⌊��⌋) + (� + 1)�(1 − �)�(�� = ⌊��⌋ + 1) 

Combining the first two terms ∑ �� �(�� = �)⌊��⌋��
��� − ∑ �� �(�� = � − 1)⌊��⌋��

��� =

∑ ��� − �(� + 1)� �(�� = �)⌊��⌋
��� + (⌊��⌋ + 1)��(�� = ⌊��⌋ + 1), we have    
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= ���� − �(� + 1)� �(�� = �)

⌊��⌋

���

+ (⌊��⌋ + 1)��(�� = ⌊��⌋ + 1)

− (⌊��⌋ + 1)�(�� = ⌊��⌋ + 1) − ��(�� > ⌊��⌋)

+ (� + 1)�(1 − �)�(�� = ⌊��⌋ + 1) 

= − ��(�� ≤ ⌊��⌋) + (⌊��⌋ + 1)��(�� = ⌊��⌋ + 1) − (⌊��⌋ + 1)�(�� = ⌊��⌋ + 1)

− ��(�� > ⌊��⌋) + (� + 1)�(1 − �)�(�� = ⌊��⌋ + 1) 

= − � − (⌊��⌋ + 1)(1 − �)��(�� = ⌊��⌋ + 1) + (� + 1)�(1 − �)�(�� = ⌊��⌋ + 1) 

Simplifying: 

= − � + (1 − �)�(� + 1)� − ⌊��⌋ − 1��(�� = ⌊��⌋ + 1) ≥ − � 

This completes case 2, hence: 

�[���(��, ��)]− �[���(����, (� + 1)�)] ≥ − � ∀ � > 0 

 

Proof Lemma 6: 

�[���(��, ��)]− �[���(����, (� + 1)�)] 

When n=0, �[���(��, ��)] = 0 & �[���(����, (� + 1)�)]= ��  

This gives 

�[���(��, ��)]− �[���(����, (� + 1)�)]=  − �� 

This completes the proof for lemma 6. 
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Proof Lemma 7: 

��[(�� −  ��)�]− �[(���� −  (� + 1)�)�]� 

Note that: 

 �[(�� −  ��)�]= � (� − ��) �(�� = �)

�

��⌈��⌉

 (4.40) 

Where ⌈��⌉ is the ceiling of ��. 

Similarly, for �[(���� −  (� + 1)�)�]: 

 �[(���� −  (� + 1)�)�]= � (� − (� + 1)�) �(���� = �)

���

��⌈(���)�⌉

 (4.41) 

Conditioning on the outcome of the first Bernoulli trial out of � + 1 trials, �(���� = �) 

can be expressed as: 

�(���� = �) =   �(�� = �)(1 − �) + �(�� = � − 1)� 

Substituting equation 4.40 in equation 4.41 gives: 

 

�[(���� −  (� + 1)�)�]

= � (� − (� + 1)�) (�(�� = �)(1 − �)

���

��⌈(���)�⌉

+ �(�� = � − 1)�) 

(4.42) 

Subtracting 4.42 from 4.40: 



67 
 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= � (� − ��) �(�� = �)

�

��⌈��⌉

−  � (� − (� + 1)�) (�(�� = �)(1 − �) + �(�� = � − 1)�)

���

��⌈(���)�⌉

 

Taking summation inside, we get: 

 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= � (� − ��) �(�� = �)

�

��⌈��⌉

−  � (� − (� + 1)�) �(�� = �)

���

��⌈(���)�⌉

+  � �(� − (� + 1)�) �(�� = �)

���

��⌈(���)�⌉

− � (� − (� + 1)�) ��(�� = � − 1)

���

��⌈(���)�⌉

  

(4.43) 

To prove Lemma 7, we again consider the two possible cases, ⌈��⌉ =  ⌈(� + 1)�⌉  

and ⌈��⌉ ≠  ⌈(� + 1)�⌉. 

Case 1: ⌈��⌉ =  ⌈(� + 1)�⌉ 

Equation 4.43 in this case simplifies into: 
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�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= � (� − ��) �(�� = �)

�

��⌈��⌉

−  � (� − (� + 1)�) �(�� = �) +  

���

��⌈��⌉

� �(� − (� + 1)�) �(�� = �)

���

��⌈��⌉

− � (� − (� + 1)�) ��(�� = � − 1)

���

��⌈��⌉

  

Combining the first two and the last two terms, we get: 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= � (� − �� − � + (� + 1)�) �(�� = �)

�

��⌈��⌉

+  � �(� − � − 1) �(�� = �) 

�

��⌈��⌉

− �(⌈��⌉ − (� + 1)�)�(�� = ⌈��⌉ − 1) 

 = − �(⌈��⌉ − (� + 1)�)�(�� = ⌈��⌉ − 1) (4.44) 

The last equality follows that, in the case ⌈��⌉ =  ⌈(� + 1)�⌉ 

 

Figure 2: Lemma 7, case 1 
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Figure 2 shows that the maximum value (⌈��⌉ − (� + 1)�) can take is less than (1 − �), 

Hence: 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥ − �(1 − �)�(�� = ⌈��⌉ − 1) 

Using Lemma 2, �(�� = �) ≤ max (�, 1 − �)  

Hence, for case 1: 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥  − �(1 − �).max (�, 1 − �) 

Case 2: ⌈��⌉ + 1 = ⌈(� + 1)�⌉ 

Equation 4.43 in this case simplifies t: 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= � (� − ��) �(�� = �)

�

��⌈��⌉

−  � (� − (� + 1)�) �(�� = �)

���

��⌈��⌉��

+  � �(� − (� + 1)�) �(�� = �)

���

��⌈��⌉��

− � (� − (� + 1)�) ��(�� = � − 1)

���

��⌈��⌉��

  

Combining the first and last two terms gives: 
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= (⌈��⌉ − ��)�(�� = ⌈��⌉) − � (� − �� − � + (� + 1)�) �(�� = �)

�

��⌈��⌉��

+  � �(� − � − 1) �(�� = �) 

�

��⌈��⌉��

− �(⌈��⌉ + 1 − (� + 1)�)�(�� = ⌈��⌉) 

The summation terms cancel out: 

 
�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= �⌈��⌉ − �� − �(⌈��⌉ + 1 − (� + 1)�)��(�� = ⌈��⌉) 
(4.45) 

 

The last equality follows since in the case  : ⌈��⌉ + 1 = ⌈(� + 1)�⌉ 

 

Figure 3: Lemma 7, case 2 

Figure 3 shows that ⌈��⌉ ≤  (� + 1)� 

Representing ⌈��⌉ =  �� + ��,  this implies � ≤ 1 

Substituting ⌈��⌉ =  �� + �� in equation 4.45 gives: 
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�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]

= �⌈��⌉ − �� − �(⌈��⌉ + 1 − (� + 1)�)��(�� = ⌈��⌉) 

= ��� + �� − �� − �(�� + �� + 1 − (� + 1)�)��(�� = ⌈��⌉) 

Simplifying: 

= ��� − �(�� + 1 − �)��(�� = ⌈��⌉) 

Expanding: 

= (�� − ��� + � − ��)�(�� = ⌈��⌉) 

= − �(1 − �)(1 − �)�(�� = ⌈��⌉) 

The minimum is achieved at � = 0, and we have: 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥ − �(1 − �)�(�� = ⌈��⌉) 

Using Lemma 2, �(�� = �) ≤ max (�, 1 − �)  

We have again for case 2  

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]≥  − �(1 − �).max (�, 1 − �) 

Proof Lemma 8: 

When � = 0. �[(�� −  ��)�]= 0 and �[(���� −  (� + 1)�)�]= �(1 − �) 

This gives 

�[(�� −  ��)�]− �[(���� −  (� + 1)�)�]=  − �(1 − �) for n =0 
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5 CHAPTER 5 

AN MDP MODEL FOR LOGISTICS CAPACITY 

PLANNING IN SUPPLY CHAIN 

 

5.1 Introduction  

 

The purpose of this chapter is to provide a general MDP model to optimize logistics 

capacity for forward logistics.  The existence of structural properties for the optimal 

decision policy of the model is studied and presented.  The advantages of these structural 

properties in terms of number of iterations/ computational effort in reaching the optimal 

policy is quantified and presented. 

5.2 Problem Definition  

 

In this section, the problem definition is presented.  A forward logistics problem is 

considered; where a retailer caters to the demands of the customers in an area.  The 

demand is taken as stochastic and Markovian.  That is the probability distribution of the 

demand in the next epoch is defined by the demand realized in the current epoch.  The 

logistics capacity of the retailer defines the maximum number of demands it may process 

internally.  Demands in excess of the retailer’s capacity incur a penalty for emergency 

processing.  At every epoch, there will be a maintenance cost for maintaining the system 

capacity and a processing cost for the utilized system capacity.  At the end of each time 
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epoch, the retailer makes a decision on how much to increase or decrease its capacity.  

There is no backordering of demand, if the demand is not met by the system’s Forward 

Logistics (FL) capacity, it is processed externally incurring a penalty cost. The decision 

policy states the optimum action at each time epoch for each system state, with the 

objective of minimizing system cost over the planning horizon. 

 

5.3 Nomenclature  

 

The notations used in this chapter are as follows: 

���: Retailer logistics capacity at time t 

��: Demand at time � 

��: Maximum capacity possible for the retailer’s FL 

�: Planning horizon 

�: Time epoch � = 0,1,2 … .� 

 

5.4 Model Definitions 

 

An MDP model consists of system states, actions, transition probabilities and reward/ 

cost functions (Puterman 2009). Next, we define them for this problem: 
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System State: At any time epoch (�) of the planning horizon (�), the system state is 

described by two state variables - the firm’s FL capacity, and the demand experienced for 

the period (���, ��).  The states are taken as partially ordered with respect to ��� in the 

MDP model.  At the beginning of the planning horizon, � = 0, the system state is 

assumed to be (���, ��). 

Action: (��) The decision maker decides on how much to increase or decrease the system 

capacity. 

��(���, ��) or simply ��(��, �): Is the action at the end of time epoch ‘�’ when the 

system is in state (���, ��) . 

��=0  : No change in system’s FL capacity. ����� = ��� 

��=+ve : Increase in system’s FL capacity. ����� = ��� + �� 

��=-ve : Decrease in system’s FL capacity. ����� = ��� + �� 

The action space ��(���, ��) is the set of decisions available for the decision maker when 

the system is in state (���, ��) 

��(���, ��) = {− ���, − ��� + 1, ��� + 2 … �� − ���} 

This implies that the minimum capacity the system can have is 0 and the maximum 

capacity is ��. 

Transition Probabilities: 

This defines the state transition probabilities, the probability of a future system state (in 

the next decision epoch); given the current system state and the action taken.   
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����[(�����, ����)|(���, ��), ��]=  �

�(����|��) �� ����� = ��� + ��

0                  ��ℎ������
 

(5.1) 

Given state (���, ��) and action ��, the probability of the state (�����, ����) in the next 

period is equal to the demand transition probability if �(����|��) if ����� = ��� + �� and 

0 otherwise.  

Rewards and model dynamics: 

Cost components: 

��: Cost of increasing the firm’s FL capacity by one unit – unit investment cost: ($/ 

capacity unit) 

��: Cost of decreasing the firm’s FL capacity by one unit – unit disinvestment cost: ($/ 

capacity unit) 

��: Fixed internal capacity maintenance cost.  Maintenance Cost per unit of FL capacity 

for one period ($/ capacity unit/ period) 

��: Labour cost. Processing cost per item for processing FL internally ($/ unit) 

��: Shortage cost. Penalty or emergency cost incurred per unit of the demand exceeding 

FL capacity. ($/ unit) 

��: Capacity salvage value.  Revenue in salvaging unit FL capacity of the system at the 

end of the planning horizon ($/ unit) 

All the structural properties derived in this chapter are mainly based on the following 

assumptions: 
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�� ≥ ���(0, − ��) 

�� > �� + �� 

The first assumption means that if revenue is generated in decreasing capacity, it shall be 

less than the cost in increasing capacity.  The second assumption means that the cost of 

penalty per unit is more than the sum of the maintenance and labor cost per unit. 

At the end of each period, the decision maker decides on how much to increase or 

decrease the system capacity.  The reward in the period is dependent on the system state 

and this decision made. 

The reward function is represented as ��[(���, ��), ��].   

��[(��, ��), ��] is the immediate cost experienced in period, � after choosing action �� in 

the period when the system is in state (���, ��). 

The reward function for decision �� is given as 

 ��[(���, ��), ��] 

= ��(��)� + ��(− ��)� +  ��(���) + �����(��, ���)

+  ��(�� −  ���)� 

(5.2) 

Here the first term, ��, accounts for costs incurred for increase in capacity (investment), 

the second term, ��, costs for any decrease in capacity (disinvestment), the third term, ��, 

costs for maintenance of the system capacity, the fourth term, ��, for the incurred cost in 

processing the FL in the period � and the fifth term, ��, for the incurred penalty in case 
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demand exceeds system capacity in the period � as demands are not carried to next 

period. 

Terminal reward is taken as 

 ��[(���, ��), ��]=  ��
∗(���, ��) =  − ����� (5.3) 

The terminal reward accounts for the revenue in salvaging system capacity at the end of 

the planning horizon. 

The decision maker is to determine the decision policy, which will minimize the total 

expected cost over the planning horizon.  The optimal value function that gives the 

expected cost from period � till the end of the planning horizon when following optimum 

decision policy is given as ��
∗(���, ��) 

 

��
∗(���, ��) =

���

� ∈ �
���[(���, ��), ��]

+ � ����[(�����, ����)|(���, ��), ��]����
∗ (�����, ����)

����

� 

(5.4) 

This can be rewritten using equation 5.1 as 

 

��
∗(���, ��) =

���

� ∈ �
���[(���, ��), ��]

+ � �(����|��) ����
∗ (��� + ��, ����)

����

� 

(5.5) 

Hence the optimal action ��(���, ��) 
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��(���, ��) =
��� min �

� ∈ �
���[(���, ��), ��]+ � �(����|��) ����

∗ (��� + ��, ����)

����

� 

The value function that gives the expected cost from period �, to the end of the planning 

horizon, when taking action �� at the end of period �; and henceforth following optimal 

decision policy, is given as ���(���, ��), ���: 

 ���(���, ��), ��� = ��[(���, ��), ��]+ � �(����|��) ����
∗ (��� + ��, ����)

����

 (5.6) 

Solution Methodology 

Optimum decision policy for a finite period MDP model can be determined using 

backward value iteration.   

For this problem definition if the demand takes values from [0, �].  The number of 

iterations required is 

� × (� + 1)� 

As for each epoch, there are (� + 1)� states possible and for each state there are (� + 1) 

possible actions. 

 

5.5 Existence of structured optimal decision policy: 
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Existence of a structured decision policy helps reduce the computational effort in 

determining in the optimum decision policy and makes the policy practical and easier to 

follow. Next, the different structural properties of the optimal policy is provided. 

Theorem 1: 

In a particular time epoch �, if the optimum action for a state (��� = ��1, ��) is to 

increase the capacity to � (� > ��1), then for all states (��� = ��2, ��) such that 

��1 <  ��2 ≤  �, increasing the system capacity to reach the same capacity level � will 

be an optimal action. 

That is if ��(��� = ��1, ��) = � − ��1 and � > ��1 

Then ��(��� = ��2, ��) = � − ��2   ∀ ��1 ≤ ��2 ≤ � 

Proof 

 

Figure 4: Illustration of theorem 1 

The above figure graphically represents the relation between a set of capacities (�,

��1, �, ��2, �, �, ℎ) 

� < ��1 < � < ��2 < � < � < ℎ 

Given ��(��� = ��1, ��) = �∗ = � − ��1 and � > ��1 

Let ��� be any action such that ��1 +  ���  =  �;   � <  ��1 

Let ��  be any action such that ��1 +  ��  =  �;  ��1 ≤  � <  ��2 

Let �� be any action such that ��1 +  ��  =  �; ��2 ≤  �  <  � 
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Let ��� be any action such that ��1 +  ���  = ℎ;  � < ℎ 

Since ��(��1, �) = �∗is the optimum action at (��� = ��1, ��), we have the following 

relations 

1.) ��
∗(��� = ��1, ��) = ���(��� = ��1, ��), �∗� ≤ ��((��� = ��1, ��), ���) 

2.) ��
∗(��� = ��1, ��) = ���(��� = ��1, ��), �∗� ≤ ��((��� = ��1, ��), ��) 

3.) ��
∗(��� = ��1, ��) = ���(��� = ��1, ��), �∗� ≤ ��((��� = ��1, ��), ��) 

4.) ��
∗(��� = ��1, ��) = ���(��� = ��1, ��), �∗� ≤ ��((��� = ��1, ��), ���) 

Taking one relation at a time, we get: 

1.) ���(��1, ��), �∗� ≤ ��((��1, ��), ���) 

Substituting equation 5.6 

��[(��1, ��), �∗]+ � �(����|��) ����
∗ (��1 + �∗, ����)

����

≤ ��[(��1, ��), ���]+ � �(����|��) ����
∗ (��1 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����1 + �����(��, ��1) + ��(�� −  ��1)� + � �(����|��) ����
∗ (�, ����)

����

≤ − ����� + ����1 + �����(��, ��1) + ��(�� −  ��1)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 
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���∗ + ����� ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − ��1) + ��(� − ��1)

≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.7)  

2.) ���(��1, ��), �∗� ≤ ��((��1, ��), ��) 

Substituting equation 5.6 

��[(��1, ��), �∗]+ � �(����|��) ����
∗ (��1 + �∗, ����)

����

≤ ��[(��1, ��), ��]+ � �(����|��) ����
∗ (��1 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����1 + �����(��, ��1) + ��(�� −  ��1)� + � �(����|��) ����
∗ (�, ����)

����

≤ ���� + ����1 + �����(��, ��1) + ��(� −  ��1)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

��(�∗ − ��) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����
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 ��(� − �) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.8) 

3.) ���(��1, ��), �∗� ≤ ��((��1, ��), ��) 

Substituting equation 5.6 

��[(��1, ��), �∗]+ � �(����|��) ����
∗ (��1 + �∗, ����)

����

≤ ��[(��1, ��), ��]+ � �(����|��) ����
∗ (��1 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����1 + �����(��, ��1) + ��(�� −  ��1)� + � �(����|��) ����
∗ (�, ����)

����

≤ ���� + ����1 + �����(��, ��1) + ��(�� −  ��1)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

��(�∗ − ��) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.9) 

4.) ���(��1, ��), �∗� ≤ ��((��1, ��), ���) 

Substituting equation 5.6 
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��[(��1, ��), �∗]+ � �(����|��) ����
∗ (��1 + �∗, ����)

����

≤ ��[(��1, ��), ���]+ � �(����|��) ����
∗ (��1 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����1 + �����(��, ��1) + ��(�� −  ��1)� + � �(����|��) ����
∗ (�, ����)

����

≤ ����� + ����1 + �����(��, ��1) + ��(�� −  ��1)�  

+ � �(����|��) ����
∗ (ℎ, ����)

����

 

Simplifying and grouping common terms we get: 

��(�∗ − ���) ≤ � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − ℎ) ≤ � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 (5.10) 

Let ��� be any action such that ��2 +  ���  =  �;   � <  ��1 

Let ��  be any action such that ��2 +  ��  =  �;  ��1 ≤  � <  ��2 

Let �� be any action such that ��2 +  ��  =  �; ��2 ≤  �  <  � 

Let ��� be any action such that ��2 +  ���  = ℎ;  � < ℎ 

Let �∗ be any action such that ��2 +  �∗  =  �; 

If the optimum action was ���, then: 
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���(��2, ��), �∗� > ��((��1, ��), ���) 

Substituting equation 5.6 

��[(��2, ��), �∗]+ � �(����|��) ����
∗ (��2 + �∗, ����)

����

> ��[(��2, ��), ���]+ � �(����|��) ����
∗ (��2 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����2 + �����(��, ��2) + ��(�� −  ��2)� + � �(����|��) ����
∗ (�, ����)

����

> − ����� + ����2 + �����(��, ��2) + ��(�� −  ��2)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

���∗ + ����� > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − ��2) + ��(� − ��2)

> � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.11) 

We can see that the RHS of equation 5.11 and equation 5.7 are the same and the LHS of 

equation 5.11 is less than or equal to the LHS of equation 5.7.  Thus, we have a 

contradiction and hence ��� cannot be optimum decision. 

If the optimum action was ��, then: 
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���(��2, ��), �∗� > ��((��1, ��), ��) 

Substituting equation 5.6 

��[(��2, ��), �∗]+ � �(����|��) ����
∗ (��2 + �∗, ����)

����

> ��[(��2, ��), ��]+ � �(����|��) ����
∗ (��2 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����2 + �����(��, ��2) + ��(�� −  ��2)� + � �(����|��) ����
∗ (�, ����)

����

> − ���� + ����2 + �����(��, ��2) + ��(�� −  ��2)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

���∗ + ���� > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − ��2) + ��(� − ��2)

> � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.12) 

Again, we see that the RHS of equation 5.12 and equation 5.8 are the same and the LHS 

of equation 5.12 is less than or equal to the LHS of equation 5.8. Thus, we have a 

contradiction and hence �� cannot be optimum decision. 

If the optimum action was ��, then: 
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���(��2, �), �∗� > ��((��1, �), ��) 

Substituting equation 5.6 

��[(��2, ��), �∗]+ � �(����|��) ����
∗ (��2 + �∗, ����)

����

> ��[(��2, ��), ��]+ � �(����|��) ����
∗ (��2 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����2 + �����(��, ��2) + ��(�� −  ��2)� + � �(����|��) ����
∗ (�, ����)

����

> ���� + ����2 + �����(��, ��2) + ��(�� −  ��2)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

���∗ − ���� > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.13) 

We can see that equation 5.13 contradicts equation 5.9 hence �� cannot be optimum 

decision. 

If the optimum action was ���, then: 

���(��2, ��), �∗� > ��((��1, ��), ���) 
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Substituting equation 5.6 

��[(��2, ��), �∗]+ � �(����|��) ����
∗ (��2 + �∗, ����)

����

> ��[(��2, ��), ���]+ � �(����|��) ����
∗ (��2 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

���∗ + ����2 + �����(��, ��2) + ��(�� −  ��2)� + � �(����|��) ����
∗ (�, ����)

����

> ����� + ����2 + �����(��, ��2) + ��(�� −  ��2)�  

+ � �(����|��) ����
∗ (ℎ, ����)

����

 

Simplifying and grouping common terms we get: 

���∗ − ����� > � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − ℎ) > � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 (5.14) 

We can see that equation 5.14 contradicts equation 5.10 hence ��� cannot be optimum 

decision. 

Hence we have the optimum action at ��2 to be �∗.  This completes the proof for 

theorem 1. 

Theorem 2: 
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In a particular time epoch �, if the optimum action for a state (��� = ��2, ��) is to 

decrease the system capacity to �, then for all states (��� = ��1, ��) such that � ≤

��1 <  ��2 , reaching the same capacity level � will be an optimal action. 

That is if ��(���� = ��2, ��) = � − ��2 and � < ��2 

Then, ��(��� = ��1, ��) = � − ��1   ∀ � ≤ ��1 <  ��2  

Proof 

The proof to theorem 2 is on the same lines as for theorem 1. 

 

Figure 5: Illustration of theorem 2 

The above figure graphically represents the relation between a set of capacities 

(�, �, �, ��1, �, ��2, ℎ) 

� < � < � < ��1 < � < ��2 < ℎ 

Given ��(��2, �) = �∗ = � − ��2 and � < ��2 

Let ��� be any action such that ��2 +  ���  =  �;   � <  � 

Let ��  be any action such that ��2 +  ��  =  �;  � <  � ≤  ��1 

Let �� be any action such that ��2 +  ��  =  �; ��1 ≤  �  ≤  ��2 

Let ��� be any action such that ��2 +  ���  = ℎ;  ��2 ≤ ℎ 

Since ��(��2, �) = �∗is the optimum action at (��2, �), we have the following relations 



89 
 

1.) ��
∗(��2, ��) = ���(��2, ��), �∗� ≤ ��((��2, ��), ���) 

2.) ��
∗(��2, ��) = ���(��2, ��), �∗� ≤ ��((��2, ��), ��) 

3.) ��
∗(��2, ��) = ���(��2, ��), �∗� ≤ ��((��2, ��), ��) 

4.) ��
∗(��2, ��) = ���(��2, ��), �∗� ≤ ��((��2, ��), ���) 

Taking one relation at a time, we get: 

1.) ���(��2, ��), �∗� ≤ ��((��1, ��), ���) 

Substituting equation 5.6 

��[(��2, ��), �∗]+ � �(����|��) ����
∗ (��2 + �∗, ����)

����

≤ ��[(��2, ��), ���]+ � �(����|��) ����
∗ (��2 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����2 + �����(��, ��2) + ��(�� −  ��2)�

+ � �(����|��) ����
∗ (�, ����)

����

≤ − ����� + ����2 + �����(��, ��2) + ��(�� −  ��2)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

− ���∗ + ����� ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����
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 ��(� − �) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.15) 

2.) ���(��2, ��), �∗� ≤ ��((��1, ��), ��) 

Substituting equation 5.6 

��[(��2, �), �∗]+ � �(����|�) ����
∗ (��2 + �∗, ����)

����

≤ ��[(��2, �), ��]+ � �(����|�) ����
∗ (��2 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����2 + �����(�, ��2) + ��(� −  ��2)� + � �(����|�) ����
∗ (�, ����)

����

≤ − ���� + ����2 + �����(�, ��2) + ��(� −  ��2)�  

+ � �(����|�) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

− ���∗ + ���� ≤ � �(����|�)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.16) 

3.) ���(��2, ��), �∗� ≤ ��((��1, ��), ��) 

Substituting equation 5.6 
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��[(��2, �), �∗]+ � �(����|�) ����
∗ (��2 + �∗, ����)

����

≤ ��[(��2, �), ��]+ � �(����|�) ����
∗ (��2 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����2 + �����(�, ��2) + ��(� −  ��2)� + � �(����|�) ����
∗ (�, ����)

����

≤ − ���� + ����2 + �����(�, ��2) + ��(� −  ��2)�  

+ � �(����|�) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

��(�� − �∗) ≤ � �(����|�)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) ≤ � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.17) 

4.) ���(��2, ��), �∗� ≤ ��((��1, ��), ���) 

Substituting equation 5.6 

��[(��2, �), �∗]+ � �(����|�) ����
∗ (��2 + �∗, ����)

����

≤ ��[(��2, �), ���]+ � �(����|�) ����
∗ (��2 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 
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− ���∗ + ����2 + �����(�, ��2) + ��(� −  ��2)� + � �(����|�) ����
∗ (�, ����)

����

≤ ����� + ����2 + �����(�, ��2) + ��(� −  ��2)�  

+ � �(����|�) ����
∗ (ℎ, ����)

����

 

Simplifying and grouping common terms we get: 

− ���∗ − ����� ≤ � �(����|�)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

 − ��(� − ��2) − ��(ℎ − ��2)

≤ � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

(5.18) 

Let �∗ = � − ��1  

Let ��� be any action such that ��1 +  ���  =  �;   � <  � 

Let ��  be any action such that ��1 +  ��  =  �;  � ≤  � <  ��1 

Let �� be any action such that ��1 +  ��  =  �; ��1 <  �  ≤  ��2 

Let ��� be any action such that ��1 +  ���  = ℎ;  ��2 < ℎ 

If ��� was the optimum action, then 

���(��1, ��), �∗� > ��((��1, ��), ���) 

Substituting equation 5.6 
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��[(��1, ��), �∗]+ � �(����|��) ����
∗ (��1 + �∗, ����)

����

> ��[(��1, ��), ���]+ � �(����|��) ����
∗ (��1 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����1 + �����(��, ��1) + ��(�� −  ��1)�

+ � �(����|��) ����
∗ (�, ����)

����

> − ����� + ����1 + �����(��, ��1) + ��(�� −  ��1)�  

+ � �(����|��) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

��(��� − �∗) > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.19) 

We can see that equation 5.19 contradicts equation 5.15 hence ��� cannot be optimum 

decision. 

If �� was the optimum action, then 

���(��1, ��), �∗� > ��((��1, ��), ��) 

Substituting equation 5.6 
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��[(��1, �), �∗]+ � �(����|�) ����
∗ (��1 + �∗, ����)

����

> ��[(��1, �), ��]+ � �(����|�) ����
∗ (��1 + ��, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����1 + �����(�, ��1) + ��(� −  ��1)� + � �(����|�) ����
∗ (�, ����)

����

> − ���� + ����1 + �����(�, ��1) + ��(� −  ��1)�  

+ � �(����|�) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

− ��(�∗ − ��) > � �(����|�)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 ��(� − �) > � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 (5.20) 

We can see that equation 5.20 contradicts equation 5.16 hence �� cannot be optimum 

decision. 

If �� is the optimum action, then 

���(��1, ��), �∗� > ��((��1, ��), ��) 

Substituting equation 5.6 
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��[(��1, �), �∗]+ � �(����|�) ����
∗ (��1 + �∗, ����)

����

> ��[(��1, �), ��]+ � �(����|�) ����
∗ (��1 + ��, ����)

����

 

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����1 + �����(�, ��1) + ��(� −  ��1)� + � �(����|�) ����
∗ (�, ����)

����

> ���� + ����1 + �����(�, ��1) + ��(� −  ��1)�  

+ � �(����|�) ����
∗ (�, ����)

����

 

Simplifying and grouping common terms we get: 

− ���∗ − ���� > � �(����|�)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

 − ��(� − ��1) − ��(� − ��1)

> � �(����|��)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.21) 

We see that the RHS of equation 5.21 and equation 5.17 are the same and the LHS of 

equation 5.21 is less than or equal to the LHS of equation 5.17. Thus, we have a 

contradiction and hence ��  cannot be optimum decision. 

If ��� is the optimum action, then 

���(��1, ��), �∗� > ��((��1, ��), ���) 
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Substituting equation 5.6 

��[(��1, �), �∗]+ � �(����|�) ����
∗ (��1 + �∗, ����)

����

> ��[(��1, �), ���]+ � �(����|�) ����
∗ (��1 + ���, ����)

����

 

Substituting equation 5.2 for immediate expected reward 

− ���∗ + ����1 + �����(�, ��1) + ��(� −  ��1)� + � �(����|�) ����
∗ (�, ����)

����

> ����� + ����1 + �����(�, ��1) + ��(� −  ��1)�  

+ � �(����|��) ����
∗ (ℎ, ����)

����

 

Simplifying and grouping common terms we get: 

− ���∗ − ����� > � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

 − ��(� − ��1) − ��(ℎ − ��1)

> � �(����|��)� ����
∗ (ℎ, ����) −  ����

∗ (�, ����)�

����

 

(5.22) 

Again, we see that the RHS of equation 5.22 and equation 5.18 are the same and the LHS 

of equation 5.22 is less than or equal to the LHS of equation 5.18. Thus, we have a 

contradiction and hence ���  cannot be optimum decision. 

Hence the optimal action at ��1 is �∗.  This completes the proof for theorem 2. 
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We put forward the following Lemmas and theorems for the purpose of proving the main 

result in proposition 1. 

Lemma 1:  

If g is a superadditive (subadditive) function on X × Y and for each x ∈ X, min
�∈�

�(�, �) 

exists. then 

�(�) = ��� ��� ∈ arg min
�∈�

�(�, �)� 

is monotone non-increasing (non-decreasing) in � . 

Definition of superadditivity from Puterman(2009): Let � and � be partially ordered sets 

and �(�, �) a real valued function on � × �. We say �is superadditive if for �� ≥ ��in � 

and �� ≥ ��in �, 

�( ��, ��) − �( ��, ��) ≥ �(��, ��) − �(��, ��) 

This Lemma is stated and proved in Puterman (Puterman 2009_ENREF_34). 

For subadditivity of �(�, �) on � × �: 

�( ��, ��) − �( ��, ��) ≤ �(��, ��) − �(��, ��) 

Theorem 3: 

���(���, ��), ��� is superadditive in �� ×  � ∀ ��, � 

That is for ��2 ≥ ��1 in ��� and �2� ≥ �1�in ��, 

���(��2, ��), �2�� − ���(��2, ��), �1�� ≥ ���(��1, ��), �2�� − ���(��1, ��), �1�� 
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Proof: 

The proof of this theorem is established using mathematical induction. This starts from 

the last time epoch T, where the capacity is to be salvaged. 

From equation 5.3: 

 ���(���, ��), ��� = ��
∗(���, ��) =  − ����� (5.23)  

��[(���, ��), �1�]− ��[(���, ��), �2�]= 0 for any ��, and any combination of �1� 

and �2�.  This gives ���(���, ��), ��� superadditive in �� ×  � ∀ � 

Writing equation 5.6 

���(���, ��), ��� = ���(���, ��), ��� + � �(����|��) ����
∗ (��� + ��, ����)

����

 

Considering the elements of this equation: 

���(���, ��), ���  = ��(��)� + ��(− ��)� + ��(���) + �����(��, ���) + ��(�� −  ���)� 

���(���, ��), ��� is superadditive in �� ×  � ∀ ��, � because: 

���(���, ��), �2�� − ���(���, ��), �1�� is a constant independent of ��� ∀ �2� ≥ �1�. 

Hence  ���(���, ��), ��� will be superadditive in �� ×  �, if ∑ �(����|�) ����
∗ (��� +����

��, ����) is superadditive in �� ×  �. 

Moreover, ∑ �(����|�) ����
∗ (��� + ��, ����)����

 will be superadditive in �� ×  � if 

 ����
∗ (��� + ��, ����) is superadditive in �� ×  �. 
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In conclusion, ���(���, ��), ��� will be superadditive in �� ×  � ∀ �, if  ����
∗ (��� +

��, ����) is superadditive in �� ×  �. 

This will be shown by induction: 

Since ��
∗(���, ��) = − ��.���, ��

∗(����� + ����, ��) is superadditive in �� ×  �, as 

for any �2���  ≥  �1��� : 

��
∗(����� + �2���, ��) −  ��

∗(����� + �1���, ��) = − ��(�2��� − �1���) 

is independent of �����. 

Writing equation 5.6 for � = � − 1 

 �����(�����, ����), �����

= ����[(�����, ����), ����]

+ � �(��|����) ��
∗(����� + ����, ��)

��

 

(5.24)  

Substituting equation 5.2 for ����[(�����, ����), ����] gives 

 �����(�����, ����), �����

= ��(����)� + ��(− ����)� + ��(�����)

+ �����(����, �����) + ��(���� −  �����)�

+ � �(��|����) ��
∗(����� + ����, ��)

��

 

(5.25)  

Substituting equation 5.23 in equation 5.25, we get 
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�����(�����, ����), �����

= ��(����)� + ��(− ����)� + ��(�����) + �����(����, �����)

+ ��(���� −  �����)� − � �(��|����)��(����� + ����)

��

 

Simplifying: 

 �����(�����, ����), �����

= ��(����)� + ��(− ����)� + ��(�����)

+ �����(����, �����) + ��(���� −  �����)�

− ��(����� + ����) 

(5.26) 

The last term of equation 5.26, − ��(����� + ����) is superadditive in �� ×  �  

Hence �����(�����, ����), ����� is superadditive in �� ×  �. 

The following assumption on the cost parameter: 

�� ≥ ���(0, − ��) 

concludes that there are three possible optimal actions at � = � − 1, namely 

����(�����, ����) = 0 if  

�� ≥ − �� & �� ≥ �� 

����(�����, ����) = − ����� if  

�� ≤ − �� & �� ≥ �� 

����(�����, ����) = �� − ����� if 
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�� ≤ �� 

Hence  ����
∗ (�����, ����) can be expressed, for these three possibilities as follows:  

  ����
∗ (�����, ����) = (�� − ��)����� + �����(����, �����) +

��(���� −  �����)� if �� ≥ − �� & �� ≥ �� 

 ����
∗ (�����, ����) = (�� + ��)����� + �����(����, �����) +

��(���� −  �����)� if �� ≤ − �� & �� ≥ �� 

 ����
∗ (�����, ����) = (�� − ��)����� + �����(����, �����) +

��(���� −  �����)� + (�� − ��)�� if �� ≤ �� 

(5.27) 

Next, we have the Bellman optimality equation for � = � − 2, which depends on  ����
∗ () 

as follows: 

�����(�����, ����), �����

= ����[(�����, ����), ����]

+ � �(����|����) ����
∗ (����� + ����, ����)

����

 

As shown earlier, �����(�����, ����), ����� will be superadditive in �� ×  � ∀ �, if 

 ����
∗ (����� + ����, ����) is superadditive in �� ×  �. 

Let �2���, �1��� be two actions such that �2��� ≥ �1��� 

From equation 5.27,  ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) is 

simplified by taking common terms to give: 
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  ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� − ��)(�2��� − �1���) + ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≥ − �� & �� ≥ �� 

 ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� + ��)(�2��� − �1���) + ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≤ − �� & �� ≥ �� 

 ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� − ��)(�2��� − �1���) + ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≤ �� 

(5.28) 

The first parts in equation 5.28: (�� − ��)(�2��� − �1���) | (�� + ��)(�2��� −

�1���)|(�� − ��)(�2��� − �1���) are constants.  Studying the second part, which is 

similar in all three possibilities of equation 5.28: ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� − (���� −   ����� −

�1���)�) is increasing in �� from Lemma 2 given in the appendix of this chapter – 

section 5.6. Which means  ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) 

is increasing in �����.  This gives �����(�����, ����), ����� superadditive in �� ×  �.   

So far, the following results have been established: 
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1. �����(�����, ����), �����, �����(�����, ����), �����, ���(���, ��), ��� is 

superadditive in �� ×  �. 

2.  ����
∗ (����� + ����, ����),  ��

∗(��� + ��, ��) is superadditive in �� ×  �. 

This gives the first step of the induction proof of theorem 3.  Next assuming that 

�����(�����, ����), ����� and ����
∗(����� + ����, ����) are both superadditive in �� ×

 � ∀ ����,  we need to prove that ����
∗(��� + ��, ����) is superadditive in �� ×  � to 

give ���(���, ��), ��� superadditive in �� ×  �. 

That is to check if ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����) is nondecreasing in 

�� for �2� ≥ �1�∀ ���� 

Let optimum action in time epoch � + 1 and state (����� = 0, ����) be �. 

����(0, ����) = � 

And optimum action in time epoch � + 1 and state (����� = ��, ����) be � − �� 

����(��, ����) = � − �� 

From theorem 1 & 2 it is understood that � ≥ �. 

let � >  �2 > �1 (�2 > � > �1 and �2 > �1 > � will be special cases of this) 

We have two possibilities: 

Possibility 1: � − �1� ≤ � − �2� 
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Figure 6: Illustration for Theorem 3, possibility 1 - ��� 

As shown in the figure above for possibility 1, the resulting regions are considered: 

Region 1:  

����� ≤ � in both functions ����
∗(��� + �2�, ����) & ����

∗(��� + �1�, ����) 

This implies: 

max (0, − �1�) ≤ ��� ≤ � − �2� 

From theorem 1 the optimal action will be to go to capacity � for both states 

(��� + �2�, ����) and (��� + �1�, ����), hence:  

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(� − ��� − �2�) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)�

− (��(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)�) 

Simplifying 
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����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= (�� − ��)(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) 

Lemma 2 shows that ������(����, ��� + �2) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in ���. 

Hence in region 1, ����
∗(��� + ��, ����) superadditive in �� ×  � 

Region 2:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and � ≥ ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2�  ≤ ��� ≤ � − �1� 

From theorem 1and theorem 2, the optimal action will be to go to capacity � for states 

(��� + �1�, ����) and to take action � = 0 for states (��� + �2�, ����) 



106 
 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2�) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 

 ����
∗(�� + �2, �) − ����

∗(�� + �1, �)

= ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

− ��(� − ��� − �1�)

+ � �(����|����)� ����
∗ (��� + �2�, ����)

����

−  ����
∗ (�, ����)� 

(5.29) 

Studying equation 5.29 in parts: 

1. ��(�2� − �1�) − ∑ �(����|�) ����
∗ (�, ����)����

 − ��(� − �1) is fixed in this 

region 

2. Lemma 2 shows that ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in CS. 
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3. The last part:  

 ����� + � �(����|����) ����
∗ (��� + �2�, ����)

����

 (5.30) 

In this region: 

�����(��� + �2�, ����), 0� ≤ �����(��� + �2�, ����), 1� 

This gives: 

� �(����|����) ����
∗ (��� + �2�, ����)

����

≤ �� + � �(����|����) ����
∗ (��� + �2� + 1, ����)

����

 

 � �(����|����) ����
∗ (��� + �2� + 1, ����)

����

− � �(����|����) ����
∗ (��� + �2�, ����)

����

≥ − �� 

(5.31) 

Equation 5.31 implies that for unit increase in ��� the decrease in 

∑ �(����|����) ����
∗ (��� + �2�, ����)����

 in equation 5.30 will not be more than ��. 

This gives the last part ����� + ∑ �(����|�) ����
∗ (��� + �2�, ����)����

 increasing in ��� 

Hence in region 2, ����
∗(��� + ��, ����) superadditive in �� ×  �  

Region 3:  

� ≥ ����� ≥ � in both the functions ����
∗(��� + �2�, ����) and ����

∗(��� + �1�, ����) 



108 
 

This implies: 

� − �1� ≤ ��� ≤ � − �2� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2�) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(�2� − �1�) + ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (��� + �2�, ����) −  ����

∗ (��� + �1�, ����)�

����

 

��(�2� − �1�) a fixed value.  Lemma 2 shows that ������(����, ��� + �2�) −

���(����, ��� + �1�)� + ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is 

nondecreasing in CS.   ����
∗ (��� + �2�, ����) −  ����

∗ (��� + �1�, ����) is given to be 

increasing in ��, because  ����
∗ (��� + ��, ����) is superadditive in �� ×  �. 

Hence in region 3, ����
∗(��� + ��, ����) superadditive in �� ×  � 
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Region 4:  

� ≥ ����� ≥ � in the function  ����
∗(��� + �1�, ����) and ����� ≥ � in the function 

����
∗(��� + �2�, ����) 

This implies: 

� − �2� ≤ ��� ≤ � − �1� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2�)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying: 
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 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����)

����

−  ����
∗ (��� + �1�, ����)� 

(5.32) 

Studying equation 5.32 in parts: 

1. ��(�2� − �1�) +  ∑ �(����|����) ����
∗ (�, ����)����

 + ��(�2� − �) is fixed in this 

region 

2. Lemma 2 shows that ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in CS. 

3. The last part:  

 �� ��� − � �(����|����) ����
∗ (��� + �1�, ����)

����

 (5.33) 

In this region: 

�����(��� + �1�, ����), 0� ≤ �����(��� + �1�, ����), − 1� 

� �(����|����) ����
∗ (��� + �1�, ����)

����

≤ �� + � �(����|����) ����
∗ (��� + �1� − 1, ����)

����
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− �� ≤ � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

− � �(����|����) ����
∗ (��� + �1�, ����)

����

 

� �(����|����) ����
∗ (��� + �1�, ����)

����

− � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

≤ �� 

 − �� ≤ � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

− � �(����|����) ����
∗ (��� + �1�, ����)

����

 

(5.34) 

From equation 5.34, it implies for unit increase in ���, the last part equation 5.33 

increasing in ��� 

Hence in region 4, ����
∗(��� + ��, ����) superadditive in �� ×  � 

Region 5:  

����� ≥ � in both the functions ����
∗(��� + �1�, ����) and ����

∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� 
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����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2�)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(�� + �1 − �) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= (�� + ��)(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) 

(�� + ��)(�2� − �1�) constant with increase in ���.  Lemma 2 shows that 

������(����, ��� + �2�) − ���(����, ��� + �1�)� + ��((���� −  ��� − �2�)� −

(���� −  ��� − �1�)�) is nondecreasing in ���.  Hence in region 5, ����
∗(��� +

��, ����) superadditive in �� ×  � 

This completes the proof for possibility 1. 

Possibility 2: � − �1� > � − �2� 
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Figure 7: Illustration for theorem 3, possibility 2 - ��� 

As shown in the figure above for possibility 1, the resulting regions are considered: 

Region 1:  

����� ≤ � in both functions ����
∗(��� + �2�, ����) & ����

∗(��� + �1�, ����) 

This implies: 

max (0, − �1�) ≤ ��� ≤ � − �2� 

Same as region 1 for possibility 1 

Hence in region 1, ����
∗(��� + ��, ����) is superadditive in �� ×  � 

Region 2:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and � ≥ ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2�  ≤ ��� ≤ � − �1� 
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From theorem 1and theorem 2, the optimal action will be to go to capacity � for states 

(��� + �1�, ����) and to take action � = 0 for states (��� + �2�, ����) 

The region is given the same consideration as in region 2 of possibility 1. 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 

 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

− ��(� − ��� − �1�)

+ � �(����|����)� ����
∗ (��� + �2�, ����)

����

−  ����
∗ (�, ����)� 

(5.35) 

Studying equation 5.35 in parts: 
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1. ��(�2� − �1�) + ∑ �(����|����) ����
∗ (�, ����)����

 − ��(� − �1�) is fixed in this 

region 

2. Lemma 2 shows that ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in CS. 

3. The last part:  

 ����� + � �(����|����) ����
∗ (��� + �2�, ����)

����

 (5.36) 

In this region: 

�����(��� + �2�, ����), 0� ≤ �����(��� + �2�, ����), 1� 

This gives: 

� �(����|����) ����
∗ (��� + �2�, ����)

����

≤ �� + � �(����|����) ����
∗ (��� + �2� + 1, ����)

����

 

 � �(����|����) ����
∗ (��� + �2� + 1, ����)

����

− � �(����|����) ����
∗ (��� + �2�, ����)

����

≥ − �� 

(5.37) 

Equation 5.37 implies that for unit increase in ��� the decrease in 

∑ �(����|����) ����
∗ (��� + �2�, ����)����

 in equation 5.36 will not be more than ��. 
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This gives the last part ‘����� + ∑ �(����|����) ����
∗ (��� + �2�, ����)����

’ increasing 

in ��� 

Hence in region 2, ����
∗(��� + ��, ����) superadditive in �� ×  � 

Region 3:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2� ≤ ��� ≤ � − �1� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 



117 
 

 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= − ��(� − ��� − �1�) + ��(��� + �2� − �)

+ ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.38) 

Studying equation 5.38 in parts: 

1. − ��(� − �1�) + ��(�2� − �) + ��(�2� − �1�) +

∑ �(����|����)� ����
∗ (�, ����) −  ����

∗ (�, ����)�����
 is a fixed value in this 

region for increase in ��� 

2. Previously; it was shown that  ������(����, ��� + �2�) − ���(����, ��� +

�1�)� + ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in 

���. 

3. (�� +  ��)��� increases with ��� considering the assumption �� ≥ ���(0, − ��) 

 Hence in region 3, ����
∗(��� + ��, ����) superadditive in �� ×  � 

Region 4:  

� ≥ ����� ≥ � in the function ����
∗(��� + �1�, ����) and ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� ≤ � − �1� 
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����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying: 

 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����)

����

−  ����
∗ (��� + �1�, ����)� 

(5.39) 

Studying equation 5.39 in parts: 

1. ��(�2� − �1�) +  ∑ �(����|����) ����
∗ (�, ����)����

 + ��(�2� − �) is fixed in this 

region 

2. Previously; it was shown that  ������(����, ��� + �2�) − ���(����, ��� +

�1�)� + ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nondecreasing in 

CS. 
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3. The last part:  

 �� ��� − � �(����|����) ����
∗ (��� + �1�, ����)

����

 (5.40)  

In this region: 

�����(��� + �1�, ����), 0� ≤ �����(��� + �1�, ����), − 1� 

� �(����|����) ����
∗ (��� + �1�, ����)

����

≤ �� + � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

 

− �� ≤ � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

− � �(����|����) ����
∗ (��� + �1�, ����)

����

 

� �(����|����) ����
∗ (��� + �1�, ����)

����

− � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

≤ �� 

 − �� ≤ � �(����|����) ����
∗ (��� + �1� − 1, ����)

����

− � �(����|����) ����
∗ (��� + �1�, ����)

����

 

(5.41) 

From equation 5.41, it implies that for unit increase in ��� the last part equation 5.40 

increasing in ��� 
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Hence in region 4, ����
∗(��� + ��, ����)  superadditive in �� ×  � 

Region 5:  

����� ≥ �, in both the functions ����
∗(��� + �1�, ����) and ����

∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� 

Same as region 5 in possibility 1. Hence in region 5, ����
∗(��� + ��, ����) is 

superadditive in �� ×  � 

This completes the proof for possibility 2. 

This proves that ����
∗(��� + ��, ����) is superadditive in �� ×  � in the given model if 

�����(�����, ����), ����� and ����
∗(����� + ����, ����) is superadditive in �� ×  �. 

We have thus shown by induction that ���(���, ��), ��� is superadditive in �� ×  � ∀ �, � 

Proposition 1:  

For given ��, ��(���, ��) is nonincreasing in ���.  

Rewriting the equations for ��
∗(���, ��), ��(���, ��) and ���(���, ��), ��� given in the 

previous section 5.3. 

��
∗(���, ��) =

���

� ∈ �
���[(���, ��), ��]+ � �(����|��) ����

∗ (��� + ��, ����)

����

� 

��(���, ��) =
��� min �

� ∈ �
���[(���, ��), ��]+ � �(����|��) ����

∗ (��� + ��, ����)

����

� 
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���(���, ��), ��� = ��[(���, ��), ��]+ � �(����|��) ����
∗ (��� + ��, ����)

����

 

We use lemma 1, to reach the result of proposition 1.  As per Lemma 1: 

If ���(���, ��), ���is superadditive in �� ×  � ∀ ��, then Proposition 1 follows.  

Theorem 3 proves that ���(���, ��), ��� is superadditive in �� ×  � ∀ ��.   

From Proposition 1, the computational effort is greatly reduced. 

For this problem definition if the demand takes values from [0, �].  The number of 

iterations required using proposition 1 is 

�(3� + 1)(� + 1) 

Search done in (� + 1) actions at the first and last capacity level, then apply theorem 1,2 

and proposition 1 to get the optimal action at the remaining capacity levels.  

Here are additional structural properties of the defined problem. 

Theorem 4: In the defined problem ���(���, ��), ��� is discrete convex in ��  

∀ ���, ��, �. 

Proof: 

From equation 5.6: 

���(���, ��), ��� = ��[(���, ��), ��]+ � �(����|��) ����
∗ (��� + ��, ����)

����

 

Expanding for ��[(���, ��), ��] from equation 5.2, gives 
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���(���, ��), ���

= ��(��)� + ��(− ��)� + ��(���) + �����(��, ���) + ��(�� − ���)�

+ � �(����|��) ����
∗ (��� + ��, ����)

����

 

∀ �� < 0, this gives 

���(���, ��), �� + 1� − ���(���, ��), ���

= − ��

+ � �(����|��)� ����
∗ (��� + �� + 1, ����) −  ����

∗ (��� + ��, ����)�

����

 

And ∀ � ≥ 0, this gives 

���(���, ��), �� + 1� − ���(���, ��), ���

= ��

+ � �(����|��)� ����
∗ (��� + �� + 1, ����) −  ����

∗ (��� + ��, ����)�

����

 

Considering the assumption: �� ≥ ���(0, − ��); ���(���, ��), �� + 1� −

���(���, ��), ��� is nondecreasing in �� if  

 ����
∗ (��� + �� + 1, ����) −  ����

∗ (��� + ��, ����) 

is nondecreasing in �� 

From the proof of theorem 3, it is concluded that ����
∗(��� + ��, ����) is superadditive 

in �� ×  � ∀ �, � 
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Then ∀ ��2, ��1 �� ����� & ∀�2, �1 �� ���� such that ��2 ≥ ��1 and �2 ≥ �1, it 

follows 

 ��
∗(��2 + �2, ��) −  ��

∗(��2 + �1, ��) ≥  ��
∗(��1 + �2, ��) −  ��

∗(��1 + �1, ��) 

Let ��1 = ��, ��2 =  �� + 1, �1 = � & �2 = � + 1. This gives 

  ��
∗(�� + � + 2, ��) −  ��

∗(�� + � + 1, ��)

≥  ��
∗(�� + � + 1, ��) −  ��

∗(�� + �, ��) 

(5.42) 

Equation 5.42 implies that  ����
∗ (�� + � + 1, ����) −  ����

∗ (�� + �, ����) is 

nondecreasing in �.  This completes the proof of theorem 4. 

Theorem 4 will assist in decreasing the number of iterations required to get the optimum 

policy to at-least: 

2��(� + 1) 

For this problem definition if the demand takes values from [0, �]. 

In case of large values of �, we can employ modified Golden section search method or 

modified Fibonacci search that applies to discrete functions to reduce the steps/ time to 

determine optimum policy. 

We put forward theorem 5 for the purpose of proving the main result in proposition 2. 

Theorem 5: 

In the MDP model presented if the demand transition matrix exhibit first order stochastic 

dominance then ���(���, ��), ��� is subadditive in � ×  � ∀ ���, � 
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That is for �2� ≥ �1� in �� and �2� ≥ �1�in ��, 

���(���, �2�), �2�� − ���(���, �2�), �1�� ≤ ���(���, �1�), �2�� − ���(���, �1�), �1�� 

Proof: 

The proof of this theorem is established using mathematical induction. This starts from 

the last time epoch T, where the capacity is to be salvaged. 

From equation 5.3: 

 ���(���, ��), ��� = ��
∗(���, ��) =  − ����� (5.43)  

��[(���, ��), �1�]− ��[(���, ��), �2�]= 0 for any ��, and any combination of �1� 

and �2�.  Hence we have ���(���, ��), ��� superadditive in � ×  � ∀ ��� 

Writing equation 5.6 

���(���, ��), ��� = ���(���, ��), ��� + � �(����|��) ����
∗ (��� + ��, ����)

����

 

Considering the elements of this equation: 

���(���, ��), ���  = ��(��)� + ��(− ��)� + ��(���) + �����(��, ���) + ��(�� −  ���)� 

���(���, ��), ��� is subadditive in � ×  � ∀ ���, � because: 

���(���, ��), �2�� − ���(���, ��), �1�� is a constant independent of �� ∀ �2� ≥ �1�. 

Hence  ���(���, ��), ��� will be subadditive in � ×  �, if ∑ �(����|�) ����
∗ (��� +����

��, ����) is superadditive in � ×  �. 
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Moreover, Since �(����|��) shows first order stochastic dominance 

∑ �(����|�) ����
∗ (��� + ��, ����)����

 will be subadditive in � ×  � if  ����
∗ (��� +

��, ����) is subadditive in � ×  �. 

In conclusion, ���(���, ��), ��� will be subadditive in � ×  � ∀ ��, if  ����
∗ (��� +

��, ����) is subadditive in � ×  �. 

This will be shown by induction: 

Since ��
∗(���, ��) = − ��.���, ��

∗(����� + ����, ��) is subadditive in � ×  �, as for 

�2���  ≥  �1���  

��
∗(����� + �2���, ��) −  ��

∗(����� + �1���, ��) = − ��(�2��� − �1���) 

is independent of ��. 

From equation 5.26 

 �����(�����, ����), �����

= ��(����)� + ��(− ����)� + ��(�����)

+ �����(����, �����) + ��(���� −  �����)�

− ��(����� + ����) 

(5.44) 

�����(�����, ����), ����� is superadditive in � ×  �. 

From equation 5.27 
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  ����
∗ (�����, ����) = (�� − ��)����� + �����(����, �����) +

��(���� −  �����)� if �� ≥ − �� & �� ≥ �� 

 ����
∗ (�����, ����) = (�� + ��)����� + �����(����, �����) +

��(���� −  �����)� if �� ≤ − �� & �� ≥ �� 

 ����
∗ (�����, ����) = (�� − ��)����� + �����(����, �����) +

��(���� −  �����)� + (�� − ��)�� if �� ≤ �� 

(5.45) 

Next, we have the Bellman optimality equation for � = � − 2, which depends on  ����
∗ () 

as follows: 

�����(�����, ����), �����

= ����[(�����, ����), ����]

+ � �(����|����) ����
∗ (����� + ����, ����)

����

 

As shown earlier, �����(�����, ����), ����� will be subadditive in � ×  � ∀ ��, if 

 ����
∗ (����� + ����, ����) is superadditive in � ×  �. 

Let �2���, �1��� be two actions such that �2��� ≥ �1��� 

From equation 5.45 we can simplify  ����
∗ (����� + �2���, ����) −  ����

∗ (����� +

�1���, ����) by taking common terms as follows: 

  ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� − ��)(�2��� − �1���) + ������(����, ����� + �2���) −

(5.46) 
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���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≥ − �� & �� ≥ �� 

 ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� + ��)(�2��� − �1���) + ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≤ − �� & �� ≥ �� 

 ����
∗ (����� + �2���, ����) −  ����

∗ (����� + �1���, ����) =

(�� − ��)(�2��� − �1���) + ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� −

(���� −   ����� − �1���)�) .  if �� ≤ �� 

The first parts in equation 5.46: (�� − ��)(�2��� − �1���) | (�� + ��)(�2��� −

�1���)|(�� − ��)(�2��� − �1���) are constants.  Studying the second part, which is 

similar in all three possibilities of equation 5.48: ������(����, ����� + �2���) −

���(����, ����� + �1���)� + ��((���� −   ����� − �2���)� − (���� −   ����� −

�1���)�) is nonincreasing in ����. Which means  ����
∗ (����� + �2���, ����) −

 ����
∗ (����� + �1���, ����) is decreasing in ����.  This gives 

�����(�����, ����), ����� subadditive in � ×  �.   

So far, the following results have been established: 

1. �����(�����, ����), �����, �����(�����, ����), �����, ���(���, ��), ��� is 

subadditive in � ×  �. 

2.  ����
∗ (����� + ����, ����),  ��

∗(��� + ��, ��) is subadditive in � ×  �. 
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This gives the first step of the induction proof of theorem 5.  Next assuming that 

�����(�����, ����), �����, and ����
∗(����� + ����, ����) are subadditive in � ×  � 

∀ �����,  we need to prove that ����
∗(��� + ��, ����) is subadditive in � ×  � to give 

���(���, ��), ��� subadditive in � ×  �. 

That is to check if ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����) is nonincreasing in 

� for �2� ≥ �1�∀ ��� 

Let optimum action in time epoch � + 1 and state (����� = 0, ����) be �. 

����(0, ����) = � 

And optimum action in time epoch � + 1 and state (����� = ��, ����) be � − �� 

����(��, ����) = � − �� 

From theorem 1 & 2 it is understood that � ≥ �. 

let � >  �2 > �1 (�2 > � > �1 and �2 > �1 > � will be special cases of this) 

We have two possibilities: 

Possibility 1: � − �1� ≤ � − �2� 
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Figure 8: Illustration of theorem 5, possibility 1 - ��� 

As shown in the figure above for possibility 1, the resulting regions are considered: 

Region 1:  

����� ≤ � in both functions ����
∗(��� + �2�, ����) & ����

∗(��� + �1�, ����) 

This implies: 

max (0, − �1�) ≤ ��� ≤ � − �2� 

From theorem 1 the optimal action will be to go to capacity � for both states 

(��� + �2�, ����) and (��� + �1�, ����), hence:  

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(� − ��� − �2�) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)�

− (��(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)�) 

Simplifying 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= (�� − ��)(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) 

Lemma 3 shows that  ������(����, ��� + �2) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ����. 
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Hence in region 1, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 2:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and � ≥ ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2�  ≤ ��� ≤ � − �1� 

From theorem 1and theorem 2, the optimal action will be to go to capacity � for states 

(��� + �1�, ����) and to take action � = 0 for states (��� + �2�, ����) 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2�) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 
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 ����
∗(�� + �2, �) − ����

∗(�� + �1, �)

= ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

− ��(� − ��� − �1�)

+ � �(����|����)� ����
∗ (��� + �2�, ����)

����

−  ����
∗ (�, ����)� 

(5.47) 

Studying equation 5.47 in parts: 

1. ��(�2� − �1�) − ��(� − �1 − ���) is fixed in this region 

2. From Lemma 3, ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ����. 

3. The last part:  

� �(����|����) ����
∗ (��� + �2�, ����)

����

− � �(����|����) ����
∗ (�, ����)

����

 

Is nonincreasing in ���� because �(����|����) shows first order stochastic 

dominance and ����
∗(����� + ����, ����) is subadditive in � ×  � 

Hence in region 2, ����
∗(��� + ��, ����) subadditive in � ×  �  

Region 3:  

� ≥ ����� ≥ � in both the functions ����
∗(��� + �2�, ����) and ����

∗(��� + �1�, ����) 

This implies: 
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� − �1� ≤ ��� ≤ � − �2� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2�) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(�2� − �1�) + ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (��� + �2�, ����) −  ����

∗ (��� + �1�, ����)�

����

 

��(�2� − �1�) is a fixed value.  Lemma 3 shows that  ������(����, ��� + �2�) −

���(����, ��� + �1�)� + ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is 

nonincreasing in ����.   ����
∗ (��� + �2�, ����) −  ����

∗ (��� + �1�, ����) is given to be 

nonincreasing in ����, because  ����
∗ (��� + ��, ����) is subadditive in � ×  �. 

Hence in region 3, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 4:  
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� ≥ ����� ≥ � in the function  ����
∗(��� + �1�, ����) and ����� ≥ � in the function 

����
∗(��� + �2�, ����) 

This implies: 

 

� − �2� ≤ ��� ≤ � − �1� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2�)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying: 
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 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����)

����

−  ����
∗ (��� + �1�, ����)� 

(5.48) 

Studying equation 5.48 in parts: 

1. ��(�2� − �1�) + ��(��� + �2� − �) is fixed in this region 

2. Lemma 3 shows that  ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ����. 

3. The last part:  

� �(����|����) ����
∗ (�, ����)

����

− � �(����|����) ����
∗ (��� + �1�, ����)

����

 

Is nonincreasing in ���� because �(����|����) shows first order stochastic 

dominance and ����
∗(����� + ����, ����) is subadditive in � ×  � 

Hence in region 4, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 5:  

����� ≥ � in both the functions ����
∗(��� + �1�, ����) and ����

∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� 
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����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2�)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(�� + �1 − �) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= (�� + ��)(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) 

(�� + ��)(�2� − �1�) constant with increase in ���.  Lemma 3 shows that  

������(����, ��� + �2�) − ���(����, ��� + �1�)� + ��((���� −  ��� − �2�)� −

(���� −  ��� − �1�)�) is nonincreasing in ����.  Hence in region 5, ����
∗(��� +

��, ����) subadditive in � ×  � 

This completes the proof for possibility 1. 

Possibility 2: � − �1� > � − �2� 
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Figure 9: Illustration of theorem 5, possibility 2 - ��� 

As shown in the figure above for possibility 1, the resulting regions are considered: 

Region 1:  

����� ≤ � in both functions ����
∗(��� + �2�, ����) & ����

∗(��� + �1�, ����) 

This implies: 

max (0, − �1�) ≤ ��� ≤ � − �2� 

Same as region 1 for possibility 1 

Hence in region 1, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 2:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and � ≥ ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2�  ≤ ��� ≤ � − �1� 
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From theorem 1and theorem 2, the optimal action will be to go to capacity � for states 

(��� + �1�, ����) and to take action � = 0 for states (��� + �2�, ����) 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2�) + �����(����, ��� + �2) + ��(���� −  ��� − �2�)�

+ � �(����|����) ����
∗ (��� + �2�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 

 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

− ��(� − ��� − �1�)

+ � �(����|����)� ����
∗ (��� + �2�, ����)

����

−  ����
∗ (�, ����)� 

(5.49) 

Studying equation 5.49 in parts: 
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1. ��(�2� − �1�) − ∑ �(����|����) ����
∗ (�, ����)����

 − ��(��� + � − �1�) is fixed 

in this region 

2. Lemma 3 shows that  ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ���� 

3. The last part:  

� �(����|����) ����
∗ (��� + �2�, ����)

����

− � �(����|����) ����
∗ (�, ����)

����

 

Is nonincreasing in ���� because �(����|����) shows first order stochastic 

dominance and ����
∗(����� + ����, ����) is subadditive in � ×  � 

Hence in region 2, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 3:  

����� ≤ � in the function ����
∗(��� + �1�, ����) and ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �2� ≤ ��� ≤ � − �1� 



139 
 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(� − ��� − �1�) + ��(��� + �1�) + �����(����, ��� + �1�)

+ ��(���� −  ��� − �1�)� + � �(����|����) ����
∗ (�, ����)

����

� 

Simplifying 

 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= − ��(� − ��� − �1�) + ��(��� + �2� − �)

+ ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����) −  ����

∗ (�, ����)�

����

 

(5.50) 

Studying equation 5.50 in parts: 

1. − ��(� − �1�) + ��(�2� − �) + ��(�2� − �1�) + (�� +  ��)��� is a fixed value 

in this region  

2. Lemma 3 shows that  ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ����. 
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3.  ∑ �(����|����)� ����
∗ (�, ����) −  ����

∗ (�, ����)�����
 is nonincreasing with 

����because �(����|����) shows first order stochastic dominance and 

����
∗(����� + ����, ����) is subadditive in � ×  �  

Hence in region 3, ����
∗(��� + ��, ����) subadditive in � ×  � 

Region 4:  

� ≥ ����� ≥ � in the function ����
∗(��� + �1�, ����) and ����� ≥ � in the function  

����
∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� ≤ � − �1� 

����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(��� + �2�) + �����(����, ��� + �2)

+ ��(���� −  ��� − �2�)� + � �(����|����) ����
∗ (�, ����)

����

− ���(��� + �1�) + �����(����, ��� + �1�) + ��(���� −  ��� − �1�)�

+ � �(����|����) ����
∗ (��� + �1�, ����)

����

� 

Simplifying: 
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 ����
∗(��� + �2�, ����) − ����

∗(��� + �1�, ����)

= ��(��� + �2� − �) + ��(�2� − �1�)

+ ������(����, ��� + �2�) − ���(����, ��� + �1�)�

+ ��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�)

+ � �(����|����)� ����
∗ (�, ����)

����

−  ����
∗ (��� + �1�, ����)� 

(5.51) 

Studying equation 5.51 in parts: 

1. ��(�2� − �1�) + ��(��� + �2� − �) is fixed in this region 

2. Lemma 3 shows that  ������(����, ��� + �2�) − ���(����, ��� + �1�)� +

��((���� −  ��� − �2�)� − (���� −  ��� − �1�)�) is nonincreasing in ����. 

3. The last part: 

∑ �(����|����) ����
∗ (�, ����)����

− ∑ �(����|����) ����
∗ (��� + �1�, ����)����

  

is nonincreasing with ����because �(����|����) shows first order stochastic 

dominance and ����
∗(����� + ����, ����) is subadditive in � ×  � 

Hence in region 4, ����
∗(��� + ��, ����) is subadditive in � ×  � 

Region 5:  

����� ≥ �, in both the functions ����
∗(��� + �1�, ����) and ����

∗(��� + �2�, ����) 

This implies: 

� − �1� ≤ ��� 
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This is same as region 5 in possibility 1. 

Hence in region 5, ����
∗(��� + ��, ����) subadditive in � ×  �. This completes the case 

of possibility 2. 

This gives that if �����(�����, ����), �����, and ����
∗(����� + ����, ����) are 

subadditive in � ×  � ∀ �����,  then ����
∗(��� + ��, ����) is subadditive in � ×  � to 

give ���(���, ��), ��� subadditive in � ×  �. 

This completes the proof for Theorem 5.  

Proposition 2: If the demand transition follows first order stochastic dominance, then the 

optimum action is nondecreasing with increase in �. 

That is, for given ���, ��(���, ��) is nondecreasing in ��. If demand transition follows 

first order stochastic dominance.  

That is ∀ �1, �2 in �� such that �2 ≤ �1, if �(���� > ��|�2) ≥ �(���� > ��|�1) ∀ ��, � 

Then ��(���, �2) ≥ ��(���, �1) ∀ ���, � 

By lemma 1, Proposition 2 follows if ���(���, ��), ���is subadditive in � ×  � ∀ ���.  

Theorem 5 proves that ���(���, ��), ���is subadditive in � ×  � ∀ ��� 

 

5.6 Modified value iteration algorithm 

 

This section gives the modified value iteration that will greatly reduce the computational 

efforts compared to standard backward value iteration. 
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5.6.1 Demand transition matrix does not show first order stochastic 

dominance 

Step 1: � = �, calculate all ��
∗(���, ��) 

Step 2: Reduce � by one unit 

Step 3: �� = 0 

Step 4: Determine ��(��� = 0, ��) and ��
∗(��� = 0, ��) 

 Step 4.1: Set � = 0 and calculate ���(��� = 0, ��), �� 

Step 4.2: Increase � by one unit.  

If � ≤ ��, Goto step 4.3 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 5 

Step 4.3: If ���(��� = 0, ��), �� < ���(��� = 0, ��), � − 1� , Goto step 4.2. 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 5 

Step 5: Determine ��(���, ��) and ��
∗(���, ��) ∀ 0 < ��� ≤ � − 1 

 ��(���, ��) = � − 1 − ��� & ��
∗(���, ��) = ���(���, ��), � − 1 − ���� 

Step 6: Determine ��(��� = ��, ��) and ��
∗(��� = ��, ��) 

 Step 6.1: Set � = �� − � − 1 and calculate ���(��� = 0, ��), �� 
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Step 6.2: Increase � by one unit.  

If � ≤ 0, Goto step 6.3 

Else ��(��, ��) = � − 1 &  ��
∗(��, ��) = ���(��, ��), � − 1�. Step 7 

Step 6.3: If ���(��� = 0, ��), �� < ���(��� = 0, ��), � − 1� , Goto step 6.2. 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 7 

Step 7: Determine ��(���, ��) and ��
∗(���, ��) ∀ �� > ��� ≥ �� + � − 1 

         ��(���, ��) = �� + � − 1 − ��� & ��
∗(���, ��) = ���(���, ��), �� + � − 1 − ���� 

Step 8: Increase �� by one unit. 

 If �� ≤maximum demand, goto step 4 

 Else goto step 9 

Step 9: If � > 1, goto step 2 

 Else END. 

 

5.6.2 Demand transition matrix show first order stochastic dominance 

Step 1: � = �, calculate all ��
∗(���, ��) 

Step 2: Reduce � by one unit 

Step 3: �� = 0 

Step 4: Determine ��(��� = 0, ��) and ��
∗(��� = 0, ��) 
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 Step 4.1: If �� = 0, Set � = 0 and calculate ���(��� = 0, ��), �� 

    Else, Set � = ��(��� = 0, �� − 1) 

Step 4.2: Increase � by one unit.  

If � ≤ ��, Goto step 4.3 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 5 

Step 4.3: If ���(��� = 0, ��), �� < ���(��� = 0, ��), � − 1� , Goto step 4.2. 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 5 

Step 5: Determine ��(���, ��) and ��
∗(���, ��) ∀ 0 < ��� ≤ � − 1 

 ��(���, ��) = � − 1 − ��� & ��
∗(���, ��) = ���(���, ��), � − 1 − ���� 

Step 6: Determine ��(��� = ��, ��) and ��
∗(��� = ��, ��) 

 Step 6.1: Set � = �� − � − 1 and calculate ���(��� = 0, ��), �� 

Step 6.2: Increase � by one unit.  

If � ≤ 0, Goto step 6.3 

Else ��(��, ��) = � − 1 &  ��
∗(��, ��) = ���(��, ��), � − 1�. Step 7 

Step 6.3: If ���(��� = 0, ��), �� < ���(��� = 0, ��), � − 1� , Goto step 6.2. 

Else ��(��� = 0, ��) = � − 1 &  ��
∗(0, ��) = ���(0, ��), � − 1�. Step 7 

Step 7: Determine ��(���, ��) and ��
∗(���, ��) ∀ �� > ��� ≥ �� + � − 1 

         ��(���, ��) = �� + � − 1 − ��� & ��
∗(���, ��) = ���(���, ��), �� + � − 1 − ���� 
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Step 8: Increase �� by one unit. 

 If �� ≤maximum demand, goto step 4 

 Else goto step 9 

Step 9: If � > 1, goto step 2 

 Else END. 

Note: in case of large action spaces we can use searches applicable to discrete convex 

functions that will reach the optimum decision action faster in steps 4 and 6. 

 

5.7 Numerical Example 

 

Problem 1: 

Problem parameters 

��= 13; �� =  4; ��= 12; ��= 25; ��= 65; ��= 3; �=10; ��=10 

Demand transition matrix �(����|��) 

���� = 0 1 2 3 4 5 6 7 8 9 10

�� = 0 .2 .1 .3 .1 .3

1 .1 .2 .2 .4 .1
2 .1 .1 .2 .1 .1 .4
3 .1 .1 .2 .2 .1 .3
4 .1 .1 .2 .2 .3 .1
5 .1 .2 .2 .2 .1 .2
6 .1 .1 .2 .1 .2 .1 .1 .1
7 .1 .1 .1 .1 .1 .3 .2
8 .1 .1 .1 .1 .2 .2 .2
9 .1 .1 .2 .2 .2 .2

10 .1 .1 .1 .1 .2 .2 .2

 

Optimum solution 
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��(��, �) = ��(��, �) = ��(��, �) 

�� = � � � � � � � � � � ��
� = � 4 3 2 1 0 0 0 0 0 0 0

� 3 2 1 0 0 0 0 0 0 − 1 − 2
� 8 7 6 5 4 3 2 1 0 − 1 − 2
� 5 4 3 2 1 0 0 0 0 0 0
� 8 7 6 5 4 3 2 1 0 0 − 1
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 − 1 − 2
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1

�� 8 7 6 5 4 3 2 1 0 0 − 1

 

Table 3: Problem 1, optimal action at t=1,2,3 

 

 

 

 

��(��, �) =  

�� = � � � � � � � � � � ��
� = � 4 3 2 1 0 0 0 0 0 0 0

� 3 2 1 0 0 0 0 − 1 − 2 − 3 − 4
� 8 7 6 5 4 3 2 1 0 − 1 − 2
� 5 4 3 2 1 0 0 0 0 0 0
� 8 7 6 5 4 3 2 1 0 0 − 1
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 − 1 − 2
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1

�� 8 7 6 5 4 3 2 1 0 0 − 1

 

Table 4: Problem 1, optimal action at t=4 
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��(��, �) =  

�� = � � � � � � � � � � ��
� = � 4 3 2 1 0 0 0 0 0 0 0

� 3 2 1 0 0 0 − 1 − 2 − 3 − 4 − 5
� 8 7 6 5 4 3 2 1 0 − 1 − 2
� 5 4 3 2 1 0 0 0 0 0 0
� 6 5 4 3 2 1 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 − 1 − 2
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1

�� 8 7 6 5 4 3 2 1 0 0 − 1

 

Table 5: Problem 1, optimal action at t=5 

 

 

 

 

��(��, �) =  

�� = � � � � � � � � � � ��
� = � 4 3 2 1 0 0 0 0 0 0 0

� 3 2 1 0 0 0 − 1 − 2 − 3 − 4 − 5
� 6 5 4 3 2 1 0 0 0 − 1 − 2
� 5 4 3 2 1 0 0 0 0 0 0
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 − 1 − 2
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1

�� 8 7 6 5 4 3 2 1 0 0 − 1

 

Table 6: Problem 1, optimal action at t=6 
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��(��, �) =  

�� = � � � � � � � � � � ��
� = � 4 3 2 1 0 0 0 0 0 0 0

� 3 2 1 0 0 − 1 − 2 − 3 − 4 − 5 − 6
� 5 4 3 2 1 0 0 0 0 − 1 − 2
� 5 4 3 2 1 0 0 0 0 0 0
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 0 0 − 1
� 5 4 3 2 1 0 0 0 − 1 − 2 − 3
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 − 1

�� 8 7 6 5 4 3 2 1 0 0 − 1

 

Table 7: Problem 1, optimal action at t=7 

 

 

 

 

��(��, �) =  

�� = � � � � � � � � � � ��
� = � 2 1 0 0 0 0 0 0 0 0 0

� 2 1 0 0 − 1 − 2 − 3 − 4 − 5 − 6 − 7
� 4 3 2 1 0 0 0 0 0 − 1 − 2
� 4 3 2 1 0 0 0 0 0 0 0
� 5 4 3 2 1 0 0 0 0 0 − 1
� 4 3 2 1 0 0 0 0 0 0 − 1
� 4 3 2 1 0 0 0 0 − 1 − 2 − 3
� 7 6 5 4 3 2 1 0 0 0 − 1
� 8 7 6 5 4 3 2 1 0 0 0
� 8 7 6 5 4 3 2 1 0 0 0

�� 8 7 6 5 4 3 2 1 0 0 0

 

Table 8: Problem 1, optimal action at t=8 
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Figure 10: Graphical representation (i) of optimal solution at t=1 – Problem 1 

 

 

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11 1234567891011

-2

0

2

4

6

8

a*(CS,d) at t=1

d
CS

a
*



151 
 

 

 

 

 

 

 

Figure 11:  Graphical representation (ii) of optimal solution at t=1 – Problem 1 
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Problem 2: 

The same problem with demand transition matrix having first order stochastic dominance 

given below 

���� = 0 1 2 3 4 5 6 7 8 9 10

�� = 0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
2 .2 .1 .1 .1 .1 .1 .1 .1 .1
3 .1 .2 .1 .1 .1 .1 .1 .1 .1
4 .2 .1 .2 .1 .1 .1 .1 .1
5 .1 .2 .2 .2 .1 .1 .1
6 .2 .2 .3 .1 .1 .1
7 .1 .3 .3 .1 .1 .1
8 .1 .2 .3 .1 .2 .1
9 .1 .1 .3 .2 .2 .1

10 .1 .1 .2 .2 .2 .2

 

Gives the following result 

 

Figure 12: Graphical representation of optimal solution at t=1 – Problem 2  
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5.8 Chapter 5 Appendix 

Lemma 2: 

The function:  

�����(��, ����� + ����) + ��(�� −   ����� − ����)� 

is superadditive in �� ×  � ∀ ��. 

Proof: 

�����(��, ����� + ����) + ��(�� −   ����� − ����)� superadditive in �� ×  � ∀ �� 

means ∀ �2��� ≥ �1���in ����: 

������(��, ����� + �2���) − ���(��, ����� + �1���)� + ��((�� −   ����� −

�2���)� − (�� −   ����� − �1���)�) is nondecreasing in ����� 

������(��, ����� + �2���) − ���(��, ����� + �1���)� + ��((�� −   ����� −

�2���)� − (�� −   ����� − �1���)�) has 3 regions: 

1. ����� < �� − �2��� 

2. �� − �2��� ≤ ����� < �� − �1��� 

3. ����� ≥ �� − �1��� 

Region 1: ����� < �� − �2��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�)

= (�� − ��)(�1��� − �2���) 
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Region 2: �� − �2��� ≤ ����� < �� − �1��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�)

= (�� − ��)(����� + �1��� − ��) 

Region 3: ����� ≥ �� − �1��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�) = 0 

Note from the cost parameter assumption �� > �� + ��, the relation �� > �� is implicit. 

Hence, ������(��, ����� + �2���) − ���(��, ����� + �1���)� + ��((�� −   ����� −

�2���)� − (�� −   ����� − �1���)�) increasing in �����. 

This completes the proof. 

Lemma 3: 

The function:  

�����(��, ����� + ����) + ��(�� −   ����� − ����)� 

is subadditive in � ×  � ∀ �����. 

Proof: 

�����(��, ����� + ����) + ��(�� −   ����� − ����)� superadditive in � ×  � ∀ ����� 

means ∀ �2��� ≥ �1���in ����: 

������(��, ����� + �2���) − ���(��, ����� + �1���)� + ��((�� −   ����� −

�2���)� − (�� −   ����� − �1���)�) is nonincreasing in �� 
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������(��, ����� + �2���) − ���(��, ����� + �1���)� + ��((�� −   ����� −

�2���)� − (�� −   ����� − �1���)�) has 3 regions: 

1. �� ≤ ����� + �1��� 

2. ����� + �1��� ≤ �� ≤ ����� + �2��� 

3. �� ≥ ����� + �2��� 

Region 1: �� ≤ ����� + �1��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�) = 0 

Region 2: ����� + �1��� ≤ �� ≤ ����� + �2��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�)

= (�� − ��)(����� + �1��� − ��) 

Region 3: �� ≥ ����� + �2��� 

������(��, ����� + �2���) − ���(��, ����� + �1���)�

+ ��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�)

= ��(�1��� − �2���) 

Note from the cost parameter assumption �� > �� + ��, the relation �� > �� is implicit. 

Hence we have ������(��, ����� + �2���) − ���(��, ����� + �1���)� +

��((�� −   ����� − �2���)� − (�� −   ����� − �1���)�) decreasing in �� ∀�. 
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6 CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary  

 

This work applies MDP modeling to optimize logistics capacity in supply chain.  In the 

first part of the thesis, a previous work on optimizing RL operations is studied.  It is 

shown that the method of proof to guarantee the existence of monotone policies in the 

original work was inappropriate.  A simple counterexample is provided to support this 

statement.  Further, a formulation was corrected to correctly represent the stated problem.  

A new set of conditions to guarantee the existence of threshold policy in case of a two-

period problem is then provided.   

In the second part of the thesis, an MDP model for forward logistics was formulated and 

a complete study of the structural properties of the optimal decision policy was 

performed.  The advantages in terms of computational effort due to the structural 

properties were quantified.  Further, a modified value iteration algorithm is provided that 

applies these structural properties. 

 

6.2 Future Research  

 

Few of several research opportunities arising from this work are as follows: 
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1. A complete study of the structural properties for the multi period Reverse 

Logistics (RL) problem of Serrato et al. (2007). 

2. Generalize the Forward Logistics problem by introducing to it fixed cost 

(switching cost) which is incurred whenever a decision is made to change its 

capacity. 

3. Generalize the RL problem by allowing the decision maker to decide on the 

change in capacity when opting for internal RL. 

4. Introducing the outsourcing option to Forward Logistics problem. 
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