

©Asem Ghaleb
2015

i

Dedicated to
the soul of my father,

who encouraged me to have high expectations and to fight hard for
what I believe and for my dreams to keep coming true. Dad, I feel

you are always with me supporting and guiding.
To my beloved mother, for her prayers to me.

ii

ACKNOWLEDGMENTS

First and foremost, my deepest thanks and gratitude go to God for providing me

with the means and perseverance to complete this journey. Without His will and

generosity, none of this or any other accomplishment would have been possible.

I would like to express my gratitude to my thesis advisor Dr. Sami Zhioua for

inspiring me with his passion for exploring new technologies and new research

areas. I would like to thank him for ceaselessly providing me with feedback, dis-

cussion and guidance and for spending hours on my drafts. My heartfelt thanks

are also to my thesis committee members, Dr. Ahmad Almulhem, Dr. Sami

Elferik, Dr.Abdulaziz Alkhoraidly and Dr. Jameleddine Hassine for their valu-

able comments and advice.

Moreover, special appreciation is due to my parents, brothers and sisters, friends,

and all who have helped me along the way I can not mention them by name, but

they know who they are.

My sincerest gratitude is extended to Yemenmobile for giving me the opportunity

to pursue my master and is also to the KFUPM faculty, staff and colleagues.

Thank you all...

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

ABSTRACT (ENGLISH) xi

ABSTRACT (ARABIC) xiii

CHAPTER 1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Thesis Contributions . 4

1.3 Organization of the Thesis . 5

CHAPTER 2 SCADA SYSTEMS 7

2.1 SCADA Architecture . 7

2.2 SCADA Components . 9

2.3 SCADA Protocols . 13

CHAPTER 3 SCADA SECURITY 17

3.1 SCADA vs. IT Security . 18

3.2 SCADA Attacks . 20

iv

3.3 SCADA Security Solutions . 22

CHAPTER 4 SCADA SIMULATION RELATED WORK 25

CHAPTER 5 SCADA SECURITY TESTBED 30

5.1 Optical Micro-Networks Plus Plus (OMNeT++) 30

5.2 Testbed Design . 34

5.2.1 Testbed Components . 36

5.3 Testbed Implementation . 39

5.4 Protocol Implementation . 45

5.4.1 Modbus/TCP Simulation 46

5.5 Interfacing with External Devices 48

5.5.1 Interface Concept . 50

5.5.2 Interface Implementation 50

CHAPTER 6 SCADA-SST USE CASES 53

6.1 Water Distribution Use Case . 53

6.2 Smart Grid Use Case . 57

CHAPTER 7 IMPLEMENTED ATTACKS 61

7.1 Replay Attack . 64

7.2 Man-In-The-Middle (MiTM) Attack 68

7.3 Stealth Command Modification Attack 69

CHAPTER 8 CONCLUSION AND FUTURE WORK 72

8.1 Conclusion . 72

8.2 Future Work . 74

REFERENCES 76

v

Appendices 81

VITAE 85

vi

LIST OF TABLES

3.1 IT systems vs. SCADA systems. 20

5.1 Modbus function codes . 48

5.2 Modbus request example . 48

5.3 Modbus response example . 49

vii

LIST OF FIGURES

1.1 SCADA hits monthly . 2

2.1 Typical SCADA Architecture . 9

3.1 Security defenses relationship between IT and SCADA networks . 23

5.1 OMNeT++ modeling . 31

5.2 OMNeT++ compound module example 32

5.3 SCADA-SST simulation environment architecture 36

5.4 SCADA-SST interfaces design . 37

5.5 SCADA-SST components and communication 38

5.6 SCADA-SST environment layout 39

5.7 SCADA-SST development model 41

5.8 SCADA-SST’s PLC component 43

5.9 Modbus TCP architecture . 46

5.10 Modbus protocol implementation library 49

5.11 Modbus interface structure . 51

6.1 Water distribution network topology 54

6.2 Water distribution HMI . 57

6.3 Smart Grid system network topology 58

6.4 Smart Grid System HMI . 60

7.1 Stealth command modification attack 71

viii

LIST OF ABBREVIATIONS

SCADA Supervisory Control and Data Acquisition

PLC Programmable Logic Controller

RTU Remote Terminal Unit

HLA High Level Architecture

OMNeT++ Optical Micro-Networks Plus Plus

IDE Integrated Development Environment

HMI Human Machine Interface

MTU Master Terminal Unit

OSI Open Systems Interconnection

TCP/IP Transmission Control Protocol/Internet Protocol

IED Intelligent Electronic Device

Profibus Process Field Bus

DoS Denial-of-Service

IT Information Technology

ix

IDS Intrusion Detection system

ICS Industrial Control Systems

MiTM Man-In-The-Middle

x

THESIS ABSTRACT
NAME: Asem Abdo Esmail Ghaleb

TITLE OF STUDY: SCADA Security Assessment under Cyber Attacks

MAJOR FIELD: Security and Information Assurance

DATE OF DEGREE: December 2015

Supervisory Control and Data Acquisition (SCADA) systems are responsible of

controlling and monitoring industrial processes and critical infrastructures, such

as electricity generation, gas production, and water distribution. In the few past

years, several security incidents have been reported on SCADA systems. The

consequences of these attacks ranged from small operations disturbance to loss of

human lives. Therefore, there is an urgent need to carry out a security analysis of

SCADA systems and to design appropriate security solutions. Security testing on

live SCADA systems, however, is not practical due to the difficulty and the cost

related to the implementation. In addition, evaluation of some security vulnerabili-

ties, such as Denial of Service (DoS) attacks, may lead to the delay or interruption

of SCADA services, which is not acceptable for real-time monitoring of critical in-

frastructures and operating systems. Therefore, such necessary solutions require

xi

extensive testing and validation prior to their implementation. In this thesis, a

SCADA simulation environment for testing and evaluating SCADA attacks and

mitigation techniques is presented. The simulation environment is designed and

developed in such way to allow hybrid architectures (involving simulated as well as

physical components). Two realistic SCADA configurations are designed using our

proposed environment, namely , water tanks control and smart grid systems. In

addition, the testbed allowed us to test successfully a set of serious network attacks

on a physical PLC including replay and Man-In-The-Middle (MiTM) attacks.

xii

xiii

 الرسالة ملخص

 اصم عبده اسماعيل غالبع : الاسم

 سكادا تحت الهجمات الإلكترونيةنظم أمنية تقييم : الرسالة عنوان

 المعلومات مانوض أمن : التخصص

 5102 ديسمبر : التخرج تاريخ

 ومراقبة العمليات التحكم فينظمة المسؤولة ، هي الأ(سكادا) وجممي البياناتنظمة التحكم الاشرافيأ
في السنوات القليلة . الصناعية والبنى التحتية الحساسة، مثل توليد الكهرباء، انتاج الغاز وتوزي المياه

وتراوحت عواقب هذه الحوادث مابين .، تم تسجيل العديد من الحوادث الأمنية في أنظمة سكاداالماضية
 يةمنلألذلك، هناك حاجة ملحة لإجراء تحليل .العمليات الصناعية إلى خسائر في الأرواح اداء في خلل

وم ذلك، ليس عملياً اجراء جمارب أمنية على أنظمة . نظم سكادا وتصميم الحلول الأمنية المناسبة
من الضروري إجراء اختبارات ،لذلك .سكادا اثناء عملها نتيجة للصعوبة والتكلفة المرتبطة بالتنفيذ

 .مكثفة للحلول الأمنية والتحقق منها قبل تطبيقها

وكذلك اسكادتبار الهجمات الأمنية على أنظمة في هذه الأطروحة، سيتم عرض بيئة محاكاة لغرض اخ
حيث تم تصميم وتطوير بيئة المحاكاة بحيث تتيح بناء أنظمة هجينة جمم .تتقنيات كشف هذه الهجما

 .تهامحاكاتم اخرى مكونات مادية و بين

تم تصميم نموذجين لأنظمة سكادا باستخدام بيئة المحاكاة المقترحة، وهي نظام التحكم في خزانات توزي
مجموعة من خدام هذه الأنظمة لإختبار بالإضافة إلى ذلك، تم است. وشبكة الكهرباء الذكية. المياة

 (PLCs) الهجمات الأمنية على اجهزة التحكم

CHAPTER 1

INTRODUCTION

This chapter introduces our motivation to pursue this research. It highlights

the current security issues affecting SCADA systems and also gives an overview

of the main ideas developed in this thesis. It goes further presenting how the

introduced concepts provide a better environment for evaluating the security of

SCADA systems

1.1 Motivation

SCADA systems are widely used to monitor and supervise critical infrastructure

and industrial processes. Such systems are vital for our society and responsible

for providing such many services on different fields. They are used in electricity

and water distribution, oil and gas production, managing railways and controlling

street traffic and in processing and recycling our waste, etc. Therefore, security

of such systems cannot be overstated since any interruption or disruption to such

systems can have a direct harmful effect on our live.

1

In the last few years, the number of cyber attacks targeting SCADA systems

increased dramatically. According to Dell security annual threat report released

in 2015 [1], the number of cyber attacks against SCADA systems doubled in 2014

compared with the number of cyber attacks against SCADA systems in 2013,

see figure 1.1. ”Since companies are only required to report data breaches that

involve personal or payment information, SCADA attacks often go unreported,”

said Patrick Sweeney, executive director, Dell Security. ”This lack of information

sharing combined with an aging industrial machinery infrastructure presents huge

security challenges that will continue to grow in the coming months and years.”

Figure 1.1: SCADA hits monthly [1]

Historically, SCADA components were special-purpose embedded devices con-

2

nected through a proprietary communication bus. Vendors would typically offer

turn key solutions, which would be incompatible with competitors systems. Secu-

rity was not a main concern in the design of these systems, instead major concerns

regarded real-time processing, and event notification [2]. Despite the lack of se-

curity features, SCADA vendors and operators believed they could rely on two

forms of protection. The first is employing an air gap, that is, a SCADA network

would be physically isolated from any other networks, thus making it harder for an

attacker to gain access. Secondly, they relied on security through obscurity, that

is, vendors and operators believed that very little, if any, information was pub-

licly available about their environments, and this lack of information made their

systems secure. Security concerns focused on restricting access to unmanned field

networks and on preventing configuration mistakes [3].

A number of SCADA systems are still using legacy devices while they are di-

rectly or indirectly connected to the Internet. This is because sharing of real-time

information with the business operations has become a necessity for improving effi-

ciency, minimizing costs, and maximizing profits. This, however, exposes SCADA

systems to various types of exploitation. Therefore, it is important to identify

common attacks and develop security solutions tailored to SCADA systems. How-

ever, to do so, it is impractical to evaluate security solutions on industrial systems

3

while in operation because of the difficulty and the cost of implementing stan-

dalone SCADA systems, in addition to the potential risk of failure and downtime

of SCADA services that may be caused during implementation of security solu-

tions. Therefore, the key problem of developing and improving particular security

solutions for SCADA systems is the lack of suitable modeling and testing tools to

evaluate those solutions prior to their adoption and implementation. Moreover,

most of the SCADA testbeds [4, 5, 6] are proprietary used only by researchers

within organizations and the software is not shared for public use. In general, to

come up with simulation environment for SCADA systems that can be used for

evaluating the security issues, a set of requirements has to be satisfied. First, the

simulator should be composed of simple, flexible, and reusable components. Sec-

ond, the simulator should be extensible and supports easy interconnection with

other simulators and/or real modules.

1.2 Thesis Contributions

This thesis provides the following contributions to the field of SCADA systems

and their security.

4

• Design and implementation of SCADA security simulation environment with

a key benefit of building SCADA security testbeds that allows the simulation

of various SCADA components, security attacks, and security solutions with

ability to interface with real physical devices.

• Security analysis of the network communication between Simatic Programmable

Logic Controllers (PLCs) and the engineering stations in charge of setting

up and configuring them.

• Implementing and carrying out a set of serious network attacks targeting

Simatic PLC leading to serious compromise of the PLC.

1.3 Organization of the Thesis

The thesis consists of eight chapters. Chapters 5-7 represent the main contribu-

tions of the thesis. The other chapters are respectively the introduction, SCADA

systems, SCADA security, SCADA simulation related work and finally the con-

clusion and future work chapter. The thesis is organized as follows.

Chapter 2 gives introduction about SCADA systems, their architecture, main

components and some of the common protocols used by SCADA systems. Chap-

ter 3 provides overview about SCADA security through describing how it is dif-

5

ferent from IT security, attacks targeting SCADA systems and finally the security

solutions for SCADA systems. Literature review of the related work is provided

in chapter 4.

Chapter 5 describes implementation details of the introduced simulation envi-

ronment. This chapter provides overview of the tools and techniques used to

implement the simulation environment, the multiple implemented components

that shape the simulation environment, the implemented industrial protocols and

implemented interfaces that connect the simulation environment with the real ex-

ternal devices.

In order to evaluate the introduced simulation environment, Chapter 6 presents

several use cases. It shows how the simulation environment can be used along

with available physical devices to construct security testbeds to analyze the se-

curity of SCADA systems as well as evaluating security solutions. In chapter 7,

one of the testbed presented in Chapter 6, that includes real common PLC, is

used to carry out three network attacks leading to serious compromise of typical

PLCs. In addition, simulation of some attacks targeting SCADA systems would

be described.

Finally, chapter 8 concludes the thesis by summarizing the presented work and

provides recommendations that can be considered for pursuing a future work.

6

CHAPTER 2

SCADA SYSTEMS

2.1 SCADA Architecture

SCADA is a system that operates over communication channels for monitoring

and controlling industrial and manufacturing processes and facilities, in addition

to providing control over remote equipment. It is a type of Industrial Control

Systems (ICS) that monitor and control industrial processes and it is distinguished

from other ICS systems in that it is large-scale processes including multiple sites

and operating over large distances. SCADA system collects and analyzes realtime

data from remote equipment such as pumps, valves, etc. and provides overall

remote actuation and control. Today, SCADA systems reached a high level of

domination that most of US national infrastructures depend on SCADA systems

to a high degree [7].

SCADA systems can be relatively simple, a single circuit that notifies you of one

event, such as self-contained SCADA systems that are built for a given applica-

7

tion, and the ones that monitor the environmental conditions of a small building,

or more complex, such as a system that monitor all the activity in a nuclear plant.

SCADA systems consist of hardware and software components as depicted in

figure 2.1. The hardware components gather data and push it into a computer

that has SCADA software. The SCADA software then processes and presents

this data in a timely manner and makes the appropriate controlling decisions if

necessary. All events are recorded by SCADA into log files stored on a database or

sent to a printer. Alarms are raised when conditions become risky or hazardous.

These operations are performed by different kinds of SCADA components [8].

The sensors (either digital or analogue) collect data from the managed system

or equipment. Remote Terminal Units (RTUs) deployed in the field at specific

sites and locations gather reports from sensors and deliver commands to control

relays. The collected data is moved through a communications network to the

master units, these are larger computers that serve as the central processor for

the SCADA system to automatically regulate the managed system in response to

the sensors inputs [8].

8

Figure 2.1: Typical SCADA Architecture

2.2 SCADA Components

A typical deployment of a SCADA system contains the following components:

• Human Machine Interface (HMI):

HMI is the means through which data collected and stored is presented to hu-

man operators in understandable and comprehensible forms. This includes

easy-to-understand screen layouts, detailed schematics, pictorial represen-

tation, and animations representing the running states and health of the

9

field equipment and machines. In addition, HMIs enable human operators

to interact with the processes through a touch screen, keyboard or both.

With HMI, human operators interact with SCADA systems in a simple,

clear and easy to understand way. Recently, HMIs have become web-based

applications, consequently, users interact with them through web browsers.

• Master Terminal Unit (MTU):

MTU is the repository of the real-time data collected from the remote ter-

minal units and transferred to it through SCADA network. Equivalent to a

master unit in a master/ slave architecture. SCADA software on the master

station must be able to collect and retrieve data values from the RTUs, store,

process and present it to the operator through the HMI and transmits con-

trol signals to the remote site. Operator HMIs are connected to the MTU

by a LAN/WAN so that the viewing screens and associated data can be

displayed for the operators [8]. The processing may include unit conversion,

recording or cataloging into tables etc.

• Remote Terminal Unit (RTU):

Remote Terminal Unit (RTU) functions as a slave in the master/slave ar-

chitecture. Collects and processes I/O in an intelligent manner. The Inputs

data from sensors, switches and transmitters is read by RTU and then trans-

mits the data to the MTU in a format understood by SCADA system. The

10

RTU also converts the SCADA system digital control signals into the suit-

able form, discrete or analog, understood by the device under control [7].

RTUs are different from PLCs in that they are better suited for wireless

communications. This makes RTUs ideal in renewable energy applications

like wind and solar farms. RTUs commonly use the Modbus (or some other)

protocol to connect to SCADA and HMI software. The data rate between

the RTU and controlled device is relatively high[9].

• Programmable Logic Controller (PLC):

Programmable Logic Controller (PLC) is a microprocessor into which a pro-

gram is fed so that it can control several functions in industrial processes.

Over the years, the functionality or the job of the PLC has developed to

involve process control, relay control, distributed systems control, motion

control, and networking. They were initially invented to replace the electro-

magnetic relays and the cumbersome wirings in a control circuit. In some

modern PLCs, data handling, processing power, storage, and communica-

tion capabilities are , to some extent, equivalent to desktop computers. The

process logic or sequence of operation is executed as per a software or control

logic program. However, PLC differs from a desktop computer. Unlike com-

puters, PLCs have multiple number of inputs and outputs, and are designed

for performing a strict and bumpy operations under extreme industrial con-

11

ditions. They operate under higher or increased temperature ranges, have

resistance to vibration and impact, and have immunity to electrical noise.

PLCs can be (re)configured using proprietary software installed on a stan-

dard computer (typically with Microsoft Windows OS). Reconfiguring the

PLC consists in changing the control system software, known also as the

programming layer of the PLC. A very common example of the configura-

tion software is the Siemens Simatic Step 7 [10] for Simatic controllers. The

software allows engineers to perform three main tasks: (1) write the graph-

ical ladder logic code, (2) compile it to machine code for execution and (3)

upload the compiled code to the device.

• Communication Means:

Communication media/methods between the central host computer servers

and the remote field-based controllers through which data can be trans-

ferred to and from different sites [8]. The communication can be established

through wired or wireless networks, Internet or the public telephone network

[9].

12

2.3 SCADA Protocols

In order to establish a communication between any entities, a protocol for that

communication has to be defined. A protocol states the form of the messages and

the rules for the exchange of messages. High-level models are used to state where

the protocols are applied and to break down the functions needed for the sake of

sending and receiving messages. The layered architecture model is one of those

models widely used in which the elements necessary to establish a communica-

tion are separated into layers connected together through interfaces. The Open

Systems Interconnection (OSI) and the Transmission Control Protocol/Internet

Protocol (TCP/IP) are the two most widely used layered communication

models [9].

The OSI model is constructed of 7 layers where each layer uses specific proto-

cols to define its function. In this model, data pass form higher-to-lower level

layers such that data is encapsulated by the next layer while passing through lay-

ers on the sender node. For instance, a packet of data from a higher layer would

be encapsulated in the next lower layer by adding header information. On the

receiving node, the reverse process happens, packets pass from lower-to-higher

level layers. The encapsulation is stripped from messages while they move from

down-to-up layers. The TCP/IP model is constructed of 4 layers and the various

13

capabilities of the Internet are based on the TCP/IP protocols.

Protocols of SCADA systems evolved from propriety hardware and software de-

signed specifically for SCADA systems. The protocols were developed out of

necessity to serve the burgeoning market for computer application in real time

control situation. Then SCADA protocols inserted versions of Internet and LAN

technologies in an effort to take advantages of new networking developments. This

resulted in some standardization commonly used in IT environment [9].

During the past three decades, hundreds (150 - 200) of these protocols have been

developed for communications based on both serial, LAN and WAN in a wide

variety of industries including petrochemical and electrical generation or distri-

bution [11]. Of these, approximately 10 protocols currently dominate the indus-

trial marketplace and include systems such as MODBUS, DNP3, EtherNET/IP,

PROFIBUS and Foundation Fieldbus [12]. Following sections would provide a

brief description of the commonly used protocols for SCADA systems.

• MODBUS Protocol

MODBUS protocol was developed by Modicon and has become defacto stan-

dard communication protocol. Modbus protocol is positioned in the applica-

tion layer of OSI model and supports client-server communications between

14

PLCs and other SCADA system components. It defines means for connect-

ing industrial devices, such as PLCs, RTUs, MTU, etc. together and for de-

tecting reporting and errors. MODBUS communication use a master-slave

technique in which only the master device can send commands(transactions)

called queries. The other devices(the slaves) just respond by providing the

requested data to the master or by performing the requested action [9, 13].

Modbus protocol is used in industrial environment for the reasons that it was

designed considering industrial applications, it is an open standard protocol

and royalty-free, and it is easily deployed and maintained. The development

and update of Modbus protocol has been managed by the Modbus Organi-

zation [14].

• DNP3 Protocol

DNP3 is an open SCADA protocol used for communication between com-

ponents in process automation systems. It is widely used by utilities such as

water and electricity companies. It plays a crucial role in SCADA systems

for the exchange of data and control instructions between master station,

RTUs and Intelligent Electronic Devices (IEDs). The typical commands is-

sued by master station are ”open a valve”,”start a motor”, and ”provide

data on a particular control station”. The out-stations also provide the

15

master station with information such as status of circuit breaker, pressures,

analog signals representing such items as temperatures or powers. DNP3 has

also been adapted to Internet technologies by using TCP/IP for exchange

of DNP3 messages [9, 15].

• Profibus Protocol

Process Field Bus (Profibus) is a open standard for fieldbus communica-

tion in time-critical control and data acquisition applications. It was pro-

moted by German department of education and research and then used by

Siemens. Since Profibus is an open standard, it can accommodate devices

from different manufacturers. It resides at the application, data link, and

physical layers of the OSI model. Profibus has advanced through a handful

of revisions and as a result, there are three versions of Profibus: Profibus

Fieldbus Message Specification (FMS), Profibus Process Automation (PA),

and Profibus Factory Automation (Decentralized Peripherals DP) [9].

16

CHAPTER 3

SCADA SECURITY

In the recent years, there has been a noticed growth in the number of incidents

against SCADA systems. According to a recent report, which was published in

2013 by ICS-CERT (U.S. Department of Homeland Security) [16], the number

of intrusions, attacks, scanning, and footprinting activities against the critical

infrastructure in U.S. is growing continuously. Just in 2013, ICS-CERT reported

and analyzed more than 250 incidents, particularly in the networks of industrial

companies. The report stated that, ”because reporting of cyber incidents is done

on a voluntary basis, it is estimated that many more incidents are occurring

but are not reported.” Moreover, large number of incidents are not detected due

to the lack of sufficient logging and detection capabilities [17]. Another report

published by Dell security in 2015 showed that the number of SCADA cyber

attacks doubled in 2014 [1]. Therefore, as these systems began to change and

became more interconnected, operators, however, began to recognize that cyber

security was a real concern that must be addressed in order to maintain the safety

and reliability of process control. This chapter highlights SCADA security by

17

describing the difference between SCADA systems and Information Technology

(IT) systems security and what are the common attacks targeting SCADA systems

and finally, some of the security solutions used for securing SCADA systems would

be stated.

3.1 SCADA vs. IT Security

SCADA systems have several characteristics that differentiate them from IT sys-

tems in terms of operational priorities and risks. The control components of

SCADA systems are optimized to provide real-time performance and reliable ser-

vice with a reasonable cost. There are little computing cycles and extra memory

sufficient to execute other functions such that related to performing security tasks

and SCADA systems use unconventional operating systems and software. In ad-

dition, the primary and most important goal in IT is to protect the central servers

and not the clients. Contrary to IT systems, in SCADA systems, the edge client

devices such as PLCs are the backbone of SCADA systems and are of great im-

portance compared to central edges such as data historian servers [18].

The security of information system was not inherited in SCADA protocols. At

the time when SCADA protocols were developed, SCADA systems were isolated

from the outside world and were working in closed environments. Today, SCADA

18

systems are connected to corporate IT networks and they are using protocols that

are targets for attacks in the IT world.

One big challenge that SCADA systems face is the inability to deploy vulnerability

countermeasures, that are usually used with IT networks. In IT networks, An-

tivirus and encryption are commonly employed. Network administrators perform

penetration testing and auditing of information security. Employees are trained

on information security and hence have an increased awareness. An upgrading

or replacing of equipment is done every couple of years. In addition, software is

updated and patched on regular basis. On the other hand, none or just a few of

these countermeasures are considered in SCADA networks. Antivirus are difficult

to be employed in SCADA networks because delays can not be tolerated. The

performance of the network is affected negatively with encryption. Penetration

testing is rarely done due to the high potentiality of disturbing the control system.

Software is patched and updated on infrequent basis because of the need to care-

ful planning and cooperation of the different component vendors. Equipment can

stay for years without replacing or upgrading, running applications and operating

systems with known vulnerabilities [9]. Table 3.1 summarizes characteristics of

SCADA systems vs. IT systems.

19

IT Systems SCADA Systems

Data loss caused by disturbance

can be recovered

Disturbance may lead to disastrous

consequences

Delays can be accepted Real-time actions & responses

Tolerate rebooting & crashes Must be running 24/7

Antivirus commonly used Inadmissible delays caused by antivirus

High security awareness and training Lack of security awareness and training

Encryption commonly used Encryption rarely used

Regular penetration testing Rare penetration testing with high care

Regular application of patches
Patches are applied infrequently,

carefully and with vendors’ cooperation

Replacement of equipment per

three-to-five years

Equipment run for decades without

replacement

Regular information security audits Rare information security audits

Table 3.1: IT systems vs. SCADA systems.

3.2 SCADA Attacks

Increasingly, SCADA systems are connected to corporate networks, in order to

maximize benefits by enabling leaders to track and control real-time production,

watch changes in the production and react accordingly. Moreover, Ethernet,

TCP/IP, Wireless technologies such as IEEE 802.x and Bluetooth have been

adopted in SCADA systems. However, such interconnection exposes SCADA or

industrial control systems to attacks. The control network can be penetrated by

remote attackers without having any physical access by exploiting the gateways

20

vulnerabilities between SCADA and corporate networks. Moreover, the recent

trend for using commercial and open source software decreased the development

and deployment costs. On the other side, the attackers require less knowledge

about the operation of the control system than was required when proprietary

protocols and hardware were prevalent [19].

Cyber attacks on SCADA systems can take a route through connections to In-

ternet or enterprise networks or through connections with other networks such as

connection to satellite and wireless networks. The most common attacks against

SCADA systems can be classified as follows [18].

• Protocol vulnerabilities

• Network backdoors

• Field devices attacks

• Database attacks

• Man-in-the-middle attacks

• Time provision and synchronization attacks

With the successful penetration of SCADA systems, the following malicious acts

can be performed [18, 8, 20]

21

• System shutdown through using Denial-of-Service (DoS)

• Compromise the function of RTUs/PLCs

• Get access to master stations and gain control of system by planting Malware

• Retrieve SCADA system passwords by log keystrokes from operators

• Gain access to SCADA systems

• Shut down the control devices such as PLCs using, for example, replay attack

• Send modified incorrect data to master stations by spoofing RTUs

• Preform wrong actions by spoofing control stations such as PLCs

• Disturb communications between operator stations and control stations

3.3 SCADA Security Solutions

With the security threats and challenges that face SCADA systems, there is an in-

creased interest for techniques and tools that could be adopted in order to improve

the security of SCADA systems. Figure 3.1 illustrates the typical defenses or se-

curity countermeasures employed in corporate/IT network and their relationship

with the SCADA network. Recently, security mechanisms for SCADA systems

have been adopted, many of these are used in IT security.

22

Figure 3.1: Security defenses relationship between IT and SCADA networks [8]

Following are a set of techniques that could be implemented in order to improve

the cyber security of SCADA systems [9].

• Analyze SCADA network and its nodes for vulnerabilities

• Use network encryption, strong authentication and isolate SCADA network

from unnecessary external connections

• Disable all unnecessary services

• Adopt firewalls compatible with SCADA protocols

• Install and configure Intrusion Detection systems (IDSs)

• Integrate patch management with SCADA systems

• Apply configuration management of SCADA network, software and hardware

23

• Develop and implement risk assessment, security audits and incidents re-

sponse plans

• Conduct security awareness programs and training

24

CHAPTER 4

SCADA SIMULATION RELATED WORK

A number of research papers focused on developing simulation environments of

SCADA systems. In this chapter, we present work related to developing simula-

tion environments for the sake of investigating SCADA security issues. McDonald

et al. [21] described a virtual control system environment developed at Sandia

National Laboratories for investigating SCADA vulnerabilities in the filed of en-

ergy systems. As set of assumptions, that have to be made for developing hybrid

models, have been discussed. Simulated RTUs interacted with simulated power

systems (PowerWorld server) were used to represent the control system. While

both simulated and real components were included in the cyber layer. However,

the proposed environment is constrained on Power Systems and does not support

a wide variety of physical processes.

Chabukswar et al. [22] concentrated on demonstrating the use of Command and

Control Wind-Tunnel (C2WT), framework used more widely in research, with the

aim to simulate DDOS-like attacks on a plant and its control system as well as to

25

analyze the effects on different routers. The C2WT framework is based on High

Level Architecture (HLA) and it was designed to facilitate the development of

large-scale simulations. It uses the Generic Modeling Environment and employs

model-based design techniques and graphical interface to allow integration of di-

verse simulation engines. The authors use the NetworkSim, which is based on

OMNeT++ to simulate the communication protocols and the Simulink to model

the domain specific processes. Moreover, they developed a Simulink function to

synchronize the model with the Run-Time Infrastructure allowing Simulink to

progress only when the RTI allows it. They use timed-stepped synchronization,

while keeping an appropriate small time-step size in order to minimize event tim-

ing errors introduced by exchanging events between Simulink and HLA. However,

the authors work and the used platform were designed mainly for power plant

simulations and not typical SCADA systems.

Queiroz et al. [23] proposed a SCADA simulation tool (SCADASim) developed

for SCADA security studies. Their objective was to examine the effect of attacks

in real devices and applications by using a simulated environment. Attacks that

are supported include denial of service, man in the middle, eavesdropping, and

spoofing. They use the OMNET++ to simulate the network and they exploit the

socket based integration of OMNET++ to allow the integration of the external

26

devices using deployed gates. Finally, they deploy malicious attacks (denial of

service and spoofing) scenarios to evaluate the framework, and they demonstrate

how the attacks are affecting the process of using legitimate requests. However,

the work was limited to simulated attacks, and it does not provide a framework to

launch attacks from outside the simulation framework. In addition, the authors

did not mention the possibility of integrating detection techniques. The hardware

components were simulated using MATLAB/Simulink and no real physical hard-

ware was mentioned except sensors and actuators.

The work by Chunlei, Lan, and Yiqi [24] proposes a reference architecture. It

consists of several layers and components that represent the enterprise network,

the OPC server and client, the SCADA protocols tester, the RTUs, the field sen-

sors and actuators as well as the industrial infrastructure. Their prototype imple-

mentation targets the security analysis and assessment of SCADA systems. The

architecture is extensible and adaptable and it is mainly based on NS2. Moreover,

in order to allow the integration with real networks they exploit the capabilities

of emulation feature of NS2. The latter has the ability to inject traffic from the

simulator into a live network and to simulate a desired network between real ap-

plications in real-time. For the simulation framework, they use real PLC/RTUs

and sensors/actuators, as well as industrial and open source systems for OPC

27

client/server implementation. Finally, for the evaluation of the simulation frame-

work, they implemented attack scenarios that compromise the security of SCADA

system and they developed methods to analyze and assess the impact of these at-

tacks. On the other hand, all SCADA components such as PLCs, RTUs are real

components and only the enterprise network has been simulated. This doubts its

ability to be used in tests that require large infrastructure.

Almalawi [25] proposed SCADA simulation framework (SCADAVT) for build-

ing a SCADA testbed based on virtualization. CORE emulator has been used

to build the framework. The essential SCADA components such as protocols,

I/O modules, and simulators of field devices have been integrated through the

plug-in service available in CORE emulator. Moreover, in order to simulate water

distribution systems, a server has been introduced with the use of the dynamic

link library (DLL) of EPANET-a modeling tool for simulating water movement

and quality behavior within pressurized pipe network. In addition, the simulated

server can be used to simulate any topology of water network systems and can

be manipulated by a custom TCP-based protocol. They presented a case study

to show how the testbed can be used to monitor and control any automated pro-

cesses. Two attacks (DDoS and integrity) have been described to demonstrate

how attacks can disrupt supervised processes.

28

Mahoney and Gandhi [26] research has constructed an integrated framework for

simulating control system and monitoring of regulatory compliance in near real-

time. SCADASiM framework allows the reconstruction of SCADA network com-

ponents at the abstraction level needed for the 7 monitoring of the system as-

pects. The authors have used Autonomous Component Architecture (ACA) to

model SCADA network and in order to monitor the regularity compliance, their

research involved using of a new language called ADACS.

29

CHAPTER 5

SCADA SECURITY TESTBED

This chapter presents implementation details of a simulation environment in-

tended to study and analyze SCADA systems security. The system is called:

SCADA-SST. First, an overview of the tools used to implement security environ-

ment is provided in addition to a discussion about why these tools in particular

are chosen to develop the proposed environment. Then it proceeds to present the

design and development details in the following sections.

5.1 OMNeT++

SCADA-SST environment has been implemented using OMNeT++ network sim-

ulator in combination with INET framework that contains all libraries needed to

build communication network models and implements the most common Internet

protocols, such as TCP, IP, UDP, MAC protocols, etc. [27]. OMNeT++ was cho-

sen to build SCADA-SST for several reasons. First, this work focuses on TCP/IP

protocol stack, which are included in OMNeT++. OMNeT++ is an open source

30

and generic simulation engine and provides the ability to integrate with external

real devices. In addition, OMNeT++ is commonly used in the research field and

this has the benefit of building on top of others work.

OMNET++ is an extensible, modular, component-based and object-oriented dis-

crete event simulation library and framework primarily for building network simu-

lators written in C++ [28]. The main components of OMNET++ are the modules,

which can be simple modules or compound modules grouping several simple mod-

ules together, which communicate with each other by exchanging messages. The

modules communication can occur either directly through messages or through

input and output gates as depicted in figure 5.1.

Figure 5.1: OMNeT++ modeling [29]

In OMNeT++, simple modules can be combined together in a hierarchy of levels

31

making it possible to construct complex simulation components. Figure 5.2 shows

an example of a compound module StandardHost constructed by combining sev-

eral modules together.

Figure 5.2: OMNeT++ compound module example

OMNeT++ comes with Integrated Development Environment (IDE) based on

the Eclipse platform with extended new editors, views, wizards, and additional

functionality for the sake of creating and configuring models, running patch exe-

cutions, and evaluating the simulation results.

In OMNeT++, the general approach of simulation implementation (modeling)

can be summarized in the following steps:

32

1. Define the structure:

The simulated module structure and the various network topologies are de-

fined using NED language. This can be done using a text editor or in the

graphical editor of the eclipse-based OMNeT++ simulation IDE.

2. Define the behavior:

The behavior of the module is programmed in C++ using the simulation

kernel and class library.

3. Define runtime parameters:

The OMNeT++ specific configuration and the module parameters are grouped

in the omnetpp.ini configuration file which can describe several simulation

runs with different parameters.

4. Run the simulation:

After building the simulation, it can be run through either the command line

batch or the interactive graphical user interface.

5. Evaluate the simulation:

The simulation results are recorded in output vectors and scalar files. Those

results can be processed or visualized using the appropriate tools.

33

5.2 Testbed Design

This section introduces the overall structure of SCADA-SST and its main com-

ponents. Details of the implementation will be discussed subsequently in the

following sections. Before starting with designing the proposed simulation envi-

ronment that meets the needs of SCADA security testbeds, the requirements of

a typical SCADA security testbed were specified. The need is for a testbed that

can be used to launch various security tests either to study the effect of different

attacks on SCADA systems or to test the validity and impact of detection and

mitigation techniques. Then the design phase stated the architecture of the simu-

lation environment and the main components needed to construct the simulation

environment in addition to classifying theses components according to their job

and the site in which they are used. Finally, the development phase of the simu-

lation environment was established according to the output of the design phase.

During the design phase, the specifications of typical SCADA systems in general

and the features of the proposed SCADA simulation environment in particular

have been taken into consideration. In SCADA systems, there are two types

of networks, corporate/IT network and SCADA network. Special field devices

and SCADA components are employed in SCADA network. Corporate network

connects combination of nodes of different types. Some of these nodes are spe-

34

cial SCADA nodes and the rest are normal nodes that are seen usually in IT

networks. Moreover, two kinds of protocols will be employed in the simulation

environment. Internet protocols, such as TCP, IP, UDP, etc. and SCADA spe-

cial industrial protocols. In addition to these specifications related to SCADA

systems, the simulation environment was designed while considering producing

extensive, generic, flexible, reusable and easy-to-use components. Moreover, the

ability to connect simulation environment along with physical devices was taken

into account. Which means that a testbed can be constructed of a combination

of some simulated nodes and other real physical devices communicating with each

other.

The general architecture of the SCADA simulation environment is designed in

four different layers as shown in figure 5.3. The first layer at the bottom of the

hierarchy is composed of SCADA industrial specific modules or real world field

devices such as PLCs, RTUs, etc. The second layer is composed of thoroughly

designed coordination modules which are responsible for the interconnection as

well as the critical time synchronization between the modules. In addition, the

second layer contains the interfacing modules which are responsible for establish-

ing communication with real external devices. The third layer encompasses the

simulation of the different network protocols and modules constructing simula-

35

tion components. The top layer consists of the generic applications running inside

simulation or GUI and scripts that allow the user to interface with the developed

environment.

Figure 5.3: SCADA-SST simulation environment architecture

5.2.1 Testbed Components

In order to implement a simulation environment that can be used to model dif-

ferent SCADA architectures, there is a need to model main SCADA components

and the communication networks to connect those components. Following is a

list of various components constructing SCADA-SST with a specification of what

have been done as part of this work.

36

• SCADA Components:

OMNeT++ has been used to model main SCADA components, namely, PLC,

RTU, and MTU. In addition, we have used HTML, JavaScript and VS.NET(

WPF) to develop the HMIs used inside SCADA-SST

• SCADA Protocols:

OMNeT++ has been used to simulate Modbus/TCP protocol

• TCP/IP Stack Protocol:

The INET framework implementation of the TCP/IP stack protocol has been

used in proposed simulation environment.

• Real Hardware/Software Interfaces:

Figure 5.4: SCADA-SST interfaces design

In order to connect real hardware/software with simulated modules inside

SCADA-SST, a set of interfaces have been implemented. They are working

as translators that take packets coming from the outside world and convert

them to events; the means of communication in OMNeT++. The design

of SCADA-SST main components and the communication between them is

37

shown in figure 5.5.

Figure 5.5: SCADA-SST components and communication

38

5.3 Testbed Implementation

SCADA-SST was implemented for the sake of building SCADA security testbeds.

Therefore, these security testbeds should resemble the typical SCADA systems.

Figure 5.6 depicts the typical layout of SCADA-SST.

Figure 5.6: SCADA-SST environment layout

39

SCADA-SST has been implemented on the top of INET framework mentioned

in section 5.1 and ReaSE tool [30] which is used for creation of realistic environ-

ments. According to the layout of the environment depicted in figure 5.6, the

implemented simulation environment will consist of a set of modules that simu-

late various SCADA components, e.g., PLC, RTU, etc., a collection of protocols;

either those protocols that are used inside the simulation environment to connect

the different modules together or those protocols used to communicate with the

outside world, e.g., modbus protocol. The implemented environment will involve

a custom scheduler as well as interfaces to integrate with real hardware and ap-

plications.

The development process followed the model depicted in figure 5.7. First, the

behavior of every component, needed to be simulated, is studied and analyzed

in order to fully understand what is needed from this component to do or how

it should behave. Then the simulation code is written according to the output

of the behavior analysis phase. After writing the behavior code of the simulated

component, the simulated component is tested to see if it is simulated in the right

way. Finally, the properly simulated component is integrated with the whole sim-

ulation environment and become ready to use.

40

Figure 5.7: SCADA-SST development model

In OMNeT++, the term module is used to refer to any simulated node or protocol.

Network components in OMNeT++ are described with the Network Description

Language. With modules and channels to connect modules, two types of modules

exist: simple modules and compound modules. Simple modules implement the

behavior of a certain node or protocol and are, therefore, responsible for all activ-

ity occurring in a component. Their behavior is defined by user in C++ source

code files. Compound modules are containers for simple modules and may contain

any number of simple modules. The network node is comprised of the modules

41

and their connections.

In order to develop communication networks as they can be found in SCADA

systems, new compound modules for SCADA components are implemented. The

following SCADA components are taken into account [31]: Remote Terminal Unit

(RTU), Programmable Logic Controller (PLC), Master Terminal Unit (MTU),

and Human Machine Interface (HMI). These SCADA components are derived

from INET’s standard modules, meaning they are treated by the simulation ker-

nel as if they were INETs StandardHost module.

In general, RTU and PLC take over the same tasks [32], therefore, they have been

modeled or simulated identically but are present in SCADA-SST as individual

components. The behavior of SCADA-SST components is written in C++ this

allows dynamic binding of the C++ programs describing the behavior of those

modules. Those simulated components communicate with each other via simu-

lated network packets and make decisions based on the packets they receive.

The simulated PLC component, for example, is shown in figure 5.8. The PLC

is a compound module, that consists of several simple modules. The PLC is also

derived from the StandardHost and so INET’s implementation of the OSI stack

is clearly visible inside the TCP/IP connectivity group. The Data Link Layer is

represented by the simple module labeled eth[i] on the bottom. Packets received

42

at eth[i] are first passed to the Network Layer protocol and then to the Transport

Layer protocol, where TCP/IP is used. The Application Layer implements the

behavior of the PLC via user-defined C++ code. At this point, the C++ ap-

plications describing the PLC’s behavior are integrated into the PLC compound

module. In the PLC component, there are other INET modules visible on the

left side: NotificationBoard, InterfaceTable and RoutingTable. These modules

are responsible for proper packet routing inside the simulation.

Figure 5.8: SCADA-SST’s PLC component

43

Simulated components are always an approximation of the modeled entity since

real world objects are inherently complex and require assumptions to reduce their

complexity in order to derive a feasible model, that can be used in computer simu-

lations. The assumptions for the different SCADA and network components, that

are made during modeling, are discussed at this point. The SCADA components

are based, to some extent, on their descriptions provided in Section 2.2. The com-

munication in the modeled network uses TCP/IP. The simulated components are

capable of communication via UDP and ICMP as well, however, this is not used

in the modeled network. Specialized components for PLC and RTU are present in

the simulation library of SCADA-SST but inside the simulations they are treated

as identical components.

The implementation of SCADA components mentioned above was done using

OMNeT++. However, HMIs used in this work were implemented as real external

applications either web-based applications or WPF applications. The WPF-based

HMIs have been developed using Visual Studio 2012 [33] and OPC Systems.NET

[34]. While the web-based HMIs have been developed using HTML and javascript.

The use of the implemented environment to test effects of various attacks on

a typical SCADA system and to evaluate the various mitigation techniques can

44

be done using one of two possible ways. The first method is to simulate the attacks

and mitigation techniques under study and run them as part of the simulation

environment. The second method enables us to use real attacks binaries already

implemented and take benefits of existing software or hardware and launch them

from outside the simulation environment targeting either a component inside the

simulation environment or an external physical component. The latter method

can be used when we do not have the sufficient time and information about at-

tacks and mitigation techniques under study so that we can not simulate them.

OMNeT++ Integrated Development Environment (IDE) enables the users of

SCADA-SST to easily build the needed network topologies without writing any

piece of code, or a little bit of code if any, using the drag and drop functionality of

the IDE’s interactive graphical editor and then setting some topology configura-

tion parameters such as simulation runtime parameters and real external devices

external information.

5.4 Protocol Implementation

In SCADA systems, there are two types of used protocols. The well-known In-

ternet protocols commonly used inside corporate networks and special SCADA

industrial protocols. In SCADA-SST, both types are needed to simulate realistic

45

SCADA testbeds. We have used INET implementation of Internet protocols such

as TCP, IP, UDP, MAC, etc. while doing some modification to parts of these pro-

tocols in order to make them behave like real protocols especially when running

malicious attacks. For instance, to launch DoS attack against TCP connections

we need to limit the number of concurrent connections and drop all new connec-

tion requests when the number of active connections reaches this limit. On the

other hand, there is no existing framework that implements SCADA protocols.

Thus, part of this thesis contribution focuses on implementing SCADA proto-

cols. Initially, Modbus/TCP protocol has been implemented . In this work, the

implementation of Modbus/TCP protocol is based on the libmodbus library [35]

stable version v3.0.6. The implementation details of this protocol are given in the

following section.

5.4.1 Modbus/TCP Simulation

Modbus protocol is based on messaging and is widely used to establish master-

slave communications between industrial devices.

Figure 5.9: Modbus TCP architecture

46

Because of the nature of Modbus protocol, messaging structure, the implementa-

tion of this protocol is independent of the underlying physical layer. The basic

structure of Modbus message contains the slave address, the command, the data,

and check sum as depicted in figure 5.9. The work of this protocol is based on two

concepts: request and response. In the request, the function code tells the target

slave what kind of action to perform. Along with the function code, the request

may contain additional data that the slave may need to perform. For example,

if the function code was ’read register’, then the request must contain additional

information about which holding registers to read. Moreover, the request check

sum field enables the slave to check the integrity of the message contents. on the

other hand, the response contains copy of the function code sent with the request

or an error code in case of error is happening. In addition, the data bytes contain

the requested data or a description of the error [36, 13, 14, 37, 38].

Modbus protocol supports eight function codes which tell the slave what action

to do as stated in table 5.1. Table 5.2 shows an example of a request to read regis-

ters 0-1 from slave device 1. The response for the request would be as in table 5.3.

The class diagram of the of the modeled modbus/tcp, adjusted from libmod-

bus library, is given in figure 5.10.

47

Function code meaning
01 read coil status
02 read input status
03 read holding registers
04 read input registers
05 read single coil
06 write single register
15 write multiple coils
16 write multiple registers

Table 5.1: Modbus function codes

trans id unit function starting registers error check
00 00 00 01 00 03 00 00 00 02 LRC (FA)

Table 5.2: Modbus request example

5.5 Interfacing with External Devices

External devices and applications can be integrated with OMNeT++ using one of

three possible ways [39, 23]. In the first method we can use source code integration

which requires the modification of OMNeT++’s source code. The second method

is the shared library integration where a library used by both OMNeT++ and the

external application is developed. The third method is through the use of socket

connections. i.e. commonly used network protocols are employed for communica-

tion. In order to use the first method, knowledge of OMNeT++’s implementation

is required. The source code needs to be recompiled using the specified build

48

trans id unit function byte count data data error
00 00 00 01 00 03 00 04 00 05 00 06 LRC (E D)

Table 5.3: Modbus response example

Figure 5.10: Modbus protocol implementation library

environment. The external application must be integrated into this environment,

which limits the flexibility during design and development specially when con-

necting with physical devices. Moreover, mastering OMNeT++’s implementation

details takes a steep learning curve. The second method is similar to the first

one but it does not require the use of the build environment. However, the use

of OMNeT++’s interfaces is mandatory, which has the same drawbacks as the

first method. In the third way, the minimum changes are required and it imposes

49

the minimal restrictions on development. In addition, it is the most flexible for

connecting with physical devices. The integration between SCADA-SST and the

outside world is implemented using sockets.

5.5.1 Interface Concept

One of the requirement of the SCADA-SST simulation environment is to design it

in such way that external real devices may be connected. For this to be satisfied,

interfaces have been implemented so that they are used in the simulation envi-

ronment whenever we need to connect with external real devices. An interface

has been implementedto connect with any device using Modbus/TCP protocol.

Other interfaces are implemented to connect with devices using Internet proto-

cols TCP and UDP as extensions of the INET classes ”CSocketRTScheduler” and

”ExtInterface”.

5.5.2 Interface Implementation

Figure 5.11 shows the class diagram of this work implementation of the mod-

bus interface used to connect with physical components via modbus protocol. In

this implementation, the ModbusFace() routine is responsible for initializing and

creating active instance of the modbus interface. Here, the IP address of the cor-

50

responding physical device is specified. The Listen() routine is a procedure that

keeps listening and receives messages from external world. The processMSG()

receives messages from Listen(), process them and forward messages to simulated

modules.

Figure 5.11: Modbus interface structure

The integration between the simulated modules and real external devices can be

done either between those industrial devices that communicate using industrial

protocol Modbus/TCP, or devices that work inside the corporate network using

the well-known Internet protocols, TCP and UDP. To connect with an external

physical devices, an interface node is added to the simulation network topology

and setting a parameter ’externalIP’ to the real IP address of the external physical

device we want to communicate with. The selected interface node must be com-

patible with communication protocol used in the physical device. For example, to

connect with a physical PLC, we must select modbus interface node.

51

In order to manage the communication of OMNeT++ with external world, a

custom scheduler has been implemented. The sending and receiving of the pack-

ets from and to the external hardware and applications is still done with sockets,

which are programmed using the Windows Socket API (WSA or Winsock). The

scheduler is necessary for the propagation of the packets, i.e., translating the ex-

ternal packets to internal, simulated packets and vice versa. The scheduler of

SCADA-SST is based on the cSocketRTScheduler, which is presented as a demo

application of OMNeT++.

The ability to integrate the simulation environment with external real devices

increased the functionality of the implemented environment since it would be

possible to evaluate the security of different SCADA components using different

network topologies. With this feature, we can use the simulation environment to

construct different SCADA topologies taking benefit of the existing real devices

and replacing the missing SCADA components or corporate/IT devices with sim-

ulated ones.

52

CHAPTER 6

SCADA-SST USE CASES

In this chapter, two realistic SCADA configurations are designed using the pro-

posed environment. The first configuration is for water distribution control in

which a hybrid architecture of simulated and physical components is presented.

The second configuration is of a smart grid system.

6.1 Water Distribution Use Case

In this case, the SCADA system presented is a combination of simulated compo-

nents, physical hardware and real applications.

The scenario resembles a SCADA system that is used to control the water dis-

tribution in water distribution station. In this case, we have two water tanks,

the first tank, Tank1, is filled from the water source and then used to distribute

water. The second tank, Tank2, is used as an extra tank to reduce the pressure on

Tank1. In case the water level in Tank1 reached a pre-specified level, a transfer

53

Figure 6.1: Water distribution network topology

pump between Tank1 and Tank2 would be opened to pass the water from Tank1

to Tank2. In case the water level in both tanks exceeded the permitted water

level, a drain valve on Tank2 would be opened as depicted in the HMI of this

SCADA system shown in figure 6.2.

The RTU collects data from the two tanks’ water-level sensors. The PLC is

connected with the RTU. It reads data from the RTU, processes it, then sends

it to the HMI. Moreover, The PLC receives actions from HMI’s operators and

direct commands that reflect those actions to the field devices through RTU. The

engineering station is used to configure the PLC and to write PLC programs. The

54

configuration details of each component is described as follows.

• PLC

The PLC used in this scenario is a real Siemens SIMATIC S7-400 PLC that

has been integrated with the simulated components using modbus/tcp proto-

col. It has been configured to work as a master device to collect data from the

simulated RTU and then sends it to the HMI. Moreover, it forwards operator’s

actions to the RTU.

• RTU

The RTU is simulated using SCADA-SST simulation environment and is used

to gather information from the tanks’ sensors and works as a slave device

listening on port 502 for coming requests from the PLC and then responds

by providing the requested data.

• Engineering Station

Windows 7 host equipped with Siemens Simatic PCS7 V8.0 software which

is a programming and configuration environment for Siemens PLCs. Here,

it is used to configure the physical PLC and connect it with the simulated

components.

• Water-Level Sensors

An implementation of external application is used to simulate the two sensors.

The first sensor is used to measure the water level in Tank1 and the second

55

sensor is used to measure the water level in Tank2. This external application

that simulates the two sensors is connected with the RTU in the simulation

environment.

• HMI

The HMI has been developed as real web-based application to receive updates

about the status of the water tanks from PLC and presents it in graphical way

as shown in figure 6.2. In addition, the implemented HMI allows operators to

interact with the controlled field devices by starting/stopping transfer pump

or opening/closing the drain valve. The HMI is running outside the simulation

environment and is connected through the ethernet network with the PLC

working outside the simulation environment.

This scenario shows how we can construct SCADA testbeds by employing the

existing physical hardware, real applications and SCADA-SST simulation envi-

ronment. This configured SCADA testbed will be used in Chapter 7 to conduct

network security analysis of the communication between the PLC and the engi-

neering station.

56

Figure 6.2: Water distribution HMI

6.2 Smart Grid Use Case

In this case, the SCADA system presented had been configured using simulated

components, and real applications.

The scenario exemplifies a smart grid system that is used to control electricity

consumption by smart homes. In this case, we have two smart homes, for simplic-

ity, each home is equipped with a smart electric meter that measures the power

consumption and sends these data to electric company. According to the received

57

data, the electric company would be able to do the needed actions in order to

enhance the power supplied to the smart home.

Figure 6.3: Smart Grid system network topology

The RTU collects data from the electric meter. The MTU is connected with the

RTU. It reads data from the RTU, then sends it to the HMI. The configuration

details of each component is described as follows.

• MTU

The MTU used in this scenario is a SCADA-SST’s simulated component that

58

has been configured to work as a master device to collect data from the

simulated RTU and then sends it to the HMI.

• RTU

The RTU is simulated using SCADA-SST simulation environment and is used

to gather information from a smart home’s electric meter and works as a slave

device listening on port 502 for coming requests from the MTU and then

responds by providing the requested data.

• Electric Meter

An implementation of external application is used to simulate the electric

meter. This external application simulates power consumption reads and is

connected with the RTU in the simulation environment.

• HMI

The HMI has been developed as a real WPF application to receive updates

about the power consumption by the smart homes from MTU and presents

it in graphical way as shown in figure 6.4. The HMI is running outside the

simulation environment and is connected through the ethernet network with

the MTU.

59

Figure 6.4: Smart Grid System HMI

60

CHAPTER 7

IMPLEMENTED ATTACKS

This chapter exposes a network security analysis of the communication be-

tween PLCs and the engineering stations. Using the water distribution testbed

discussed in Chapter 6, a number of three network attacks have been carried

out leading to serious compromise of typical PLCs. In the subsequent sections,

for every implemented attack we describe: (i) the behavior of the attack, (ii)

the scripts and tools used to configure the attack, and (iii) the nodes used to

launch the attack.

Major PLC manufacturers (Siemens, Allen-Bradley, Phoenix Contact, etc.)

provide efficient software environments to program and configure their PLCs.

The programs are written in a variety of languages including graphical lan-

guages such as Ladder logic. PLC programs need to be efficient, lightweight

and guarantee secure communication with the other field devices once de-

ployed.

Programming a PLC consists of uploading the written program to the PLC

61

after it has been developed and tested at an engineering station. Typically,

the engineering station is connected to the PLC with Ethernet. This com-

munication can be point-to-point involving a simple Ethernet cable between

the PLC and the engineering station or is a part of a network including other

stations. Because the PLC program is in charge of controlling how the PLC

works and commands field devices, the upload procedure should be performed

in a secure way. An adversary who can interfere with this uploading proce-

dure can launch a variety of attacks ranging from DOS to seizing full control

of the PLC.

Simatic PCS7 is the programming environment for Siemens PLCs. It is a

comprehensive software suite offering a variety of features to configure con-

trol systems, in particular PLCs. The software provides a graphical user

interface for simple operation and clear display of configuration data. In

order to upload a new configuration program, an engineering station with

Simatic PCS7 software communicates with the PLC through Ethernet and

using COTP (Connection Oriented Transport Protocol).

COTP protocol is not commonly used and is based on a very old specification

(RFC 905 [40]). Very scarce documentation about the protocol is publicly

available and few attempts were made to reverse engineer it [41]. Although

COTP protocol has been replaced by TCP in most applications, it is still

62

being used by Simatic PCS7 software. This can be seen as a manifestation of

security-by-obscurity which is common protection measure in ICS.

The three main commands that the engineering station with Simatic PCS7

software can send to the PLC are the following:

– Start Command: turns the PLC on, assuming it is currently turned off.

The start command is typically used when re-programming the PLC. In

particular, the start command packets are sent along with the new PLC

program packets.

– Stop Command: turns off the PLC.

– Check Status: enquires about the current status of the PLC.

Using the water distribution control testbed, described in Chapter 6, equipped

with a common PLC, namely, Siemens S7-400 in addition to its corresponding

configuration software, namely, Simatic PCS7 8.1, we successfully carried out

three network security attacks, as described in the following sections, which

allowed to interfere with the PLC-PCS7 communication and send arbitrary

commands to the PLC. The three security attacks, namely, replay, Man-In-

The-Middle (MiTM), and command modification, are common IT network

security attacks, but they are not typically used to interfere with PLC-PCS7

communication.

63

7.1 Replay Attack

The first implemented PLC network attack is a typical replay attack. The

attack consists of 3 steps: starting a PCS7 command (stop, start, etc.), cap-

turing the packets, and replaying the captured packets at a later time. The

captured packets corresponding to a given command are first processed by

filtering out any packets that are not part of the commands traffic. Since

PCS7-PLC communication uses the COTP protocol (port 102), any other

packets are filtered out. In addition, only packets in the PCS7-PLC direction

are kept (packets in the opposite direction are filtered out). The cleaned traf-

fic for each command is then stored in a pcap file.

Initially, tcpreplay [42] suite is used to replay the recorded packets (cleaned

pcap file). tcpreplay suite comes with different tools such as tcpprep (packets

pre-processor that isolates packets in each direction), tcprewrite (pcap file

editor which rewrites packet headers), tcpreplay (replays pcap files onto the

network), etc. Using these tools, the pcap file is pre-processed before replay-

ing by changing the source IP address and recomputing the checksum value

in each packet. Once the pre-processed pcap file is replayed on the PLC, most

of the packets are discarded by the PLC and the replay attack fails. After

investigation, it turns out that the packets are discarded for two main rea-

sons. First, the sequence (SEQ) and acknowledgement (ACK) numbers in the

64

replayed packets are not changed. Consequently, the TCP/IP kernel at the

PLC tags those packets as duplicates and discards them. Second, tcpreplay

tool replays the packets in the pcap file one after the other without waiting

for any response from the PLC. Hence, the PLC receives some packets out

of the proper sequence and discards them. This problem has been recently

observed by Maynard et al. [43].

To overcome these problems and to guarantee that the replayed packets are

accepted by the TCP/IP kernel at the PLC, we resorted to write a customized

python script using scapy [44]. Scapy is a powerful packet manipulation pro-

gram written in python and hence can be easily used in python scripts. It

features a variety of packet manipulation capabilities including: sniffing and

replaying packets in the network, network scanning, tracerouting, etc. How-

ever, the most useful scapy features for our replay attack are the ability to

rewrite the sequence and acknowledgement numbers and to match requests

and replies.

Dealing with the duplicate sequence and acknowlgement numbers consists of

recalculating these numbers and rewriting them with scapy. Manipulating

packet headers using scapy is straightforward since any packet field is simply

accessible by the dot operator (e.g. ip.src, tcp.flags, rcv[TCP].seq). Initially,

random sequence and acknowledgement numbers are chosen. Then, at each

65

packet sending, the numbers are incremented and added to the next packet.

Replaying packets in the appropriate sequence and time requires waiting for

the response of some packets before releasing the next packet. Scapy provides

several variants of the Send function which is in charge of sending a packet

in the network. For packets not requiring a response (e.g. Acknowlegement

packet), the simple sendp function is used. The sendp function takes as input

the packet as well as the network interface. For packets requiring a response,

several functions can be used:

– sr: Send and receive packets at layer 3

– sr1: Send packets at layer 3 and return only the first answer

– srp: Send and receive packets at layer 2

– srp1: Send and receive packets at layer 2 and return only the first answer

– srloop: Send a packet at layer 3 in loop and print the answer each time

– srploop: Send a packet at layer 2 in loop and print the answer each time

In our program, we used srp1 function because there is always one single

response packet sent by the PLC. Algorithm 1 shows the core of the python

script using the scapy features. The REPLAY subroutine takes as input the

pcap file, the network interface, the attackers IP address and port number.

In addition, arbitrary values are chosen to initialize the ACK and RSTACK

numbers. The for loop inside the subroutine goes through the packets one by

66

one. For each packet, TCP checksums are removed (line 7) so that the network

interface card recalculates newer values, the source IP and port numbers are

updated (lines 8 and 9), the sequence numbers are incremented (lines 11 and

19), the packet is replayed using either sendp function (for SYN and RST

packets) or the srp1 function (lines 13 and 18).

Algorithm 1 Replay a sequence of captured packets using Scapy

1: function replay(pcapfile, eth interface, srcIP, srcPort)
2: recvSeqNum← 0
3: SY N ← True
4: for packet in rdpcap(pcapfile) do
5: ip← packet[IP]
6: tcp← packet[TCP]
7: del ip.chksum
8: ip.src← srcIP
9: ip.sport← srcPort

10: if tcp.flags == ACK or tcp.flags == RSTACK then
11: tcp.ack ← recvSeqNum + 1
12: if SYN or tcp.flags == RSTACK then
13: sendp(packet, iface=eth interface)
14: SY N ← False
15: continue
16: end if
17: end if
18: rcv ← srp1(packet, iface = eth interface)
19: recvSeqNum← rcv[TCP].seq
20: end for
21: end function

The above python program has been tested using two attack scenarios. In

the first scenario, the replay attack was launched from the same host (IP

address) used for the capture, that is, the host with PCS7 software. In the

67

second scenario, the replay attack was launched from a different host on the

same network, that is, the attacker machine with Kali. In each scenario, two

types of commands are tried, namely, start and stop. The replay attack was

successful in both scenarios for both types of commands. Hence, an unknown

attacker machine (without PCS7 software) on the same network can turn the

PLC ON or OFF by simply replaying a start or stop command. This clearly

might cause significant damage to a SCADA system.

7.2 Man-In-The-Middle (MiTM) Attack

The communication between PCS7 host and the PLC uses COTP over Eth-

ernet. Ethernet protocol uses Address Resolution Protocol (ARP). Hence,

theoretically the communication is vulnerable to Man In The Middle (MiTM)

attacks through ARP Poisoning.

In a switched Ethernet network, a host A who tries to communicate with a

host B (with a known IP address) needs its physical address (MAC). The

MAC address can be obtained by broadcasting an ARP request to all hosts

in the network. In a normal scenario, only host B will send a response with

the correct IP-MAC pair. In an attack scenario, an attacker (host C) in the

same network will send a fake response with a false IP-MAC claiming to be

the owner of B’s IP address. Typically, the attacker floods the network with

68

its fake response forcing the victim host (A) to accept the false pairing and

ignore the correct one sent by host B. ARP poisoning is typically launched

between two hosts allowing the attacker to insert himself as a tunnel between

the two victims and consequently sniff all packets between them.

In our scenario, an ARP poisoning MiTM attack is implemented between the

PCS7 host and the PLC using ettercap tool [45]. The attack is successful and

all the packets exchanged between the PCS7 and PLC are tunneled through

the attacker host (Kali). A MiTM attack can be passive or active. A passive

version consists in simply observing the traffic of the PLC and hence break-

ing the confidentiality of the commands sent to the PLC. An active version

is more dangerous since it allows the attacker to tamper with the packets

and commands and consequently interfere with the normal operation of the

system.

7.3 Stealth Command Modification Attack

The third attack is a combination of replay and MiTM attacks which aims

at sniffing the traffic between the PCS7 and PLC and then interfering with

sent commands by replaying other commands in a stealth way. Through this

attack, an adversary can completely change the behavior of the SCADA sys-

tem since sending a command leads to the execution of another command.

69

The attack goes through three main steps: MiTM attack, command detection,

and replay of a false command. Figure 7.1 illustrates the attack. Initially,

the attacker (Kali) starts by launching a MiTM attack to place himself be-

tween the PCS7 and the PLC exactly as described in the previous section.

Then, it stays in an idle state observing the traffic passively and waiting for

commands sent by the PCS7 host to the PLC (Step 1 in Figure 7.1). For the

sake of command detection in the network, Snort intrusion detection system

(IDS) [46] is used. Snort is a signature-based network IDS which allows to

detect patterns of traffic inside the network. Currently, Snort is configured

to detect two types of commands, namely, start and stop. As soon as the

attacker detects a command from the PCS7 host to the PLC (Step 2), a dif-

ferent command will be replayed to the PLC (Step 4). That is, if a start

command is detected, the attacker replays a stop command to the PLC. If

a stop command is detected, the attacker replays a start command (with a

different PLC program) to the PLC. However, it is easy to notice that if the

attacker interferes with a start command to make it a stop command (or the

opposite), the PCS7 will quickly notice that something is wrong. To make the

attack as stealth as possible, the attacker continues the communication with

the PCS7 host while impersonating the PLC (Step 3). So for the PCS7 host

the communication appears to be perfectly normal. This technique has been

70

used by Stuxnet [47] in its famous attack on Iran’s nuclear facility. Indeed,

to make the attack stealth, Stuxnet recorded normal frequency values. Then,

at attack time, it played those recorded frequencies to make the monitoring

system believes that centrifuges are operating as normal [47, 48].

Snort is an IDS which allows only to detect known patterns in the net-

Figure 7.1: Stealth command modification attack

work traffic. However, the stealth command modification attack requires the

launching of the replay attack (python program) as soon as a command is

detected in the traffic. To fill this gap, Snort is configured to log alerts to

Syslog-ng utility [49]. In turn, Syslog-ng is configured to trigger the replay

attack upon the reception of appropriate Snort alerts.

71

CHAPTER 8

CONCLUSION AND FUTURE WORK

This chapter summarizes the work of this thesis. In addition, it outlines

possibilities for future work and addresses open problems.

8.1 Conclusion

In this thesis, a simulation environment, SCADA-SST, for building SCADA

security testbeds is developed. As security issues affecting SCADA systems

have become intensive, the need to have security testbeds where security re-

searchers and specialists can conduct various security scenarios is immense.

The security tests are for the sake of enhancing the security of SCADA sys-

tems and providing better security solutions for current systems. Therefore,

a simulation environment that can provide a close to real simulations for se-

curity analysis is highly appreciated. In this work, the introduced simulation

environment has been evaluated by configuring two realistic SCADA security

testbeds in which a combination of simulated and physical SCADA compo-

72

nents were used synchronously. The introduced environment was developed

to involve generic and extensible components and to support hybrid archi-

tectures as well. The work overcomes the issues and weaknesses of the most

relevant approaches found in the literature. For example, the components

were designed to be generic enough and extensible in order to be used in

building different SCADA architectures. The components were implemented

with a generic behavior so that they can be adopted to build different SCADA

architectures without considering any restrictions to specific systems with the

ability to extend the behavior of any component by dynamic binding of C++

class libraries. In addition, the environment provides the ability to launch

cyber attacks, in order to test their effects, either from inside the simulation

or using real binaries of cyber attacks. In the evaluation, one of the most com-

mon PLCs has been used along with the simulated components. On the other

hand, there is a number of SCADA protocols used for the communication in-

side SCADA systems and in this work, Modbus/TCP has been modeled and

there still a need to model further SCADA protocols to be able to enhance

the security of most SCADA systems. In addition, this work has modeled

the main SCADA components, namely PLC, RTU, MTU and HMI because

of their common uses in SCADA systems.

73

Another key contribution of this thesis is the study and analyze of the security

of the network communication between typical SIMATIC PLCs and the en-

gineering stations mainly used for PLCs configuration and re-programming.

The water tanks control testbed was used to conduct this analysis. It was

demonstrated that a SCADA system can be seriously compromised by mount-

ing network attacks targeting PLCs. PLCs are very common components in

SCADA systems. They sit between HMIs and field devices and are in charge

of sending commands and receiving data to/from field devices. Since a PLC

is programmable, it can be completely compromised by loading a malicious

control program. Through the detailed description and implementation of

three attacks (Replay, MITM, and command modification), we showed that

the communication between the PLC and the engineering station can be com-

promised leading to serious SCADA system instability. We showed that, with

open source tools and simple python scripts, one can mount successful at-

tacks. In particular, programming and configuration traffic directed to PLCs

may be replayed, sniffed, and/or modified.

8.2 Future Work

The work of this thesis highlights the possibilities for further work in various

directions. Following is a list of open topics that may be considered in our

74

future work.

• Developing and/or testing detection techniques of the network attacks

presented in this thesis in addition to other cyber attacks targeting SCADA

systems.

• Simulating further SCADA industrial protocols in the simulation envi-

ronment.

• Analyzing the security of further SCADA components and protocols

while involving other commonly used SCADA special components and/or

softwares from different vendors.

75

REFERENCES

[1] “Dell security annual threat report.”

https://software.dell.com/docs/2015-dell-security-annual-threat-report-

white-paper-15657.pdf, 2015. [Online; accessed May-2015].

[2] M. Cheminod, L. Durante, and A. Valenzano, “Review of security issues

in industrial networks,” Industrial Informatics, IEEE Transactions on,

vol. 9, pp. 277–293, Feb 2013.

[3] R. R. R. Barbosa, Anomaly detection in SCADA systems: a network

based approach. University of Twente, 2014.

[4] T. C. for SCADA Security Sandia National Labs, “National scada

testbed.” http://energy.sandia.gov/energy/ssrei/gridmod/cyber-

security-for-electric-infrastructure/scada-systems/testbeds/national-

scada-testbed. [Online; accessed March-2015].

[5] N. Laboratory, “National scada test bed program.”

https://www.inl.gov/scada/. [Online; accessed March-2015].

[6] G. Deconinck, H. Beitollahi, G. Dondossola, F. Garrone, and T. Rigole,

“Testbed deployment of representative control algorithms,” Deliverable

D9, Project CRUTIAL EC IST-FP6-STREP, vol. 27513, 2008.

[7] P. D. P. A. H. S. L. G. M. M. W. T. Jack Wiles, Ted Claypoole and J. H.

Windle, Techno Security’s Guide to Securing SCADA. ELSEVIER, 2008.

[8] NATIONAL COMMUNICATIONS SYSTEM, Supervisory Control and

Data Acquisition (SCADA) Systems, TECHNICAL INFORMATION

BULLETIN 04-1, october 2004 ed.

[9] R. L. Krutz, Securing SCADA systems. John Wiley & Sons, 2005.

[10] Siemens, “The simatic pcs7 process control system, tech. rep..” , April

2013.

[11] A. G. Association et al., “Cryptographic protection of scada communi-

cations; part 2: retrofit link encryption for asynchronous serial commu-

nications,” tech. rep., AGA Report, 2005.

76

[12] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assess-

ing vulnerabilities in scada systems,” in Proceedings of the International

Infrastructure Survivability Workshop, Citeseer, 2004.

[13] MODICON, Inc., Industrial Automation Systems, Modicon Modbus Pro-

tocol Reference Guide, june 1996 ed.

[14] I. Modbus Organization, “Modbus home page.”

http://www.modbus.org. [Online; accessed Augus-2015].

[15] ABB, DNP3 Communication Protocol Manual, february 2011 ed.

[16] I. C. S. C. E. R. Team, “Trends in incident response in 2013,” 2013.

[17] M. Haney and M. Papa, “A framework for the design and deployment of a

scada honeynet,” in Proceedings of the 9th Annual Cyber and Information

Security Research Conference, pp. 121–124, ACM, 2014.

[18] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber attacks on scada

systems,” in Internet of Things (iThings/CPSCom), 2011 International

Conference on and 4th International Conference on Cyber, Physical and

Social Computing, pp. 380–388, Oct 2011.

[19] A. A. Cárdenas, S. Amin, and S. Sastry, “Research challenges for the

security of control systems.,” in Hot topics in security, 2008.

[20] J. Pollet, “Innovative defense strategies for securing scada and control

systems,” Technical Papers of ISA, vol. 459, pp. 115–128, 2005.

[21] T. C. S. R. H. C. Michael J. McDonald, Gregory N. Conrad, “Cyber

effects analysis using vcse-promoting control system reliability,” andia

National Laboratories Report (SAND2008-5954), 2008.

[22] R. Chabukswar, B. Sinópoli, G. Karsai, A. Giani, H. Neema, and

A. Davis, “Simulation of network attacks on SCADA systems,” in First

Workshop on Secure Control Systems, 2010.

[23] C. Queiroz, A. Mahmood, and Z. Tari, “SCADASim a framework for

building SCADA simulations,” Smart Grid, IEEE Transactions on,

vol. 2, no. 4, pp. 589–597, 2011.

[24] W. Chunlei, F. Lan, and D. Yiqi, “A simulation environment for

SCADA security analysis and assessment,” in Measuring Technology and

77

Mechatronics Automation (ICMTMA), 2010 International Conference

on, vol. 1, pp. 342–347, IEEE, 2010.

[25] A. Almalawi, Z. Tari, I. Khalil, and A. Fahad, “SCADAVT-a framework

for SCADA security testbed based on virtualization technology,” in Local

Computer Networks (LCN), 2013 IEEE 38th Conference on, pp. 639–646,

IEEE, 2013.

[26] W. Mahoney and R. A. Gandhi, “An integrated framework for control

system simulation and regulatory compliance monitoring,” International

Journal of Critical Infrastructure Protection, vol. 4, no. 1, pp. 41–53,

2011.

[27] INET framework 2.1 for OMNeT++.Manual, version 4.6 ed., 2014.

[28] A. Varga and R. Hornig, “An overview of the omnet++ simulation en-

vironment,” in Proceedings of the 1st international conference on Simu-

lation tools and techniques for communications, networks and systems

& workshops, p. 60, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2008.

[29] Andrs Varga and OpenSim Ltd., OMNeT++ User Manual, version

4.6 ed., 2014.

[30] T. Gamer and M. Scharf, “Realistic simulation environments for ip-

based networks,” in Proceedings of the 1st international conference on

Simulation tools and techniques for communications, networks and sys-

tems & workshops, p. 83, ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2008.

[31] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in scada

networks,” Computers & Security, vol. 25, no. 7, pp. 498–506, 2006.

[32] C. Ie, “Programmable controllers—part 3: Programming languages,”

2003.

[33] “Microsoft visual studio professional 2012.”

http://www.microsoft.com/en-sa/download/details.aspx?id=30682.

[34] “Opc systems.net.” https://www.opcsystems.com.

78

[35] “Open source c library of modbus protocol for linux, mac os x, freebsd,

qnx and win32, v3.0.6.” http://libmodbus.org, 2014. [Online; accessed

Augus-2015].

[36] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for

the modbus protocols,” International Journal of Critical Infrastructure

Protection, vol. 1, pp. 37–44, 2008.

[37] I. Modbus, “Modbus application protocol specification v1. 1a,” North

Grafton, Massachusetts (www. modbus. org/specs. php), 2004.

[38] I. Modbus, “Modbus messaging on tcp/ip implementation guide v1. 0b,”

North Grafton, Massachusetts (www. modbus. org/specs. php), 2006.

[39] C. P. Mayer and T. Gamer, “Integrating real world applications into

omnet++,” Institute of Telematics, University of Karlsruhe, Karlsruhe,

Germany, Tech. Rep. TM-2008-2, 2008.

[40] N. W. Group, “Iso transport protocol specification, tech. rep..” , April

1984.

[41] G. Devarajan, “Unraveling scada protocols: Using sulley fuzzer,” in De-

fon 15 Hacking Conf, 2007.

[42] “tcpreplay.” http://tcpreplay.synfin.net/.

[43] P. Maynard, K. McLaughlin, and B. Haberler, “Towards understanding

man-in-the-middle attacks on iec 60870-5-104 scada networks,” in Pro-

ceedings of the 2nd International Symposium on ICS & SCADA Cyber

Security Research 2014, pp. 30–42, BCS, 2014.

[44] P. Biondi, “Scapy.” http://www.secdev.org/projects/scapy.

[45] ALor and NaGA, “Ettercap.” http://ettercap.sourceforge.net.

[46] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.,”

in LISA, vol. 99, pp. 229–238, 1999.

[47] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White

paper, Symantec Corp., Security Response, vol. 5, 2011.

[48] S. Zhioua, “The middle east under malware attack dissecting cyber

weapons,” in Distributed Computing Systems Workshops (ICDCSW),

2013 IEEE 33rd International Conference on, pp. 11–16, IEEE, 2013.

79

[49] R. Gerhards, “The syslog protocol,” 2009.

80

Appendices

81

Appendix A: Installation & Configuration

1. Installation

In order to use SCADA-SST, you must have installed OMNeT++ and

the according version of INET framework

– Install OMNeT++

Install the prerequisite packages by executing the following command:

$ sudo apt-get install build-essential gcc g++ bison flex perl \

tcl-dev tk-dev blt libxml2-dev zlib1g-dev openjdk-7-jre \

doxygen graphviz openmpi-bin libopenmpi-dev libpcap-dev

Extract the downloaded OMNeT++ files:

$ tar zxvf omnetpp-4.2.1-src.tgz

Setup the environment variables:

$ cd omnetpp-4.2.1

$. setenv

Then run configure:

$./configure

Finally, compile the simulator:

$ make

Make sure that OMNeT++ has been installed successfully through run-

ning one of the sample simulations packaged with OMNeT++.

82

$ cd samples/dyna

$./dyna

– Install INET Framework

Download the corresponding version of INET

https://inet.omnetpp.org

Extract the downloaded files:

tar xjf inet20111118-src.tar.gz

Then start the OMNeT++ IDE by entering

$ omnetpp

Then import INET as an existing project

File -> Import... -> General -> Existing Projects into Workspace

Select the directory you previously extracted the INET archive to as

root directory. Now INET should appear within the list of projects.

Press Finish

Start compiling by entering

Ctrl + B

83

– Install SCADA-SST

Extract SCADA-SST files

tar xzf SCADA-SST-src.tar.gz

Start the OMNeT++ IDE and import SCADA-SST as an existing

project

File -> Import... -> General -> Existing Projects into Workspace

Select the directory you previously extracted the SCADA-SST archive

to as root directory. Now SCADA-SST should appear within the list

of projects.

Press finish

Start compiling by entering

Ctrl + B

2. Connecting SIMATIC S7 PLCs with SCADA-SST

To integrate physical Siemens SIMATIC PLC with simulated nodes; either

master or slave nodes; inside SCADA-SST kindly follow the instructions

in the following document.

http://www.controltechnology.com/Files/common-documents/applicationnotes/Communication−

to− Simatic− S7− using − open−modbus

84

Vitae

– Asem Abdo Esmail Ghaleb

– Born on July 1st, 1985 in Taiz, Yemen.

– Obtained Bachelor of Science (BSc) degree in Computer Science from Taiz Uni-

versity, Yemen in July 2007. Very Good with honor.

– Working for Yemen Mobile since March 2011 as Database and ERP Administra-

tor

– Worked for Social Fund for Development-Yemen from August 2007 to February

2011 as Senior IT Officer.

– Submitted this thesis to fulfil the requirements of his Master degree in Security

and Information Assurance from King Fahd University of Petroleum & Minerals.

– Research Interest: Computer & Network Security, Industrial Control Sys-

tems Security, Machine Learning.

– Publications

El-Alfy, El-Sayed M., and Asem Ghaleb. ”Biobjective NSGA-II for optimal

spread spectrum watermarking of color frames: Evaluation study.” Computa-

tional Intelligence in Cyber Security (CICS), 2014 IEEE Symposium on. IEEE,

2014.

– Seminars

SCADA Cyber Security

King Fahd University of Petroleum and Minerals November 25, 2015

– Contact Information:

E-mails: g201305010@kfupm.edu.sa

aalmekhlafy@gmail.com

linkedin: https://www.linkedin.com/in/asem-ghaleb-02286832

85

