

c⃝ADEL MOHAMMED YAHYA AL-MAHDI

Year 2015

i

I dedicate my Dissertation work to my family. A special feeling of

gratitude to my loving parents, my wife, my son, my daughters, my

brothers, my sisters.

ii

ACKNOWLEDGMENTS

I am most grateful to Almighty ALLAH, the Beneficent, the Merciful, for

enabling me to complete this work. Peace and blessings of ALLAH be upon his Last

messenger Mohammed (Sallallah-Alaihe-Wasallam) and his family, who guided us to

the right path.

First and the foremost acknowledgments are due to the King Fahd University of

Petroleum and Minerals and to the Department of Mathematical Sciences for sup-

porting my research work.

I wish to express My deep appreciation and heartfelt gratitude to Dr. Faisal Fairag,

my thesis advisor for his unfailing encouragement, advice and suggestions through this

work and Co. advisor Prof. F. D. Zaman who guided me with his dedicated attention,

expertise and knowledge throughout this research. I also wish to thank my Committee

Members, Prof. Mohamed El-Gebeily, Prof. Kassem Mustapha and Dr. Muhammad

Yousuf for their constructive guidance and support.

And last, but not the least, my cordial thanks and appreciation are due to my parents,

my wife and children, brothers, friends and all members of my family who always

support me with their love, patience, encouragement and constant prayers.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENT . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT (ENGLISH) . xii

ABSTRACT (ARABIC) . xiii

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Image deblurring problem . 4

1.2.1 Overview of image deblurring 4

1.3 Stochastic Darcy’s equations . 6

1.3.1 Overview of the stochastic Darcy’s equations 6

1.4 Organization of the dissertation . 7

2 PRELIMINARIES 8

2.1 Introduction . 9

2.2 Saddle point matrices and their properties 9

2.2.1 Factoring saddle point matrices and their Schur complements . 9

2.2.2 Solvability conditions . 10

2.2.3 Inverse of a saddle point matrix 11

iv

2.2.4 Eigenvalues of the saddle point matrix 12

2.3 Krylov subspace iterative methods 12

2.4 Preconditioning technique . 15

2.5 PMINRES method . 16

2.6 Fourier transform (FT) and convolution integral 17

2.6.1 (1-D) Fourier transform and convolution theorem 17

2.6.2 (2-D) Fourier transform and convolution theorem 19

2.7 Fast Fourier transform . 20

2.7.1 (1-D) Fast Fourier transform 20

2.7.2 (2-D) Fast Fourier transform 21

2.8 Toeplitz and circulant matrices . 21

2.8.1 Block Toeplitz and block circulant matrices 22

2.9 Well-posedness . 23

2.10 Random variables and random fields 27

3 IMAGE DEBLURRING PROBLEM 30

3.1 Introduction . 31

3.2 Mathematical model . 31

3.2.1 Tikhonov regulazation . 33

3.2.2 Total variation(TV) . 33

3.2.3 The Euler-Lagrange equations 34

3.2.4 Discretization steps . 36

4 PRECONDITIONING TECHNIQUE FOR IMAGEDEBLURRING

PROBLEM 42

4.1 Introduction . 43

4.2 The exact preconditioner . 44

v

4.3 Eigenvalues estimates . 44

4.3.1 Numerical results for the eigenvalues analysis 47

4.4 Approximation K∗K . 48

4.4.1 Symmetric BTTB approximation 48

4.4.2 Strang circulant approximation 49

4.4.3 The best circulant approximation 50

4.5 Three block diagonal preconditioners 50

4.6 Numerical experiments . 51

4.7 Conclusion . 54

5 STOCHASTIC DARCY’S EQUATIONS 62

5.1 Introduction . 63

5.2 Overview . 64

5.3 Hilbert spaces . 66

5.4 Weak formulations . 67

5.4.1 The weak formulation for the deterministic problem 68

5.4.2 The weak formulation of the stochastic problem 70

5.4.3 Karhunen. Lo‘eve (KL) expansion 72

5.4.4 The weak formulation of the perturbed problem 73

5.5 Deterministic spaces approximation 76

5.6 Finite-dimensional noise . 77

5.7 Stochastic spaces approximation . 79

5.8 Stochastic matrix structures . 82

5.8.1 Remarks . 84

5.9 Numerical examples . 85

5.9.1 Eigenvalue problem . 86

vi

5.9.2 Five-Spot problem(deterministic) 87

5.9.3 Five-Spot problem(stochastic) 89

5.10 Conclusions . 97

6 PRECONDITIONING TECHNIQUE FOR STOCHASTIC DARCY’S

EQUATIONS 98

6.1 Introduction . 99

6.2 Deterministic problem . 100

6.2.1 Preconditioners for the deterministic problem 101

6.2.2 Eigenvalue analysis . 103

6.2.3 Numerical computations . 104

6.3 Preconditioners for the decoupled stochastic system 107

6.3.1 Laplace preconditioner . 107

6.3.2 Natural preconditioner . 110

6.3.3 Exact Schur complement preconditioner 111

6.4 Conclusion . 112

7 CONCLUSION AND FUTURE WORK 113

7.1 Conclusion . 114

7.2 Future works . 115

8 MATLAB CODES 117

BIBLIOGRAPHY . 159

VITAE . 171

vii

List of Tables

4 .1 Bounds on eigenvalues of the preconditioned matrix P−1A 60

4 .2 The Preconditioner PT . 60

4 .3 The Preconditioner PS . 60

4 .4 The Preconditioner PC . 60

4 .5 Comparison between PT , PS and PC 61

4 .6 CPU time, PSNR for PAN , P12, P2 and P3 61

6 .1 k−1 ≡ 1 . 105

6 .2 k−1 = 1 + x2 + y2 . 105

6 .3 k−1(x) = exp(x) + exp(y) . 105

6 .4 P1MINRES iterations NO. 106

6 .5 Bounds on the eigenvalues of P−1
L Ci 110

6 .6 Bounds on the eigenvalues of P−1
N Ci 111

6 .7 Maximum and minimum eigenvalues of A−1
0 Ai 111

viii

List of Figures

4 .1 Iterations Number v.s. the Residual 52

4 .2 True Image . 55

4 .3 Blurred Image . 55

4 .4 Deblured Image PT . 55

4 .5 Deblured Image PS . 55

4 .6 Deblured Image PC . 55

4 .7 Out-of-focus kernel . 55

4 .8 True Image . 56

4 .9 Blurred Image . 56

4 .10 Deblured Image PT . 56

4 .11 Deblured Image PS . 56

4 .12 Deblured Image PC . 56

4 .13 Kernel Cantor . 56

4 .14 1st Fixed Point Iteration . 57

4 .15 5th Fixed Point Iteration . 57

4 .16 10th Fixed Point Iteration . 57

4 .17 13th Fixed Point Iteration . 57

4 .18α = 8.0e− 2 . 58

4 .19α = 8.0e− 4 . 58

ix

4 .20α = 8.0e− 7 . 58

4 .21α = 8.0e− 8 . 58

4 .22 Res. .vs. iter. α = 8e− 5 . 59

4 .23 Res. .vs. iter. α = 8e− 4 . 59

4 .24 Res. .vs. iter. α = 8e− 5 . 59

4 .25 Res. .vs. iter. α = 8e− 4 . 59

5 .1 The Eigenvalues . 87

5 .2 First Eigenfunction . 88

5 .3 Second Eigenfunction . 88

5 .4 Eigenfunction . 88

5 .5 Fourth Eigenfunction . 88

5 .6 Shape of the Mesh . 90

5 .7 Pressure Contour . 90

5 .8 Pressure Surface . 90

5 .9 Velocity Distribution . 90

5 .10 The Velocity of ux . 90

5 .11 The Velocity of uy . 90

5 .12 The Mesh . 92

5 .13 Pressure-mean Surface . 92

5 .14 Pressure-mean Contour . 92

5 .15 Pressure Variance . 92

5 .16Mean of ux . 92

5 .17Mean of uy . 92

5 .18 Variance of ux . 92

5 .19 Variance of uy . 92

x

6 .1 when h = 1/4 . 106

6 .2 when h = 1/8 . 106

6 .3 when h = 1/16 . 106

6 .4 when h = 1/64 . 106

6 .5 Shape of the mesh . 108

6 .6 Velocity distribution . 108

6 .7 Pressure surface . 108

6 .8 Pressure cantor . 108

6 .9 The ux velocity . 108

6 .10 The uy velocity . 108

xi

DISSERTATION ABSTRACT

Name: Adel Mohammed Yahya Al-Mahdi

Title: Efficient Solvers For Image Dublurring Problem

And Stochastic Darcy’s Equations

Major Field: Mathematics

Date of Degree: December, 2015

We consider the numerical solutions of two large and ill-conditioned linear

systems which arise in applications. The first system arises when the total variational

regularization is applied to solve an ill-posed problem (image deblurring problem) while

the second system results from the discretization of the ([L2(D)]2×L2
P(Ω))⊗(H1(D)∩

L2
0(D)⊗L2

P(Ω)) formulation for the stochastic Darcy’s equations. In each system the

coefficient matrix has huge size and large condition number. These properties of the

coefficient matrices make any iterative method for such a system very slow. To over-

come this problem, we introduce several new preconditioners for such a system to

accelerate the convergence of the iterative method that we will use. These precondi-

tioners are of Murphy, Golub and Wathen type. We show that the preconditioned

matrices have eigenvalues clustering behavior. This behavior leads to large reduction

in the number of iterations. We test the performance of the preconditioned iterative

methods through several numerical examples.

xii

 xiii

 ملخص بحث
 درجة الدكتوراة في الفلسفة

عادل محمد يحي المھدي الاســــــــــــــــم:

بمعامعلات دارسيحلول فعالة لمشاكل توضيح الصور الرقمية ومعادلات عنوان الرسالة:
.عشوائية

 التــخـصـــص : الرياضيــــات.

 2015تاريخ التخرج : ديسمبر

تكاملية غير خطية -مينا بالحلول العددية لنوعين من انواع المعادلات. الاولى معادلة تفاضليةاھت في ھذه الرسالة

(معادلات دارسي) بمعاملات ناتجة عن مشاكل توضيح الصور الرقمية والمعادلة الثانية ھي معادلة تفاضلية

معامل ھذا النظام لھا رقم شرطي صفوفة . مخطي كبير جدا الانواع من المعادلات تتطلب حل نظام عشوائية. ھذه

)condition number كبير جدا مما يجعل اي طريقة تكرارية لھذا النظام بطيئة جدا. ولمعالجة ھذا البطئ اقترحنا (

. ھذه المھيئات من نوع مھيئات مشابھة ل تقوم بتسريع تكرار الطرق ام مھيئات لھذه النظم الخطية لكي استخد

المھيئة لديھا صفة التجميع وھذا السلوك التجميعي يؤدي الى خفض قيم الذاتية للمصفوفات . ال وثن-غلوب-ميرفي

 اداء المھيئات المقترحة من خلال عدة امثلة عددية. اختبرنا في ھذا البحث كبير جدا في عدد التكرارات.

Chapter 1

INTRODUCTION

1

2

1.1 Motivation

In many applications, most of discretized problems lead to linear system of equations

of the form D B1
T

B2 −C

︸ ︷︷ ︸

A

 u

p

︸ ︷︷ ︸

x

=

 f

g

︸ ︷︷ ︸

b

. (1.1.1)

The above system is called generalized saddle point system (saddle point system if

C = 0). This system appears in many fields such as the following situations:

• solving partial differential equations (pdes) by mixed finite elements methods.

• image reconstruction problems.

• discretizing Darcy and non-Darcy equations.

• optimization problems.

• discretizing Stokes and Navier-Stokes problem.

• finance, economics and optimal control.

For the other areas where saddle point problems naturally arise, we refer to [11],

[100]. The system (1.1.1) is often indefinite and ill-conditioned. These properties

come from the discretization methods like finite element, finite volume and finite dif-

ference methods. Due to these properties, the numerical solution of such systems

represent a big challenge for those interested in solving these systems and thus this

is an active area research.

In this dissertation, we consider two important saddle point systems which arise

in applications. The first system arises when total variational (TV) regularization is

3

applied to solve an image deblurring problem while the second one results from the

discretization of the [L2(D)]2 ⊗L2
P(Ω) and (H1(D)∩L2

0(D))⊗L2
P(Ω) formulation for

stochastic Darcy’s equations.

The coefficient matrices of both systems have huge size and large condition num-

bers. The reason for the huge size of the first system (image deblurring problem) is

that the lower resolution image of 256× 256 pixel array has a corresponding matrix

of 2564 entries.

The reason for the huge size of the second system (stochastic Darcy’s equations) is

that the coefficient matrix is a kronecker product of two block matrices of which one

comes from the deterministic part while the second results from the stochastic part.

There are two classes of linear solvers. The first class is based on the direct methods

while the second on the iterative methods. It is known that direct methods like LU

and Cholesky factorization can be used if the solvable system is of a reasonable size.

This is because solving linear systems using direct methods requires O(n3) arithmetic

operations, where n is the length of the solution vector x. Hence, for the two linear

system which studied here, direct methods are not applicable.

In this case, we use suitable iterative methods that are usually based on Krylov sub-

space methods. But the problem is that the convergence of these methods is slow in

the case of ill-conditioning matrices.

To overcome the slowness of the convergence, we find suitable preconditioning matri-

ces, so that the preconditioned matrices have good spectral properties.

In the following two sections, we present the two saddle point systems which we

aim to study in this dissertation.

4

1.2 Image deblurring problem

The first saddle point system that we will study in this dissertation is of the form

 αD −αB

−αBT −K∗K

 V

U

 =

 0

−K∗Z

 . (1.2.1)

The above system arises when total variational regularization is applied to solve an

ill–posed problem (image deblurring problem).

The importance of such system is due to the wide applications of the image de-

blurring. For instance Saher needs to remove the blur from the car image taken while

the camera is shaking or in radar imaging and tomography one needs to remove the

effect of imaging systems response. Other applications arise in medical images where

deblurring is an essential requirement.

The system (1.2.1) is in the generalized saddle point form. Its coefficient matrix

is of huge size and it is highly ill-conditioned. The (2,2)–block of this matrix has the

block Toeplitz with Toeplitz block (BTTB) structure. Moreover, in this system, the

negative Shur complement of its coefficient matrix is the sum of two matrices. The

first matrix, K∗K, is dense and comes from the discretization of a compact integral

operator while the second (sparse) matrix, L = (BTD−1B), is called the regulariza-

tion matrix results from the discretization of a diffusion operator.

1.2.1 Overview of image deblurring

When the coefficient matrix of the system (1.2.1) is symmetric, indefinite, large and

ill-conditioned, MINRES is the suitable iterative method. However, a preconditioner

5

is needed to achieve the fast convergence. MINRES with such a preconditioner is

called PMINRES. However, not any preconditioner can be used.

What is needed is an efficient preconditioner. The efficiency can be tested through

the number of iterations, the CPU-time and the clustering behavior of the eigenvalues

of the preconditioned matrix.

Our starting point here is that the Schur complement of the matrix of the system

(1.2.1) contains a product of a Toepelitz matrix with Toepelitz blocks (BTTB) and

its transpose. This product may not be a BTTB.

We approximate this product by several approaches. In the first one, we approxi-

mate it by a symmetric BTTB matrix. In the second approach, we use the Strang

circulant approximation of a BTTB matrix. The last approach uses the best circulant

approximation for the BTTB matrix. Both of theses approximations alow us to use

the Fast Fourier Transform (FFT) for matrix-vector multiplication. This multipli-

cation is needed in PMINRES computation because in each PMINRES iteration we

need to solve a linear system of the form Px = y where P is the preconditioner ma-

trix. So FFT reduces the cost of the computation from O(n2) arithmetic operations

to O(n log n) arithmetic operations.

As a consequence of these three approximation, we develop three efficient block di-

agonal preconditioners. These preconditioners are of Murphy, Golub and Wathen

(MGW) type and they depend on these three approximations of the product of the

BTTB matrix and its transpose. We investigate the efficiency of these preconditioners

by several numerical computations in terms of CPU-time, iteration numbers and the

quality of the reconstructed images. In the following section, we present the second

saddle point system considered in this dissertation.

6

1.3 Stochastic Darcy’s equations

The second saddle point system which we study in this dissertation is in the form

 Â B̂T

B̂ 0

 u

p

 =

 0

f

 . (1.3.1)

The above system occurs in the discretization of the [L2(D)]2 ⊗L2
P(Ω) and (H1(D)∩

L2
0(D)) ⊗ L2

P(Ω) formulation for Darcy’s equation with stochastic coefficients. The

result of this discretization is a huge and ill-conditioned linear system (1.3.1). The

reason for the huge size of this system is that the coefficient matrix and the right

hand side are a kronecker product of two block matrices, one from the deterministic

part while the other from the stochastic part. This kind of equations is important

in petroleum industry and in describing the flow of fluid in pours media. For these

reasons, we study the numerical solution of this problem.

1.3.1 Overview of the stochastic Darcy’s equations

As we mentioned above, the linear system (1.3.1) arises from discretaizing the mixed

formulation of Darcy’s equations with random data. In this discretaization, we use

a truncated Karhunen-Loève (K-L)-expansion to represent this random coefficient.

We use the stochastic Galerkin finite element method (SGFEM). In this method, the

deterministic part is discretized using classical mixed finite element methods and the

stochastic part by using a tensor product (TP) polynomial space. The highly struc-

tured linear system that results from this discretization means that Krylov subspace

methods with a suitable preconditioner as linear solver is extremely effective here.

Since the coefficient matrices of the systems (1.3.1) and (1.2.1) are symmetric and

indefinite, a suitable iterative method is MINRES.

7

Hence, we propose and analyze several block-diagonal preconditioners. These pre-

conditioners are also of Murphy, Golub and Wathen type and are based on the

[L2(D)]2 ⊗ L2
P(Ω) and (H1(D) ∩ L2

0(D)) ⊗ L2
P(Ω) spaces of the Darcy’s velocities

and the pressure respectively.

The attractive properties of this choice of the discrete spaces is that the (1,1) block

in the coefficient matrix has the diagonal structure and the Schur complement of the

coefficient matrix of this system is the well known discrete Laplacian matrix. These

nice properties lead to a reduction in the cost of the computation and give a solution

with less number iterations .

1.4 Organization of the dissertation

This dissertation is organized as follows: In Chapter 2, we present some fundamental

definitions and notations related to the image reconstruction problem and stochastic

Darcy’s equations. In Chapter 3, we present the mathematical model behind the im-

age deblurring problems. We derive several preconditioners and implement them in

Chapter 4. In Chapter 5, we present, analyze and implement the stochastic Galrkin

finite element method for the stochastic Darcy’s equations. In Chapter 6, we pro-

pose several preconditioners for both deterministic and stochastic Darcy equations.

We give conclusions of this study and propose some future directions in Chapter 7.

Finally, the Matlab codes which was used in our computations is given in Chapter 8.

Chapter 2

PRELIMINARIES

8

9

2.1 Introduction

In this chapter, we present some definitions, spaces and other concepts that we need

in the next chapters of this dissertation. Since we are interested in saddle point

problems, we start by giving some properties, factorizations, inverse and solvability

of the saddle point systems in the following sections and then we introduce some

preliminaries and notations related to the image deblurring problem and finally to

the stochastic problem.

2.2 Saddle point matrices and their properties

In this section, we give some properties of the matrix A given in (1.1.1), which is in

the saddle point form.

2.2.1 Factoring saddle point matrices and their Schur com-

plements

In this subsection, we aim to give some factorizations for the generalized saddle point

matrix A in the non-symmetric case , (we assume that D is invertible (non-singular)),

as follows:

A =

 D B1
T

B2 −C

 =

 I 0

B2D
−1 I

 D 0

0 −S

 I D−1B1

T

0 I

 . (2.2.1)

10

Here, S = (C + B2D
−1B1

T) is called the positive Schur complement of the block D

in the big-matrix A. Also A has the following factorizations

A =

 D B1
T

B2 −C

 =

 D 0

B2 −S

 I D−1B1

T

0 I

 (2.2.2)

and

A =

 D B1
T

B2 −C

 =

 I 0

B2D
−1 I

 D B1

T

0 −S

 (2.2.3)

2.2.2 Solvability conditions

We see that from (2.2.1)-(2.2.3), D is needed to be nonsingular. Moreover, A is in-

vertible if S is also invertible. However, the non singularity of S = (C +B2D
−1B1

T)

is by putting some conditions on the component matrices B1, B2, D and C.

In (2.2.1), if C = 0, D is symmetric positive definite (spd) and B1 = B2, then we get

the so called standard symmetric saddle point matrix in which the Schur complement

is S = BD−1BT . It is clear that the Schur complement S, and thus the saddle point

matrix A, is invertible if B has full row rank. Now, if C ̸= 0 is symmetric positive

semidefinite (sps), D is spd and B1 = B2 = B, then, again S = (C+BD−1BT) is sps.

Moreover, it is positive definite and hence invertible if ker(C)∩ ker(BT) = {0}. It is

obvious that sufficient conditions for the invertibility are either C be positive definite

or B has full row rank. The above discussion can be summarized in the following

theorem.

Theorem 1 Let D be an spd matrix, C be sps and B1 = B2 = B. If ker(C) ∩

ker(BT) = 0, then the matrix A is invertible. In particular, if B has full row rank,

11

A is invertible.

If D is indefinite, as in the following example

1 0 − 1

0 −1 1

−1 1 0

 =

 D BT

B 0

 , (2.2.4)

then A may be singular, even if B has full rank. However, A will be nonsingular if

D is positive definite on ker(B). In the case of D is symmetric positive semidefinite,

we have the following theorem.

Theorem 2 Let C = 0, D be sps and B1 = B2 = B has full rank. Then a necessary

and sufficient condition for the invertibility of the saddle point matrix A is ker(D)∩

ker(B) = {0}.

Full discussion about the solvability conditions can be found in [11].

2.2.3 Inverse of a saddle point matrix

Assume that D is invertible, then the saddle point matrix A is invertible if the Shur

compliment matrix S = (C+B2D
−1BT) is invertible, moreover, we have the following:

A−1 =

 D B1
T

B2 −C

−1

=

 D−1 −D−1B1
TS−1B2D

−1 D−1B1
TS−1

S−1B2D
−1 − S−1

 (2.2.5)

For other cases (for example when D is singular but C is nonsingular) see [11].

12

2.2.4 Eigenvalues of the saddle point matrix

Assume that the matrix D is spd, C is sps (it could be zero) and B1 = B2 = B has

full row rank. Then I 0

−BD−1 I

 D BT

B −C

 I −D−1BT

0 I

 =

 D 0

0 −S

 (2.2.6)

where the Schur compliment matrix S = (C + BD−1BT) is spd. Then the saddle

point matrix A is congruent to the block diagonal matrix on the right hand side of

the above equation. The above congruence is called Sylvesters Law of Inertia. From

this congruence, it follows that the number of the positive and negative eigenvalues

of A are the same as that of the block diagonal matrix given in the right hand side.

2.3 Krylov subspace iterative methods

Often Krylov subspace iterative methods are used to compute iterates solutions xk of

the linear system Ax = b for which

xk − x0 ∈ Kk(A, r0), k = 1, 2, ..., (2.3.1)

where

Kk(A, r0) = span{r0, Ar0, A2r0, ..., A
K−1r0}, k = 1, 2, ...,

is called the Krylov subspace associated with A and r0. In (2.3.1), x0 is the initial

guess (some times it is taken to be zero). Thus Krylov subspace iterative methods

require just one matrix-vector product computation at each iteration. r0 = b − Ax0

is called the residual vector associated with x0; in general rj = b− Axj; j = 0, 1,

13

If x0 = 0, then

xk ∈ Kk(A, b), k = 1, 2, ...

Thus the iterates solutions and residuals of every Krylov subspace method satisfy

xk − x0 =
k−1∑
j=0

αjA
jr0,

for some coefficients αj. Hence

xk = x0 + q(A)r0, (2.3.2)

where q is the polynomial of degree k− 1 with q(z) =
∑k−1

j=0 αjz
j. Multiplying (2.3.2)

by A and then subtracting from b, we obtain

b− Axk = b− Ax0 − Aq(A)r0,

and thus the residuals

rk = r0 − Aq(A)r0 = P (A)r0, (2.3.3)

where

P (z) = 1− z
k−1∑
j=0

αjz
j = 1−

k∑
j=1

αj−1z
j,

is a polynomial of degree k which satisfies P (0) = 1. All Krylov subspace methods

are thus described by (2.3.3).

Different Krylov subspace methods can be characterized by the properties of the

matrix A as follows:

14

When A is spd (so that ∥ v ∥A= (vtAv)
1
2 defines a vector norm or energy norm),

the conjugate gradient method (CG) [54] requires only the one matrix-vector multi-

plication by A and it minimizes the A-nor of the error ∥ x − xk ∥A over the Krylov

subspace.

When A is symmetric but indefinite, (vtAv) takes both positive and negative val-

ues, so a norm cannot be defined as for the conjugate gradient method. The Krylov

subspace method of choice for symmetric indefinite systems is the minimum residual

(MINRES) method [77]. It takes one matrix-vector product with A and it minimizes

the Euclidean norm of the residual, ∥ rk ∥I= (rk
trk)

1
2 .

When A is non-symmetric, there is not such an obvious method of choice, hence

several Krylov subspace methods are widely used. The most popular is GMRES [86]

which, similarly to MINRES, computes iterates that minimize the Euclidean norm of

the residual, but by contrast to MINRES requires an increasing amount of computa-

tion and storage at each successive iteration to achieve this. Thus GMRES can be a

good method if only a few iterations are needed to achieve acceptable convergence,

this might be the case if one has a good preconditioner, but it is not practical if many

iterations are required.

Anyway, an appropriate iterative method will compute a sequence of vectors x1, x2, ...

which converge rapidly from any starting guess, x0, to the solution x of the system

Ax = b. At each iteration, only a matrix-vector product with A needs to be computed.

Unfortunately, Krylov subspace methods are very slow with an ill-conditioned linear

system of equations. One technique to overcome this slowness is using an appropri-

15

ate preconditioner. Preconditioners are overwhelmingly used with Krylov subspace

iterative methods (see for examples [97], [49], [85], [69], [52], [32], [62], [76]).

2.4 Preconditioning technique

For the successful use of iterative methods, we have to use a preconditioning tech-

nique. In 1948, Turing was the first one who used the term of preconditioning in his

paper [95]. In [36], Evans used the term of preconditioning in connection with itera-

tive methods. In [17] Cesari was the first one who used preconditioning for reducing

the condition number in order to improve convergence of some iterative methods.

The term preconditioning refers to transforming the system (1.1.1) into another sys-

tem that has a smaller condition number. Consider the matrix P to be the precondi-

tioner matrix for the matrix A given in (1.1.1), then the linear system

P−1Ax = P−1b, (2.4.1)

has the same solution as (1.1.1) but (5.4.9) may be faster than (1.1.1). Moreover,

the preconditioning makes the computing time for solving (5.4.9) less than for solving

(1.1.1). A good preconditioner which accelerates the convergence needs to be easy

to construct and cheap to invert. Moreover, the preconditioned matrix should have

eigenvalues clustering behavior. Many preconditioners in [11] are developed for a

special linear system such as a saddle point problem. For the improvement of the

preconditioning techniques for general linear systems, we refer to [10] and [100]. For

the types of the preconditioners, there are mainly two classes: block preconditioners

and constraint preconditioners (see [10] and [11]). Block diagonal preconditioners

16

have been studied by Murphy, Golub and Wathen in [71] and later by Ipsen in [55]

and by de Sturler, E. and Liesen in [25]. There are many studies for block diagonal

preconditioners introduced by Silvester and Wathen [89]. Analysis of these precondi-

tioners have been given in [78], [59], [61] and [38].

As mentioned in the above discussion, the numerical solutions of such saddle point

systems represent a big challenge and they have made the research in this area is very

active.

Since we use PMINRES as a linear solver for both systems, we give a short review of

PMINRES method.

2.5 PMINRES method

Suppose we need to solve the linear system Ax = b where A is a symmetric and

indefinite saddle point matrix and suppose that a spd- preconditioner is considered

P =

 P1 0

0 P2

 , (2.5.1)

It is known that PMINRES generates a sequence of iterates solutions xk which belong

to the following Krylov space

Kk = span{P−1r0, (P
−1A)P−1r0, ..., (P

−1A)k−1P−1r0}, (2.5.2)

17

with minimization the norm of the k − th residual

∥ rk ∥P−1=∥ b− Axk ∥P−1= min
x∈Kk

∥ b− Ax ∥P−1 , (2.5.3)

and ∥ v ∥P−1= vTP−1v. The PMINRES convergence estimate [31] is given by

∥ r(k) ∥P−1

∥ r(0) ∥P−1

≤ min
qk∈Πk, qk(0)=1

max
λ∈σ(P−1A)

| qk(λ) | (2.5.4)

where Πk is the space of all polynomial of degree less than or equals k and σ(P−1A)

is the spectrum of the preconditioned matrix (P−1A). To minimize the right hand

side of the above inequality (2.5.4), it is desirable to cluster both the positive and

negative eigenvalues of the preconditioned matrix P−1A. This clustering guarantees

convergence with few iterations. In the following sections, we give some definitions

and notations related to the image deblurring problems.

2.6 Fourier transform (FT) and convolution inte-

gral

In this section, we present some definitions of the continuous and discrete one and

two-dimensional Fourier Transforms.

2.6.1 (1-D) Fourier transform and convolution theorem

Given any function f defined on R (possibly complex-valued), the , one-dimensional,

continuous, FT is defined by

(Fu)(ω) =
∫
R
u(x)e−2πîxωdx, ω ∈ R, (2.6.1)

18

with î =
√
−1 and its inverse is given by

(F)−1(v)(x) =

∫
R
v(ω)e2πîxωdω, x ∈ R. (2.6.2)

The convolution of two functions u, v is defined by

(u ∗ v)(x) =
∫
R
u(x− y)v(y)dy, x ∈ R. (2.6.3)

The FT and its inverse of the convolution is given by

F(u ∗ v) = F(u) · F(v), (2.6.4)

F−1(u ∗ v) = F−1(u) · F−1(v), (2.6.5)

where · denotes point-wise multiplication. Next, we give definitions for a discrete

Fourier transform (DFT) as follows:

Definition 1 The discrete Fourier transform of a sequence {ul}n−1
l=0 is defined by

[F(u)]k =
1√
n

n−1∑
l=0

ule
−2îπkl

n , k = 0, ..., n− 1, (2.6.6)

Note that, the DFT can be expressed as a matrix-vector product, F{u} = Fu, where

F ∈ Cn×n is the Fourier matrix. It has the components

[F (u)]kl =
e

−2îπkl
n

√
n

, 0 ≤ k, l ≤ n− 1. (2.6.7)

19

The inverse DFT is given by

[F−1(v)]i =
1√
n

n−1∑
l=0

vle
2îπkl

n = [F ∗v], k = 0, ..., n− 1, (2.6.8)

where ∗ denotes the conjugate transpose of a matrix.

2.6.2 (2-D) Fourier transform and convolution theorem

Definition 2 The two-dimensional continuous FT of a function u defined on R2 (it

could be a complex-valued function) is

(Fu)(ω) =
∫
R2

u(x)e−2̂iπxTωdx, ω ∈ R2, (2.6.9)

and its inverse is given by

(F−1v)(x) =

∫
R2

v(ω)e2̂iπx
Tωdω, x ∈ R2, (2.6.10)

Definition 3 The two-dimensional convolution integral is defined by

(u ∗ v)(x) =
∫
R2

u(x− y)v(y)dy, x ∈ R2. (2.6.11)

Definition 4 The two-dimensional DFT is the matrix given by

[F(u)]kl =
1

√
nxny

nx−1∑
i=0

ny−1∑
j=0

ui,je
−2̂iπ(ki/nx+lj/ny), (2.6.12)

where 0 ≤ k ≤ nx − 1, 0 ≤ l ≤ ny − 1 and its inverse can be obtained by replacing

−î by î in (2.6.12).

20

2.7 Fast Fourier transform

In this section, we present definitions of the one-dimensional and two-dimensional

fast Fourier transform (FFT).

2.7.1 (1-D) Fast Fourier transform

To implement (2.6.6), we use the conventional matrix-vector multiplication. In this

case, it will cost O(n2) operations, where n is the length of the vector that we need

to transform. The FFT algorithm, which was developed by Cooley and Tukey [26],

reduces this computational cost to O(n log n).

Definition 5 given any u = (u0, u1, ..., un−1) ∈ Cn, the Fast Fourier transform (fft)

is defined by

[fft(u)]i =
√
n[F(u)]k =

n−1∑
l=0

ule
−2îπkl

n , k = 0, ..., n− 1. (2.7.1)

The inverse of (fft) is given by

[ifft(u)]i =
1√
n
[F−1(u)]i =

1

n

n−1∑
l=0

ule
−2îπkl

n , k = 0, ..., n− 1. (2.7.2)

The FFT and its inverse satisfy

fft(u ∗ v) = fft(u) ·fft(v), (2.7.3)

and

ifft−1(u ∗ v) = ifft−1(u) · ifft−1(v), (2.7.4)

21

2.7.2 (2-D) Fast Fourier transform

Two-dimensional fast Fourier transform fft2 can be defined in analogous manner to

(2.7.1)-(2.7.2) as follows

Definition 6

[fft2(u)]kl =
√
nxny[F(f)]kl =

nx−1∑
i=0

ny−1∑
j=0

ui,je
−2̂iπ(ki/nx+lj/ny), k = 0, ..., n− 1. (2.7.5)

The inverse of (fft2) is given by

[ifft2(u)]kl =
1

√
nxny

[F−1(u)]kl =
1

nxny

[fft2(u)]kl =
1

nxny

nx−1∑
i=0

ny−1∑
j=0

ui,je
−2̂iπ(ki/nx+lj/ny),

(2.7.6)

for k = 0, ..., n− 1.

2.8 Toeplitz and circulant matrices

In this section, we present definitions of the Toeplitz and circulant matrices and also

of the block Toeplitz and block circulant matrices.

Definition 7 An n× n matrix T is called Toeplitz if the entries along each diagonal

are the same and has the following form

T =

λ0 λ−1 · · · λ1−n

λ1 λ0 λ−1 · · ·
...

. λ−1

λn−1 · · · λ1 λ0

(2.8.1)

Definition 8 A circulant matrix is a Toeplitz matrix in which each column/row is

22

a circular shift of the elements in the preceding column/row. In this case, an n × n

circulant matrix C has the form

C =

δ0 δn−1 · · · δ1

δ1 δ0 δn−1 · · ·
...

. δn−1

δn−1 · · · δ1 δ0

(2.8.2)

For more information of circulant matrices and their properties, we refer to see [29].

2.8.1 Block Toeplitz and block circulant matrices

We define We give definitions of the block Toeplitz with Toeplitz block (BTTB) and

block circulant with circulant block (BCCB) matrices as follows

Definition 9 An nxny × nxny matrix T is called BTTB if it has the block form

T =

Λ0 Λ−1 · · · Λ1−n

Λ1 Λ0 Λ−1 · · ·
...

. Λ−1

Λn−1 · · · Λ1 Λ0

(2.8.3)

where each block Λj is an nx × nx Toeplitz matrix.

Definition 10 An nxny × nxny matrix C is BCCB if C is BTTB first and then if

each nx × nx block column/row is a circular shift of the elements in the preceding

column/row and lastly if each block is a circulant matrix. So, C has the following

form

23

C =

∆0 ∆n−1 · · · ∆1

∆1 ∆0 ∆n−1 · · ·
...

. ∆n−1

∆n−1 · · · ∆1 ∆0

(2.8.4)

where each block ∆j is an nx × nx circulant matrix.

Definition 11 The tensor product of a matrix A ∈ Rm×n and a matrix B ∈ Rp×q is

a matrix G of size (mp)× (nq) which is given by

A⊗B = G =

a11B a12B · · · a1nB

a21B a22B · · · a2NB

...
...

...
...

am1B am2B · · · amnB

(2.8.5)

2.9 Well-posedness

In this section, we give some usual Hilbert spaces with their associated inner products

and norms. Moreover, we introduce the notion of the well-posedness. We introduce

some operators like Fredholm integral operator and we give the definition of the com-

pact operators. Let H1 and H2 denote separable Hilbert spaces with inner products

(·, ·)j for j = 1 and 2 respectively and norms

∥ f ∥j=
√
(f, f)j, j = 1, 2,

where f ∈ Hj. For smooth f : Rn → R, define the gradient of f by

∇f = (
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn
).

24

For a vector valued function v⃗ = (v1, v2, ..., vn) where each vi : Rn → R is smooth we

define the divergence of v⃗ by

∇ · v⃗ =
i=n∑
i=1

∂vi
∂xi

If u ∈ Rn then the Euclidean norm of u is defined by

| u |=
√
u∗u

The following are three examples of Hilbert spaces that we will use in subsequent

work.

Definition 12 Let Ω denotes a simply connected, nonempty, measurable set in Rn

that has a piecewise Lipschitz continuous boundary. The Hilbert space L2(Ω) consists

of all measurable real valued functions f such that
∫
Ω
f(x)2dx < ∞. The L2 inner

product is denoted by

(f, g)L2 =

∫
Ω

f(x)g(x)dx, f, g ∈ L2.

We define the second Hilbert space which is H1 as follows:

Definition 13 The H1 inner product of a pair of smooth functions is given by

(u, v)H1 =

∫
Ω

u(x)v(x)dx+

∫
Ω

∇u(x) · ∇v(x)dx

Now, we need to define what we mean by the well- posedness. Let K be a mapping

from H1 to H2.

25

Definition 14 The problem

Ku = z, u ∈ H1 z ∈ H2, (2.9.1)

is called well- posed if the following conditions are satisfied:

1 A solution exists, i.e. for any z ∈ H2, there is u ∈ H1 such that Ku = z.

2 This solution is unique.

3 This solution is stable, that is, given u∗ ∈ H1 and z∗ ∈ H2 for which Ku∗ = z∗

then ∀ ϵ, ∃ δ(ϵ) > 0 such that when ∥ z − z∗ ∥2< δ(ϵ) then ∥ u− u∗ ∥1< ϵ.

A problem that is not well posed is called an ill posed problem.

If the mapping K is linear, the well posedness is equivalent to the requirement that

the inverse operator, K−1 : H2 → H1 exists and is bounded.

Definition 15 Let K be a linear operator with a dense domain in H1 mapping into

H2. The adjoint operator K∗ : H2 → H1 is a linear operator where for every y ∈

D(K∗), there exists a unique y∗ ∈ H1 such that

(Ku, y)2 = (u, y∗)1, (2.9.2)

for every u ∈ D(K) The adjoint is defined by the mapping K∗y = y∗ for all y ∈

D(K∗). Where D(K) denotes the domain of the operator K.

Definition 16 The operator K is called compact if the image of any bounded set is

relatively compact set. We say that the set M ⊂ H1 is a relatively compact set if its

closure M is compact.

26

Example 1 The well known Fredholm integral of the first kind on L2(Ω) is an ex-

ample of a compact operator. Suppose that k(x, y) is measurable function on Ω × Ω

and has the following property

∫
Ω

∫
Ω

k(x, y)2dxdy <∞. (2.9.3)

Then, the first kind Fredholm integral operator K : L2(Ω) → L2(Ω),

(Ku)(x) =

∫
Ω

k(x, y)u(y)dy, x ∈ Ω, (2.9.4)

is a compact and the function k is known as the kernel function for the operator K.

Definition 17 Let u be a real valued function on Ω, the total variation (TV) of u is

defined by

| u |TV= sup
w⃗∈W

∫
Ω

−u∇ · w⃗dx, (2.9.5)

where

W = {w⃗ ∈ C1
0(Ω) :| w⃗(x) |≤ 1, ∀x ∈ Ω}, (2.9.6)

Definition 18 The space of functions of bounded variation BV (Ω) on Ω is the space

of all functions u such that
∫
Ω
| u | dx <∞ and | u |TV<∞.

Now when u ∈ C1(Ω) ∩BV (Ω) then

| u |TV= sup
w⃗∈W

∫
Ω

w⃗ · ∇udx. (2.9.7)

27

Moreover, if | ∇u |≠ 0, the supremum of (2.9.7) appears when w⃗ = ∇u
|∇u| . Then

| u |TV=

∫
Ω

| ∇u | dx. (2.9.8)

In the following sections, we give some definitions related to the stochastic pdes.

2.10 Random variables and random fields

Now, we present some fundamental concepts and formulas related to random variables

and random fields. First, we define a random variable which is a mathematical

tool used to model randomness. We succeed this by introducing some important

characteristics associated with random variables, such as the expectation, variance

and independence. Then, we define a random field and also the associated mean,

variance and the covariance functions. Finally, we introduce the well known (KL)

expansion of a random field.

Definition 19 Consider the probability space (Ω,F,P), a function X : Ω → R is

called a random variable (r.v.) if X−1(B) ∈ F where B is a Borel set in the Borel

sigma algebra B.

Definition 20 The expected value of X, E[X], is defined by

E[X] :=

∫
Ω

X(ω)dP(ω) =
∫
R
xf(x)dx, (2.10.1)

where f is the probability density function (pdf) associated with X.

Definition 21 The variance of X, Var[X], is defined by

Var[X] := E[X2]−E[X]2. (2.10.2)

28

Definition 22 The n–th moment of X, denoted by E[Xn], is defined as

E[Xn] :=

∫
R
xnf(x)dx. (2.10.3)

where n is a non-negative integer.

Definition 23 Let X and Y be two random variables with joint density function

f(x, y). We say that they are independent if f(x, y) = f(x)f(y) where f(x) and f(y)

are the pdfs of X and Y respectively.

Definition 24 The set {Xm} of random variables is called orthogonal set if E[XmXn] =

0 holds for all different and positive integers m and n. Moreover, it is called orthonor-

mal set if E[XmXn] = δmn holds where δmn is the Kronecker delta function.

Definition 25 Let (Ω,F,P) be a probability space, a random field

a(., .) : D × Ω → R. (2.10.4)

is a measurable function from D×Ω to R with respect to the sigma–algebra F on the

sample space Ω and the Borel sigma–algebra on the domains D and R. Here, D ⊂ Rn

denotes a bounded spatial domain. We assume that for a given random field, its mean

and the covariance function are known.

Definition 26 For a random field a, the mean field is defined as

Ea(x) := E[a(x, .)] =

∫
Ω

a(x, ω)dP(ω), (2.10.5)

29

and the covariance function as

Cova(x1;x2) = E[(a(x1, .)−Ea(x1))(a(x2, .)−Ea(x2))]

=
∫
Ω
[(a(x1, ω)−Ea(x1))(a(x2, ω)−Ea(x2))]dP(ω)

(2.10.6)

The variance of the random field a is given by Vara(x) = Cova(x;x). For the mean

field and the covariance function to exist in the L2 -sense, we must require that the

random field has a finite second moment, that is, a ∈ L2
P(Ω;L

2(D)).

Definition 27 (Positive semidefinite function). A function Va ∈ L2(D × D) is

positive semidefinite on D if

0 ≤
n∑
i

n∑
j

ciVa(xi, xj)c̄j, (2.10.7)

holds for any positive integer n, for any sequence of complex weights {ci}i=n
i=1 , and for

all xi, xj ∈ D.

Common covariance functions are of the form

Cova = σ2
a exp(

−|x1 − y1|
τ1

− −|x2 − y2|
τ2

), (2.10.8)

Cova = σ2
a exp(

−r
τ
), (2.10.9)

Cova = σ2
a exp(

−r2

τ 2
), (2.10.10)

where r is distance between x and y in the Euclidean norm. The positive constants

τ, τ1 and τ2 are called the correlation length.

Chapter 3

IMAGE DEBLURRING

PROBLEM

30

31

3.1 Introduction

Image deblurring problem is one of the most classic linear inverse problems. It is

useful technique to make pictures sharp and clear. It is known that a small image

often has about 2562 = 65536 pixels. There are many sources for blur in images for

example: the motion of either the camera or/and object, the environmental effects

and the limitations of the optical system.

In these and other situations, the record image has a blur. In image deblurring,

we aim to remove this blur and reconstruct a sharp image by using a mathematical

model. In the following section, we present the mathematical model behind the image

deblurring problems.

3.2 Mathematical model

To deblur an image, we need a mathematical model for how it was blurred. The

relation between the true image and blurred image is given by

z = Ku+ ε, (3.2.1)

where z is the recorded image and u is the original image, K denotes the blurring

operator and ε denotes a noise function. Both blurring and noise affect the quality

of the received image. K is typically a Fredholm integral operator of the first kind(a

convolution operator),

(Ku)(x) =

∫
Ω

k(x, x′)u(x′)dx′, x ∈ Ω (3.2.2)

32

with translational invariance kernel k(x, x′) = k(x − x′) and Ω is the domain of the

image and typically is a square (or rectangle) in R2 on which the image intensity

function u is defined. x = (x, y) denotes the location in Ω. The kernel in (3.2.2) is

also called the point spread function (PSF) (see Chapter 2 for some assumptions on

the kernel). For Gaussian blurring with parameter σ, the kernel is given by

k(x− x′) =
1

2πσ2
e−

|x−x′|2

2σ2 (3.2.3)

There are several kernels given in the literature (see for example [14]). The equation

(3.2.1) represents both the deblurring and the denoising problem. If ε = 0, then

(3.2.1) is called pure deblurring problem and is called denoising problem when K = I

where I is the identity operator. In this research work, we consider the case of pure

deblurring problem

z = Ku, . (3.2.4)

In this case, the problem is to reconstruct u from given data z and blur kernel k.

Some times the blur kernels are unknown. In this case the problem is called the blind

deconvolution problem (see [102] and [70] for the blind problem). The problem (3.2.4)

is an inverse problem. It is known that the operator K is compact ([1], [98]) (see also

Chapter 2 for the compact operators), so problem (3.2.4) is ill-posed (the solution

is unstable) and the resulting matrices of discretization are highly ill-conditioned

([1], [98], [51]). In the literature, ’regularization’ methods (see [53]) deal with the

ill-posedness of the problem. Different approaches use different regularization terms

such as Tikhonov regularization and Total Variation regularization and so on (see

[4]).

33

3.2.1 Tikhonov regulazation

Tikhonov regularization is often used to stabilize problem (3.2.4) [96]. In this case,

the problem is to find a u which minimizes the functional

T (u) =
1

2
∥ Ku− z ∥2 +αJ(u), (3.2.5)

with positive parameter α and

J(u) =

∫
Ω

u2dx. (3.2.6)

The advantages of the functional (3.2.6) is that it is not difficult to compute. However,

the disadvantage is that the reconstructed image includes oscillation or ringing when

the recorded image has discontinuity. Another regularization term is [98]

J(u) =

∫
Ω

| ▽u |2 dx, (3.2.7)

where ▽(·) is the gradient operator and | · | is the Euclidian norm. Note that the

functional (3.2.7) requires u to be smooth. Hence both regularization terms (3.2.6)

and (3.2.7) are not suitable when the recorded image has discontinuity or when we

need to construct sharp images [98]. Rudin, Osher and Fatemi [83] proposed using

Total Variation as a regularization functional.

3.2.2 Total variation(TV)

In the total variation (TV), the regularization functional is defined by

JTV (u) =:

∫
Ω

| ▽u |, (3.2.8)

34

see Definition 18 for the (TV) regularization. In the above functional, u need not to

be continuous (see [1]). However, the derivative of the integrand function in equation

(3.2.8) does not exist at zero. One remedy of this issue [51] is to add a constant β

[98] as follows

Jβ(u) =

∫
Ω

√
| ▽u |2 +β2. (3.2.9)

Then the functional to be minimized is

T (u) =
1

2
∥ Ku− z ∥2 +α

∫
Ω

√
| ▽u |2 +β2, (3.2.10)

with α, β > 0. Under mild conditions on the operator K, the well-posedness of this

minimization problem is established in [1]. There are several methods to obtain this

minimum given in [4].

3.2.3 The Euler-Lagrange equations

The Euler-Lagrange equations associated with the above minimization problem are

[98]:

K∗(Ku− z) + αL(u)u = 0 x ∈ Ω, (3.2.11)

∂u

∂n
= 0 x ∈ ∂Ω, (3.2.12)

where K∗ is the adjoint of K. The differential operator L(u) is given by

L(u)w = −▽.(1√
| ▽u |2 +β2

▽w). (3.2.13)

To get the above equations (3.2.11), consider f(ϵ) = T (u+ϵv) as a real valued function

where v is an arbitrary function and ϵ is sufficiently small. Now, to find the minimum

35

or maximum values of the real function f we use the standard technique which is find

f ′(ϵ) and then take f ′ = 0 at ϵ = 0. Now

f(ϵ) = T (u+ ϵv) =
1

2
∥ K(u+ ϵv)− z ∥2 +α

∫
Ω

√
| ▽(u+ ϵv) |2 +β2, (3.2.14)

Taking the derivative w.r.t. ϵ, using the boundary condition, integrations by parts

and writing the integral as inner product we get

df

dϵ
= 0 =⇒ (Ku− z,Kv) + (αL(u)u, v) = 0. (3.2.15)

and hence using the property of the conjugate operator to get

df

dϵ
= 0 =⇒ (K∗(Ku− z), v) + (αL(u)u, v) = 0. (3.2.16)

This gives

(K∗(Ku− z) + αL(u)u, v) = 0. (3.2.17)

Since v is arbitrary, one can take v = K∗(Ku − z) + αL to get the result given in

(3.2.11).

Note that (3.2.11) is a nonlinear integro-differential equation of elliptic type.

Equation (3.2.11) can be expressed as a nonlinear first order system [23]

K∗Ku− α▽.v⃗ = K∗z, (3.2.18)

−▽u+
√
| ▽u |2 +β2v⃗ = 0⃗, (3.2.19)

36

with the dual, or flux, variable

v⃗ =
▽u√

| ▽u |2 +β2
. (3.2.20)

After eliminating the vector v⃗ from the above equations (3.2.18-3.2.20), one has the

primal system

(K∗K+ αL(u))u = K∗z, (3.2.21)

In [98], Vogel and Oman used the Fixed Point Iteration method to linearize the system

3.2.21 by fixing u = u(k) in the square root term given in equation (3.2.19) or (3.2.20)

as follows

(K∗K+ αL(u(k)))u(k+1) = K∗z, k = 0, 1, ... (3.2.22)

In this case, u(k+1) is obtained as the solution of the linear integro-differential equation

(3.2.22). [4]).

3.2.4 Discretization steps

To discretize (3.2.18) and (3.2.19), we start by dividing the square domain Ω =

(0, 1)×(0, 1) into n2
x equals squares (cells) where nx denotes the number of equispaced

partitions in the x or y directions. The cell centers are denoted by (xi, yj) and given

by

xi = (i− 1
2
)h i = 1, ..., nx,

yj = (j − 1
2
)h j = 1, ..., nx,

(3.2.23)

where h = 1
nx
. The midpoints of cell edges are given by (xi± 1

2
, yj) and (xi, yj± 1

2
) where

xi± 1
2
= xi ± h

2
i = 1, ..., nx,

yj± 1
2
= yj ± h

2
j = 1, ..., nx.

(3.2.24)

37

The set

eij = {(x, y) : x ∈ [xi− 1
2
, xi+ 1

2
], y ∈ [yj− 1

2
, yj+ 1

2
]}, (3.2.25)

represents a cell with (xi, yj) as its center. Let

χi(x) =

 1, if x ∈ (xi− 1
2
, xi+ 1

2
);

0, otherwise.
(3.2.26)

χj(y)

 1, if y ∈ (yj− 1
2
, yj+ 1

2
);

0, otherwise,
(3.2.27)

Approximate u as

u(x, y) ≃ U(x, y) =
nx∑
i=1

nx∑
j=1

uijχi(x)χj(y), (3.2.28)

where U(xi, yj) = uij, and represent the data z as

z(x, y) ≃ Z(x, y) =
nx∑
i=1

nx∑
j=1

zijχi(x)χj(y), (3.2.29)

where zij may be calculated as cell averages. Also, approximate v by

v(x, y) ≃
nx−1∑
i=1

nx∑
j=1

V x
ij

 ϕi(x)χj(y)

0

+
nx−1∑
i=1

nx∑
j=1

V y
ij

 0

ϕi(y)χj(x),

 (3.2.30)

where ϕi are piecewise linear functions characterized by

ϕi(xl+ 1
2
) = δil,

ϕj(yk+ 1
2
) = δjk.

(3.2.31)

38

Now, applying Galerkin’s method to (3.2.18) and (3.2.19) together with midpoint

quadrature for the integral term given in (3.2.2) and cell center finite difference

method (CCFDM) for the derivative part given in equation (3.2.19) (see [37] for

more details), one obtains the following system

K∗
hKhU + αBT

hV = K∗
hZ, (3.2.32)

αBhU − αDh
(k)V = 0. (3.2.33)

Here Kh is a matrix of size n× n and Bh is a matrix of size m× n. Dh
(k) is a matrix

of size m×m (here n = n2
x and m = 2nx(nx−1)) where k means fixed point iteration

for linearizing the nonlinear term inside the square root. For simplicity we eliminate

the subscript h. Then one can write

 αD(k) −αB

−αBT −K∗K

 V

U

 =

 0

−K∗Z

 , (3.2.34)

Both K∗K and L = BTD−1(k)B are symmetric positive semi definite matrices [98].

The matrix K is a BTTB matrix. The matrix D is a diagonal with positive diagonal

entries

D(k) =

 Dx(U (k)) 0

0 Dy(U (k))

 , (3.2.35)

where Dx and Dy are (nx − 1)× nx and nx × (nx − 1) diagonal matrices, respectively

obtained by discretize the expression
√
| ▽u(k) |2 +β2. The matrix B is given by

B =
1

h

 B1

B2

 , (3.2.36)

39

where the matrices B1 (nx(nx − 1) × n) and B2 (nx(nx − 1) × n) have the following

structures

B1 =

−I I 0 0 0

0 −I I 0 0

0 0
. 0

0 0 0 −I I

, (3.2.37)

where I is the identity matrix of size nx by nx.

B2 =

E 0 0 0 0

0 E 0 0 0

0 0
. . . 0 0

0 0 0 0 E

, (3.2.38)

where E ((nx − 1)× nx) is given by

E =

−1 1 0 0 0

0 −1 1 0 0

0 0
. 0

0 0 0 −1 1

. (3.2.39)

Note that one can eliminate V from (3.2.32) and (3.2.33) to get the following primal

system

(K∗K + αL)U = K∗Z. (3.2.40)

If Tikhonov regularization is used then (3.2.40) becomes

(K∗K + αI)U = K∗Z, (3.2.41)

40

where I is the identity matrix of the same size of K. Another generalized saddle point

version [73] of (3.2.34) is

 I K

−K∗ αL

 V

U

 =

 Z

0

 . (3.2.42)

We note that (3.2.40), (3.2.34) and (3.2.42) are are very large systems. The reason of

their huge sizes is that for example an image with 256× 256 resolution requires solv-

ing system of size 2562 × 2562. Hence, the only choice of linear solver is an iterative

method such as a Krylov subspace methods. Unfortunately, these methods are very

slow with ill-conditioned linear systems. One technique to overcome this slowness

properties is using an appropriate preconditioner (see [92] for preconditioning). We

may use the minimal residuals (MINRES) method [77] with suitable preconditioners.

For the system (3.2.40), Vogel and Oman [99] introduced the product precondi-

tioner with approximating the BTTB matrix by a block circulant with circulant

block (BCCB) matrix, while Chan et. al [19] introduced a cosine-transform based

preconditioner. Donatelli [26] used another solver for this problem with Dirichlet

and periodic boundary conditions. The resulting matrices were BTTB and BCCB.

He solved the resulting systems by applying a multigrid method and he showed an

optimality property with O(n) arithmetic operations where n is the system size. For

the system (3.2.41), Donatelli and Hanke [27] introduced an iterative scheme similar

to nonstationary iterated Tikhonov regularization. The rapid convergence of their

method is determined by an adaptive strategy for selecting the regularization param-

eters. For the second version of the generalized saddle point problem (3.2.42), NG

and Pan [73] developed new preconditioners. These preconditioners are called Her-

41

mitian and skew-Hermitian splitting (HSS). They gave a strategy to choose the HSS

parameters to force all eigenvalues of the preconditioned matrices to cluster around

one and hence, the Krylov subspace method converges very quickly. For more details

on iterative methods for image deblurring we refer to [12]. In this dissertation, we

consider the preconditioning technique for solving the primal-daual system (3.2.34).

This method is presented in the following chapter.

Chapter 4

PRECONDITIONING

TECHNIQUE FOR IMAGE

DEBLURRING PROBLEM

42

43

4.1 Introduction

In this chapter, we consider the preconditioning technique for solving

 αD(k) −αB

−αBT −K∗K

︸ ︷︷ ︸

A

 V

U

 =

 0

−K∗Z

 , (4.1.1)

the above system is obtained from discretaizing the Euler Lagrange equations associ-

ated with image deblurring problem (see Chapter 3). The coefficient matrix A of this

system is of the generalized saddle point form with high condition number and it has

a huge size. Hence, we solve this system by using the minimal residual (MINRES)

iteration method with using efficient preconditioner.

This preconditioner is of Murphy, Golub and Wathen (MGW) type [72] and it in-

volves a Schur complement of the A which contains a product of a Toeplitz matrix

with Toeplitz blocks (BTTB) and its transpose. This product may not be a BTTB.

Hence we approximate this product in three approaches. The first approach is based

on approximating the BTTB matrix by Strang circulant approximation (see [91], [18])

while in the second approach, we use the optimal circulant approximation for BTTB

matrices [22]. The last approach is approximating the product of BTTB and its trans-

pose by a symmetric BTTB [81]. Symmetric BTTB matrices can always be extended

to form symmetric BCCB matrices. The benefit of the circulant or BCCB approxi-

mation is that the matrix-vector products that involve n×n matrix can be computed

in O (n log n) operations instead of O (n2). This reduction is due to the fast Fourier

transform (FFT) and the Convolution theorem. Moreover, all that is needed for com-

putation is the first column of the circulant matrix, which decreases the amount of

44

required storage. We also show that the preconditioned matrices have the clustering

behavior of the eigenvalues. Moreover, we present several numerical examples. These

numerical examples show the efficiency of the proposed preconditioners.

4.2 The exact preconditioner

Our starting preconditioner for the system (4.1.1) is

P =

 αγ1D 0

0 γ2S

 , (4.2.1)

where S = (K∗K + αL) is the Schur complement of the matrix A. γ1 and γ2 are

positive parameters which are used to enforce the clustering of the eigenvalues of the

preconditioned matrix around one. Hence, the appropriate iterative method is pre-

conditioned MINRES (PMINRES) [77]. More details on preconditioning techniques

can be seen in [11], [72] and [16].

4.3 Eigenvalues estimates

In this section we give a bound for the positive and negative eigenvalues of the pre-

conditioned matrix P−1A but before doing that, we start by discussing the number

of the negative and positive eigenvalues of the matrix P−1A. Note that the precondi-

tioned matrix P−1A is similar to the matrix P−1/2AP−1/2. The matrix P−1/2AP−1/2

can be decomposed into

 Im 0

−
√

αγ1
γ2
S−1/2B∗D−1/2 In

 1

γ1
Im 0

0 − 1
γ2
In

 Im −

√
αγ1
γ2
D−1/2BS−1/2

0 In

 ,

45

where Im and In are the identities matrices of size m × m and n × n respectively.

The above decomposition is known as the congruence transformations of the matrix

P−1/2AP−1/2. By Sylvesters law of inertia (page 403 in [47]) , congruence transfor-

mations preserve the signs of the eigenvalues [31]. It follows that the number of the

positive eigenvalues of P−1A is m and the number of the negatives is n (here m > n).

Several bounds on the eigenvalues of the generalized saddle point matrix are estab-

lished in [84, 90] and [5]. Here we use the bounds given in [Theorem 1 in [5] p 4]

obtained by Axelsson.

Theorem 3 The m + n (µ−n ≤ µ−n+1 ≤ ... ≤ µ−1 < 0 < µ1 ≤ µ2 ≤ ... ≤ µm)

eigenvalues of the generalized eigenvalue problem,

 αD −αB

−αBT −K∗K

 x

y

 = λ

 αγ1D 0

0 γ2S

 x

y

 (4.3.1)

satisfy the following:

µi ∈

 1

γ1
,
1 +

√
1 + 4αγ1

γ2
σm

2γ1

 i = 1, ...,m, (4.3.2)

µ−j ∈
[
− 1

γ2
,− 1

γ2 + αγ1τ

]
j = 1, ..., n, (4.3.3)

where γ1 and γ2 are positive parameters. σm is the maximum eigenvalue of S−1/2LS−1/2

and τ = ρ(S−1/2LS−1/2), the spectral radius.

46

Proof: We start expressing the preconditioned matrix P−1A in a generalized saddle

point matrix. P−1A is similar to P
1
2 (P−1A)P− 1

2 = P− 1
2AP− 1

2 =

=

 1√
αγ1
D− 1

2 0

0 1√
γ2
S− 1

2

 αD −αB

−αBT −K∗K

 1√

αγ1
D− 1

2 0

0 1√
γ2
S− 1

2

=

 α√
αγ1
D

1
2

−α√
αγ1
D− 1

2B

−α√
γ2
S− 1

2BT −1√
γ2
S− 1

2K∗K

 1√

αγ1
D− 1

2 0

0 1√
γ2
S− 1

2

=

 1
γ1
I −

√
α

γ1γ2
D− 1

2BS− 1
2

−
√

α
γ1γ2

S− 1
2BTD− 1

2
−1
γ2
S− 1

2K∗KS− 1
2

=

 M̂ B̂∗

B̂ −Ĉ

 = Â.

Now one can use Theorem (4.1) with the following

M̂ =
1

γ1
I, B̂ = −

√
α

γ1γ2
S− 1

2BTD− 1
2 ,

Ĉ =
1

γ2
S− 1

2K∗KS− 1
2 , Ŝ =

1

γ2
In,

λmax(Ŝ) =
1

γ2
, λmin(Ŝ) =

1

γ2
,

µ̂1 =
1

γ1
, µ̂n =

1

γ1
,

σ̂m = maximum eigenvlaue of
α

γ2
S− 1

2LS− 1
2 , γ2 = ρ(αS−1/2LS−1/2),

to obtain the bound given in (4.3.2) and (4.3.3).

Remark 1

In the above theorem and its proof, since both P and S are positive definite then

P−1/2, P 1/2 and S−1/2 are well defined.

47

Remark 2

If γ1 = γ2 = 1, then (4.3.2) and (4.3.3) are given by

µi ∈
[
1,

1 +
√
1 + 4ασm
2

]
i = 1, ...,m, (4.3.4)

µ−j ∈
[
−1,− 1

1 + ατ

]
j = 1, ..., n. (4.3.5)

Remark 3

From (4.3.2) and (4.3.3), one can note that the smaller value of γ1
γ2

yields the smaller

length of both intervals. This means that we have a good clustering behavior for the

negative and positive eigenvalues. Hence, we expect fast convergence.

4.3.1 Numerical results for the eigenvalues analysis

Our aim is to verify that the bounds given in Theorem (3) are matched with the

following numerical example. In this example we take n = 16, β = 1 and α =

8 × 10−5 with the kernel described in (3.2.2). Table 4 .1 shows the upper and lower

(positive/negative) bounds of the intervals given in the above lemma. Also it shows

the maximum and the minimum (positive/negative) eigenvalues of the preconditioned

matrix P−1A. These eigenvalues are computed using the built-in Matlab command

eig (see Chapter 8 for the matlab code). In Table 4 .1, observe that all intervals in

the third column are contained in the second column. This observation verifies the

bounds given in Theorem (3).

It is known that the PMINRES convergence estimate [31] can be written as

∥ r(k) ∥P−1

∥ r(0) ∥P−1

≤ min
qk∈Πk qk(0)=1

max
λ∈σ(P−1A)

| qk(λ) |, (4.3.6)

where Πk is the space of all polynomial of degree less than or equals k and ∥ r(0) ∥2P−1=

48

r(0)
T
P−1r(0). To minimize (4.3.6), we need to cluster both the positive and negative

eigenvalues. This can be obtained by reducing the lengths of the intervals in (4.3.2)

and (4.3.3).

4.4 Approximation K∗K

We introduced some definitions related to the Toeplitz and circulant matrices and

their blocks. Now we are ready to speak about the preconditioners of the Toeplitz

and BTTB matrices by circulant and BCCB matrices. Circulant preconditioning

for Toeplitz systems was introduced by Strang [91] and extended by others to block

Toeplitz systems [24]. Many researchers use a Toeplitz preconditioners and block

Toeplitz preconditioners for Toeplitz systems see for instance [20] and [63]. Band

Toeplitz preconditioner and band BTTB preconditioner are proposed in Chan [18]

and Serra [88]. In [64], BTTB preconditioners for BTTB systems are discussed. In

our dissertation, we use three approaches to approximate the product K∗K given in

the (2,2)-block of the exact preconditioner matrix P .

4.4.1 Symmetric BTTB approximation

Note that our matrix K is a BTTB matrix but the product K∗K need not be BTTB.

So, in the first approach, we follow [81] to approximate K∗K given in the precondi-

tioner matrix P by a symmetric BTTB matrix T . Symmetric BTTB matrices can

always be extended to form symmetric BCCB matrices. To make the idea clear, we

49

consider the following example

1 2 3

2 1 2

3 2 1

 →

1 2 3 2

2 1 2 3

3 2 1 2

2 3 2 1

(4.4.1)

This example show how to extend symmetric BTTB matrix into a BCCB. The benefit

of this approximation is that the matrix-vector products that involve n× n matrices

can be computed in O (n log n) operations due to the FFT’s and the Convolution

Theorem. Moreover, all that is needed for computation is the first column of the

matrix, which decreases the amount of required storage.

4.4.2 Strang circulant approximation

The second approach that we follow is that we approximate the n by n Toeplitz matrix

K given in the preconditioner matrix P by the well known Strang circulant matrix

S with diagonals sk (see [21] page 17–18). In this approximation, if n = 2m + 1 the

diagonals sk of S are given by

sk =

kk, 0 ≤ k ≤ m,

kk−n, m < k < n− 1,

s̄−k, 0 < −k < n− 1,

(4.4.2)

where ki is the ith diagonal of the matrix K. If n = 2m, we get the Strang matrix S

as above. In this case, we define sm = 0 or sm = km+k−m

2
.

50

4.4.3 The best circulant approximation

In the last approach, we also approximate the Toeplitz matrix K given in the pre-

conditioner matrix P by an optimal circulant [22]) matrix C. If Cn denote the set of

n × n circulant matrices. The optimal circulant approximation to K ∈ Cn×n in the

Frobenius norm is given by C = arg min
B∈Cn

∥ B − K ∥Fro. In this case, the value of

the entries ck of the matrix C is obtained by this formula ck =
kT−(n−k)+(n−k)Tk

n
, k =

−(n− 1), ..., 0, ..., (n− 1). Resulting of the above three approximations, we have the

following three approximation preconditioners.

4.5 Three block diagonal preconditioners

In this section, we introduce the following three block diagonal preconditioners

PT =

 αγ1D 0

0 γ2(T + αL)

 , PS =

 αγ1D 0

0 γ2(S
∗S + αL)

 ,
PC =

 αγ1D 0

0 γ2(C
∗C + αL)

 .
In the above preconditioners, the matrices T , S and C denote the symmetric BTTB,

the Strang BCCB and the best BCCB approximations to the product K∗K given in

the exact preconditioner (4.2.1). These approximations allow us to use the FFT the

Convolution Theorem. In this case, the matrix-vector products that involve n × n

matrices can be computed in O (n log n) operations. Moreover, all that is needed

for the computation is the first column of the matrix, which decreases the amount of

required storage.

51

4.6 Numerical experiments

The aim of this section is to investigate the efficiency of the three preconditioners

described above for two blurry images. The first image is a retinal image of a diabetic

patient (see Figure 4.2) and the second one is goldhill image (see Figure 4.8). We

start by blurring these two images by a certain kernel given in Figure (4.7). Then

we deblur these images back and solve the linear system by preconditioned MINRES

method using the above three preconditioners (with γ1 = γ2 = 1) and we use the well

known fixed point iteration method to linearize the non-linear term. We watch the

CPU-time and the number of MINRES iterations. It is known that in each PMINRES

iteration, we solve a linear system of the form Px = y. To solve this system, we use

the conjugate gradient method (CG) for the (2,2) block.

Example 2 In this example, we calculate the iterations number of MINRES with

using the three preconditioners PT , PS and PC. We fix the maximum iteration of

PMINRES to be 100, the tolerance 1e − 2, β = 0.01, α = 0.00008, and we use the

retinal image (blurred image) given in Figure (4.3) as a data with PSNR = 20.5548.

Firstly, we start by using the preconditioner PT . Table (4 .2) shows the degree of

freedom (dof), the PMINRES iterations and the PSNR in each iteration of the fixed

point method.

Secondly, we use preconditioner PS with the same blurred image and the same

parameters given above. Table (4 .3) shows the degree of freedom (dof), the PMINRES

iterations and the PSNR in each iteration of the fixed point method.

Finally, we use preconditioner PC with the same bulurred image and the same

parameters given above. Table (4 .4) show the degree of freedom (dof), the PMINRES

iterations and the PSNR in each iteration of the fixed point method. For the qualities

of the reconstruction images using these three preconditioners, see Figures (4.4-4.6).

52

20 40 60 80 100
−5

−4

−3

−2

P
C

P
S

P
T

Figure 4 .1: Iterations Number v.s. the Residual

In this example, the second computations carried out for the second data (blurred

image) given in Figure (4.9) which is blurred by the kernel given in Figure (4.13).

The qualities of the reconstruction images are shown in Figures (4.10-4.12).

Example 3 In this example we compare the CPU-time of the three PMINRES pre-

conditioned. In Table (4 .5), we list the CPU-time of the PMINRES spends to do 5

fixed point iterations.

Example 4 In this example, we compute the residual of PMINRES using the three

preconditioners with the same bulurred image and the same parameters given in the

above examples. Figure (4.1) shows the convergence of the methods. From Figure

(4.1), it can be seen that the preconditioner PS is the fastest one followed by PC and

then PT . It is clear that PS needs 78 iterations to reach the tol = 1e− 2, PC needs 81

while PT needs more than 100 iterations to reach the same tolerance. Note that we

take the PMINRES iterations for these three preconditioners at the second iteration

of the fixed point iteration method.

Example 5 In this example, we use the true image given in Figure 4.8 and the

53

blurred images given in Figure 4.9, (it is blurred by using the kernel given in Figure

4.13), and we fix the preconditioner to be PT . We watch the quality of the deblurred

images in some fixed point iteration. Figures (4.14-4.17) show the deblurred images

in the iterations number: 1, 5, 10 and 13. The second computations carried out

for different values of the regularization parameters α. Figures (4.18-4.21) show the

deblurred images for α = 8e− 2, 8e− 4, 8e− 7, 8e− 8.

Remark 4

In all the above examples (3-6), we fix γ1 = γ2 = 1. In the following example, we

change the values of these two parameters to show how do they affect the convergence

of the MINRES method. For this test, we just consider the preconditioner PT and

we vary the values of the parameters.

Example 6 In this example, we have chosen nx = 128 and β = 0.01. Here P0 refers

to no-preconditioner, PAN to PT with γ1 = γ2 = 1, P12 to PT with γ1 = 1, γ2 = 10,

P2 to PT with γ1 = 1e−3, γ2 = 1 and finally P3 refers to PT with γ1 = 1e−6, γ2 = 1.

In Figures (4.22) and (4.23) observe that unpreconditioned MINRES converged most

slowly, followed by PMINRES PAN and then both P0 and PAN are followed by P12.

We note that PMINRES P3 is the fastest one. This has the smallest value of the pa-

rameter γ1 which leads to the best clustering behavior of the eigenvalues (see Remark 3

and Table 4.1). Figures (4.24-4.25) show the difference between the unpreconditioned

MINRES (P0) and PMINRES PAN .

Finally, the CPU time and the measure of image quality, Peak Signal-to-Noise Ratio

(PSNR), for the preconditioners PAN , P12, P2 and P3 are given in Table 4 .6. In this

table, we compute the CPU time for 15 iterations for PAN to reach tol = 1e − 3, 10

iterations for P12 to reach tol = 1e− 3, 7 iterations for P2 to reach tol = 1e−3 and 6

54

iterations for P3 to reach the same tolerance. Through this comparison, we find that

the PSNR for the blurred image is (21.2004) while the PSNR for deblurred image can

be seen in Table 4 .6.

Remark 5

PAN denotes the Axelsson and Neytcheva preconditioner [6] (the exact preconditioner

(4.2.1) with γ1 = γ2 = 1).

Remark 6

PSNR is defined by:

PSNR(u, v) = 10 log10(max(max(u),max(v))
2/|u− v|2). (4.6.1)

Remark 7

All required Matlab-codes for the all above computations can be found in the last

chapter.

4.7 Conclusion

Three different preconditioners for the generalized saddle point system resulted from

discretizing the Euler Lagrange equations associated with image debulrring problem

are presented. In these preconditioners, three approximations for the product of the

BTTB matrix and its transpose are considered. From the computations, we observe

that the PS preconditioner is the most effective one followed by PC and then by PT .

55

Figure 4 .2: True Image Figure 4 .3: Blurred Image

Figure 4 .4: Deblured Image PT Figure 4 .5: Deblured Image PS

Figure 4 .6: Deblured Image PC

20
40

60
80

100
120

20
40

60
80

100
120

0

1

2

3

4

x 10
−4

Figure 4 .7: Out-of-focus kernel

56

Figure 4 .8: True Image Figure 4 .9: Blurred Image

Figure 4 .10: Deblured Image PT Figure 4 .11: Deblured Image PS

Figure 4 .12: Deblured Image PC Figure 4 .13: Kernel Cantor

57

Figure 4 .14: 1st Fixed Point Iteration Figure 4 .15: 5th Fixed Point Iteration

Figure 4 .16: 10th Fixed Point Iteration Figure 4 .17: 13th Fixed Point Iteration

58

Figure 4 .18: α = 8.0e− 2 Figure 4 .19: α = 8.0e− 4

Figure 4 .20: α = 8.0e− 7 Figure 4 .21: α = 8.0e− 8

59

0 2 4 6 8 10 12 14 16 18
−8

−7

−6

−5

−4

−3

−2

−1

0

P
0
	

P
AN

P
12

P2
P3

Figure 4 .22: Res. .vs. iter. α = 8e− 5

0 2 4 6 8 10 12 14
−8

−7

−6

−5

−4

−3

−2

−1

0

P
0

P
AN

P
12

P
2

P
3

Figure 4 .23: Res. .vs. iter. α = 8e− 4

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0
P

0

P
AN

Figure 4 .24: Res. .vs. iter. α = 8e− 5

0 5 10 15 20 25
−7

−6

−5

−4

−3

−2

−1

0
P

0

P
AN

Figure 4 .25: Res. .vs. iter. α = 8e− 4

60

γ1, γ2 Bounds in (4.3.2)-(4.3.3) Computed eigenvalues

1, 1 [−1,−6.42e − 1] ∪ [1, 1.39] [−1,−7.59e − 1] ∪ [1, 1.31]

1e − 3, 1 [−1,−9.99444e − 1] ∪ [1e + 3, 1.0005555e + 3] [−1,−9.99445e − 1] ∪ [1e + 3, 1.0005552e + 3]

1e − 6, 1 [−1,−9.999994441e − 1] [−1,−9.999994442e − 1]

∪ ∪

[1e + 6, 1.0000005558257e + 6] [1e + 6, 1.0000005558255e + 6]

Table 4 .1: Bounds on eigenvalues of the preconditioned matrix P−1A

Table 4 .2: The Preconditioner PT

Fixed Point nx dof PMINRES PSNR

Iteration Number Iteration

1 128 48896 > 100 40.6813

2 128 48896 > 100 42.2709

3 128 48896 14 42.5842

4 128 48896 3 42.5841

5 128 48896 1 42.5841

Table 4 .3: The Preconditioner PS

Fixed Point nx dof PMINRES PSNR

Iteration Number Iteration

1 128 48896 > 100 40.6510

2 128 48896 78 42.6645

3 128 48896 6 42.6688

4 128 48896 1 42.6688

5 128 48896 1 42.6688

Table 4 .4: The Preconditioner PC

Fixed Point nx dof PMINRES PSNR

Iteration Number Iteration

1 128 48896 > 100 40.6493

2 128 48896 81 42.6535

3 128 48896 6 42.6577

4 128 48896 1 42.6577

5 128 48896 1 42.6577

61

Table 4 .5: Comparison between PT , PS and PC

nx dof CPU Time CPU Time CPU Time

of PT of PS of PC

128 48896 74.706 39.243 42.653

Table 4 .6: CPU time, PSNR for PAN , P12, P2 and P3

PAN P12 P2 P3

CPU(in second) 23.59 14.52 12.53 11.24

PSNR for deblurred image 26.6606 26.6673 26.6609 26.6609

(in decibels)

Chapter 5

STOCHASTIC DARCY’S

EQUATIONS

62

63

5.1 Introduction

The flow of a fluid in porous media is described by Darcy’s law as follows

K−1(x)u⃗(x)−∇p(x) = 0, (5.1.1)

with the divergence constraint

−∇ · u⃗(x) = f(x) in D, (5.1.2)

and the boundary condition

n⃗ · u⃗(x) = 0 on ∂D, (5.1.3)

where K−1(x) is the permeability, assumed to be uniformly positive definite and

bounded, and f is a given data defined on D satisfying the compatibility condition:

∫
D

f(x)dx = 0. (5.1.4)

In the above equations, D ⊂ R2 is a bounded, simply connected, polygonal domain

in R2 whose boundary is ∂D and n⃗ is the outward normal to the boundary. The

vector u⃗ : D → R2 is the velocity and the function p : D → R is the pressure. The

equations (5.1.1-5.1.4) represent a simple model for a single–phase flow in a porous

medium. In some situations, in engineering applications, the coefficientK−1 in (5.1.1)

is not known at all points of D. As a usual technique, one can consider K−1 as a

random field. At every x ∈ D, it can be considered as a random variable. To this

end, let (Ω,F,P) to a complete probability space where F is the σ-algebra over the

64

sample space Ω and P : F → [0, 1] is the probability measure with P(Ω) = 1. Now,

if K−1 = K−1(x, ω), x ∈ D, ω ∈ Ω the solution to (5.1.1-5.1.4) is a pair of random

fields (u⃗, p) = (u⃗(x, ω), p(x, ω)) such that, P − a.e. in Ω,

K−1(x, ω)u⃗(x, ω)−∇p(x, ω) = 0 in D × Ω,

∇.u⃗(x, ω) = −f(x) in D × Ω,

n⃗.u⃗(x, ω) = 0 on ∂D × Ω,

(5.1.5)

5.2 Overview

In this chapter, we aim to approximate efficiently the statistical moments (mean and

variance) of the unknown (pressure and velocity) given in the mixed problem (5.1.5)

via stochastic Galerkin finite element method. Mixed problem (5.1.5) is covered in

some papers, see for example ([13], [33], [80], [93], [30], [48], [29], [41]).

In [13], the well-posedness, the regularity of solutions and a priori error estimates for

stochastic Galerkin finite element approximations are discussed. In [33], an efficient

linear solver for the stochastic Galerkin mixed problem (5.1.5) is presented. In both

[13] and [33] stochastic Galerkin discretizations is carried out in the case when the

random coefficient is assumed uniformly bounded. In [80], the multilevel Monte Carlo

algorithm is used. However, the random coefficient is assumed to be a lognormal ran-

dom field. In [93], efficient iterative methods for the same problem is studied but

when the Gaussian random fields are transformed into lognormal ones.

In our dissertation, we follow the works given in [13, 33] to approximate the sta-

tistical moments of the mixed problem (5.1.5) by using stochastic Galerkin finite

element method .

65

The main difference between the approaches in [13, 33] and our approach is that in

[13, 33], the mixed problem (5.1.5) are studied and analyzed in term of H(div(D))⊗

L2
P(Ω) and L

2(D)⊗L2
P(Ω) formulation for the spatial velocity and the pressure spaces.

This approach leads to a saddle point systems in which the (1,1)-block matrix dose

not have a diagonal structure. Hence, the computing may not be easy and the cost

of the computation will be high.

However, our approach is based on the [L2(D)]2⊗L2
P(Ω) and (H1(D)∩L2

0(D))⊗L2
P(Ω)

spaces of the velocity and the pressure, respectively, which is the mean contribution

in this chapter.

One of the main advantage of our formulation is that the deterministic mass matrix is

a diagonal which causes the (1,1)-block matrix in the coefficient matrix of the saddle

linear system to have a diagonal structure. The reason for the diagonal property

is that the finite dimensional subspace of the velocity space spans by orthonormal

elements.

Our new stochastic formulation is an extension of the original work introduced in [2].

In [2], the deterministic version of the mixed problem (5.1.5) has been studied and

the error, existence and uniqueness are discussed.

The rest of this chapter is organized as follows: some spaces and their norms are

presented in Section 5.3. Weak formulations with their analysis are discussed in

Section 5.4. Sections 5.5 contains the approximation of the deterministic spaces.

Finite-dimensional noise is studied in Section 5.6. In Section 5.7 the approximation

of the stochastic spaces are discussed. Section 5.8 includes the stochastic matrices

structure.

66

5.3 Hilbert spaces

We introduce some usual Hilbert spaces with their associated inner products and

norms. Let L2(D) denotes the Lebesgue square integrable functions with inner-

product (., .) and with norm ∥ . ∥0. H1(D) denote the Sobolev space consisting

of functions, which together with their distributional derivatives of order one are in

L2(D). The associated inner-product is defined as (u⃗, v⃗)H1 = (u⃗, v⃗) + (∇u⃗,∇v⃗) and

the norm on H1(D) is denoted by ∥ . ∥1. Let [L2(D)]2 be the space L2(D) × L2(D)

whose inner product is understood to hold componentwise and its norm is also de-

noted by ∥ . ∥0. More details for the above spaces can be found in [3]. In this paper,

we set

X = [L2(D)]2,

Q = H1(D) ∩ L2
0(D),

(5.3.1)

where L2
0(D) stands for the space L2

0(D) = {q ∈ L2(D) :
∫
D
q(x)dx = 0}. We define

∥ v⃗ ∥2L2(D) =

∫
D

v⃗ · v⃗dx,

∥ v⃗ ∥2X =

∫
D

(v21 + v22)dx =∥ v1 ∥2L2 + ∥ v2 ∥2L2 ,

∥ q ∥2H1 =

∫
D

q2dx+

∫
D

(∇q · ∇q)dx =∥ q ∥2L2 + | q |2H1 .

(5.3.2)

The space L2
P(Ω) consists of all random variables with finite second moment i.e.

E[ξ2] < ∞. The inner product of the space L2
P(Ω) is defined by (ξ1, ξ2) = E[ξ1.ξ2]

and the norm ∥ ξ ∥L2(P)= (ξ, ξ)
1
2 . For more details of the theory of random fields

and stochastic concepts we refer to [50] and [75]. Since the stochastic functions have

different structures with x and with ω, we introduce the tensor product spaces as

67

follows, (see [94] for a definition of the tensor product),

X : = X ⊗ L2
P(Ω),

Q : = Q⊗ L2
P(Ω).

(5.3.3)

For v⃗(x, ω) ∈ X and q(x, ω) ∈ Q, the associated norms are defined by ∥ v⃗ ∥2X:= ⟨∥

v⃗ ∥2X⟩ and ∥ q ∥2Q:= ⟨∥ q ∥2H1⟩.

5.4 Weak formulations

To formulate the weak formulation of our problem (5.1.5) it is better to start with

the following mixed deterministic Darcy’s equations

K−1(x)u⃗(x)−∇p(x) = 0 in D,

−∇ · u⃗(x) = f(x) in D,

n⃗ · u⃗(x) = 0 on ∂D,

(5.4.1)

where K−1(x) is assumed to be a 2 × 2 bounded and spd matrix-valued function.

This means that

kmin(γ⃗, γ⃗) ≤ (K−1γ⃗, γ⃗) ≤ kmax(γ⃗, γ⃗), (5.4.2)

where kmin and kmax are positive constants and for every γ⃗ : D → R2.

68

5.4.1 The weak formulation for the deterministic problem

The weak formulation of (5.4.1) is to find (u⃗, p) ∈ X ×Q such that

a(u⃗, v⃗) + b(v⃗, p) = 0 v⃗ ∈ X,

b(u⃗, w) = l(w) w ∈ Q,

(5.4.3)

where a(., .) and b(., .) are bilinear forms defined by a(u⃗, v⃗) =
∫
D
K−1u⃗ · v⃗dx and

b(u⃗, w) = −
∫
D
u⃗ · ∇wdx The linear form l(.) is given by l(w) = −

∫
D
fwdx. To get

the above formulation, we multiply the first equation in (5.4.1) by the vector-function

v⃗ ∈ X and the second one by the scalar-function w ∈ Q and integrate the second one

using the Green formula and the boundary condition.

Theorem 4 For any data f ∈ L2(D), the problem (5.4.3) has a unique solution (u, p)

in X × Q provided that the condition (5.4.2) holds. Moreover this solution satisfies

the following estimate

∥ u⃗ ∥[L2(D)]2 + ∥ p ∥H1(D)≤ k ∥ f ∥L2(D), (5.4.4)

where k is a constant depend on the constants (kmax, kmin, β) where kmax, kmin are

given in (5.4.2) and β is a positive constant and is the inf-sup constant of (5.4.3).

Proof: The theorem above can be proved using the theory given in [15], [39] and [45].

To follow them, we need to verify the continuity (boundedness) of both bilinear forms

a(., .) and b(., .), the coercivity of a(., .) on the null-space (also called kernel space)

Z = {v⃗ ∈ X : b(v⃗, w) = 0 ∀w ∈ Q} and the inf-sup condition. The continuity of

a(., .) on X ×X can be proved using the right inequality of (5.4.2) and using Cauchy

Schwarz inequality. It is clear that a(., .) is coercive on the null-space Z with using the

left inequality of (5.4.2) and the definition of ∥ . ∥[L2(D)]2 . For the continuity of b(., .)

69

on X × Q, one can achieved it by using the Cauchy Schwarz inequality. Moreover,

for any w ∈ Q, by taking r⃗q = ∇w, we obtain

| b(r⃗q, w) |=
∫
D

r⃗q · ∇w =

∫
D

∇w · ∇w =

∫
D

|∇w|2 =| w |2H1=∥ r⃗q ∥[L2(D)]2 | w |H1(D) .

By using the so called Poincaré inequality on Q, (see [45], Chap. I, Thm 1.9), we

obtain the inf-sup condition

∀ w ∈ Q, sup
r⃗∈X

| b(r⃗, w) |
∥ r⃗ ∥[L2(D)]2

≥ β ∥ w ∥H1(D), (5.4.5)

To prove the second part of the theorem, let v = u in the first equation of (5.4.3) to

get

a(u⃗, u⃗) = −b(u⃗, p) = (f, p) (5.4.6)

using the coercivity of a(., .) and the continuity of l(p) one gets

∥ u ∥2X≤ C1 ∥ f ∥L2∥ p ∥Q (5.4.7)

and using the inf-sup condition, we have

β ∥ p ∥H1(D)≤ sup
v⃗∈X

| b(v⃗, p) |
∥ v⃗ ∥[L2(D)]2

= sup
v⃗∈X

| −a(u⃗, v⃗) |
∥ v⃗ ∥[L2(D)]2

≤ C2 ∥ u⃗ ∥X (5.4.8)

So, equation (5.4.4) can be achieved by substituting (5.4.8) in (5.4.7). The above

theorem and its prove can be found in [2] when the K−1(x) ≡ 1.

70

5.4.2 The weak formulation of the stochastic problem

In this subsection, we find the weak formulation of the stochastic problem. We start

by assuming the following:

Assumption 1 K−1(x, ω) is a second-order random field, in other word, K−1(x, ·) ∈

L2
P(Ω), ∀x ∈ D

Assumption 2 K−1(x, ω) ∈ L∞(D × Ω) satisfies the following

0 < Cmin ≤ K−1(x, ω) ≤ Cmax <∞ a.e. in D × Ω. (5.4.9)

where Cmax and Cmin are positive constants.

Now it is easy to get the weak formulation of the problem (5.1.5) which is to find

u⃗ ∈ X and p ∈ Q such that

a(u⃗, v⃗) + b(v⃗, p) = 0; v⃗ ∈ X,

b(u⃗, w) = −⟨(f, w)⟩; w ∈ Q,
(5.4.10)

where the bilinears a(., .) and b(., .) are given by a(u⃗, v⃗) = E[
∫
D
K−1u⃗ · v⃗dx] and

b(u⃗, w) = −E[
∫
D
u⃗ · ∇wdx].

Theorem 5 Let f ∈ L2(D), the problem (5.4.10) has a unique solution (u, p) in

X×Q provided that the Assumption 2 holds. Moreover the following estimate holds

∥ u⃗ ∥[L2(D)]2⊗L2
P(Ω) + ∥ p ∥H1(D)⊗L2

P(Ω)≤ C ∥ f ∥L2(D), (5.4.11)

where the positive constant C depends on the constants (Cmax, Cmin, β) where Cmax, Cmin

are given in (5.4.9) and β is the inf-sup constant of the problem (5.4.10) and so is of

71

the problem (5.4.3).

Proof: The above theorem can be derived as we did in section 4.1. The continuity of

a(., .) on X×X can be achieved using the right inequality of (5.4.9) and using Cauchy

Schwarz inequality. The coercivity of a(., .) on the null-space Z = {v⃗ ∈ X : b(v⃗, w) =

0 ∀w ∈ Q} can be achieved by using the left inequality of (5.4.9) and the definition

of ∥ . ∥[L2(D)]2⊗L2
P(Ω). One can show that b(., .) is continuous on X × Q by using the

Cauchy Schwarz inequality. Moreover, for any w ∈ Q, by taking r⃗q = ∇w, we obtain

| b(r⃗q, w) |=
∫
Ω

∫
D

r⃗q · ∇wdxdP =| w |2H1×L2
P
=∥ r⃗q ∥[L2]2⊗L2

P
| w |H1⊗L2

P
.

By using the Poincaré inequality on Q, we get the inf-sup condition

∀ w ∈ Q, sup
r⃗∈X

| b(r⃗, w) |
∥ r⃗ ∥[L2]2⊗L2

P

≥ β ∥ w ∥H1⊗L2
P
, (5.4.12)

where β is a positive constant. To prove the bound (5.4.11), we have

a(u⃗, u⃗) = −b(u⃗, p) = (f, p).

Using the coercivity of a(·, ·) and the Cauchy-Schwartz inequality, we have

∥ u⃗ ∥2X≤
1

Cmin

∥ f ∥L2∥ p ∥Q . (5.4.13)

72

From the inf-sup condition, we have

∥ p ∥Q ≤ 1

β
sup
v⃗∈X

| b(v⃗, p) |
∥ v⃗ ∥X

=
1

β
sup
v⃗∈X

| −a(u⃗, v⃗) |
∥ v⃗ ∥X

,

∥ p ∥Q ≤ Cmax

β
sup
v⃗∈X

∥ u⃗ ∥X∥ v⃗ ∥X
∥ v⃗ ∥X

=
Cmax

β
∥ u⃗ ∥X .

(5.4.14)

Using the above equation in (5.4.13), we have

∥ u⃗ ∥2X ≤ Cmax

βCmin

∥ f ∥L2∥ u⃗ ∥X,

∥ u⃗ ∥X ≤ Cmax

βCmin

∥ f ∥L2 ,

(5.4.15)

and then,

∥ p ∥Q≤
C2

max

β2Cmin

∥ f ∥L2 . (5.4.16)

Now it is easy task to get the bound (5.4.11).

5.4.3 Karhunen. Lo‘eve (KL) expansion

We use the well known KL expansion to express K−1(x, ω) as a summation of scaled

product of two functions one of these function is deterministic while the second is

random variable. This expression is useful to transform the saddle point problem

(5.4.10) into one which can be solved by deterministic numerical methods. There are

several expansions are available (see [57] for a survey). In this dissertation, we focus

on the Karhunen. Lo‘eve (KL) expansion (see [87], [65], [46] and [66] for the (KL)

expansion)

K−1(x, ω) = k0(x) +
∞∑

m=1

√
λmkm(x)ξm(ω), (5.4.17)

73

In the above expression (5.4.17), k0(x) denotes the mean ofK−1(x, ω) and {(λm, km)}∞m=1

are the eigenpairs of the integral operator C : L2(D) → L2(D), defined by

(Cu)(x) =

∫
D

u(y)c(x, y)dy, (5.4.18)

where c is the covariance function of K−1 (some popular choices of c are mentioned

in [33]. The linear operator C defined by (5.4.18) is compact, self adjoint, and posi-

tive. Therefore, the eigenfunctions of C form an orthonormal basis of L2(D) and the

eigenvalues are all positive real numbers with only one accumulation point, namely 0

(see Theorem B.2.1 in [60]). The random variables {ξm}∞m=1 are uncorrelated random

variables in L2
P(Ω) with E[ξm] = 0 and E[ξ2m] = 1 and they are determined by

ξm(ω) =
1√
λm

∫
D

(K−1(x, ω)− k0(x))km(x)dx. (5.4.19)

5.4.4 The weak formulation of the perturbed problem

To discretize the saddle point problem (5.4.10), we follow ([8], [9], [40], [67], [66], [87],

[13] and [33]) by truncating (5.4.20) after M terms

K−1
M (x, ω) ≈ k0(x) +

M∑
m=1

√
λmkm(x)ξm(ω), (5.4.20)

where M here is called the order of the KL decomposition. The convergence of the

error ∥ K−1−K−1
M ∥L∞(D×Ω) to zero depends on how do the eigenvalues λm decreasing

to zero. For more detail on this convergence we refer to see ([40]) for instance. Now,

we put K−1
M instead of K−1 in (5.4.10) to get the perturbed problem: find u⃗M ∈ X

74

and pM ∈ Q

aM(u⃗M , v⃗) + b(v⃗, pM) = 0 v⃗,∈ X,

b(u⃗M , w) = −⟨(f, w)⟩ w ∈ Q,
(5.4.21)

where,

aM(u⃗, v⃗) = E[

∫
D

K−1
M u⃗ · v⃗dx] ∀u⃗, v⃗ ∈ X (5.4.22)

The well-posedness of the solution to (5.4.21) can be derived under the following

assumption

Assumption 3

0 < Kmin ≤ K−1
M (x, ω) ≤ Kmax <∞ a.e. in D × Ω, (5.4.23)

where Kmax and Kmin are positive constants (depending on M , Cmin and Cmax).

Theorem 6 Let (u⃗, p) ∈ X×Q be the solution to (5.4.10) and let (u⃗M , pM) ∈ X×Q

be the solution to (5.4.21) then

∥ u⃗− u⃗M ∥X ≤ Cmax

βCminKmin

∥ K−1 −K−1
M ∥L∞(D×Ω)∥ f ∥L2(D),

∥ p− pM ∥Q ≤ Cmax

β2Cmin

(1 +
Kmax

Kmin

)∥ K−1 −K−1
M ∥L∞(D×Ω)∥ f ∥L2(D).

(5.4.24)

Proof: Let eu = u⃗− u⃗M ∈ X, ep = p− pM ∈ Q. Then from (5.4.10) and (5.4.21), we

have

a(u⃗, eu) = −b(eu, p) = 0,

aM(u⃗M , eu) = −b(eu, pM) = 0

(5.4.25)

and, hence

Kmin ∥ eu ∥2X ≤ aM(eu, eu) = a(u⃗, eu)− aM(u⃗, eu). (5.4.26)

75

Using the above equations and the bound given in (5.4.15), we have

Kmin ∥ eu ∥2X ≤ a(u⃗, eu)− aM(u⃗, eu)

Kmin ∥ eu ∥2X ≤∥ K−1 −K−1
M ∥L∞(D×Ω)∥ u⃗ ∥X∥ eu ∥X

∥ eu ∥X ≤ 1

Kmin

∥ K−1 −K−1
M ∥L∞(D×Ω)∥ u⃗ ∥X

∥ u⃗− u⃗M ∥X ≤ Cmax

βCminKmin

∥ K−1 −K−1
M ∥L∞(D×Ω)∥ f ∥L2 .

(5.4.27)

Similarly for ep. From the inf-sup condition we have

sup
r⃗∈X

| b(r⃗, ep) |
∥ r⃗ ∥X

≥ β ∥ ep ∥Q . (5.4.28)

So, we have

b(r⃗, ep) = b(r⃗, p)− b(r⃗, pM)

= −a(u⃗, r⃗) + aM(uM , r⃗)

= −a(u⃗, r⃗) + aM(u⃗, r⃗)− aM(eu, r⃗).

(5.4.29)

| b(r⃗, ep) |≤∥ K−1 −K−1
M ∥L∞(D×Ω)∥ u⃗ ∥X∥ r⃗ ∥X +Kmax ∥ eu ∥X∥ r⃗ ∥X (5.4.30)

| b(r⃗, ep) |≤ (Kmax ∥ eu ∥X + ∥ K−1 −K−1
M ∥L∞(D×Ω)∥ u⃗ ∥X) ∥ r⃗ ∥X . (5.4.31)

Now, use the bound (5.4.15) to have

∥ ep ∥Q ≤ 1

β
(Kmax ∥ eu ∥X + ∥ K−1 −K−1

M ∥L∞(D×Ω)∥ u⃗ ∥X)

∥ ep ∥Q ≤ (
KmaxCmax

β2KminCmin

+
Cmax

β2Cmin

) ∥ K−1 −K−1
M ∥L∞(D×Ω)∥ f ∥L2

∥ p− pM ∥Q ≤ Cmax

β2Cmin

(1 +
Kmax

Kmin

) ∥ K−1 −K−1
M ∥L∞(D×Ω)∥ f ∥L2 .

(5.4.32)

76

5.5 Deterministic spaces approximation

Let Th be a triangulations of D, h denotes the maximal diameter of the elements of

Th. Now for a given h and Th, the space Xk
h of discrete velocities that approximates

the space X is defined by Xk
h = {v⃗h ∈ X; ∀K ∈ Th, vh |K∈ Pk(K)2}. The space Qk

h

of the discrete pressure that approximates Q is defined by Qk
h = {wh ∈ Q; ∀K ∈

Th, wh |K∈ Pk+1(K)}. Here Pk(K) denotes the space of polynomials of degree ≤ k on

triangle K. Note that any function v⃗h in Xh has a zero divergence on each element

K and hence on D. For k = 0, the discrete spaces have the special piecewise forms,

Xh = X0
h = {v⃗h ∈ X : v⃗h |K∈ P0(K)2},

Qh = Q0
h = {wh ∈ Q : wh |K∈ P1(K)}.

(5.5.1)

The functions (χK , 0) and (0, χK) for all K ∈ Th form an orthonormal basis for

Xh where χK is the characteristic function of the triangle K. In analogy with the

continuous case, we introduce the discrete kernel Zh = {v⃗h ∈ Xh : b(v⃗h, wh) =

0 ∀wh ∈ Qh}. Now we look for u⃗h ∈ Xh and ph ∈ Qh such that

a(u⃗h, v⃗h) + b(v⃗h, ph) = 0 v⃗h ∈ Xh,

b(u⃗h, wh) = l(w) wh ∈ Qh.

(5.5.2)

The continuity of a(., .) on Xh × Xh and b(., .) on Xh × Qh, the coercivity of a(., .)

on Zh can be done as in section 4.1. For the inf-sup condition: for any wh in Qh, we

take r⃗h
.
= ∇wh and obtain the following inf-sup condition

∀ wh ∈ Qh, sup
r⃗h∈Xh

| b(r⃗h, wh) |
∥ r⃗h ∥[L2(D)]2

≥ β̃ ∥ wh ∥H1(D), (5.5.3)

77

where β̃ is a positive constant (the discrete inf-sup constant) independent of h. The

above argument gives the existence and uniqueness of the solution (u⃗h, ph) to (5.5.2).

Now, let Xh=span {φi}ni=1 and Qh = span {ϕi}mi=1 where n = twice number of the

triangles in the mesh and m = number of nodes. Since u⃗h ∈ Xh and ph ∈ Qh then

u⃗h =
n∑

i=1

uiφi ph =
m∑
i=1

piϕi, (5.5.4)

as well as the basis of test functions v = φi, i = 1, ...n and w = ϕj, j = 1, ...,m. So

we put these in (5.5.2), to get the saddle point problem

 A BT

B 0

 u

p

 =

 0

f,

 , (5.5.5)

where u = [u1, ..., un]
T , p = [p1, ..., pm]

T . The block matrices A and B in (5.5.5) are

defined by [A]i,j = (K−1φi, φj) for 1 ≤ i, j ≤ n and [B]j,i = −(φi,∇ϕj) for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. The data f is given by [f]j = −(f, ϕj) for 1 ≤ j ≤ m.

5.6 Finite-dimensional noise

Since the random variables appearing in the KL– expansion are only uncorrelated,

we need to the following assumption, (see [33] and [13])

Assumption 4 The random variables ξm in the expansion (5.4.17) are independent.

Let Γm := ξm(ω), m = 1, ...,M be bounded intervals in R, and assume that the

density functionsρm : Γm −→ R+ of all ξm are given. Let Γ := Γ1 × ... × ΓM ⊂ RM

denotes the range of the M -dimensional random vector ξ = (ξ1, ..., ξM) and let y =

(y1, ..., yM) be a vector in Γ where yj = ξj(ω); j = 1, ...,M . From Assumption 3, the

78

joint density function of ξ can be written as

ρ(y) = ρ1(y1)...ρM(yM), (5.6.1)

where ρi is the density function of ξi. The Doob Dynkin lemma [75] allows us to write

the velocity and the pressure as functions of x and ξ. Now one can turns the original

stochastic equations (5.4.10) into deterministic parametric equations as follows

aM(u⃗M , v⃗) + b(v⃗, pM) = 0 v⃗ ∈ X,

b(u⃗M , w) = −
∫
Γ

ρ(y)

∫
D

f · wdxdy w ∈ Q,
(5.6.2)

where X := X⊗L2
ρ(Γ) and Q := Q⊗L2

ρ(Γ), with norms ∥ v ∥X:= (
∫
Γ
∥ v⃗ ∥2X ρ(y)dy)

1
2

and ∥ w ∥Q:= (
∫
Γ
∥ w ∥2H1(D) ρ(y)dy)

1
2 . The first bilinear forms aM(., .) in (5.6.2) is

defined by

aM(u⃗, v⃗) =

∫
Γ

ρ(y)

∫
D

K−1
M u⃗ · v⃗dxdy ∀u⃗, v⃗ ∈ X. (5.6.3)

where K−1
M (., .) contains the parameterized coefficient

K−1
M (x, y) ≈ k0(x) +

M∑
m=1

√
λmkm(x)ym. (5.6.4)

The well posedness of the solution pair (u⃗(x, y), p(x, y)) ∈ X × Q can be achieved

in analogs with problem (5.4.10) with assuming that K−1
M (x, y) is bounded as in

Assumption 3 and replacing the tensor product spaces X and Q by the spaces X and

Q, respectively and (Ω,F,P) by (Γ,B, ρdy) where ρ : Γ → R+ is the joint probability

density function of the vector y and B is the Borel sigma algebra generated by Γ.

79

5.7 Stochastic spaces approximation

As in the usual way, we need to chose suitable finite-dimensional subspaces Xh,p ⊂

X and Qh,p ⊂ Q. These subspaces can be constructed by finding finite subspaces

for their components spaces X, Q, and L2
ρ(Γ). In section 5, we introduced finite

dimensional subspaces for the spaces X and Q and now we have to construct a

subspace Ψp(Γ) ⊂ L2
ρ(Γ) of demential Nξ <∞.

There are several constructions for Ψp in the literature. Tow of them are the ten-

sor product polynomials (TP) spaces and the complete polynomial (CP) spaces (see

[101, 68, 42], [44], [66], [43], [58] for using the complete polynomial (CP) spaces and see

also [8], [13], [40], [28], [56], [82] for using the tensor product polynomial (TP) spaces).

It is shown that when using a TP space as a basis, there is a basis, (called double

orthogonal), can be constructed for which the stochastic matrices are block diagonal

see [8], [9]. This diagonally properties of the stochastic matrices leads to decouple

the large system into small systems.

Using (TP) polynomials, the result is that dim(Ψp) = Nξ = (p + 1)M where M

is the order of the (KL) expansion.

The best advantage of using (TP) polynomials (which are discussed in [8], [9], [28]

and [56]) is that one can decouple the resulted system into Nξ systems each of which

is of dimension Nx = Nu +Nq.

On the other hand,, if the complete polynomials (CP) space is used. In this case,

we obtain a basis of dim(Ψp) = Nξ =
(M+P)!
M !P !

. As discussed in [34], there is no basis

as in (TP) space in which the coupled linear system can be decoupled into smaller

80

systems, and therefore, a coupled system os size NxNξ must be solved.

In [35], it is shown that when all the random variables in the (KL) expansion are

uniformly distributed, a basis of Legendre polynomials is used [34].

Let Ψp(Γ) = span {Ψi : i = 1, ..., Nξ}, the discrete tensor product spaces are given

by Xh,p = Xh ⊗ Ψp and Qh,p = Qh ⊗ Ψp. We introduce the tensor discrete kernel

Zhp = {v⃗h,p ∈ Xh,p : b(v⃗h,p, wh,p) = 0 ∀wh,p ∈ Qh,p}. Then the discrete version of

problem (5.4.21) is to find u⃗Mh,p ∈ Xh,p and pMh,p ∈ Qh,p such that

aM(u⃗Mh,p, v⃗h,p) + b(v⃗h,p, p
M
h,p) = 0; v⃗h,p ∈ Xh,p,

b(u⃗Mh,p, wh,p) = −
∫
Γ

ρ(y)

∫
D

f · wh,pdxdy; wh,p ∈ Qh,p.
(5.7.1)

The continuity of a(., .) on Xh,p × Xh,p and b(., .) on Xh,p × Qh,p, the coercivity of

a(., .) on Zh,p can be showed as in section 4.1. For the inf-sup condition: for any wh,p

in Qh,p, we take r⃗h,p equals to ∇wh,p and obtain the following inf-sup condition

∀ w ∈ Qh,p sup
r⃗∈Xh,p

| b(r⃗, w) |
∥ r⃗ ∥[L2]2⊗L2

ρ(Γ)

≥ β̃ ∥ w ∥H1⊗L2
ρ(Γ)

, (5.7.2)

where β̃ > 0 is the discrete inf-sup constant for (5.5.3) and is independent of h and

p. The above discussion gives the existence and uniqueness of the solution to (5.7.1).

Theorem 7 Let h > 0 and let p ≥ 1, then the discrete problem (5.7.1) has a unique

solution and the following bounds for the truncation error holds

∥ u⃗M − u⃗Mh,p ∥X ≤ (1 +
C

β̃
) inf
v⃗∈Xh,p

∥ u⃗M − v⃗ ∥X,

∥ pM − pMh,p ∥Q ≤ Kmax

β̃
∥ u⃗M − u⃗Mh,p ∥X +(1 +

1

β̃
) inf
q∈Qh,p

∥ q − pM ∥Q,
(5.7.3)

81

where (u⃗M , pM) ∈ X × Q is the solution of (5.6.2) and (u⃗Mh,p, p
M
h,p) ∈ Xh,p × Qh,p is

the solution of (5.7.1). The constants Kmin, Kmax and β̃ are defined above (analog of

this theorem is given in Lemma 3.1. in [33]).

proof: Let ehu = u⃗M − u⃗Mh,p ∈ Xh and ehp = pM − pMh,p ∈ Qh.

The orthogonality here is b(ehu, w) = 0, ∀w ∈ Qh. For any v⃗ ∈ Xh, we have

∥ u⃗M − u⃗Mh,p ∥Xh
=∥ u⃗M − v⃗ + v⃗ − u⃗Mh,p ∥Xh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+ ∥ v⃗ − u⃗Mh,p ∥Xh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+
1

β̃
sup
w∈Qh

| b(v⃗ − u⃗Mh,p, w) |
∥ w ∥Qh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+
1

β̃
sup
w∈Qh

| b(v⃗ − u⃗M + u⃗M − u⃗Mh,p, w) |
∥ w ∥Qh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+
1

β̃
sup
w∈Qh

| b(v⃗ − u⃗M , w) | + | b(u⃗M − u⃗Mh,p, w) |
∥ w ∥Qh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+
1

β̃
sup
w∈Qh

| b(v⃗ − u⃗M , w) |
∥ w ∥Qh

∥ u⃗M − u⃗Mh,p ∥Xh
≤∥ u⃗M − v⃗ ∥Xh

+
C

β̃
∥ uM − v ∥Xh

∥ u⃗M − u⃗Mh,p ∥Xh
≤ (1 +

C

β̃
) inf
v⃗∈Xh

∥ u⃗M − v⃗ ∥Xh
.

(5.7.4)

Similarly for the discrete error of the presser, for any q ∈ Qh

β̃ ∥ q − pMh,p ∥Qh
≤ sup

v⃗∈Xh

| b(v⃗, q − pMh,p) |
∥ v ∥Xh

= sup
v⃗∈Xh

| b(v⃗, pM − pMh,p) + b(v⃗, q − pM) |
∥ v⃗ ∥Xh

= sup
v⃗∈Xh

| −a(uM − uMh,p, v⃗) + b(v⃗, q − pM) |
∥ v⃗ ∥Xh

.

(5.7.5)

82

So, we have

β̃ ∥ q − pMh,p ∥Qh
≤ Kmax(∥ u⃗M − u⃗Mh,p ∥) + C ∥ q − pM ∥

∥ q − pMh,p ∥Qh
≤ Kmax

β̃
(∥ u⃗M − u⃗Mh,p ∥) +

C

β̃
∥ q − pM ∥,

(5.7.6)

add ∥ pM − q ∥ to both sides of the last equation

∥ pM − pMh,p ∥Qh
≤ Kmax

β̃
(∥ u⃗M − u⃗Mh,p ∥) +

C

β̃
∥ q − pM ∥ + ∥ pM − q ∥

∥ pM − pMh,p ∥Qh
≤ Kmax

β̃
(∥ u⃗M − u⃗Mh,p ∥) + (1 +

C

β̃
) ∥ q − pM ∥

∥ pM − pMh,p ∥Qh
≤ (

Kmax

β̃
+
K2

max

β̃2
) inf
v⃗∈Xh

(∥ u⃗M − v⃗ ∥) + (1 +
C

β̃
) inf
q∈Qh

∥ q − pM ∥ .

(5.7.7)

Since, we have

u⃗− u⃗Mh,p = u⃗− u⃗M + u⃗M − u⃗Mh,p

p− pMh,p = p− pM + pM − pMh,p.

(5.7.8)

Then, one can easily find the full error ∥ u− uMh,p ∥Xh
and ∥ p− pMh,p ∥Qh

.

5.8 Stochastic matrix structures

Inserting representation (5.4.20) of K−1 and writing the trail functions as

u⃗Mh,p(x, ξ) =

Nξ∑
k=1

Nu∑
i=1

u⃗i,kφi(x)Ψk(ξ), pMh,p(x, ξ) =

Nξ∑
k=1

Np∑
i=1

pi,kϕi(x)Ψk(ξ), (5.8.1)

also the test functions as v(x, ξ) = φj(x)Ψl(ξ), j = 1, .., Nu; l = 1, ..., Nξ and

w(x, ξ) = ϕj(x)Ψl(ξ), j = 1, .., Np; l = 1, ..., Nξ into (5.7.1) to get the saddle-point

83

problem Â1 B̂1
T

B̂1 0

 u

p

 =

 0

f

 . (5.8.2)

In the above equation, the vectors u and p are represented as

u =

u1

u2
...

uNξ

, p =

p1

p2
...

pNξ

, (5.8.3)

where u1, ...uNξ
are vectors of length Nu and p1, ...pNξ

are vectors of length Np. The

ith component of uk is uik and ith component of pk is pik. A similar representation

holds for the vector f

[fl]j = −⟨Ψl⟩(f, ϕj), j = 1, ..., Np. (5.8.4)

The block matrices Â1 ∈ RNuNξ×NuNξ and B̂1 ∈ RNpNξ×NpNξ in (5.8.2) are given by

Â1 = ⟨(K−1φi, φj)ΨkΨl⟩

= ⟨(k0φi, φj)ΨkΨl⟩+
M∑

m=1

√
λm(kmφi, φj)⟨ξmΨkΨl⟩,

(5.8.5)

where j, i = 1, ..., Nu, l, k = 1, ..., Nξ and

B̂1 = −⟨(φj,∇ϕi)ΨlΨl⟩ = −(φj,∇ϕi)⟨ξmΨkΨl⟩, (5.8.6)

where j = 1, ..., Nu, i = 1, ..., Np, l, k = 1, ..., Nξ. Integrals with respect to ξ and x

can be separated into a product of two integrals. This separation property and the

(KL) expansion (5.4.20) implies that the above matrices can be expressed as sums of

84

Kronecker products as:

Â1 = G0 ⊗ A0 +
M∑

m=1

Gm ⊗ Am, B̂1 = G0 ⊗B, (5.8.7)

where

[A0]j,i = (k0φi, φj) ∈ RNu×Nu , j, i = 1, ..., Nu, (5.8.8)

[Am]j,i =
√
λm(kmφi, φj) ∈ RNu×Nu , j, i = 1, ..., Nu, (5.8.9)

[B]j,i = −(φj,∇ϕi) ∈ RNu×Np , j, ..., Nu i = 1, ..., Np, (5.8.10)

[G0]l,k = ⟨ΨkΨl⟩ ∈ RNξ×Nξ , l, k = 1, ..., Nξ, (5.8.11)

[Gm]l,k = ⟨ξmΨkΨl⟩ ∈ RNξ×Nξ , l, k = 1, ..., Nξ. (5.8.12)

5.8.1 Remarks

(i) The matrices A0 can be seen as the (1,1)-blocks of (5.5.5) with the scaling k0.

Also Am can be seen as the (1,1)-blocks of (5.5.5) with the permeability scaling
√
λmkm. The matrix B is exactly the (2,1)-block of the (5.5.5) with out any

extra parameters.

(ii) When we use a basis (TP) mentioned in section 7, the saddle point problem

(5.8.2) leads to a coupled system of linear equations, whose dimension isNξ(Nu+

Np) which is not easy to solve. In [8], Babuska, Tempone, and Zouraris proposed

a particular choice of basis functions (named double orthogonal polynomials)

for Ψp and they showed that the construction of this basis leads to solve an

eigenvalue problem. This basis allows us to decouple the system (5.8.2) into Nξ

saddle point problems each of which of size Nu + Np. In [7], Babuška, Nobile,

and Tempone provided a useful characteristic that is, the set {ψj}p+1
j=1 of double

85

orthogonal polynomials of degree p satisfy

∫
Γ
ψi(y)ψj(y)ρ(y)dy = δij∫

Γ
yψi(y)ψj(y)ρ(y)dy = Ciδij,

(5.8.13)

for each 1 ≤ i, j ≤ p + 1, Ci are the p + 1 roots of the orthogonal polynomial

w ∈ Ψp+1(Γ) with respect to the weight function ρ, (ρ : Γ −→ R and Γ ⊂ R),

and δij is the Kronecker symbol. The above useful characteristic can be seen in

details in (Lemma 2.1 in [7]).

(iii) The beauty of using our new formulation is that the matrices A0 and Am are

diagonal. This good feature comes form the best choice of the discrete spatial

spaces. In additional, when we use the doubly orthogonal polynomials to span

the tensor product polynomials space that approximates the stochastic space,

the matrices G0 and Gm are diagonal matrices. These diagonal structures make

the matrices Â1 and B̂1 have diagonal structures. Hence, the inversion of the

matrix Â1 becomes an easy task.

5.9 Numerical examples

In this section, we will provide two numerical examples one for the deterministic

Darcy’s equation (5.4.1) and the second for the stochastic Darcy’s equation given in

(5.1.5). For the second example, we start by calculating eigenvalues and the corre-

sponding eigenfunctions for the operator given in (5.4.18). All numerical computa-

tions were obtained using MATLAB 7 installed on HP-laptop with intel Core 2 Duo

CPU processer and with RAM of 4 GB.

86

5.9.1 Eigenvalue problem

The KL expansion (5.4.20) of K−1 requires calculating the eigenpairs of the integral

operator given in (5.4.18). To this end, we chose the domain D = [0, 1] × [0, 1] and

we select the covariance function given in (5.4.18) with τ = 2 and σ = 0.3 and we

approximate the integral by using quadrature approximation formula

∫
D

u(y)c(x, y)dy ≈
q∑

k=1

wku(pk)c(x, pk), (5.9.1)

where {p1, ..., pq} and w1, ..., wq are the quadrature and weight points, respectively.

From (5.4.18) and (5.9.1) we have

q∑
k=1

wku(pk)c(x, pk) = λu(x). (5.9.2)

We evaluate (5.9.2) at all points p1, ..., pq

q∑
k=1

wku(pk)c(pi, pk) = λu(pi) i = 1, ..., q. (5.9.3)

Now (5.9.3) is an eigenvalue problem

CU = λU, (5.9.4)

U =

u(p1)

u(p2)

...

u(pq)

,

87

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5 .1: The Eigenvalues

C =

w1c(p1, p1) w2c(p1, p2) . . . wqc(p1, pq)

...
...

w1c(pq, p1) w2c(pq, p2) . . . wqc(pq, pq)

 .
Now it is easy to compute the eigenvalues and the corresponding eigenvectors of the

matrix C. Let λ1, λ2, ..., λq are the eigenvalues and ū1, ū2, ..., ūq are the corresponding

eigenvectors of C such that ūki ≈ u(pi) where ūk is the eigenfunction of (5.4.18)

associate with λk. We order the eigenvalues from the largest to the smallest and plot

them in Figure (5.1). In this figure one can see that the eigenvalues are positive and

decreasing to zero. Figure (5.2),..., Figure (5.5) show the first four eigenfunctions

corresponding to the first four eigenvalues.

5.9.2 Five-Spot problem(deterministic)

In this subsection, we present numerical results for the problem (5.4.1). We use the

test problem (Five-Spot problem) in the domain D = [0, 1] × [0, 1] and we put an

injection well at the center of D and production wells at the corners of D with no-flow

88

0

20

40

60

0

20

40

60
−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

Figure 5 .2: First Eigenfunction

0 10 20 30 40 50 60
0

50

100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Figure 5 .3: Second Eigenfunction

0204060
0204060

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5 .4: Eigenfunction

0

20

40

60

0

20

40

60

−0.4

−0.2

0

0.2

0.4

Figure 5 .5: Fourth Eigenfunction

89

conditions on the boundary. The data f ≡ 0 in whole D except at the center and

the corners i.e f(0, 0) = f(1, 1) = f(1, 0) = f(0, 1) = −1 and f(0.5, 0.5) = 1. We use

the pde-tool box to generate a mesh with 1024 triangles and 545 nodes. Figure (5.6)

shows the used discritization mesh. The spaces of the piecewise linear and piecewise

constant given in (5.5.1) are used as the discritization spaces for the pressure and the

velocity, respectively. Figure (5.7) shows the contour while Figure (5.8) shows the

surface of the pressure given in (5.5.5). In these figures the pressure is high at the

center (injection well) and low at the corners (production wells) as well as the velocity

behavior which is plotted in Figure (5.9). The contour of the velocity components

(ux, uy) are plotted in Figure (5.10) and Figure (5.11).

5.9.3 Five-Spot problem(stochastic)

In this subsection, we present numerical results for the stochastic problem (5.1.5).

We use the same test problem used in the above section (Five-Spot problem) with

unknown random permeability K−1. We use the set of tensor product polynomials

and we solve Nξ saddle-point systems each of which is of dimension (Nq + Nu) .

We use uniform random variables on [-1,1] for the stochastic input and construct

the stochastic bases using Legendre polynomials. For the spatial discretization, we

generate a mesh with 1024 triangles and 545 nodes. Figure (5.12) shows the used

discritization mesh and we use the discrete finite subspaces Vh and Wh as given in

Section 5.5 which approximate the velocity and the pressure spaces, respectively.

We use the double orthogonal polynomial to spans a basis which approximate the

stochastic space. We solved these 81 linear systems by using the built in MATLAB-

linear solver. Figure (5.13) and Figure (5.14) show the surface and the cantor of the

pressure mean respectively. In these Figures, the pressure is high at the center and

90

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5 .6: Shape of the Mesh

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−8

−6

−4

−2

0

2

4

6

8

10
x 10

−4

Figure 5 .7: Pressure Contour

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.5

0

0.5

1

1.5

x 10
−3

−8

−6

−4

−2

0

2

4

6

8

10

x 10
−4

Figure 5 .8: Pressure Surface

35 40 45 50 55 60 65 70

35

40

45

50

55

60

65

70

Figure 5 .9: Velocity Distribution

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 5 .10: The Velocity of ux

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 5 .11: The Velocity of uy

91

low at the corners the same as the deterministic problem. The variance of the pressure

is plotted in Figure (5.15). The velocity means of the (x, y) components (ux,uy) are

plotted in Figure (5.16) and Figure (5.17) while variances of (ux,uy) are plotted in

Figure (5.18) and Figure (5.19). For more details in the stochastic computation, see

the following.

Velocities and pressures mean and variance Calculation

Here, we show the process of computing the mean and variance to the velocities and

pressure. Since we have

u⃗Mh,p(x, ξ) =

Nξ∑
k=1

Nu∑
i=1

u⃗i,kφi(x)Ψk(ξ), pMh,p(x, ξ) =

Nξ∑
k=1

Np∑
i=1

pi,kϕi(x)Ψk(ξ), (5.9.5)

Once u and p have been computed it can be post-processed to obtain the mean

and variance of u⃗Mh,p(x, ξ) and pMh,p(x, ξ). We start by the pressure and then by the

velocities.

Pressure mean:

pMh,p(x, y) =

Nξ∑
k=1

Np∑
i=1

pi,kϕi(x)Ψk(y) =

Nξ∑
k=1

[

Np∑
i=1

pi,kϕi(x)]Ψk(y) =

Nξ∑
k=1

PkΨk(y), (5.9.6)

where Pk =
∑Np

i=1 pi,kϕi(x) is the k − th column of p. Now from the definition of the

expectation, we have

E[pMh,p(x, y)] =

∫
Γ

pMh,p(x, y)ρ(y)dy =

∫
Γ

Nξ∑
k=1

PkΨk(y)ρ(y)dy

=

Nξ∑
k=1

Pk

∫
Γ

Ψk(y)ρ(y)dy =

Nξ∑
k=1

PkE[Ψk(y)].

(5.9.7)

92

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5 .12: The Mesh

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

−0.01

−0.005

0

0.005

0.01

Figure 5 .13: Pressure-mean Surface

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−0.01

−0.005

0

0.005

0.01

Figure 5 .14: Pressure-mean Contour

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

2

4

6

8

10

12

14

16
x 10

−5

Figure 5 .15: Pressure Variance

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 5 .16: Mean of ux

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 5 .17: Mean of uy

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

x 10
−3

Figure 5 .18: Variance of ux

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

1

2

3

4

5

6

7

x 10
−3

Figure 5 .19: Variance of uy

93

Where any element in the set {Ψk(y)}
Nξ

k=1 is a product of double orthogonal polyno-

mials {ψi}p+1
i=1 where p is the total degree of the Legender polynomial. For example

for M = 4 and p = 2 we have Ψk =
∏M=4

j=1 ψj(yj). In this case

Ψ1 = ψ1(y1)ψ1(y2)ψ1(y3)ψ1(y4),

Ψ2 = ψ1(y1)ψ1(y2)ψ1(y3)ψ2(y4),

Ψ3 = ψ1(y1)ψ1(y2)ψ1(y3)ψ3(y4).

(5.9.8)

and so on.

Pressure variance:

We know that Var[pMh,p] = E[pMh,p
2
] − (E[pMh,p])

2. The second moment of the pressure

is calculated as follow

E[pMh,p
2
] = ⟨pMh,p, pMh,p⟩ = ⟨

Nξ∑
k=1

PkΨk(y),

Nξ∑
k=1

PkΨk(y)⟩ =
Nξ∑
k=1

PkPk⟨Ψk(y),Ψk(y)⟩ =
Nξ∑
k=1

Pk
2.

(5.9.9)

Then Var[pMh,p] =
∑Nξ

k=1 Pk
2 − (E[pMh,p])

2.

For the velocities, at the beginning, we consider the odd row components to be vx

and the even to be vy and then we compute both vx and vy at the nodes (because we

calculated the velocities in each triangles). After this step, we evaluate the vx–mean,

vy–mean, vx–variance and vy– variance as we did for the pressures.

Stochastic matrices

We have

[Gm]l,k = ⟨ξmΨkΨl⟩, (5.9.10)

94

where Ψk is a product of the double orthogonal polynomials ψk. Hence, all the

matrices Gm are diagonal. This means that

[Gm]k,k = ⟨ξmΨkΨk⟩ = ⟨ξmΨk
2⟩. (5.9.11)

Now, we can write Ψk in term of ψk and taking the expectation of the product of y

and their square.

In the case of the matrix [G0]ii, we have ξ0 = 1 and then then [G0]ii = ⟨Ψi
2⟩ = 1.

This is by the orthogonality and hence the matrix G0 is the identity matrix.

Double orthogonal polynomials

For the construction of the stochastic subspace, we choose the order of (KL) expansion

(M = 4) and we chose the total degree of the orthogonal Legendre polynomial p = 2.

The first (p+ 1) three orthogonal Legendre polynomial of degree 2 or less are

P0(y) = 1, P1(y) = y, P2(y) =
1

2
(3y2 − 1). (5.9.12)

They form an orthogonal basis in L2(I) where I = (−1, 1) with the weight function

1 and they satisfy ∫ 1

−1

Pn(x)Pm(x)dx =
2

(2n+ 1)
δnm, (5.9.13)

where δnm is the Kronecker delta. We also use the eigenpairs (λm, km) calculated in

the subsection 5.10.1.

Here we construct the double orthogonal polynomials to span the tensor product

space Ψp(Γ) that approximates L2
ρ(Γ).

95

To this end, let Cj (1 ≤ j ≤ p + 1 = 3), be the three roots of the ρ–orthogonal

Legendre polynomial 1
2
(5y3 − 3y = 0) where ρ is the p.d.f. of the Uniformly distribu-

tion.

At the beginning, we find the Lagrange polynomials basis L1(y), L2(y) and L3(y) as-

sociated with these three roots such that they satisfy Lj(yk) = δjk, k = 1, 2, 3. Let

{ψi}3i=1 denotes the set of the double orthogonal polynomials (which are resulted from

the Lagrange polynomials on the three nodes (roots))

C1 = 0, C2 =

√
3

5
, C3 = −

√
3

5
(5.9.14)

Then as we know

L1(y) = α1
(y − C2)(y − C3)

(C1 − C2)(C1 − C3)
,

L2(y) = α2
(y − C1)(y − C3)

(C2 − C1)(C2 − C3)
,

L3(y) = α3
(y − C1)(y − C2)

(C3 − C2)(C3 − C2)
.

(5.9.15)

To find αi, i = 1, 2, 3, one can use the orthogonality condition. Now, let

ψ1(y) =
3

2
L1(y) =

−5

2
(y2 − 3

5
),

ψ2(y) =

√
18

5
L2(y) =

√
5

2
y(y +

√
3

5
),

ψ3(y) =

√
18

5
L3(y) =

√
5

2
y(y −

√
3

5
).

(5.9.16)

96

Note that when Hermite polynomial of degree 2 or less are used (which is not our

case), the corresponding double orthogonal polynomials can be written as

ψ1(y) =
L1(y)√

2
3

=
3− y2√

6
,

ψ2(y) =
L2(y)√

6
=
y(y +

√
3)√

6
,

ψ3(y) =
L3(y)√

6
=
y(y −

√
3)√

6
.

(5.9.17)

Note that the above set {ψi}3i=1 given in (5.9.16) satisfies the conditions in (5.8.13)

and any element in the set {Ψi}
Nξ=81
i=1 can be written as a product of those polynomials

{ψi}3i=1 i.e. for k = 1, ..., 81, Ψk =
∏M=4

j=1 ψj(yj) (see [33] for more details). Note that

the first three orthogonal Legendre polynomial on [−
√
3,
√
3] with weighted function

1
2
√
3
are

P0(y) = 1, P1(y) = y, P2(y) =

√
5

2
(y2 − 1). (5.9.18)

Then, the corresponding double orthonormal polynomials can be written as

ψ1(y) =
−5

6
(y2 − 9

5
),

ψ2(y) =

√
5

18
y(y +

3√
5
),

ψ3(y) =

√
5

18
y(y − 3√

5
).

(5.9.19)

The advantage of the construction of the double orthogonal polynomials is to decouple

the resulting huge linear system (5.8.2) of size Nξ(Nu +Np) = 81(1024+ 545) into 81

saddle point problems each of which of size (1024 + 545).

Remark 8

The Matlab-codes for the computation of this chapter can be found in Chapter 8.

97

5.10 Conclusions

In this chapter, we introduce a new stochastic formulation for mixed Darcy’s equa-

tions. This formulation leads to reduction of the computations’s cost. Analysis of

the discretization of this formulation is presented. Moreover, we use the double-

orthogonal basis to the stochastic space. This basis leads to digitalized the stochastic

matrices. This property leads to decouple the system. In other words, instead of

solving a single large system, we solve decoupled systems of small sizes.

Chapter 6

PRECONDITIONING

TECHNIQUE FOR STOCHASTIC

DARCY’S EQUATIONS

98

99

6.1 Introduction

In this chapter, we consider the following decoupled linear system

 Ai BT

B 0

︸ ︷︷ ︸

Ci

 ui

pi

 =

 0

fi

 . (6.1.1)

Where Ai given by

Ai = A0 +G(1, i)A1 + ...+G(M, i)AM , i = 1, ..., Nξ, (6.1.2)

and G(M, i) = [GM]ii. As we mentioned in the previous chapter, the above system

results from discretization Darcy’s equations with stochastic coefficients after per-

muting the Nξ blocks of unknowns as in (5.8.3). This decoupling property is resulted

of using the so called double orthogonal polynomials as a basis for the stochastic

subspace Ψp.

So, we have Nξ saddle point system each of which of size Nu + Np. The first saddle

point system is in the form

 A1 BT

B 0

︸ ︷︷ ︸

C1

 u1

p1

 =

 0

f1

 . (6.1.3)

where A1 = A0+G(1, 1)A1+ ...+G(M, 1)AM and so on. In the previous chapter, we

solved the decoupled system by using the built in MATLAB- linear solver (slash

solution). In this chapter, we propose several preconditioners to solve the Nξ-linear

systems. These preconditioners are based on block-diagonal preconditioners for the

deterministic saddle-point system (5.5.5). Moreover we study the eigenvalues bound

100

of their preconditioned matrices. Finally, we mach the driven bounds of the eigen-

values with some numerical examples. Hence, it is better to start by preconditioning

the deterministic Problem.

6.2 Deterministic problem

Consider the following linear saddle point system

 A BT

B 0

︸ ︷︷ ︸

C

 u

p

 =

 0

f

 , (6.2.1)

The above saddle point linear system results from the [L2(D)]2 × (H1(D) ∩ L2
0(D))

finite element method (FEM) for Darcy’s equations.

The advantage of using this formulation is that the (1,1)-block of the coefficient matrix

of the system (6.2.1) is diagonal and the Schur complement matrix, S = BA−1BT , is

the discrete analog of the Laplace operator L = −(k∇·∇) where k is the permeability

coefficient. These advantages lead to an efficient solution to the problem. In this

section, we introduce an efficient preconditioner for the system (6.2.1). The advantage

of the preconditioner is to give a fast rate of convergence of the used iterative method.

This preconditioner has two nice properties. The first property is that the (1,1)

block is a diagonal matrix while the second one is that the (2,2) block is the well

known discrete Laplacian matrix. The diagonal property leads to cheap inversion

and the well known Schur complement suggests using algebraic multigrid (AMG)

[74]. Also, another block diagonal preconditioner is presented. This preconditioner

comes from the matrices representation of the discrete velocities and pressure norms.

This preconditioner is called the natural preconditioner [79]. In both preconditioners,

101

we use the minimal residual method (MINRES) as an iterative solver.

6.2.1 Preconditioners for the deterministic problem

To construct our preconditioners, we need to introduce the discrete representations

of the norms in term of matrices. Before doing this task, let us define the velocity

mass matrix M ∈ Rn×n, the velocity weight mass matrix A ∈ Rn×n, the pressure

gradient matrix G ∈ Rm×m, the pressure mass matrix N ∈ Rm×m and the Laplace

scaling matrix L ∈ Rm×m as follows:

Mi,j = (φi, φj), 1 ≤ i, j ≤ n.

Ai,j = (k−1φi, φj), 1 ≤ i, j ≤ n.

Gi,j = (∇ϕi,∇ϕj), 1 ≤ i, j ≤ m.

Ni,j = (ϕi, ϕj), 1 ≤ i, j ≤ m.

Li,j = −(k∇ϕi,∇ϕj), 1 ≤ i, j ≤ m.

(6.2.2)

Now for any vh ∈ Xh and qh ∈ Qh, the discrete representations of the norms can be

written as

∥ v⃗h ∥L2 = vTMv,

∥ q⃗h ∥L2 = qTNq,

∥ q⃗h ∥H1 = qT (N +G)q,

(6.2.3)

The proposed preconditioners are given as

P1 :=

 A 0

0 LAMG

 P2 :=

 A 0

0 N +G

 , (6.2.4)

In (6.2.4), LAMG represents the action of algebraic multigrid cycles applied to the

Poisson problem. The main key in the first preconditioner is the relationship between

102

B, L and A. This relationship is given in the following lemma.

Lemma 1 L = BA−1BT . Proof: Consider the following operators

B : Xh → Qh, M : Xh → Xh, A : Xh → Xh, L : Qh → Qh, (6.2.5)

and consider the following matrices in the operator forms. That is,

(Bxh, zh) = (∇ · xh, zh), ∀xh ∈ Xh, ∀zh ∈ Qh,

(BT zh, xh) = (∇zh, xh), ∀xh ∈ Xh, ∀zh ∈ Qh,

(Axh, yh) = (k−1xh, yh) = (xh, k
−1yh), ∀xh, yh ∈ Xh,

(Lzh, zh) = −(k∇zh,∇zh), ∀zh ∈ Qh,

(Mxh, yh) = (xh, yh), ∀xh, yh ∈ Xh,

(Mk−1xh, yh) = (k−1xh, yh) = (Axh, yh), ∀xh, yh ∈ Xh,

(6.2.6)

Now, with using the above defections and using (∇ · xh, zh) = −(xh,∇zh), ∀xh ∈

Xh, ∀zh ∈ Qh, we have

(Lzh, zh) = −(k∇zh,∇zh)

= −(∇zh, k∇zh)

= −(BT zh, k∇zh)

= −(BT zh,Mk∇zh)

= (BA−1BT zh, zh),

(6.2.7)

which proves the above lemma.

103

6.2.2 Eigenvalue analysis

Murphy, Golub and Wathen proved that the eigenvalues of the preconditioned matrix

P−1
1 C, independent of the mesh size h, are only three distinct eigenvalues

1

2
(1−

√
5), 1,

1

2
(1 +

√
5). (6.2.8)

For the eigenvalues of P−1
2 C, we use the following theorem

Theorem 8 (Lemma 2.1 in [84]) Let

A :=

 A B

BT 0

 (6.2.9)

be a symmetric, nonsingular, and indefinite matrix and let 0 < µ1 ≤ µ2 ≤ ... ≤ µn be

the eigenvalues of A, 0 < σ1 ≤ σ2 ≤ ... ≤ σm the singular values of B, and denote by

Λ(A) the spectrum of A. Then Λ(A) ⊂ I ≡ I− ∪ I+ where

I− = [
1

2
(µ1 −

√
µ2
1 + 4σ2

m),
1

2
(µn −

√
µ2
n + 4σ2

1)],

I+ = [µ1,
1

2
(µn +

√
µ2
n + 4σ2

m)].

(6.2.10)

Theorem 9 The eigenvalues of P−1
2 C lie in the union two intervals

[
1

2
(1−

√
1 + 4σ2

m),
1

2
(1−

√
1 + 4σ2

1)] ∪ [1,
1

2
(1 +

√
1 + 4σ2

m)], (6.2.11)

where σ1 and σm are the smallest and largest singular values of the matrix (N +

G)
−1
2 BA

−1
2 .

Proof: We start expressing the conditioned matrix P−1
2 C in a generalized saddle

104

point matrix. P−1
2 C is similar to P

1
2
2 (P

−1
2 C)P

−1
2

2 = P
−1
2

2 CP
−1
2

2 =

=

 A
−1
2 0

0 (N +G)
−1
2

 A BT

B 0

 A

−1
2 0

0 (N +G)
−1
2

 (6.2.12)

=

 A
1
2 A

−1
2 BT

(N +G)
−1
2 0

 A

−1
2 0

0 (N +G)
−1
2

 (6.2.13)

=

 I A
−1
2 BT (N +G)

−1
2

(N +G)
−1
2 BA

−1
2 0

 (6.2.14)

=

 I B̃T

B̃ 0

 = Ã (6.2.15)

Now using Theorem 8, one can obtain the results.

6.2.3 Numerical computations

In this section, we investigate the efficiency of the two preconditioners P1 and P2

given in (6.2.4) via several computations. We solve the saddle point system (6.2.1)

by PMINRES method and observe the iteration numbers. It is known that in each

PMINRES iteration, we solve a linear system of the form Px = y. To solve this

system, we use the black-box AGgregation-based algebraic MultiGrid (AGMG) solver

for the (2,2) block (see [74] for details).

Example 7 Here, we consider the well known five spot problem (5.1.5) in the domain

D = [0, 1] × [0, 1]. In this problem, we place an injection well at the center of the

domain and production wells at the corners and specify no-flow conditions at the

105

h, iter. NO. h=1/4 h=1/8 h=1/16 h=1/64

P2 10 8 6 4

P1 2 2 2 2

Table 6 .1: k−1 ≡ 1

h, iter. NO. h=1/4 h=1/8 h=1/16 h=1/64

P2 20 18 16 14

P1 2 2 2 2

Table 6 .2: k−1 = 1 + x2 + y2

boundaries. In other word we define the data function f as follows

f(x, y) =

1, if (x,y)={(0,0),(1,0),(0,1),(1,1)};

−1, if (x,y)={(1/2,1/2)};

0, otherwise.

(6.2.16)

We solve the resulting linear system (6.2.1) using PMINRES with P1 and P2 as pre-

conditioners. We chose the tolerance to be 1e−8 and we record the iteration numbers

for different meshsizes and different coefficient k−1. The iteration numbers are tab-

ulated in Tables (6.1-6.3). Table 6.1 is obtained when k−1 ≡ 1, Table 6.2 when

k−1 ≡ 1 + x2 + y2 and Table 6.3 when k−1(x) = exp(x) + exp(y). We plot the log-

arithm of the L2 norm of the ratio ∥r(k)∥2
∥r(0)∥2

.vs. the iteration numbers for different

mesh size and when k−1(x) = exp(x) + exp(y) see Figures (6.4-6.7) From Tables

(6.1-6.3), we observe that the number of PMINRES iterations by using P1 are less

h, iter. NO. h=1/4 h=1/8 h=1/16 h=1/64

P2 22 20 18 16

P1 2 2 2 2

Table 6 .3: k−1(x) = exp(x) + exp(y)

106

0 5 10 15 20 25
−30

−25

−20

−15

−10

−5

0
N+G−based Preconditioner
L−based Preconditioner

Figure 6 .1: when h = 1/4

0 5 10 15 20
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6
N+G−based Preconditioner
L−based Preconditioner

Figure 6 .2: when h = 1/8

0 2 4 6 8 10 12 14 16 18
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6
N+G−based Preconditioner
L−based Preconditioner

Figure 6 .3: when h = 1/16

0 2 4 6 8 10 12 14 16
−26

−24

−22

−20

−18

−16

−14

−12

−10

−8
N+G−based Preconditioner
L−based Preconditioner

Figure 6 .4: when h = 1/64

h k−1(x) ≡ 1) k−1(x) = 1 + x2 + y2 k−1(x) = exp(x) + exp(y)

1/4 2 2 2
1/8 2 2 2
1/16 2 2 2
1/64 2 2 2

Table 6 .4: P1MINRES iterations NO.

107

than the number of PMINRES iterations by using P2. Hence, PMINRES with using

P1 as a preconditioner is more efficient.

In the next two examples, we only consider the first preconditioner P1.

Example 8 In this example we show that the number of PMINRES iterations with

P1 are independent of the mesh size and the permeability coefficient. We solve the

same problem as in Example 8 with varying the mesh sizes and the permeability k−1(x)

and list the number of iterations in Table 6.4.

Example 9 In this example we also solve the five spot problem by PMINRES and P1

as a preconditioner in the domain D = [0, 1] × [0, 1] with data function f defined as

above. The shape of the used mesh (16384 triangles and 8321 nods), the pressure and

the velocities are plotted in Figures (6.8-6.13).

6.3 Preconditioners for the decoupled stochastic

system

In the following, we shall construct preconditioners to the stochastic Galerkin equa-

tions (6.1.1) based on the deterministic preconditioners given in the above section.

First, we use the following preconditioner:

6.3.1 Laplace preconditioner

PL =

 A0 0

0 S0 = L0

where L0 = BA−1

0 BT .

108

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6 .5: Shape of the mesh

30 35 40 45 50 55 60 65 70 75

30

35

40

45

50

55

60

65

70

Figure 6 .6: Velocity distribution

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4

−1

0

1

x 10
−4

Figure 6 .7: Pressure surface

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−1

0

1

x 10
−4

Figure 6 .8: Pressure cantor

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−1

−0.5

0

0.5

1

x 10
−3

Figure 6 .9: The ux velocity

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−1

−0.5

0

0.5

1

x 10
−3

Figure 6 .10: The uy velocity

109

Eigenvalues bounds of P−1
L Ci

Theorem 10 The eigenvalues of P−1
L Ci lie in the union two intervals

[
1

2
(λimin −

√
λimin

2
+ 4),

1

2
(λimax −

√
λimax

2 + 4)] ∪ [λimin,
1

2
(λimax +

√
λimax

2 + 4)],

(6.3.1)

where λimin and λimax are the smallest and largest eigenvalue of the matrix A−1
0 Ai, i =

1, ..., Nξ.

Proof: We start expressing the conditioned matrix P−1
L Ciin a generalized saddle

point matrix. P−1
L Ai is similar to P

−1
2

L C iP
−1
2

L =

=

 A
−1
2

0 0

0 L
−1
2

0

 Ai BT

B 0

 A

−1
2

0 0

0 L
−1
2

0

 (6.3.2)

=

 A
−1
2

0 Ai A
−1
2

0 BT

L
−1
2

0 B 0

 A

−1
2

0 0

0 L
−1
2

0

 (6.3.3)

=

 A
−1
2

0 AiA
−1
2

0 A
−1
2

0 BTL
−1
2

0

L
−1
2

0 BA
−1
2

0 0

 (6.3.4)

=

 A−1
0 Ai B̃T

B̃ 0

 = Ã (6.3.5)

Now using Theorem 9, one can obtain the desired result. We use the MINRES with

the above preconditioner as a linear solver. We generate a small mesh contains 16

triangles with 13 nodes to compute the eigenvalues of the preconditioned matrix.

We set the maximum iteration =100 of the linear solver and the tolerance =1e-5.

Here, we chose M=4 and P=2 and we use the Uniform distribution with Lagender

polynomial. The computation results are listed in Tables (6.5) and (6.7).

110

i Iter Bounds Computed eigenvalues

1 8 [-0.6180, -0.6180] ∪ [1, 1.6180] [-0.6180, -0.6180] ∪ [1, 1.6180]
10 11 [-0.6360, -0.6008]∪[0.9363, 1.6645] [-0.6357, -0.6011] ∪[0.9373, 1.6637]
20 9 [-0.6417, -0.6060]∪[0.9168, 1.6502] [-0.6413, -0.6063]∪[0.9179, 1.6495]
30 9 [-0.5776, -0.5679]∪[1.1539, 1.7607] [-0.5776, -0.5679]∪[1.1539, 1.7607]
40 10 [-0.5947, -0.5519]∪[1.0867, 1.8119] [-0.5920, -0.5525]∪[1.0940, 1.8100]
50 7 [-0.5958, -0.5488]∪[1.0825, 1.8221] [-0.5913, -0.5522]∪[1.0938, 1.8114]
60 9 [-0.6954, -0.6550]∪[0.7427, 1.5267] [-0.6946, -0.6557]∪[0.7450, 1.5251]
70 9 [-0.6943, -0.6445]∪[0.7459, 1.5516] [-0.6936, -0.6474]∪[0.7461, 1.5446]
80 8 [-0.7027, -0.6398]∪[0.7205, 1.5629] [-0.6977, -0.6454]∪[0.7294, 1.5500]
81 8 [-0.6995, -0.6370]∪[0.7302, 1.5698] [-0.6957, -0.6415]∪[0.7349, 1.5592]

Table 6 .5: Bounds on the eigenvalues of P−1
L C i

6.3.2 Natural preconditioner

Here, we use the Natural preconditioner

PN =

 A0 0

0 N +M

given in above section.

Eigenvalues bounds of P−1
N Ci

Theorem 11 The eigenvalues of P−1
N Ci lie in the union two intervals

[
1

2
(λimin−

√
λimin

2
+ 4νn2),

1

2
(λimax−

√
λimax

2 + 4ν12)]∪[λimin,
1

2
(λimax+

√
λimax

2 + 4νn2)],

(6.3.6)

where ν1 and νn are the smallest and largest eigenvalue of the matrix (N +M)−1L0

and λimin and λimax are the smallest and largest eigenvalue of the matrix A−1
0 Ai, i =

1, ..., Nξ. The proof is similar to the above proofs. We also use the same numerical

example given above. The results of this computation are listed in Tables (6.6) and

111

i Iter Bounds Computed eigenvalues

1 8 [-0.6154 -0.5290] ∪ [1.0000 1.6154] [-0.6154, -0.5290] ∪ [1.0000 1.6154]
10 11 [-0.6333 -0.5130]∪[0.9363 1.6619] [-0.6304, -0.5288] ∪[0.9373, 1.6573]
20 8 [-0.6390 -0.5178]∪[0.9168 1.6476] [-0.6354, -0.5288]∪[0.9179, 1.6444]
30 8 [-0.5750 -0.4828]∪[1.1539 1.7582] [-0.5728, -0.4841]∪[1.1539, 1.7561]
40 9 [-0.5921 -0.4681]∪[1.0867, 1.8094] [-0.5873, -0.4838]∪[1.0940, 1.8049]
50 7 [-0.5932 -0.4653]∪[1.0825 1.8196] [-0.5861, -0.4839]∪[1.0938, 1.8050]
60 8 [-0.6926 -0.5636]∪[0.7427 1.5240] [-0.6887, -0.5801]∪[0.7450, 1.5190]
70 8 [-0.6916 -0.5537]∪[0.7459 1.5489] [-0.6886, -0.5799]∪[0.7461, 1.5391]
80 8 [-0.6999 -0.5494]∪[0.7205 1.5602] [-0.6920, -0.5798]∪[0.7293, 1.5435]
81 8 [-0.6967 -0.5467]∪[0.7302 1.5671] [-0.6905, -0.5798]∪[0.7349, 1.5519]

Table 6 .6: Bounds on the eigenvalues of P−1
N C i

i λimax λimin

1 1 1
10 1.0637 0.9363
20 1.0443 0.9168
30 1.1928 1.1539
40 1.2600 1.0867
50 1.2732 1.0825
60 0.8717 0.7427
70 0.9071 0.7459
80 0.9231 0.7205
81 0.9328 0.7302

Table 6 .7: Maximum and minimum eigenvalues of A−1
0 Ai

(6.7).

6.3.3 Exact Schur complement preconditioner

Here, we use the following preconditioner

PS =

 Ai 0

0 Si = BA−1
i BT ,

112

where Ai is given in (6.1.2). In this case, the eigenvalues of the preconditioned matrix

P−1Ci are only three 1, (1−
√
5)

2
and (1+

√
5)

2
and PMINRES needs only 2 iterations to

reach the solution with the same tolerance as in the above two examples.

6.4 Conclusion

We solved the decoupled systems given in Chapter 5 by using preconditioner tech-

nique. We present three preconditioners for the deterministic problem and test their

performance in several numerical examples. Moreover, we study the eigenvalues anal-

ysis of their preconditioned matrices. Finally, we purpose also three block diagonal

preconditioners for the stochastic problem. These preconditioners are based on the

preconditioners of the deterministic problem. We study the bounds of the eigen-

values and match these bound by numerical examples. Moreover, we examine the

performance of these preconditioners through several examples.

Chapter 7

CONCLUSION AND FUTURE

WORK

113

114

7.1 Conclusion

In this dissertation, we consider two saddle point system of equations. The first sys-

tem arises when the total variational regularization is applied to solve an ill-posed

problem (image deblurring problem) while the second system results from the dis-

cretization of the ([L2(D)]2 ×L2
P(Ω))× (H1(D)∩L2

0(D)×L2
P(Ω)) formulation for the

stochastic Darcy’s equations. These system are huge and ill-conditioned. Hence, the

numerical solutions to these system represent a big challenge. This challenge attract

us to work with these system. In chapter 3, we use the total variation as a regulaza-

tion term to stable the minimization of the image deblurring problem. This type of

the regulazation is not easy to compute but it gives a good result. In other words, the

reconstruction image has no ringing or oscillation as in the Tikhanov regulazation.

We also introduce the mathematical model behind image deblurring problems. The

main our contributions in this chapter is that this is the first studies for the mixed

formulation of the image deblurring problem. In Chapter 4, we propose several pre-

conditioners which is the main our contribution in this chapter. Moreover, we study

the eigenvalues bound of their preconditioned matrices and mach the theoretical re-

sults by numerical examples. The proposed preconditioners depend on the circulant

matrices. This circulant matrices allow us to use the fast Fourier transform to do the

matrix-vector multiplications. This transform reduces the cost of the computations

and also the storage. Moreover, we compare between the preconditioners through

several numerical examples. The last contribution in this chapter is that we use two

positive parameters to enforce the clustering behavior of the eigenvalues and then to

have a convergence with few iterations.

For the second system of equations which is resulted from stochastic Darcy’s equa-

115

tions, in Chapter 5, we use the well known stochastic Galrkin finite element method.

In this method we use the standared finite element method to discretized the spatial

space while the tensor polynomial spaces is used to generate a basis for the stochastic

space. We also expand the random field by using the well known KL-expansion. In

this expansion, the random field is written as a summation of product of two functions

one is deterministic and the second is a random variable with scalar terms come from

the spectral analysis of the KL-expansion. The mean our contribution in this Chapter

is that we introduce a new formulation and study the analysis of this formulation (ex-

istence, uniqueness and error analysis). This formulation leads to more reduction of

the compactions because the (1,1)-block matrix in the coefficient matrix of the saddle

point system is diagonal. This diagonally property leads to easy inverse computations.

Finally, we solve the deterministic and stochastic examples (Five-spot problem). In

Chapter 6, we start showing that the Shur complement of the deterministic problem

is the Laplace operator. Moreover, we introduce more effective preconditioners for

both deterministic and stochastic problem which are the main our contributions in

this chapter. These prconditioners have the diagonally structure property of their

(1,1)-block matrix. We also studied the eigenvalues analysis of all preconditioners.

Finally, we test their performance through several example.

7.2 Future works

The present study opens many possible future directions

• The image deblurring problem can be studied with different regulazation term.

• The image deblurring problem can be studied without given kernel (blind de-

blurring)

116

• The image deblurring problem can be studied with using color images.

• The image deblurring problem can be studied with using finite element methods

instead of finite difference methods

• The image deblurring problem can be studied with using different boundary

conditions.

• The image deblurring problem can be studied with using two-level finite element

methods.

• The stochastic problem can be studied in which the right hand side is random

field also.

• The stochastic problem can be studied with using wavelet basis or complete

basis instead of tensor product basis.

• The stochastic problem can be studied in which the random field T is in the

second and right hand side terms not in the first term.

• The stochastic problem can be studied with using modified Gaussian random

field instead of uniform.

• The stochastic problem can be studied by using two-level decoupling the coupled

system instead of using double orthogonal basis.

• The stochastic problem can be studied by using two-level method for reducing

the order of the used polynomials.

• The stochastic problem can be studied by using two-level method for determin-

istic the stochastic problem.

Chapter 8

MATLAB CODES

117

118

%%This code uses to remove the blurry from digital images.

%%Through this code, several functions are used.

%%These functions are written below of the code.

clear, close all

u_exact = double(imread(’retinal.PNG’));

%% double(imread) is used to read images as a matrix.

u_exact=u_exact(1:512,1:512,1); %% resize if it is not square.

N=size(u_exact,1); kernel=ke_gen(N,300,10);

%% This function generates a certain kernel or PSF

%% with radius=10 and tau=300.

n =256; %% Resize the orginal image, the kernel to reduce the problem.

u_exact=imresize(u_exact,[n n]);

kernel=imresize(kernel,[n n]);

nx= n; ny = n; hx = 1 / nx; hy = 1 / ny; N=n;

%% Extend kernel to be of size the original image and compute its 2-d FT.

%% Then use this to compute K’*z and K*k.

kernel=kernel/sum(kernel(:)); m2 = 2*n; nd2 = n /2;

kernele=zeros(m2, m2); kernele(nd2+1:n+nd2,nd2+1:n+nd2) = kernel;

%% extension the kernel. fftshift(X) swaps the first quadrant with the third

%% and the second quadrant with the fourth.

k_ext = fftshift(kernele); k_hat = fft2(fftshift(kernele));

clear kernele %% To reduse the storages

beta =0.01; alpha = 0.00008; n = nx^2; m = 2*nx*(nx-1); nm =

n+m; gamma1 = 1; gamma2 = 1; gamma0=1; %% The input parameters

computeB; U = zeros(nx,nx); [D] = computeD(U,nx,m,beta);

119

L=B’*inv(D)*B; figure;

imagesc(u_exact);s=sprintf(’exactimage’);s=title(s);colormap(gray);

%% imagesc is used to plot data from a 2-D matrix.

z = integral_ke(u_exact,k_hat,nx,nx); % Blur the exact image

figure;

imagesc(z);ss=sprintf(’bluredimage’);ss=title(ss);colormap(gray)

zv = z(:); b2 = integral_ke(z,conj(k_hat),nx,nx);

b=[sparse(m,1); -b2(:)]; %% The right hand side

% -----------------------------------

xprecond =0; %% zero if MINRES with out preconditioner is used

%% or =1 with preconditioner.

maxit = 500; tol=1e-2; tolconjgrad = 1e-2;

u0 = zeros(length(b),1); %%or you can take z as initial data.

t=restrict(ifft2(abs(fft2(k_ext)).^2));

t_ext=(embed((embed(t))’))’; t_ext_hat=fft2(t_ext);

u1=zeros(nx,nx); u1(1,1)=1; row1_K=integral_ke(u1,k_hat’,nx,nx);

col1_K=integral_ke(u1,k_hat,nx,nx);

%% -----------------------------------

%%- If You Need To Use The Preconditioner P_T Do The Following-

rowcol=[row1_K;col1_K];

%% --------Then Use MINRES-------

%%------- If You Need To Use The Preconditioner P_S Do The Following-

row1=reshape(row1_K,nx,nx); col1=reshape(col1_K,nx,nx); c=[];

for k=1:nx; t=[col1(nx:-1:2,k)’,row1(:,k)’]; [s]=strang_cir(t);

c=[c,s];

120

end

c=reshape(c,nx,nx); c=fft2(c); rowcol=c;

%% ------Then Use MINRES------

%%------- If You Need To Use The Preconditioner P_c Do The Following-

row1=reshape(row1_K,nx,nx); col1=reshape(col1_K,nx,nx); c=[];

for k=1:nx; t=[col1(nx:-1:2,k)’,row1(:,k)’]; s=optimal_circ(t);

c=[c,s];

end

%%--------Then Use MINRES-------

[u,res,iter,flag] = pminres(nx,k_hat,alpha,B,D,b,u0,maxit,tol,...,

xprecond,gamma0,gamma1,gamma2,tolconjgrad,t_ext_hat,L,rowcol);

iter uv_np = u(m+1:m+n); u_np = reshape(uv_np,nx,nx);

%% ---- Do Fixed Point iterations ---------

xprecond =1; no_fixed_point_iterations = 5;

for i=1:no_fixed_point_iterations

fprintf(’------Fixed Point iteration %3.0f --------- \n’,i)

U = u_np; [D] = computeD(U,nx,m,beta); u0 = u; tol=1e-2; tic

[u,res,iter,flag] = pminres(nx,k_hat,alpha,B,D,b,u0,maxit,tol...

,xprecond,gamma0,gamma1,gamma2,tolconjgrad,t_ext_hat,L,rowcol);

toc iter

if i==2 resT=res; save resT resT %% to plot the resduals

end

uv_np = u(m+1:m+n); u_np = reshape(uv_np,nx,nx);

121

psnrv(i)=psnr(u_np,u_exact); figure

imagesc(u_np);ss=sprintf(’deblured image’);ss=title(ss);

colormap(gray)

end

%% Plotting the deblurred images

figure imagesc(u_np);ss=sprintf(’deblured image’);

ss=title(ss);colormap(gray)

psnrv psnr(z,u_exact)

%% ----------------------ke_kernel-----------------------

%% This function is used to generate a certain kernel

function K = ke_kernel(n, tau, radi);

if nargin<1,help

ke_gen;return; end if nargin<2, tau=200; end

if nargin<3, radi=4; end

K=zeros(n); R=n/2; h=1/n; h2=h^2;

RR=radi^2;

if radi>0 for j=1:n for k=1:n v=(j-R)^2+(k-R)^2; if v <= RR,

K(j,k)=exp(-v/4/tau^2); end;end; end; sw=sum(K(:)); K=K/sw;

else radi<0 range=R-2:R+2; K(range,range)=1/25;

end

%%--

function Ku = integral_ke(u,k_hat,nux,nuy)

[nkx,nky] = size(k_hat); n=size(u,1); Ku = real(ifft2(

((fft2(u,nkx,nky)) .* k_hat))); if nargin == 4 Ku

122

=Ku(1:nux,1:nuy); end

%--

function [t] = restrict(s); [n,m]=size(s); nx = n/2; t =

(1:nx,1:nx);

%---

function [t_embed] = embed(t)

%see 35 in the good_thesis

[nx,mx]=size(t); size(t) t_embed=zeros(nx,2*mx);

t_embed(1:nx,1:mx)=t; t_embed(1:nx,mx+1)=t(:,1); colm=[mx:-1:2];

for i=2:mx

t_embed(:,mx+i)=t(:,colm(i-1)); end

%----------------------compute B--------------------------

e = ones(nx,1); E = spdiags([0*e -1*e e], -1:1, nx, nx); E1

=E(1:nx-1,:); M1=eye(nx,nx); B1=kron(E1,M1); E2 = eye(nx); M2 =

spdiags([0*e -1*e e], -1:1, nx-1, nx); B2 = kron(E2,M2); B =

[B1;B2];

%-------------------compute D -----------------------------

function [D] = computeD(U,nx,m,beta); h0=1/nx; [X,Y] =

meshgrid(h0/2:h0:1-h0/2); nn = size(U,1); UU = sparse(nn+2,nn+2);

% we are using reflection bounday conditions

% another word, we are using normal boundary condition to be zero

UU(2:nn+1,2:nn+1) = U; UU(1,:) = UU(2,:); UU(nn+2,:) = UU(nn+1,:);

UU(:,1) = UU(:,2); UU(:,nn+2) = UU(:,nn+1);

Uxr = diff(U,1,2)/h0; % x-deriv at red points

xb = h0/2:h0:1-h0/2; yr=xb; yb = h0:h0:1-h0; xr=yb;

[Xb,Yb]=meshgrid(xb,yb); [Xr,Yr]=meshgrid(xr,yr); Uxb =

interp2(Xr,Yr,Uxr,Xb,Yb,’spline’);

123

Uyb = diff(U,1,1)/h0; % y-deriv at blue points

Uyr = interp2(Xb,Yb,Uyb,Xr,Yr,’spline’); Dr = sqrt(Uxr.^2 +

Uyr.^2 + beta^2); Db = sqrt(Uxb.^2 + Uyb.^2 + beta^2); Dvr =

Dr(:); Dvb = Db(:); Dv=[Dvr;Dvb]; ddd = [sparse(m,1) , Dv ,

sparse(m,1)];

D = spdiags(ddd,[-1 0 1],m,m);

%--------------compute small K ----------------------

K = sparse(n,n); for i=1:n ei = sparse(n,1); ei(i)=1; eim =

reshape(ei,nx,nx); Ke = integral_op(eim,kernel,nx,nx); K(:,i)

=Ke(:); end

%--

function p = psnr(x,y)

d = mean(mean((x(:)-y(:)).^2)); m1 =

max(abs(x(:))); m2 = max(abs(y(:))); m = max(m1,m2); p =

10*log10(m^2/d);

%---------------------Strang Circulant-----------------------

function [s]=strang_cir(t); length(t) n=(length(t)+1)/2 m=n/2;

m1=m-1; for k=1:m-1; s(k+1)=t(k+n); end for k=m+1:n-1;

s(k+1)=t(k); end s(m+1)=0; s(1)=t(n);

%-------------------Optimal Circulant-------------------------

function [c] = optimal_circ(t);

% Compute optimal circulant approximation C to n X n matrix A.

% C = argmin {||B - A||_fro : B is n X n circulant}

% = circulant(c)

A = my_toeplitz(t); [m,n] = size(A); if m ~= n fprintf(’\n

***Input A must be a square matrix.\n’); return end c =zeros(n,1);

c(1) = sum(diag(A)); for j=1:n-1 c(j+1) = sum(diag(A,-j)) +

124

sum(diag(A,n-j)); end

c = c / n;

%---------------------Topletiz matrix-------------------------

function T = my_toeplitz(t)

% Construct n X n Toeplitz matrix T from vector t of length 2n-1.

m = max(length(t)); if mod(m,2) == 0 fprintf(’\n *** Length of t

must be odd.\n’); return end n = ceil(m/2); row = t(n:-1:1); col =

t(n:m);

T = toeplitz(col,row);

%------------------------Circulant matrix--------------------------

function C = circulant(c)

% Construct n X n circulant matrix C from vector c of length n.

if min(size(c)) > 1 fprintf(’\n *** Input c must be a vector.\n’);

return

end

c = c(:); % Make c a column vector, if it isn’t already.

n = length(c); row = [c(1); c(n:-1:2)];

C = toeplitz(c,row);

%----------------------------eigenvalue computations----------

clear nx=4; s=10; beta =0.01; alpha =0.00008;

%-------------------------

n = nx^2; m = 2*nx*(nx-1); u_exact =

double(imread(’goldhill512.png’)); N=size(u_exact,1);

kernel=ke_gen(N,300,100); [kernel]= gauss_kernel(s,nx^2);

%kernel = fspecial(’gaussian’,7,10);

%kernel = fspecial(’gaussian’,600,10);

surf(kernel)

125

% Resize to reduce Problem

u_exact2=imresize(u_exact,[nx nx]); kernel=imresize(kernel,[nx

nx]); computeB; U = zeros(nx,nx);

%matrix_D;

computeD; computeK; A =[alpha*D , -alpha*B;-alpha*B’,-K’*K];

%--

gamma1 =1; gamma2 =1 ; gamma3=1; %we need gamma1 to be v small

%[C] = oomputeC_BCCB(K); %if you need just BCCB

% c = K(1,:);

% C = bccb(c);

eye_n=eye(nx^2); eye_m=eye(m); L=B’*inv(D)*B;

%S = (K’*K+alpha*L);

col1=K(:,1); row1=K(1,:); t=[col1(nx^2:-1:2)’,row1(:)’];

[s]=strang_cir(t); % if you need strang circulant

C = circulant(s);

%C = bccb(s);

%[c,C] = optimal_circ(K); %if you need optimal circulant

SS=(C’*C+alpha*L); SK=K’*K+alpha*L; P =[(alpha*gamma1*D),

zeros(m,n) ; zeros(n,m) ,gamma2*SS]; Ah = P^(-1/2)*A*P^(-1/2);

vv=eig(full(Ah)); vvv=eig(full(A)); vvsort = sort(real(vv));

vvvsort = sort(real(vvv)); vsort = [vvsort,vvvsort]

vvvv=eig(full(SK)); vvvvv=eig(full(inv(SS)*SK)); zz =

zeros(length(vv),1); ro=eig(SK^(-1/2)*L*SK^(-1/2));

ro=sort(real(ro)); sigmam=max(ro); tao=max(abs(ro));

lower_positive = 1/gamma1; upper_positive=(1 +

sqrt(1+4*alpha*sigmam))/2; lower_negative=-1; upper_negative =

-1/(1+alpha*tao); [lower_positive,upper_positive]

126

[lower_negative,upper_negative];

boundvec=[lower_positive,upper_positive,lower_negative,upper_negative];

zzz=[0;0;0;0]; figure plot(real(vvv),zeros(length(vvv),1),’ok’)

grid on hold on figure plot(real(vvsort(2:16)),zeros(15,1),’ok’)

grid on figure plot(real(vv),zz,’ro’) grid on hold on

plot(boundvec,zzz,’b*’) grid on hold on figure

plot(real(vvvv),zeros(length(vvvv),1),’ok’) grid on figure

plot(real(vvvvv),zeros(length(vvvvv),1),’ok’) grid on

%-------------------------------MINRES------------------

function [u_j,res,iter,flag] =

pminres(nx,k_hat,alpha,B,D,b,u_jm1,MaxIter,tol,xprecond,gamma0,

gamma1,gamma2,tolconjgrad,t_ext_hat,L,rowcol);

% Algorithm 6.1: The Preconditioned Minres Method

% page 289 from wathen book

n = length(u_jm1); iter = MaxIter; flag = 1; v_jm1 =

sparse(n,1); w_jm1 = sparse(n,1); w_j = sparse(n,1);

Au_jm1=Ax(u_jm1,nx,k_hat,alpha,B,D); %fix matrix vector

v_j = b - Au_jm1’;

% use preconditioner

[z_j] = precond(xprecond,v_j,D,B,gamma0,gamma1,gamma2,alpha,

tolconjgrad,t_ext_hat,L,rowcol);

gamma_jm1 = 1; gamma_j = sqrt(z_j’ * v_j); eta = gamma_j; s_jm1 =

0; s_j = 0; c_jm1 = 1; c_j = 1; for j = 1:MaxIter

z_j = z_j/gamma_j;

Azj=Ax(z_j,nx,k_hat,alpha,B,D);

d_j = z_j’ * Azj’;

v_jp1 = Azj’ - (d_j/gamma_j)*v_j - (gamma_j/gamma_jm1) * v_jm1;

127

% use preconditioner

[z_jp1] = precond(xprecond,v_jp1,D,B,gamma0,gamma1,gamma2,

alpha,tolconjgrad,t_ext_hat,L,rowcol);

gamma_jp1 = sqrt(z_jp1’ * v_jp1);

a0 = c_j*d_j - c_jm1 * s_j * gamma_j;

a1 = sqrt(a0^2 + gamma_jp1^2);

a2 = s_j * d_j + c_jm1 * c_j * gamma_j;

a3 = s_jm1 * gamma_j;

cjp1 = (a0/a1); s_jp1 = gamma_jp1/a1;

w_jp1 = (z_j - a3 * w_jm1 - a2 * w_j)/a1;

u_j = u_jm1 + cjp1 * eta * w_jp1;

eta = - s_jp1 * eta;

Au_j=Ax(u_j,nx,k_hat,alpha,B,D);

res(j) = norm(b-Au_j’);

if res(j) < tol; iter=j; flag=0; break; end;

% update for next iteration

z_j = z_jp1;

gamma_jm1 = gamma_j; gamma_j = gamma_jp1;

v_jm1 = v_j; v_j = v_jp1;

c_jm1 = c_j; c_j = cjp1;

s_jm1 = s_j; s_j = s_jp1;

w_jm1 = w_j; w_j = w_jp1;

u_jm1 = u_j;

end

res=[norm(b),res];

% you can test the code by executing these lines

% clear

128

% n=1000;

% A=rand(n,n); A=A’*A; x=ones(n,1); b=A*x; M =diag(diag(A)); x0 = sparse(n,1);

% max = 2; tol=1e-14;

% [u_j,res,iter,flag] = minres_OK(A,b,x0,max,tol,M);

% u_j;

% % plot(log(resP))

% figure

% plot(log(res));grid on;

% iter

% [xminres,flag,relres] = minres(A,b,tol,max,M);

% [xminres,u_j]

% [norm(xminres-u_j),norm(xminres-x),norm(x-u_j)]

%----------------------------precond----------------

function [y]

=precond(xprecond,x,D,B,gamma0,gamma1,gamma2,alpha,

tolconjgrad,t_ext_hat,L,rowcol);

m=size(B,1); n=size(B,2); if xprecond == 0

y = x;

else

x1=x(1:m);

x2=x(m+1:n+m);

y1=D\x1;

y1=y1/(alpha*gamma1);

x2new = x2/gamma2;

y2 = conjgrad(x2new,D,B,gamma0,gamma1,gamma2,alpha,tolconjgrad,

t_ext_hat,L,rowcol);

129

y=[y1;y2];

end

%---------------------------conjgrad--------------------------------

function x =

conjgrad(b,D,B,gamma0,gamma1,gamma2,alpha,tol,t_ext_hat,L,rowcol);

n = 6000;

m = 8000;

A = randn(n,m);

A = A * A’;

b = randn(n,1);

tic, x = conjgrad(A,b); toc

norm(A*x-b)

if nargin<3

tol=1e-10;

end

x = b;

[Ax] = p2matrixvec(x,D,B,gamma0,gamma1,gamma2,alpha,

t_ext_hat,L,rowcol);

r = b - Ax;

if norm(r) < tol

return

end

y = -r;

[Ay] = p2matrixvec(y,D,B,gamma0,gamma1,gamma2,alpha,

t_ext_hat,L,rowcol);

130

z = Ay;

s = y’*z;

t = (r’*y)/s;

x = x + t*y;

for k = 1:100;

r = r - t*z;

if(norm(r) < tol)

return;

end

BB = (r’*z)/s;

y = -r + BB*y;

[Ay] = p2matrixvec(y,D,B,gamma0,gamma1,gamma2,alpha,

t_ext_hat,L,rowcol);

z = Ay;

s = y’*z;

t = (r’*y)/s;

x = x + t*y;

end

end

%-------------------p2matrixvec--------------------------

function[w]=p2matrixvec(r,D,B,gamma0,gamma1,gamma2,alpha,

t_ext_hat,L,rowcol);

n = size(B,2); nx = sqrt(n);

% % ----------- PT preconditioner

Lr = L*r;

131

Tr=restrict(ifft2(t_ext_hat.*fft2(extend(reshape(r,nx,nx))))); w =

Tr(:)+alpha*Lr ;

%%--------------PC and PS--Precond--just diff c---------

c=rowcol; Cr=ifft2(abs(c).^2.*fft2(reshape(r,nx,nx))); Cr=Cr(:);

w= Cr+alpha*Lr;

%---

%-------decoupled system stochastic Darcy------------------------

Ainv=inline(’1’,’x’,’y’); global x_int w_int

load mesh1024 %------open this

% pdemesh(p,e,t)

bo_triangles

M=6; d=4; Naxi=factorial(M+d)/(factorial(M)*factorial(d));

expect_psi = zeros(Naxi,1); expect_psi(1)=1;

[G0] = create_G0_uniform(p); [G1] = create_Gm_uniform(p,1);

[G2]=create_Gm_uniform(p,2); [G3] = create_Gm_uniform(p,3);

[G4]=create_Gm_uniform(p,4); [G5] = create_Gm_uniform(p,5);

[G6]=create_Gm_uniform(p,6);

% tau1=eig(inv(G0)*G1);

% tau2=eig(inv(G0)*G2);

% tau3=eig(inv(G0)*G3);

% tau4=eig(inv(G0)*G4);

A0 = StiffMat2D_m0(p,t); B = SecondMat2D(p,t);

f_vec=LoadVec2D(p,t); B5=B(5,:); mold=size(B,1);

B=B([1:4,6:mold],:); f_vec = f_vec([1:4,6:mold]); m=size(B,1);

At=[A0,B’;B,sparse(m,m)]; b = [-B5’;f_vec]; n=size(A0,1);

[At,b]=impose_boundary(vert,horz,At,b,n,m); A0 = At(1:n,1:n);

132

f_vec = b(n+1:n+m);

%---

x=[-0.93246951,-0.66120939,-0.23861919,0.23861919,0.66120939,0.93246951]’;

x_int=(x+1)/2;

w_int=[0.17132449,0.36076157,0.46791393,0.46791393,0.36076157,0.17132449]’;

x = x_int; w = w_int;

% we find the eigen pairs of the

% integral operator

[tm,lm] = calculte_eig(x,w);

[lms,i] = sort(lm,’descend’);

% --- we compute A_m for m=1:4

A1 = StiffMat2D(1,tm(:,i(1)),lms(1),p,t);

A2 =StiffMat2D(2,tm(:,i(2)),lms(2),p,t);

A3 = StiffMat2D(3,tm(:,i(3)),lms(3),p,t);

A4 = StiffMat2D(4,tm(:,i(4)),lms(4),p,t);

A5 = StiffMat2D(5,tm(:,i(5)),lms(5),p,t);

A6 = StiffMat2D(6,tm(:,i(6)),lms(6),p,t);

% ----Here we impose the bounday condition to A1,..,AM ----

133

At1=[A1,B’;B,sparse(m,m)]; [At1]=

impose_boundary2(vert,horz,At1,n,m); A1 = At1(1:n,1:n);

At2=[A2,B’;B,sparse(m,m)]; [At2]=

impose_boundary2(vert,horz,At2,n,m); A2 = At2(1:n,1:n);

At3=[A3,B’;B,sparse(m,m)]; [At3]=

impose_boundary2(vert,horz,At3,n,m); A3 = At3(1:n,1:n);

At4=[A4,B’;B,sparse(m,m)]; [At4]=

impose_boundary2(vert,horz,At4,n,m); A4 = At4(1:n,1:n);

At5=[A5,B’;B,sparse(m,m)]; [At5]=

impose_boundary2(vert,horz,At5,n,m); A5 = At5(1:n,1:n);

At6=[A6,B’;B,sparse(m,m)]; [At6]=

impose_boundary2(vert,horz,At6,n,m); A6 = At6(1:n,1:n);

%%---

B_hat = kron(G0,B);

A_hat = kron(G0,A0) + kron(G1,A1) + kron(G2,A2)+kron(G3,A3) +

kron(G4,A4)+kron(G5,A5)+kron(G6,A6);

f_vec_hat = kron(expect_psi’,f_vec);

mm = size(B_hat,1);

134

nn = size(B_hat,2);

At=[A_hat,B_hat’;B_hat,sparse(mm,mm)];

bb =sparse(nn+mm,1);

bb(nn+1:nn+mm) = f_vec_hat; D_hat = kron(G0,A0); S0=B*inv(A0)*B’;

S0_hat = kron(G0,S0);

L = Grad_matrix(p,t,Ainv); mL=size(L,1);

L = L([1:4,6:mL],[1:4,6:mL]);

SL_hat = kron(G0,L); Gm = pres_massmat(p,t);

Gm(5,:)=[]; Gm(:,5)=[];

M = MassMat(p,t); M(5,:)=[]; M(:,5)=[];

SN_hat=kron(G0,Gm+M);

% SE_hat=B_hat*inv(A_hat)*B_hat’;

P=[A_hat,sparse(nn,mm);sparse(mm,nn),SL_hat];

%%---

%[x_s,res1,iter1] = Pmyminres(At,bb,u0,maxit,tol,mm,nn,AZ,SZ);

%[x_s,res,iter,flag] = pminres(At,bb,u0,maxit,tol,M);

%%--

%P = [A0, zeros(n,m);zeros(m,n),Gm+M];

%P = [A0, zeros(n,m);zeros(m,n),L];

135

%%---

u0 = sparse(nn+mm,1); maxit=100; tol=1e-8;

tic

[xs,res1,iter1]=

Pmyminres(At,bb,u0,maxit,tol,mm,nn,A_hat,SL_hat); xs_v=xs(1:nn);

xs_p=xs(nn+1:nn+mm);

toc

for i=1:Naxi

sta=(i-1)*m+1; %started point

en=sta+m-1; %end point

pres(1:m,i)=xs_p(sta:en)’;

end

for i=1:Naxi

presnoze=pres(1:m,i); %pressure is the mean of the first column

pres5=[presnoze(1:4,:);0;presnoze(5:m,:)];

[intp]=integralp(t,p,pres5);

uniqepres=pres5-intp;

pres(1:m+1,i)=uniqepres;

end

meanp=pres(:,1);

for i=1:m+1

136

varp(i)=var(pres(i,:));

end varp=varp’;

%%---

xxx=0:0.01:1; yyy=0:0.01:1;

meanpressure_matrix=tri2grid(p,t,meanp,xxx,yyy);

figure contourf(meanpressure_matrix,100);shading flat;colorbar;

figure mesh(xxx,yyy,meanpressure_matrix);

%%--

varpressure_matrix2=tri2grid(p,t,varp,xxx,yyy); figure

mesh(xxx,yyy,varpressure_matrix2);

figure

contourf(varpressure_matrix2,100);shading flat;colorbar;

%%---

% [intp]=integralp(t,p,meanp); % to check is the integral of p=0

vx = -xs_v(1:2:end); %%%%%%%%%%%vx are the odd components

vy = -xs_v(2:2:end);

n_nodes = size(p,2);

vx_node = zeros(n_nodes,Naxi); %it is zero matrix

vy_node = zeros(n_nodes,Naxi);

for i = 1:n/2

for j = 1:3

node_no = t(j,i);

vx_node(node_no, :) = vx_node(node_no, :) + vx(i, :);

vy_node(node_no, :) = vy_node(node_no, :) + vy(i, :);

end

137

end

vx_node=vx_node/6; %it is the mean

vy_node=vy_node/6; vx_node(5,:)=(vx_node(5,:)*6)/4;

vy_node(5,:)=(vy_node(5,:)*6)/4;

%all tringles have 6 nodes expet at the center (5) and the boundary(3)

vx_node(1,:)=(vx_node(1,:)*6)/2; vy_node(1,:)=(vy_node(1,:)*6)/2;

vx_node(2,:)=(vx_node(2,:)*6)/2; vy_node(2,:)=(vy_node(2,:)*6)/2;

vx_node(3,:)=(vx_node(3,:)*6)/2; vy_node(3,:)=(vy_node(3,:)*6)/2;

vx_node(4,:)=(vx_node(4,:)*6)/2; vy_node(4,:)=(vy_node(4,:)*6)/2;

bond_node = setdiff(e(1,:),[1,2,3,4]); nb = length(bond_node);

for

i=1:nb

node_nm = e(1,i);

vx_node(node_nm,:)=(vx_node(node_nm,:)*6)/3;

vy_node(node_nm,:)=(vy_node(node_nm,:)*6)/3;

end

%%---

xxx=0:0.01:1; yyy=0:0.01:1; meanvx_node=mean(vx_node,2);

meanvx_matrix=tri2grid(p,t,meanvx_node,xxx,yyy); figure

mesh(xxx,yyy,meanvx_matrix); figure

contourf(meanvx_matrix,100);shading flat;colorbar;

%%------velocities mean plot-------------------

meanvy_node=mean(vy_node,2);

meanvy_matrix=tri2grid(p,t,meanvy_node,xxx,yyy);

mesh(xxx,yyy,meanvy_matrix);

figure

contourf(meanvy_matrix,100);shading flat;colorbar;

138

%%--

var_vx_node=sparse(n_nodes,1); var_vy_node=sparse(n_nodes,1);

for

i=1:n_nodes

var_vx_node(i)=var(vx_node(i,:));

var_vy_node(i)=var(vy_node(i,:));

end

%%----------velocitese var plot--------

varvx_matrix=tri2grid(p,t,var_vx_node,xxx,yyy);

contourf(varvx_matrix,100);shading flat;colorbar; figure

varvy_matrix=tri2grid(p,t,var_vy_node,xxx,yyy);

contourf(varvy_matrix,100);shading flat;colorbar;

figure quiver(meanvx_matrix,meanvy_matrix)

%%--

function [G0] = create_G0_uniform(p)

MM=6; p=4;

%here we use the complete polynomial space and uniform random field

vp=0:p;

[X1,X2,X3,X4,X5,X6] = ndgrid(vp,vp,vp,vp,vp,vp);

%[X1,X2,X3] = ndgrid(vp,vp,vp);

mul=[X1(:),X2(:),X3(:),X4(:),X5(:),X6(:)];

%mul=[X1(:),X2(:),X3(:)];

basis_deg=sum(mul,2)<p+1;

row=find(basis_deg==1);

order=mul(row,:); N_xi=length(row);

G0=zeros(N_xi,N_xi);

139

for i = 1: N_xi

ri = order(i,:);

value2 = 1;

for is=1:MM value2 = value2 * 1/(2*ri(is)+1); G0(i,i) = value2;

end end spy(G_0)

%%---

function [Gm] = create_Gm_uniform(p,m) MM=6;

p=4;

%here we use the complete polynomial space and uniform random field

vp=0:p;

%[X1,X2] = ndgrid(vp,vp);

[X1,X2,X3,X4,X5,X6] = ndgrid(vp,vp,vp,vp,vp,vp);

%mul=[X1(:),X2(:)];

mul=[X1(:),X2(:),X3(:),X4(:),X5(:),X6(:)];

basis_deg=sum(mul,2)<p+1;

row=find(basis_deg==1); order=mul(row,:); N_xi=length(row);

Gm=zeros(N_xi,N_xi);

%m=1 gives G1 and m=2 gives G2 and so on

similar = setdiff([1:MM],m);

for i = 1: N_xi

ri = order(i,:);

for j = 1:N_xi

ci = order(j,:);

if ri(1,similar) == ci(1,similar) & (ri(1,m)-ci(1,m)) == 1;

value1=1;

for is=1:MM

140

value1 = value1 * 1/(2*ri(is)+1);

[i,j,value2,ri,ci];

end

down = ri(m)/(2*ri(m)-1);

value = value1*down;

Gm(i,j) =value;

end

if ri(1,similar) == ci(1,similar) & (ri(1,m)-ci(1,m)) == -1;

value2=1;

for is=1:MM

value2 = value2 * 1/(2*ri(is)+1);

[i,j,value2,ri,ci];

end

down1 = ci(m)/((2*ci(m)-1)*(2*ci(m)+1));

down2=(2*ri(m)+1);

value2 = value2*down1*down2;

Gm(i,j) =value2;

[i,j,value2];

end

end

end

% spy(G_m)

% size(G_m)

% eig(G_m)

%%--

function A = StiffMat2D_m0(p,t)

141

Ainv=inline(’1’,’x’,’y’);

nt=size(t,2); n=2*nt; A=sparse(n,n);

for k=1:nt

loc2glob=t(1:3,k);

x=p(1,loc2glob);

y=p(2,loc2glob);

area=polyarea(x,y);

Avec=[Ainv(x(1),y(1)),Ainv(x(2),y(2)),Ainv(x(3),y(3))];

sumAvec=sum(Avec)*area/3;

A(2*k-1,2*k-1)=sumAvec;

A(2*k,2*k)=sumAvec;

end

%%---

function B = SecondMat2D(p,t) np = size(p,2); nt = size(t,2);

n=2*nt; m=np; B = sparse(m,n);

for k = 1:nt

loc2glb = t(1:3,k); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,loc2glb); % node y-

[area,b,c] = Gradients(x,y);

col1=2*k-1;

col2=2*k;

B(loc2glb,col1)=-b’*area;

B(loc2glb,col2)=-c’*area;

end

142

%%--

function F = LoadVec_5spot(p,t) f=inline(’1’,’x’,’y’);

np=size(p,2); nt = size(t,2); F = zeros(np,1);

F(1:4)=0.0043; %%%%%%%%%2/3 *area (0.0064)

F(5)=-6.8379e-004; %%%%%%%%%-4/3 *are (5.1284e-004)

%%--

function [At,b]= impose_boundary(vert,horz,At,b,n,m)

% -----------Here we impose the bounday condition--------

% no flow on the boundary i.e n . u = 0

nh = length(horz); nv = length(vert);

for i=1:nh

irow = 2*horz(i);

At(irow,:) = sparse(1,n+m);

At(:,irow) = sparse(n+m,1);

b(irow) = 0;

At(irow,irow) = 1;

end

for i=1:nv

irow = 2*(vert(i)-1)+1;

At(irow,:) = sparse(1,n+m);

At(:,irow) = sparse(n+m,1);

b(irow) = 0;

At(irow,irow) = 1;

end

143

%%---

function [tm,lm] = calculte_eig(x,w) n = length(x);

for i=1:n

for j=1:n

ind = (i-1)*n + j;

P(ind,1) = x(j);

P(ind,2) = x(i);

Wv(1,ind) = w(i)*w(j);

% here since we have dauble integral and function w.r.t x and y

end

end

for k = 1:n^2

for l = 1:n^2

Pk =[P(k,1),P(k,2)];

Pl =[P(l,1),P(l,2)];

C(k,l) = mycov(Pk,Pl);

end

end

W=[]; for i=1:n^2

W = [W;Wv];

end

K = C.*W/4; %4 came from the transition formula (0,1) into (-1,1)

144

[tm,lm1] = eig(K);

lm = diag(lm1);

%%---

function [value] = mycov(x,y)

r = norm(x-y);

% -------- covariance in (2.9b) ---------

tao=1; sigma=0.1; value = sigma^2*exp(-r/tao) ;

%%--

function Gm = pres_massmat(p,t) np = size(p,2); nt = size(t,2); A

= sparse(np,np); for K = 1:nt

loc2glb = t(1:3,K); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,loc2glb); % node y-

[area,b,c] = Gradients(x,y);

AK = (b*b’+c*c’)*area; % element stiff mat

A(loc2glb,loc2glb) = A(loc2glb,loc2glb)+ AK;

% add element stiffnesses to A

end Gm=A;

%%---

function M = MassMat(p,t) np = size(p,2); nt = size(t,2); alpha=4;

M = sparse(np,np); for K = 1:nt

loc2glb = t(1:3,K); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,loc2glb); % node y-

[area,b,c] = Gradients(x,y);

145

MK = [2 1 1;

1 2 1;

1 1 2]/12*area; % element mass matrix

M(loc2glb,loc2glb) = M(loc2glb,loc2glb)+ MK;

end

%%---

%clear

%load smallmesh

%load mesh_sample

%generate_mesh

%%%%%%%%%%%%%%we need to load M2p1 to work this program

Ainv=inline(’1’,’x’,’y’); global x_int w_int

%load mesh_256

load mesh1024 %------open this

% load small_mesh

%load 5_Spot_Mesh

pdemesh(p,e,t) bo_triangles

% ----- change here 81 is the size of n_axi

G0=eye(81); Generate_G_matrices_M4 A0 = StiffMat2D_m0(p,t);

B = SecondMat2D(p,t);

f_vec = LoadVec2D(p,t);

146

% Modify the matrix B (has no full rank)

% so that the problem has a unique solution

% delete one row number 5 from B

B5=B(5,:); mold=size(B,1);

B= B([1:4,6:mold],:);

f_vec = f_vec([1:4,6:mold]);

m=size(B,1);

At=[A0,B’;B,sparse(m,m)];

b = [-B5’;f_vec];

n=size(A0,1);

% Modify the matrix B

% so that the problem has a unique solution

% delete four rows from B (1,2,3,4) corners (production wells)

% mold=size(B,1);

% B1=B(1,:);B2=B(2,:);B3=B(3,:);B4=B(4,:);

% B= B([5:mold],:);

% f_vec = f_vec([5:mold]);

% m=size(B,1);

%

% At=[A0,B’;B,sparse(m,m)];

% b = [-B1’-B2’-B3’-B4’;f_vec];

147

% -----------Here we impose the bounday condition--------

% no flow on the boundary i.e n . u = 0

[At,b]= impose_boundary(vert,horz,At,b,n,m);

A0 = At(1:n,1:n); f_vec = b(n+1:n+m);

%%%

x=[-0.93246951,-0.66120939,-0.23861919,0.23861919,0.66120939,0.93246951]’;

x_int=(x+1)/2;

w_int=[0.17132449,0.36076157,0.46791393,0.46791393,0.36076157,0.17132449]’;

x = x_int; w = w_int;

% ---------- we find the eigen pairs of the

% integral operator

%

[tm,lm] = calculte_eig(x,w); [lms,i] = sort(lm,’descend’);

% --- we compute A_m for m=1:4

% ----- change here --- find A3 A4

A1 = StiffMat2D(1,tm(:,i(1)),lms(1),p,t); A2 =

StiffMat2D(2,tm(:,i(2)),lms(2),p,t); A3 =

StiffMat2D(3,tm(:,i(3)),lms(3),p,t); A4 =

148

StiffMat2D(4,tm(:,i(4)),lms(4),p,t);

% ----- change here --- find A3 A4

% -----------Here we impose the bounday condition to A1,..,A4 --------

%we comment below to calculate the eigen_value theorm and for solution u

%shold to remove the comment

At1=[A1,B’;B,sparse(m,m)]; [At1]=

impose_boundary2(vert,horz,At1,n,m); A1 = At1(1:n,1:n);

At2=[A2,B’;B,sparse(m,m)]; [At2]=

impose_boundary2(vert,horz,At2,n,m); A2 = At2(1:n,1:n);

At3=[A3,B’;B,sparse(m,m)]; [At3]=

impose_boundary2(vert,horz,At3,n,m); A3 = At3(1:n,1:n);

At4=[A4,B’;B,sparse(m,m)]; [At4]=

impose_boundary2(vert,horz,At4,n,m); A4 = At4(1:n,1:n);

%%

L = Grad_matrix(p,t,Ainv); mL=size(L,1); L =

L([1:4,6:mL],[1:4,6:mL]); u0=zeros(n+m,1); maxit=100; tol=1e-5; Gm

= pres_massmat(p,t); Gm(5,:)=[]; Gm(:,5)=[]; M = MassMat(p,t);

M(5,:)=[]; M(:,5)=[];

%P = [A0, zeros(n,m);zeros(m,n),Gm+M];

%P = [A0, zeros(n,m);zeros(m,n),L];

149

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pres=[]; vel=[]; [mean_psi]=psi_ex();

b1_vec = f_vec(1:m); res = zeros(81,50); iter_vec = zeros(81,1);

for i=1:81;

AZ=A0+G(1,i)*A1+G(2,i)*A2+G(3,i)*A3+G(4,i)*A4;

At=[AZ,B’;B,sparse(m,m)];

SZ=B*inv(AZ)*B’;

fZ= mean_psi(i) * b1_vec;

bZ=[sparse(n,1);fZ];

% xs = At\bZ;

mm=m; nn=n;

% [xs,res1,iter1] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,A0,L);

%[xs,res1,iter1] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,A0,Gm+M);

[xs,res1,iter1] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,AZ,SZ);

res(i,1:iter1) = res1; iter_vec(i) = iter1; [i,iter1]

xs_v=xs(1:n);

xs_p=xs(n+1:n+m);

vel = [vel;xs_v];

pres =[pres;xs_p];

end max_iteration = max(iter_vec); for k=1:max_iteration

big_res(k) = norm(res(:,k));

end plot(log(big_res/big_res(1)))

%-------------

mm=81*m; nn=81*n;

150

ww = reshape(vel,n,81);

pp = reshape(pres,m,81);

pp = [pp(1:4,:);zeros(1,81);pp(5:m,:)];

%%%%%%%%%%we make the row number5=0 to make B has full rank%%%%%%%%%%

vx = ww(1:2:nn/81,:); %%%%%%%%%%%vx are the odd components

vy = ww(2:2:nn/81,:); %%%%%%%%%%vy are the even components

[meanp] = mean_clc(pp,mean_psi); [intp]=integralp(t,p,meanp);

meanp=meanp-intp; [meanvx] = mean_clc(vx,mean_psi); [meanvy] =

mean_clc(vy,mean_psi);

n_nodes = size(p,2);

meanvx_node=zeros(n_nodes,1); %%%mean of vx over the nods

meanvy_node=zeros(n_nodes,1); %%%mean of vy over the nods

vx_node = zeros(n_nodes,81); vy_node = zeros(n_nodes,81); for i =

1:n/2

for j = 1:3

node_no = t(j,i);

meanvx_node(node_no) = meanvx_node(node_no) + meanvx(i);

meanvy_node(node_no) = meanvy_node(node_no) + meanvy(i);

vx_node(node_no, :) = vx_node(node_no, :) + vx(i, :);

vy_node(node_no, :) = vy_node(node_no, :) + vy(i, :);

end

end meanvx_node=meanvx_node/6;

151

meanvx_node(5)=(meanvx_node(5)*6)/4;

%each nod has 6 triangles just the nod number 5 has 5 triangles

meanvy_node=meanvy_node/6; meanvy_node(5)=(meanvy_node(5)*6)/4;

vx_node=vx_node/6; vx_node(5,:)=(vx_node(5,:)*6)/4;

vy_node=vy_node/6; vy_node(5,:)=(vy_node(5,:)*6)/4;

%%%%%%%%%%%%%%%%%%%%%%%%%%we plot the mean of the

%%%%%%%%%%%%%%%%%%%%%%%%%%pressure%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x=0:0.01:1; y=0:0.01:1; pressure_matrix=tri2grid(p,t,meanp,x,y);

figure mesh(x,y,pressure_matrix); figure

contourf(pressure_matrix,100);shading flat;colorbar;

%%%%%%%%%%%%%%%%%%%%%%%%%plot the mean of vx and vy

xxx=0:0.01:1; yyy=0:0.01:1;

meanvx_matrix=-tri2grid(p,t,meanvx_node,xxx,yyy); figure

mesh(xxx,yyy,meanvx_matrix); figure

contourf(meanvx_matrix,100);shading flat;colorbar;

%%%

figure

meanvy_matrix=-tri2grid(p,t,meanvy_node,xxx,yyy);

mesh(xxx,yyy,meanvy_matrix); figure

contourf(meanvy_matrix,100);shading flat;colorbar;

%%%%%%%%%%%%weplot the variance of pressure%%%%%%%%%%%%%

[varp] = variance_calc(pp,meanp); [varvx] =

variance_calc(vx_node,meanvx_node); [varvy] =

variance_calc(vy_node,meanvy_node);

%----------------------------

x=0:0.01:1; y=0:0.01:1; pressure_matrix2=tri2grid(p,t,varp,x,y);

152

figure mesh(x,y,pressure_matrix2); figure

contourf(pressure_matrix2,100);shading flat;colorbar; figure

%%%%plot the variance of the velocity%%%%%%%%%%%%%%%%%%%%%%%%

xxx=0:0.01:1; yyy=0:0.01:1;

vx_matrix2=tri2grid(p,t,varvx,xxx,yyy); mesh(xxx,yyy,vx_matrix2);

figure contourf(vx_matrix2,100);shading flat;colorbar; figure

vy_matrix2=tri2grid(p,t,varvy,xxx,yyy); mesh(xxx,yyy,vy_matrix2);

figure contourf(vy_matrix2,100);shading flat;colorbar; figure

quiver(meanvx_matrix,meanvy_matrix)

%%---

function [intp]=integralp(t,p,mp); nelement=size(t,2); intp=0; for

k=1:nelement;

loc2glb=t(1:3,k);

x = p(1,loc2glb); % node x-coordinates

y = p(2,loc2glb); % node y-

area=polyarea(x,y);

sumk=(sum(mp(loc2glb))*area)/3;

intp=intp+sumk;

end

%%---

function [mp] = mean_clc(pp,mean_psi);

ms = size(pp,1);

% EPSI(1)=sqrt(3)/(2*sqrt(2));

153

% EPSI(2)=1/sqrt(6);

% EPSI(3)=1/sqrt(6);

% index=0;

% for i= 1:3

% for j=1:3

% for k=1:3

% for l=1:3

% index = index +1;

% EPSIY(index)=EPSI(i)*EPSI(j)*EPSI(k)*EPSI(l);

% end

% end

% end

% end

% EPSIY

mp = zeros(ms,1); %mean pressure mp

Naxi=81; for i=1:Naxi

mp = mp + mean_psi(i)*pp(:,i); %meanpsi is the expection of apsis

end

%%--

function [mean_psi]=psi_ex(); a1=sqrt(2/3);

a2=1/sqrt(6);

a3=1/sqrt(6);

v1(1:27)=a1;

v1(28:54)=a2;

v1(55:81)=a3;

z(1:9)=a1; z(10:18)=a2; z(19:27)=a3;

154

v2=[z z z];

w(1:3)=a1; w(4:6)=a2; w(7:9)=a3;

wq=[w w w];

v3=[wq wq wq];

r=[a1 a2 a3];

rr=[r r r];

rrr=[rr rr rr];

v4=[rrr rrr rrr];

mean_psi=v1.*v2.*v3.*v4;

%%%%%%%%the expectition in the f_k on the right hand side %%%

%%---

function [mean_psi]=psiexpection;

%a1=sqrt(3)/(2*sqrt(2));

%a2=1/sqrt(6);

%a3=1/sqrt(6);

a1=2/3;

a2=sqrt(5/18);

a3=sqrt(5/18);

v1(1:27)=a1;

v1(28:54)=a2;

v1(55:81)=a3;

z(1:9)=a1; z(10:18)=a2; z(19:27)=a3;

v2=[z z z];

w(1:3)=a1; w(4:6)=a2; w(7:9)=a3;

wq=[w w w];

155

v3=[wq wq wq];

r=[a1 a2 a3];

rr=[r r r];

rrr=[rr rr rr];

v4=[rrr rrr rrr];

mean_psi=v1.*v2.*v3.*v4;

%%--

function [value] = t_m(m,tm,lm,xx,yy); global x_int w_int

%sgma = 1;

sgma = 1; nq = length(x_int);

tm_matrix = reshape(tm,nq,nq); [X,Y] = meshgrid(x_int,x_int);

value1 = interp2(X,Y,tm_matrix,xx,yy,’spline’);

%value = sgma*sqrt(lm)*value1;

value = sqrt(lm)*value1;

%%--

function [varp] = variance_calc(pp,meanp);

ms = size(pp,1); %145

nxi = size(pp,2); varp = zeros(ms,1);

% ppsquare = pp.^2;

% term1 = sum(ppsquare,2);

% varp = term1 - meanp.^2;

156

for i=1:nxi diff(:,i)=pp(:,i)-meanp; sqdif=diff.^2; end

varp=mean(sqdif,2);

%%---

function [G_m] = create_Gm_Gaussian(p,m) M=2;

p=2;%here we use the complete polynomial space and Gaussian random field

vp=0:p;

[X1,X2] = ndgrid(vp,vp)

% if u change M=4 u must add [X1,X2,X3,X4] and ndgrid(vp,vp,vp,vp) and so on

%[X1,X2,X3,X4] = ndgrid(vp,vp,vp,vp)

mul=[X1(:),X2(:)];

%mul=[X1(:),X2(:),X3(:),X4(:)];

basis_deg=sum(mul,2)<p+1;

% wt we must do if we needd tensor polynomial space

row=find(basis_deg==1); order=mul(row,:) N_xi=length(row);

G_m=sparse(N_xi,N_xi);

m=1 %m=1 gives G1 and m=2 gives G2 and so on

similar = setdiff([1:M],m); for i = 1: N_xi

ri = order(i,:);

for j = 1:N_xi

ci = order(j,:);

if ri(1,similar) == ci(1,similar) & (ri(1,m)-ci(1,m)) == 1;

for is=1:M

value = value * factorial(ri(is));

end

157

G_m(i,j) =value;

end

if ri(1,similar) == ci(1,similar) & (ri(1,m)-ci(1,m)) == -1;

value2=1;

for is=1:M

value2 = value2 * factorial(ri(is));

[i,j,value2,ri,ci]

end

down = factorial(ri(m));

value2 = value2* factorial(ri(m)+1)/down

G_m(i,j) =value2

[i,j,value2]

end

end

end spy(G_m)

%%---

G(1,1:27)=0;

G(1,28:54)=3/sqrt(5);

G(1,55:81)=-3/sqrt(5);

V(1:9)=0;

V(10:18)=3/sqrt(5);

V(19:27)=-3/sqrt(5);

G(2,1:81)=[V V

158

V];

W(1:3)=0; W(4:6)=3/sqrt(5); W(7:9)=-3/sqrt(5); WW=[W W W];

G(3,1:81)=[WW WW WW];

Z=[0 3/sqrt(5) -3/sqrt(5)]; ZZ=[Z Z Z]; ZZZ=[ZZ ZZ ZZ];

G(4,1:81)=[ZZZ ZZZ ZZZ];

Bibliography

[1] Acar, R. and Vogel, C. R. (1994). Analysis of bounded variation penalty methods

for ill-posed problems. Inverse problems, 10(6):1217.

[2] Achdou, Y., Bernardi, C., and Coquel, F. (2003). A priori and a posteriori anal-

ysis of finite volume discretizations of darcys equations. Numerische Mathematik,

96(1):17–42.

[3] Adams, R. A. and Fournier, J. J. (2003). Sobolev spaces, volume 140. Academic

press.

[4] Agarwal, V. (2003). Total variation regularization and l-curve method for the

selection of regularization parameter. ECE599, pages 1–31.

[5] Axelsson, O. and Neytcheva, M. (2006a). Eigenvalue estimates for preconditioned

saddle point matrices. Numerical Linear Algebra with Applications, 13(4):339–360.

[6] Axelsson, O. and Neytcheva, M. (2006b). Eigenvalue estimates for preconditioned

saddle point matrices. Numerical Linear Algebra with Applications, 13(4):339–360.

[7] Babuška, I., Nobile, F., and Tempone, R. (2007). A stochastic collocation method

for elliptic partial differential equations with random input data. SIAM Journal

on Numerical Analysis, pages 1005–1034.

159

BIBLIOGRAPHY 160

[8] Babuska, I., Tempone, R., and Zouraris, G. E. (2004). Galerkin finite element

approximations of stochastic elliptic partial differential equations. SIAM Journal

on Numerical Analysis, 42(2):800–825.

[9] Babuška, I., Tempone, R., and Zouraris, G. E. (2005). Solving elliptic bound-

ary value problems with uncertain coefficients by the finite element method: the

stochastic formulation. Computer methods in applied mechanics and engineering,

194(12):1251–1294.

[10] Benzi, M. (2002). Preconditioning techniques for large linear systems: a survey.

Journal of computational Physics, 182(2):418–477.

[11] Benzi, M., Golub, G. H., and Liesen, J. (2005). Numerical solution of saddle

point problems. Acta numerica, 14(1):1–137.

[12] Berisha, S. and Nagy, J. G. (2014). Iterative methods for image restoration. Aca-

demic Press Library in Signal Processing: Image, Video Processing and Analysis,

Hardware, Audio, Acoustic and Speech Processing, 4:193–247.

[13] Bespalov, A., Powell, C. E., and Silvester, D. (2012). A priori error analysis of

stochastic galerkin mixed approximations of elliptic pdes with random data. SIAM

Journal on Numerical Analysis, 50(4):2039–2063.

[14] Biemond, J., Lagendijk, R. L., and Mersereau, R. M. (1990). Iterative methods

for image deblurring. Proceedings of the IEEE, 78(5):856–883.

[15] Brenner, S. C. and Scott, R. (2008). The mathematical theory of finite element

methods, volume 15. Springer Science & Business Media.

[16] Cao, Z.-H. (2002). A note on constraint preconditioning for nonsymmetric indef-

inite matrices. SIAM Journal on Matrix Analysis and Applications, 24(1):121–125.

BIBLIOGRAPHY 161

[17] Cesari, L. (1937). Sulla risoluzione dei sistemi di equazioni lineari per approssi-

mazioni successive, volume 25. Nazionale Lincei R. Classe Sci. Fis. Mat. Nat.

[18] Chan, R. H. (1991). Toeplitz preconditioners for Toeplitz systems with nonneg-

ative generating functions. IMA journal of numerical analysis, 11(3):333–345.

[19] Chan, R. H., Chan, T. F., and Wong, C.-K. (1999a). Cosine transform based pre-

conditioners for total variation deblurring. Image Processing, IEEE Transactions

on, 8(10):1472–1478.

[20] Chan, R. H. and Ng, K.-P. (1993). Toeplitz preconditioners for hermitian

Toeplitz systems. Linear algebra and its applications, 190:181–208.

[21] Chan, R. H.-F. and Jin, X.-Q. (2007). An introduction to iterative Toeplitz

solvers, volume 5. SIAM.

[22] Chan, T. F. (1988). An optimal circulant preconditioner for toeplitz systems.

SIAM journal on scientific and statistical computing, 9(4):766–771.

[23] Chan, T. F., Golub, G. H., and Mulet, P. (1999b). A nonlinear primal-dual

method for total variation-based image restoration. SIAM Journal on Scientific

Computing, 20(6):1964–1977.

[24] Chan, T. F. and Olkin, J. A. (1994). Circulant preconditioners for Toeplitz-block

matrices. Numerical Algorithms, 6(1):89–101.

[25] de Sturler, E. and Liesen, J. (2005). Block-diagonal and constraint precondition-

ers for nonsymmetric indefinite linear systems. part i: Theory. SIAM Journal on

Scientific Computing, 26(5):1598–1619.

[26] Donatelli, M. (2005). A multigrid for image deblurring with tikhonov regular-

ization. Numerical linear algebra with applications, 12(8):715–729.

BIBLIOGRAPHY 162

[27] Donatelli, M. and Hanke, M. (2013). Fast nonstationary preconditioned iterative

methods for ill-posed problems, with application to image deblurring. Inverse

Problems, 29(9):095008.

[28] Eiermann, M., Ernst, O. G., and Ullmann, E. (2007). Computational aspects

of the stochastic finite element method. Computing and visualization in science,

10(1):3–15.

[29] Elman, H., Furnival, D., and Powell, C. (2010a). H (div) preconditioning for

a mixed finite element formulation of the diffusion problem with random data.

Mathematics of Computation, 79(270):733–760.

[30] Elman, H., Furnival, D., and Powell, C. (2010b). H(div) preconditioning for

a mixed finite element formulation of the diffusion problem with random data.

Mathematics of Computation, 79(270):733–760.

[31] Elman, H., Silvester, D., and Wathen, A. (2014a). Finite elements and fast itera-

tive solvers: with applications in incompressible fluid dynamics. Oxford University

Press.

[32] Elman, H. C., Silvester, D. J., and Wathen, A. J. (2014b). Finite elements and

fast iterative solvers: with applications in incompressible fluid dynamics. Oxford

University Press.

[33] Ernst, O. G., Powell, C. E., Silvester, D. J., and Ullmann, E. (2009). Efficient

solvers for a linear stochastic galerkin mixed formulation of diffusion problems with

random data. SIAM Journal on Scientific Computing, 31(2):1424–1447.

[34] Ernst, O. G. and Ullmann, E. (2008). On stochastic galerkin matrices. In

preparation. Citeseer.

BIBLIOGRAPHY 163

[35] Ernst, O. G. and Ullmann, E. (2010). Stochastic galerkin matrices. SIAM Journal

on Matrix Analysis and Applications, 31(4):1848–1872.

[36] Evans, D. J. (1968). The use of pre-conditioning in iterative methods for solving

linear equations with symmetric positive definite matrices. IMA Journal of Applied

Mathematics, 4(3):295–314.

[37] Ewing, R. E. and Shen, J. (1993). A multigrid algorithm for the cell-centered

finite difference scheme. In NASA Conference Publication, pages 583–583. NASA.

[38] Fairag, F. A. and Wathen, A. J. (2012). A block preconditioning technique for

the streamfunction-vorticity formulation of the navier-stokes equations. Numerical

Methods for Partial Differential Equations, 28(3):888–898.

[39] Fortin, M. and Brezzi, F. (1991). Mixed and hybrid finite element methods. New

York: Springer-Verlag.

[40] Frauenfelder, P., Schwab, C., and Todor, R. A. (2005). Finite elements for elliptic

problems with stochastic coefficients. Computer methods in applied mechanics and

engineering, 194(2):205–228.

[41] Ganis, B., Klie, H., Wheeler, M. F., Wildey, T., Yotov, I., and Zhang, D. (2008).

Stochastic collocation and mixed finite elements for flow in porous media. Computer

methods in applied mechanics and engineering, 197(43):3547–3559.

[42] Ghanem, R. (1999). Ingredients for a general purpose stochastic finite ele-

ments implementation. Computer Methods in Applied Mechanics and Engineering,

168(1):19–34.

[43] Ghanem, R. G. and Kruger, R. M. (1996). Numerical solution of spectral stochas-

BIBLIOGRAPHY 164

tic finite element systems. Computer Methods in Applied Mechanics and Engineer-

ing, 129(3):289–303.

[44] Ghanem, R. G. and Spanos, P. D. (1991). Stochastic finite elements a spectral

approach. Springer.

[45] Girault, V. and Raviart, P.-A. (1986). Finite element methods for navier-stokes

equations: theory and algorithms, vol. 5 of springer series in computational math-

ematics.

[46] Gittelson, C. J. (2010). Stochastic galerkin discretization of the log-normal

isotropic diffusion problem. Mathematical Models and Methods in Applied Sciences,

20(02):237–263.

[47] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, volume 3. JHU

Press.

[48] Graham, I. G., Scheichl, R., and Ullmann, E. (2013). Mixed finite element

analysis of lognormal diffusion and multilevel monte carlo methods. arXiv preprint

arXiv:1312.6047.

[49] Greenbaum, A. (1997). Iterative methods for solving linear systems, volume 17.

Siam.

[50] Grimmett, G. and Stirzaker, D. (1992). Probability and random processes, vol-

ume 2. Oxford Univ Press.

[51] Groetsch, C. W. and Groetsch, C. (1993). Inverse problems in the mathematical

sciences, volume 52. Springer.

[52] Hackbusch, W. (2012). Iterative solution of large sparse systems of equations,

volume 95. Springer Science & Business Media.

BIBLIOGRAPHY 165

[53] Hanke, M. and Hansen, P. C. (1993). Regularization methods for large-scale

problems. Survey on Mathematics for Industry, 3(4).

[54] Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving

linear systems. Journal of research of the national Bureau of standard, 49(6):409–

436.

[55] Ipsen, I. C. (2001). A note on preconditioning nonsymmetric matrices. SIAM

Journal on Scientific Computing, 23(3):1050–1051.

[56] Jin, C., Cai, X.-C., and Li, C. (2007). Parallel domain decomposition methods for

stochastic elliptic equations. SIAM Journal on Scientific Computing, 29(5):2096–

2114.

[57] Keese, A. (2003). A review of recent developments in the numerical solution

of stochastic partial differential equations (stochastic finite elements). Scientific

Computing, 6.

[58] Keese, A. (2004). Numerical Solutions of Systems with Stochastic Uncertainties:

A General Purpose Framework for Stochastic Finite Elements. Mechanik-Zentrum,

Techn. Univ.

[59] Klawonn, A. (1998). Block-triangular preconditioners for saddle point problems

with a penalty term. SIAM Journal on Scientific Computing, 19(1):172–184.

[60] Kouri, D. P. (2010). Optimization governed by stochastic partial differential

equations. PhD thesis, Rice University.

[61] Krzyzanowski, P. (2001). On block preconditioners for nonsymmetric saddle

point problems. SIAM Journal on Scientific Computing, 23(1):157–169.

BIBLIOGRAPHY 166

[62] Liesen, J. and Strakos, Z. (2012). Krylov subspace methods: principles and anal-

ysis. Oxford University Press.

[63] Lin, F.-R. (2001). Preconditioners for block Toeplitz systems based on circulant

preconditioners. Numerical Algorithms, 26(4):365–379.

[64] Lin, F.-R. and Wang, C.-X. (2012). BTTB preconditioners for bttb systems.

Numerical Algorithms, 60(1):153–167.

[65] Loeve, M. (1978). Probability theory, vol. ii. Graduate texts in mathematics,

46:0–387.

[66] Mathelin, L., Hussaini, M. Y., and Zang, T. A. (2005). Stochastic approaches to

uncertainty quantification in cfd simulations. Numerical Algorithms, 38(1-3):209–

236.

[67] Matthies, H. G. and Bucher, C. (1999). Finite elements for stochastic media

problems. Computer Methods in Applied Mechanics and Engineering, 168(1):3–17.

[68] Matthies, H. G. and Keese, A. (2005). Galerkin methods for linear and nonlin-

ear elliptic stochastic partial differential equations. Computer Methods in Applied

Mechanics and Engineering, 194(12):1295–1331.

[69] Meurant, G. (1999). Computer solution of large linear systems, volume 59. El-

sevier Amsterdam.

[70] Money, J. H. (2006). Variational methods for image deblurring and discretized

picard’s method. Ph.D.Thesis, UniversityofKentucky, Department of Mathematics.

[71] Murphy, M. F., Golub, G. H., and Wathen, A. J. (2000a). A note on precon-

ditioning for indefinite linear systems. SIAM Journal on Scientific Computing,

21(6):1969–1972.

BIBLIOGRAPHY 167

[72] Murphy, M. F., Golub, G. H., and Wathen, A. J. (2000b). A note on precon-

ditioning for indefinite linear systems. SIAM Journal on Scientific Computing,

21(6):1969–1972.

[73] Ng, M. K. and Pan, J. (2014). Weighted Toeplitz regularized least squares com-

putation for image restoration. SIAM Journal on Scientific Computing, 36(1):B94–

B121.

[74] Notay, Y. (2010). An aggregation-based algebraic multigrid method. Electronic

transactions on numerical analysis, 37(6):123–146.

[75] Øksendal, B. (2003). Stochastic differential equations. Springer.

[76] Olshanskii, M. A. and Tyrtyshnikov, E. E. (2014). Iterative methods for linear

systems: theory and applications. Univercity of Houston, Texas.

[77] Paige, C. C. and Saunders, M. A. (1975). Solution of sparse indefinite systems

of linear equations. SIAM Journal on Numerical Analysis, 12(4):617–629.

[78] Perugia, I. and Simoncini, V. (2000). Block-diagonal and indefinite symmetric

preconditioners for mixed finite element formulations. Numerical linear algebra

with applications, 7(7-8):585–616.

[79] Pestana, J. and Wathen, A. J. (2015). Natural preconditioning and iterative

methods for saddle point systems. SIAM Review, 57(1):71–91.

[80] Powell, C. E. and Ullmann, E. (2010). Preconditioning stochastic galerkin saddle

point systems. SIAM Journal on Matrix Analysis and Applications, 31(5):2813–

2840.

[81] Riley, K. L. (1999). Two-Level Preconditioners For Regularized Ill-Posed Prob-

lems. PhD thesis, Montana State University-Bozeman.

BIBLIOGRAPHY 168

[82] Roman, L. J. and Sarkis, M. (2006). Stochastic galerkin method for elliptic spdes:

A white noise approach. Discrete and Continuous Dynamical Systems-Series B,

6(4):941.

[83] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268.

[84] Rusten, T. and Winther, R. (1992). A preconditioned iterative method for sad-

dlepoint problems. SIAM Journal on Matrix Analysis and Applications, 13(3):887–

904.

[85] Saad, Y. (2003). Iterative methods for sparse linear systems. Univercity of

Minnesota, SIAM.

[86] Saad, Y. and Schultz, M. H. (1986). Gmres: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific

and statistical computing, 7(3):856–869.

[87] Schwab, C. and Todor, R. A. (2006). Karhunen–loève approximation of random

fields by generalized fast multipole methods. Journal of Computational Physics,

217(1):100–122.

[88] Serra, S. (1994). Preconditioning strategies for asymptotically ill-conditioned

block Toeplitz systems. BIT Numerical Mathematics, 34(4):579–594.

[89] Silvester, D. and Wathen, A. (1994a). Fast iterative solution of stabilised stokes

systems part ii: using general block preconditioners. SIAM Journal on Numerical

Analysis, 31(5):1352–1367.

[90] Silvester, D. and Wathen, A. (1994b). Fast iterative solution of stabilised stokes

BIBLIOGRAPHY 169

systems part ii: using general block preconditioners. SIAM Journal on Numerical

Analysis, 31(5):1352–1367.

[91] Strang, G. (1986). A proposal for Toeplitz matrix calculations. Studies in Applied

Mathematics, 74(2):171–176.

[92] Tikhonov, A. N. (1963). Regularization of incorrectly posed problems. In Soviet

Math. Dokl, volume 4, pages 1624–1627.

[93] Traverso, L., Phillips, T., and Yang, Y. (2014). Efficient stochastic fem for flow

in heterogeneous porous media. part 1: random gaussian conductivity coefficients.

International Journal for Numerical Methods in Fluids, 74(5):359–385.

[94] Treves, F. (1967). Topological vector spaces, distributions and kernels. Academic,

New York, (25).

[95] Turing, A. M. (1948). Rounding-off errors in matrix processes. The Quarterly

Journal of Mechanics and Applied Mathematics, 1(1):287–308.

[96] Tykhonov, A. (1963). Regularization of incorrectly posed problems. In Soviet

Math. Doklady, volume 4, pages 1624–1627.

[97] Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems,

volume 13. Cambridge University Press.

[98] Vogel, C. R. and Oman, M. E. (1998a). Fast, robust total variation-based re-

construction of noisy, blurred images. Image Processing, IEEE Transactions on,

7(6):813–824.

[99] Vogel, C. R. and Oman, M. E. (1998b). Fast, robust total variation-based re-

construction of noisy, blurred images. Image Processing, IEEE Transactions on,

7(6):813–824.

BIBLIOGRAPHY 170

[100] Wathen, A. (2015). Preconditioning. Acta Numerica, 24:329–376.

[101] Xiu, D. and Karniadakis, G. E. (2002). Modeling uncertainty in steady state

diffusion problems via generalized polynomial chaos. Computer methods in applied

mechanics and engineering, 191(43):4927–4948.

[102] You, Y.-L. and Kaveh, M. (1996). Anisotropic blind image restoration. In Image

Processing, 1996. Proceedings., International Conference on, volume 1, pages 461–

464. IEEE.

BIBLIOGRAPHY 171

VITAE
• Adel Mohammed Yahya Al-Mahdi.

• Born in Ibb, Yemen on January 1, 1977.

• Received Bachelor of Science (BSc) degree in Mathematics (batch 2001-2002)

from Ibb University, Ibb, Yemen in 2002.

• Appointed as a graduate assistant at Ibb University, college of Al-Nadera in

2003, and I am still working there as a faculty member.

• Received a scholarship from the Ministry of Higher Education and Ibb Univer-

sity to study MS degree at King Fahd University of Petroleum and Minerals, in

2007.

• Received Master of Since (MSc) degree in Mathematics from King Fahd Uni-

versity of Petroleum and Minerals, Dhahran, KSA, in 2011.

• Submitted this dissertation to fulfil the requirements of his PhD degree in Math-

ematics from King Fahd University of Petroleum and Minerals.

• Publications

1. F. Fairag and A. Al-Mahdi. Performance of Three Preconditioners for Image

Deblurring Problem in Primal-Dual Formulation. (Published) in Engineers and

Computer Scientists 2015 Vol I.

2. Ke, Chen, Faisal Fairag and Adel Al-Mahdi. Preconditioning Techniques

for an Image Deblurring Problem. (Accepted) in Journal of Numerical Linear

Algebra with Applications.

3. F. Fairag and A. Al-Mahdi . Accelerating Image Deblurring Using Circulant

Approximations. (Accepted) in IMECS 2015 edited book published by Springer.

ITC
Rectangle

BIBLIOGRAPHY 172

• Present Address: Department of Mathematics and Statistics, King Fahd

University of Petroleum and Minerals, P.O. Box 8585, Dhahran 31261, Saudi

Arabia.

• E-mail Address: g200704510@kfupm.edu.sa

• Permanent Address: Department of Mathematics, Ibb University, Ibb, Yemen.

• E-mail Address: almahdi77@yahoo.com.

ITC
Rectangle

	adel
	thesis_after_library

