4.

\

@%#&%&&%%@&4%%%%&%&&&W&#%%g

EFFICIENT SOLVERS FOR IMAGE DEBLURRING
PROBLEM AND STOCHASTIC DARCY’S
EQUATIONS

BY

ADEL MOHAMMED YAHYA AL-MAHDI

A Dissertation Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in
MATHEMATICS

DECEMBER, 2015

e
F\(*
o
%
5;2..
N
)
*

+

i\

*

i

W?%F&%%%%W%%%% SR SRR

L
—-—:{:t
%

TR

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This dissertation, written by ADEL MOHAMMED YAHYA AL-MAHDI
under the direction of his thesis advisor and approved by his thesis commit-
tee, has been presented to and accepted by the Dean of Graduate Studies,
in partial fulfillment of the requirements for the degree of DOCTOR OF
PHILOSOPHY IN MATHEMATICS

Dissertation Committee

;:jJ\;_—J—L_p

— A

Dr. Faisal C\Brfag (Advisor)

(o W] 1 AN

Prof. Fiazud Din Zaman (Co-Advisor)

—

Prof. Mohamed El-Gebeily (Member)

Prof. Kassem Mustapha (Member)

AR
) =7
c—— Dr. Muhamma Y}; sul Member)
— a;::______f_f\,/\D 7

Dr. Husain Salem Al-Attas
Department,

Thairman

Prof. "Salam A. Zummo
Dean of Graduate Studies',

Date: 1.1]'11 L

©ADEL MOHAMMED YAHYA AL-MAHDI
Year 2015

I dedicate my Dissertation work to my family. A special feeling of
gratitude to my loving parents, my wife, my son, my daughters, my

brothers, my sisters.

1

ACKNOWLEDGMENTS

I am most grateful to Almighty ALLAH, the Beneficent, the Merciful, for
enabling me to complete this work. Peace and blessings of ALLAH be upon his Last
messenger Mohammed (Sallallah-Alaihe- Wasallam) and his family, who guided us to

the right path.

First and the foremost acknowledgments are due to the King Fahd University of
Petroleum and Minerals and to the Department of Mathematical Sciences for sup-

porting my research work.

I wish to express My deep appreciation and heartfelt gratitude to Dr. Faisal Fairag,
my thesis advisor for his unfailing encouragement, advice and suggestions through this
work and Co. advisor Prof. F. D. Zaman who guided me with his dedicated attention,
expertise and knowledge throughout this research. I also wish to thank my Committee
Members, Prof. Mohamed El-Gebeily, Prof. Kassem Mustapha and Dr. Muhammad

Yousuf for their constructive guidance and support.
And last, but not the least, my cordial thanks and appreciation are due to my parents,

my wife and children, brothers, friends and all members of my family who always

support me with their love, patience, encouragement and constant prayers.

1l

TABLE OF CONTENTS

ACKNOWLEDGMENT iii

LIST OF TABLES viii

LIST OF FIGURES ix
ABSTRACT (ENGLISH) xii
ABSTRACT (ARABIC) xiii

1 INTRODUCTION 1
1.1 Motivationo 2
1.2 Image deblurring problem, 4
1.2.1 Overview of image deblurring 4

1.3 Stochastic Darcy’s equations 6
1.3.1 Overview of the stochastic Darcy’s equations 6

1.4 Organization of the dissertation 7

2 PRELIMINARIES 8
2.1 Introduction 9
2.2 Saddle point matrices and their properties 9
2.2.1 Factoring saddle point matrices and their Schur complements . 9

2.2.2 Solvability conditions 10

2.2.3 Inverse of a saddle point matrix 11

v

2.2.4 Eigenvalues of the saddle point matrix 12

2.3 Krylov subspace iterative methods 12
2.4 Preconditioning techniqueo 15
2.5 PMINRES method 16
2.6 Fourier transform (FT) and convolution integral 17
2.6.1 (1-D) Fourier transform and convolution theorem 17
2.6.2 (2-D) Fourier transform and convolution theorem 19
2.7 Fast Fourier transform oo 20
2.7.1 (1-D) Fast Fourier transform 20
2.7.2 (2-D) Fast Fourier transform 21
2.8 Toeplitz and circulant matrices L. 21
2.8.1 Block Toeplitz and block circulant matrices 22
2.9 Well-posedness 23
2.10 Random variables and random fields 27
IMAGE DEBLURRING PROBLEM 30
3.1 Introduction 31
3.2 Mathematical model oo 31
3.2.1 Tikhonov regulazation 33
3.2.2 Total variation(TV) oL 33
3.2.3 The Euler-Lagrange equations 34
3.2.4 Discretization steps 36

PRECONDITIONING TECHNIQUE FOR IMAGE DEBLURRING

PROBLEM 42
4.1 Introduction 43
4.2 The exact preconditioner 44

4.3 Eigenvalues estimates o oL 44
4.3.1 Numerical results for the eigenvalues analysis A7

4.4 Approximation K*K 48
4.4.1 Symmetric BT'TB approximation 48
4.4.2 Strang circulant approximation 49
4.4.3 The best circulant approximation 50

4.5 Three block diagonal preconditioners 50
4.6 Numerical experiments o1
4.7 Conclusion 54
STOCHASTIC DARCY’S EQUATIONS 62
5.1 Introduction 63
5.2 OVerview 64
5.3 Hilbert spaces 66
54 Weak formulations 67
5.4.1 The weak formulation for the deterministic problem 68
5.4.2 The weak formulation of the stochastic problem 70
5.4.3 Karhunen. Lo‘eve (KL) expansion 72
5.4.4 The weak formulation of the perturbed problem 73

5.5 Deterministic spaces approximation 76
5.6 Finite-dimensional noiseo 7
5.7 Stochastic spaces approximation 79
5.8 Stochastic matrix structureso 82
5.8.1 Remarks 84

5.9 Numerical exampleso 85
5.9.1 Eigenvalue problem 86

vi

5.9.2 Five-Spot problem(deterministic) 87
5.9.3 Five-Spot problem(stochastic) 89
5.10 Conclusionso 97

6 PRECONDITIONING TECHNIQUE FOR STOCHASTIC DARCY’S

EQUATIONS 98
6.1 Introduction 99
6.2 Deterministic problemo oL 100
6.2.1 Preconditioners for the deterministic problem 101

6.2.2 Eigenvalue analysis L. 103

6.2.3 Numerical computations 104

6.3 Preconditioners for the decoupled stochastic system 107
6.3.1 Laplace preconditioner 107

6.3.2 Natural preconditioner 110

6.3.3 Exact Schur complement preconditioner 111

6.4 Conclusion 112

7 CONCLUSION AND FUTURE WORK 113
7.1 Conclusion 114
7.2 Future works 115

8 MATLAB CODES 117
BIBLIOGRAPHY o 159

VITAE . . 171

vil

List of Tables

= e e e

(=2 N) N e N @)

Bounds on eigenvalues of the preconditioned matrix P~*A 60
The Preconditioner Pr 60
The Preconditioner Pg 60
The Preconditioner Po 60
Comparison between Pr, Psand P 61
CPU time, PSNR for Pan, Pio, Pand Py 61
EY =1 105
Elt =142 492 . . 105
) =exp(z) +exp(y) . - o o o oo 105
P MINRES iterations NO. 106
Bounds on the eigenvalues of P, 'C* L. 110
Bounds on the eigenvalues of Py'C%. 111
Maximum and minimum eigenvalues of Ag'A* 111

viil

List of Figures

4 .1 Iterations Number v.s. the Residual 52
4.2 Truelmage 5)
4.3 Blurred Image 55
4 4 Deblured Image Pr 5%)
4.5 Deblured Image Ps 55
4 .6 Deblured Image Po %)
4 .7 Out-of-focus kernel 55
4.8 Truelmage 56
4.9 Blurred Imageo 56
4 .10 Deblured Image Pr 56
4 11 Deblured Image Ps 56
4 12 Deblured Image Po 56
4 13Kernel Cantor 56
4 .14 1st Fixed Point Iteration D7
4 .155th Fixed Point Iteration o7
4 .16 10th Fixed Point Iteration 57
4 .17 13th Fixed Point Iteration 57
4 18 =80e—2 58
4. 19a=80e—4 58

1X

4.200=80e—T7 58
4 21a=80e—8 . . . 58
4 22Res. wvs.iter. a=8e—5.o 59
4 23Res. wvs.iter. a=8e—4. 59
4 24Res. wvs. iter. a=8e—5.o 59
4 25Res. wvs.iter. a=8e—4o 29
5.1 The Eigenvalues 87
5.2 First Eigenfunctiono 88
5.3 Second Eigenfunctiono 88
5.4 Eigenfunctiono 88
5.5 Fourth Eigenfunction, 88
5.6 Shape of the Mesh 90
5.7 Pressure Contour 90
5.8 Pressure Surface 90
5.9 Velocity Distribution o Lo 90
5 .10 The Velocity of u® 90
5 .11The Velocity of w¥ 90
5.12The Mesh 92
5 .13 Pressure-mean Surface L. 92
5 .14 Pressure-mean Contour 92
5 .15 Pressure Variance 92
5.16Mean of u® 92
b.17Mean of u¥ 92
5.8 Varianceof u* 92
5.19Varianceof w¥ 92

(=2 e B o) e N)l) = N =) N @) B @)

1 when h=1/4 0o 106
2 when h=1/8 106
B when h=1/16 106
A when h =1/64 106
.5 Shape of themesh oo 108
.6 Velocity distribution Lo 108
.7 Pressure surfaceo 108
.8 Pressure cantor 108
9 Thew® velocity o 108
10 The w¥ velocityo 108

x1

DISSERTATION ABSTRACT

Name: Adel Mohammed Yahya Al-Mahdi

Title: Efficient Solvers For Image Dublurring Problem
And Stochastic Darcy’s Equations

Major Field: Mathematics

Date of Degree: December, 2015

We consider the numerical solutions of two large and ill-conditioned linear
systems which arise in applications. The first system arises when the total variational
reqularization is applied to solve an ill-posed problem (image deblurring problem) while
the second system results from the discretization of the ([L?(D)]* x L3(Q2))® (H*(D)N
L3(D) ® L2(Y)) formulation for the stochastic Darcy’s equations. In each system the
coefficient matriz has huge size and large condition number. These properties of the
coefficient matrices make any iterative method for such a system very slow. To over-
come this problem, we introduce several new preconditioners for such a system to
accelerate the convergence of the iterative method that we will use. These precondi-
tioners are of Murphy, Golub and Wathen type. We show that the preconditioned
matrices have eigenvalues clustering behavior. This behavior leads to large reduction
in the number of iterations. We test the performance of the preconditioned iterative

methods through several numerical examples.

xii

day (adla
A8l B 3)) gisal) Ay

LSS FPEEIVED Wy €T PUR—

D alaay oI Y a5 A gl a5 JSLE Alad gl ALl)l sic
A pe

2015 ey 1z ASl &8

ha e Al dlals dalas oY) EValadll g 58 e cpe il aaall Jelall Liatal ALl o328 3
Slray (emld EYalas) dlialds ddlaa oo AU Adlaall g ped)l) puall i JSLIL (e Al
o ad) L allaill 1 Jalas A8 ghian Jaa juS Jad Gl da Qlla® Y aleall e g1 689 o2 A0 sle
U) laall 108 dallaad s las Aopday oUsil) 13g1 4y) S5 45, 5l (5} Jaag Las Jax S (condition number)
J ieiie Clisga § 55 G lingall 3 ol 1S5 mouiy sl oS el olaill a3gl Clisga aladiud
oaid) gas reaidl @ ludl 138 5 anaaill ddia Lgpal Agall il siiaall 400 adll | Cfigqigleo B e

Agaae dlia) 3ae A (e A el Ciligall elal Uual Sl e & il pSall sae 8 las S

xiil

Chapter 1

INTRODUCTION

1.1 Motivation

In many applications, most of discretized problems lead to linear system of equations

of the form

D BT u
' | (1.1.1)
By, -C p g
A b'e b

The above system is called generalized saddle point system (saddle point system if

C' = 0). This system appears in many fields such as the following situations:
e solving partial differential equations (pdes) by mixed finite elements methods.

e image reconstruction problems.

discretizing Darcy and non-Darcy equations.

optimization problems.

discretizing Stokes and Navier-Stokes problem.
e finance, economics and optimal control.

For the other areas where saddle point problems naturally arise, we refer to [11],
[100]. The system (1.1.1) is often indefinite and ill-conditioned. These properties
come from the discretization methods like finite element, finite volume and finite dif-
ference methods. Due to these properties, the numerical solution of such systems
represent a big challenge for those interested in solving these systems and thus this

is an active area research.

In this dissertation, we consider two important saddle point systems which arise

in applications. The first system arises when total variational (TV) regularization is

applied to solve an image deblurring problem while the second one results from the
discretization of the [L?*(D)]? ® L(Q) and (H'(D) N L(D)) ® L3(Q) formulation for

stochastic Darcy’s equations.

The coefficient matrices of both systems have huge size and large condition num-
bers. The reason for the huge size of the first system (image deblurring problem) is
that the lower resolution image of 256 x 256 pixel array has a corresponding matrix
of 256* entries.

The reason for the huge size of the second system (stochastic Darcy’s equations) is
that the coefficient matrix is a kronecker product of two block matrices of which one

comes from the deterministic part while the second results from the stochastic part.

There are two classes of linear solvers. The first class is based on the direct methods
while the second on the iterative methods. It is known that direct methods like LU
and Cholesky factorization can be used if the solvable system is of a reasonable size.
This is because solving linear systems using direct methods requires O(n?) arithmetic
operations, where n is the length of the solution vector x. Hence, for the two linear
system which studied here, direct methods are not applicable.

In this case, we use suitable iterative methods that are usually based on Krylov sub-
space methods. But the problem is that the convergence of these methods is slow in
the case of ill-conditioning matrices.

To overcome the slowness of the convergence, we find suitable preconditioning matri-

ces, so that the preconditioned matrices have good spectral properties.

In the following two sections, we present the two saddle point systems which we

aim to study in this dissertation.

1.2 Image deblurring problem

The first saddle point system that we will study in this dissertation is of the form

aD —aB Vv 0
= . (1.2.1)

—aBT —K*K U -K*Z
The above system arises when total variational regularization is applied to solve an

ill-posed problem (image deblurring problem).

The importance of such system is due to the wide applications of the image de-
blurring. For instance Saher needs to remove the blur from the car image taken while
the camera is shaking or in radar imaging and tomography one needs to remove the
effect of imaging systems response. Other applications arise in medical images where

deblurring is an essential requirement.

The system (1.2.1) is in the generalized saddle point form. Its coefficient matrix
is of huge size and it is highly ill-conditioned. The (2,2)-block of this matrix has the
block Toeplitz with Toeplitz block (BTTB) structure. Moreover, in this system, the
negative Shur complement of its coefficient matrix is the sum of two matrices. The
first matrix, K*K, is dense and comes from the discretization of a compact integral
operator while the second (sparse) matrix, L = (BT D71 B), is called the regulariza-

tion matrix results from the discretization of a diffusion operator.

1.2.1 Overview of image deblurring

When the coefficient matrix of the system (1.2.1) is symmetric, indefinite, large and

ill-conditioned, MINRES is the suitable iterative method. However, a preconditioner

is needed to achieve the fast convergence. MINRES with such a preconditioner is
called PMINRES. However, not any preconditioner can be used.

What is needed is an efficient preconditioner. The efficiency can be tested through
the number of iterations, the CPU-time and the clustering behavior of the eigenvalues
of the preconditioned matrix.

Our starting point here is that the Schur complement of the matrix of the system
(1.2.1) contains a product of a Toepelitz matrix with Toepelitz blocks (BTTB) and

its transpose. This product may not be a BTTB.

We approximate this product by several approaches. In the first one, we approxi-
mate it by a symmetric BT'TB matrix. In the second approach, we use the Strang
circulant approximation of a BTTB matrix. The last approach uses the best circulant
approximation for the BTTB matrix. Both of theses approximations alow us to use
the Fast Fourier Transform (FFT) for matrix-vector multiplication. This multipli-
cation is needed in PMINRES computation because in each PMINRES iteration we
need to solve a linear system of the form Px = y where P is the preconditioner ma-
trix. So FFT reduces the cost of the computation from O(n?) arithmetic operations

to O(nlogn) arithmetic operations.

As a consequence of these three approximation, we develop three efficient block di-
agonal preconditioners. These preconditioners are of Murphy, Golub and Wathen
(MGW) type and they depend on these three approximations of the product of the
BTTB matrix and its transpose. We investigate the efficiency of these preconditioners
by several numerical computations in terms of CPU-time, iteration numbers and the
quality of the reconstructed images. In the following section, we present the second

saddle point system considered in this dissertation.

1.3 Stochastic Darcy’s equations

The second saddle point system which we study in this dissertation is in the form

A BT u 0

. = : (1.3.1)

B 0 P f
The above system occurs in the discretization of the [L*(D)]*> ® L2(€2) and (H*(D) N
L3(D)) ® L3(Q) formulation for Darcy’s equation with stochastic coefficients. The
result of this discretization is a huge and ill-conditioned linear system (1.3.1). The
reason for the huge size of this system is that the coefficient matrix and the right
hand side are a kronecker product of two block matrices, one from the deterministic
part while the other from the stochastic part. This kind of equations is important
in petroleum industry and in describing the flow of fluid in pours media. For these

reasons, we study the numerical solution of this problem.

1.3.1 Overview of the stochastic Darcy’s equations

As we mentioned above, the linear system (1.3.1) arises from discretaizing the mixed
formulation of Darcy’s equations with random data. In this discretaization, we use
a truncated Karhunen-Loeve (K-L)-expansion to represent this random coefficient.
We use the stochastic Galerkin finite element method (SGFEM). In this method, the
deterministic part is discretized using classical mixed finite element methods and the
stochastic part by using a tensor product (TP) polynomial space. The highly struc-
tured linear system that results from this discretization means that Krylov subspace
methods with a suitable preconditioner as linear solver is extremely effective here.
Since the coefficient matrices of the systems (1.3.1) and (1.2.1) are symmetric and

indefinite, a suitable iterative method is MINRES.

Hence, we propose and analyze several block-diagonal preconditioners. These pre-
conditioners are also of Murphy, Golub and Wathen type and are based on the
[L*(D)]? @ Li(Q2) and (HY(D) N Li(D)) ® L3(2) spaces of the Darcy’s velocities

and the pressure respectively.

The attractive properties of this choice of the discrete spaces is that the (1,1) block
in the coefficient matrix has the diagonal structure and the Schur complement of the
coefficient matrix of this system is the well known discrete Laplacian matrix. These
nice properties lead to a reduction in the cost of the computation and give a solution

with less number iterations .

1.4 Organization of the dissertation

This dissertation is organized as follows: In Chapter 2, we present some fundamental
definitions and notations related to the image reconstruction problem and stochastic
Darcy’s equations. In Chapter 3, we present the mathematical model behind the im-
age deblurring problems. We derive several preconditioners and implement them in
Chapter 4. In Chapter 5, we present, analyze and implement the stochastic Galrkin
finite element method for the stochastic Darcy’s equations. In Chapter 6, we pro-
pose several preconditioners for both deterministic and stochastic Darcy equations.
We give conclusions of this study and propose some future directions in Chapter 7.

Finally, the Matlab codes which was used in our computations is given in Chapter 8.

Chapter 2

PRELIMINARIES

2.1 Introduction

In this chapter, we present some definitions, spaces and other concepts that we need
in the next chapters of this dissertation. Since we are interested in saddle point
problems, we start by giving some properties, factorizations, inverse and solvability
of the saddle point systems in the following sections and then we introduce some
preliminaries and notations related to the image deblurring problem and finally to

the stochastic problem.

2.2 Saddle point matrices and their properties

In this section, we give some properties of the matrix A given in (1.1.1), which is in

the saddle point form.

2.2.1 Factoring saddle point matrices and their Schur com-

plements

In this subsection, we aim to give some factorizations for the generalized saddle point
matrix A in the non-symmetric case , (we assume that D is invertible (non-singular)),
as follows:

D BT I 0 D 0 I DB/t
A= - . (2.2.1)

By, —-C B,D7t T 0 —S 0 1

10

Here, S = (C + BoD™'B;") is called the positive Schur complement of the block D

in the big-matrix A. Also A has the following factorizations

D BT D 0 I DBt
A= = (2.2.2)
B, —-C By, —S 0 I
and
D BT I 0 D B,"
A= = (2.2.3)
By, —-C B,D™' T 0 —S

2.2.2 Solvability conditions

We see that from (2.2.1)-(2.2.3), D is needed to be nonsingular. Moreover, A is in-
vertible if S is also invertible. However, the non singularity of S = (C + ByD™'B;")

is by putting some conditions on the component matrices By, By, D and C.

In (2.2.1), if C' =0, D is symmetric positive definite (spd) and B; = By, then we get
the so called standard symmetric saddle point matrix in which the Schur complement
is S = BD 'BT. It is clear that the Schur complement S, and thus the saddle point
matrix A, is invertible if B has full row rank. Now, if C' # 0 is symmetric positive
semidefinite (sps), D is spd and B; = By = B, then, again S = (C+ BD ' BT) is sps.
Moreover, it is positive definite and hence invertible if ker(C) N ker(BT) = {0}. Tt is
obvious that sufficient conditions for the invertibility are either C' be positive definite
or B has full row rank. The above discussion can be summarized in the following

theorem.

Theorem 1 Let D be an spd matriz, C' be sps and By = By = B. If ker(C) N

ker(BT) = 0, then the matriz A is invertible. In particular, if B has full row rank,

11

A is invertible.

If D is indefinite, as in the following example

1 0 |-1
D BT

0 -1] 1 |= , (2.2.4)
B 0

-1 1[0

then A may be singular, even if B has full rank. However, A will be nonsingular if
D is positive definite on ker(B). In the case of D is symmetric positive semidefinite,

we have the following theorem.

Theorem 2 Let C' =0, D be sps and By = By = B has full rank. Then a necessary
and sufficient condition for the invertibility of the saddle point matriz A is ker(D) N
ker(B) = {0}.

Full discussion about the solvability conditions can be found in [11].

2.2.3 Inverse of a saddle point matrix

Assume that D is invertible, then the saddle point matrix A is invertible if the Shur

compliment matrix S = (C'+ By D! BT) is invertible, moreover, we have the following:

-1
» D B" D' —D'B"S'B,D™t D7'B"S!
A = = (2.2.5)
B, —-C S™1B,D7! — St

For other cases (for example when D is singular but C' is nonsingular) see [11].

12

2.2.4 Eigenvalues of the saddle point matrix

Assume that the matrix D is spd, C' is sps (it could be zero) and B; = By = B has
full row rank. Then
1 0 D BT I —D'BT D 0

= (2.2.6)
-BD' I || B —C||o0 I 0 —S

where the Schur compliment matrix S = (C + BD7'B”) is spd. Then the saddle
point matrix A is congruent to the block diagonal matrix on the right hand side of
the above equation. The above congruence is called Sylvesters Law of Inertia. From
this congruence, it follows that the number of the positive and negative eigenvalues

of A are the same as that of the block diagonal matrix given in the right hand side.

2.3 Krylov subspace iterative methods

Often Krylov subspace iterative methods are used to compute iterates solutions xj, of

the linear system Ax = b for which
xp —xo € Kp(A,19), k=1,2,..., (2.3.1)

where

Kk (A, 19) = span{rg, Arg, A%r, ..., AK_lro}, kE=1,2,..,

is called the Krylov subspace associated with A and 7. In (2.3.1), x¢ is the initial
guess (some times it is taken to be zero). Thus Krylov subspace iterative methods
require just one matrix-vector product computation at each iteration. ro = b — Axg

is called the residual vector associated with z¢; in general r; = b — Az;; 7 =0,1,....

13

If xo = 0, then

xp € Kp(A,b), k=1,2,...
Thus the iterates solutions and residuals of every Krylov subspace method satisfy
k—1
T — Lo — ZOéjAj’f’(],
=0
for some coefficients o;. Hence
xr = xo + q(A)ro, (2.3.2)

where ¢ is the polynomial of degree k — 1 with ¢(z) = Zf;é a;z7. Multiplying (2.3.2)

by A and then subtracting from b, we obtain
b— Az, =b— Axg — Aq(A)ry,
and thus the residuals
r, =ro — Aq(A)ro = P(A)ro, (2.3.3)

where
k—1 k
P(z)=1- zZajzj =1- Zaj,lzj,
=0 j=1

is a polynomial of degree k which satisfies P(0) = 1. All Krylov subspace methods
are thus described by (2.3.3).
Different Krylov subspace methods can be characterized by the properties of the

matrix A as follows:

14

When A is spd (so that || v [|a= (v'Av)2 defines a vector norm or energy norm),
the conjugate gradient method (CG) [54] requires only the one matrix-vector multi-
plication by A and it minimizes the A-nor of the error || z — zj ||4 over the Krylov

subspace.

When A is symmetric but indefinite, (v'Av) takes both positive and negative val-
ues, so a norm cannot be defined as for the conjugate gradient method. The Krylov
subspace method of choice for symmetric indefinite systems is the minimum residual
(MINRES) method [77]. It takes one matrix-vector product with A and it minimizes

the Euclidean norm of the residual, || 7y ||;= (rx'rs)z.

When A is non-symmetric, there is not such an obvious method of choice, hence
several Krylov subspace methods are widely used. The most popular is GMRES [86]
which, similarly to MINRES, computes iterates that minimize the Euclidean norm of
the residual, but by contrast to MINRES requires an increasing amount of computa-
tion and storage at each successive iteration to achieve this. Thus GMRES can be a
good method if only a few iterations are needed to achieve acceptable convergence,
this might be the case if one has a good preconditioner, but it is not practical if many

iterations are required.

Anyway, an appropriate iterative method will compute a sequence of vectors x, xs, ...
which converge rapidly from any starting guess, xg, to the solution = of the system
Ax = b. At each iteration, only a matrix-vector product with A needs to be computed.
Unfortunately, Krylov subspace methods are very slow with an ill-conditioned linear

system of equations. One technique to overcome this slowness is using an appropri-

15

ate preconditioner. Preconditioners are overwhelmingly used with Krylov subspace

iterative methods (see for examples [97], [49], [85], [69], [52], [32], [62], [76]).

2.4 Preconditioning technique

For the successful use of iterative methods, we have to use a preconditioning tech-
nique. In 1948, Turing was the first one who used the term of preconditioning in his
paper [95]. In [36], Evans used the term of preconditioning in connection with itera-
tive methods. In [17] Cesari was the first one who used preconditioning for reducing

the condition number in order to improve convergence of some iterative methods.

The term preconditioning refers to transforming the system (1.1.1) into another sys-
tem that has a smaller condition number. Consider the matrix P to be the precondi-

tioner matrix for the matrix A given in (1.1.1), then the linear system
P 'Az = P 'b, (2.4.1)

has the same solution as (1.1.1) but (5.4.9) may be faster than (1.1.1). Moreover,
the preconditioning makes the computing time for solving (5.4.9) less than for solving
(1.1.1). A good preconditioner which accelerates the convergence needs to be easy
to construct and cheap to invert. Moreover, the preconditioned matrix should have
eigenvalues clustering behavior. Many preconditioners in [11] are developed for a
special linear system such as a saddle point problem. For the improvement of the
preconditioning techniques for general linear systems, we refer to [10] and [100]. For
the types of the preconditioners, there are mainly two classes: block preconditioners

and constraint preconditioners (see [10] and [11]). Block diagonal preconditioners

16

have been studied by Murphy, Golub and Wathen in [71] and later by Ipsen in [55]
and by de Sturler, E. and Liesen in [25]. There are many studies for block diagonal
preconditioners introduced by Silvester and Wathen [89]. Analysis of these precondi-

tioners have been given in [78], [59], [61] and [38].

As mentioned in the above discussion, the numerical solutions of such saddle point
systems represent a big challenge and they have made the research in this area is very

active.

Since we use PMINRES as a linear solver for both systems, we give a short review of

PMINRES method.

2.5 PMINRES method

Suppose we need to solve the linear system Ax = b where A is a symmetric and

indefinite saddle point matrix and suppose that a spd- preconditioner is considered

P = : (2.5.1)

It is known that PMINRES generates a sequence of iterates solutions x; which belong

to the following Krylov space

Ky = span{ P~ ro, (P A) P ry, ..., (PTA) 1P}, (2.5.2)

17

with minimization the norm of the k£ — th residual
| 7% |p-1=|| b — Az || p-1= min || b — Az || p-1, (2.5.3)
zeKy,
and || v ||p-1= vT P~'v. The PMINRES convergence estimate [31] is given by

I llp- | ge(N) | (2.5.4)
—_— max LO.
17O [= geetly, ar0)=1 Aco(P-1a) | ¥

where I, is the space of all polynomial of degree less than or equals k and o(P~1A)
is the spectrum of the preconditioned matrix (P~'A). To minimize the right hand
side of the above inequality (2.5.4), it is desirable to cluster both the positive and
negative eigenvalues of the preconditioned matrix P~1A. This clustering guarantees
convergence with few iterations. In the following sections, we give some definitions

and notations related to the image deblurring problems.

2.6 Fourier transform (FT) and convolution inte-
gral

In this section, we present some definitions of the continuous and discrete one and

two-dimensional Fourier Transforms.

2.6.1 (1-D) Fourier transform and convolution theorem

Given any function f defined on R (possibly complex-valued), the , one-dimensional,

continuous, FT is defined by

(Fu)(w) = /Ru(x)e_%%mdx, w e R, (2.6.1)

18
with ¢ = v/—1 and its inverse is given by
(F) " (0)(z) = /R (@), 7 € R. (2.6.2)
The convolution of two functions u, v is defined by
(uxv)(z) = /Ru(x —y(y)dy, z€R. (2.6.3)
The FT and its inverse of the convolution is given by

Fluxv) = F(u) - F(v), (2.6.4)

F uxv)=F (u) - F(v), (2.6.5)

where - denotes point-wise multiplication. Next, we give definitions for a discrete

Fourier transform (DFT) as follows:

Definition 1 The discrete Fourier transform of a sequence {ul}lnz_ol 15 defined by

n—1
1 —2imkl
[F(u)]y = — g we » , k=0,...,n—1, (2.6.6)
Vg

Note that, the DET can be expressed as a matrix-vector product, F{u} = Fu, where

F € C™™ is the Fourier matrix. It has the components

0<kl<n-—1 (2.6.7)

19
The inverse DF'T is given by

2imkl

F(v)); = \/_Zvle no=[F*], k=0,..,n—1, (2.6.8)

where * denotes the conjugate transpose of a matrix.

2.6.2 (2-D) Fourier transform and convolution theorem

Definition 2 The two-dimensional continuous FT of a function u defined on R? (it

could be a complex-valued function) is

(Fu)(w) = /R2 u(:c)e’Q%”dex, w € R?, (2.6.9)
and its inverse is given by

(F) (z) = /RQ v(w)eﬁ”T“dw, r € R? (2.6.10)
Definition 3 The two-dimensional convolution integral is defined by

(w0 v)(2) = /R w(z — y)o(y)dy, = e R (2.6.11)

Definition 4 The two-dimensional DF'T is the matrixz given by

ny—1 ny_l

[f‘(u o = n = Z Z u; je —2im(kz/nz-i-lj/ny) (2612)
Vay

=0 j5=0

where 0 < k < n, —1, 0 <[l <ny—1 and its inverse can be obtained by replacing

—i by i in (2.6.12).

20
2.7 Fast Fourier transform

In this section, we present definitions of the one-dimensional and two-dimensional

fast Fourier transform (FFT).

2.7.1 (1-D) Fast Fourier transform

To implement (2.6.6), we use the conventional matrix-vector multiplication. In this
case, it will cost O(n?) operations, where n is the length of the vector that we need
to transform. The FFT algorithm, which was developed by Cooley and Tukey [26],

reduces this computational cost to O(nlogn).

Definition 5 given any u = (ug, u, ..., u,—1) € C", the Fast Fourier transform (fft)

15 defined by

n—1 s
(W) = ValFW) =Y we™r, k=0,...n—1. (2.7.1)
1=0
The inverse of (fft) is given by
1 1o~ -
[ifft(w)); = %[f’l(u)]i == ;ule k=0,..,n—1 (2.7.2)
The FFT and its inverse satisfy
ft(uxv) = fft(u) - fft(v), (2.7.3)

and

ifft (uxv) = ifft ' (u) - ifft " (v), (2.7.4)

21

2.7.2 (2-D) Fast Fourier transform

Two-dimensional fast Fourier transform fft2 can be defined in analogous manner to

(2.7.1)-(2.7.2) as follows
Definition 6
ne—1mny—1 R
2w = /Ty [F(f)k = Z Z uwe—zzrr(lcz/rng+lJ/rL;,)7 k=0,...n—1 (2.7.5)
i=0 j=0

The inverse of (fft2) is given by

1 1 z

1 A . .
/—[]:_l(u)]kl = [Ht?(u)]kl = u;. ,6—2171'(1€2/7‘Lgc-|—l]/ny)7
Mty Mally Nz Tly ZZ; ; ’

[ifft2(w)]u =
(2.7.6)
fork=0,....n—1.

2.8 Toeplitz and circulant matrices

In this section, we present definitions of the Toeplitz and circulant matrices and also

of the block Toeplitz and block circulant matrices.

Definition 7 An n x n matriz T is called Toeplitz if the entries along each diagonal

are the same and has the following form

Ao A Ay
T—| 0 (2.8.1)
o
Aot o AL Ao

Definition 8 A circulant matriz is a Toeplitz matrix in which each column/row is

22

a circular shift of the elements in the preceding column/row. In this case, an n X n

circulant matriz C' has the form

(2.8.2)

For more information of circulant matrices and their properties, we refer to see [29].

2.8.1 Block Toeplitz and block circulant matrices

We define We give definitions of the block Toeplitz with Toeplitz block (BTTB) and

block circulant with circulant block (BCCB) matrices as follows

Definition 9 An n,n, x nyn, matriz T is called BTTB if it has the block form

where each block A; is an ng x n, Toeplitz matriz.

(2.8.3)

Definition 10 An n,n, x nyn, matric C is BCCB if C is BTTB first and then if

each nx x nx block column/row is a circular shift of the elements in the preceding

column/row and lastly if each block is a circulant matriz. So, C has the following

form

23

Ao Apy Ay
A Ay A, .
C— ! 0 ' (2.8.4)
. . . An—l
An Ay A

where each block A; is an n, x n, circulant matriz.

Definition 11 The tensor product of a matriz A € R™*™ and a matriz B € RP*? s

a matriz G of size (mp) X (nq) which is given by

anB apB - a,B
anB aypB -+ aynB

AeB=G=| = 7" N (2.8.5)
amlB amZB Tt amnB

2.9 Well-posedness

In this section, we give some usual Hilbert spaces with their associated inner products
and norms. Moreover, we introduce the notion of the well-posedness. We introduce
some operators like Fredholm integral operator and we give the definition of the com-
pact operators. Let H; and Hs denote separable Hilbert spaces with inner products

(+,-); for j =1 and 2 respectively and norms

||f||J: (fvf)j? Jj=12,

where f € H;. For smooth f:R"™ — R, define the gradient of f by

af of of

Ox, Oxy’ 7 Ox,,

Vi=()-

24

For a vector valued function ¢ = (v, ve, ..., v,) where each v; : R" — R is smooth we

define the divergence of ¥ by

<= O,
V.-0= :
If u € R" then the Euclidean norm of u is defined by

| u |= vuru

The following are three examples of Hilbert spaces that we will use in subsequent

work.

Definition 12 Let) denotes a simply connected, nonempty, measurable set in R™
that has a piecewise Lipschitz continuous boundary. The Hilbert space L*(Q) consists
of all measurable real valued functions f such that [, f(x)*dz < co. The L? inner

product is denoted by

e / H(2)g(@)de, fge I

We define the second Hilbert space which is H! as follows:

Definition 13 The H! inner product of a pair of smooth functions is given by

(1, v) 1 = /Q w(w)o(z)dz + /Q Vu(z) - Volz)de

Now, we need to define what we mean by the well- posedness. Let K be a mapping

from H; to H,.

25

Definition 14 The problem

K'LI,ZZ, u€H1 ZEHQ, (291)

is called well- posed if the following conditions are satisfied:
1 A solution exists, i.e. for any z € Ho, there is w € Hy such that Ku = z.
2 This solution is unique.

3 This solution is stable, that is, given u* € Hy and z* € Hy for which Ku* = z*

then ¥ €, 3 0(e) > 0 such that when || z — 2* ||2< d(€) then || u —u* |1 < e.

A problem that is not well posed is called an ill posed problem.

If the mapping K is linear, the well posedness is equivalent to the requirement that

the inverse operator, K=': Hy — H; exists and is bounded.

Definition 15 Let K be a linear operator with a dense domain in Hy mapping into
H,. The adjoint operator K* : Hy — Hy is a linear operator where for every y €

D(K*), there exists a unique y* € Hy such that

(Ku,y)2 = (u,y")1, (2.9.2)

for every uw € D(K) The adjoint is defined by the mapping K'y = y* for all y €
D(K*). Where D(K) denotes the domain of the operator K.

Definition 16 The operator K is called compact if the image of any bounded set is
relatively compact set. We say that the set M C Hy is a relatively compact set if its

closure M 1is compact.

26

Example 1 The well known Fredholm integral of the first kind on L*(2) is an ex-
ample of a compact operator. Suppose that k(z,y) is measurable function on £ x €

and has the following property

/Q/Qk:(x,y)dedy < 00. (2.9.3)

Then, the first kind Fredholm integral operator K : L*(Q)) — L*(Q),

(Ku)(z) = /Qk:(x,y)u(y)dy, x €, (2.9.4)

1s a compact and the function k is known as the kernel function for the operator K.

Definition 17 Let u be a real valued function on 2, the total variation (TV) of u is

defined by
| w |py= sup/ —uV - wdz, (2.9.5)
@eW Ja
where
W= {w € C5Q) :| w(z) <1, Vz el (2.9.6)

Definition 18 The space of functions of bounded variation BV (2) on Q is the space

of all functions u such that [, | u | dr < oo and | u |7y < co.

Now when u € C'(Q2) N BV(€2) then

| u |ry= sup / W - Vudz. (2.9.7)
Q

weWw

27

Moreover, if | Vu |# 0, the supremum of (2.9.7) appears when o = %. Then

| |y = / |V | da. (2.9.8)
Q

In the following sections, we give some definitions related to the stochastic pdes.

2.10 Random variables and random fields

Now, we present some fundamental concepts and formulas related to random variables
and random fields. First, we define a random variable which is a mathematical
tool used to model randomness. We succeed this by introducing some important
characteristics associated with random variables, such as the expectation, variance
and independence. Then, we define a random field and also the associated mean,
variance and the covariance functions. Finally, we introduce the well known (KL)

expansion of a random field.

Definition 19 Consider the probability space (Q,F,P), a function X : @ — R is
called a random variable (r.v.) if X~Y(B) € F where B is a Borel set in the Borel

sigma algebra B.

Definition 20 The expected value of X, E[X], is defined by

E[X] = /Q X (w)dP(w) = /R f (z)dz, (2.10.1)

where f is the probability density function (pdf) associated with X .

Definition 21 The variance of X, Var[X], is defined by

Var{X] := E[X?] — E[X]*. (2.10.2)

28

Definition 22 The n—th moment of X, denoted by E[X"|, is defined as

E[X"] = /R 2 (2)da. (2.10.3)

where n is a non-negative integer.

Definition 23 Let X and Y be two random wvariables with joint density function

f(z,y). We say that they are independent if f(x,y) = f(z)f(y) where f(x) and f(y)

are the pdfs of X and'Y respectively.

Definition 24 The set {X,,} of random variables is called orthogonal set if E[X, X,,] =
0 holds for all different and positive integers m and n. Moreover, it is called orthonor-

mal set if E[X,X,] = 0mn holds where 6,,, is the Kronecker delta function.

Definition 25 Let (2,F,P) be a probability space, a random field
a(.,.): D xQ—R. (2.10.4)

s a measurable function from D x € to R with respect to the sigma—algebra F on the
sample space and the Borel sigma—algebra on the domains D and R. Here, D C R"
denotes a bounded spatial domain. We assume that for a given random field, its mean

and the covariance function are known.

Definition 26 For a random field a, the mean field is defined as

E,(z) := Ela(z,.)] = /Qa(x,w)dl[]’(w), (2.10.5)

29

and the covariance function as

Cov,(x1;22) = El(a(xy,.) — E.(x1))(a(xe,.) — Ey(22))]
= Jol(a(z1,w) — Eq(21))(a(re, w) — Eo(22))]dP(w)

(2.10.6)

The variance of the random field a is given by Var,(xz) = Cov,(x;x). For the mean
field and the covariance function to exist in the L? -sense, we must require that the

random field has a finite second moment, that is, a € L3(Q; L*(D)).

Definition 27 (Positive semidefinite function). A function Va € L*(D x D) is

positive semidefinite on D if
0< Z Z c; Va(z;, x;)é, (2.10.7)
(2

holds for any positive integer n, for any sequence of complex weights {c;}'=", and for

all xj,z; € D.

Common covariance functions are of the form

Covy — o2 exp(—lL=vil _ Zlez = ol (2.10.8)
! T2
2 —-T
Cov, = o, exp(—), (2.10.9)
T
_p2
Cov, = o2 exp(—5), (2.10.10)
T

where r is distance between x and y in the Euclidean norm. The positive constants

7,7 and 7, are called the correlation length.

Chapter 3

IMAGE DEBLURRING
PROBLEM

30

31
3.1 Introduction

Image deblurring problem is one of the most classic linear inverse problems. It is
useful technique to make pictures sharp and clear. It is known that a small image
often has about 2562 = 65536 pixels. There are many sources for blur in images for
example: the motion of either the camera or/and object, the environmental effects
and the limitations of the optical system.

In these and other situations, the record image has a blur. In image deblurring,
we aim to remove this blur and reconstruct a sharp image by using a mathematical
model. In the following section, we present the mathematical model behind the image

deblurring problems.

3.2 Mathematical model

To deblur an image, we need a mathematical model for how it was blurred. The

relation between the true image and blurred image is given by

z=Ku+e, (3.2.1)

where z is the recorded image and wu is the original image, K denotes the blurring
operator and e denotes a noise function. Both blurring and noise affect the quality
of the received image. K is typically a Fredholm integral operator of the first kind(a

convolution operator),

(Ku)(z) = /Q ko, 2)u(@)de!, zeQ (3.2.2)

32

with translational invariance kernel k(x,2’') = k(x — 2’) and 0 is the domain of the
image and typically is a square (or rectangle) in R? on which the image intensity
function u is defined. 2 = (z,y) denotes the location in 2. The kernel in (3.2.2) is
also called the point spread function (PSF) (see Chapter 2 for some assumptions on

the kernel). For Gaussian blurring with parameter o, the kernel is given by

1 R
k(x — ') = e 57 (3.2.3)

2w

There are several kernels given in the literature (see for example [14]). The equation
(3.2.1) represents both the deblurring and the denoising problem. If ¢ = 0, then
(3.2.1) is called pure deblurring problem and is called denoising problem when K =1
where I is the identity operator. In this research work, we consider the case of pure
deblurring problem

z = Ku,. (3.2.4)

In this case, the problem is to reconstruct u from given data z and blur kernel k.
Some times the blur kernels are unknown. In this case the problem is called the blind
deconvolution problem (see [102] and [70] for the blind problem). The problem (3.2.4)
is an inverse problem. It is known that the operator K is compact ([1], [98]) (see also
Chapter 2 for the compact operators), so problem (3.2.4) is ill-posed (the solution
is unstable) and the resulting matrices of discretization are highly ill-conditioned
([1], [98], [51]). In the literature, 'regularization’ methods (see [53]) deal with the
ill-posedness of the problem. Different approaches use different regularization terms

such as Tikhonov regularization and Total Variation regularization and so on (see

[4])-

33

3.2.1 Tikhonov regulazation

Tikhonov regularization is often used to stabilize problem (3.2.4) [96]. In this case,

the problem is to find a u which minimizes the functional
1 2
T(u) = 3 | Ku — z || +aJ(u), (3.2.5)
with positive parameter a and

J(u) :/Qqux. (3.2.6)

The advantages of the functional (3.2.6) is that it is not difficult to compute. However,
the disadvantage is that the reconstructed image includes oscillation or ringing when

the recorded image has discontinuity. Another regularization term is [98]

J(u) = /Q | Vu |? du, (3.2.7)

where V(-) is the gradient operator and | - | is the Euclidian norm. Note that the
functional (3.2.7) requires u to be smooth. Hence both regularization terms (3.2.6)
and (3.2.7) are not suitable when the recorded image has discontinuity or when we
need to construct sharp images [98]. Rudin, Osher and Fatemi [83] proposed using

Total Variation as a regularization functional.

3.2.2 Total variation(TV)

In the total variation (TV), the regularization functional is defined by

JT\/(U) = /Q | Vu |7 (328)

34

see Definition 18 for the (TV) regularization. In the above functional, u need not to
be continuous (see [1]). However, the derivative of the integrand function in equation
(3.2.8) does not exist at zero. One remedy of this issue [51] is to add a constant

98] as follows

Jg(u) = /Q VI Vu |2 +52 (3.2.9)

Then the functional to be minimized is

1
Tw) = 5 | Ku=z | +a [VTVu P42 (3.2.10)

with a, # > 0. Under mild conditions on the operator K, the well-posedness of this
minimization problem is established in [1]. There are several methods to obtain this

minimum given in [4].

3.2.3 The Euler-Lagrange equations

The Euler-Lagrange equations associated with the above minimization problem are

[98]:

K" (Ku—2)+al(u)u=0 x €, (3.2.11)
ou

— = Q 212
o 0 x € 09, (3)

where K* is the adjoint of K. The differential operator L(u) is given by

1

To get the above equations (3.2.11), consider f(e) = T'(u+ev) as a real valued function

L(u)w = -V w). (3.2.13)

where v is an arbitrary function and e is sufficiently small. Now, to find the minimum

35

or maximum values of the real function f we use the standard technique which is find

f'(e) and then take f' =0 at e = 0. Now

fle)=T(u+ev) = % | K(u+ev) — 2 ||? +a/Q V] Viu+ev) 2452, (3.2.14)

Taking the derivative w.r.t. €, using the boundary condition, integrations by parts

and writing the integral as inner product we get

a _

i 0 = (Ku— z,Kv) + (aL(u)u,v) = 0. (3.2.15)

and hence using the property of the conjugate operator to get

4 _

7 = 0= (K'(Ku — 2),v) + (aL(u)u,v) = 0. (3.2.16)

This gives
(K*(Ku — 2) + aL(u)u,v) = 0. (3.2.17)

Since v is arbitrary, one can take v = K*(Ku — 2) + aL to get the result given in
(3.2.11).
Note that (3.2.11) is a nonlinear integro-differential equation of elliptic type.

Equation (3.2.11) can be expressed as a nonlinear first order system [23]
K'Ku —av.v=K"z, (3.2.18)

—vu+ /| Vu 2 4525 = 0, (3.2.19)

36
with the dual, or flux, variable

R L (3.2.20)

After eliminating the vector ¥ from the above equations (3.2.18-3.2.20), one has the
primal system

(K'K + aL(u))u = K*z, (3.2.21)

In [98], Vogel and Oman used the Fixed Point Iteration method to linearize the system
3.2.21 by fixing u = u®) in the square root term given in equation (3.2.19) or (3.2.20)
as follows

(K*'K 4+ aL(u®)u*) = K*2, k=0,1,... (3.2.22)

In this case, u**1) is obtained as the solution of the linear integro-differential equation

(3.2.22). [4]).

3.2.4 Discretization steps

To discretize (3.2.18) and (3.2.19), we start by dividing the square domain Q =
(0,1)x (0, 1) into n? equals squares (cells) where n, denotes the number of equispaced

partitions in the x or y directions. The cell centers are denoted by (z;,y,) and given

by

8
$
I
—~
~.
|

(3.2.23)

N |+ N =

I
—~
<.

|

Yj
where h = % The midpoints of cell edges are given by (z,, 1 y;) and (24, ;4 1) where

T =x; L i=1,..n,,
2 2 (3.2.24)

The set

eij ={(v,y) 1w € [%—4 Tigl 1],y € [y $ Y+l I}

represents a cell with (x;,y;) as its center. Let

1, ifexe(r,_1,2,,1);
Xi(w) = (’ +2)
0, otherwise.

L ify € (y_1,y;51);
X;(y) e
0, otherwise,

Approximate u as

u(@, y) Zzzumxz
7j=1

=1

where U(z;,y;) = u;j, and represent the data z as

(.CL' y Zt Z Zz]Xz

i=1 j5=1

where z;; may be calculated as cell averages. Also, approximate v by

ne—1 ng)) Nne—1 ng
y) ~ Z Z V;f Pi(z)x;(y) . Z ZV;]/ 0
i=1 j=1 i=1 j=1

0

where ¢; are piecewise linear functions characterized by

QSZ' (‘Tl—i-%) = 5il7

®; (Z/k+%) = Ojk-

oi(y)x; (),

37

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

(3.2.31)

38

Now, applying Galerkin’s method to (3.2.18) and (3.2.19) together with midpoint
quadrature for the integral term given in (3.2.2) and cell center finite difference
method (CCFDM) for the derivative part given in equation (3.2.19) (see [37] for

more details), one obtains the following system
K*K,U 4+ aBT,V = K*,,Z, (3.2.32)

aByU — aD,MV =0. (3.2.33)

Here K} is a matrix of size n x n and By, is a matrix of size m X n. Dh(k) is a matrix
of size m x m (here n = n? and m = 2n,(n, — 1)) where k means fixed point iteration
for linearizing the nonlinear term inside the square root. For simplicity we eliminate

the subscript h. Then one can write

aD® —_aB Vv 0
= , (3.2.34)

—aBT —-K*K U -K*Z

Both K*K and L = BTD-'™ B are symmetric positive semi definite matrices [98].
The matrix K is a BTTB matrix. The matrix D is a diagonal with positive diagonal

entries
D=(U®) 0
DF) = ™) , (3.2.35)
0 DY (U®)

where D* and DY are (n, — 1) X n, and n, x (n, — 1) diagonal matrices, respectively

obtained by discretize the expression /| Vu®) |2 +52. The matrix B is given by

By
(3.2.36)

SHES

By

39

where the matrices By (n;(n, — 1) x n) and By (ngy(n, — 1) x n) have the following

structures _ _
-I I 0 0 O
o —I I 0 0
B = , (3.2.37)
0 0 0
o 0 0 —-I I
where [is the identity matrix of size n, by n,.
E 0 0 00
0O FE 0 0O
By = , (3.2.38)
0 0 0 0
0 0 0 0 F
where E ((n, — 1) X n,) is given by
-1 1 0 0 0
0 -1 1 0 0

E = o . (3.2.39)

Note that one can eliminate V' from (3.2.32) and (3.2.33) to get the following primal

system

(K*K +aL)U = K*Z. (3.2.40)

If Tikhonov regularization is used then (3.2.40) becomes

(K*K +al)U = K*Z, (3.2.41)

40

where [is the identity matrix of the same size of K. Another generalized saddle point

version [73] of (3.2.34) is

= . (3.2.42)
—K* aL | | U 0

We note that (3.2.40), (3.2.34) and (3.2.42) are are very large systems. The reason of
their huge sizes is that for example an image with 256 x 256 resolution requires solv-
ing system of size 2562 x 256%. Hence, the only choice of linear solver is an iterative
method such as a Krylov subspace methods. Unfortunately, these methods are very
slow with ill-conditioned linear systems. One technique to overcome this slowness
properties is using an appropriate preconditioner (see [92] for preconditioning). We

may use the minimal residuals (MINRES) method [77] with suitable preconditioners.

For the system (3.2.40), Vogel and Oman [99] introduced the product precondi-
tioner with approximating the BTTB matrix by a block circulant with circulant
block (BCCB) matrix, while Chan et. al [19] introduced a cosine-transform based
preconditioner. Donatelli [26] used another solver for this problem with Dirichlet
and periodic boundary conditions. The resulting matrices were BTTB and BCCB.
He solved the resulting systems by applying a multigrid method and he showed an
optimality property with O(n) arithmetic operations where n is the system size. For
the system (3.2.41), Donatelli and Hanke [27] introduced an iterative scheme similar
to nonstationary iterated Tikhonov regularization. The rapid convergence of their
method is determined by an adaptive strategy for selecting the regularization param-
eters. For the second version of the generalized saddle point problem (3.2.42), NG

and Pan [73] developed new preconditioners. These preconditioners are called Her-

41

mitian and skew-Hermitian splitting (HSS). They gave a strategy to choose the HSS
parameters to force all eigenvalues of the preconditioned matrices to cluster around
one and hence, the Krylov subspace method converges very quickly. For more details
on iterative methods for image deblurring we refer to [12]. In this dissertation, we
consider the preconditioning technique for solving the primal-daual system (3.2.34).

This method is presented in the following chapter.

Chapter 4

PRECONDITIONING
TECHNIQUE FOR IMAGE
DEBLURRING PROBLEM

42

43

4.1 Introduction

In this chapter, we consider the preconditioning technique for solving

- , (4.1.1)

the above system is obtained from discretaizing the Euler Lagrange equations associ-
ated with image deblurring problem (see Chapter 3). The coefficient matrix A of this
system is of the generalized saddle point form with high condition number and it has
a huge size. Hence, we solve this system by using the minimal residual (MINRES)

iteration method with using efficient preconditioner.

This preconditioner is of Murphy, Golub and Wathen (MGW) type [72] and it in-
volves a Schur complement of the A which contains a product of a Toeplitz matrix
with Toeplitz blocks (BTTB) and its transpose. This product may not be a BTTB.
Hence we approximate this product in three approaches. The first approach is based
on approximating the BTTB matrix by Strang circulant approximation (see [91], [18])
while in the second approach, we use the optimal circulant approximation for BT'TB
matrices [22]. The last approach is approximating the product of BTTB and its trans-
pose by a symmetric BTTB [81]. Symmetric BTTB matrices can always be extended
to form symmetric BCCB matrices. The benefit of the circulant or BCCB approxi-
mation is that the matrix-vector products that involve n x n matrix can be computed
in O (nlogn) operations instead of O (n?). This reduction is due to the fast Fourier
transform (FFT) and the Convolution theorem. Moreover, all that is needed for com-

putation is the first column of the circulant matrix, which decreases the amount of

44

required storage. We also show that the preconditioned matrices have the clustering
behavior of the eigenvalues. Moreover, we present several numerical examples. These

numerical examples show the efficiency of the proposed preconditioners.

4.2 The exact preconditioner

Our starting preconditioner for the system (4.1.1) is

ayyD 0
p—| " , (4.2.1)

0 ")/QS

where S = (K*K + «L) is the Schur complement of the matrix A. ~; and 7, are
positive parameters which are used to enforce the clustering of the eigenvalues of the
preconditioned matrix around one. Hence, the appropriate iterative method is pre-
conditioned MINRES (PMINRES) [77]. More details on preconditioning techniques
can be seen in [11], [72] and [16].

4.3 Eigenvalues estimates

In this section we give a bound for the positive and negative eigenvalues of the pre-
conditioned matrix P~'A but before doing that, we start by discussing the number
of the negative and positive eigenvalues of the matrix P~'A. Note that the precondi-

tioned matrix P~1A is similar to the matrix P~1/24P~1/2, The matrix P~1/2AP~1/2

can be decomposed into

I, 0 Lr. 0 I, — %D*WBS*W
_ %S—l/QB*D—l/Z In 0 _L] 0 I
Y2 n n

45

where [, and [, are the identities matrices of size m x m and n x n respectively.
The above decomposition is known as the congruence transformations of the matrix
P~Y2AP~1/2. By Sylvesters law of inertia (page 403 in [47]) , congruence transfor-
mations preserve the signs of the eigenvalues [31]. It follows that the number of the
positive eigenvalues of P7'A is m and the number of the negatives is n (here m > n).
Several bounds on the eigenvalues of the generalized saddle point matrix are estab-
lished in [84, 90] and [5]. Here we use the bounds given in [Theorem 1 in [5] p 4]

obtained by Axelsson.

Theorem 3 The m+n (p—p < pipi1 < oo < pg <0< 1 < po < o < i)

eigenvalues of the generalized eigenvalue problem,

aD —aB T ayD 0 x
=\ (4.3.1)

—aBT —K*K y 0 %S Y

satisfy the following:

1 1+ 1 + 4:%0'711
- v i=1,..,m, (4.3.2)

€ LN =1 (4.3.3)
—j = o n ..
,LL J 727 72 CM%T .]) » 1Yy

where 1 and v, are positive parameters. o, is the maximum eigenvalue of S~'/2LS~1/?

and 7 = p(STY2LS™Y?), the spectral radius.

46

Proof: We start expressing the preconditioned matrix P~'A in a generalized saddle

1 1

point matrix. P~'A is similar to Pz(P~1A)P~2 = P~ 2 AP~ =

1 -1 1 _1
_ \/WD 2 0 aD —aB \/WD 2 0
1 ¢-% T * 1 Q-
i 0 \/_’728 2 —aB -K*K 0 \/—7—25
(6% 1 —Q _1 1 _1
_ Csz \/WD 2 B \/WD 2 0
—a - pT =1 ¢-1p7-~+ 1 _1
i ?S 2B _'yS : K*K 0 \/_’TQS 2
L1 —/z=-D":BS"z
_ Y1 Y172
—/z257:BTD™: ZLSTIK*KST
B Y172 Y2
M B .
= | =A
B —-C

M=—1I, B=— /-2 5 3BTD
g 7172
A 11, 1 A 1
C=—8:K"KS™ 2, S=—1I,,
Y2 Y2
A 1 A 1
/\ma:c(s) =)\mzn(S) = T
V2 V2
. 1 . 1
H1 = —, Un = —,
g gt
0m = maximum eigenvlaue of gS’%LS’%, v? = p(aS~Y2LS7Y?),

V2

to obtain the bound given in (4.3.2) and (4.3.3).

Remark 1

In the above theorem and its proof, since both P and S are positive definite then

P12 P2 and S=/2 are well defined.

47

Remark 2

If v = 72 =1, then (4.3.2) and (4.3.3) are given by

1+ I+ dao,] .
= {1, + 2+ ag] i=1,..,m, (4.3.4)
el | ;- (4.3.5)
f—j D j=1,..n. 3.

Remark 3
From (4.3.2) and (4.3.3), one can note that the smaller value of 2! yields the smaller
length of both intervals. This means that we have a good clustering behavior for the

negative and positive eigenvalues. Hence, we expect fast convergence.

4.3.1 Numerical results for the eigenvalues analysis

Our aim is to verify that the bounds given in Theorem (3) are matched with the
following numerical example. In this example we take n = 16, f = 1 and a =
8 x 107 with the kernel described in (3.2.2). Table 4 .1 shows the upper and lower
(positive/negative) bounds of the intervals given in the above lemma. Also it shows
the maximum and the minimum (positive/negative) eigenvalues of the preconditioned
matrix P~'A. These eigenvalues are computed using the built-in Matlab command
eig (see Chapter 8 for the matlab code). In Table 4 .1, observe that all intervals in
the third column are contained in the second column. This observation verifies the
bounds given in Theorem (3).
It is known that the PMINRES convergence estimate [31] can be written as
|

) s
— min max A, 4.3.6
| 7O ||p-1 ~ g€y gr(0)=1 rea(P—14) [ax(A) | ()

where II}, is the space of all polynomial of degree less than or equals k and || () 1%-1=

48

rOT p=1.00) To minimize (4.3.6), we need to cluster both the positive and negative
eigenvalues. This can be obtained by reducing the lengths of the intervals in (4.3.2)
and (4.3.3).

4.4 Approximation K*K

We introduced some definitions related to the Toeplitz and circulant matrices and
their blocks. Now we are ready to speak about the preconditioners of the Toeplitz
and BTTB matrices by circulant and BCCB matrices. Circulant preconditioning
for Toeplitz systems was introduced by Strang [91] and extended by others to block
Toeplitz systems [24]. Many researchers use a Toeplitz preconditioners and block
Toeplitz preconditioners for Toeplitz systems see for instance [20] and [63]. Band
Toeplitz preconditioner and band BTTB preconditioner are proposed in Chan [18]
and Serra [88]. In [64], BTTB preconditioners for BTTB systems are discussed. In
our dissertation, we use three approaches to approximate the product K*K given in

the (2,2)-block of the exact preconditioner matrix P.

4.4.1 Symmetric BTTB approximation

Note that our matrix K is a BTTB matrix but the product K* K need not be BTTB.
So, in the first approach, we follow [81] to approximate K*K given in the precondi-
tioner matrix P by a symmetric BTTB matrix 7. Symmetric BTTB matrices can

always be extended to form symmetric BCCB matrices. To make the idea clear, we

49

consider the following example

1 2 3 |2
1 2 3
2 1 2 |3
21 2| — (4.4.1)
3 2 1 |2
3 2 1
2 3 2 |1

This example show how to extend symmetric BTTB matrix into a BCCB. The benefit
of this approximation is that the matrix-vector products that involve n X n matrices
can be computed in O (nlogn) operations due to the FFT’s and the Convolution
Theorem. Moreover, all that is needed for computation is the first column of the

matrix, which decreases the amount of required storage.

4.4.2 Strang circulant approximation

The second approach that we follow is that we approximate the n by n Toeplitz matrix
K given in the preconditioner matrix P by the well known Strang circulant matrix
S with diagonals s, (see [21] page 17-18). In this approximation, if n = 2m + 1 the

diagonals s; of S are given by

kk; 0 < k < m,
Sk =19 ki_n, m<k<n-—1, (4.4.2)

5.k, O0<—-k<n-—1,

where k; is the ¢th diagonal of the matrix K. If n = 2m, we get the Strang matrix S

. K+l
as above. In this case, we define s, =0 or s, = %

50

4.4.3 The best circulant approximation

In the last approach, we also approximate the Toeplitz matrix K given in the pre-
conditioner matrix P by an optimal circulant [22]) matrix C. If C,, denote the set of
n x n circulant matrices. The optimal circulant approximation to K € C™*" in the

Frobenius norm is given by C' = arg éngl | B— K ||Fpro- In this case, the value of
cCn

KT_(n—py+(n—k)T
n

the entries ¢, of the matrix C' is obtained by this formula ¢, = , k=

—(n—1),...,0,...,(n — 1). Resulting of the above three approximations, we have the

following three approximation preconditioners.

4.5 Three block diagonal preconditioners

In this section, we introduce the following three block diagonal preconditioners

ayD 0 aynD 0

Py — T Py M 7
0 Yo (T + aL) 0 Y2(S*S + aL)
ayD 0

Po— T
0 ’}/Q(C*C + aL)

In the above preconditioners, the matrices T', S and C' denote the symmetric BTTB,
the Strang BCCB and the best BCCB approximations to the product K*K given in
the exact preconditioner (4.2.1). These approximations allow us to use the FFT the
Convolution Theorem. In this case, the matrix-vector products that involve n x n
matrices can be computed in O (nlogn) operations. Moreover, all that is needed
for the computation is the first column of the matrix, which decreases the amount of

required storage.

51
4.6 Numerical experiments

The aim of this section is to investigate the efficiency of the three preconditioners
described above for two blurry images. The first image is a retinal image of a diabetic
patient (see Figure 4.2) and the second one is goldhill image (see Figure 4.8). We
start by blurring these two images by a certain kernel given in Figure (4.7). Then
we deblur these images back and solve the linear system by preconditioned MINRES
method using the above three preconditioners (with v; = 79 = 1) and we use the well
known fixed point iteration method to linearize the non-linear term. We watch the
CPU-time and the number of MINRES iterations. It is known that in each PMINRES
iteration, we solve a linear system of the form Pz = y. To solve this system, we use

the conjugate gradient method (CG) for the (2,2) block.

Example 2 In this ezample, we calculate the iterations number of MINRES with
using the three preconditioners Pr, Ps and Po. We fiz the maximum iteration of
PMINRES to be 100, the tolerance le — 2, f = 0.01, a = 0.00008, and we use the
retinal image (blurred image) given in Figure (4.3) as a data with PSNR = 20.5548.
Firstly, we start by using the preconditioner Pr. Table (4 .2) shows the degree of
freedom (dof), the PMINRES iterations and the PSNR in each iteration of the fized
point method.

Secondly, we use preconditioner Ps with the same blurred image and the same
parameters given above. Table (4 .3) shows the degree of freedom (dof), the PMINRES
iterations and the PSNR in each iteration of the fized point method.

Finally, we use preconditioner Po with the same bulurred image and the same
parameters given above. Table (4 .4) show the degree of freedom (dof), the PMINRES
iterations and the PSNR in each iteration of the fixed point method. For the qualities

of the reconstruction images using these three preconditioners, see Figures (4.4-4.6).

52

20 40 60 80 100
Figure 4 .1: Tterations Number v.s. the Residual

In this example, the second computations carried out for the second data (blurred
image) given in Figure (4.9) which is blurred by the kernel given in Figure (4.13).

The qualities of the reconstruction images are shown in Figures (4.10-4.12).

Example 3 In this ezample we compare the CPU-time of the three PMINRES pre-
conditioned. In Table (4 .5), we list the CPU-time of the PMINRES spends to do 5

fized point iterations.

Example 4 In this example, we compute the residual of PMINRES using the three
preconditioners with the same bulurred image and the same parameters given in the
above examples. Figure (4.1) shows the convergence of the methods. From Figure
(4.1), it can be seen that the preconditioner Ps is the fastest one followed by Po and
then Pp. It is clear that Ps needs 78 iterations to reach the tol = le — 2, Po needs 81
while Pr needs more than 100 iterations to reach the same tolerance. Note that we
take the PMINRES iterations for these three preconditioners at the second iteration

of the fixed point iteration method.

Example 5 In this example, we use the true image given in Figure 4.8 and the

53

blurred images given in Figure 4.9, (it is blurred by using the kernel given in Figure
4.13), and we fix the preconditioner to be Pr. We watch the quality of the deblurred
images in some fized point iteration. Figures (4.14-4.17) show the deblurred images
i the iterations number: 1, 5, 10 and 13. The second computations carried out
for different values of the regularization parameters «. Figures (4.18-4.21) show the
deblurred images for « = 8e —2,8¢ — 4,8¢ — 7,8e — 8.

Remark 4

In all the above examples (3-6), we fix 74 = 75 = 1. In the following example, we
change the values of these two parameters to show how do they affect the convergence
of the MINRES method. For this test, we just consider the preconditioner Pr and

we vary the values of the parameters.

Example 6 In this ezample, we have chosen n, = 128 and § = 0.01. Here Py refers
to no-preconditioner, Pan to Ppr with v = vo = 1, Ps to Pr with v, = 1, v, = 10,
P to Pr with v1 = le—3, vo = 1 and finally Ps refers to Pr with v; = le—6, 5 = 1.
In Figures (4.22) and (4.23) observe that unpreconditioned MINRES converged most
slowly, followed by PMINRES Psyn and then both Py and Pay are followed by Pis.
We note that PMINRES Ps s the fastest one. This has the smallest value of the pa-
rameter v, which leads to the best clustering behavior of the eigenvalues (see Remark 3
and Table 4.1). Figures (4.24-4.25) show the difference between the unpreconditioned
MINRES (Py) and PMINRES Pay.

Finally, the CPU time and the measure of image quality, Peak Signal-to-Noise Ratio
(PSNR), for the preconditioners Pay, Pia, Py and Ps are given in Table 4 .6. In this
table, we compute the CPU time for 15 iterations for Pay to reach tol = le — 3, 10

iterations for Pyo to reach tol = le — 3, 7 iterations for Py to reach tol = le —3 and 6

54

iterations for Py to reach the same tolerance. Through this comparison, we find that
the PSNR for the blurred image is (21.2004) while the PSNR for deblurred image can
be seen in Table 4 .6.

Remark 5

P4 denotes the Axelsson and Neytcheva preconditioner [6] (the exact preconditioner
(4.2.1) with v =y = 1).

Remark 6

PSNR is defined by:

PSNR(u,v) = 10log,o(maz(maz(u), maz(v))?*/|u — v|?). (4.6.1)

Remark 7
All required Matlab-codes for the all above computations can be found in the last

chapter.

4.7 Conclusion

Three different preconditioners for the generalized saddle point system resulted from
discretizing the Euler Lagrange equations associated with image debulrring problem
are presented. In these preconditioners, three approximations for the product of the
BTTB matrix and its transpose are considered. From the computations, we observe

that the Pg preconditioner is the most effective one followed by Pr and then by Pr.

95

Figure 4 .2: True Image Figure 4 .3: Blurred Image

x 10" .
4 L
\‘ \‘
3 I
? |
1 }
ol \
120
100 - s
. < 120
80 _a3 100
60 ~ e B
40 N =
Q= 40
20 20

Figure 4 .6: Deblured Image Px Figure 4 .7: Out-of-focus kernel

Figure 4 .8: True Image Figure 4 .9: Blurred Image

Figure 4 .10: Deblured Image Pr Figure 4 .11: Deblured Image Pg

Figure 4 .12: Deblured Image Px Figure 4 .13: Kernel Cantor

o6

Figure 4 .16: 10th Fixed Point Iteration

57

Figure 4 .17: 13th Fixed Point Iteration

Figure 4 .20: a« =8.0e — 7

Figure 4 .21: o =8.0e — 8

o8

Figure 4 .22: Res.

.vs. 1ter.

-5

Figure 4 .24: Res.

.vs. 1ter.

-5

99

Figure 4 .

23: Res.

.vs. 1ter.

Figure 4 .

25: Res.

.vs. 1ter.

’71/72 ‘

Bounds in (4.3.2)-(4.3.3) |

Computed eigenvalues

1,1

[—1,—6.42e — 1] U [1,1.39]

[—1,—7.59e — 1] U [1,1.31]

le — 3,1

[—1, —9.99444e — 1] U [1e + 3, 1.0005555¢ + 3]

[—1, —9.99445¢ — 1] U [le + 3, 1.0005552¢ + 3]

le — 6,1

[—1, —9.999994441e — 1]
]

[le + 6,1.0000005558257¢ + 6

]

[—1, —9.999994442¢ — 1]
]

[le + 6,1.0000005558255¢e + 6]

Table 4 .1: Bounds on eigenvalues of the preconditioned matrix P~1A

Table 4 .2: The Preconditioner Pr

Fixed Point nx dof | PMINRES | PSNR
Iteration Number Iteration

1 128 | 48896 > 100 40.6813

2 128 | 48896 > 100 42.2709

3 128 | 48896 14 42.5842

4 128 | 48896 3 42.5841

5 128 | 48896 42.5841
Table 4 .3: The Preconditioner Py

Fixed Point nx dof | PMINRES | PSNR
[teration Number Iteration

1 128 | 48896 > 100 40.6510

2 128 | 48896 78 42.6645

3 128 | 48896 6 42.6688

4 128 | 48896 42.6688

5 128 | 48896 1 42.6688
Table 4 .4: The Preconditioner Pg

Fixed Point nx dof | PMINRES | PSNR
Iteration Number Iteration

1 128 | 48896 > 100 40.6493

2 128 | 48896 81 42.6535

3 128 | 48896 6 42.6577

4 128 | 48896 42.6577

5 128 | 48896 1 42.6577

60

Table 4 .5: Comparison between Pr, Ps and Po

nx dof | CPU Time | CPU Time | CPU Time
of Pr of Pg of Py
128 | 48896 74.706 39.243 42.653

Table 4 .6: CPU time, PSNR for Py, P2, P, and Ps

Pay Py Py Ps
CPU(in second) 23.59 14.52 12.53 11.24
PSNR for deblurred image | 26.6606 | 26.6673 | 26.6609 | 26.6609
(in decibels)

61

Chapter 5

STOCHASTIC DARCY’S
EQUATIONS

62

63
5.1 Introduction

The flow of a fluid in porous media is described by Darcy’s law as follows
K~ (2)ii(r) — Vp(x) =0, (5.1.1)
with the divergence constraint
-V -id(x) = f(z) in D, (5.1.2)
and the boundary condition
n-id(z)=0 on 0D, (5.1.3)

where K~'(z) is the permeability, assumed to be uniformly positive definite and

bounded, and f is a given data defined on D satisfying the compatibility condition:

/Df(:c)d:c =0. (5.1.4)

In the above equations, D C R? is a bounded, simply connected, polygonal domain
in R? whose boundary is 9D and 7 is the outward normal to the boundary. The
vector @ : D — R? is the velocity and the function p : D — R is the pressure. The
equations (5.1.1-5.1.4) represent a simple model for a single-phase flow in a porous
medium. In some situations, in engineering applications, the coefficient K1 in (5.1.1)
is not known at all points of D. As a usual technique, one can consider K~ ! as a
random field. At every z € D, it can be considered as a random variable. To this

end, let (Q,F,P) to a complete probability space where F is the o-algebra over the

64

sample space 2 and P : F — [0, 1] is the probability measure with P(2) = 1. Now,
if K = K (z,w), z € D, w € Q the solution to (5.1.1-5.1.4) is a pair of random

fields (@, p) = (d(x,w), p(z,w)) such that, P — a.e. in €,

K (z,w)ii(r,w) — Vp(z,w) =0 in D x Q,
V.i(z,w) = —f(z) in D xQ, (5.1.5)
n.i(x,w) =0 on 0D x €,

5.2 Overview

In this chapter, we aim to approximate efficiently the statistical moments (mean and
variance) of the unknown (pressure and velocity) given in the mixed problem (5.1.5)
via stochastic Galerkin finite element method. Mixed problem (5.1.5) is covered in
some papers, see for example ([13], [33], [80], [93], [30], [48], [29], [41]).

In [13], the well-posedness, the regularity of solutions and a priori error estimates for
stochastic Galerkin finite element approximations are discussed. In [33], an efficient
linear solver for the stochastic Galerkin mixed problem (5.1.5) is presented. In both
[13] and [33] stochastic Galerkin discretizations is carried out in the case when the
random coefficient is assumed uniformly bounded. In [80], the multilevel Monte Carlo
algorithm is used. However, the random coefficient is assumed to be a lognormal ran-
dom field. In [93], efficient iterative methods for the same problem is studied but

when the Gaussian random fields are transformed into lognormal ones.

In our dissertation, we follow the works given in [13, 33] to approximate the sta-
tistical moments of the mixed problem (5.1.5) by using stochastic Galerkin finite

element method .

65

The main difference between the approaches in [13, 33] and our approach is that in
[13, 33], the mixed problem (5.1.5) are studied and analyzed in term of H(div(D)) ®
L3(Q) and L*(D)® L3(QQ) formulation for the spatial velocity and the pressure spaces.
This approach leads to a saddle point systems in which the (1,1)-block matrix dose
not have a diagonal structure. Hence, the computing may not be easy and the cost
of the computation will be high.

However, our approach is based on the [L?(D)]?® L(Q) and (H'(D)NL3(D))® L3(Q)
spaces of the velocity and the pressure, respectively, which is the mean contribution
in this chapter.

One of the main advantage of our formulation is that the deterministic mass matrix is
a diagonal which causes the (1,1)-block matrix in the coefficient matrix of the saddle
linear system to have a diagonal structure. The reason for the diagonal property
is that the finite dimensional subspace of the velocity space spans by orthonormal
elements.

Our new stochastic formulation is an extension of the original work introduced in [2].
In [2], the deterministic version of the mixed problem (5.1.5) has been studied and

the error, existence and uniqueness are discussed.

The rest of this chapter is organized as follows: some spaces and their norms are
presented in Section 5.3. Weak formulations with their analysis are discussed in
Section 5.4. Sections 5.5 contains the approximation of the deterministic spaces.
Finite-dimensional noise is studied in Section 5.6. In Section 5.7 the approximation
of the stochastic spaces are discussed. Section 5.8 includes the stochastic matrices

structure.

66

5.3 Hilbert spaces

We introduce some usual Hilbert spaces with their associated inner products and
norms. Let L?*(D) denotes the Lebesgue square integrable functions with inner-
product (.,.) and with norm || . ||o. H'(D) denote the Sobolev space consisting
of functions, which together with their distributional derivatives of order one are in
L?(D). The associated inner-product is defined as (u,0) 1 = (4, 0) + (V, V¥) and
the norm on H'(D) is denoted by || . ||;. Let [L*(D)]? be the space L*(D) x L*(D)
whose inner product is understood to hold componentwise and its norm is also de-
noted by || . ||o. More details for the above spaces can be found in [3]. In this paper,

we set

X = [L*(D)P,
(5.3.1)
Q = H'(D) N Ly(D),

where L§(D) stands for the space L§(D) = {q € L*(D) : [, q(x)dz = 0}. We define

1 oy = [i
D
190 = [0} +od)de =] o s + [oe I (5.3.2)

e /D P+ /D (Va-Va)de =] q |2 + g3 -

The space LZ(f2) consists of all random variables with finite second moment i.e.
E[¢?] < oco. The inner product of the space L3(Q) is defined by (&1,&) = E[&.6)
and the norm || & ||r2p)= (£,€)2. For more details of the theory of random fields
and stochastic concepts we refer to [50] and [75]. Since the stochastic functions have

different structures with z and with w, we introduce the tensor product spaces as

67

follows, (see [94] for a definition of the tensor product),
X=X ® L2(Q),
(5.3.3)
Q:=Q®LiQ).
=

For ¥(z,w) € X and ¢(z,w) € Q, the associated norms are defined by || ¢ ||%

V%) and || ¢ [[5:= (Il ¢ [7)-

5.4 Weak formulations

To formulate the weak formulation of our problem (5.1.5) it is better to start with

the following mixed deterministic Darcy’s equations

K (z)i(z) — Vp(z) =0 in D,

—V - i(z) = f(x) in D, (5.4.1)

n-i(z) =0 on 0D,
where K~ !(z) is assumed to be a 2 x 2 bounded and spd matrix-valued function.

This means that
Kmin(7,7) < (K7'9,9) < kimaz(7,7), (5.4.2)

where ki, and ky,q. are positive constants and for every 7 : D — R2.

68

5.4.1 The weak formulation for the deterministic problem

The weak formulation of (5.4.1) is to find (4, p) € X x @ such that

a(u,v) +b(v,p) =0 ve X,
(5.4.3)
b(u,w) =1w) weQ,

where a(.,.) and b(.,.) are bilinear forms defined by a(@,v) = [, K~'@ - vdx and
b(u,w) = — [, - Vwdz The linear form 1(.) is given by l(w) = — [, fwdz. To get
the above formulation, we multiply the first equation in (5.4.1) by the vector-function
v € X and the second one by the scalar-function w € @) and integrate the second one

using the Green formula and the boundary condition.

Theorem 4 For any data f € L*(D), the problem (5.4.3) has a unique solution (u, p)
in X x Q provided that the condition (5.4.2) holds. Moreover this solution satisfies

the following estimate

| @ liz2oy + [2 vy < K| f 22y (5.4.4)

where k is a constant depend on the constants (kmaz, kmin,) where kmaz, kmin are

giwen in (5.4.2) and B is a positive constant and is the inf-sup constant of (5.4.53).

Proof: The theorem above can be proved using the theory given in [15], [39] and [45].
To follow them, we need to verify the continuity (boundedness) of both bilinear forms
a(.,.) and b(.,.), the coercivity of a(.,.) on the null-space (also called kernel space)
Z ={ve X :b{W,w) =0 Ywe Q} and the inf-sup condition. The continuity of
a(.,.) on X x X can be proved using the right inequality of (5.4.2) and using Cauchy
Schwarz inequality. It is clear that a(.,.) is coercive on the null-space Z with using the

left inequality of (5.4.2) and the definition of || . ||jz2(py2. For the continuity of b(.,.)

69

on X X @, one can achieved it by using the Cauchy Schwarz inequality. Moreover,

for any w € @, by taking 7, = Vw, we obtain

| b(F,w) = /D PV = /D V- Vo = /D Vel =] w =] 7 eyl w o) -

By using the so called Poincaré inequality on @, (see [45], Chap. I, Thm 1.9), we

obtain the inf-sup condition

b7
VweQ, sup—’ (r,w) |

rex || T ||[L2(D)]2

To prove the second part of the theorem, let v = w in the first equation of (5.4.3) to

get

a(u,u) = —b(d,p) = (. p) (5.4.6)

using the coercivity of a(.,.) and the continuity of 1(p) one gets

Fullx< Coll fllzzll p llo (5:4.7)

and using the inf-sup condition, we have

b(7 e
B p llrmy< sup- 2B L _ o 1-al@)|
veX || (% ||[L2(D)}2 17€X|| v ”[LQ(D)]Q

<Gl ax (5.4.8)

So, equation (5.4.4) can be achieved by substituting (5.4.8) in (5.4.7). The above

theorem and its prove can be found in [2] when the K~ !(z) = 1.

70

5.4.2 The weak formulation of the stochastic problem

In this subsection, we find the weak formulation of the stochastic problem. We start

by assuming the following:

Assumption 1 K~ '(z,w) is a second-order random field, in other word, K—'(xz,-) €

L3(Q), Vx € D

Assumption 2 K~ '(x,w) € L>(D x Q) satisfies the following

0 < Cpin < K H1,w0) < Cppae < 00 a.e.in D x Q. (5.4.9)

where Cae and C, are positive constants.
Now it is easy to get the weak formulation of the problem (5.1.5) which is to find

u € X and p € Q such that

a(u,v) + b(v, p) = 0; U e X,

b, w) = =((f,w)); weq,

(5.4.10)
where the bilinears a(.,.) and b(.,.) are given by a(@,v) = E[[, K~ '4 - vdz] and
b(d,w) = —E[[, @ - Vwdz].

Theorem 5 Let f € L*(D), the problem (5.4.10) has a unique solution (u,p) in

X x Q provided that the Assumption 2 holds. Moreover the following estimate holds

| @ liz2oypecze) + | P llmomerza)< C | f llz2m), (5.4.11)

where the positive constant C' depends on the constants (Cruaz, Coin, B) where Cpazy Crin

are given in (5.4.9) and 8 is the inf-sup constant of the problem (5.4.10) and so is of

71

the problem (5.4.3).

Proof: The above theorem can be derived as we did in section 4.1. The continuity of
a(.,.) on X x X can be achieved using the right inequality of (5.4.9) and using Cauchy
Schwarz inequality. The coercivity of a(.,.) on the null-space Z = {v € X : b(0, w) =
0 Yw € Q} can be achieved by using the left inequality of (5.4.9) and the definition
of || . lli2(pyrerz- One can show that b(.,.) is continuous on X x Q by using the

Cauchy Schwarz inequality. Moreover, for any w € Q, by taking 7, = Vw, we obtain

(b(7w) 1= [[7y Vuded = w0 By =l 7 Niposz] o Loz -
By using the Poincaré inequality on Q, we get the inf-sup condition

b —
Vwe(@’ SupM

= > Bl w ez, (5.4.12)
rex || 7 liz22or2

where 3 is a positive constant. To prove the bound (5.4.11), we have

Using the coercivity of a(-,-) and the Cauchy-Schwartz inequality, we have

1
Cmin

I (< I N2l 2 lle - (5.4.13)

72

From the inf-sup condition, we have

| b(v,p) | | —a(d,v) |
p SUp-,— TN
Ipllo < 5o o = 53 o,
(5.4.14)
C’max || ﬁ ||X|| 27 ||X Omaac N
Plle = sup - =
|| ||Q B ek || 7 ”X ﬁ H H
Using the above equation in (5.4.13), we have
Cmaz N
la % < 50, 1 ezl @l
(5.4.15)
1 e < 52) 1
and then,
02
1P llo< Z57— 50, I f llze - (5.4.16)

Now it is easy task to get the bound (5.4.11).

5.4.3 Karhunen. Lo‘eve (KL) expansion

We use the well known KL expansion to express K~ !(z,w) as a summation of scaled
product of two functions one of these function is deterministic while the second is
random variable. This expression is useful to transform the saddle point problem
(5.4.10) into one which can be solved by deterministic numerical methods. There are
several expansions are available (see [57] for a survey). In this dissertation, we focus
on the Karhunen. Lo‘eve (KL) expansion (see [87], [65], [46] and [66] for the (KL)

expansion)

K Yz, w) = ko(x +Z\/—k (5.4.17)

73

In the above expression (5.4.17), ko(x) denotes the mean of K~ (z,w) and {(Ap, k) 155,

are the eigenpairs of the integral operator C' : L?(D) — L?(D), defined by

(Cu)(x):/Du(y)c(x,y)dy, (5.4.18)

where c is the covariance function of K~! (some popular choices of ¢ are mentioned
in [33]. The linear operator C' defined by (5.4.18) is compact, self adjoint, and posi-
tive. Therefore, the eigenfunctions of C' form an orthonormal basis of L?(D) and the
eigenvalues are all positive real numbers with only one accumulation point, namely 0
(see Theorem B.2.1 in [60]). The random variables {¢,,}>°_, are uncorrelated random

variables in L2(Q) with E[,] = 0 and E[¢2] = 1 and they are determined by
Em(w) \/_/ — ko(x))kp(z)dz. (5.4.19)

5.4.4 The weak formulation of the perturbed problem

To discretize the saddle point problem (5.4.10), we follow ([8], [9], [40], [67], [66], [87],
[13] and [33]) by truncating (5.4.20) after M terms

K (z,w) =~ ko(z) + Z V Ak (z (5.4.20)

where M here is called the order of the KL. decomposition. The convergence of the
error || K~'—K]\’41 || Lo (Dx) to zero depends on how do the eigenvalues A, decreasing
to zero. For more detail on this convergence we refer to see ([40]) for instance. Now,

we put K;;' instead of K~! in (5.4.10) to get the perturbed problem: find @™ € X

74

and pM € Q
an (@™,) + (T, p") = 0 v, €X,
(5.4.21)
b(ﬁMaw) = _<(.faw)> w e @7
where,
ay (U, v) = E[/ Kﬂ_jﬁ- vdr] Vu,v e X (5.4.22)
D

The well-posedness of the solution to (5.4.21) can be derived under the following

assumption

Assumption 3
0 < Kpin < Ky (7,0) < Kypaw < 00 a.e. in D x €, (5.4.23)

where Ko and K, are positive constants (depending on M, Cpin and Cray).

Theorem 6 Let (i, p) € X x Q be the solution to (5.4.10) and let (@™, pM) € X x Q

be the solution to (5.4.21) then
— SM Cmaz -1 -1
| @ —a" [[x < WH K= — Ky llzemxoyll f 220y,

Chna K _ _
Ip—p" llg < g Ut K P = Ko le=mxoll f lr2m).

(5.4.24)

Proof: Let e, = i —u™ € X, e, =p—p™ € Q. Then from (5.4.10) and (5.4.21), we

have
a(t, e,) = —b(ey,p) =0,
(5.4.25)
aM(’JM7 eu) = _b(ezupM) =0
and, hence

sz'n H €u Hgg S aM(eu, eu) = CL(I_I:, 6u) - CLM(ﬁ, eu)- (5426)

Using the above equations and the bound given in (5.4.15), we have

Kmin H) ”%g é (I(ﬁ, 6u) - aM(/Jv eu)

Kin || €u ”%ﬁ <]l K — KJ_/[l HL‘X’(DXQ)H U [|x|| eu [Ix

Fewllx < e 1 K7 = Koy [lz=(oxo [4 1x
min
L C, _ _
@ —a" |x < 30 Kor e K = Ko x|l Iz -
mindAmin

Similarly for e,. From the inf-sup condition we have

b(r, e
sup—| <ﬁ p>|2ﬁHepH@~
Fex H7’||X

So, we have
b(7,) = (7, p) — b(F, p™)
= —(1(1_[, F) + aM(uMa 7:‘)

= —a(@,7) 4 an (@, 7) — an(eq, 7).

| (7, ep) <IN KT = Ky oo oxay 7 [l 7 s +Eomaa || e [1x]] 7 [

| (7, €p) |< (Binao [€u lx + | K77 = Ky lreoxayll @ %) 171 -

Now, use the bound (5.4.15) to have

1 _ _ R
lep [lo < E(Kmax el + | K1 = Ko [l (oxsyll @ 1)
|| e H < (Kma:ccmaz Cmaw
pIe = BQsznCmm ﬁ2szn

Omaa: (1 + Kmax
B2Cmin Kmin

Ip—p"lo <

) I K70 = Ky syl f 22

) I K7 = Ky e oxayll f llze -

75

(5.4.27)

(5.4.28)

(5.4.29)

(5.4.30)

(5.4.31)

(5.4.32)

76

5.5 Deterministic spaces approximation

Let T} be a triangulations of D, h denotes the maximal diameter of the elements of
Ty,. Now for a given h and Tj, the space X} of discrete velocities that approximates
the space X is defined by XF = {#, € X; VK € Ty, vy, |x€ Pp(K)?}. The space QF
of the discrete pressure that approximates @ is defined by Qf = {w;, € Q; VK €
Th,wp, | k€ Pry1(K)}. Here Py(K) denotes the space of polynomials of degree < k on
triangle K. Note that any function v} in X has a zero divergence on each element

K and hence on D. For k = 0, the discrete spaces have the special piecewise forms,

Xh :X}? = {77h e X: Uh |K€ P0<K)2},

Qn=@Q) ={w, € Q :wy, |k€ Pi(K)}.

(5.5.1)

The functions (x,0) and (0, xk) for all K € T, form an orthonormal basis for
X, where g is the characteristic function of the triangle K. In analogy with the
continuous case, we introduce the discrete kernel 7, = {0}, € X} : b(0h,wy) =

0 Yw, € Qn}. Now we look for @), € X}, and py, € @y, such that

a(tin, Un) + b(th, pr) =0 Uy, € Xp,
(5.5.2)

b(ip, wy) =w) wp € Q.

The continuity of a(.,.) on X, x X, and b(.,.) on X, X @y, the coercivity of a(.,.)
on Zj can be done as in section 4.1. For the inf-sup condition: for any wy in @, we

take 7, = Vwy, and obtain the following inf-sup condition

b —

_ > B || wh || oy, (5.5.3)
fnexn || Th 220y

7

where B is a positive constant (the discrete inf-sup constant) independent of h. The
above argument gives the existence and uniqueness of the solution (i}, py) to (5.5.2).
Now, let X,=span {¢;}"; and Q) = span {¢;}"; where n = twice number of the

triangles in the mesh and m = number of nodes. Since 4}, € X} and p, € @), then

Uy, = Zuz’%’ Pn = Zpi@', (5-5-4)
i=1 i=1

as well as the basis of test functions v = ¢;, i = 1,..n and w = ¢;, j = 1,...,m. So

we put these in (5.5.2), to get the saddle point problem

A BT

IS

0
= : (5.5.5)

B 0 P /s
where u = [u1, ..., un)", p = [p1, ..., pm]". The block matrices A and B in (5.5.5) are
defined by [A];; = (K ¢4, ¢;) for 1 <4,j <nand [B];; = — (i, Vo;) for 1 <i<n

and 1 < j < m. The data f is given by [f]; = —(f, ¢;) for 1 < j < m.

5.6 Finite-dimensional noise

Since the random variables appearing in the KL— expansion are only uncorrelated,

we need to the following assumption, (see [33] and [13])

Assumption 4 The random variables &, in the expansion (5.4.17) are independent.

Let '), := &n(w), m = 1,..., M be bounded intervals in R, and assume that the
density functionsp,, : I, — RT of all &, are given. Let I' :==T'; x ... x I'j; C RM
denotes the range of the M-dimensional random vector £ = (&1, ...,&y) and let y =

(Y1, -..,ym) be a vector in I where y; = §;(w); j =1,..., M. From Assumption 3, the

78

joint density function of ¢ can be written as

p(y) = p1(v1)-..om(ynr), (5.6.1)

where p; is the density function of ;. The Doob Dynkin lemma [75] allows us to write
the velocity and the pressure as functions of x and £&. Now one can turns the original

stochastic equations (5.4.10) into deterministic parametric equations as follows

an (@™, ¥) + b(7,p™) = 0 v e X,

(5.6.2)
b(a,w) = —/Fp(y)/Df-wdxdy w e Q,

where X := X® L2(T') and Q := Q® L2(T'), with norms || v ||x:= ([, | 7 [I% p(y)dy)z
and || w [|q:= (Jp || w ||§{1(D) p(y)dy)2. The first bilinear forms ay(.,.) in (5.6.2) is
defined by

ay (U, v) = /p(y)/ Ky /i - vdedy Vi, v € X. (5.6.3)
r D

where K;;'(.,.) contains the parameterized coefficient

Ky (2,y) = ko(z) + Y v Ak (@)Y (5.6.4)

The well posedness of the solution pair (#(z,y),p(x,y)) € X x Q can be achieved
in analogs with problem (5.4.10) with assuming that K;;'(z,y) is bounded as in
Assumption 3 and replacing the tensor product spaces X and Q by the spaces X and
Q, respectively and (Q,F,P) by (', B, pdy) where p : I' = R™ is the joint probability

density function of the vector y and B is the Borel sigma algebra generated by I'.

79
5.7 Stochastic spaces approximation

As in the usual way, we need to chose suitable finite-dimensional subspaces Xj,,, C
X and Qnp C Q. These subspaces can be constructed by finding finite subspaces
for their components spaces X, @, and L?)(F). In section 5, we introduced finite
dimensional subspaces for the spaces X and () and now we have to construct a
subspace W,,(I') C L2(T') of demential N¢ < oo.

There are several constructions for ¥, in the literature. Tow of them are the ten-
sor product polynomials (TP) spaces and the complete polynomial (CP) spaces (see
[101, 68, 42], [44], [66], [43], [58] for using the complete polynomial (CP) spaces and see

also [8], [13], [40], [28], [56], [82] for using the tensor product polynomial (TP) spaces).

It is shown that when using a TP space as a basis, there is a basis, (called double
orthogonal), can be constructed for which the stochastic matrices are block diagonal
see [8], [9]. This diagonally properties of the stochastic matrices leads to decouple

the large system into small systems.

Using (TP) polynomials, the result is that dim(¥,) = N = (p + 1)™ where M
is the order of the (KL) expansion.

The best advantage of using (TP) polynomials (which are discussed in [8], [9], [28]
and [56]) is that one can decouple the resulted system into N systems each of which

is of dimension N, = N, + N,.

On the other hand,, if the complete polynomials (CP) space is used. In this case,

(M+P)!
M1P!

we obtain a basis of dim(V,) = N¢ = . As discussed in [34], there is no basis

as in (TP) space in which the coupled linear system can be decoupled into smaller

80

systems, and therefore, a coupled system os size N, N¢ must be solved.

In [35], it is shown that when all the random variables in the (KL) expansion are
uniformly distributed, a basis of Legendre polynomials is used [34].

Let U,(I") = span {¥; : i = 1,..., N¢}, the discrete tensor product spaces are given
by Xpp = X5, @ ¥, and Q,,,, = Qn ® ¥,. We introduce the tensor discrete kernel
Zhp = {Uhp € Xnp @ 0(Unp,whyp) =0 Ywp, € Qppt. Then the discrete version of

problem (5.4.21) is to find @)’ € X, and p)’ € Q,,, such that

aM(ﬁ%W Upp) + b(ﬁh,p,p%p) =0; Upp € X ps

(5.7.1)
b wny) = /F o(y) /D fwnpdedy; wny € Q.

The continuity of a(.,.) on Xy, x Xp, and b(.,.) on Xp, X Qy,,, the coercivity of
a(.,.) on Zy, can be showed as in section 4.1. For the inf-sup condition: for any wy,,

in Qy, ,, we take 77, equals to Vwy,, and obtain the following inf-sup condition

P L 1

- > B || w |l memm, (5.7.2)
FeXn p | 7 ||[L2]2®L,%(F)

where 3 > 0 is the discrete inf-sup constant for (5.5.3) and is independent of h and

p. The above discussion gives the existence and uniqueness of the solution to (5.7.1).

Theorem 7 Let h > 0 and let p > 1, then the discrete problem (5.7.1) has a unique

solution and the following bounds for the truncation error holds

— C —
| @™ =iy, Ix < 1+ =) inf [|a™ =7 x,
UEth
(5.7.3)

max | M

I
1™ = piy llo < uthx+(1+ﬁ) inf |lg—p" |l

qe Qh,p

81

where (@, p™) € X x Q is the solution of (5.6.2) and (@), py’)) € Xnp X Qy,, is
the solution of (5.7.1). The constants K, Kmaes and § are defined above (analog of

this theorem is given in Lemma 3.1. in [33]).
proof: Let e, = a™ — @' € X, and e) =p" —p)l € Q.

The orthogonality here is b(e”, w) = 0, YVw € Q,,. For any ¥ € X},, we have

H aM - ﬁ%p ||Xh :H ' — U+ - ﬁ%p ||Xh

[l =y Ix, <l @™ =0 x, + 1| 7=), [x,

., . . . 1 | (T — aM w) |
| @Y — @l <)@ — 7 lx, + sup
weq, |lw HQh
. . . 1 |b(17—ﬁM—|—ﬁ —ﬁM w) |
| @ — @k, <)@ — 7 x, + sup
weQ, | wllq,
Yy 1 b — @M w) |+ | bE — @ w) |
| @Y — @k, <)@ — 7 x, + sup
’LUEQh H w HQh
N B . 1 (v — M. w
1@ — @l <l @ = g, 4 sup PO T
2w T,

. . . . C
Il =y, lx, <[@ -7k, 3 I = I,

la™ =y, Ix, < 1+ =) inf || @ =7 x, .

veXy
(5.7.4)
Similarly for the discrete error of the presser, for any ¢ € Q,,
Bla—phyllq, < sup -
P " veXy, || v ||Xh
b(T, pM — pM) + b(T, ¢ — pM
_ Supl (¥,p ph,pz (,q —p™) | (5.7.5)
eXp 17 1%,

. | _a(uM - u%p’ 17) + b(ﬁa q— pM> |
= sup

7EX 17,

82

So, we have
Bl a—pip la, < Knaolll @ = @5 1) +C g =™ || 510
K. o 5.7.6
le=pip la, < ===l @ =y,)+ = la—p" |,
8 B
add || pM — ¢ || to both sides of the last equation
M _ M Komaz) —nr M
1™ = Phyp @, < 3 (Il @ —Uhp||)+ = la=p" I+ 10" —all
Kma:v — C
2™ =iyl < (" =g,)+ @+ =) [la—p" |
p g
K K? C
0" = piy la, < (%= +—Z=)inf (| @ =T) + (L + =)inf [[¢—p" |
S 5 32 gex, B4eq,
(5.7.7)
Since, we have
S oM _ o oM oM oM
U—Up,=U—U +U" —U,
. " (5.7.8)
p—ph,=p—p" +p" —pp.
Then, one can easily find the full error || v — uwy!, [|x, and || p — py’ |lq,-
5.8 Stochastic matrix structures
Inserting representation (5.4.20) of K~ and writing the trail functions as
Ne Ny Ne Np
() = DD Tuei@)), pi(a.8) =3 pudila) (5.8.1)
k=1 i=1

k=1 i=1

also the test functions as v(z,§) = ¢;(z)Vi(§), j = 1,..,Ny; I = 1,...,Ne and

w(x, &) = ¢j(x)¥(€), j =1,..,Np; 1 = 1,..., N¢ into (5.7.1) to get the saddle-point

83

problem
Al BlT u 0
R = . (5.8.2)
Bl 0 P f
In the above equation, the vectors u and p are represented as
Uy b1
U2 P2
u= , p= : (5.8.3)
| UNe | | PNe |

where uy, ...uy, are vectors of length N, and p,...pn, are vectors of length N,. The
1y, component of uy is wu;, and 4, component of py is p;. A similar representation

holds for the vector f

[fi]; = =) (f.¢5), J=1....Np (5.8.4)

The block matrices A; € RNuNexNuNe and By € RN»NexNoNe iy (5.8.2) are given by

Ay = (K™ i, 05) 0 0))

M (5.8.5)
= (ko1) Ve T1) + Y v A (b, 07) (€ i),

where j,1=1,...,N,, [,k=1,...,N¢ and

By = —((;, V) ¥,19)) = —(5, Vi) (§n T W), (5.8.6)

where j =1,...,N,, 1t =1,...,.N,, I,k=1,...,N¢. Integrals with respect to { and x
can be separated into a product of two integrals. This separation property and the

(KL) expansion (5.4.20) implies that the above matrices can be expressed as sums of

84

Kronecker products as:

where

M
A =Gr@ A+) G ® Ay, B; = Gy® B, (5.8.7)

m=1
[Aolji = (kowi, ;) € RV Ne - ji =1, Ny, (5.8.8)
[Amlii = V Ak, 0;) € RNNe i =1, N, (5.8.9)
[Bl;i = —(pj, V) € RN Ne 5 N, i=1,..,N,, (5.8.10)
[Golir = (Up0)) € RN Ne [k=1, N, (5.8.11)
(Gl = (EnUpY)) € RYNe [k=1, ... Np. (5.8.12)

5.8.1 Remarks

(i)

The matrices Ay can be seen as the (1,1)-blocks of (5.5.5) with the scaling k.
Also A,,, can be seen as the (1,1)-blocks of (5.5.5) with the permeability scaling
VAmkm. The matrix B is exactly the (2,1)-block of the (5.5.5) with out any

extra parameters.

When we use a basis (TP) mentioned in section 7, the saddle point problem
(5.8.2) leads to a coupled system of linear equations, whose dimension is N¢(NV,,+
N,) which is not easy to solve. In [8], Babuska, Tempone, and Zouraris proposed
a particular choice of basis functions (named double orthogonal polynomials)
for ¥, and they showed that the construction of this basis leads to solve an
eigenvalue problem. This basis allows us to decouple the system (5.8.2) into V¢
saddle point problems each of which of size N, + N,. In [7], Babuska, Nobile,

and Tempone provided a useful characteristic that is, the set {1, ?Z% of double

85

orthogonal polynomials of degree p satisfy

Jr i) (y)p(y)dy = b
Jr vi(W); (W) p(y)dy = Cidiy,

(5.8.13)

for each 1 <i,5 < p+ 1, C; are the p + 1 roots of the orthogonal polynomial
w € U, (I") with respect to the weight function p, (p: I' — R and I' C R),
and 0;; is the Kronecker symbol. The above useful characteristic can be seen in

details in (Lemma 2.1 in [7]).

(iii) The beauty of using our new formulation is that the matrices Ay and A,, are
diagonal. This good feature comes form the best choice of the discrete spatial
spaces. In additional, when we use the doubly orthogonal polynomials to span
the tensor product polynomials space that approximates the stochastic space,
the matrices Gy and G,, are diagonal matrices. These diagonal structures make
the matrices Al and él have diagonal structures. Hence, the inversion of the

matrix A; becomes an easy task.

5.9 Numerical examples

In this section, we will provide two numerical examples one for the deterministic
Darcy’s equation (5.4.1) and the second for the stochastic Darcy’s equation given in
(5.1.5). For the second example, we start by calculating eigenvalues and the corre-
sponding eigenfunctions for the operator given in (5.4.18). All numerical computa-
tions were obtained using MATLAB 7 installed on HP-laptop with intel Core 2 Duo

CPU processer and with RAM of 4 GB.

86

5.9.1 Eigenvalue problem

The KL expansion (5.4.20) of K~! requires calculating the eigenpairs of the integral
operator given in (5.4.18). To this end, we chose the domain D = [0,1] x [0, 1] and
we select the covariance function given in (5.4.18) with 7 = 2 and ¢ = 0.3 and we

approximate the integral by using quadrature approximation formula

/Du(y)c(x, y)dy ~ Z wru(pr) (T, pr), (5.9.1)

k=1

where {p1,...,p;} and wy, ..., w, are the quadrature and weight points, respectively.

From (5.4.18) and (5.9.1) we have
q
Z wru(pg)e(x, pr) = Au(z). (5.9.2)
k=1
We evaluate (5.9.2) at all points py, ..., p,

Zwku(pk)c(pi,pk) =Xu(p;) i=1,...,q. (5.9.3)

k=1

Now (5.9.3) is an eigenvalue problem

CU = AU, (5.9.4)

u(p1)

u(p2)

87

0.7

0.6

0.5

0.4r

0.3

0.2

0.1f

Figure 5 .1: The Eigenvalues

w1C(P17P1) w20(p1;p2) qu(plapq)

wic(pg; p1) Wac(Pg;p2) -+ Wec(Pg, Py)
Now it is easy to compute the eigenvalues and the corresponding eigenvectors of the
matrix C. Let A\j, Ao, ..., \; are the eigenvalues and 1, U, ..., 4, are the corresponding
eigenvectors of C' such that ug; ~ wu(p;) where @y is the eigenfunction of (5.4.18)
associate with \,. We order the eigenvalues from the largest to the smallest and plot
them in Figure (5.1). In this figure one can see that the eigenvalues are positive and
decreasing to zero. Figure (5.2),..., Figure (5.5) show the first four eigenfunctions

corresponding to the first four eigenvalues.

5.9.2 Five-Spot problem(deterministic)

In this subsection, we present numerical results for the problem (5.4.1). We use the
test problem (Five-Spot problem) in the domain D = [0,1] x [0,1] and we put an

injection well at the center of D and production wells at the corners of D with no-flow

-0.12

-0.14

-0.16

-0.18

-0.22.
60

e
W\ W

Figure 5 .4: Figenfunction

(SR
(KA
QL KEINIKRXXX

(EESKLLIR

OS2

S XA
s W0 aarttts

(55 2
TR Yy
R
SRR 001

s QKNI

J
%y
7

Utry
1
"y
7%

60

Figure 5 .3: Second Eigenfunction

Vil it
it gtroed
il iz
iy U g U
. gyl
. g
iyl i
ol I'Illlzllll%””/lll%%}/’
il

SRR
RS
R
SRR
RN

Uil
/II[,, II[I ,
il

oMl

A7
01 010,00y
STl
,4:!3':'31":',"}',"7!':{('//,

Figure 5 .5: Fourth Eigenfunction

38

89

conditions on the boundary. The data f = 0 in whole D except at the center and
the corners i.e f(0,0) = f(1,1) = f(1,0) = f(0,1) = —1 and f(0.5,0.5) = 1. We use
the pde-tool box to generate a mesh with 1024 triangles and 545 nodes. Figure (5.6)
shows the used discritization mesh. The spaces of the piecewise linear and piecewise
constant given in (5.5.1) are used as the discritization spaces for the pressure and the
velocity, respectively. Figure (5.7) shows the contour while Figure (5.8) shows the
surface of the pressure given in (5.5.5). In these figures the pressure is high at the
center (injection well) and low at the corners (production wells) as well as the velocity
behavior which is plotted in Figure (5.9). The contour of the velocity components

(u®,u¥) are plotted in Figure (5.10) and Figure (5.11).

5.9.3 Five-Spot problem(stochastic)

In this subsection, we present numerical results for the stochastic problem (5.1.5).
We use the same test problem used in the above section (Five-Spot problem) with
unknown random permeability K~!. We use the set of tensor product polynomials
and we solve N saddle-point systems each of which is of dimension (N, + N,) .
We use uniform random variables on [-1,1] for the stochastic input and construct
the stochastic bases using Legendre polynomials. For the spatial discretization, we
generate a mesh with 1024 triangles and 545 nodes. Figure (5.12) shows the used
discritization mesh and we use the discrete finite subspaces V;, and W), as given in
Section 5.5 which approximate the velocity and the pressure spaces, respectively.
We use the double orthogonal polynomial to spans a basis which approximate the
stochastic space. We solved these 81 linear systems by using the built in MATLAB-
linear solver. Figure (5.13) and Figure (5.14) show the surface and the cantor of the

pressure mean respectively. In these Figures, the pressure is high at the center and

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100F

90|

80

701

60

50

401

30

20

10F

KK

X

0.2

0.4

0.6

0.8

Figure 5 .6: Shape of the Mesh

10

20

30

40 50

60

70

80

90

100

Figure 5 .10: The Velocity of u”

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

100

920

80

701

60

50

401

30

20

10

r

-

10

20

30

40

50

60

70

80

90

100

Figure 5 .7: Pressure Contour

90

-2

-4

-8

IR N S

100F

90

80

701

60

50

401

30

20

10f

10

20

30

40

50

60

70

80

90

100

Figure 5 .11: The Velocity of uY

0.02

0.015

0.01

0.005

-0.005

-0.01

-0.015

-0.02

91

low at the corners the same as the deterministic problem. The variance of the pressure
is plotted in Figure (5.15). The velocity means of the (x,y) components (u”, u¥) are
plotted in Figure (5.16) and Figure (5.17) while variances of (u®,u?) are plotted in
Figure (5.18) and Figure (5.19). For more details in the stochastic computation, see

the following.

Velocities and pressures mean and variance Calculation

Here, we show the process of computing the mean and variance to the velocities and

pressure. Since we have

Ne Ny Np
(0, 8) =D i) UR(E), pl(x.€) = ZZm@ (5.9.5)
k=1 i=1 k=1 i=1

Once u and p have been computed it can be post-processed to obtain the mean
and variance of @} (z,€) and py’ (z,£). We start by the pressure and then by the
velocities.

Pressure mean:

p

Ne Ny Ne Ne
php x y Zzpz k¢z Z sz k¢z y) = Zpk\pk(y)> (596)
k=1

k=1 =1 k=1 i=1

where P, = S0, pik¢i(x) is the k — th column of p. Now from the definition of the

expectation, we have

E[py(,y)] I/p%p(r y)p dy—/ZPk\Ifk)dy
b (5.9.7)

Ne

—ZPk/ dy—ZPkEw)l

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

100

90

80

70F

60

50|

401

30

20

10

0 0.2 0‘.4 0‘.6 O; 1
Figure 5 .12: The Mesh
' | | | | | | | ‘ 0.01
: 0.005
. 1 fo
: -0.005
L . .) . .) 1 ‘ -0.01
10 20 30 40 50 60 70 80 90 100

Figure 5 .14: Pressure-mean Contour

100F

90|

80r

701

60

50

401

30

20

10F

.
10 20 30 40 50 60 70 80 90 100

Figure 5 .16: Mean of u”

x 10"

10 20 30 40 50 60 70 80 90 100

-0.02

-0.04

-0.06

-0.08

~

o

o

IS

w

N

=

0.015

0.01

0.005

-0.005

-0.01

-0.015

92

0.01
A 0.005

// 0
T \\ -0.005

1
0.8
0.5 0.6
0.4 -0.01
0.2

Figure 5 .13: Pressure-mean Surface

100

100F

90

80

701

60

50

401

30

20

10f

d

10

20 30 40 50 60 70 80 90 100

Figure 5 .15: Pressure Variance

1
10 20 30 40 50 60 70 80 90 100

Figure 5 .17: Mean of u¥

x10°
16

-0.02
-0.04
-0.06

-0.08

x 10"

10 20 30 40 50 60 70 80 90 100

~

o

o

IS

w

N

-

93

Where any element in the set {\Ifk(y)}fjil is a product of double orthogonal polyno-
mials {v; f:ll where p is the total degree of the Legender polynomial. For example

for M =4 and p = 2 we have ¥}, = Hj]\i?l ¥;(y;). In this case

Wy = P (y)r (y2) 1 (y3)b1 (ya),
Wy = 1 (y1) 1 (y2) 1 (y3) 2 (ya), (5.9.8)
W3 = 1 (1)1 (Y2) V1 (y3)¥3(va)-

and so on.

Pressure variance:
We know that Var[py!] = E[p%f] — (E[pp"])*. The second moment of the pressure

is calculated as follow

N§ Ng Nf
2
Blp)l,] = (i) = Z Plu(y), 2 Pla(y)) = D PeP(Wa(y), Unly)) = > P
k=1 k=1 k=1
(5.9.9)
Then Var[p;!] = foil P’ — (Elpy)%

For the velocities, at the beginning, we consider the odd row components to be v*
and the even to be v¥ and then we compute both v* and v at the nodes (because we
calculated the velocities in each triangles). After this step, we evaluate the v"—mean,

vY—mean, v*—variance and vY— variance as we did for the pressures.

Stochastic matrices

We have
[Golir = (Em PR, (5.9.10)

94

where W, is a product of the double orthogonal polynomials ;. Hence, all the

matrices G, are diagonal. This means that

[Gnliek = (EmVeWe) = (£ T4%). (5.9.11)

Now, we can write ¥, in term of v, and taking the expectation of the product of y

and their square.

In the case of the matrix [Go)i;, we have & = 1 and then then [Gol; = (V%) = 1.

This is by the orthogonality and hence the matrix Gy is the identity matrix.

Double orthogonal polynomials

For the construction of the stochastic subspace, we choose the order of (KL) expansion
(M = 4) and we chose the total degree of the orthogonal Legendre polynomial p = 2.

The first (p + 1) three orthogonal Legendre polynomial of degree 2 or less are

Piy) = 1. Pi(w) =, Poly) = 5(35" — 1) (5912

They form an orthogonal basis in L*(I) where I = (—1,1) with the weight function
1 and they satisfy

! 2
/_ PPN = s, (5.9.13)

where 0,,, is the Kronecker delta. We also use the eigenpairs (A, k,,,) calculated in
the subsection 5.10.1.
Here we construct the double orthogonal polynomials to span the tensor product

space W,(I') that approximates L2(I").

95

To this end, let C; (1 < j < p+ 1 = 3), be the three roots of the p-orthogonal
Legendre polynomial (5y* — 3y = 0) where p is the p.d.f. of the Uniformly distribu-
tion.

At the beginning, we find the Lagrange polynomials basis L1 (y), L2(y) and L3(y) as-
sociated with these three roots such that they satisfy L;(yx) = 6z, & = 1,2,3. Let
{a;}3_, denotes the set of the double orthogonal polynomials (which are resulted from

the Lagrange polynomials on the three nodes (roots))

Then as we know

Liy) = e = CQ;ECI Gy’
La(y) = as (c(*:z - 83%2__029, (5.9.15)
R ey
To find a;, i = 1,2, 3, one can use the orthogonality condition. Now, let
Uily) = SLaly) = 50— 2),
Pa(y) = ?Lﬂy) = gy(y + \/g), (5.9.16)
Ualy) =\ 5 L) = 1 Suly = 3)

96

Note that when Hermite polynomial of degree 2 or less are used (which is not our

case), the corresponding double orthogonal polynomials can be written as

dnly) = Llj? -z
boly) = 2W) _ vy + V3) (5.9.17)

V6 V6o
_ Liy) _yly—v3)
V6 Ve

V3(y)

Note that the above set {1;}?_; given in (5.9.16) satisfies the conditions in (5.8.13)
and any element in the set {\I/Z}ZN:T *! can be written as a product of those polynomials
{}2 ie fork=1,..,81, U = Hj]\i?l 1;(y;) (see [33] for more details). Note that
the first three orthogonal Legendre polynomial on [—v/3,v/3] with weighted function

1
3 are

P(y) =1, P(y) =y, Py = \/75(2_1). (5.9.18)

Then, the corresponding double orthonormal polynomials can be written as

_ 0

nly) = - = 3),
5 3

valy) = [gy + %)7 (5.9.19)
5 3

Y3(y) = Ey(y - ﬁ)-

The advantage of the construction of the double orthogonal polynomials is to decouple
the resulting huge linear system (5.8.2) of size N¢(N, + N,) = 81(1024 + 545) into 81
saddle point problems each of which of size (1024 4 545).

Remark 8

The Matlab-codes for the computation of this chapter can be found in Chapter 8.

97

5.10 Conclusions

In this chapter, we introduce a new stochastic formulation for mixed Darcy’s equa-
tions. This formulation leads to reduction of the computations’s cost. Analysis of
the discretization of this formulation is presented. Moreover, we use the double-
orthogonal basis to the stochastic space. This basis leads to digitalized the stochastic
matrices. This property leads to decouple the system. In other words, instead of

solving a single large system, we solve decoupled systems of small sizes.

Chapter 6

PRECONDITIONING
TECHNIQUE FOR STOCHASTIC
DARCY’S EQUATIONS

98

99

6.1 Introduction

In this chapter, we consider the following decoupled linear system

At BT u’ 0
= - (6.1.1)
B 0 p f'
Ci
Where A given by
A= Ag+ G(1,)A; + ... + G(M, i) Ay, i=1,..., Ng, (6.1.2)

and G(M,i) = [Garli. As we mentioned in the previous chapter, the above system
results from discretization Darcy’s equations with stochastic coefficients after per-
muting the N¢ blocks of unknowns as in (5.8.3). This decoupling property is resulted
of using the so called double orthogonal polynomials as a basis for the stochastic
subspace V.

So, we have N¢ saddle point system each of which of size IV, + N,. The first saddle

point system is in the form

Al BT u! 0
- . (6.1.3)
B 0 p! f!
1
C

where A' = Ag+G(1,1)A; + ...+ G(M, 1) Ay and so on. In the previous chapter, we
solved the decoupled system by using the built in MATLAB- linear solver (slash
solution). In this chapter, we propose several preconditioners to solve the Ng-linear
systems. These preconditioners are based on block-diagonal preconditioners for the

deterministic saddle-point system (5.5.5). Moreover we study the eigenvalues bound

100

of their preconditioned matrices. Finally, we mach the driven bounds of the eigen-
values with some numerical examples. Hence, it is better to start by preconditioning

the deterministic Problem.

6.2 Deterministic problem

Consider the following linear saddle point system

A BT

IS
[

= : (6.2.1)
B 0

I3
[~

C

The above saddle point linear system results from the [L*(D)]* x (H*(D) N L(D))
finite element method (FEM) for Darcy’s equations.

The advantage of using this formulation is that the (1,1)-block of the coefficient matrix
of the system (6.2.1) is diagonal and the Schur complement matrix, S = BA~!BT is
the discrete analog of the Laplace operator L = —(kV-V) where k is the permeability
coefficient. These advantages lead to an efficient solution to the problem. In this
section, we introduce an efficient preconditioner for the system (6.2.1). The advantage
of the preconditioner is to give a fast rate of convergence of the used iterative method.
This preconditioner has two nice properties. The first property is that the (1,1)
block is a diagonal matrix while the second one is that the (2,2) block is the well
known discrete Laplacian matrix. The diagonal property leads to cheap inversion
and the well known Schur complement suggests using algebraic multigrid (AMG)
[74]. Also, another block diagonal preconditioner is presented. This preconditioner
comes from the matrices representation of the discrete velocities and pressure norms.

This preconditioner is called the natural preconditioner [79]. In both preconditioners,

101

we use the minimal residual method (MINRES) as an iterative solver.

6.2.1 Preconditioners for the deterministic problem

To construct our preconditioners, we need to introduce the discrete representations
of the norms in term of matrices. Before doing this task, let us define the velocity
mass matrix M € R™"™ the velocity weight mass matrix A € R™" the pressure
gradient matrix G € R™*™ the pressure mass matrix N € R™*™ and the Laplace

scaling matrix L € R™*"™ as follows:

M;; = (pi, 05), 1<id,j<n.
Ay = (k7 01, 05), 1<4,5<n.
Gij = (Vi, Vy), 1<i,j<m. (6.2.2)
N = (65,9, 1<ij<m

Now for any v, € X}, and g, € @y, the discrete representations of the norms can be

written as

| @ |22 = v" M,
| @ |lz2 = ¢" Ng, (6.2.3)
| @ |lm = ¢" (N + G)g,

The proposed preconditioners are given as

A0 A0
P = Py = , (6.2.4)

0 Lanmc 0 N+G

In (6.2.4), L represents the action of algebraic multigrid cycles applied to the

Poisson problem. The main key in the first preconditioner is the relationship between

102
B, L and A. This relationship is given in the following lemma.

Lemma 1 L = BA7'BT. Proof: Consider the following operators

BZXh—>Qh, MZXh—)Xh,AZXh—)Xh,LZQh—)Qh, (625)

and consider the following matrices in the operator forms. That is,

(Bap, z1) = (V- ap,21), Yo, € Xp, Vzn € Qn,
(BTZh,$h) = (Vzh,xh), V[Eh € Xh, VZh € Qh,

(Azp,yn) = (K '2h,yn) = (@, K 'yn), Yau, yn € X,

(6.2.6)
(LZh,Zh) = —(szh,Vzh), Vzh c Qh,
(Mzp, yn) = (Tn, Yn), VIn, yn € X,
(ME ™ ap,yn) = (K zn, un) = (Azn,yn), Yo, yn € X,
Now, with using the above defections and using (V - xp,zp) = —(xn, Vzp), Yo, €
Xn, Vzn € Qpn, we have

(LZh, Zh) = —(I{JVZ;“ Vzh)
= —(Vzh, szh)

= —(BTZh, szh) (627)

= — (BTZh, Mszh)

= (BA_lBTZh, Zh),

which proves the above lemma.

103

6.2.2 Eigenvalue analysis

Murphy, Golub and Wathen proved that the eigenvalues of the preconditioned matrix

P;C, independent of the mesh size h, are only three distinct eigenvalues
1 1
5(1—\/3),1,5(1Jm/6). (6.2.8)

For the eigenvalues of P, 'C, we use the following theorem

Theorem 8 (Lemma 2.1 in [84]) Let
A= (6.2.9)

be a symmetric, nonsingular, and indefinite matriz and let 0 < py < po < ... <y, be
the eigenvalues of A, 0 < 01 < 09 < ... < gy, the singular values of B, and denote by

A(A) the spectrum of A. Then A(A) C I =1~ UIT where

1 1
I~ = [§(u1 —\/ 13 +402), §(un —\/ 12 +407)],

1

I = [, 5 (kn = V/pi + 4o,

(6.2.10)

Theorem 9 The eigenvalues of Py *C' lie in the union two intervals

[%(1 _ /14402, %(1 _Ji+4ed) U, %(1 + /I d02)], (6.2.11)

where o1 and o, are the smallest and largest singular values of the matrix (N +
G)z BA®.

Proof: We start expressing the conditioned matrix P, 'C in a generalized saddle

104

1 -1 B
point matrix. P, 'C is similar to Py (P, 'C)P,> = P> OP,> =

AT 0 A BT AT 0
— 1 1 (6.2.12)
0 (N+G)= B 0 0 (N+G)=
A3 A5 BT AT 0
— 1 1 (6.2.13)
(N+GQ)z 0 0 (N+G)=z
I AT BT(N+G)=
— 1 1 (6.2.14)
(N+G)z BA? 0
I BT _
= =A (6.2.15)
0

Now using Theorem 8, one can obtain the results.

6.2.3 Numerical computations

In this section, we investigate the efficiency of the two preconditioners P, and P,
given in (6.2.4) via several computations. We solve the saddle point system (6.2.1)
by PMINRES method and observe the iteration numbers. It is known that in each
PMINRES iteration, we solve a linear system of the form Px = y. To solve this
system, we use the black-box AGgregation-based algebraic MultiGrid (AGMG) solver
for the (2,2) block (see [74] for details).

Example 7 Here, we consider the well known five spot problem (5.1.5) in the domain
D = 1[0,1] x [0,1]. In this problem, we place an injection well at the center of the

domain and production wells at the corners and specify no-flow conditions at the

105

| b, iter. NO. | h=1/4 [h=1/8 | h=1/16 [h=1/64 |
B | 10 [8 | 6 [4 |
LA | 2 [2 | 2 [2 |

Table 6 .1: k1 =1

| b, iter. NO. | h=1/4 [h=1/8 | h=1/16 | h=1/64 |
| P, [20 | 18 [16 [14 |
LA [2 | 2 [2 | 2 |

Table 6 .2: k71 =1+ 22 + 9>

boundaries. In other word we define the data function f as follows

L if (,y)={(0,0),(1,0),(0,1),(1,1)};
fley) = =1, if (wy)={(1/2,1/2)}; (6.2.16)
0, otherwise.

We solve the resulting linear system (6.2.1) using PMINRES with P, and P, as pre-
conditioners. We chose the tolerance to be 1le —8 and we record the iteration numbers
for different meshsizes and different coefficient k=t. The iteration numbers are tab-
ulated in Tables (6.1-6.3). Table 6.1 is obtained when k= = 1, Table 6.2 when
k™' =1+ 2® + y* and Table 6.3 when k™'(x) = exp(x) + exp(y). We plot the log-
arithm of the L?> norm of the ratio % .vs. the iteration numbers for different

mesh size and when k—'(x) = exp(z) + exp(y) see Figures (6.4-6.7) From Tables

(6.1-6.3), we observe that the number of PMINRES iterations by using P, are less

| b, iter. NO. [h=1/4 [h=1/8 [h=1/16 | h=1/64 |
| Py | 22 | 20 | 18 [16 |
LA [2 | 2 [2 | 2 |

Table 6 .3: k~'(z) = exp(x) + exp(y)

-10

-15

-8

-10

-12

-14

-16

-18

T T
—©&— N+G-based Preconditioner|
—— L-based Preconditioner

10

15 20

Figure 6 .1: when h =1/4

25

T T T T
—6— N+G-based Preconditioner|
—*— L-based Preconditioner

10 12 14 16

18

-8

-10

-12

-14

-16

-18

-10

-12

-14

-16

-18

T T
—©&— N+G-based Preconditioner|
—— L-based Preconditioner

10 15 20

Figure 6 .2: when h = 1/8

T T T T
—©&— N+G-based Preconditioner|
—*— L-based Preconditioner

Figure 6

A4: when h =1/64

+a27 +y [k() = ex

(z) + exp(y) |

CINGINGIENY k)

Table 6 .4: P ,MINRES iterations NO.

106

107

than the number of PMINRES iterations by using Py. Hence, PMINRES with using

Py as a preconditioner is more efficient.

In the next two examples, we only consider the first preconditioner P;.

Example 8 In this example we show that the number of PMINRES iterations with
Py are independent of the mesh size and the permeability coefficient. We solve the
same problem as in Example 8 with varying the mesh sizes and the permeability k= (z)

and list the number of iterations in Table 6.4.

Example 9 In this example we also solve the five spot problem by PMINRES and Py
as a preconditioner in the domain D = [0,1] x [0, 1] with data function f defined as
above. The shape of the used mesh (16384 triangles and 8321 nods), the pressure and

the velocities are plotted in Figures (6.8-6.13).

6.3 Preconditioners for the decoupled stochastic
system

In the following, we shall construct preconditioners to the stochastic Galerkin equa-
tions (6.1.1) based on the deterministic preconditioners given in the above section.

First, we use the following preconditioner:

6.3.1 Laplace preconditioner

where Ly = BA;'BT.

108

Figure 6 .5: Shape of the mesh Figure 6 .6: Velocity distribution

x10™ x10™

o gy
. 4

1 90 4 M1

80 1

70¢ 1

o
[=Y
.

60 q

0 50l - | o

40f 1

30 1

20 1

10i‘ | | | | | | | | ‘

10 20 30 40 50 60 70 80 90 100

Figure 6 .7: Pressure surface Figure 6 .8: Pressure cantor
x10° x10°
100 i i i i i i i i i 100 i i i i i i i i i

90 1 90 1

1 1
80 1 80 1
70F 1 Fqos or 1195
60 1 60 1
501 e 4 71° 50 : 1771°
40 1 40f q

-05 -05
301 1 301 1
20 1 20 1

-1 -1
10+ — 10+ E

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Figure 6 .9: The u” velocity Figure 6 .10: The uY velocity

109

Eigenvalues bounds of P; 'C"

Theorem 10 The eigenvalues of P, LC% lie in the union two intervals

1 .. . 1 .. 4 o1 .
(5 Wonin =V Xin” 40, 5 N = V A + DU Wi 5 N+ Nae” + 4],

(6.3.1)

and \!

! . are the smallest and largest eigenvalue of the matrix Ay 'A%, i =

where \¢ .
s oeey Ve
Proof: We start expressing the conditioned matrix P; 'C'in a generalized saddle

, B |
point matrix. P; 1A’ is similar to P> C'P,*> =

AF 0 A BT || Az o
- . . (6.3.2)
0 L B 0 0 L
:AAA AZBT || A7 o
0) 0 0
LEB 0 0 L
:A(flAAOQl AZ BTLE
=Y (6.3.4)
L2 BA? 0
AgtA; BT s
- _y (6.3.5)
B o0

Now using Theorem 9, one can obtain the desired result. We use the MINRES with
the above preconditioner as a linear solver. We generate a small mesh contains 16
triangles with 13 nodes to compute the eigenvalues of the preconditioned matrix.
We set the maximum iteration =100 of the linear solver and the tolerance =1le-5.
Here, we chose M=4 and P=2 and we use the Uniform distribution with Lagender

polynomial. The computation results are listed in Tables (6.5) and (6.7).

110

’ i \ Iter \ Bounds H Computed eigenvalues ‘
1 8 [-0.6180, -0.6180] U [1, 1.6180] [-0.6180, -0.6180] U [1, 1.6180]
10 | 11 | [-0.6360, -0.6008]U[0.9363, 1.6645] || [-0.6357, -0.6011] U[0.9373, 1.6637]
20 | 9 | [-0.6417, -0.6060]U[0.9168, 1.6502] || [-0.6413, -0.6063]U[0.9179, 1.6495]
30| 9 | [-0.5776, -0.5679]U[1.1539, 1.7607] || [-0.5776, -0.5679]U[1.1539, 1.7607]
40 | 10 | [-0.5947, -0.5519]U[1.0867, 1.8119] || [-0.5920, -0.5525]U[1.0940, 1.8100]
50 | 7 | [-0.5958, -0.5488]U[1.0825, 1.8221] || [-0.5913, -0.5522]U[1.0938, 1.8114]
60 | 9 | [-0.6954, -0.6550]U[0.7427, 1.5267] || [-0.6946, -0.6557]U[0.7450, 1.5251]
70 | 9 | [-0.6943, -0.6445]U[0.7459, 1.5516] || [-0.6936, -0.6474]U[0.7461, 1.5446]
80 | 8 | [-0.7027, -0.6398]U[0.7205, 1.5629] || [-0.6977, -0.6454]U[0.7294, 1.5500]
81| 8 | [-0.6995, -0.6370]U[0.7302, 1.5698] || [-0.6957, -0.6415]U[0.7349, 1.5592]

Table 6 .5: Bounds on the eigenvalues of P, 'C!

6.3.2 Natural preconditioner

Here, we use the Natural preconditioner

Ao 0
Py =
0 N+M

given in above section.

Eigenvalues bounds of Py'C"

Theorem 11 The eigenvalues of P&lCi lie 1n the union two intervals

1, .. [1 .) . 1, .. [
[i(A:nm_)‘;an + 41/"2)’ Q(A:nax_)‘znaxQ + 4V12)]U[)‘:m'n’ 5()‘;nax+)\271(1302 + 4Vn2)]7

(6.3.6)

where vy and v, are the smallest and largest eigenvalue of the matrix (N + M)~ L
and X! . and \! are the smallest and largest eigenvalue of the matrix Aj'A*, i =

1,..., Ne. The proof is similar to the above proofs. We also use the same numerical

example given above. The results of this computation are listed in Tables (6.6) and

111

’ i \ Iter \ Bounds H Computed eigenvalues ‘
1 8 | [-0.6154 -0.5290] U [1.0000 1.6154] || [-0.6154, -0.5290] U [1.0000 1.6154]
10 | 11 | [-0.6333 -0.5130]U[0.9363 1.6619] || [-0.6304, -0.5288] U[0.9373, 1.6573]
20| 8 [-0.6390 -0.5178]U[0.9168 1.6476] [-0.6354, -0.5288]U[0.9179, 1.6444]
30 | 8 [-0.5750 -0.4828]U[1.1539 1.7582] [-0.5728, -0.4841]U[1.1539, 1.7561]
401 9 [-0.5921 -0.4681]U[1.0867, 1.8094] || [-0.5873, -0.4838]U[1.0940, 1.8049]
50 | 7 [-0.5932 -0.4653)U[1.0825 1.8196] [-0.5861, -0.4839]U[1.0938, 1.8050]
60 | 8 [-0.6926 -0.5636)U[0.7427 1.5240] [-0.6887, -0.5801]U[0.7450, 1.5190]
70| 8 [-0.6916 -0.5537]U[0.7459 1.5489] [-0.6886, -0.5799]U[0.7461, 1.5391]
80| 8 [-0.6999 -0.5494]U[0.7205 1.5602] [-0.6920, -0.5798]U[0.7293, 1.5435]
81| 8 [-0.6967 -0.5467)U[0.7302 1.5671] [-0.6905, -0.5798]U[0.7349, 1.5519]

Table 6 .6: Bounds on the eigenvalues of Py'C!
’ 1 ‘)\:na:(: ‘)\an ‘

1 1 1

10 | 1.0637 | 0.9363
20 | 1.0443 | 0.9168
30 | 1.1928 | 1.1539
40 | 1.2600 | 1.0867
50 | 1.2732 | 1.0825
60 | 0.8717 | 0.7427
70 | 0.9071 | 0.7459
80 | 0.9231 | 0.7205
81 | 0.9328 | 0.7302

Table 6 .7: Maximum and minimum eigenvalues of A;' A
(6.7).

6.3.3 Exact Schur complement preconditioner

Here, we use the following preconditioner

Ps =

Al 0
0 S'=BA'BT,

112

where A’ is given in (6.1.2). In this case, the eigenvalues of the preconditioned matrix
P~1C; are only three 1, @ and % and PMINRES needs only 2 iterations to

reach the solution with the same tolerance as in the above two examples.

6.4 Conclusion

We solved the decoupled systems given in Chapter 5 by using preconditioner tech-
nique. We present three preconditioners for the deterministic problem and test their
performance in several numerical examples. Moreover, we study the eigenvalues anal-
ysis of their preconditioned matrices. Finally, we purpose also three block diagonal
preconditioners for the stochastic problem. These preconditioners are based on the
preconditioners of the deterministic problem. We study the bounds of the eigen-
values and match these bound by numerical examples. Moreover, we examine the

performance of these preconditioners through several examples.

Chapter 7

CONCLUSION AND FUTURE
WORK

113

114

7.1 Conclusion

In this dissertation, we consider two saddle point system of equations. The first sys-
tem arises when the total variational regularization is applied to solve an ill-posed
problem (image deblurring problem) while the second system results from the dis-
cretization of the ([L*(D)]* x L2(Q)) x (H(D)N L3(D) x L3(Q)) formulation for the
stochastic Darcy’s equations. These system are huge and ill-conditioned. Hence, the
numerical solutions to these system represent a big challenge. This challenge attract
us to work with these system. In chapter 3, we use the total variation as a regulaza-
tion term to stable the minimization of the image deblurring problem. This type of
the regulazation is not easy to compute but it gives a good result. In other words, the
reconstruction image has no ringing or oscillation as in the Tikhanov regulazation.
We also introduce the mathematical model behind image deblurring problems. The
main our contributions in this chapter is that this is the first studies for the mixed
formulation of the image deblurring problem. In Chapter 4, we propose several pre-
conditioners which is the main our contribution in this chapter. Moreover, we study
the eigenvalues bound of their preconditioned matrices and mach the theoretical re-
sults by numerical examples. The proposed preconditioners depend on the circulant
matrices. This circulant matrices allow us to use the fast Fourier transform to do the
matrix-vector multiplications. This transform reduces the cost of the computations
and also the storage. Moreover, we compare between the preconditioners through
several numerical examples. The last contribution in this chapter is that we use two
positive parameters to enforce the clustering behavior of the eigenvalues and then to

have a convergence with few iterations.

For the second system of equations which is resulted from stochastic Darcy’s equa-

115

tions, in Chapter 5, we use the well known stochastic Galrkin finite element method.
In this method we use the standared finite element method to discretized the spatial
space while the tensor polynomial spaces is used to generate a basis for the stochastic
space. We also expand the random field by using the well known KL-expansion. In
this expansion, the random field is written as a summation of product of two functions
one is deterministic and the second is a random variable with scalar terms come from
the spectral analysis of the KL-expansion. The mean our contribution in this Chapter
is that we introduce a new formulation and study the analysis of this formulation (ex-
istence, uniqueness and error analysis). This formulation leads to more reduction of
the compactions because the (1,1)-block matrix in the coefficient matrix of the saddle
point system is diagonal. This diagonally property leads to easy inverse computations.
Finally, we solve the deterministic and stochastic examples (Five-spot problem). In
Chapter 6, we start showing that the Shur complement of the deterministic problem
is the Laplace operator. Moreover, we introduce more effective preconditioners for
both deterministic and stochastic problem which are the main our contributions in
this chapter. These prconditioners have the diagonally structure property of their
(1,1)-block matrix. We also studied the eigenvalues analysis of all preconditioners.

Finally, we test their performance through several example.

7.2 Future works

The present study opens many possible future directions
e The image deblurring problem can be studied with different regulazation term.

e The image deblurring problem can be studied without given kernel (blind de-

blurring)

116

The image deblurring problem can be studied with using color images.

The image deblurring problem can be studied with using finite element methods

instead of finite difference methods

The image deblurring problem can be studied with using different boundary

conditions.

The image deblurring problem can be studied with using two-level finite element

methods.

The stochastic problem can be studied in which the right hand side is random

field also.

The stochastic problem can be studied with using wavelet basis or complete

basis instead of tensor product basis.

The stochastic problem can be studied in which the random field 7" is in the

second and right hand side terms not in the first term.

The stochastic problem can be studied with using modified Gaussian random

field instead of uniform.

The stochastic problem can be studied by using two-level decoupling the coupled

system instead of using double orthogonal basis.

The stochastic problem can be studied by using two-level method for reducing

the order of the used polynomials.

The stochastic problem can be studied by using two-level method for determin-

istic the stochastic problem.

Chapter 8

MATLAB CODES

117

118

%%This code uses to remove the blurry from digital images.

%%Through this code, several functions are used.

%%These functions are written below of the code.

clear, close all

u_exact = double(imread(’retinal.PNG’));

%% double(imread) is used to read images as a matrix.
u_exact=u_exact(1:512,1:512,1); %% resize if it is not square.
N=size(u_exact,1); kernel=ke_gen(N,300,10);

%% This function generates a certain kernel or PSF

%% with radius=10 and tau=300.

n =256; %% Resize the orginal image, the kernel to reduce the problem.
u_exact=imresize(u_exact, [n n]);

kernel=imresize (kernel, [n n]);

nx=n; ny = n; hx = 1 / nx; hy = 1 / ny; N=n;

%% Extend kernel to be of size the original image and compute its 2-d FT.
%% Then use this to compute K’*z and Kx*k.

kernel=kernel/sum(kernel(:)); m2 = 2%n; nd2 = n /2;

kernele=zeros(m2, m2); kernele(nd2+1:n+nd2,nd2+1:n+nd2) = kernel;

%% extension the kernel. fftshift(X) swaps the first quadrant with the third
%% and the second quadrant with the fourth.

k_ext = fftshift(kernele); k_hat = fft2(fftshift(kernele));
clear kernele %7 To reduse the storages
beta =0.01; alpha = 0.00008; n = nx"2; m = 2*nx*(nx-1); nm =

n+m; gammal = 1; gamma2 = 1; gammaO=1; %/ The input parameters

computeB; U = zeros(nx,nx); [D] = computeD(U,nx,m,beta);

L=B’*inv(D)*B; figure;

imagesc(u_exact) ;s=sprintf (’exactimage’) ;s=title(s);colormap(gray);
%% imagesc is used to plot data from a 2-D matrix.

z = integral_ke(u_exact,k_hat,nx,nx); J Blur the exact image
figure;

imagesc(z) ;ss=sprintf (’bluredimage’) ;ss=title(ss);colormap(gray)
zv = z(:); b2 = integral_ke(z,conj(k_hat) ,nx,nx);

b=[sparse(m,1); -b2(:) 1; %% The right hand side

xprecond =0; %% zero if MINRES with out preconditioner is used
%% or =1 with preconditioner.

maxit = 500; tol=le-2; tolconjgrad = le-2;

u0 = zeros(length(b),1); %%or you can take z as initial data.
t=restrict (ifft2(abs(fft2(k_ext))."2));
t_ext=(embed((embed(t))’))’; t_ext_hat=fft2(t_ext);
ul=zeros(nx,nx); ul(l,1)=1; rowl_K=integral_ke(ul,k_hat’,nx,nx);

coll_K=integral_ke(ul,k_hat,nx,nx);

%%—- If You Need To Use The Preconditioner P_T Do The Following-

rowcol=[rowl_K;coll_XK];

hth=—===== If You Need To Use The Preconditioner P_S Do The Following-

rowl=reshape(rowl_K,nx,nx); coll=reshape(coll_K,nx,nx); c=[];

for k=1:nx; t=[coll(nx:-1:2,k)’,rowl(:,k)’]; [s]l=strang_cir(t);

c=[c,s];

119

120

end

c=reshape(c,nx,nx); c=fft2(c); rowcol=c;

hth===—==~ If You Need To Use The Preconditioner P_c Do The Following-

rowl=reshape(rowl_K,nx,nx); coll=reshape(coll_K,nx,nx); c=[];

for k=1:nx; t=[coll(nx:-1:2,k)’,rowl(:,k)’]; s=optimal_circ(t);

c=[c,s];

end

hoth=——————= Then Use MINRES-------

[u,res,iter,flag] = pminres(nx,k_hat,alpha,B,D,b,u0,maxit,tol,...,

xprecond, gammal, gammal, gamma2,tolconjgrad,t_ext_hat,L,rowcol);
iter uv_np = u(m+1:m+n); u_np = reshape(uv_np,nx,nx);
%% -—--- Do Fixed Point iterations ---------

xprecond =1; no_fixed_point_iterations = 5;

for i=l:no_fixed_point_iterations

fprintf (’-—---- Fixed Point iteration %3.0f --------- \n’,i)

U = u_np; [D] = computeD(U,nx,m,beta); ud = u; tol=le-2; tic
[u,res,iter,flag] = pminres(nx,k_hat,alpha,B,D,b,u0,maxit,tol...
,xprecond,gamma0,gammal,gamma2,tolconjgrad,t_ext_hat,L,rowcol);

toc iter

if i==2 resT=res; save resT resT %% to plot the resduals

end

uv_np = u(m+l:m+n); u_np = reshape(uv_np,nx,nx);

121

psnrv(i)=psnr(u_np,u_exact); figure
imagesc(u_np) ; ss=sprintf (’deblured image’);ss=title(ss);
colormap(gray)

end

%% Plotting the deblurred images

figure imagesc(u_np);ss=sprintf(’deblured image’);
ss=title(ss);colormap(gray)

psnrv psnr(z,u_exact)

%% This function is used to generate a certain kernel
function K = ke_kernel(n, tau, radi);
if nargin<il,help

ke_gen;return; end if nargin<2, tau=200; end

if nargin<3, radi=4; end
K=zeros(n); R=n/2; h=1/n; h2=h"2;

RR=radi~2;

if radi>0 for j=1:n for k=1:n v=(j-R)“"2+(k-R)"2; if v <= RR,

K(j,k)=exp(-v/4/tau"2); end;end; end; sw=sum(K(:)); K=K/sw;

else radi<0 range=R-2:R+2; K(range,range)=1/25;

end

function Ku = integral_ke(u,k_hat,nux,nuy)
[nkx,nky] = size(k_hat); n=size(u,1); Ku = real(ifft2(

((£fft2(u,nkx,nky)) .* k_hat))); if nargin == 4 Ku

=Ku(1:nux,1:nuy); end

function [t] = restrict(s); [n,m]=size(s); nx = n/2; t =

(1:nx,1:nx);

function [t_embed] = embed(t)

%see 35 in the good_thesis

[nx,mx]=size(t); size(t) t_embed=zeros(nx,2*mx) ;
t_embed(1l:nx,1:mx)=t; t_embed(l:nx,mx+1)=t(:,1); colm=[mx:-1:2];
for i=2:mx

t_embed (:,mx+i)=t(:,colm(i-1)); end

e = ones(nx,1); E = spdiags([0Oxe -1*e e], -1:1, nx, nx); El
=E(1:nx-1,:); Ml=eye(nx,nx); Bl=kron(E1,M1); E2 = eye(nx); M2 =
spdiags([0*xe -1%e e], -1:1, nx-1, nx); B2 = kron(E2,M2); B =
[B1;B2];

e compute D ——————————————mm—

function [D] = computeD(U,nx,m,beta); hO=1/nx; [X,Y] =

meshgrid(h0/2:h0:1-h0/2); nn = size(U,1); UU = sparse(nn+2,nn+2);

% we are using reflection bounday conditions

% another word, we are using normal boundary condition to be zero

UU(2:nn+1,2:nn+1) = U; UU(1,:) = UU(2,:); UU(nn+2,:) = UU(nn+1,:);

UU(:,1) = UU(:,2); UU(C:,nn+2) = UU(:,nn+1);

Uxr = diff(U,1,2)/h0; I x-deriv at red points

xb = h0/2:h0:1-h0/2; yr=xb; yb = h0:h0:1-h0; xr=yb;
[Xb,Yb]l=meshgrid(xb,yb); [Xr,Yrl=meshgrid(xr,yr); Uxb =

interp2 (Xr,Yr,Uxr,Xb,Yb, ’spline’);

122

123

Uyb

diff(U,1,1)/h0; % y-deriv at blue points

Uyr interp2(Xb,Yb,Uyb,Xr,Yr, ’spline’); Dr = sqrt(Uxr."2 +
Uyr.”2 + beta”2); Db = sqrt(Uxb."2 + Uyb."2 + beta”2); Dvr =
Dr(:); Dvb = Db(:); Dv=[Dvr;Dvb]; ddd = [sparse(m,1) , Dv ,

sparse(m,1)];

D = spdiags(ddd,[-1 0 1],m,m);
e compute small K -—---—--—————————————-
K = sparse(n,n); for i=1:n ei = sparse(n,1); ei(i)=1; eim =

reshape(ei,nx,nx); Ke = integral_op(eim,kernel,nx,nx); K(:,i)

=Ke(:); end

function p = psnr(x,y)
d = mean(mean((x(:)-y(:))."2)); ml =
max(abs(x(:))); m2 = max(abs(y(:))); m = max(ml,m2); p =

10%1logl0(m~2/d);

function [s]=strang_cir(t); length(t) n=(length(t)+1)/2 m=n/2;
ml=m-1; for k=1:m-1; s(k+1)=t(k+n); end for k=m+1l:n-1;

s(k+1)=t(k); end s(m+1)=0; s(1)=t(n);

function [c] = optimal_circ(t);
% Compute optimal circulant approximation C to n X n matrix A.
h o C

h

argmin {||B - A||_fro : B is n X n circulant}

circulant(c)
A = my_toeplitz(t); [m,n] = size(A); if m "= n fprintf(’\n
*xxInput A must be a square matrix.\n’); return end c =zeros(n,1);

c(1) = sum(diag(A)); for j=1:n-1 c(j+1) = sum(diag(A,-j)) +

124

sum(diag(A,n-j)); end

function T = my_toeplitz(t)

% Construct n X n Toeplitz matrix T from vector t of length 2n-1.
m = max(length(t)); if mod(m,2) == 0 fprintf(’\n *x* Length of t
must be odd.\n’); return end n = ceil(m/2); row = t(n:-1:1); col =
t(n:m);

T = toeplitz(col,row);

function C = circulant(c)
% Construct n X n circulant matrix C from vector c of length n.

if min(size(c)) > 1 fprintf(’\n ***x Input c must be a vector.\n’);

return

end

c =c(:); % Make c a column vector, if it isn’t already.

n = length(c); row = [c(1); c(n:-1:2)];

C = toeplitz(c,row);

fm— eigenvalue computations------————-

n = nx"2; m = 2*nx*(nx-1); u_exact =
double(imread(’goldhill512.png’)); N=size(u_exact,l);

kernel=ke_gen(N,300,100); [kernel]= gauss_kernel(s,nx"2);

%kernel fspecial (’gaussian’,7,10);
p g

%kernel = fspecial(’gaussian’,600,10);

surf (kernel)

% Resize to reduce Problem

u_exact2=imresize(u_exact, [nx nx]); kernel=imresize(kernel, [nx
nx]); computeB; U = zeros(nx,nx);

Ymatrix_D;

computeD; computeK; A =[alpha*D , -alpha*B;-alpha*B’,-K’*K];

gammal =1; gamma2 =1 ; gamma3=1; %we need gammal to be v small

%[C] = oomputeC_BCCB(K); %if you need just BCCB

% c=K({,:);

% C = bcecb(c);

eye_n=eye(nx~2); eye_m=eye(m); L=B’*inv(D)*B;

%S = (K’*K+alphax*L) ;

col1=K(:,1); rowl=K(1,:); t=[coll(nx"2:-1:2)’,rowl(:)’];
[s]=strang_cir(t); % if you need strang circulant

C = circulant(s);

%C = bccb(s);

%[c,C] = optimal_circ(K); %if you need optimal circulant
SS=(C’*C+alphaxL); SK=K’#*K+alpha*L; P =[(alpha*gammal*D),
zeros(m,n) ; zeros(n,m) ,gamma2+*SS]; Ah = P~ (-1/2)*%A*xP~(-1/2);
vv=eig(full(Ah)); vvv=eig(full(A)); vvsort = sort(real(vv));

vvvsort = sort(real(vvv)); vsort = [vvsort,vvvsort]

vvvv=eig(full(SK)); vvvvv=eig(full(inv(SS)*SK)); zz
zeros (length(vv) ,1); ro=eig(SK~(-1/2)*L*SK~(-1/2));
ro=sort(real(ro)); sigmam=max(ro); tao=max(abs(ro));
lower_positive = 1/gammal; upper_positive=(1 +

sqrt (1+4*alpha*sigmam))/2; lower_negative=-1; upper_negative =

-1/(1+alpha*tao); [lower_positive,upper_positive]

125

126

[lower_negative,upper_negative] ;
boundvec=[lower_positive,upper_positive,lower_negative,upper_negative];
zzz=[0;0;0;0]; figure plot(real(vvv),zeros(length(vvv),1),’ok’)

grid on hold on figure plot(real(vvsort(2:16)),zeros(15,1),’0k’)

grid on figure plot(real(vv),zz,’ro’) grid on hold on
plot(boundvec,zzz,’b*’) grid on hold on figure

plot(real(vvvv) ,zeros(length(vvvv),1),’0k’) grid on figure

plot(real (vvvvv) ,zeros(length(vvvvv),1),’0k’) grid on

function [u_j,res,iter,flag] =
pminres(nx,k_hat,alpha,B,D,b,u_jml,MaxIter,tol,xprecond,gammal,
gammal,gamma2,tolconjgrad,t_ext_hat,L,rowcol);

% Algorithm 6.1: The Preconditioned Minres Method

% page 289 from wathen book

n = length(u_jml); iter = MaxIter; flag = 1; v_jml =
sparse(n,1); w_jml = sparse(n,1); w_j = sparse(n,l);
Au_jm1=Ax(u_jml,nx,k_hat,alpha,B,D); %fix matrix vector

v_j = b - Au_jml’;

% use preconditioner

[z_j] = precond(xprecond,v_j,D,B,gamma0,gammal,gamma2,alpha,
tolconjgrad,t_ext_hat,L,rowcol);

gamma_jml = 1; gamma_j = sqrt(z_j’ * v_j); eta = gamma_j; s_jml =

0; s_j =0; c_jml =1; c_j =1; for j = 1:MaxIter

z_j = z_j/gamma_j;
Azj=Ax(z_j,nx,k_hat,alpha,B,D);
d_j = z_j’ *x Azj’;

v_jpl = Azj’ - (d_j/gamma_j)*v_j - (gamma_j/gamma_jml) * v_jml;

127

% use preconditioner
[z_jpl] = precond(xprecond,v_jpl,D,B,gammal,gammal ,gamma?,
alpha,tolconjgrad,t_ext_hat,L,rowcol);

gamma_jpl = sqrt(z_jpl’ * v_jpl);

a0 = c_j*d_j - c_jml * s_j * gamma_j;
al = sqrt(a0"2 + gamma_jpl~2);

a2 = s_j *d_j + c_jml *x c_j * gamma_j;
a3 = s_jml * gamma_j;

cjpl = (a0/al); s_jpl = gamma_jpl/al;

w_jpl = (z_j - a3 * w_jml - a2 *x w_j)/al;
u_j = u_jml + cjpl * eta * w_jpl;

eta = - s_jpl * eta;
Au_j=Ax(u_j,nx,k_hat,alpha,B,D);

res(j) = norm(b-Au_j’);

if res(j) < tol; iter=j; flag=0; break; end;
% update for next iteration

z_j = z_jpl;

gamma_jml = gamma_j; gamma_j = gamma_jpl;

v_jml = v_j; v_j = v_jpl;

c_jml = c_j; c_j = cjpl;
s_jml = s_j; s_j = s_jpl;
w_jml = w_j; w_j = w_jpi;
u_jml = u_j;

end

res=[norm(b) ,res];
% you can test the code by executing these lines

% clear

128

% n=1000;

% A=rand(n,n); A=A’*A; x=ones(n,1); b=A*x; M =diag(diag(A)); x0 = sparse(n,l);
% max = 2; tol=1le-14;

% [u_j,res,iter,flag] = minres_OK(A,b,x0,max,tol,M);
hou_j;

% % plot(log(resP))

% figure

% plot(log(res));grid on;

% iter

% [xminres,flag,relres] = minres(A,b,tol,max,M);

% [xminres,u_j]

% [norm(xminres-u_j) ,norm(xminres-x) ,norm(x-u_j)]

e precond---------—-—----
function [y]
=precond (xprecond,x,D,B,gamma0, gammal ,gamma2,alpha,
tolconjgrad,t_ext_hat,L,rowcol);
m=size(B,1); n=size(B,2); if xprecond ==
y =%

else

x1=x(1:m);

x2=x(m+1:n+m) ;

y1=D\x1;

y1l=y1/(alpha*gammal) ;

x2new = x2/gamma?;

y2 = conjgrad(x2new,D,B,gamma0,gammal,gamma2,alpha,tolconjgrad,

t_ext_hat,L,rowcol);

function x =

conjgrad(b,D,B,gamma0, gammal,gamma?2,

n = 6000;

m = 8000;

A = randn(n,m);

A=A x A

b = randn(n,1);

tic, x = conjgrad(A,b); toc

norm(A*xx-b)

if nargin<3
tol=1e-10;
end
X = b;
[Ax] = p2matrixvec(x,D,B,gamma0,
t_ext_hat,L,rowcol);
r = b - Ax;
if norm(r) < tol

return

y = °L;
[Ay] = p2matrixvec(y,D,B,gamma0,

t_ext_hat,L,rowcol);

alpha,tol,t_ext_hat,L,rowcol);

gammal,gammaZ2,alpha,

gammal,gammaZ2,alpha,

129

130

z = Ay;

s = y’*z;

t = (r’*y)/s;
X = X + txy;

for k = 1:100;
r =r - txz;
if (norm(r) < tol)
return;
end
BB = (r’*z)/s;

y = -r + BBxy;

[Ay] = p2matrixvec(y,D,B,gamma0,gammal,gamma2,alpha,

t_ext_hat,L,rowcol);

z = Ay;
s = y’*z;
t = (r’*y)/s;
X = x + t*y;
end
end
e p2matrixvec—-—————————————————————————

function[w]=p2matrixvec(r,D,B,gammal,gammal ,,gamma?,alpha,
t_ext_hat,L,rowcol);
n = size(B,2); nx = sqrt(n);

h h —m—mmm—m—— PT preconditioner

131

Tr=restrict (ifft2(t_ext_hat.*fft2(extend(reshape(r,nx,nx))))); w =

Tr(:)+alpha*Lr ;

c=rowcol; Cr=ifft2(abs(c). 2.*fft2(reshape(r,nx,nx))); Cr=Cr(:);

w= Cr+alphax*Lr;

Ainv=inline(’1’,’x’,’y’); global x_int w_int

load mesh1024 h—————-— open this

% pdemesh(p,e,t)

bo_triangles

M=6; d=4; Naxi=factorial (M+d)/(factorial(M)x*factorial(d));

expect_psi = zeros(Naxi,1); expect_psi(1)=1;

[GO] = create_GO_uniform(p); [G1] create_Gm_uniform(p,1);

[G2]=create_Gm_uniform(p,2); [G3] create_Gm_uniform(p,3);

[G4]=create_Gm_uniform(p,4); [G5] create_Gm_uniform(p,5);
[G6]=create_Gm_uniform(p,6);

% taul=eig(inv(GO)*G1);

% tau2=eig(inv(GO)*G2) ;

% tau3=eig(inv(GO)*G3);

% taud=eig(inv(GO)*G4) ;

A0 = StiffMat2D_mO(p,t); B = SecondMat2D(p,t);
f_vec=LoadVec2D(p,t); B5=B(5,:); mold=size(B,1);
B=B([1:4,6:mo0l1d],:); f_vec = f_vec([1:4,6:mo0ld]); m=size(B,1);
At=[A0,B’;B,sparse(m,m)]; b = [-B5’;f_vec]; n=size(A0,1);

[At,b]=impose_boundary(vert,horz,At,b,n,m); A0 = At(l:n,1:n);

132

f_vec = b(n+1l:n+m);

x=[-0.93246951,-0.66120939,-0.23861919,0.23861919,0.66120939,0.93246951] ’ ;
x_int=(x+1)/2;
w_int=[0.17132449,0.36076157,0.46791393,0.46791393,0.36076157,0.17132449] ’;

X = X_int; w = w_int;

% we find the eigen pairs of the

/A integral operator

[tm,1m] calculte_eig(x,w);

[Ims,i] = sort(lm, ’descend’);

% —--- we compute A_m for m=1:4

Al

StiffMat2D(1,tm(:,i(1)),1ms(1),p,t);

A2 =StiffMat2D(2,tm(:,1(2)),1lms(2),p,t);
A3 = StiffMat2D(3,tm(:,1(3)),1ms(3),p,t);
A4 = StiffMat2D(4,tm(:,1(4)),1lms(4),p,t);
A5 = StiffMat2D(5,tm(:,1(5)),1lms(5),p,t);
A6 = StiffMat2D(6,tm(:,i(6)),1ms(6),p,t);

% —----Here we impose the bounday condition to Al,..,AM ----

At1=[A1,B’;B,sparse(m,m)]; [Atl]l=

impose_boundary2(vert,horz,Atl,n,m);

At2=[A2,B’;B,sparse(m,m)]; [At2]=

impose_boundary2(vert,horz,At2,n,m) ;

At3=[A3,B’;B,sparse(m,m)]; [At3]=

impose_boundary2(vert,horz,At3,n,m);

At4=[A4,B’;B,sparse(m,m)]; [Atd]=

impose_boundary2(vert,horz,At4,n,m);

At5=[A5,B’ ;B,sparse(m,m)]; [At5]=

impose_boundary2(vert,horz,At5,n,m) ;

At6=[A6,B’;B,sparse(m,m)]; [At6]=

impose_boundary2(vert,horz,At6,n,m) ;

lU.'J
=
)
o+

1]

kron(GO,B) ;

A_hat

kron(G4,A4)+kron(G5,A5)+kron(G6,A6) ;

f_vec_hat = kron(expect_psi’,f_vec);

mm = size(B_hat,1);

Al

A2

A4

At1(1:

At2(1

At3(1

At4(1

At5(1

n,1

:n,1

'n,1

:n,1

:n,1

:n);

:n);

:n);

:n);

:n);

kron(GO,A0) + kron(G1,Al1) + kron(G2,A2)+kron(G3,A3) +

133

134

nn = size(B_hat,2);

At=[A_hat,B_hat’;B_hat,sparse (mm,mm)] ;

bb =sparse(nn+mm,1);

bb(nn+1:nn+mm) = f_vec_hat; D_hat = kron(GO,A0); SO0=B*inv(AQ)*B’;

SO_hat = kron(G0,S0);

L

Grad_matrix(p,t,Ainv); mL=size(L,1);

=
I

L([1:4,6:mL],[1:4,6:mL]);

SL_hat = kron(GO,L); Gm = pres_massmat(p,t);

Gm(5,:)=[1; Gm(:,5)=[];

M = MassMat(p,t); M(5,:)=[]; M(:,5)=[]1;

SN_hat=kron(GO,Gm+M) ;

% SE_hat=B_hat*inv(A_hat)*B_hat’;

P=[A_hat,sparse(nn,mm) ; sparse(mm,nn),SL_hat];

%lx_s,resl,iterl] = Pmyminres(At,bb,u0,maxit,tol,mm,nn,AZ,SZ);

%hlx_s,res,iter,flag] = pminres(At,bb,u0,maxit,tol,M);

==
jav)
n

[A0, zeros(n,m);zeros(m,n),Gm+M];

=~
o
I

[AO, zeros(n,m);zeros(m,n),L];

135

tic

[xs,resl,iterl]=

Pmyminres (At,bb,u0,maxit,tol,mm,nn,A _hat,SL_hat); xs_v=xs(l:nn);
xs_p=xs (nn+1:nn+mm) ;

toc

for i=1:Naxi
sta=(i-1)*m+1; Ystarted point
en=sta+m-1; %end point
pres(l:m,i)=xs_p(sta:en)’;

end

for i=1:Naxi
presnoze=pres(1l:m,i); %pressure is the mean of the first column
presb=[presnoze(1:4,:);0;presnoze(5:m,:)];
[intpl=integralp(t,p,presb);
unigepres=pres5-intp;
pres(l:m+1,i)=uniqgepres;

end

meanp=pres(:,1);

for i=1:m+1

136

varp(i)=var(pres(i,:));

end varp=varp’;

xxx=0:0.01:1; yyy=0:0.01:1;

meanpressure_matrix=tri2grid(p,t,meanp,xxx,yyy);

figure contourf (meanpressure_matrix,100);shading flat;colorbar;

figure mesh(xxx,yyy,meanpressure_matrix);

varpressure_matrix2=tri2grid(p,t,varp,xxx,yyy); figure
mesh (xxx,yyy,varpressure_matrix2) ;
figure

contourf (varpressure_matrix2,100) ;shading flat;colorbar;

% [intp]l=integralp(t,p,meanp); % to check is the integral of p=0

vx = -xs_v(1:2:end); %hhhhhhhhhivx are the odd components
vy = -xs_v(2:2:end);

n_nodes = size(p,2);

vx_node = zeros(n_nodes,Naxi); %it is =zero matrix

vy_node = zeros(n_nodes,Naxi);

for i 1:n/2

for j 1:3

node_no = t(j,i);

~
Il

vx_node(node_no, vx_node(node_no, :) + vx(i, :);

~
]

vy_node(node_no, vy_node(node_no, :) + vy(i, :);

end

137

end

vx_node=vx_node/6; %it is the mean

vy_node=vy_node/6; vx_node(5,:)=(vx_node(5,:)*6)/4;

vy_node (5, :)=(vy_node (5, :)*6)/4;

%all tringles have 6 nodes expet at the center (5) and the boundary(3)
vx_node (1, :)=(vx_node(l,:)*6)/2; vy_node(l,:)=(vy_node(l,:)*6)/2;
vx_node (2, :)=(vx_node(2,:)*6)/2; vy_node(2,:)=(vy_node(2,:)*6)/2;
vx_node (3, :)=(vx_node(3,:)*6)/2; vy_node(3,:)=(vy_node(3,:)*6)/2;
vx_node (4, :)=(vx_node(4,:)*6)/2; vy_node(4,:)=(vy_node(4,:)*6)/2;

bond_node = setdiff(e(1,:),[1,2,3,4]); nb = length(bond_node);

for
i=1:nb
node_nm = e(1,i);
vx_node (node_nm, :)=(vx_node (node_nm, :)*6)/3;
vy_node (node_nm, :)=(vy_node (node_nm, :)*6) /3;
end

xxx=0:0.01:1; yyy=0:0.01:1; meanvx_node=mean(vx_node,2);
meanvx_matrix=tri2grid(p,t,meanvx_node,xxx,yyy); figure
mesh (xxx,yyy,meanvx_matrix); figure

contourf (meanvx_matrix,100) ;shading flat;colorbar;

meanvy_node=mean(vy_node,?2) ;
meanvy_matrix=tri2grid(p,t,meanvy_node,xxx,yyy) ;
mesh (xxx,yyy,meanvy_matrix) ;

figure

contourf (meanvy_matrix,100) ;shading flat;colorbar;

138

var_vx_node=sparse(n_nodes,1); var_vy_node=sparse(n_nodes,1);
for
i=1:n_nodes

var_vx_node(i)=var(vx_node(i,:));

var_vy_node(i)=var(vy_node(i,:));

varvx_matrix=tri2grid(p,t,var_vx_node,xxxX,yyy);
contourf (varvx_matrix,100) ;shading flat;colorbar; figure
varvy_matrix=tri2grid(p,t,var_vy_node,XxxX,yyy) ;

contourf (varvy_matrix,100) ;shading flat;colorbar;

figure quiver (meanvx_matrix,meanvy_matrix)

function [GO] = create_GO_uniform(p)

MM=6; p=4;

%here we use the complete polynomial space and uniform random field
vp=0:p;

[X1,X2,X3,X4,X5,X6] = ndgrid(vp,vp,vp,Vvp,Vp,vp);
%[X1,X2,%X3] = ndgrid(vp,vp,vp);
mul=[X1(:),X2(:),X3(:),X4(:),X5(:),%X6(:)];
%mul=[X1(:),X2(:),X3(:)71;
basis_deg=sum(mul,2)<p+1;
row=find(basis_deg==1);

order=mul(row,:); N_xi=length(row);

GO=zeros (N_xi,N_xi);

139

for i = 1: N_xi
ri = order(i,:);
value2 = 1;
for is=1:MM value2 = value2 * 1/(2*ri(is)+1); GO(i,i) = value2;

end end spy(G_0)

function [Gm] = create_Gm_uniform(p,m) MM=6;
p=4;
%here we use the complete polynomial space and uniform random field
vp=0:p;
%[X1,X2] = ndgrid(vp,vp);
[X1,X2,X3,X4,X5,X6] = ndgrid(vp,vp,vp,vp,Vp,vp);
Jmul=[X1(:),X2(:)];
mul=[X1(:),X2(:),X3(:),X4(:),X5(:),%X6(:)];
basis_deg=sum(mul,2)<p+1;
row=find(basis_deg==1); order=mul(row,:); N_xi=length(row);
Gm=zeros (N_xi,N_xi);
Jm=1 gives G1 and m=2 gives G2 and so on
similar = setdiff([1:MM],m);
for i = 1: N_xi
ri = order(i,:);
for j = 1:N_xi
ci = order(j,:);
if ri(1,similar) == ci(1,similar) & (ri(1,m)-ci(l,m)) == 1;
valuel=1;

for is=1:MM

140

valuel = valuel * 1/(2*ri(is)+1);
[i,j,value2,ri,ci];
end
down = ri(m)/(2*ri(m)-1);
value = valuel*down;
Gm(i,j) =value;

end

if ri(1,similar) == ci(l,similar) & (ri(1,m)-ci(1,m)) == -1;
value2=1;

for is=1:MM
value2 = value2 * 1/(2xri(is)+1);
[i,j,value2,ri,cil;

end
downl = ci(m)/((2xci(m)-1)*(2xci(m)+1));
down2=(2*ri(m)+1) ;
value2 = value2*downl*down?2;
Gm(i,j) =value2;
[i,j,value2];

end

end

end

% spy(G_m)

% size(G_m)

% eig(G_m)

function A = StiffMat2D_mO(p,t)

141

Ainv=inline(’1’,’x’,’y’);
nt=size(t,2); n=2*nt; A=sparse(n,n);
for k=1:nt
loc2glob=t(1:3,k);
x=p(1,loc2glob);
y=p(2,loc2glob);
area=polyarea(x,y);
Avec=[Ainv(x(1),y(1)),Ainv(x(2),y(2)),Ainv(x(3),y(3))];
sumAvec=sum(Avec)*area/3;
A(2xk-1,2%k-1)=sumAvec;

A (2%k,2¥k)=sumAvec;

function B = SecondMat2D(p,t) np = size(p,2); nt = size(t,2);

n=2*nt; m=np; B = sparse(m,n);

for k = 1:nt

loc2glb = t(1:3,k); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,1loc2glb); % node y-
[area,b,c] = Gradients(x,y);
coll=2%k-1;

co0l2=2%k;
B(loc2glb,coll)=-b’*area;
B(loc2glb,col2)=-c’*area;

end

142

function F = LoadVec_bspot(p,t) f=inline(’1’,’x’,’y’);
np=size(p,2); nt = size(t,2); F = zeros(up,1);
F(1:4)=0.0043; %hhhhhhhe2/3 *area (0.0064)

F(5)=-6.8379e-004; %khhhhhht—4/3 *are (5.1284e-004)

% no flow on the boundary i.en . u =0

nh = length(horz); nv = length(vert);

for i=1:nh
irow = 2xhorz(i);

At (irow,:) = sparse(l,n+m);

At(:,irow) = sparse(n+m,1);
b(irow) = 0;
At (irow,irow) = 1;

end

for i=1:nv
irow = 2% (vert(i)-1)+1;
At(irow,:) = sparse(l,n+m);

At(:,irow) = sparse(n+m,1);

b(irow) = 0;
At(irow,irow) = 1;

end

143

function [tm,lm] = calculte_eig(x,w) n = length(x);

for i=1:n
for j=1:n

ind = (i-1)*n + j;

P(ind,1) = x(j);

P(ind,?2)

x(1);
Wv(1,ind) = w(i)*w(j);

% here since we have dauble integral and function w.r.t x and y

end

end

for k = 1:n"2

for 1 = 1:n"2
Pk =[P(k,1),P(k,2)];
P1 =[P(1,1),P(1,2)]1;
C(k,1) = mycov(Pk,P1);

end

end

W=[]; for i=1:n"2
W= [W;Wv];

end

K = C.*W/4; %4 came from the transition formula (0,1) into (-1,1)

144

[tm,1m1] = eig(K);

1m = diag(lml);

function [value] = mycov(x,y)
r = norm(x-y);
h ——mm——- covariance in (2.9b) --——------

tao=1; sigma=0.1; value = sigma”2%exp(-r/tao) ;

function Gm = pres_massmat(p,t) np = size(p,2); nt = size(t,2); A
= sparse(np,np); for K = 1:nt

loc2glb = t(1:3,K); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,loc2glb); % node y-

[area,b,c] = Gradients(x,y);

AK = (b*b’+c*c’)*area; J, element stiff mat
A(loc2glb,loc2glb) = A(loc2glb,loc2glb)+ AK;

% add element stiffnesses to A

end Gm=A;

function M = MassMat(p,t) np = size(p,2); nt = size(t,2); alpha=4;
M = sparse(np,np); for K = 1:nt

loc2glb = t(1:3,K); % local-to-global map

x = p(1,loc2glb); % node x-coordinates

y = p(2,1loc2glb); % node y-

[area,b,c] = Gradients(x,y);

MK = [2 1 1;

121;

1 1 2]/12*area; % element mass matrix
M(loc2glb,loc2glb) = M(loc2glb,loc2glb)+ MK;

end

%load smallmesh
%load mesh_sample
%generate_mesh

Tt hototototohotototetoowe need to load M2pl to work this program

Ainv=inline(’1’,’x’,’y’); global x_int w_int

%load mesh_256

load mesh1024 h—————- open this
% load small_mesh

%load 5_Spot_Mesh

pdemesh(p,e,t) bo_triangles

h ————- change here 81 is the size of n_axi

GO=eye(81); Generate_G_matrices_M4 A0 = StiffMat2D_mO(p,t);

B = SecondMat2D(p,t);

f_vec = LoadVec2D(p,t);

145

146

% Modify the matrix B (has no full rank)
% so that the problem has a unique solution

% delete one row number 5 from B

B5=B(5,:); mold=size(B,1);
B= B([1:4,6:m01d],:);
f_vec = f_vec([1:4,6:mo0ld]);

m=size(B,1);

At=[A0,B’;B,sparse(m,m)];

b = [-B5’;f_vec];

n=size(A0,1);

% Modify the matrix B
% so that the problem has a unique solution

% delete four rows from B (1,2,3,4) corners (production wells)

% mold=size(B,1);

% B1=B(1,:);B2=B(2,:);B3=B(3,:);B4=B(4,:);
% B= B([5:mold],:);

% f_vec = f_vec([5:mold]);

% m=size(B,1);

/A

% At=[A0,B’;B,sparse(m,m)];

% b = [-B1’-B2’-B3°-B4’;f_vec];

% no flow on the boundary i.en . u =0

[At,b]= impose_boundary(vert,horz,At,b,n,m);

A0 = At(1:n,1:n); f_vec = b(n+1:n+m);

Toloto oo oo oo o To o Jo o o o To o T T T ToTo T T oo o oo oo o

147

x=[-0.93246951,-0.66120939,-0.23861919,0.23861919,0.66120939,0.93246951] ’;

x_int=(x+1)/2;

w_int=[0.17132449,0.36076157,0.46791393,0.46791393,0.36076157,0.17132449] * ;

X = X_int; w = w_int;

h —mmmmm we find the eigen pairs of the
/A integral operator

b

[tm,1m] = calculte_eig(x,w); [lms,i] = sort(lm,’descend’);

% —--- we compute A_m for m=1:4

/A — change here --- find A3 A4

Al = StiffMat2D(1,tm(:,i(1)),1ms(1),p,t); A2 =

StiffMat2D(2,tm(:,i(2)),1ms(2),p,t); A3

StiffMat2D(3,tm(:,1(3)),1ms(3),p,t); A4

StiffMat2D(4,tm(:,i(4)),1ms(4),p,t);

y A— change here --- find A3 A4

b ——————————= Here we impose the bounday condition to Al,..,A4

%we comment below to calculate the eigen_value theorm and for solution u

%shold to remove the comment

At1=[A1,B’;B,sparse(m,m)];

impose_boundary2(vert,horz,Atl,n,m); Al

At2=[A2,B’;B,sparse(m,m)];

impose_boundary2(vert,horz,At2,n,m); A2

At3=[A3,B’;B,sparse(m,m)];

impose_boundary2(vert,horz,At3,n,m); A3

At4=[A4,B’;B,sparse(m,m)];

impose_boundary2(vert,horz,At4,n,m); A4

[At1]=

[At2]=

[At3]=

[At4]=

At1(1:

At2(1:

At3(1:

At4(1:

Voo oo oo o o oo o T o T o T T Jo To T T o To T T T o oo oo oo o

L = Grad_matrix(p,t,Ainv); mL=size(L,1); L =

L([1:4,6:mL],[1:4,6:mL]); uO=zeros(n+m,1); maxit=100; tol=le-5; Gm

= pres_massmat(p,t); Gm(5,:)=[]; Gm(:,5)=[]; M = MassMat(p,t);

M(5,:)=[1; M(:,5)=[];

%P = [AO, zeros(n,m);zeros(m,n),Gm+M];

%P

[AO, zeros(n,m);zeros(m,n),L];

n,1

n,l1

n,1

n,1

:n);

:n);

:n);

:n);

148

149

Yoo 1o 1oo oo To o o o JoTo o o o JoTo o o o JoTo o o o JoTo o o o To T o o o

pres=[1; vel=[]; [mean_psil=psi_ex();

bl_vec = f_vec(l:m); res = zeros(81,50); iter_vec = zeros(81,1);
for i=1:81;
AZ=00+G(1,1i)*A1+G(2,1) *A2+G(3,1) *A3+G(4,1)*A4;
At=[AZ,B’;B,sparse(m,m)];
SZ=B*inv (AZ)*B’;
fZ= mean_psi(i) * bl_vec;
bZ=[sparse(n,1);fZ];

% xs = At\bZ;

mm=m; nn=n;
% [xs,resl,iterl] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,A0,L);
%[xs,resl,iterl] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,A0,Gm+M);
[xs,resl,iterl] = Pmyminres(At,bZ,u0,maxit,tol,mm,nn,AZ,SZ);
res(i,l:iterl) = resl; iter_vec(i) = iterl; [i,iterl]
xs_v=xs(1:n);
xs_p=xs(n+1:n+m);
vel = [vel;xs_v];
pres =[pres;xs_p];
end max_iteration = max(iter_vec); for k=1:max_iteration
big_res(k) = norm(res(:,k));

end plot(log(big_res/big_res(1)))

mm=81*m; nn=81%*n;

ww = reshape(vel,n,81);
pp = reshape(pres,m,81);
pp = [pp(1:4,:);zeros(1,81);pp(5:m,:)];

YA hhh s % %hwe make the row number5=0 to make B has full rank%%ALLA%%%%

vy = ww(l:2:0n/81,:); Whhhhhhhhhivx are the odd components

vy = ww(2:2:0n/81,:); Whhhhhhhhhivy are the even components
[meanp] = mean_clc(pp,mean_psi); [intpl=integralp(t,p,meanp);

meanp=meanp-intp; [meanvx] = mean_clc(vx,mean_psi); [meanvy] =

mean_clc(vy,mean_psi) ;

n_nodes = size(p,2);
meanvx_node=zeros(n_nodes,1); %%%mean of vx over the nods

meanvy_node=zeros(n_nodes,1); %\%mean of vy over the nods

vx_node = zeros(n_nodes,81); vy_node = zeros(n_nodes,81); for i =

1:n/2

for j = 1:3
node_no = t(j,i);
meanvx_node(node_no) = meanvx_node(node_no) + meanvx(i);
meanvy_node(node_no) = meanvy_node(node_no) + meanvy(i);
vx_node(node_no, :) = vx_node(node_no, :) + vx(i, :);
vy_node(node_no, :) = vy_node(node_no, :) + vy(i, :);

end

end meanvx_node=meanvx_node/6;

150

meanvx_node (5)=(meanvx_node(5) *6) /4;
%each nod has 6 triangles just the nod number 5 has 5 triangles

meanvy_node=meanvy_node/6; meanvy_node(5)=(meanvy_node(5)*6)/4;

vx_node=vx_node/6; vx_node(5,:)=(vx_node(5,:)*6)/4;
vy_node=vy_node/6; vy_node(5,:)=(vy_node(5,:)*6)/4;

Tl It toto oo o lolotototo oo fo oo o fotoowe plot the mean of the

Tt T T ot T T To T To o To T o T To o o To o e e DT € S SUT € Voo o o To o o Voo o Voo o o T o o T o o T oo o T o o T o o
x=0:0.01:1; y=0:0.01:1; pressure_matrix=tri2grid(p,t,meanp,x,y);
figure mesh(x,y,pressure_matrix); figure

contourf (pressure_matrix,100) ;shading flat;colorbar;

Tl lo o lolo o foToto foJoto o Toto o foTo o o Joto /o oplot the mean of vx and vy
xxx=0:0.01:1; yyy=0:0.01:1;
meanvx_matrix=-tri2grid(p,t,meanvx_node,xxx,yyy); figure

mesh (xxx,yyy,meanvx_matrix); figure

contourf (meanvx_matrix,100) ;shading flat;colorbar;

Yoo 1o o o oo ToTo o oo To o o o o To o o o o ToTo o o o To o o o Jo ToTo o o Jo To o o o Jo To o o o To To o o o Jo T o o o o
figure

meanvy_matrix=-tri2grid(p,t,meanvy_node,Xxx,yyy);
mesh (xxx,yyy,meanvy_matrix); figure

contourf (meanvy_matrix,100) ;shading flat;colorbar;

Wb hhhhhhhh%weplot the variance of pressurellhhhhhhhhhhh

[varp] = variance_calc(pp,meanp); [varvx] =
variance_calc(vx_node,meanvx_node); [varvy] =

variance_calc(vy_node,meanvy_node) ;

x=0:0.01:1; y=0:0.01:1; pressure_matrix2=tri2grid(p,t,varp,x,y);

151

152

figure mesh(x,y,pressure_matrix2); figure

contourf (pressure_matrix2,100) ;shading flat;colorbar; figure
%hlkplot the variance of the velocityhllelststslototstetotstslstototslotototetots
xxx=0:0.01:1; yyy=0:0.01:1;
vx_matrix2=tri2grid(p,t,varvx,xxx,yyy); mesh(xxx,yyy,vx_matrix2);
figure contourf (vx_matrix2,100);shading flat;colorbar; figure
vy_matrix2=tri2grid(p,t,varvy,xxx,yyy); mesh(xxx,yyy,vy_matrix2);
figure contourf (vy_matrix2,100);shading flat;colorbar; figure

quiver (meanvx_matrix,meanvy_matrix)

function [intp]l=integralp(t,p,mp); nelement=size(t,2); intp=0; for
k=1:nelement;
loc2glb=t(1:3,k);
x = p(1,loc2glb); % node x-coordinates
y = p(2,loc2glb); % node y-
area=polyarea(x,y);
sumk=(sum(mp (loc2glb)) *area) /3;
intp=intp+sumk;

end

function [mp] = mean_clc(pp,mean_psi);

ms = size(pp,1);

% EPSI(1)=sqrt(3)/(2xsqrt(2));

% EPSI(2)=1/sqrt(6);

% EPSI(3)=1/sqrt(6);

% index=0;

% for i= 1:3

% for j=1:3

b for k=1:3

T for 1=1:3

pA index = index +1;

/A EPSIY(index)=EPSI (i)*EPSI(j)*EPSI (k)*EPSI(1);
/A end

/A end

% end

% end

% EPSIY

mp = zeros(ms,1); %mean pressure mp

Naxi=81; for i=1:Naxi

mp = mp + mean_psi(i)*pp(:,i); %meanpsi is the expection of apsis

end

function [mean_psil=psi_ex(); al=sqrt(2/3);
a2=1/sqrt(6);

a3=1/sqrt(6);

vi(1:27)=al;

v1(28:54)=a2;

v1(55:81)=a3;

z(1:9)=al; z(10:18)=a2; z(19:27)=a3;

153

154

v2=[z z z];

w(1l:3)=al; w(4:6)=a2; w(7:9)=a3;
wo=[w w wl;

v3=[wq wq wq];

r=[al a2 a3];

rr=[r r r];

rrr=[rr rr rrl;

vld=[rrr rrr rrrl;
mean_psi=vl.*v2.*v3.*v4;

Whhhhhhhthe expectition in the f_k on the right hand side %%%

function [mean_psi]=psiexpection;
hal=sqrt (3)/(2*sqrt(2));
%a2=1/sqrt (6) ;

%a3=1/sqrt (6) ;

al=2/3;

a2=sqrt(5/18);

a3=sqrt(5/18);

v1i(1:27)=al;

v1(28:54)=a2;

v1(55:81)=a3;

z(1:9)=al; z(10:18)=a2; z(19:27)=a3;

v2=[z z z];

w(1l:3)=al; w(4:6)=a2; w(7:9)=a3;

wag=[w w w];

155

v3=[wq wq wql;
r=[al a2 a3];
rr=[r r r];
rrr=[rr rr rr];
v4=[rrr rrr rrr];

mean_psi=vl.*v2.*v3.*v4;

function [value] = t_m(m,tm,lm,xx,yy); global x_int w_int
%sgma = 1;

sgma = 1; nq = length(x_int);

tm_matrix = reshape(tm,nq,nq); [X,Y] = meshgrid(x_int,x_int);

valuel = interp2(X,Y,tm_matrix,xx,yy,’spline’);

%value = sgma*sqrt(lm)*valuel;

value = sqrt(lm)*valuel;

function [varp] = variance_calc(pp,meanp) ;

ms = size(pp,1); %145

nxi = size(pp,2); varp = zeros(ms,1);

% ppsquare = pp.~2;
% terml = sum(ppsquare,?2);

/» varp = terml - meanp."2;

156

for i=1:nxi diff(:,i)=pp(:,i)-meanp; sqdif=diff."2; end

varp=mean(sqdif,2);

function [G_m] = create_Gm_Gaussian(p,m) M=2;
p=2;%here we use the complete polynomial space and Gaussian random field
vp=0:p;
[X1,X2] = ndgrid(vp,vp)
% if u change M=4 u must add [X1,X2,X3,X4] and ndgrid(vp,vp,vp,vp) and so on
%[X1,X2,X3,X4] = ndgrid(vp,vp,vp,vp)
mul=[X1(:),X2(:)];
Jmul=[X1(:),X2(:),X3(:),X4(:)];
basis_deg=sum(mul,2)<p+1;
% wt we must do if we needd tensor polynomial space
row=find(basis_deg==1); order=mul(row,:) N_xi=length(row);
G_m=sparse (N_xi,N_xi);
m=1 Jm=1 gives Gl and m=2 gives G2 and so on
similar = setdiff([1:M],m); for i = 1: N_xi
ri = order(di,:);
for j = 1:N_xi

ci = order(j,:);

if ri(1,similar) == ci(1l,similar) & (ri(1,m)-ci(1,m)) == 1;

for is=1:M

value = value * factorial(ri(is));

end

G_m(i,j) =value;

end

if ri(1l,similar) == ci(l,similar) & (ri(1,m)-ci(l,m)) == -1;
value2=1;
for is=1:M
value2 = value2 * factorial(ri(is));
[i,j,value2,ri,ci]
end
down = factorial(ri(m));

value2 = value2* factorial(ri(m)+1)/down

G_m(i,j) =value2
[i,j,value2]

end

end

end spy(G_m)

G(1,1:27)=0;
G(1,28:54)=3/sqrt(5);
G(1,55:81)=-3/sqrt(5);
V(1:9)=0;
V(10:18)=3/sqrt(5);
V(19:27)=-3/sqrt (5);

G(2,1:81)=[V V

157

158

vl;
W(1:3)=0; W(4:6)=3/sqrt(5); W(7:9)=-3/sqrt(5); WWw=[W W W];

G(3,1:81)=[WW WW WW];

2=[0 3/sqrt(5) -3/sqrt(5)]; 2z=[Z Z Z]; 22Z=[2Z 2Z ZZ];

G(4,1:81)=[2Z2Z Z2ZZ Z7Z];

Bibliography

[1] Acar, R. and Vogel, C. R. (1994). Analysis of bounded variation penalty methods

for ill-posed problems. Inverse problems, 10(6):1217.

[2] Achdou, Y., Bernardi, C., and Coquel, F. (2003). A priori and a posteriori anal-
ysis of finite volume discretizations of darcys equations. Numerische Mathematik,

06(1):17-42.

[3] Adams, R. A. and Fournier, J. J. (2003). Sobolev spaces, volume 140. Academic

press.

[4] Agarwal, V. (2003). Total variation regularization and l-curve method for the

selection of regularization parameter. FCE599, pages 1-31.

[5] Axelsson, O. and Neytcheva, M. (2006a). Eigenvalue estimates for preconditioned

saddle point matrices. Numerical Linear Algebra with Applications, 13(4):339-360.

[6] Axelsson, O. and Neytcheva, M. (2006b). Eigenvalue estimates for preconditioned

saddle point matrices. Numerical Linear Algebra with Applications, 13(4):339-360.

[7] Babuska, I., Nobile, F., and Tempone, R. (2007). A stochastic collocation method
for elliptic partial differential equations with random input data. SIAM Journal

on Numerical Analysis, pages 1005-1034.

159

BIBLIOGRAPHY 160

[8] Babuska, I., Tempone, R., and Zouraris, G. E. (2004). Galerkin finite element
approximations of stochastic elliptic partial differential equations. SIAM Journal

on Numerical Analysis, 42(2):800-825.

[9] Babuska, I., Tempone, R., and Zouraris, G. E. (2005). Solving elliptic bound-
ary value problems with uncertain coefficients by the finite element method: the

stochastic formulation. Computer methods in applied mechanics and engineering,

194(12):1251-1294.

[10] Benzi, M. (2002). Preconditioning techniques for large linear systems: a survey.

Journal of computational Physics, 182(2):418-477.

[11] Benzi, M., Golub, G. H., and Liesen, J. (2005). Numerical solution of saddle

point problems. Acta numerica, 14(1):1-137.

[12] Berisha, S. and Nagy, J. G. (2014). Iterative methods for image restoration. Aca-
demic Press Library in Signal Processing: Image, Video Processing and Analysis,

Hardware, Audio, Acoustic and Speech Processing, 4:193-247.

[13] Bespalov, A., Powell, C. E., and Silvester, D. (2012). A priori error analysis of
stochastic galerkin mixed approximations of elliptic pdes with random data. SIAM

Journal on Numerical Analysis, 50(4):2039-2063.

[14] Biemond, J., Lagendijk, R. L., and Mersereau, R. M. (1990). Tterative methods
for image deblurring. Proceedings of the IEEE, 78(5):856-883.

[15] Brenner, S. C. and Scott, R. (2008). The mathematical theory of finite element

methods, volume 15. Springer Science & Business Media.

[16] Cao, Z.-H. (2002). A note on constraint preconditioning for nonsymmetric indef-

inite matrices. SIAM Journal on Matriz Analysis and Applications, 24(1):121-125.

BIBLIOGRAPHY 161

[17] Cesari, L. (1937). Sulla risoluzione dei sistemi di equazioni lineari per approssi-

maziont successive, volume 25. Nazionale Lincei R. Classe Sci. Fis. Mat. Nat.

[18] Chan, R. H. (1991). Toeplitz preconditioners for Toeplitz systems with nonneg-

ative generating functions. IMA journal of numerical analysis, 11(3):333-345.

[19] Chan, R. H., Chan, T. F., and Wong, C.-K. (1999a). Cosine transform based pre-
conditioners for total variation deblurring. Image Processing, IEEE Transactions

on, 8(10):1472-1478.

[20] Chan, R. H. and Ng, K.-P. (1993). Toeplitz preconditioners for hermitian

Toeplitz systems. Linear algebra and its applications, 190:181-208.

[21] Chan, R. H.-F. and Jin, X.-Q. (2007). An introduction to iterative Toeplitz

solvers, volume 5. STAM.

[22] Chan, T. F. (1988). An optimal circulant preconditioner for toeplitz systems.

SIAM journal on scientific and statistical computing, 9(4):766-771.

[23] Chan, T. F., Golub, G. H., and Mulet, P. (1999b). A nonlinear primal-dual
method for total variation-based image restoration. SIAM Journal on Scientific

Computing, 20(6):1964-1977.

[24] Chan, T. F. and Olkin, J. A. (1994). Circulant preconditioners for Toeplitz-block

matrices. Numerical Algorithms, 6(1):89-101.

[25] de Sturler, E. and Liesen, J. (2005). Block-diagonal and constraint precondition-
ers for nonsymmetric indefinite linear systems. part i: Theory. SIAM Journal on

Scientific Computing, 26(5):1598-1619.

[26] Donatelli, M. (2005). A multigrid for image deblurring with tikhonov regular-

ization. Numerical linear algebra with applications, 12(8):715-729.

BIBLIOGRAPHY 162

[27] Donatelli, M. and Hanke, M. (2013). Fast nonstationary preconditioned iterative
methods for ill-posed problems, with application to image deblurring. Inverse

Problems, 29(9):095008.

[28] Eiermann, M., Ernst, O. G., and Ullmann, E. (2007). Computational aspects
of the stochastic finite element method. Computing and visualization in science,

10(1):3-15.

[29] Elman, H., Furnival, D., and Powell, C. (2010a). H (div) preconditioning for
a mixed finite element formulation of the diffusion problem with random data.

Mathematics of Computation, 79(270):733-760.

[30] Elman, H., Furnival, D., and Powell, C. (2010b). H(div) preconditioning for
a mixed finite element formulation of the diffusion problem with random data.

Mathematics of Computation, 79(270):733-760.

[31] Elman, H., Silvester, D., and Wathen, A. (2014a). Finite elements and fast itera-
tive solvers: with applications in incompressible fluid dynamics. Oxford University

Press.

[32] Elman, H. C., Silvester, D. J., and Wathen, A. J. (2014b). Finite elements and
fast iterative solvers: with applications in incompressible fluid dynamics. Oxford

University Press.

[33] Ernst, O. G., Powell, C. E., Silvester, D. J., and Ullmann, E. (2009). Efficient
solvers for a linear stochastic galerkin mixed formulation of diffusion problems with

random data. SIAM Journal on Scientific Computing, 31(2):1424-1447.

[34] Ernst, O. G. and Ullmann, E. (2008). On stochastic galerkin matrices. In

preparation. Citeseer.

BIBLIOGRAPHY 163

[35] Ernst, O. G. and Ullmann, E. (2010). Stochastic galerkin matrices. SIAM Journal

on Matriz Analysis and Applications, 31(4):1848-1872.

[36] Evans, D. J. (1968). The use of pre-conditioning in iterative methods for solving
linear equations with symmetric positive definite matrices. IMA Journal of Applied

Mathematics, 4(3):295-314.

[37] Ewing, R. E. and Shen, J. (1993). A multigrid algorithm for the cell-centered
finite difference scheme. In NASA Conference Publication, pages 583-583. NASA.

[38] Fairag, F. A. and Wathen, A. J. (2012). A block preconditioning technique for
the streamfunction-vorticity formulation of the navier-stokes equations. Numerical

Methods for Partial Differential Equations, 28(3):888-898.

[39] Fortin, M. and Brezzi, F. (1991). Mized and hybrid finite element methods. New

York: Springer-Verlag.

[40] Frauenfelder, P., Schwab, C., and Todor, R. A. (2005). Finite elements for elliptic
problems with stochastic coefficients. Computer methods in applied mechanics and

engineering, 194(2):205-228.

[41] Ganis, B., Klie, H., Wheeler, M. F., Wildey, T., Yotov, I., and Zhang, D. (2008).
Stochastic collocation and mixed finite elements for flow in porous media. Computer

methods in applied mechanics and engineering, 197(43):3547-3559.

[42] Ghanem, R. (1999). Ingredients for a general purpose stochastic finite ele-
ments implementation. Computer Methods in Applied Mechanics and Engineering,

168(1):19-34.

[43] Ghanem, R. G. and Kruger, R. M. (1996). Numerical solution of spectral stochas-

BIBLIOGRAPHY 164

tic finite element systems. Computer Methods in Applied Mechanics and Engineer-

ing, 129(3):289-303.

[44] Ghanem, R. G. and Spanos, P. D. (1991). Stochastic finite elements a spectral

approach. Springer.

[45] Girault, V. and Raviart, P.-A. (1986). Finite element methods for navier-stokes
equations: theory and algorithms, vol. 5 of springer series in computational math-

ematics.

[46] Gittelson, C. J. (2010). Stochastic galerkin discretization of the log-normal
isotropic diffusion problem. Mathematical Models and Methods in Applied Sciences,
20(02):237-263.

[47] Golub, G. H. and Van Loan, C. F. (2012). Matriz computations, volume 3. JHU

Press.

[48] Graham, I. G., Scheichl, R., and Ullmann, E. (2013). Mixed finite element
analysis of lognormal diffusion and multilevel monte carlo methods. arXwv preprint

arXiw:1312.6047.

[49] Greenbaum, A. (1997). lterative methods for solving linear systems, volume 17.

Siam.

[50] Grimmett, G. and Stirzaker, D. (1992). Probability and random processes, vol-

ume 2. Oxford Univ Press.

[51] Groetsch, C. W. and Groetsch, C. (1993). Inverse problems in the mathematical

sciences, volume 52. Springer.

[52] Hackbusch, W. (2012). Iterative solution of large sparse systems of equations,

volume 95. Springer Science & Business Media.

BIBLIOGRAPHY 165

[53] Hanke, M. and Hansen, P. C. (1993). Regularization methods for large-scale

problems. Survey on Mathematics for Industry, 3(4).

[54] Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving
linear systems. Journal of research of the national Bureau of standard, 49(6):409—

436.

[55] Ipsen, I. C. (2001). A note on preconditioning nonsymmetric matrices. SIAM

Journal on Scientific Computing, 23(3):1050-1051.

[56] Jin, C., Cai, X.-C., and Li, C. (2007). Parallel domain decomposition methods for
stochastic elliptic equations. SIAM Journal on Scientific Computing, 29(5):2096—

2114.

[57] Keese, A. (2003). A review of recent developments in the numerical solution
of stochastic partial differential equations (stochastic finite elements). Scientific

Computing, 6.

[58] Keese, A. (2004). Numerical Solutions of Systems with Stochastic Uncertainties:
A General Purpose Framework for Stochastic Finite Elements. Mechanik-Zentrum,

Techn. Univ.

[59] Klawonn, A. (1998). Block-triangular preconditioners for saddle point problems

with a penalty term. SIAM Journal on Scientific Computing, 19(1):172-184.

[60] Kouri, D. P. (2010). Optimization governed by stochastic partial differential

equations. PhD thesis, Rice University.

[61] Krzyzanowski, P. (2001). On block preconditioners for nonsymmetric saddle

point problems. SIAM Journal on Scientific Computing, 23(1):157-169.

BIBLIOGRAPHY 166

[62] Liesen, J. and Strakos, Z. (2012). Krylov subspace methods: principles and anal-

ysis. Oxford University Press.

[63] Lin, F.-R. (2001). Preconditioners for block Toeplitz systems based on circulant

preconditioners. Numerical Algorithms, 26(4):365-379.

[64] Lin, F.-R. and Wang, C.-X. (2012). BTTB preconditioners for bttb systems.
Numerical Algorithms, 60(1):153-167.

[65] Loeve, M. (1978). Probability theory, vol. ii. Graduate texts in mathematics,

46:0-387.

[66] Mathelin, L., Hussaini, M. Y., and Zang, T. A. (2005). Stochastic approaches to
uncertainty quantification in cfd simulations. Numerical Algorithms, 38(1-3):209—

236.

[67] Matthies, H. G. and Bucher, C. (1999). Finite elements for stochastic media

problems. Computer Methods in Applied Mechanics and Engineering, 168(1):3-17.

[68] Matthies, H. G. and Keese, A. (2005). Galerkin methods for linear and nonlin-
ear elliptic stochastic partial differential equations. Computer Methods in Applied
Mechanics and Engineering, 194(12):1295-1331.

[69] Meurant, G. (1999). Computer solution of large linear systems, volume 59. El-

sevier Amsterdam.

[70] Money, J. H. (2006). Variational methods for image deblurring and discretized

picard’s method. Ph.D. Thesis, UniversityofKentucky, Department of Mathematics.

[71] Murphy, M. F., Golub, G. H., and Wathen, A. J. (2000a). A note on precon-
ditioning for indefinite linear systems. SIAM Journal on Scientific Computing,

21(6):1969-1972.

BIBLIOGRAPHY 167

[72] Murphy, M. F., Golub, G. H., and Wathen, A. J. (2000b). A note on precon-
ditioning for indefinite linear systems. SIAM Journal on Scientific Computing,

21(6):1969-1972.

[73] Ng, M. K. and Pan, J. (2014). Weighted Toeplitz regularized least squares com-
putation for image restoration. SIAM Journal on Scientific Computing, 36(1):B94—
B121.

[74] Notay, Y. (2010). An aggregation-based algebraic multigrid method. FElectronic

transactions on numerical analysis, 37(6):123-146.
[75] Oksendal, B. (2003). Stochastic differential equations. Springer.

[76] Olshanskii, M. A. and Tyrtyshnikov, E. E. (2014). [terative methods for linear

systems: theory and applications. Univercity of Houston, Texas.

[77] Paige, C. C. and Saunders, M. A. (1975). Solution of sparse indefinite systems

of linear equations. SIAM Journal on Numerical Analysis, 12(4):617-629.

[78] Perugia, I. and Simoncini, V. (2000). Block-diagonal and indefinite symmetric
preconditioners for mixed finite element formulations. Numerical linear algebra

with applications, 7(7-8):585-616.

[79] Pestana, J. and Wathen, A. J. (2015). Natural preconditioning and iterative

methods for saddle point systems. SIAM Review, 57(1):71-91.

[80] Powell, C. E. and Ullmann, E. (2010). Preconditioning stochastic galerkin saddle
point systems. SIAM Journal on Matriz Analysis and Applications, 31(5):2813—
2840.

[81] Riley, K. L. (1999). Two-Level Preconditioners For Regularized Ill-Posed Prob-

lems. PhD thesis, Montana State University-Bozeman.

BIBLIOGRAPHY 168

[82] Roman, L. J. and Sarkis, M. (2006). Stochastic galerkin method for elliptic spdes:
A white noise approach. Discrete and Continuous Dynamical Systems-Series B,

6(4):941.

[83] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based

noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259-268.

[84] Rusten, T. and Winther, R. (1992). A preconditioned iterative method for sad-
dlepoint problems. SIAM Journal on Matriz Analysis and Applications, 13(3):887—
904.

[85] Saad, Y. (2003). [terative methods for sparse linear systems. Univercity of
Minnesota, STAM.

[86] Saad, Y. and Schultz, M. H. (1986). Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific

and statistical computing, 7(3):856-869.

[87] Schwab, C. and Todor, R. A. (2006). Karhunen-loeve approximation of random
fields by generalized fast multipole methods. Journal of Computational Physics,
217(1):100-122.

[88] Serra, S. (1994). Preconditioning strategies for asymptotically ill-conditioned
block Toeplitz systems. BIT Numerical Mathematics, 34(4):579-594.

[89] Silvester, D. and Wathen, A. (1994a). Fast iterative solution of stabilised stokes
systems part ii: using general block preconditioners. SIAM Journal on Numerical

Analysis, 31(5):1352-1367.

[90] Silvester, D. and Wathen, A. (1994b). Fast iterative solution of stabilised stokes

BIBLIOGRAPHY 169

systems part ii: using general block preconditioners. SIAM Journal on Numerical

Analysis, 31(5):1352-1367.

[91] Strang, G. (1986). A proposal for Toeplitz matrix calculations. Studies in Applied
Mathematics, 74(2):171-176.

[92] Tikhonov, A. N. (1963). Regularization of incorrectly posed problems. In Soviet
Math. Dokl, volume 4, pages 1624-1627.

[93] Traverso, L., Phillips, T., and Yang, Y. (2014). Efficient stochastic fem for flow
in heterogeneous porous media. part 1: random gaussian conductivity coefficients.

International Journal for Numerical Methods in Fluids, 74(5):359-385.

[94] Treves, F. (1967). Topological vector spaces, distributions and kernels. Academic,
New York, (25).

[95] Turing, A. M. (1948). Rounding-off errors in matrix processes. The Quarterly
Journal of Mechanics and Applied Mathematics, 1(1):287-308.

[96] Tykhonov, A. (1963). Regularization of incorrectly posed problems. In Sowviet
Math. Doklady, volume 4, pages 1624-1627.

[97] Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems,

volume 13. Cambridge University Press.

[98] Vogel, C. R. and Oman, M. E. (1998a). Fast, robust total variation-based re-
construction of noisy, blurred images. Image Processing, IEEE Transactions on,

7(6):813-824.

[99] Vogel, C. R. and Oman, M. E. (1998b). Fast, robust total variation-based re-
construction of noisy, blurred images. Image Processing, IEEE Transactions on,

7(6):813-824.

BIBLIOGRAPHY 170

[100] Wathen, A. (2015). Preconditioning. Acta Numerica, 24:329-376.

[101] Xiu, D. and Karniadakis, G. E. (2002). Modeling uncertainty in steady state
diffusion problems via generalized polynomial chaos. Computer methods in applied

mechanics and engineering, 191(43):4927-4948.

[102] You, Y.-L. and Kaveh, M. (1996). Anisotropic blind image restoration. In Image

Processing, 1996. Proceedings., International Conference on, volume 1, pages 461—

464. IEEE.

171

VITAE

Adel Mohammed Yahya Al-Mahdi.
Born in Ibb, Yemen on January 1, 1977.

Received Bachelor of Science (BSc) degree in Mathematics (batch 2001-2002)
from Ibb University, Ibb, Yemen in 2002.

Appointed as a graduate assistant at Ibb University, college of Al-Nadera in

2003, and I am still working there as a faculty member.

Received a scholarship from the Ministry of Higher Education and Ibb Univer-
sity to study MS degree at King Fahd University of Petroleum and Minerals, in
2007.

Received Master of Since (MSc) degree in Mathematics from King Fahd Uni-
versity of Petroleum and Minerals, Dhahran, KSA, in 2011.

Submitted this dissertation to fulfil the requirements of his PhD degree in Math-

ematics from King Fahd University of Petroleum and Minerals.

Publications

1. F. Fairag and A. Al-Mahdi. Performance of Three Preconditioners for Image
Deblurring Problem in Primal-Dual Formulation. (Published) in Engineers and
Computer Scientists 2015 Vol 1.

2. Ke, Chen, Faisal Fairag and Adel Al-Mahdi. Preconditioning Techniques
for an Image Deblurring Problem. (Accepted) in Journal of Numerical Linear
Algebra with Applications.

3. F. Fairag and A. Al-Mahdi . Accelerating Image Deblurring Using Circulant
Approximations. (Accepted) in IMECS 2015 edited book published by Springer.

ITC
Rectangle

172

Present Address: Department of Mathematics and Statistics, King Fahd
University of Petroleum and Minerals, P.O. Box 8585, Dhahran 31261, Saudi
Arabia.

E-mail Address: g200704510@kfupm.edu.sa

Permanent Address: Department of Mathematics, Ibb University, Ibb, Yemen.

E-mail Address: almahdi77@yahoo.com.

ITC
Rectangle

	adel
	thesis_after_library

