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DDS was initially designed for LAN in which data producers entities (publishers) 

and data consumer entities (subscribers) are existing in the same physical location. 

Challenges arise if, for example, a subscriber is looking for a data being originated in a 

different data-space, especially if these data-spaces are separated by a WAN. The main 

limitation is the lack of ability of discovery and bridging between isolated DDS domains. 

The DDS standard, however, does not mention about interconnectivity among isolated 

DDS domains. The other challenges for implementing DDS over WAN are NAT traversal 

and firewalls. Real Time Innovations (RTI) has produced a plugin in their DDS package 

for communication over WAN that involves NATs. Their solution is based on STUN 

rendezvous server which can be considered as single point of failure. Therefore, DDSD is 

proposed improvement to their solution by implementing a distributed Super-peer structure 

for resource discovery and NAT traversal between different isolated DDS domains over 

internet to replace STUN rendezvous server. Super-peers constructs a structure DHT 

overlay and exchanging information. Moreover, the distance between different DDS 

domains and the distributed Super-peers will minimize the overall delay significantly. 

Simulation experiment using Omnet++ has been made to test Centralized STUN server and 

DDSD scenarios. The duration of participants’ registration and connection establishment 

between participants has been measured and gives an advantage of DDSD in term of stable 

average delay even with large network scale. However, communication overhead between 

participants and Super-peer is an extra cost for DDSD.  
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  لرسالةاخلاصة 
 

  

 
  عفیف بن محمد سالم خالد   :الاسم الكامل

  

  لخدمة توزیع البیانات على شبكة الانترنت والتوصیل اللامركزيتشاف الإك :عنوان الرسالة

  

  شبكات الحاسوب  التخصص:

  

  ماجستیر :تاریخ الدرجة العلمیة

  

حیث أن الناشرین والمشتركین  LAN) صممت لتعمل داخل الشبكات المحلیة  DDSخدمة توزیع البیانات (

في حالة وجود مشتركین یتطلعون إلى بیانات  -على سبیل المثال -موجودون في نفس الموقع. التحدیات تنشئ 

لیس في نفس الموقع. القید الرئیسي على خدمة توزیع البیانات ھو عدم القدرة على الاكتشاف موجودة عند ناشر

. شركة NATوالتواصل بین المجالات لوجود الجدران الناریة والحاجة إلى تجاوز خدمة ترجمة عنوان الشبكة 

RTI عزولة. یعیب على ھذه سعت إلى توفیر جھاز خادم مركزي لیعمل على أكتشاف والتوصیل بین المجالات الم

الخدمة المركزیة والتي تقلل من الاعتمادیة في حالة تعطلھا. من ھذا المنطلق، قدمت في ھذا البحث طریقة توزیع 

خدمة الاكتشاف لخدمة توزیع البیانات على الانترنت. وتقوم ھذه الخدمة على الأعتماد على الاجھزة السوبروالتي 

) وتتبادل المعلومات عن الاجھزة داخل المجالات الداخلیة overlay networkتشكل في ما بینھا شبكة غطائیة (

++ واظھرت OMNET). تمت محاكة الفكرة المقترحة على برنامج DHTعن طریق جداول الھاش الموزعة (

 بالفكرة المقترحة ثباتا في المستوى مع اتساع الشبكة وزیادة عدد المستفیدین منھا. تأتي ھذه المیزة على حسا

  زیادة البیانات المتداولة على شبكة الانترنت.
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CHAPTER 1   

INTRODUCTION 

1.1 Introduction and Problem Description 

The Data Centric Publish/Subscribe (DCPS) model has been widely adopted for 

coordinating interactions in large-scale distributed applications. It builds on a global data 

space principle to be a reachable by all interested entities. Object Management Group 

(OMG) has founded Data Distribution Service (DDS) as an open standard for Real-Time 

Systems to support scalable, real time, high performance, and interoperable 

communication between different applications and entities. These entities are either 

Publisher, which is an application that contributes information to the global data space, or 

Subscriber, which is an application that is interested in accessing part of the global data 

space. DDS has been widely used for mission critical applications such as air-traffic control 

and smart grid management [1]. 

There are many application for DDS that required its implementation in large 

networks such as Internet. Internet of things (IoT), video conference, and files sharing are 

examples of these applications. One of the most trending implementations of IoT is the 

smart homes. A user can monitor and control most of the facilities and devices in his/her 

house -such as door-locks, air-conditions, washing machines, and microwave oven- 

remotely from his/her mobile. Video conference is one of the needed application which 

required high scalability. It has been implemented through DDS and shows a great 

advantage over other protocols such as RTP. File sharing through BitTorrent are also a 

potential application for DDS and it is required to be used over internet. However, its 

implementation on internet requires solving many obstacles such as Network Address 

Translator (NAT) traversal, firewall, and multicast banding.  

DDS has been developed to be used in Local Area Network (LAN) where IP 

broadcast is enabled and the set of network joined hosts are located in the same 

geographical location. Challenges start when subscriber is interested in a set of data that is 
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provided by a Publisher located in a different data space. For example, a company that has 

interest in data provided by another company which has a different LAN and they are only 

connected via WAN.  

The main challenging issues in this work are: 1) Acquiring peer discovery 

information, which are located in different domains. 2) Adapting NAT traversal 

mechanism to allow DDS inter-domain communication. These two problems come from 

the messages sent from an application on a private LAN appear come from the LAN's 

gateway address, not from an internal IP address of the host running the application due to 

the existence of a NAT at the gateway. This does not cause problems for client/server 

model because only the server needs to be globally addressable; however, it is an obstacle 

for systems with peer-to-peer (P2P) communication models, such as DDS. Secure WAN 

Transport is a plug-in provided by Real Time Innovation (RTI) [2] to solve this problem, 

by allowing communication between peers that are located in separate LANs, using a UDP 

hole-punching mechanism based on the Session Traversal Utilities for NAT (STUN) 

protocol for NAT traversal. This requires the use of an additional rendezvous server 

application. However, in P2P environment, all nodes are distributed and self-organized. It 

is not suitable to deploy a server such as rendezvous server which is considered as a single 

point of failure in term of centralization in the server machine or the connections to it.  

DDS has been designed to help in data exchanging on real-time distributed systems 

[3]. Therefore, scalability and reliability are two crucial requirements for implementing 

DDS over internet. For this reason, Distributed Discovery Service for DDS (DDSD) is 

distributing discovery and connection establishment function between inter-domains 

participants to be among multiple Super-peers which is going to improve the fault 

tolerance, reliability, scalability, and minimizing the delay in large-scale environments 

such as Internet. This research is targeting to construct a structured P2P overlay between 

Super-peers so they can exchange and share discovery information of the peers inside 

multiple domains. These Super-peers are going to tackle the problem of firewall and NAT 

traversal. An evaluation using a simulation tool Omnet++ for the centralized STUN server 

and the distributed Super-peers in term of registration and peers connection establishment 

delay and communication overhead.  
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1.2 MOTIVATIONAL USE EXAMPLES 

In this section, a set of practical cases are presented to show the motivation and need 

for the proposed solution to solve some real-life problems.  

1.2.1 IoT in Smart Homes controlling and monitoring 

A typical user data-space contains information about user's vitals, car position, gas 

remaining in his car, status of his fridge, and status of a user's house doors. All of these 

information are relevant to a particular user, and should be accessible only by him. The 

user data-space in this case, a user is able to obtain information of his “user dataspace”, 

which is the set of data related to himself. 

This use case will allow a user to discover and subscribe to any piece of information 

within his multiple data-spaces. Consequently, it requires the user's application to discover 

both the publishers and the subscribers associated with a set data-spaces, without 

restrictions on the types of exchanging data-content. 

Industrial IoT has been implemented by RTI. It has been proven DDS successful 

experience in this area by leading major industrial IoT influencers [4]. It used routing 

service technology which we are going to discuss in section 3.2. However, the usage of 

DDS in personal applications like smart homes is still limited. There is a real need for a 

solution that resolves NAT traversal challenges will simplify its usage for ordinary users 

rather than configuring their gateway routers. 

DDS Subscriber 2

Smart Home 
DDS Domain

(Publisher 
Devices)

DDS Subscriber 1

Internet

 

Figure 1-1 Smart-Home monitoring from a Headphone 
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1.2.2 Video Conference using DDS: 

Video conference implementation using DDS has proven its superiority over other 

protocols such as  Real-time Transport Protocol (RTP) especially in case of having multi-

users [5]. It is, however, still limited within LAN and not yet extended to be used over 

WAN. The efficiency of DDS protocol can elevate the usage of video communication over 

internet, see Figure 1-2.  

Internet

DDS Domain 1

DDS Domain 2

DDS Domain 3

Publisher B

Subscriber A

Subscriber B

Publisher A

 

Figure 1-2: Video Streaming over Internet using DDS middleware 

1.2.3 File Sharing via DDS: 

BitTorrent [6] over DDS has an advantages of trackless and high performance file 

sharing system. It has been implemented efficiently in LAN and shows the advantages of 

publish-subscribe paradigm. It will be very helpful if it is implemented over internet using 

DDS middleware solution as in  

Figure 1-3. Solving discovery challenges is the first step to implement Publish-

Subscribe BitTorrent over internet.  
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WAN

DDS Domain 1

DDS Domain 2
DDS Domain 3

DDS Domain 4

Publisher

Subscriber

File pieces

 

Figure 1-3: BitTorrent File Sharing over Internet using DDS middleware 



6 
 

CHAPTER 2  

BACKGROUND 

In this chapter, an introduction is presented that discussed and explained the main 

concepts and techniques related to this thesis work.  

2.1 DATA DISTRIBUTION SERVICE (DDS) 

DDS is an open standard introduced by the OMG. It is mainly specified in their 

document which titled Data Distribution Service for Real-time Systems specification [7]. 

This specification provides a Data-Centric Publish-Subscribe (DCPS) communication 

standard, programming model, and APIs for a range of distributed real-time and embedded 

computing environments in different scales. The main advantage of DCPS on 

heterogeneous environment is allowing applications on different platforms to write/read 

data to/from the Global Data Space (GDS) in a net-centric system. Each one of those 

application can exchange its information with other of its peers by announcing its interest 

to publish certain data that they are interested on it. Likewise, applications can use this 

particular GDS to access certain data of interest by announcing their interest to become 

subscribers. The underlying DCPS middleware propagates data samples written by 

publishers into GDS, where it is disseminated to interested subscribers. DCPS model has 

flexibility that gives DDS middleware more potential to optimize and support more QoS 

parameters. 

 

  



7 
 

 

Figure 2-1 DDS Architecture [3] 

To have a better understanding of this standard, DDS system components are 

explained as follow, see Figure 2-1:  

•Domain: DDS applications can exchange data inside a Domain, which makes a 

virtual connection between its participants joining the same Domain ID. It also provides 

isolation for participants linked with several domains so that participants in the same 

domain only can communicate to each other. This feature is very crucial for private and 

optimized communication for communities that have diverse interests where we can give 

each one of them different domain such as finance, marketing, and human resources 

departments.  

•Domain Participant: It is an entry point for DDS application to involve in the 

domain. It represents each application in the Domain and also gives a container to hold 

other objects of the entity. 

•Data Writer: It is used by applications to publish updates and data values to GDS 

of the domains. 

•Publisher: It is an object made by the participant and used to initiate and manage a 

set of DataWriters that publish their data within a GDS. DataWriters and publishers have 

interrelated QoS requirements that lead their performance as DDS entities. 

•Data Reader: They are used by applications to receive and collect data that 

published by DataWriter.  
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•Subscriber: It is an entity in charge of receiving and collecting published data by 

other applications in the same domain with considering QoS of both Publisher and 

Subscriber. Subscriber reads topics in the GDS for which a matching subscription exists 

and informs DataReaders that the data is received. 

•Topic: A topic connects a data writer with a data reader so that communication can 

start only if the topic published by a data writer matches a topic subscribed to by a data 

reader. Communication using topics is anonymous and transparent since the DDS DCPS 

middleware manages these issues.  

A Publisher of a topic is communicating with all Subscribers that joining the same 

topic. Discovery protocol in DDS gives more flexibility and transparency for all entities in 

joining and leaving the network. Variety and richness of QoSs that support DDS makes it 

as the distinguished Publish-Subscribe middleware [2], [8]   

Implementation of DDS does not require any minimum level hardware infrastructure 

or certain platform or transport protocol. Object Management Group (OMG) has addressed 

a standard called DDS Interoperability Wire Protocol to guarantee the interoperability 

between different DDS venders [9]. The standard determines the format of exchanged 

messages, data representation, and entities discovery process in what is called Simple 

Discovery Protocol (SDP).  

2.2 Distributed Hash Table (DHT) 

Distributed Hash Tables (DHTs) is a routing service applied in structured P2P 

network model that uses a hash function to distribute objects (information) over the peers. 

It is used for routing, lookup, and broadcasting service. Each node in P2P stores key-value 

pairs so that any peer can look for the value using its key. It could give more scalability, 

fault recovery, and load balancing. It is going to be used among Super-peers to store 

participants’ discovery information in most efficient way.  

DHTs are mostly used for information lookup: a peer inquires the system for some 

information to which other peer(s) from the system replies. If not found in the original 

target node, the request travels in the system from peer to peer. In the past decade, several 
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DHTs have been proposed. Basically, these DHT approaches differ in the hash space they 

consider. The hash space (henceforth called identifier space), can be represented as a 

unidimensional or multidimensional space (2D, 3D, etc.). It may be a ring, Euclidean space, 

hypercube, or any other type of graph. In this space, peers are less formally called nodes, 

while objects are referred to as keys. The objects are assigned to peers based on peer and 

object identifiers. Usually, a key is mapped to the closest or to the following node in the 

identifier space (according to a predefined order), but other methods can be employed as 

well. The node identifiers and their logical links represent the structure of the overlay, thus 

the identifier space has to be chosen accordingly. Since DHTs deal with node failures, we 

use the following terminology. A node is alive if it actively participates in the lookup 

protocol, i.e., it can reply and forward requests. Conversely, a node is dead if it cannot be 

contacted anymore and, as a consequence, it cannot be used to forward requests. Each peer 

may issues a request for an object. The process of forwarding the request from peer to peer, 

from source until destination, is called “routing”. Each peer keeps its neighbors in a routing 

table, which has a fixed number of entries. Thus, when a peer fails, it has to be replaced by 

a new peer. Usually, there are strict rules for the peers at specific entries. Thus, finding 

another suitable peer, when it exists, requires additional messages. These operations 

represent the maintenance costs of the routing tables. The choice of the neighbor to forward 

a request is given by the routing strategy. DHTs have various routing strategies that depend 

on the overlay structure. 

The DHT structures lies in the node degree, i.e., the number of neighbors with which 

a node maintains continuous contact for supporting the routing mechanism. Examples of 

such structures include Chord [10], Pastry [11], Tapestry [12] or Kademlia [13]. While 

these systems induce high costs for maintaining the multiple entries in the routing tables, 

they allow for defining routing strategies that exploit alternative paths, using alternative 

routing table entries for routing a request. Alternative paths have not only the advantage of 

providing better fault tolerance, but they also offer support for multiple routing strategies. 

Chord protocol is going to be explained as it is used in the Super-Peer overlay network.  
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2.2.1 Chord Protocol 

Chord is one of the first structured P2P networks that implements Distributed Hash 

Tables (DHTs). In Chord [10], each node and each key has a � − ��� identifier on a 2��� 

identifier space designed as a ring, that is derived by respectively hashing the IP address 

and the name. Each key is mapped to the first node (starting at the key identifier) that 

follows clockwise on the ring. For routing purposes, each node has a routing table with � 

entries, each entry � pointing towards the first node on the ring at a distance of at least 2�, 

where � =  0 . . . � −  1. The node at entry � is also called “f����� �”. The corresponding 

links are referred to as incoming links on the node they point to. 

A graphical representation of a Chord ring is shown in Figure 2-2, as an example of 

the identifier space of  2��� =  64 addresses with 15 nodes. The figure shows the outgoing 

and incoming links of node 22, with solid and dashed lines, respectively. Fingers do not 

point to nodes at a distance exactly equal to a power of 2. The same applies also to the 

incoming links: they do not come always from distances equal to a power of 2. For 

example, node 5 comes from a distance of 2� + 1. Chord uses greedy routing, a routing 

strategy that sends the requests as closely as possible to the destination. The average path 

length is in the order of �(��� � ). The path is clockwise on the ring, as in the example 

from Figure 2-2.B: 61 →  15 →  19 → 22.  
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Figure 2-2: Examples of Chord with an identifier space: (A) outgoing (solid) 
and incoming (dashed) link of node 22. (B) Routing request from node 61 to node 22 

In order to assure connectivity and to facilitate the join and departure mechanisms, 

each node also keeps track of its predecessor. Note that any node knows its successor, 

which is its first finger. When a new node ��   joins the system, links are created/updated 

and the responsibility of the keys are reconsidered. In this example, Node ��  creates links 

towards its predecessor and successor and requests them to consider ��  as their new 

successor and predecessor, respectively. Node ��    builds its own routing table and the other 

nodes from the system update their routing tables in order to reflect its arrival. With the 

links being created, the node ��  obtains from its successor the objects for which it is now 

responsible for.  

A stabilization mechanism is used for the nodes that fail or leave voluntarily: 

periodically, each node �� checks its successor, whether it is still alive, it is the right node 

and if it has �� as its predecessor. Moreover, and also periodically, each node �� refreshes 

its routing table by finding the right nodes for each entry. A node that leaves voluntarily 

gives the responsibility of its objects to its successor in order to preserve the rule of key 

mapping to nodes. 
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To deal with failures, each node maintains a successor-list of � nodes (i.e., its � 

nearest successors on the ring). Whenever a request needs to be sent to a finger that is not 

reachable anymore, a lower finger is used instead, and if necessary, the nodes in the 

successor-list can also be used as alternatives. Objects can also be replicated at several 

successors. Chord has thus the advantage of simplicity and has been proved to scale well 

with the number of nodes and to recover from high rates of Churn. [10] 

Chord does not waste nodes’ capacity but uses them effectively. For efficient routing, 

each node needs to maintain information for only �(����) other nodes. The lookups are 

also resolved in an efficient manner. Each node can carry out a lookup to any given node 

via �(����) messages to other nodes. 

2.3 A NAT Traversal Technologies 

The need for NAT traversal started with the advent of P2P applications, such as file 

sharing, Voice over IP (VoIP) and online gaming. Some applications rely on a central 

server to maintain a list of the connected hosts and the resources they have, while the actual 

data traffic is transmitted directly between the hosts. A direct communication is preferred 

in order to reduce transmission latency. The problem with NATs is that hosts behind a 

NAT, without a public address assigned to them, can only be contacted by hosts within the 

same private network. Even if a host would have a public address assigned to it, it depends 

on the type of the NAT whether an incoming connection is accepted or not. Consequently, 

the requirements for P2P communication work badly with NATs. But due to the popularity 

of P2P applications and the generality of NATs, several NAT traversal techniques have 

been developed. Almost all connection attempts to a private network are inhibited, unless 

there are static bindings. The Internet’s architecture is designed to work for client-server 

based communications where all the connections are initiated by the client and servers are 

located in the public network. However, P2P communications is not as straightforward in 

the presence of NATs. P2P communication requires direct connections that can be initiated 

by either of the peers [14]. 

NAT traversal is a collection of different mechanisms to create connections through 

different type of NATs. Since the type of NATs is not known by the endpoints, multiple 
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mechanisms may need to be tried out before finding a working one. One simple and 

practical technique for UDP that many NATs support is known as “UDP Hole Punching”. 

Hole-punching does not require any changes to be made to the infrastructure settings, 

instead it tries to work around the security policies of most NATs. UDP hole-punching 

makes use of a well-known rendezvous server for setting up a direct P2P UDP session. By 

means of a rendezvous server, it is possible to know if a client is behind a NAT or not by 

comparing the address that the server sees the client is using with the address the client 

thinks it is using. If the addresses differ, the client is behind a NAT. STUN is one example 

of a protocol that uses UDP hole punching for letting a client know its globally valid 

address and finding out whether it has a NATed address. 

Simple Traversal of UDP Through NAT (STUN) is documented in RFC 3489 [15]. 

It is not a NAT traversal solution but a protocol used as a tool by other protocols to solve 

the NAT traversal. It can be used by a client to discover if they are behind a NAT, to 

determine their behavior of this NAT and its external address (IP and port). STUN is based 

on UDP and provides a keep-alive mechanism to maintain NAT bindings but the 

mechanism can be extending to TCP. It is also used to perform a connectivity check with 

a server or a peer. The Hole Punching technique allows two peers to have direct P2P 

connection through rendezvous server, even if the clients are both behind NATs. The 

rendezvous server gives the clients the required information about each other -such as 

address IP and port number- so they can communicate directly. Traversal Using Relay 

NAT (TURN) is a solution proposed by the Internet Engineering Task Force (IETF) to 

solve the problem of symmetric NAT [16]. This technique uses a third-party server in 

public zone or DMZ that plays the role of relay. Each client keeps a connection open with 

the TURN server. So, when a peer communicates with another one, all the traffic goes 

through the TURN server. It makes the NAT traversal because it appears for the NAT 

routers, it is always only the TURN server which communicates with the clients behind the 

NAT and no direct connection between them. It also solves the symmetric NAT because 

no other connection is opened. This technique is a quite different from the previous one 

(STUN) because it is not a specific to a protocol of communication. We do not have to 

modify our network or router but applications have to be compatible with the TURN 

protocol. Like all relay solutions, the drawbacks are the high latency, the maintenance of 
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the server. ICE is a standard made by the IETF, it a mix of TURN and STUN [17]. The 

purpose of ICE is to know the behavior of the NAT with STUN to determine the best 

method for NAT traversal, relay or direct connection via STUN hole punching.  

RTI WAN Transport service uses STUN to establish a connection between domains 

over WAN. Therefore, STUN is tested in this research as a single server and will be 

proposed for distributed Super-peers overlay. 

2.4 Super-peer Model 

Super-peers is a group of peers connected to each other through overlay network and 

having public addresses and adequate amount of resources (such as CPU, memory and 

bandwidth) to handle STUN services to other NATed ordinary peers. Each group of 

NATed peers are connected to one or more Super-peer for discovery and NAT traversal 

services. Super-peers establish a DHT overlay network so they update each other with all 

information about the participants that are connected to them, see Figure 2-3.  Each group 

of NATed participants chooses one of the Super-peers to store its information on it and 

retrieve other participants’ information using them. This methodology gives more 

scalability and reliability than centralized server. [18]–[20] 

DHT 
OVERLAY 

NETWORK

Super-peer

DDS Participant

 

Figure 2-3: Super-Peer Model 
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CHAPTER 3  

LITERATURE REVIEW 

There are several problems associated with implementing DDS over WAN. NAT 

traversal and network broadcast banding are the main challenges need to be resolved. In 

the next sections, there is a comprehensive review for the recent solutions and technologies 

to overcome such issues. 

3.1 WAN Transport Service: 

RTI provides a transport plugin called “Secure WAN Transport” to support inter-

domain communication over WAN. This transport plugin allows DDS applications running 

on different private networks to communicate securely over WAN such as the internet.  

The WAN Transport used WAN Server, a rendezvous server that establishes P2P 

connection, provides the ability to discover public addresses and to register and lookup 

peer’s addresses based on a unique WAN ID. The WAN Server is based on the STUN 

protocol [15], with some extensions. The server has only to give information about public 

addresses for the application and once its peers have obtained this information and 

connections have been initiated, the server is no longer required to maintain 

communication with the peers. However, if communication fails, possibly due to changes 

in dynamically-allocated addresses, the server will be needed to reopen new connection 

channels. 

In order to resolve the problem of communication across NAT boundaries, the WAN 

Transport implements a UDP hole-punching solution for NAT traversal. This solution uses 

a rendezvous server (WAN server). STUN protocol, which implemented by WAN server, 

is a part of the solution used for VoIP applications. A key advantage of STUN is that it is 

based on UDP and therefore is able to preserve the real-time characteristics of the DDS 

Interoperability Wire Protocol. 

The UDP hole-punching algorithm implemented by RTI WAN transport has two 

different phases: registration phase and connection phase. This algorithm only works with 
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asymmetric NATs where the same public IPv4 transport addresses (a combination of public 

IP address and port) is assigned to all the sessions with the same application socket address 

(a combination of private IP address and port number). 

3.1.1 Registration Phase: 

The RTI WAN Server application runs on a superior machine that resides on the 

WAN network (i.e., not in a private LAN). It has to be globally accessible from LAN 

applications. It acts as a rendezvous point for LAN applications. During the registration 

phase, each Peer is registered with RTI WAN Server using a STUN binding request 

message as in Figure 3-1. This registration message includes information about the 

requested peer such as Peer ID and current public IP and port number. 

STUN Server

Peer B

Gateway Router A Gateway Router B

Peer A

192.168.15.100:8000

155.99.25.11:8001

18.181.0.31

138.76.29.7:7001

192.168.1.100:7000

 

Figure 3-1: Registration phase. 

3.1.2 Connection Phase: 

The connection phase includes two processes: the connect process and NAT hole 

punching process (Figure 3-2). They are illustrated as follows: 
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1- The connect process starts when Peer A wants to establish a connection with Peer 

B by sending a request message to STUN server to obtain information about Peer 

B through nodes list.  

2- STUN server responds to Peer A by sending the needed information about Peer B. 

3- STUN server sends a message to Peer B. The message consists an information 

about Peer A and let it knows that Peer A intends to establish a connection session 

with it. 

4- When Peer A receives the public IP address of Peer B, it will contact B using STUN 

binding request message. The STUN binding request message sent by Peer A 

directed to the public transport address of Peer B will open a hole in A's NAT to 

receive messages from B. 

5- Peer B receives the public address of Peer A from the STUN rendezvous server and 

contacts Peer A by sending a STUN binding request message to that public address. 

This message will open a hole in B's NAT to receive messages from A.  

6- Peer A receives the first STUN binding response from Peer B and it starts sending 

RTPS traffic. 
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Figure 3-2 Connection phase 

3.2 DDS Bridging: 

A remarkable effort has been done by [3] in establishing a content-aware 

interconnection service to enable deploying current DDS application in transparent 

manner. They have proposed “DDS-to-DDS” bridging between different DDS domains 

using transparent data transformation mechanisms (i.e., applications can be reused without 

source code changes). There are also some proposed features (such as domain-bridging and 

topic-bridging) to allow data flow between different domains by enabling seamless 

communication between data-spaces. However, they did not resolve NAT traversal 

because they assumed that all domains are connected to the same switch. 

Another recent work has proposed inter-domain DDS gateway communication based 

on token passing [21]. Their solution assumed that all gateways are part of their DDS 

domains. Thus, it is required to have an access to network gateway which is not the case in 

our solution where we can have NAT traversal solution to go through network’s gateway 

without modifying their settings.   

Most applications of DDS systems use either LANs or small-scale WANs whose 

QoS properties are relatively stable. In these environments, DDS middleware uses IP 
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multicast to allow publishers and subscribers to operate in a scalable P2P fashion. In large-

scale WANs (such as the Internet or enterprise intranets), however, IP multicast is often 

disabled for performance and security reasons [22]. 

3.3 Implementing DHT in DDS Discovery Protocol 

Implementing the DHT-like overlay network has been proposed by [23]. They have 

shown a significant reduction in number of exchanged messages. They have used DHT 

overlay to implement a look-up discovery where each participant implements an overlay 

multicast. Even though they have tested their proposed solution for LAN, they did not 

consider WAN discovery challenges such as NAT traversal and firewalls. Implementing 

DHT overlay for content discovery and delivery in DCPS WAN-based Internet of Things 

(IoT) systems has been proposed in [24]. They have implemented an IETF REsource 

LOcation And Discovery (RELOAD) P2P signaling protocol that offers a generic, self-

organized overlay network service. Their proposed solution has been tested in a simulated 

network that consists of 500 to 10,000 nodes to verify its scalability. However, our solution 

is not signaling-based protocol and it is mainly designed for DDS. Moreover, it is an 

enhancement for centralized STUN server to be an improved distributed alternative rather 

than using ICE as in RELOAD. 

3.4 Other DDS discovery process proposed improvement 

Content-based Filter Discovery Protocol (CFDP) has been presented in [25]. It aims 

to conserve system resources and improve scalability of DDS Simple Discovery Protocol 

(SDP) for large scale system. It develops a content filtering algorithms based on DDS QoS 

properties to create a special DDS topic called Content Filtered Topic (CFT) that rejects 

unneeded discovery messages based on matching topic name and endpoint type. However, 

this paper is limited to DDS implementation over LAN and they did not consider WAN-

based systems. 
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CHAPTER 4  

PROPOSED SYSTEM DESIGN AND 

IMPLEMTATION  

This chapter will cover system architecture and design of the proposed technique for 

DDS over WAN participants’ discovery. It also explains the discovery phases in the 

proposed solution. Our proposed solution is targeting to replace the current STUN protocol 

currently implemented in Secure WAN Transport in RTI DDS [2] which is based in STUN 

server. The method includes three phases: super-peers DHT overlay network constructing 

and maintaining, end-node registration, and discovery and connection.  

4.1 System Architecture  

The Distributed Discovery Service for DDS (DDSD) is pluggable discovery service 

used for distributed participants over WAN network such as internet to let them find the 

needed information to establish a connection and exchange data among them whether they 

are publishers or subscribers. As seen in Figure 4-1, DDSD has serving both DDS-based 

application and DDS middleware itself and it is served by the transport layer protocols. So, 

the policies and properties of DDS QoS do not apply on DDSD plug-in.  
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Figure 4-1: DDSD System Architecture 

 

4.2 Super-peers DHT overlay network construction phase 

Super-peers are set nodes with public IP and arranged as an overlay DHT network. 

For each Super-peer to join the overlay, it should go through bootstrapping process. There 

is a predetermined bootstrap server with a fixed public IP. For every new node to be a 

Super-peer, it sends a request to the bootstrap server just for the first time joining as a 

signup process. The bootstrap server is going to give the new joining Super-peer a new 

unique DHT Node-ID and list of other overlay nodes information (include, node-ID and IP 

address) so it can cache them and communicate with them. Once a Super-peer is connected 

to the overlay for the first time, it can start collect a list of public IP addresses which the 

Super-peer has been reached successfully in its cache for future bootstrapping process. 

After joining, the Super-peer is a full member in the overlay and can process get/put request 

as explained earlier in Section 2.2. Chord uses a hash function, Secure Hash Algorithms 1 

(SHA-1), to give a unique node-ID and resource identification (such as stored participant 

discovery information).  
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4.3 Registration phase 

DDS participant who has located should register with one of the available Super-

peers and consider it as its Master node for participants registered with it. The participant 

should have in advance a set of Super-peers public IP addresses by getting them from 

Bootstrap server for the first signup and cache them. Another operation to have a Super-

peer’s IP addresses is to contact one of the neighboring participants which located in the 

same domain and has contacted some Super-peers so they can share their cached Super-

peer addresses. This process occurrs in the first time joining. In the successive joining, the 

cached Super-peers information is going to be used. The participant goes through the 

following registration steps: 

1- The participant selects one of the Super-peers - that has its information in its 

cache- randomly.  

2- It sends a REQUST_SUPER_PEER message to the selected Super-peer to check 

its existence and ability to handle the participant’s discovery request. 

3- If the received Super-peer is available and it is handling participants less than its 

maximum threshold number, it sends MASTER_ACCEPT message to the 

requested participant. Otherwise, it sends MASTER_REJECT message. 

4- If the participant receives MASTER_ACCEPT message, it considers this Super-

peer for the coming discovery services. Else, it goes to step 1 again. 

The participants keep sending ALIVE_BEAT message to its master Super-peer 

periodically to make sure that it still exists. In case of Super-peer failure or leaving, 

DDS participant starts the above mentioned steps again.  

4.4 Discovery and Connection phase 

The matching and connection establishment process between the participants from 

different domains are in this phase. If any participant wants to contact another one in 

different domain, it looks for it by its Master Super-peers using the Participant identifier. 

Super-peers serve the participants by finding the wanted participants and implementing the 
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NAT traversal process between the communicated ends. In the following illustrative steps, 

there are two participants, participant A wants to contract participant B. There are also two 

Super-peer, Super-peer X and Super-peer Y who is mastering participant A and participant 

B, respectively. The discovery and connection establishment steps, as shown in Figure 4-2, 

are as follow: 

1- Participant A sends a REQ_PTC_MASTER message to its Master Super-peer X. 

The message contains domain and participant identifier of participant B. 

2- Super-peer X starts fetching for the participant B’s Master Super-peer (which is 

Super-peer Y in this scenario) in the DHT overlay. Once it is found, Super-peer X 

forwards the request message to it. 

3- Super-peer Y confirms the request by sending ACK_PTC_MASTER message to 

Super-peer X. This message ensures that Super-peer Y welling to handle NAT 

traversal process between the two participants. 

4- Super-peer X forwards ACK_PTC_MASTER message to participant A which 

also includes the address of Super-peer Y to allow participant A to start 

contacting it.  

5- Participant A sends to Super-peer Y a REQ_DDS_PARTICIPANT message to 

which contains domain and participant identifier of its own and the targeted 

participant B.  

6- Super-peer Y forwards the request message that comes from the source 

participant A, to the destination participant B. The message includes the needed 

information about participant A, its IP address and port number, so it can start 

communicate with it.  

7- Super-peer Y sends ACK_DDS_PARTICIPANT to the requested participant A 

which includes participant B information (IP address and port number).  

8- Participant A send HOLE_PUNCH message to participant B. The purpose of this 

message is to open a hole in participant A’s gateway so it can bypass the received 

messages comes from participant B. However, this message will be discarded by 

participant B’s gateway because there is no initiation from the participant.  
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9- Participant B send CONN_CONFIRM message to participant A. This message 

will open a hole in its gateway. Therefore, the following messages from 

participant A will bypass by the gateway to participant B.  

10- By now, the two participants can start exchanging data between them.  
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Peer A Peer BSuperPeer X
Gateway A Gateway BSuper-peer Y

2

3

8 X

 

Figure 4-2: Discovery and Connection Process.  
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CHAPTER 5  

PERFORMANCE EVALUATION 

In this chapter, performance evaluation of the proposed solution is discussed. Firstly, there 

is an overview for the simulation tool used in the performance analysis. Then, configuration 

and setting of the simulation environment is presented. Finally, there is an analysis for the 

simulation’s results. 

5.1 Simulation Tool 

Implementing a large scale network application in the real-world would requires 

hundreds or thousands of computers spread across the globe. Such an environment could 

contain many variables that out of the designer’s control. For example, router congestion 

vary from day to day, which will produce varying latency results. 

To allow more control of the environment, as well as having a greater scale, it has 

been chosen to implement DDBS as a large scale network simulation. A simulation allows 

for careful selection of the environment parameters and precise control of the parameter 

values. This helps to keep all but one parameter constant and evaluate the effect of a design 

decision on the system for varying values of the free parameter. Simulation also allows for 

greater scalability and simulating on a network with global Internet characteristics. Greater 

scalability is achieved, because hundreds or thousands of nodes can easily be created, 

where all the nodes have global scale latency characteristics. 

The underlying Omnet++ is a discrete event simulation. It is a powerful network 

simulator and gives a most realistic environment. It allows for robust message and module 

definitions and contains many tools to assist with simulation measurement and monitoring 

such as global statistics gathering tools and built-in plotting tools [26]. Oversim is a P2P 

and overlay simulation framework for the Omnet++ simulator. Oversim allows for the 

simulation of many well-known structured or unstructured overlay protocols. It also allows 
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for the development of applications that can use the available implemented overlays in a 

well-defined architecture [27]. 

At the base of Oversim framework is the underlay network. The underlay network 

determines the types of nodes in the simulation. There are three underlay types: the 

“simple”, “INET” and “SingleHost” underlays. A node type is determined by the protocols 

executing on every layer of the Oversim architecture. The INET underlay is used in our 

experiment because it is based on the Omnet++ INET underlay and allows for the 

simulation of the complete IP level stack. This includes backbone routers and gateways. In 

the top layer (application layer) of client hosts, we implement a STUN client application 

that can register with a STUN server app which resides on a centralized server. It can also 

establish a connection with another peer in different network after acquiring its information 

from the server.   

5.2 Configurations and settings: 

There are two scenarios have implemented in the simulation experiment. The first 

scenario is the implementation of the single centralized WAN server and the second one is 

the proposed distributed discovery service using Super-peer overlay network. The first 

scenario is meant to be a bench mark for the proposed solution.   

5.2.1 Centralized STUN server Simulation: 

It consists of 10 areas where every two areas connected with a backbone router. Each 

area consists of 2 networks with a gateway router for each one. A network has two types 

of nodes: DDS participant peer and Background traffic generator. The area is equal in each 

scenario. We tested STUN server in 10 different scales starts with 100 peers (where there 

are 5 peers in every network) up to 1000 peers (where there are 50 peers in every networks). 

It is incremented by 100 peers in every scenario. See Table 1 for more details.  

In Figure 5-1, the total WAN network shows the five backbone routers and areas that 

are connected to them directly. Each area could be a different isolated ISP in a certain 

geographical region. We have located the STUN server near the middle router to give more 

balance to the areas connected to both ends. The distance between backbone routers set to 
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1000 km as if each one of them is in a different cautery. An area is shown in Figure 5-2 

which contains two LANs and their gateway routers which are connected to each other and 

one of them connected to backbone router. A LAN, as in , contains Figure 5-3 A DDS 

domain and has DDS participants and same amount of background traffic generator hosts. 

They are uniformly distributed in all LANs. It is started by 5 DDS participants up to 50 

hosts to test the scalability of STUN server.  

 

Table 1: CONIFIGURATION PARAMETER 

Parameters Value 

Simulation Duration 5000 s 

Number of Backbone routers 5 routers  

Register Timeout 2000 ms 

Maximum Retries 5 times 

Number of gateways Routers 20 routers 

Distance  
Between Backbone routers 1000 km 
Area-to- Backbone router 150 m 

Delay 
Between Backbone routers 5 ms 
Area-to- Backbone router 1 µs 

Bitrate 
Between Backbone routers 1 Gbps 
Area-to- Backbone router 100 Mbps 

Processing 
Delay 

Server 500 µs 

Router 100 µs 

 



28 
 

 

Figure 5-1 The complete WAN network for Centralized STUN Server 

 

Figure 5-2 An area contains two gateways routers which connected to LANs 
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Figure 5-3 A LAN contains DDS host and background traffic generator 

5.2.2 DDSD Simulation 

 

5.2.2.1 Super-peer Scalability  

In this scenario, effect of the Super-peers ratio to total served participants is studied 

in term of its communication overhead. Number of participants is fixed to 1000 participants 

distributed in 10 networks. While number of Super-peers is varying from 1% of the 

participants up to 20%. Therefore, it is varying from 10 Super-peers and incremented by 

10 up to 200 Super-peer.  

5.2.2.2 Static Super-peer 

The Distributed Super-peer network consists of 5 backbone routers and 10 access 

routers. The number of super-peers is 10% of the total number of DDS hosts in all domains. 

The distribution of the DDS hosts in different domains is varies randomly. The super-peers 

are existing from the beginning of the simulation run until its end. DDS hosts are added to 
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the network gradually during the simulation experiment. Figure 5-4 shows the complete 

DDSD network before adding Peers to the network. Backbone routers is the core of the 

WAN network and access routers are connected to them. Super-peers are start joining them 

at the beginning of the simulation. DDS nodes are also keep joining the network throughout 

the simulation. Measurements start to be taken after complete joining of both Super-peers 

and DDS nodes (see Figure 5-5). 

 

Figure 5-4: Backbone and Access routers of DDSD before Peers joining 
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Figure 5-5: Super-peers and DDS nodes starts joining the network. 

5.2.2.3 Churn Super-peer 

The last scenario has been modified to make the Super-peer joins and leaves 

periodically. Oversim provides Lifetime churn generator model to examine non static 

network. In this model, the node will leave after the completion of its life time period and 

new nodes is going to be joining by finishing dead time period. The life time and dead time 

are specified in the configuration file as 500 seconds. Life time distribution used in this 

model is based on Weibull function. [28]  

5.3 EVALUATION RESULTS AND ANALYSIS 

In this section, an analysis for the simulation results of implementing centralized 

STUN server and DDSD. Number of Super-peer has been studied in term of its effect on 

communication overhead. There is also a study for the effect of churn of the Super-peer 

DHT overlay on the DDSD performance. It has been compared with static Super-peer DHT 

overlay.   
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5.3.1 Optimum ratio of Super-peers in WAN DDS 

The ratio of Super-peers is relative to the total number of participants. In this 

experiment, the total participant is fixed as 1000 hosts and the number of Super-peers that 

serves them is ranging between 10-200 Super-peers. The communication overhead is 

dropping exponentially as the number of Super-peers increased. As noted clearly in 

Figure 5-6 , the average sent messages drops sharply between 10 and 100 (i.e., 1-10%) 

Super-peers and starts decreasing slightly after 100 Super-peers (i.e., 10%). Therefore, the 

optimum number of Super-peers depends on user’s requirement. The Super-peer ratio in 

the coming experiments sets to 10% because the decreasing communication overhead after 

this percentage is insignificant.  

 

Figure 5-6: Effect of number of serving Super-peer on Communication 
Overhead 

 

5.3.2 Registration Phase 

It is the time required by the client (DDS participant) to register its information (Host 

ID, IP, and port number) in the centralized STUN server or distributed super-peers. It starts 
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once the client sends the registration message to the server and ends by receiving 

registering confirmation message from the server.  

Measurements taken for registration period in two scenarios: centralized STUN 

server and DDSD.  In each one of them, the average period taken by each host in 10 

different network scales starting by 100 hosts up to 1000 hosts. We can easily notice the 

linear increased in the average registration time for the case of Centralized STUN server. 

It exceeds DDSD for 400-hosts scale and more. While in case of DDSD, the average remain 

almost the same as we increase number of hosts that attempt to register in the distrusted 

Super-peer. This due to network traffic balance allowed by diverse super peer locations. 

Moreover, Super-peer can be much close in term of distance from DDS participant. 

However, there are of exchanged DHT messages between Super-peer to get the needed 

values from each other and that could be the reason for exceeding the delay for DDSD in 

scale less than 400-hosts. 

 

Figure 5-7 Average Registration Time for DDS Participants 
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Figure 5-8  Failed registration attempts 

5.3.3 Connection Establishment Phase 

The time needed for any participant wants to establish a connection with another one 

in different domain. The process is explained in sectionV. Measurement of this period starts 

by sending a request message from a participant look for a subscriber in a topic published 

by a participant in another domain and it ends by receiving acknowledgement message 

from the targeted participant to the initiated one.  

In this phase, communication between the peers and the STUN server is occurred 

twice; first time is with the initial peer that asks for the needed information about the 

targeted peer, and the second time is with the other peer to inform it about the request so it 

shall open a hole in its gateway router. Measurements are also taken in the two cases; 

Centralized STUN server and DDSD.  In Fig. 15, we can see also a gradual increase after 

400-hosts case while connection time for DDSD remains stable even with increasing the 

number of hosts. 
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Figure 5-9: Peers connection establishment duration for Centralized STUN 
server and DDSD. 

5.3.4 Effect of the Super-peers Churn: 

By enabling the churn in the Super-peer overlay network, it has been figured out its 

effect on the communication overhead. The absence of a Super-peer effect appears when 

another Super-peer in the overlay network starts looking for it to retrieve some needed 

information. It also requires some more overhead to rearrange themselves in the overlay 

network. Figure 5-10 shows that as the number of Super-peers increases, the average 

messages exchanges between them decreases. The probability of missing the needed 

Super-peer in retrieving the required information is increased due to limitation of resources. 

So, there are more information requests messages. By increasing the number of Super-

peers, it is going to be easier to find the needed information even with the absence of the 

some Super-peers due to information replication.  
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Figure 5-10: Average Sent messages between Super-peers with churn effect. 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

The current version of OMG DDS is not initially designed to be applied in WAN due 

to multicast disabling and NAT traversal challenges. The discovery process is the first and 

most important steps for implementing DDS over WAN. This discovery process should 

have advantage of reliability and scalability because it is the cornerstone for the Publish-

Subscribe connection. RTI has offered an additional plugin to enable DDS participant 

discovery and data exchange over WAN. However, it depends on a centralized server and 

has a single point of failure. 

In this work, Distributed Discovery Service has been proposed for DDS using DHT 

in a set of Super-peers. This improves the reliability and fault tolerance by avoiding the 

single point of failure that exist in the centralized STUN server method. Location 

distribution and diversity of the Super-peers can minimize the overall average registration 

and connection requests delay for DDS participants. A simulation has been done using 

OverSim (a framework in OMNeT++ simulator) for both scenarios and different network 

scales. The results show that DDSD has an advantage of stable average registration and 

connection establishment time even with larger network scales comparing with the WAN 

STUN centralized server. The registration delay and failure connection establishment time 

in centralized server case starts increasing after network scale reaching 400 hosts. 

However, the proposed distributed discovery mechanism shows a stable and short 

registration time delay, even with scalability up to 1000 DDS hosts.  

As future work, Practical test in a large-scale environment -such as Planetlab [29]- is 

needed to test the proposed solution. Minimizing communication overhead for discovery 

over WAN is required by using one of the compression or hashing mechanism (such as 

Bloom-Filter). The security aspect of the DDS inter-domain discovery should be studied 

in the case of distributed discovery implementation.  
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APPENDIX A  

Configuration code for Centralized STUN severe  

Scenario  

[General] 

network = inet.examples.inet.nclients.NClients3 

cmdenv-interactive = false 

cmdenv-runs-to-execute = 5 

cmdenv-status-frequency = 10s 

num-rngs = 10 

output-scalar-file = ${resultdir}/${configname}-${runnumber}.sca 

parallel-simulation = false  

record-eventlog = false 

repeat = 10 

rng-class = cMersenneTwister 

seed-set = ${runnumber} 

sim-time-limit = 7000s 

tkenv-plugin-path = ../../../etc/plugins 

# Command line setting  

user-interface=  Tkenv 

cmdenv-config-name =  t100hosts 

cmdenv-express-mode = true 
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cmdenv-message-trace = false 

 

# number of client computers 

**.vector-recording = false 

**.numHosts = 5 

**.numClients =200 

# udp apps 

**.cli*[*].numUdpApps = 1 

**.cli*[*].udpApp[*].typename = "STUNClientApp" 

**.cli*[*].udpApp[0].localAddress = "" 

**.cli*[*].udpApp[0].localPort = -1 

**.cli*[*].udpApp[0].serverAddress = "srv" 

**.cli*[*].udpApp[0].serverPort = 80 

**.cli*[*].udpApp[0].startTime = exponential(5s) 

**.cli*[*].udpApp[0].sendInterval = exponential(1s) 

**.cli*[*].udpApp[0].messageLength = 1000B 

************************************************************* 

**.cli*[*].udpApp[0].registerTimeout = 200ms 

**.cli*[*].udpApp[0].maxRegisterTry = 5 

**************************************************************** 

**.TrafficGen[*].numUdpApps= 1 
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**.TrafficGen[*].udpApp[*].typename = "UDPBasicBurst" 

**.TrafficGen[*].udpApp[*].localPort = 100 

**.TrafficGen[*].udpApp[*].destPort = 100 

**.TrafficGen[*].udpApp[*].messageLength = 1250B 

**.TrafficGen[*].udpApp[*].sendInterval = 0.5s 

**.TrafficGen[*].udpApp[*].burstDuration = 10s 

**.TrafficGen[*].udpApp[*].sleepDuration = 2s  

**.TrafficGen[*].udpApp[*].destAddresses=moduleListByNedType("inet.nodes.in

et.StandardHost") 

**.TrafficGen[*].udpApp[*].chooseDestAddrMode = "perBurst" 

***************************************************** 

**.srv.numUdpApps = 2 

**.srv.udpApp[0].typename = "STUNServerApp" 

**.srv.udpApp[0].localPort = 80 

 

*.srv.udpApp[1].typename = "UDPBasicBurst" 

*.srv.udpApp[1].destAddresses = "" 

*.srv.udpApp[1].burstDuration = 10s 

*.srv.udpApp[1].sleepDuration = 1s 

*.srv.udpApp[1].chooseDestAddrMode = "perBurst" 

*.srv.udpApp[1].localPort = 100 
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*.srv.udpApp[1].destPort =100  

*.srv.udpApp[1].messageLength = 1250B 

*.srv.udpApp[1].sendInterval = 0.05s 

**.udpApp[1].startTime = 1ms 

**.udpApp[1].stopTime = 5000s 

**.udpApp[1].delayLimit = 3ms 

 

**.srv.networkLayer.ip.procDelay = 5000us 

**.r[*].networkLayer.ip.procDelay = 100us  

*.area[*].router[*].networkLayer.ip.procDelay = 100us 

# NIC configuration 

**.ppp[*].queueType = "DropTailQueue" # in routers 

**.ppp[*].queue.frameCapacity = 5  # in routers 

 

#**.srv.tcpApp[0].replyDelay = 0 

**************************************************************** 

 [Config t100hosts] 

output-scalar-file = ${resultdir}/a100${configname}-${runnumber}.sca 

**.numClients =100 

**.numHosts = 5 

include ./NS_100.ini 
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[Config t200hosts] 

output-scalar-file = ${resultdir}/a200${configname}-${runnumber}.sca 

seed-set = 5 

**.numClients =200 

**.numHosts = 10 

include ./NS_200.ini 

  

[Config t300hosts] 

output-scalar-file = ${resultdir}/a300${configname}-${runnumber}.sca 

**.numClients =300 

**.numHosts = 15 

include ./NS_300.ini 

 

[Config t400hosts] 

output-scalar-file = ${resultdir}/a400${configname}-${runnumber}.sca 

**.numClients =400 

**.numHosts = 20 

include ./NS_400.ini 

 

[Config t500hosts] 
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output-scalar-file = ${resultdir}/a500${configname}-${runnumber}.sca 

**.numClients =500 

**.numHosts = 25 

include ./NS_500.ini 

 

[Config t600hosts] 

output-scalar-file = ${resultdir}/a600${configname}-${runnumber}.sca 

**.numClients =600 

**.numHosts = 30 

include ./NS_600.ini 

 

[Config t700hosts] 

 

output-scalar-file = ${resultdir}/a700${configname}-${runnumber}.sca 

**.numClients =700 

**.numHosts = 35 

include ./NS_700.ini 

 

[Config t800hosts] 

output-scalar-file = ${resultdir}/a800${configname}-${runnumber}.sca 

**.numClients =800 
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**.numHosts = 40 

include ./NS_800.ini 

 

[Config t900hosts] 

output-scalar-file = ${resultdir}/a900${configname}-${runnumber}.sca 

**.numClients =900 

**.numHosts = 45 

include ./NS_900.ini 

 

[Config t1000hosts] 

output-scalar-file = ${resultdir}/$a1000{configname}-${runnumber}.sca 

**.numClients =1000 

**.numHosts = 50 

include ./NS_1000.ini 
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APPENDIX B  

Configuration code for Centralized STUN severe  

Scenario 

 

 

[General] 

description = Chord DHT (InetUnderlayNetwork) 

network =  oversim.tier2.STUN_over_DHT.InetUnderlayNetwork 

num-rngs = 15 

record-eventlog = false 

tkenv-image-path = ../images 

user-interface=  Cmdenv 

cmdenv-config-name = S1000 

cmdenv-express-mode = true 

cmdenv-message-trace = false 

**.vector-recording = false  

#network patrameters 

*.backboneRouterNum = 5 

*.overlayAccessRouterNum = 0 

*.accessRouterNum = 10 

**.terminalTypes = "oversim.tier2.STUN_over_DHT.STUNTerminal" 

 

#underlayConfigurator parameters 
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*.underlayConfigurator.churnGeneratorTypes = "oversim.common.NoChurn 

oversim.common.NoChurn" 

**.lifetimeMean    = 10s 

**.measurementTime = 2000s 

**.transitionTime  = 100s 

 

#churn parameters 

**.churnGenerator[0].targetOverlayTerminalNum = 5 

**.churnGenerator[1].targetOverlayTerminalNum = 10 

 

**.numSuperpeers = 5  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 10  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

#numSuperpeers and numPeers are parameters for 

oversim.tier2.STUN_over_DHT.STUNSuperPeerAppModules, 

oversim.tier2.STUN_over_DHT.STUNPeerApp and 

oversim.tier2.STUN_over_DHT.GlobalDhtMat 

 

*.churnGenerator[0].initPhaseCreationInterval = 0.1s 

*.churnGenerator[1].initPhaseCreationInterval = 1s 

 

 

#overlay parameters 

**.overlayType   = "oversim.overlay.chord.ChordModules" 

**.tier1*.dht.numReplica = 4 
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**0[*].numTiers  = 2 

**0[*].tier1Type = "oversim.applications.dht.DHTModules" 

**0[*].tier2Type = 

"oversim.tier2.STUN_over_DHT.STUNSuperPeerAppModules" 

 

**1[*].numTiers  = 2 

**1[*].tier1Type = "oversim.common.TierDummy" 

**1[*].tier2Type = "oversim.common.TierDummy" 

 

 

# dhttestapp settings 

**.tier2*.superpeerApp.testInterval = 5s   #the time before sending next self-msg 

**.tier2*.superpeerApp.testTtl = 15 

**.tier2*.superpeerApp.p2pnsTraffic = false 

 

**.globalObserver.numGlobalFunctions = 2 

**.globalObserver.globalFunctions[0].functionType = 

"oversim.tier2.STUN_over_DHT.GlobalDhtTestMap" 

**.globalObserver.globalFunctions[1].functionType = 

"oversim.tier2.STUN_over_DHT.GlobalDhtMat" 

 

**.superPeerName = "SuperPeerX" 

 

**.debugOutput = false 
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**.drawOverlayTopology = true 

 

###################################################################

######################################### 

**0[*].numUdpApps = 0 

#**0[*].udpAppType = "oversim.tier2.STUN_over_DHT.STUNPeerApp" 

**0[*].tier2.superpeerApp.localPort = 8088 

 

 

**1[*].udpApp[0].registerTimeout = 3s 

**1[*].udpApp[0].maxRegisterTry = 5 

**1[*].numUdpApps = 1 

**1[*].udpAppType = "oversim.tier2.STUN_over_DHT.STUNPeerApp" 

**1[*].udpApp[0].localAddress = "" 

**1[*].udpApp[0].localPort = 5500 

**1[*].udpApp[0].superPeerAddress = "overlayTerminal-0[0]" 

**1[*].udpApp[0].superPeerPort = 8088 

 

**1[*].udpApp[0].startTime = exponential(3s) 

**1[*].udpApp[0].sendInterval = exponential(3s) 

**1[*].udpApp[0].messageLength = 1000B 

 

**.rpcUdpTimeout = 1.5s 

 

include ./default.ini 
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###################################################################

########################### 

 

[Config S100] 

**.churnGenerator[0].targetOverlayTerminalNum = 10 

**.churnGenerator[1].targetOverlayTerminalNum = 100 

 

**.numSuperpeers = 10  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 100  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

[Config S200] 

**.churnGenerator[0].targetOverlayTerminalNum = 20 

**.churnGenerator[1].targetOverlayTerminalNum = 200 

 

**.numSuperpeers = 20  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 200  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

 

[Config S300] 

**.churnGenerator[0].targetOverlayTerminalNum = 30 

**.churnGenerator[1].targetOverlayTerminalNum = 300 
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**.numSuperpeers = 30  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 300  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

[Config S400] 

**.churnGenerator[0].targetOverlayTerminalNum = 40 

**.churnGenerator[1].targetOverlayTerminalNum = 400 

 

**.numSuperpeers = 40  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 400  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

[Config S500] 

**.churnGenerator[0].targetOverlayTerminalNum = 50 

**.churnGenerator[1].targetOverlayTerminalNum = 500 

 

**.numSuperpeers = 50  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 500  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

 

[Config S600] 

**.churnGenerator[0].targetOverlayTerminalNum = 60 

**.churnGenerator[1].targetOverlayTerminalNum = 600 
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**.numSuperpeers = 60  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 600  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

 

[Config S700] 

**.churnGenerator[0].targetOverlayTerminalNum = 70 

**.churnGenerator[1].targetOverlayTerminalNum = 700 

 

**.numSuperpeers = 70  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 700  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

[Config S800] 

**.churnGenerator[0].targetOverlayTerminalNum = 80 

**.churnGenerator[1].targetOverlayTerminalNum = 800 

 

**.numSuperpeers = 80  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 800  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

 

[Config S900] 

**.churnGenerator[0].targetOverlayTerminalNum = 90 

**.churnGenerator[1].targetOverlayTerminalNum = 900 
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**.numSuperpeers = 90  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 900  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 

[Config S1000] 

**.churnGenerator[0].targetOverlayTerminalNum = 100 

**.churnGenerator[1].targetOverlayTerminalNum = 1000 

**.numSuperpeers = 100  #num. of peers in the network.. it should be equal to 

churnGenerator[0].targetOverlayTerminalNum 

**.numPeers      = 1000  #num. of peers in the network.. it should be equal to 

churnGenerator[1].targetOverlayTerminalNum 
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