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Chapter 1

INTRODUCTION

1.1 Conventional Power Gird

The concept of power grid is based on the technology introduced around 120

years ago. It is facing lot of issues in keeping up with modern challenges. One of

the main challenges is to guarantee quality electricity supply to customers and

maintaining long-term energy security. The existing grid has small number of

producers, long distribution ways and high maintenance cost, it is also difficult

to achieve load balancing. Moreover, the depleting fossil fuels and the adverse

effect on environment by its consumption has gain multi-national interest in

reducing the excess use of nonrenewable energy resources and many nations are

keeping tap on CO2 emissions [1].

1
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The main concerns with the existing centralized power system grid are summa-

rized below [2]

• Increasing demand and lack of high reliability

• No scope of expansion on power system expansion

• Limitations of centralized power system planning

• Risks of volatile bulk power markets

• Security Threats

• Limited power quality

• Environmental effect (Release of CO2, Nuclear waste etc.)

Therefore increased reliability/efficiency is very much needed in todays world

where the demand of electricity is ever-growing.

1.2 Distributed Generation Systems

All the above issues urges the need to incorporate Distributed Generating (DG)

units into the existing power systems [3]. The concept of DG is of early 1990’s, it

has multiple advantages for both source and consumers [4]. In literature, there
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exists various definitions of DG which are summarized in [5]. DG is defined as

, ”Generation of electricity by facilities that are sufficiently smaller than central

generating plants so as to allow interconnection at nearly any point in the power

system”[6].

DG units are the emerging micro-generating technologies such as micro turbines,

fuel cells, Internal Combustion (IC) engines. It also make use of renewable en-

ergy sources such as Photo Voltaic (PV) arrays and wind turbines. The DG units

have low emission rates, environment friendly and are economical.The introduc-

tion of DG units should reduce the pressure on central power grid principally

but in technically speaking, penetration of distributed generation into the power

grid creates a new class of issues different from those found in traditional power

sources. Random applications of DG units will cause as many issues as it may

solve [7]. Some of the problems are discussed below

• First of all, DG units operates close to the distribution voltage level of 480V

as it is geographically located near the loads and provides a DC or variable

frequency AC output and hence requires power electronic devices in order

to interface with the power-grid/load. The power electronic interface leads

to development of new control strategies [8].

• The output of renewable energy systems fluctuates with conditions of

weather which is also a debatable issue when DG units are connected

to power grid [9].
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• The existing power grid follows a multi-level flow of power from transmis-

sion to distribution network, any change in power flow causes problems

because DG units behavior is different than a conventional load [1].

• Finally, the initial energy balance for a new load is taken care by the

power stored in the generator inertia and the micro generating units are

inertia less. This lack of inertia is the major problem leading to power

imbalances between the generation and load. There are also number of

barriers in form of technical, business and regulatory issues when it comes

to connecting DG’s to electrical grid [8].

1.3 The Concept of Microgrid

To overcome these issues and to utilize the potential of distributed generation,

the concept of MicroGrid (MG) was introduced in [8]. Using power electronic

devices in addition with Distributed Energy Resources (DER), integration of DG

into the utility grid is possible. Power electronic devices improve the flexibility

and adaptability of the system by converting the power from source to a fixed

frequency AC power. They also provide various ancillary services to the grid

[10]-[11].

In microgrids, generating units are commissioned within the scope of the conven-

tional distribution network so that power can directly flow from the generators

to the load without having to pass through the transmission network. The other
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advantage of using such an architecture is that loads can be served even if the

transmission network is down due to a fault, increasing the overall reliability of

the system. A microgrid is generally known as the system consisting of small

distributed generating stations along with the loads which is capable of going

into islanded operation at times of need [12].

Among the many benefits of having a microgrid, one is that it facilitates dis-

tributed generation (DG) and high penetration of renewable energy sources [13]-

[15]. They increase power quality and reliability of electric supply. A microgrid

having renewable energy sources will help to alleviate some of the environmental

issues related to burning fossil fuels. There is extensive literature on the vari-

ous challenges posed by microgrids. Despite having some benefits of microgrid

architecture in the grid environment, there are some challenges related to this

also. Implementation is an issue. Microgrid protection is also considered one of

the most important challenges facing the implementation of microgrids. Once

a microgrid is formed, it is important to assure that the loads, lines, and DGs

on the island are protected because conventional unidirectional power flow pro-

tection method is no longer viable [16]. Solid regulatory base is another issue

related to microgrids.

Control of the voltage and frequency during islanded operation of DGs is also

a major challenge. A method for intentionally islanding a single DG to feed a

local load was proposed in [17]. A much more complex and challenging task is

to operate more than one DG on the island. With more than one DG on the

island, it is necessary to regulate the voltage during microgrid operation, which
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could be achieved by using a voltage versus reactive power droop controller [18].

There needs to be an algorithm that should complete the resynchronization

process once the grid is restored. A supervisory control mechanism will monitor

the overall process and provide information to the local controller to respond

accordingly.

1.4 Problem Formulation

In the autonomous or islanded mode of operation, MG supplies its local load

and is not connected to the utility grid. The main challenges in this mode are

• To maintain the output voltage of microgrid under pre-defined limits

• To maintain the output frequency of microgrid under pre-defined limits

• To regulate the deviations produced in output voltage due to load distur-

bances

• To regulate the deviations produced in output frequency due to load dis-

turbances

• When more than one DG supports the load, proper load sharing has to be

ensured among the DG units to avoid overloading

To provide quality power to consumer control of the voltage and frequency

during islanded operation of MG is a major challenge. A much more complex



7

and challenging task is to operate more than one DG on the island. With more

than one DG on the island, it is necessary to regulate the voltage and frequency

during MG operation [18]. Proper sharing of load should also be taken care of

to avoid overloading of any one DG unit.

1.5 Proposed Objectives

The main focus of this research aims at the distributed control of microgrid. The

deviations produced in output voltage and frequency due to load disturbances

are to be regulated towards zero. The objectives of the thesis would therefore

can be described as follows

• Developing a nonlinear model of inverter based autonomous MG system

consisting of multiple DG units.

• Developing a suitable control technique addressing the problem statement

which will be implemented in a distributed way for each DG unit. Evolu-

tionary optimization techniques will be employed to obtain the optimized

parameters for the controller.

• Implementing the distributed controller on the Real Time Digital Simula-

tion (RTDS) environment.

• Applying Reinforcement Learning solutions to solve voltage control prob-

lem of microgrid.
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1.6 Proposed Methodology

The above mentioned thesis objectives is manifested by the following tasks

Task I: Construct an extensive database of the published literature on the re-

search performed on the modeling and control of MG. Identifying the advantages

and disadvantages of various control techniques available in the literature.

Task II: Designing an autonomous MG system consisting of multiple DG units

in the Matlab/Simulink environment.

Task III: Developing an improved control technology and testing it on the de-

signed MG system.

Task IV: Implementation of control technique using Real Time Digital Simula-

tion (RTDS) environment.

Task V: Developing controller by making using of reinforcement learning tech-

niques for microgrid application.

Task VI: Report writing.

1.7 Thesis Outline

The outline of this thesis is organized as follows.
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Chapter 2

The chapter presents extensive literature survey on advancements in the field

of microgrid modelling and control. State of art literature covering two main

aspects of microgrid namely modeling and control are presented. The advan-

tages and disadvantages of various control techniques, modeling approaches

available in the published literature are studied. Aspects related to both the

grid-connected mode and islanded mode of microgrid are discussed in this chap-

ter.

Chapter 3

In this chapter, we formulate the non-linear dynamics of an autonomous MG

system consisting of multiple DG units. Modeling of inverter-based MG with

its primary control level is presented.

Chapter 4

In this chapter, neural-network-based distributed secondary control scheme for

an autonomous smart microgrid system is proposed. The proposed control tech-

nique is discussed in detail which involves concepts of evolutionary optimiza-

tion, selection and training of neural networks. The proposed control technique

is tested for quality output voltage and frequency against load disturbances.

Comparative study between the proposed technique and traditional technique

is also presented. The controller performance when subjected to time varying

load is also summarized.
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Chapter 5

This chapter deals with the real-time implementation of distributed multi-level

control of microgrid. Both the primary and secondary control levels are imple-

mented in real time environment using Real-Time Digital Simulator (RTDS).

The experimental results of RTDS are compared with that of simulated results

in MATLAB. Load sharing performance of controller under fault conditions is

also presented.

Chapter 6

In this chapter, a new approach based on reinforcement learning is used to

design controller for the microgrid. Heuristic dynamic programming based on

value iteration techniques with actor-critic implementation is utilized to develop

online and offline algorithms to solve Bellman equation. The proposed controller

is tested for voltage regulation of a inverter-based microgrid sullying a parallel

RLC load.

Chapter 7

This chapter summarizes the contributions of the thesis and provides the sug-

gestions for the future work and developments of the research.



Chapter 2

LITERATURE SURVEY

2.1 Introduction

The burden on the transmission network is increasing at an unexpected pace due

to the increasing demand of power. Since updates to the transmission network

are economically challenging, microgrids have evolved to become an econom-

ically viable alternative. Microgrids incorporate various distributed generator

units into the utility grid and solves and solves many problems of existing power

systems. It is also the vital building block of the future Smart Grid [18]. In

this chapter, motivation towards development of MG and an overview will be

presented on the two key aspects,modeling and control, of MG. State of art

literature review in these two key aspects will be presented.

11
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2.2 Microgrid: Definition and Applications

A microgrid can be defined as, “A network of low voltage power generating units,

storage devices and loads capable of supplying a local area such as suburban

area, an industry or any commercial area with electric power and heat”. The

components of Microgrid are interfaced through quick response power electronics

and presents itself as a single entity and therefore can be connected to traditional

power grid or can also be operated in stand-alone mode as a self-sustained power

system [18].

As stated in [8], “The heart of the microgrid concept is the notion of a flexible,

yet controllable interface between the microgrid and the wider power system”.

Microgrid acts as a Good Citizen, that is, ideal conventional load behavior to-

wards the grid which is less troublesome than distributed generation system. It

also has environmental benefits because it uses renewable energy sources.

Different countries around the world adopts various topologies and structure

basing on their priorities on functionality offered by microgrid. The research

on microgrid is more active in US, Canada, Europe and Japan. Several demon-

stration projects and laboratory facilities are developed and a lot of research is

in progress concerning various issues in the microgrid [19]. Various objectives

which can be achieved by the use of microgrid are listed below, ride through

capability provided by energy-storage is a common objective of microgrid.

• Reliability of power supply
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• Reduction of environmental impact of electric supply

• Reduction of investment in plant, equipment and cost

• Increase of energy efficiency Stable

• Ensure diversity of energy supply

• Power supply to a remote site

• Ride-through capability provided by energy storage

The future Smart grid is expected to be a well organized plug-and-play integra-

tion of microgrids connected via dedicated highways for exchange of command,

data and power. The emerging standards, research, development and demon-

stration are also discussed in [20].

2.3 Microgrid: Components and Formation

A generalized structure of microgrid is shown in fig (2.1). The microgrid can be

connected to the utility grid through single Point of Common Coupling (PCC).

The isolating device is used to isolate the microgrid from the utility grid.

The Distribution Generation (DG) unit is responsible for generation of electric-

ity. It consists of rotating type and inverter type generating devices. Rotating

type includes IC engines, gas turbines, micro alternator etc. whereas the inverter



14

 

                                                                                           Distributed Generation (DG) Unit 

 

 

 

 

              PCC 

 

To Grid 

 

 

 

 

 

 

 

Micro-turbine 

Fuel cell 

IC engine 

Wind turbine 

PV Array 

DC/AC 

DC/DC 

DC/AC 

DC/AC 

DC/DC 

Energy Storage Unit DC/DC 

   Isolating  

    Device 

Central Controller  

DC/AC Local Load  

Figure 2.1: Generalized microgrid structure

type includes photovoltaic, fuel cells and wind turbines etc. Both rotating and

inverter type requires power electronic converters for their interface. The power

range of DG unit components is small-scale ranging from 4KW-10000KW [2].

Energy storage unit is essential to balance the flow of power at the onset of

islanding mode of operation. It is also used to control the flow of power to

and from the main grid. They help in improving the quality of power and

assist in voltage control. Batteries, flywheels, super-capacitors, superconducting

magnetic energy storage etc. can be used to store the energy. All these devices

again require power electronic devices for their interface [2].

There has to be a Control System for the safe operation of microgrid in various

modes of its operation. This system can be based on a central controller or dis-

tributed controller. The selection of controller depends mainly on the operation

mode of microgrid and its requirements [21].Various control strategies will be
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discussed in this chapter in other sections.

The purpose of microgrid is not obtained until the customer is served with nom-

inal voltage and frequency by a stable system during all the modes of operation

[21].

2.4 Microgrid: Modes of Operation

Microgrid can operate autonomously and can also be connected to the util-

ity/main grid. In case any fault occurs while operating in grid connected mode,

microgrid has an ability to disconnect itself from grid and operate independently

supplying its local load [22]. Therefore, the microgrid modes of operation can be

classified into grid connected, islanded, transition between grid-connected mode

to the islanded mode and vice-versa [23].In any mode of operation, the heat

generated by some of the micro-sources can be used to supply the heat demand

of the local load.

When functioning in parallel with the utility (main) grid, it acts as a Model

or Good citizen and the voltage and frequency is controlled by main grid. De-

pending on load of the main grid, it will either supply or absorb power and act

as either controllable load or controllable source. If any fault or disturbance

occurs in the main grid, microgrid has an ability to disconnect and operate

autonomously. This ability of microgrid increases the quality of power to its
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local customer by providing local voltage control. In this mode of operation, the

points to be noted are

• The frequency and voltage magnitude are controlled by utility grid

• DG units supply the total or a part of the load

Islanding of microgrid can be due to unplanned faulty events discussed in [23]

and can also be due to planned actions like maintenance etc. The microgrid con-

trols the voltage and frequency in autonomous mode by continuously adjusting

the output active and reactive power. This is very common mode of operation.

In this mode, it supplies a local load which is closely located geographically.

The local load can be a small village, a university, an industry or a commercial

building etc. The main issues which the microgrid should address in this mode

is the management of voltage and frequency, Quality of Power (QoP), balancing

between load and supply, communication among its components etc. In this

mode of operation, the points to be noted are

• The DG units control the frequency and voltage magnitude

• It supplies active and reactive power to the load
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2.5 Microgrid: Overview of Modeling

A microgrid integration of various units. Basically, it consists of DG unit,

energy-storage unit, controller unit and conventional load. The DG unit again

compromises of various micro-generating devices. Therefore, microgrid model-

ing varies from one configuration to other depending on the components used.

Various approaches for the modeling and control of microgrid can be found in the

literature [24]. We will discuss the different models available in the literature.

A small signal dynamic analysis of an autonomous hybrid system is performed

in [25]. The configuration of the system is shown in fig (2.2).

Figure 2.2: Configuration of a microgrid system [25]

The dynamics of all the DG units are approximated by a first order linear model

with a time constant and a gain factor while the network is neglected [25, 26].

The transfer functions of various components are obtained and time domain
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analysis is performed by considering various components at each time. The

transfer functions of various components are given as follows and fig (2.3) shows

the configuration in one of the cases.
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Figure 2.3: Block diagram of a microgrid
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Fuel Cell =
KFC
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Diesel Engine Generator =
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Aqua Electrolyser =
KAE

1 + sTAE

Storage System =
Ksto
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Since a MG is a power generating unit, it can be represented by a DC source.

This concept of modeling a MG with an RLC load in islanded mode is proposed

in [27]–[28]. As shown in Fig. 2.4, MG is represented by a DC source connected

to a voltage-sourced converter (VSC). The MG is connected to the grid by means

of a R-L filter, step-up transformer and a circuit breaker. The circuit breaker is

open when the MG is islanded. The load which is passive RLC type is connected

on the high voltage side of the transformer. A control system is used to control

the VSC.

Figure 2.4: Model of microgrid in [27, 29, 30]

The dynamic model of Fig. 2.4 is represented by the nonlinear equations below.

After performing the linearization, whose details can be seen in [27, 29, 30] , the

state space matrices are obtained as mentioned below. The overall test system

was simulated in the Matlab Simulink and ATPDraw environment.
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This concept of representing MG as a combination of DC source with VSC is also

presented in [31, 32]. This paper models the islanded operation of MG consisting

of two parallel DG units. Again the local load is a passive RLC network located
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at the PCC. The schematic diagram of such an arrangement is shown in Fig.

2.5. The MG structure is used for the application of decentralized control and

hence there is a separate controller for each DG unit.

Figure 2.5: Radial configuration of generating units used in [31]

By applying KVL and KCL and further application of frame transformation,

gives the below dynamic equations governing the MG. The model is then repre-

sented in state space which is simulated using Matlab SimPowerSystems toolbox

[31].
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= −
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A microgrid consisting of only inverter based DG’s is modeled in [33] [34]. Typ-

ical structure of such microgrid is shown in Fig. 2.6. The modeling approach

considered the full dynamic model of the complete network rather than algebraic
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equations.

Figure 2.6: Inverter based microgrid structure in [33]

The approach of modeling was divided in three modules namely inverter, net-

work and loads. The inverter model compromises of dynamics of controller,

output filter and coupling inductor. The state equations of network and load

are represented on one of the inverters reference frame which is assumed to be

common reference. Then using the transformation technique [35], all the other

inverters are transformed to this common frame. Each sub-module is modeled in

state-space form and combined together on this common reference frame. Block

diagram of state space model of the MG is shown in Fig. 2.7.

By combining individual sub-modules, the overall state-space model of MG is

given below. The subscript represents states of inverter, network and load.

Detailed derivation and information on the state-space matrices can be found

in [33].
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Figure 2.7: State-space model of microgrid in [33]
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A small signal dynamic model of MG which includes synchronous generator

based DG and power electronically interfaced DG is presented in [36]. Fig. 2.8

shows the single line diagram of the MG. DG1 is a synchronous machine (diesel

or gas-turbine generator) with excitation and governor control system whereas

DG2 is a dis-patchable source (micro-turbine or wind generator etc) equipped

with a Voltage-Source Converter (VSC). The system parameters are given in

[23]

To obtain the linearized mathematical model of the above system the following
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Figure 2.8: Small signal of synchronous generator model [36]

steps are followed

• The ordinary differential equations (ODE) of DG units including network

components are developed in their respective local dq0 reference frames

• The obtained equations are transformed to the global dq0 frame of MG

• Linearized about a nominal operating point and arranged in the state

space form

The dynamic model of DG1 in its local reference dq0 frame is obtained from [37]

and the dynamic model of DG2 can be found in [38, 39]. The electrical network

modeling is carried out on the basis outlined in [40] and can be found in [39].

The overall system model is represented by the block diagram in Fig. 2.9. The

small signal model was validated in the PSCAD/EMTDC environment.

The same MG structure is taken into account in [23] and the stability analysis

for various transient conditions such as energizing load, transition from grid-

connected mode to islanded mode and vice-versa is performed. An operational

architecture developed within EU R&D microgrids projects [41] is adopted in
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Figure 2.9: Block diagram of microgrid model [36]

[42]. This concept is shown in Fig. 2.10. It is a multi-level type control and

management scheme supported by a communication infrastructure.

DC    AC
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MGCC
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LC
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AC    DC

AC    DC

LC
Battery

Flywheel

LC
CHP

AC    DC

MC

Microturbine

LC

AC    DC

Fuel Cell

MV LV

Figure 2.10: Microgrid structure in [42]

The head of this multi-level control system is MicroGrid central controller (MGCC)

installed at the MV/LV substation and centrally controls the MG. Load con-

trollers (LC) and micro source controller (MC) forms the second level of Hier-
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archy and exchange information with the MGCC. LC acts as an interface to

controllable loads and MC controls the active and reactive power of each micro

source. Both LC and MC receives their set-points from MGCC.

The dynamic modeling of each DG components was picked from different liter-

ature. The dynamic model of solid oxide fuel-cell (SOFC) is described in detail

with the values of each parameters in [43, 44]. A gas turbine (GAST) was used

for the primary unit of micro turbine. The dynamic model of GAST is adopted

from [43]. A fifth-order induction generator connected directly to the network

serves as a wind generator. This model was available in Matlab Simulink tool-

boxes. An empirical model for the PV generator based on experimental results

was adopted from [45].

Flywheels and batteries are used for the modeling of storage devices. They were

modeled as a constant dc voltage sources and were coupled to the electrical

network using power electronic interface.

The inverter modeling can be derived as per two control strategies, PQ inverter

control modeling [46] and Voltage Source Inverter Control (VSI) model [47, 48].

Inverters are modeled based only on their control functions for the purpose of

analyzing the dynamic behavior of MG [23, 49, 50, 51, 52]. Two types of loads

were considered, one is constant impedance load and other is motor load.

An LV test network was built inMatlab/Simulink SimPowerSystemsenvironment.

The implementation of this network is shown in Fig. 2.11 whose detailed de-
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scription can be found in [53] and [54].

Figure 2.11: Implementation of microgrid on low voltage network

A low voltage MG with three unbalanced phases was proposed in [55], Fig.

2.12 shows the Matlab Simulink implementation of the structure used. Inverters

droop controls were used to interface DG’s and loads were modeled as constant

power. Simulations were carried out for both grid connected and isolated modes.

This model has an advantage of modeling small unbalanced networks but lacks

the analytic details required for stability analysis.

A new method to form the system matrices of large MG’s in islanded mode is

discussed in [56]. The MG under consideration has DG’s power electronically

interfaced and hence the dynamics are similar to that shown in [33]. There were
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Figure 2.12: Microgrid network structure used in [55]

two types of DG’s, one was PQ regulated and other was Vf regulated which are

introduced in [36].

The proposed modeling approach is based on four dened complex vectors. These

vectors allow for complex-valued system matrices to be formed in a quite auto-

mated way. Moreover, a convenient partition of the system matrices is proposed,

which in turn allows fast and easy modications. Additionally, a multivariable

methodology is proposed to simultaneously determine the control system gains

in an optimal sense.

An alternative approach is based on the ”hub model” for microgrids [57] in which

the couplings between an integrated electricity and natural gas system to yield

optimal operation are modeled by energy hubs. It turns out that this concept

serves as interface between the loads and the transmission infrastructures and

supports the application of distributed control schemes. Similarly, hybrid mod-

eling control techniques are applied to a two generator power system connected

to the grid and the plant consists of a solar field and a secondary power source
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formed by an electrolyzer, hydrogen tank and fuel cell stack. It is shown that

the system has essentially hybrid dynamics, as it can operate in four distinct

modes, depending on the power circuit configuration and the fuel cell stack state

[58]. With focus on bulk power flow of microgrids, research investigations are re-

ported in [59, 60] in which an optimal design of an electrical microgrid and sizing

of its components is sought to balance capital investment with expected opera-

tional cost while meeting performance requirements. In [61], an comprehensive

review on current control technology is presented with emphasis on challenges

of microgrid controls. The impact of frequency and voltage regulation on the

optimal design of an autonomous military microgrid, comprized of a solar panel

and vehicles as power sources, with each vehicle incorporating a battery and

generator, is developed in [62, 63]

2.6 Microgrid - Overview of Control

The control strategies for microgrid depends on the mode of its operation. The

aim of control technique should be to stabilize the operation of microgrid. When

designing a controller, operation mode of MG plays a vital role. Therefore, after

modelling the key aspect of the microgrid is control. In this section we will

discuss the various control paradigms.
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2.6.1 Microgrid Control: Grid-Connected Mode

In grid connected mode, microgrid acts as a controllable load/source. It should

not actively regulate the voltage at the point of common coupling (PCC). Its

main function is to satisfy its load requirements with good citizen behavior

towards main grid. The balance between generation and demand, control of

the parameters of the system is taken care by the utility grid. The voltage and

frequency reference of the microgrid is also set by the main grid. Therefore the

main task of a DG unit is to control the output real power (P) and reactive

power (Q) [64]-[65]. The P, Q generated by a DG can be controlled either by

current-based or by voltage-based power flow control [66].

2.6.2 Power Flow Control by Current Regulation

The control scheme for power flow control through current regulation is illus-

trated in Fig. 2.13. It is desired to control both the real and reactive power.

The real power control loop is used to obtain the synchronous frame d-axis

reference current and reactive power control loop is used to obtain the q-axis

current. The synchronous d-q frame current can then be controlled in a closed

loop manner [65].
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Figure 2.13: PQ power control through output current regulation[66]

2.6.3 Power Flow Control by Voltage Regulation

The other method to control the power flow is based on the output voltage of

DG. Therefore it is know as power flow control through voltage regulation. It

can be shown that real power (P) flow is proportional to the voltage phase angle

(δ) and reactive power (Q) flow is proportional to voltage difference (Vl - Vg),

where Vl is DG voltage and Vg is PCC voltage and δ is the phase angle difference

between these two voltages. Therefore the flow of P can be regulated using δ

and flow of Q can be regulated using Vl - Vg. This scheme is illustrated in Fig.

2.14. To improve the accuracy of reactive power control, integral control can be

included into the reactive power controller [64, 67, 68].

Power control through voltage regulation is more sensitive than current regula-

tion to the line impedance between the DG and the PCC.
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Figure 2.14: PQ power control through output voltage regulation [66]

2.6.4 Agent-Based Control

Microgrid management system was developed using agent based technology in

[69]. Microgrid agents were developed on JADE (Java Agent Development

Framework). The proposed system has several functionalists like SCADA sys-

tem, selling bids managing system, load shifting system etc. The software ar-

chitecture of the management system is shown in Fig. 2.15.

Microgrid agent platform consists of following components

1. Microgrid Central Controller (MGCC) : It includes Pulling Agent, Database

Agent, Control Agent, Shifting Agent, Curtailment Agent

2. Micro source Controller : It includes Generator Agent, Schedule Agent,

Bid Agent



33

AMS DF

Pulling
Agent

DB
Agent

Shifting
Agent

Curtail
Agent

Central 
Agent

Microgrids Agent Platform

DB

Bid
Agent

Gen
Agent

Sch
Agent

XML-PRC

Bid

DC        AC

Micro-source Controller

Switch
Agent

Load
Agent

Status
Agent

XML-PRC

Load

Micro-source Controller
Normal Controller Load Controller

Figure 2.15: Architecture of management system

3. Load Controller : It includes Load Agent, Status Agent, Switch Agent

The effectiveness and applicability of the introduced software has been evaluated

on a laboratory environment.

2.6.5 Multi-Agent Distributed Control

A distributed control approach based on Multi Agent System (MAS) for micro-

grids is proposed in [70], where advantages of MAS technology is utilized for

controlling microgrids. As shown in Fig. 2.16, a fully decentralized approach is

adopted with 3 distinguished control level.
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Figure 2.16: Control levels of multi-agent environment

Distribution Network Operator (DNO) and Market Operator (MO)are at medium

voltage level and does not belong to microgrid. DNO refers to the operational

functions of the system and is responsible for technical operation of one or more

microgrids whereas one or more MO are responsible for market functions of the

area.

Microgrid Central Controller (MGCC) is the main interface between DNO/MO

and the microgrid. Its main function is to optimize the operation of microgrid

and coordinate the local controllers. On the lower level, Load Controllers (LC)

control the DG, production, storage and some of the local loads.

Using MAS technology, model of the system is obtained in detail where every

agent uses the the exact piece of information it needs, leaving the technical

details for the agents that are below it in the organization chart. The paper

proposes three types of agent. Control Agent which controls physical units
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of the system directly. Management Agents which manage the microgrid and

takes the decision. Ancillary Agents which performs tasks like communication

and storage of data. The proposed MAS platform is depicted in the Fig. 2.17.

Figure 2.17: Types of multi-agents

In [70], internal operation of the microgrid and its participation in energy mar-

ket was focused particularly. The algorithm is proposed so that the every Dis-

tributed Energy Resource (DER) or controllable load decides what is best for

it.

2.6.6 H∞ Control

A new power balancing method based on H∞ control theory is proposed in [71].

The power fluctuations were considered as the disturbances added to the MG.

Fig. (2.18) shows the block diagram of MG structure.

where Gge and Gbtare the first order transfer function representation of gas

turbine [72] and Kge and Kbt are controller gains for gas turbine and battery,

respectively. F is the low/high pass filter gain.

Using the Robust Control Toolbox of MATLAB, the controller gains Kge and

Kbt were determined as standard controllers. Fig. 2.19 shows the block diagram
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Figure 2.18: Structure of microgrid [71]

of these controller designs, where W with subscript 1, 2 and 3 are weighing

functions for tracking performance, gain margin of the microgrid system, and

robustness for power fluctuations respectively.

Figure 2.19: Design of H∞ controllers [71]

In [73], technical challenges and stability of DG’s when connected into the distri-

bution system is detailed. Since high penetration of the DG’s can be considered

as a microgrid the same technical challenges can be assumed correct for a grid

connected microgrid.
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2.6.7 Microgrid Control : Autonomous/Islanded mode

In the autonomous or islanded mode of operation, microgrid supplies its local

load and is not connected to the utility grid. The main challenges in this mode

are

1. Voltage and frequency control

2. Balance between supply and demand

3. Power quality

4. Issues relating to micro-sources

5. Communication among microgrid components

Lot of research has been done on control of microgrid in autonomous/islanded

operation [74] which will be discussed in this section. The two main control

strategies PQ and VSI control is discussed first, detailed description and expla-

nation on these two controls can be found in [51].

When connected to grid, all the DG’s can operate in PQ control mode because

the voltage and frequency is dictated by the utility grid but at least one DG has

to follow VSI control in islanded mode since the voltage and frequency reference

is set by the MG.
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2.6.8 PQ and Volatge Source Inverter Control

The aim of PQ control is to provide constant active and reactive power at a

desired power factor [42, 56]. The reference values of power is defined by a

local controller or centrally from the MGCC. This scheme can be implemented

as a current controlled voltage source or voltage controlled current source as

discussed earlier in sections. Current or voltage components in direct (Id or Vd)

and in quadrature (Iq or Vd) with inverter terminal voltage are computed based

on method given in [46].

Figure 2.20: PQ control scheme [42]

Fig. 2.20 shows the control block for this strategy using current control. The

direct component (Id) of the current is used for the control of active power and

the quadrature component (Iq) is used for the reactive power control.

Voltage source inverter (VSI) matches the behavior of a synchronous machine

controlling the voltage and frequency on the ac system [49, 75, 46]. It acts as

a voltage source whose output voltage’s magnitude and frequency is controlled
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through Vf droop characteristics which are shown in fig. (3.3). Hence, this

method is also known as Droop Method.

Figure 2.21: Vf characteristics

In VSI control, voltage is related to reactive power (V−Q) whereas frequency/phase

shift is related to active power (f − P ) by the below shown equations.

f = f0 −Kp∆P

V = V0 −Kq∆Q

where Kp and Kq are respective slopes of droop characteristics and f0 and V0

are the idle values of frequency and voltage [47]. The micro-sources will change

their output by ∆P (or ∆Q) when the frequency (or voltage) changes by ∆f (or

∆v) from the nominal values f0 (or v0 ).

A VSI model is shown in fig (2.22) [47, 48]. The active and reactive powers

are computed using the VSI terminal voltage. The output voltage frequency
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f is determined by the active power droops and magnitude V is determined

by reactive power droops. The output voltage are the reference signals which

control the VSI switching sequence.

Figure 2.22: Model of a voltage source inverter

The key point to be observed here is VSI uses the local measurements at its ter-

minals and reacts to any system disturbances quickly and hence does not require

any communication infrastructure [49, 75]. But there will be a communication

infrastructure within the DG for the optimal management [42].A complete re-

view of Vf control strategies can be found in [76] and validation of Vf control

in both grid and islanded mode is performed in [21].

2.6.9 Autonomous Control

The concept of utilizing VQ and Pf droops for controlling the microgrid is also

proposed in the [3, 7, 77]. They propose an autonomous control for the peer-

to-peer and plug-and-play model of the microgrid components. The concept of

peer-to-peer allows the continuous operation of microgrid even with loss of any

component/DG because there are no master controller or central storage unit.

The concept of plug-and-play ensures that any component can be added at any

point in the system without re-engineering the controls.
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Micro-source controller based on droop characteristics is shown in Fig. 2.23.

P,Q and V are calculated and then the droops are implemented in two separate

blocks. Then the controller generates the voltage at desired magnitude and

frequency at the inverter terminals.
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Figure 2.23: Micro-source controller using droops

2.6.10 New Q− V̇ Droop Control

In islanded mode, the reactive power sharing is highly dependent on impedance

of power line. Due to the different distances among DER interface converters

(DIC), the equivalent transmission line impedance could be unequal [47]. Pf

and QV droop characteristics are used in DER interface converters for power

sharing operations [78, 77]. The Pf droop control provides an accurate real

power sharing among the DIC’s but the problem arises in QV droop control.

Because of these unequal impedance load sharing performance of QV control can

be affected. Various control methods addressing this issue has been proposed

[79, 80, 81] but with some constraints.
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Therefore a new droop control method for the islanded operation of MG is

proposed in [82] to overcome the effect of line impedance on the reactive power

flow, this method is known as Q-V̇ droop control method where V̇ represents

the rate of change of voltage. By regulating the voltage with V̇ , the reactive

power sharing can be made independent of the line impedance. The operation

principle of the proposed method is shown in fig (2.24).
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Figure 2.24: Block diagram of interface converter with QV̇ droop control [82]

2.6.11 Control Design Based on Transfer Function

Controller based on the transfer function of the plant is designed in [27, 30], this

is adopted from the classical feedback control approach presented in [83].
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Figure 2.25: Control strategy in [27, 30]

For the islanded mode of operation, fig(2.25) shows the structure of controller.

Reference angle is provided by a three phase PLL. The q component of load

voltage is set to zero and d component is regulated to the desired peak value.

Regulation of vd is done by comparing with reference signal and the error is

applied to the controller. The controller then provides inputs to the gating

signal generator of the VSC (Fig. 2.4). More details can be found in [27, 30].

Instead of using frequency droops, an internal oscillator is used to design a

multivariable controller in [29]. The function of this oscillator is to control

the frequency in open loop way. The robust servomechanism controller was

designed using the parameter optimization methods [84, 85] in addition with

non-conservative robustness constraint [86].

2.7 MG - Control in Both Modes

A novel control strategy which can be applied to MG in both the modes is

introduced in [28]. This scheme of control allows a DG to control its real &
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reactive power components in grid-connected mode and to control the voltage

& frequency in autonomous mode.

Figure 2.26: Block diagram for the frequency control [28]

The proposed VSC frequency control is similar to that of a synchronous machine

and is shown by the block diagram in fig (2.26). In grid-connected mode, the

frequency at PCC (ωpcc) is equal to the grid frequency and hence have no impact

on the system dynamics and only the output real power reference has to be

set. In autonomous mode, is same as VSC frequency determined by the droop

characteristics.

Figure 2.27: Block diagram for the voltage control [28]

The block diagram in fig (2.27) shows the proposed voltage control scheme.

During grid-connected mode, output reactive power of VSC at PCC is set while
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in autonomous mode, the DG has to supply the load with reactive power, which

is achieved by setting E2 to zero and only E1 remains effective.

2.8 Sysytem of System Control - Application

to Microgrid

The key issue of Sysytem of System (SoS), which is control, faces a main chal-

lenge of developing a comprehensive SoS model, analytically or by simulation.

Availability of a proper model is necessary to design a controller. If a proper

mathematical model is available then there are several available control strate-

gies. Also control strategy for each system is not only dependent on its own

sensory information but also on the communication links among its neighboring

systems or components, this is another difficulty which rises from the control

point of view. Control of SoS, which is different for each application domain,

is still an open research area. In this section we will discuss several potential

control strategies.

2.9 Introduction to System of Systems

To understand the concept of system of systems (SoS) or cyberphysical system

(CPS), let us consider an airplane which is an example of large scale complex
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system. Various parts of airplane are operated by different systems but the

plane flies only when all its systems operate collectively and does not fly if they

operate individually. Therefore, a SoS is the large-scale integration of many

systems that combine their capabilities together to form a more complex system

offering more functionalities than the individual sum of the constituent systems

[87].

SoS is inherently multidisciplinary. The synthesis of multi systems requires the

study of their interdependency because each effects the other. This will result

in different problems ranging from modeling to control. Therefore almost all

the key issues of systems engineering have to be revised. The methodology of

developing models, tools and control of SoS is typically referred to as system of

systems engineering. SoS methodology finds large number of applications in the

defense sector but recently it is also being used in auto transportation, space

exploration, search and rescue and many other non-defense areas [88].

For SoS engineering branch, all aspects of systems engineering have to be revised.

But the main problem arises in the two key aspects which are modeling and

control. The challenge in modeling point of view lies in the indirect effects,

the cause and effect need not be directly related, any change here can produce

effect over there because of their interdependency.It is clear that these systems

are very large and posses unpredictable behavior which is difficult to model. SoS

models available so far are still immature and there should be focus on additional

development. These models are quite complex and needs a multidisciplinary

approach [88, 89, 90, 91, 92].
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Control is perhaps the most critical challenge facing SoS designers. Due to

the difficulty or impossibility of developing a comprehensive SoS model, either

analytically or through simulation, SoS control remains an open problem and

is, of course, different for each application domain. Moreover, real-time control

which is required in almost all application domains of interdependent systems

poses an especially difficult problem [93, 94].

2.9.1 Decentralized Control

Another control lacking real-time consideration is decentralized control [88]. In

this scheme of control, SoS is assumed to be having multiple input and output

variables. The control design aims at assigning proper inputs for proper con-

troller which can observe a set of outputs. Thus there are multiple controllers,

each one controls a particular operation of SoS. As it can be seen in Fig. 2.28,

this scheme avoids storage of data.

 

 

 

                        

System of Systems  

Controller:1 Controller:n 

Figure 2.28: Decentralized control scheme
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2.9.2 Microgrid - Decentralized Control

A robust decentralized control strategy is proposed in [31] for the islanded oper-

ation of a MG. The proposed model of MG is shown in fig (2.5). It is shown that

the MG can be represented by an interconnected composite system consisting

of two subsystems [95] and each subsystem can be controlled using the local

controllers.

The dynamic model of the MG is decomposed into two subsystem as follows

• Master Subsystem

• Slave subsystem

Since the two subsystems are controllable and observable, it is shown that the

composite system is stabilizable by using only local controllers i.e., decentralized

control strategy can be applied.

For the master subsystem, an H∞ controller was designed to meet the robust

characteristics [96]. This control strategy fulfills the voltage and frequency re-

quirements of the load. The configuration of H∞ control is shown in Fig. 2.29.

Matlab LMI toolbox is used to synthesize H∞ controller [97].

A simple PI controller was designed for the slave subsystem using the conven-

tional dq current control method [98, 99]. This is depicted in Fig. 2.30. The
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Figure 2.29: H∞ control for master subsystem [31]

overall model and its controllers were simulated in Matlab/SimPowerSystems

toolbox.

Figure 2.30: DQ current control method for slave subsystem [31]

A fundamental concepts of Power Management System (PMS) and robust decen-

tralized control strategy for the islanded MG is proposed in [100]. The schematic

diagram of proposed control is illustrated in fig (2.31). It consists of a PMS,

Local Controller (LC) for each DER and MG frequency control and synchro-

nization scheme.

A low bandwidth communication system is used to supply the instantaneous
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Figure 2.31: Power management system and control scheme in [100]

values of real/reactive power of each DER unit and load to the PMS. The PMS

determines the set points of real, reactive power and voltage for the PC buses

and transmits to LC’s which measures the magnitude of voltage at its PC bus

provides voltage tracking based on the received reference set point.

A decentralized inverter control based on wireless communication is proposed in

[101]. wireless communication is used to enhance the stability of droop based

decentralized inverter control. A wireless network is developed so that each

inverter can communicate with a certain set of inverters. Fig. 2.32 shows the

block diagram on inverter control.

Droop based inverter control scheme is adopted [102, 33]. The controller of

each individual inverter consists of three parts, i.e., the power controller, volt-

age controller, and current controller. Only the stability of power controller is

considered whereas the voltage and current controllers are based on traditional

PI controllers. A fully decentralized communication is considered which implies

any inverter only needs to communicate with its immediate neighbors to cal-

culate the total power generation of all DG units. Stability analysis with and
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Figure 2.32: Inverter control scheme in [101]

without incorporating communication delay is presented.

A novel decentralized controller for load sharing among parallel connected in-

verters in an islanded MG is proposed in [103]. The controller has 3 nested

loops

1. Inner loop

• Regulates the output voltage of inverter

• Voltage gain is responsible for good output voltage tracking

2. Resistive output impedance loop

• Reduces the impact of line impedance unbalance

• Used to fix the output impedance of the inverter in terms of magni-

tude and phase

• The output impedance presented to harmonic components can be

fixed
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3. P/Q sharing outer loop

• Used to obtain proper P/Q sharing

• Droop/boost control scheme is used

2.9.3 Multilevel Control

As discussed earlier SoS is integration of large-scale systems and large-scale

systems can be decomposed into subsystems. MultiLevel control assumes SoS is

characterized by N finite set of subsystems coordinated by system coordinator as

shown in Fig 2.33. By employing any optimal control method the subsystems can

be optimized and repeatedly performing the modeling, the interactions between

the coordinator and subsystems can be converged to an optimal solution. In

literature, multi-level control is obtained by classical steady state approach but

lot issues has to be dealt while its implementation in real time [88, 89, 90, 91, 92].

 

 

 

                        

System of Systems  

Coordinator	Systems	Layer	

Subsytems	

Layer	

Figure 2.33: Multilevel control
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2.9.4 Microgrid - Multilevel Control

In this scheme of control there are three main levels namely primary control,

secondary control and tertiary control as shown in fig (2.33) [104, 105].

Figure 2.34: Structure of multilevel control scheme

The key points related to Primary Control are listed below

1. Used to share load between converters

2. Improves the system performance and stability

3. Regulate the output frequency and voltage magnitude

4. Droop-control method is often used

5. Can also include virtual impedance control loop to provide proper output

impedance

The key points related to Secondary Control are listed below
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1. Restores the f and V to nominal values whenever load change occurs

2. Removes any steady-state error introduced by the droop control

3. During transition from islanded to grid-connected mode, this control can

perform synchronization to the main grid before interconnection

4. Make use of low bandwidth communication

5. More global responsibilities

The primary control loop makes use of only local output voltage and current

to perform calculations of droop control method whereas the secondary control

level consists of an external centralized controller to correct the errors produced

by the primary control. Both controls are depicted in Fig 2.35.

Figure 2.35: Primary and secondary control

The tertiary control level comes into play mainly when the MG interacts with

the utility grid. The key points related to Tertiary control are listed below

1. Controls the power flow between MG and the utility grid
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2. Send the frequency and voltage references to the secondary control

3. Can perform islanding detection or voltage harmonic reduction

4. Can also improve the quality of power at PCC

The proposed multilevel control scheme allows the system to integrate more and

more MG’s and with this scheme of control microgrids can operate in both grid

connected and islanded mode.

2.9.5 Networked Control Systems

In modern control systems, we find more and more application of networks ow-

ing to impressive advancements in network technology. One such example is

Networked Control System (NCS). In NCS, the feedback channel is closed using

a real time communication network and all the data among the components of

system is exchanged through this communication network [106]. In [107], NCS

is properly defined as, ”Network Control Systems (NCS) are spatially distributed

systems in which the communication between sensors, actuators and controllers

occurs through a shared band limited digital communication network”. This def-

inition explains that the components of NCS are distributed and may operate

asynchronously to reach some overall objective [108].

One of main issues in NCS is the transmission delays and packet dropouts, there-

fore the challenge in NCS for SoS is to develop an SoS distributed control system
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which can overcome these issues. As mentioned in [109], these communication

infractions can be compensated by

1. Adjusting control power and controlling distances between systems (power

control)

2. Trading off modulation, coding, and antenna diversity versus throughput

(adaptive modulation coding)

3. The (non-wireless) intra-feedback (on-board hardware) loop of the au-

tonomous control within Si is lower latency than the inter-wireless dis-

tributed control loop between Si and Sj or the inter-wireless System of

systems controller and the Si controller

Another way to check on these communication is to design a wireless network

control system (WNCS) taking account of all the aspects of the ad hoc network

[110]. In this design, the distributed control will generate two components at

each sampling period, one is local controller which is classical or modern control

and the other is correction component of the controller which compensates for

the ad hoc network quality of service (QoS) parameters. As shown in Fig. 2.36,

with the combination of a local controller, correction component and adaptive

sampler the stability and robustness will be enhanced.
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Figure 2.36: Networked control with sampler

2.9.6 Microgrid - Networked Control

In previous section multilevel control scheme for MG is discussed. The primary

and tertiary control levels are decentralized and centralized respectively because

one aims at the control of DG and other at global optimization of MG. Con-

ventionally secondary control is implemented in the MGCC but recently a new

distributed control scheme for the secondary known as networked control system

(NCS) is proposed in [111] which is shown in Fig. 2.37.

Figure 2.37: Networked controlled microgrid [111]
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This strategy is proposed for power electronically based MG’s. The primary and

secondary control are implemented in DG unit. The primary control which is

generally droop control is already discussed in section VII. The secondary control

has frequency, voltage and reactive power controls in a distributed manner.

The secondary control gathers all the measurements from DG units using the

communication system, average them and generates the proper control signal

for the primary control level. The schematic diagram of this proposed control

scheme can be seen in Fig. 2.38 and the detailed explanation can be found in

[111].

In another approach, a real time network is used for the control of parallel multi-

inverter system [112]. Microgrid makes use of this type of inverter connections

to deliver energy.

The considered system is shown in Fig. 2.39. It consists of a central controller,

communication network and inverters with their local controllers. The control

strategy is as follows, local controllers sends the voltage and current measure-

ments to the central controller via network frame. A closed loop control inside

the central controller produces the satisfactory PWM duty ratio for each in-

verter module and sends it back to local controller via another network frame.

This is a centralized control strategy where central controller has all the central

information.

A PID controller is used to achieve better inverter performance [113] and D-

partition method is used to determine the stability region of PI controller [114].
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Figure 2.38: Distributed secondary control [111]
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Figure 2.39: Control of parallel multi-inverter system [112]
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It was found that network induced delay brings about a considerable effect on

closed loop control of a single inverter. The practical model implementing the

NCS is shown in Fig. 2.40.
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Figure 2.40: Networked controlled parallel multi-inverter model [112]

2.10 Comparative Analysis

After discussing the control techniques, it is worth performing the comparative

analysing of the control techniques which are most commonly used. In this

section, we will classify the control techniques considering vital aspects for the
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purpose of simplification and better understanding. Control strategies for MG

are very vast and detailed comparison of each techniques with another is out of

scope of this chapter.

MG control (depending on architechture) can be generally classified into two

main streams namely Centralized, Distributed (or Decentralized). Multi-Level

control is also most widely used one but again depending on architechture of

control levels, even this control techniques falls in former mentioned categories.

For instance in multi-level control, the secondary control level can be single

(Centralized) [105, ?] or it can be implemented in a distributed way [111]. Fig

(2.41) shows the performance of the controller when implemented in centralized

and decentralized manner. The time delay in the communication network is

taken in account here. It is obvious from the figure that, the control implemented

in distributed way is better.

Figure 2.41: Performance analysis of centralized and distributed controller [111]

Depending on the power sharing, the methods available in literature can be

broadly divided in two groups, one using communication medium and another is

non-communication based. Because of thier inherent advantages, only communication-

less control which is also known as Droop-based Control is used. It was initially
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proposed in [75] and since then there were many variations performed keeping

the basic idea droop control [67, 1, 82]. One such comparision is shown in fig

(2.42). A modified droop control technique, designed to improve the reactive

power sharing among the DG units, is proposed and analysed with the conven-

tional one [82].

Figure 2.42: Comparison of QV and QV̇ control[82]



Chapter 3

Modelling of Autonomous

Inverter-Based Microgrid System

3.1 Introduction

The concept of Microgrid (MG) was originally introduced in [8], it can be op-

erated in Autonomous mode or can be connected to the utility grid. MG con-

cept has evolved to a great extent with respect to both modeling and control.

An overview of the different methods of modeling and control is reported in

[115]. The definition of microgrid is evolving into the smart microgrid within

the context of smart grids. The definition of ’smart grid’ is quite flexible and

its framework varies with individual vision [116].

63
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A networked microgrid is termed as ’smart microgrid’ [20], Fig. (3.1) shows

its simple architecture. It will have high penetration of Distributed Genera-

tion (DG) units which when integrated alone raises number of issues [7]. It also

makes use of renewable energy resources making it cost effective and environment

friendly. The most vital aspect of smart MG is Distributed/Decentralized control

using communication network. In other words, it will employ Networked Control

System (NCS) so that we can have a network of DG units exchanging informa-

tion. Control is the key point here which will be implemented in a distributed

fashion contrary to centralized control in several conventional techniques which

can be seen in the literature [24],[74]. This will ensure stability of system, power

balancing, proper load sharing and voltage and frequency regulation.
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Figure 3.1: Architecture of smart autonomous microgrid
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3.2 Autonomous Microgrid System

Autonomous mode operation of MG is also know as Islanded MG, which can

be caused by two reasons. One is due to any network fault or some failure in

the utility grid and another is due to performance of maintenance at planned

intervals. An electrical switch will disconnect the MG from main utility grid and

resulting the autonomous operation of MG [23]. As explained in [117], without

loss of generality, the prime mover can be replaced with a DC source because

they both essentially serve the same purpose. This simplification allow us to

study the behavior of inverter based generators without actually using a prime

mover.
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Figure 3.2: Block diagram of inverter-based DG unit

In this thesis, MG involving only inverter-interfaced DG units is considered.

Fig 3.2 shows the block diagram of an inverter based DG unit. It consists of

an inverter connected to a primary dc source (e.g., wind system, PV array etc),

control loops containing power, voltage and current controllers. Due to their

ride through capability and improved power quality [105, 118] , voltage source
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inverters (VSI) is used. Load is connected through a LC filter and coupling

inductance. The power, voltage and current controllers constitute the primary

control level of any individual DG unit. Small signal modelling of each of the

part of MG can be carried out by following the procedure outlined in [33][119].

As mentioned in [33], d-q reference frame was used to formulate the nonlinear

dynamics of DG units. The reference frame of one DG is considered as the

common reference frame with frequency ωcom. The angle δ between an individual

reference frame and common reference frame, satisfies the following equation.

δ̇ = ω − ωcom (3.1)

3.3 Primary Control

The control technique used at this level is know as Droop based control [75,

1]. This type of control makes use of local measurements and does not need

any communication medium for its operation. Droop control is a decentralized

strategy which ensures proper load sharing. Its main purpose is to share active

and reactive powers among DG units at the same time maintaining the output

levels of voltage and frequency within limits. In droop technique, there is a

desired relationship between the active power P and angular frequency ω and

between reactive power Q and voltage V as given below:
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ω = ωn −mpP (3.2)

V = Vn − nqQ (3.3)

Where Vn and ωn is the nominal values of output voltage and angular frequency

respectively. P and Q are the real and reactive powers respectively. mp and nq

are the real and reactive power droop gains respectively. The frequency ω is set

according to the droop gain mp and output voltage V is set as per droop gain

nq.

Therefore, the output frequency/voltage is decreased when there is an increase

in the load real/reactive power and vice versa. The Pω and QV droop charac-

teristics is shown in Fig. 3.3.

Figure 3.3: Droop characteristics

The primary control level can be divided into three different parts namely power,

voltage and current controller. The power controller, shown in Fig. 3.4, sets

the inverter output voltage magnitude and frequency with the help of ’Droop’
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characteristics. Basically, it mimics the operation of a synchronous generator

which will change the frequency of the output voltage if any change in load is

sensed. First, the instantaneous powers are calculated using output voltages and

currents, by filtering these instantaneous values by a low pass filter (LPF) we get

the average real and reactive powers. These average values are passed through

their respective droop gains to obtain the angular frequency and voltage [120].

The control strategy is chosen such that the output voltage magnitude reference

is aligned to the d-axis of the inverter reference frame and q-axis reference is set

to zero.

Figure 3.4: Block diagram of power controller

The block diagram of voltage controller is shown in Fig. 3.5, a PI controller is

used to achieve the output voltage control. The corresponding state equations

are given by

φ̇d = v∗od − vod, φ̇q = v∗oq − voq (3.4)

Where φd and φq are the d-q axis state variables of voltage controller (integrator

states) respectively.
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i∗ld = Fiod − ωnCfvoq +Kpv(v
∗
od − vod) +Kivφd (3.5)

i∗lq = Fioq + ωnCfvod +Kpv(v
∗
oq − voq) +Kivφq (3.6)

Figure 3.5: Block diagram of voltage controller

The block diagram of Current controller is shown in Fig. 3.6, a PI controller

is used to achieve the output filter inductor current. The corresponding state

equations are given by

γ̇d = i∗ld − ild, γ̇q = i∗lq − ilq (3.7)
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Where γd and γq are the d-q axis state variables of current controller (integrator

states) respectively.

v∗id = −ωnLf ilq +Kpc(i
∗
ld − ild) +Kicγd (3.8)

v∗iq = ωnLf ild +Kpc(i
∗
lq − ilq) +Kicγq (3.9)

Figure 3.6: Block diagram of current controller

The main purpose of voltage and current controllers is to reject the high fre-

quency disturbances and damp the output filter to avoid any resonance with

the external network. The PI controller provides zero steady state error and

stabilizes the system. As it can be seen in figures, additional feed forward gain

and decoupling terms are also used. These PI controllers make use of the local

measurements to perform the control action.

The dynamic equations of output LC filter and coupling inductance are as follows
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i̇ld =
−rf
Lf

ild + ωilq +
1

Lf

vid −
1

Lf

vod (3.10)

i̇lq =
−rf
Lf

ilq + ωild +
1

Lf

viq −
1

Lf

voq (3.11)

v̇od = ωvoq +
1

Cf

ild −
1

Cf

iod (3.12)

v̇oq = −ωvod +
1

Cf

ilq −
1

Cf

ioq (3.13)

i̇od =
−rc
Lc

iod + ωioq +
1

Lc

vod −
1

Lc

vbd (3.14)

i̇oq =
−rc
Lc

ioq + ωiod +
1

Lc

voq −
1

Lc

vbq (3.15)

3.4 Dynamic Model of Microgrid

The large signal dynamic model of any inidvidual DG unit can be derived from

equations (3.1) - (3.15) [33]. Therefore, the nonlinear dynamics of a DG unit

can be written in compact form as

ẋ = f(x)+ k(x)D+ g(x)u (3.16)

y = h(x) (3.17)

x =

[

δ P Q φd φq γd γq iLd iLq vod voq iod ioq

]T



Chapter 4

Neural Network Based

Secondary Control for Smart

Autonomous Microgrid System

4.1 Introduction

One of the widely used and crucial control technique is the ’Multilevel Control’

[121]–[122]. There are three main control levels, each taking care of specific tasks.

Primary Control level ensures the proper load sharing among generating units.

The secondary Control removes any steady state error introduced by primary

control. Tertiary Control deals with global responsibilities like energy transfer

72
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to and from the grid. In some cases, tertiary control in autonomous mode comes

into picture for economical reasons, otherwise it is mostly incorporated when the

MG is connected to the utility grid. In our work, we will be focusing on the

primary and secondary control levels only.

The primary control which is the first level, make use of the Droop based con-

trol techniques for its operation. But due to various reasons discussed in next

sections, primary level alone is not sufficient for the stable operation of MG.

To achieve global controllability, a secondary control level is often used, this

concept is already seen in large electrical power systems [123] but is recently

adopted in the MG concept.

Secondary control strategies using NCS have been proposed in literature. A

pseudo-decentralized control architecture is proposed in [124] which can be used

for the optimization of Wireless Communication Network (WCN) with the help

of a Global Supervisory Control (GSC) and local controllers. In [125], NCS

strategy is applied to a parallel inverter system to achieve superior load sharing

and good robustness. Investigation of centralized secondary controller in MG

with primary voltage droops is carried out in [126]. This controller regulates the

voltage at pilot points within the MG. In [127], a networked controlled parallel

multi-inverter system is proposed to achieve precise load sharing among each

module, a centralized controller is used here along with the local controllers.

Most of the works in the literature are based on the Centralized secondary con-

trol, where all the DG’s in the MG are supervised by a common centralized sec-
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ondary control. This controller is often termed as MicroGrid Central Controller

(MGCC), wherein all DG units measure signals and send them to a centralized

single controller which in turn produces suitable control signals and sends them

to primary control of DG units. It makes use of communication channel for both

sensing the measurements and to send the control signal. [104, 128, 129, 130].

MGCC is relatively slow in functioning. Any fault in the MGCC can result in

failure of secondary control action for all the DG units [105]. This single point

failure is not higly reliable and can result to bad performance of the system.

Depending on only one central control unit for the proper operation is a big

drawback in itself.

Secondary control of microgrid is performed in [131] using input-output feed-

back linearization technique, it focuses only on the secondary voltage control

of autonomous microgrid. A fully distributed secondary control is proposed

in [132], the control scheme is based on distributed cooperative control and

is implemented using one-way communication links. The communication net-

work required is modeled using graph theory. A distributed secondary controller

based on averaging algorithms is proposed in [133], the controller, which is also

termed as Distributed Averaging Proportional Integral (DAPI ) controller, reg-

ulates the system frequency under time varying loads. Recently, a new method

of implementing secondary control in a distributed fashion using the Networked

Control Systems (NCS) approach is proposed in [111]. This concept has proved

to be better as both the primary and secondary control are implemented in a

distributed way, resulting in individual secondary control for each DG unit.
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But the proposed controller in [111] is based on fixed PI gains which may per-

form well under some operating conditions only but not all. The gains of the

secondary controller are tuned randomly without using proper defined proce-

dure. Consequently, improper tuning of controller will result in bad adaptation

to varying operating conditions. Moreover, proportional-plus-integral (PI) con-

trollers are not robust enough to accommodate the variations in the load. It is

desired to have an intelligent PI-type controller, which when load changes can

self-tune its controller gain [134, 135].

In this chapter, a distributed secondary controller proposed in [111] is utilized.

The concept of artificial neural networks is added to the existing controller so

that it can operate over a wide range of operating points. The use of neural

network is to make the existing PI control more adaptive to load disturbance.

Using Differential Evolution (DE), optimized gains of the secondary PI control

are obtained and also serves as training pattern for the artificial neural network.

The salient features of the proposed controller are listed below

• Each DG has its own local secondary controller which obviates the need

for a central controller

• Neural network learns by example which avoids traditional programming

algorithms

• Better performance as the controller parameters are optimized values

• Optimized transient behavior of the system is obtained under load distur-
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bances

• Trained neural network enhances the adaptability of the controller

• The proposed controller can react faster to load changes and can operate

over a wide range of operating points

Although the concept of using NN approach to enhance the performance of tra-

ditional PI controller exists in the literature, it has not been used in the field of

microgrid systems. The voltage and frequency regulation, load sharing ability of

the overall controller is demonstrated using Matlab/Simulink simulations. Per-

formance comparison between the proposed controller and fixed-gain controller

is also performed. The simulation results show that the proposed secondary

control ensures stable operation of the system under varying loads.

4.2 Distributed Secondary Control

Primary control is a tradeoff between voltage regulation and power sharing.

Good sharing of power is achieved at an expense of error in output voltage and

vice versa. Poor transient performance, lack of robustness and steady state error

are its main drawbacks. Therefore, a secondary control level is deployed which

brings back the deviated output voltage and frequency within their allowable

limits.

The block diagram of distributed secondary controller is shown in fig 4.1. As
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Figure 4.1: Distributed secondary controller

can be seen, the idea is to implement both primary and secondary controllers

together as local controller at each generating unit. This controller is located

between the primary control and communication network. This controller en-

sures zero steady state error and regulates the deviations produced in output

frequency and voltage due to load change towards zero.

Secondary control of microgrid is a tracking synchronization problem where
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the DG units are interconnected. They communicate with each other in order

to synchronize at a pre-defined set point. The secondary control makes use

of communication network for this purpose. From networked control system

perspective, distributed secondary control requires that every generating unit

obtains the global average of the parameter (voltage, frequency etc.) [?], in

order to derive the control signals. In our case, this global average is achieved

by using distributed averaging algorithms [?], where a series of local exchange

among neighboring units ultimately yields the same global average at every DG.

Therefore, the control layer drives operation of every DG in the direction of the

global average.

4.2.1 Regulation of Output Frequency

The output frequency is decreased when there is an increase in load real power

and vice versa because of the droop characteristics. Load variations will cause

the frequency to deviate from its set-point resulting in steady-state error. The

secondary frequency control compensates the deviations produced in output

frequency by the Pω droop control.

At each sample time, the DG units measures the level of angular frequency,

averages the measurements by other DG’s and compares it with the reference

values to produce an error signal. The secondary control then processes this

error signal to produce suitable control signals. Frequency control law at the

secondary level is given by the equation (4.1)
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δω = Kpω(ωn − ωavg) +Kiω

∫

(ωn − ωavg)dt (4.1)

Where Kpω, Kiω are the frequency controller parameters, ωn is the angular fre-

quency set point, ωavg is the angular frequency average. δω is the control signal

produced by the secondary controller. Because the deviations are produced by

the droop control, these control signals are sent to the primary control level to

remove the steady state error. The output frequency is restored to their nominal

values as follows

ω = ωn −mpP + δω (4.2)

4.2.2 Regulation of Output Voltage

A similar technique is used to compensate the deviations caused by QV droop

control. The output voltage too deviates from its set-point whenever the load

changes. This is because of change in load reactive power. In this case, the

voltage restoration by the secondary controller is obtained as follows
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δV = Kpv(Vn − Vavg) +Kiv

∫

(Vn − Vavg)dt (4.3)

Where Kpv, Kiv are the voltage controller parameters, Vn is voltage set points,

Vavg is average voltage and δV is the control signal produced by the secondary

controller to be sent to primary control to restore voltage to its nominal value

as follows

V = Vn − nqQ+ δV (4.4)

4.3 Neural-Network-Based Distributed Secondary

Control

The controller discussed in the above section is based on the fixed-gain PI

scheme. Under certain operating points or conditions, this fixed-gain scheme

may work fine but its performance degrades at other operating conditions. Also

fixed-gains of the secondary controller are obtained using time-consuming trail-

and-error methods. To obtain desired performance, it is required the parameters

are well tuned, poor tuning of gains deteriorates the system performance. There-

fore, in some cases traditional PI controller has a limited application due to its
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non-adaptive parameters [136].

In this section, to increase the robustness of traditional fixed-gain secondary

PI controller, we propose a neural-network-based secondary controller. This

controller can self-tune the PI gains as per various operating conditions. Evo-

lutionary computational techniques gives a systematic procedure for obtaining

the optimized gains of the secondary controller and neural network is used to

estimate the controller parameters for different loads. Therefore by using evolu-

tionary optimization and neural network, the proposed controller increases the

robustness and adaptability of traditional controller maintaining its simplicity

and feasibility.

Over the past few years, artificial neural networks are being widely used in

the field of control system for various purposes like non-linear modeling, tuning

controller parameters, system identification etc [137]. A trained neural network

have remarkable ability to analyze and derive meaning from the given data, it

is self-organizing and adaptive in nature.

Fig 4.2 illustrates the block diagram of neural-network-based secondary con-

troller. A trained artificial neural network provides optimal gains to the sec-

ondary controller whenever the load changes i.e., input to the NN is the total

load on the system and its output are the corresponding optimal PI gains. The

secondary controller then produces a control signal as per the control law given

by expression in (1) and (2). The control signals produced are sent to the pri-

mary control level of the respective DG unit for compensating the errors. This
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Figure 4.2: Neural network based distributed secondary control

way the proposed secondary controller dynamically regulates the output voltage

and frequency for time varying load.

Following are the stages required to design the proposed neural-network-based

distributed secondary controller. Each stage has its own importance and are

discussed in the following sections
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4.3.1 Stage 1: Selection of Training Data

Before using the NN for self tuning, it has to be trained offline by learning (or

training) process. Training is effective only if the network output matches the

desired output for each training pattern. For this purpose, a training set is

required, which is a set of input and desired output data. It is very important

to have a proper training set which can otherwise effect the accuracy of NN

[138].

Therefore, Evolutionary computational technique known as Differential Evolu-

tion (DE) is used to obtain a proper training set. For each operating point,

DE is employed to perform the optimization process to give the optimal values

of secondary PI gains. The process of optimization and obtaining of proper

training set in explained in following sections.

Differential Evolution:

Most of problems relating to engineering science cannot be solved using ana-

lytical methods, especially global optimization problems. For such problems

Evolutionary Algorithms [139] are used, which provides the near optimal so-

lution. Differential Evolution (DE) is one such novel evolutionary algorithm

using simple population based stochastic search for optimizing functions with

real value parameters [140].
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DE produces a new vector by adding perturbation of two vectors to a third

vector. This process is the main differential and is termed as Mutation. The

new vector produced is combined with pre-defined parameters in accordance

with a set of rules. This process is called as Crossover. This operation is

performed to enhance the searching process. Thereafter an operator is applied

which compares the fitness function of two competing vectors to determine who

can survive for the next generation. This process is known as Selection process

[141, 142].

In our work, the objective function (or performance index) used is the Integral

of Time Multiply Squared Error (ITSE) which is defined as follows

JITSE =

∫

te2(t)dt (4.5)

where e is the error which is equal to (ωn − ωavg) for frequency control and

(Vn − Vavg) for voltage control. The optimization problem is defined as

min[max(JITSE)] (4.6)

DE algorithm is coded in MATLAB/Simulink and implemented on-line on the
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system. The complete DE optimization process is clearly illustrated by flowchart

in fig 4.3. A total load of 4.5 KW is applied on the system, the optimization pro-

cess is started with an initial population of 20. The process iterates repeatedly

minimizing the objective function JITSE.

The fitness (ITSE) vs number of iterations graph for frequency control corre-

sponding to 4.5 KW of load is shown in fig 4.4. Number of iterations is rep-

resented by x-axis and y-axis represents fitness value. It can be seen that the

fitness value gradually decreases which in turn reduces the steady state error.

After 100 iterations, the error is minimal and we get the tuned optimized gains

of controller. DE specifications and the final optimized gains for frequency and

voltage regulation are shown in fig 4.5.
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Figure 4.5: Optimization Details

To obtain the optimized PI gains for one operating point (i.e., one load value),
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approximately 1 hour is required. To reduce the collection time of training set,

only 37 different operating points are considered. The range of operating points

is varied from 100 watts to 7500 watts with an approximate interval of 200

watts. For each operating point, the DE optimization process is repeated to

obtain optimized secondary gains for frequency and voltage control. The load

values and their corresponding optimized secondary controller gains (for both

frequency and voltage control) forms the Training Set for the neural network.

Therefore, input to neural network is the system total load and its output are

the optimal secondary gains corresponding to input load.

4.3.2 Stage 2: Selection of Artificial Neural Network

The next stage is the selection of artificial Neural Network (NN) structure and

its properties. NN consists of Neurons which are simple computational units. A

neuron is a building block of NN and it resembles information processing model

of the human brain. Any k -th neuron can be defined mathematically as [143]

vk =

p
∑

j=1

wkjxj + wko, yk = f(vk)

Where x1, x2...xp denotes inputs signals, wk1, wk2...wkp denotes the synaptic

weights of k -th neuron, wk0 is the bias, vk denotes the linear combiner output,
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f(.) is the activation function and yk denotes the output of the neuron.

To design and train an artificial neural network, the Neural Network Toolbox

[144] available in Matlab/Simulink is used. The command ’nntool ’ opens the

Network/Data Manager window, which allows import, create, use and export

neural networks. In this study, neural network used is of feed-forward type. It

consists of 1 input node and 4 output nodes and 10 nodes in the hidden layer.

As can be seen, the flow of signal is unidirectional i.e., output of each neuron is

connected to the input of a neuron in the next layer. Depending on the activity

level at the input of a neuron, the activation function defines its output [145].

4.3.3 Stage 3: Neural Network Training

The next stage in designing the controller is training of Neural Network. NN

resembles the adaptive control since they learn from the set of example data

rather than having to be programmed in a conventional way [146]. Therefore,

a set of data called Training Set is required to adjust the synaptic weights and

thresholds of NN. This process is called training of NN. The process of obtaining

training set is explained in section 5.1.

To train the neural network, Levenberg-Marquardt backpropagation [147] algo-

rithm is used. It is a type of back propagation algorithm [148] mostly used for

approximation of function, mode identification and classification, data compres-

sion, and so on. A detail of network properties used during training process
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Table 4.1: Neural Network Training Details

S.No. Network Property

1 Adaption Learning : Gradient descent with momentum weight and bias learning

2 Performance Function : Mean squared normalized error

3 Transfer Function in hidden layer: Hyperbolic tangent sigmoid transfer function

4 Transfer Function in output layer: Linear transfer function

is tabulated in Table 4.1. The neural network inputs are the load values RL

and the outputs generated by the neural network are the corresponding optimal

secondary controller gains.

4.4 Simulation Results

The simulations are performed in MATLAB/Simulink environment. A non-

linear model of the multiple DG units is designed using SimPowerSystems Li-

brary. Fig (4.6) shows an autonomous MG system developed in the Simulink.

There are a total number of 3 DG units connected to the a three phase load

by means line impedance given by Rl1 = 0.23Ω, Ll1 = 31.8µH, Rl2 = 0.35Ω,

Ll2 = 184.7µH and Rl3 = 0.18Ω, Ll3 = 0.0022. The other parameters of the

system, controller parameters and their values are given in Table 4.2.
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Figure 4.6: Simulink model of three distributed generating system
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Table 4.2: Microgrid Parameters With Primary Control

Symbol Quantity Value

Lf Filter Inductance 1.35 mH

rf Filter Resistance 0.1 Ω

Cf Filter Capacitance 50 µ F

Lc Coupling Inductance 0.35 mH

rc Coupling Resistance 0.03 Ω

Vn Nominal Voltage 381v

ωn Nominal Frequency 314 rad/sec

ωc Cutoff Frequency of Low Pass Filter 31.4 rad/sec

fs Switching Frequency 8 Khz

mp Real Power Droop Gain 9.4× 10−5

nq Reactive Power Droop Gain 1.3× 10−3

Kpv Proportional gain of Voltage Controller 0.05

Kiv Integral gain of Voltage Controller 390

Kpc Proportional gain of Current Controller 10.5

Kic Integral gain of Current Controller 16000

F Feed forward gain of Voltage Controller 0.75
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4.4.1 No Load Operation

Initially, the MG system is operated with secondary control action disabled.

Under no load conditions with only primary control enabled, a load of 4.5 KW

is applied to the system after t = 5 seconds. The response of output frequency

and voltage from no load condition to sudden application of load is illustrated

in fig 4.7 and fig 4.8 respectively. As a result of sudden application of load,

transients can be seen at t = 5 seconds in both output voltage and frequency.

These transients result in the steady state error which deviates the output values

from their nominal values. This steady state error results in the poor quality of

power supplied to consumers.

Figure 4.7: Frequency response under sudden application of load

By observing the above figures, it can also be concluded that major part of the

transient is taken up by the DG-3 unit whereas DG-1 and DG2 have responded

more slowly. This is because the load is closely located to DG-3, which implies

that during large load changes DG’s located nearer to load can be overloaded
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Figure 4.8: Voltage response under sudden application of load

and may trip out. The frequency and voltage are seen going to different values

other than the pre-defined set points. Thus a need for secondary control action

can be seen to achieve global controllability.

4.4.2 Comparative Analysis

To regulate the output voltage and frequency to their nominal values and to

eliminate the steady state error, a secondary control action is enabled. To

demonstrate the effectiveness, a comparative analysis is performed between pro-

posed and traditional secondary controller.

Fig. 4.9-4.11 summarizes the performance comparison of the two secondary con-

trollers. The figures illustrates analysis for output voltage regulation, output fre-

quency regulation and load sharing capability respectively of the two controllers.

The gains of traditional controller are tuned by trail and error method and gains
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Figure 4.9: Performance comparison for voltage regulation
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Figure 4.10: Performance comparison for frequency regulation
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Figure 4.11: Performance comparison for load sharing
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of proposed controller are optimized gains provided by the neural network.

By observing the comparison results, it can be seen that both the controllers are

eliminating the steady state error and regulating output voltage and frequency

to their nominal values. However, it is also important to note the following

points

• The response of proposed controller to load changes is much quicker and

drives the output values to their set points in a shorter time, therefore has

better performance.

• The proposed controller eliminates the error faster, which indicates the

controller parameters are well optimized by DE.

• The proposed controller is designed by optimizing ITSE function and

therefore provides optimized transient behavior.

• The proposed controller avoids overloading of any DG unit for a longer

time as it maintains equal load sharing property of the base line controller.

Therefore the proposed controller works more effectively and is superior than

the conventional one in responding to the load changes.
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4.4.3 Response Under Time Varying Load

In our study, the robustness and adaptability of controller is tested with respect

to change of operating conditions i.e., when the system is subjected to continous

load disturbances with respect to time. In this section we demonstrate the

adaptive nature of NN under time varying loads. One load change indicates one

operating point of the system.

Response of the proposed controller under time varying loads is summarized by

fig 4.12 - fig 4.14. As can be seen in fig 4.12, the simulation is performed over

a span of 100 seconds and the system is subjected to change in load after each

20 seconds indicating 5 different operating points. Transients can be observed

at the instant when the load is applied on the system. As can be seen, DG-1

and DG-2 reacted slow to the load change compared to DG-3, which shared the

major part after every change in load. The controller is able to share the load

equally among the DG units within considerable amount of time.

The corresponding response of output frequency and voltage under the same

load change pattern is illustrated in fig (4.13) and (4.14). Because the load

change at each interval is same, the transients in these figures are in coherence.

It can be seen that the deviations in output frequency and voltage after every

load change are regulated towards zero by the controller so that output voltage

and frequency are restored to their nominal values. The adaptive nature and

faster response of NN adjusts the secondary control parameters at every load

disturbances to regulate the output voltage and frequency.
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Figure 4.12: Output Frequency under varying load
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Figure 4.13: Output Voltage under varying load
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Figure 4.14: Load sharing among the DG units



Chapter 5

Real Time Implementation of

Distributed Control for

Autonomous Microgrid

5.1 Introduction

Real Time Digital Simulator (RTDS) is a power system simulator widely used

in the industry. It is a fully digital simulator based on dommel algorithm, de-

veloped by Dr. Herman Dommel [149], to solve the electromagnetic transient

simulation algorithm. It is specially designed for real-time power system tran-

sient electromagnetic simulation. RTDS facilitates reliable and cost effective

101
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study of power systems. The computations are fast because of distributed par-

allel processing. It has improved ability of the simulation accuracy and better

capturing of switching events. Therefore, power electronic converters operating

at high switching frequency can be simulated with sufficient accuracy [150]. It

can perform analytical studies of a system and can also be used to educate or

train operators, engineers and students. In our work, we use the capability of

RTDS for implementation of distributed control for an autonomous microgrid

system.

The work in this chapter is aimed towards implementing distributed multi-level

control scheme for an autonomous MG system in a real-time environment using

RTDS. Both the primary and secondary controllers are implemented in dis-

tributed way resulting in individual primary and secondary control for each

generating unit. Performance of controller is also analyzed under fault condi-

tions. The results of real-time simulation are compared with that of MATLAB

simulations to validate the model and performance of controller. The secondary

controller is based on averaging algorithms and uses communication network for

its operation. The controller reacts faster to load changes and obviates the need

for a centralized structure as each generating unit has its own local secondary

control action.
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5.2 Real Time Digital Simulator

The Real Time Digital Simulator (RTDS) was developed by Manitoba HVDC

Research Center in 1980’s. It is a fully digital, real time power system simulator

used to conduct close-loop testing of protection, power electronics and control

equipment [151, 152].

RTDS generally simulates power systems in real time environment with a time

step size of the order 50 micro seconds with the help of parallel operating digital

signal processors (DSP). Power electronic devices with time step as small as 1.4

- 2.5 seconds i.e., devices with higher switching frequency can be simulated with

sufficient accuracy. Additionally, it has capability of incorporating real devices

in closed loop simulation environment. RTDS works in continuous sustained

real time, which means equations representing any power system or network can

be solved fast enough to simultaneously produce the output conditions. As the

solver is real time, it can be connected to power system components for tuning

purposes [153].

The RTDS equipment used to carry out this study is basically a combination

of advanced computer hardware and comprehensive software [154] which are

discussed in following sections.
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Figure 5.1: Standard racks

5.2.1 Description of RTDS Hardware

RTDS have a customized parallel processing architecture. It is made up of

standard 19” rack as shown in fig 5.1. Each rack has a provision for 18 Processing

Element (PE) cards, 1 Inter-Rack Communication (IRC) and 1 Workstation

Interface Card (WIC) [155]. The communication and processor cards are linked

through a common back-plane which facilitates exchange of information.

The PE cards are equipped with a processor responsible for calculating the over-

all network behavior. The processor capacity is up to 13 Millions of Floating

Point Operations Per Second (MFLOPS). The PE card has interface to connect

external signals. Two analogue channels can be selected to monitor variables

being computed on that card and these channels can be scaled online to suit
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the external device. In general, PE cards perform two different types of calcu-

lation namely nodal analysis (network solution) and the auxiliary components.

The former solves the branch currents and node voltages based on network

impedance and contribution of the auxiliary components. The later is nothing

but transmission lines, networks, transformers etc which provides admittance

matrix overlays and current injections to the network solution. The overall net-

work response is simulated by the combined solution of network solution and

auxiliary components.

Two different types of PE cards are used by current RTDS Triple Processor

Card (3PC)and Giga Processor Card (GPC). In our work, we are using GPC

which is recently developed and contains two RISC processors running at 1 GHz.

A typical GPC processor is shown in fig 5.2. The processors can communicate

directly at any time using shared memory without accessing the back-plane.

GPC has strong computational power enabling simultaneous calculation of more

than one component model.

Figure 5.2: A giga processor card

The IRC card comes into picture when multiple racks are connected with each



106

other. Its function is to transfer the data generated on one rack to another rack

and share the information among racks. The information transfer takes place at

a speed of 500 MHz.

WIC is not involved in the real time simulation rather its purpose is to download

a case prior to its run. WIC is the communication between RTDS and the

host computer network over a Ethernet communication link during on-line run.

The rate of data transfer is 10 MHz. It also synchronizes the calculations and

coordinates between the PE cards to ensure their proper operation.

5.2.2 Description of RTDS Software

The software of RTDS is a organized three-level hierarchy structure with a low-

level operating system, a mid-level compiler and communication and a graphical

user interface at the top level. The user works only with the highest level user

interface.

In this work, a high level graphical user interface known as RSCAD is used to

construct, run, operate the simulation circuits and also to record/document the

results. This user interface is installed in the host workstation. There are two

modules namely Draft and RunTime in RSCAD as shown in fig 5.3.

The Draft module contains component selection library on the right side con-

taining icons representing various system elements which have been coded for

real time simulation. Any component can be dragged on to the left side where
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Figure 5.3: Screenshots of draft and runtime modules

a blank area is provided to assemble the system model. With the help of a data

menu, the parameters of any particular component can be entered. After draft-

ing any network or system the next step is to compile it by which a simulation

code is generated. Once after compilation, RunTime module can be used to

run.

The RunTime module with the help of a WIC and Ethernet, communicates

back and forth with the simulator. This bidirectional communication allows in

downloading the simulations and as well as running them on the screen. This

module has variety of options from plotting a response to changing a parameter

online or can even switch ON/OFF any particular variable. The plots are of

high resolution displaying every time-step recorded by the WIC. Slow moving

signals such as RMS voltage of a bus can be monitored on a continuous basis to

allow observation of transient behavior.
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5.3 Distributed Control of Autonomous Micro-

grid

This research aims towards distributed secondary control of autonomous mi-

crogrids, wherein both primary and secondary controls are implemented in dis-

tributed fashion resulting in individual secondary control for each generating

unit. Autonomous operation of MG is considered to carry out this study wherein

it is responsible for supplying a load on its own control structure. This mode

can be caused by any of the following reasons. Any network fault/failure in

the utility grid causing the MG to isolate or to carry out scheduled maintenance

[42, 156]and at some times due to economical optimization (when the power from

main grid is too costly or if the MG is having excess of stored energy) [157]. An

electrical switch will disconnect the MG from main utility grid, resulting in an

autonomous operation of MG [23].

The main task of MG in this mode is to ensure that the voltage and frequency

supplied are within the pre-specified limits and also to take care that the load is

equally shared among its generating units. As explained in [117], without loss

of generality, the prime mover can be replaced with a DC source because they

both essentially serve the same purpose. This simplification allows to study the

behavior of inverter based generators without actually using a prime mover.

Therefore in this work, MG involving only inverter-interfaced DGs units is con-

sidered [33]. The block diagram of such microgrid model is shown in Fig. 5.4.
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It consists of inverter based DG units supplying a load via LC filter and cou-

pling inductance. Further details regarding this inverter based MG model can

be found in [33][119].

Power Controller
Voltage 

Controller
Current 

Controller

PWM

Inverter

iL io

Vo

Vo*iL*

Vi*

Lf Lc

Cf

LOAD

Distributed Generator Unit

DC

Figure 5.4: Block diagram inverter-based generating unit supplying a load

The power, voltage and current controllers constitute the primary control level of

any individual DG unit. It is a droop control strategy which ensures proper load

sharing among generating units, makes use of local measurements and does not

need any communication medium for its operation. In droop technique, there is

a desired relationship between the active power P and angular frequency ω and

between reactive power Q and voltage V as given below:

ω = ωn −mpP, V = Vn − nqQ

Where Vn and ωn are the nominal values of output voltage and angular frequency,

P and Q are the real and reactive powers, mp and nq are the real and reactive

power droop gains respectively. The frequency ω is set according to the droop
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gain mp and output voltage V is set as per droop gain nq.

The power controller sets the inverter output voltage magnitude and frequency

with the help of droop characteristics. Basically, it mimics the operation of a

synchronous generator which will change the frequency of the output voltage

if any change in load is sensed. Voltage and current controllers reject the high

frequency disturbance and damp the output filter to avoid any resonance with

the external network.

Primary control alone is not sufficient for the stable operation of overall MG,

to achieve global controllability a secondary control is deployed. Distributed PI

controller based on averaging algorithm is used at the secondary level of con-

trol. The secondary control of microgrid is a tracking synchronization problem

where all the DG units try to synchronize their output voltage and frequency

to pre-defined set points. For this purpose, DG units exchange measurements

information using communication medium. This exchange of information is only

of measurements and it is to be noted that each DG has its own secondary con-

troller which sends control signals only to its corresponding DG unit and not to

other DG units.

Fig. 5.5 shows the overall control block diagram of distributed control of islanded

microgrid. The control law at the secondary level is given by following equations
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Figure 5.5: Distributed secondary control for individual generating unit

δω = Kpω(ωn − ωavg) +Kiω

∫

(ωn − ωavg)dt (5.1)

δV = Kpv(Vn − Vavg) +Kiv

∫

(Vn − Vavg)dt (5.2)

Where Kpω, Kiω are the PI controller parameters for frequency control, Kpv, Kiv

are the PI controller parameters for voltage control. ωn and Vn are the frequency

and voltage set points. ωavg and Vavg are the average values of frequency and

voltage respectively. δω and δV are the control signals produced by secondary

controller.
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The secondary control regulates the deviations produced due to load changes

to zero. It collects the measurements (voltage, frequency) of all DG units via

communication system, averages them and produces a suitable control signal

as per control law defined in equations 5.1-5.2. This control signal is sent to

primary control level [111]. The controller removes steady state error in output

voltage and frequency produced by the primary control.

5.4 RTDS Implementation of Distributed Con-

trol for Autonomous Microgrid System

In this section, the real time implementation of autonomous MG model and its

distributed control is explained in detail. Fig 5.6 shows the laboratory setup of

equipments, the studies were carried out using one standard RTDS rack devel-

oped by RTDS Technologies [158] and a work station installed with RSCAD is

used to develop the complete simulation test bed of microgrid system. To carry

out the simulations various components from power system library, control sys-

tem library and VSC (voltage-sourced converter) small time-step components

from the RTDS model library [159] are used.

Inverter-based microgird can be conveniently constructed using the VSC small

time-step modeling library. All the VSC components are assembled in VSC

bridge box. Fig 5.7 shows the blue VSC bridge box icon, detailed circuit in-

side the box and configuration table for inverter bridge. As can be seen, the
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Figure 5.6: RTDS/RSCAD setup in the laboratory

microgrid system consists of 3 distributed generating units supplying a common

load through LC filters and coupling inductances. The three phase inductor

currents, output voltage and output currents, represented as as IL, VO and IO

respectively, of all the three DG units are monitored here at this stage.

The study involves the use of power electronic device inverters which requires

pulse width modulation (PWM) for its operation. A triangular wave generator

along with firing pulse generator is used for this purpose. Fig 5.8 illustrates

these blocks with their respective configuration tables used to fire the inverter

of DG-1 unit.

To perform the circuit analysis, three phase AC voltages and currents are re-
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Figure 5.7: RTDS equivalent model for autonomous microgrid system

Figure 5.8: Triangular wave generator and firing pulse blocks
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Figure 5.9: Block for ABC to DQ0 transformation

duced into two phase DC quantities using ABC-DQ0 transformation. Fig 5.9

shows the block with its configuration table which performs this transformation

for DG-1. The angle THETA used here is obtained from the power controller

circuit discussed ahead.

The power controller model of DG-1 is implemented as shown fig 5.10, it is

based on droop action. Instantaneous value of active and reactive powers are

calculated using output voltages and currents. To filter out the harmonics at

this level, these instantaneous values passed through a low pass butter-worth

filter with a cutoff frequency of 5 Hz. We then obtain the average real and

reactive powers which are passed through their respective droop gains to obtain

the angular frequency and voltage respectively [120]. As is evident from the

figure, active power (P), reactive power (Q), output voltage (VODREF ) and

frequency (OMEGA) are monitored variables at this level. Power controller

along with voltage and current controllers constitute the primary control level

of a DG unit.

The steady state error is produced by the droop control and to regulate this

error, secondary control signals are sent to power controller. Therefore, the sec-

ondary controller is implemented near to the primary controller. The fig 5.10
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Figure 5.10: RTDS equivalent model for Power Controller

also explains the implementation of the distributed secondary controller. The

controller is distributed since each DG unit is having its own individual sec-

ondary controller to regulate the output voltage and frequency. The secondary

control processes frequency and voltage measurements to produce a control sig-

nal as per control law explained in equations (1) and (2).

The voltage controller and current controllers of DG-1 consisting of PI controls

are implemented as shown in fig 5.11. These controllers are part of primary con-

trol. The controllers rejects high frequency disturbances and damp the output

filter to avoid any resonance with the external network. The PI controllers make

use of the local measurements to perform the control action, an additional feed

forward gain and decoupling terms are also used. Details on these controllers

can be found in [160, 161].
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Figure 5.11: RTDS equivalent model for voltage and current controllers

Figure 5.12: Block for DQ0 to ABC transformation

The output signals of current controller is transformed into three phase voltage

signals which serves as modulation waves to generate firing pulses for invert-

ers. Fig 5.12 shows DQ0-ABC transformation block of DG-1 with configuration

table.
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Table 5.1: System Parameters

Parameter Value

Filter Inductance (Lf ) 1.35 mH

Filter Resistance (rf ) 0.1 ohms

Filter Capacitance (Cf ) 50 µ F

Coupling Inductance (Lc) 0.35 mH

Coupling Resistance (rc) 0.03 ohms

Nominal Voltage (Vn) 381v

Nominal Frequency (ωn) 314 rad/sec

Cutoff Frequency of Low Pass Filter (ωc) 31.4 rad/sec or 5 Hz

5.5 Results and Discussions

In this section, in order to confirm the real-time performance of the proposed

distributed secondary controller, the microgrid system described in the section

IV is simulated in RTDS/RSCAD. Simulation results of the RTDS/RSCAD are

compared with the results of the same system simulated in MATLAB environ-

ment. Response of the controller and its load sharing capability under fault

disturbance is also shown.

The specifications of the MG are described in Table 5.1. The primary controller

parameters for RTDS and MATLAB are given in Table 5.2. The Secondary

controller parameters for RTDS and MATLAB are given in Table 5.3.

Fig 5.13-5.15 shows the waveforms of three phase inductor currents, output

voltage and currents of the inverter respectively when supplying a load of 5
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Table 5.2: Primary Control Parameters

Parameter Value

Real Power Droop Gain (mp) 9.4 x 10−5

Reactive Power Droop Gain (nq) 1.3 x 10−3

Proportional gain of Voltage Controller (Kpv) 0.037

Integral gain of Voltage Controller (Kiv) 393

Proportional gain of Current Controller (Kpc) 10.5

Integral gain of Current Controller (Kic) 16000

Feed-forward gain of Voltage Controller (F ) 0.75

Table 5.3: Secondary Control parameters

Parameter RTDS MATLAB

Proportional gain for Secondary Frequency Control 0.5 4.3656

Integral gain for Secondary Frequency Control 0.1 9.1206

Proportional gain for Secondary Voltage Control 0.9 7.3677

Integral gain for Secondary Voltage Control 0.5 3.6765
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KW. It can be seen that the inductor currents are balanced sine waves but

with little distortion due to non-linearity of inductors. The output waveforms

of voltages and currents are also balanced set of sinusoidal nature.

Figure 5.13: Three-phase inductor current

Figure 5.14: Three-phase output voltage
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Figure 5.15: Three-phase output current

5.5.1 Comparison of RTDS and MATLAB Results

The system shown in fig 5.7, is also implemented in MATLAB/Simulink/SimPowerSystems

environment. Comparative study between RTDS and MATLAB simulations are

presented below using the results obtained for power sharing between the DG

units, output voltage and frequency regulations.

Initially, the system is operated under no load condition and at t = 4 seconds, a

load of 3 KW is suddenly realized on the system in both MATLAB and RTDS.

From the RTDS response, it looks as if the load is applied before 4 sec. This is

because the output recording of RTDS starts to time after manually switching

the refresh button while the simulation is running in the real-time.

Fig 5.16 illustrates the load sharing among the DG units. Fig 5.17 and 5.18

and presents the regulation of output frequency and output voltage respectively

under load change. By observing the figures, following analysis can be made
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Figure 5.16: Load sharing response of MATLAB and RTDS
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Figure 5.17: Output frequency response of MATLAB and RTDS
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Figure 5.18: Output voltage response of MATLAB and RTDS
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• From t=0 sec to t=4 sec in fig 5.16, there is no active power shared as

the load is zero on the system. It can be seen from RTDS response that

under no load condition, a very negligible amount of active power is shared.

This is due to presence of internal inductance of reactors and small bridge

resistance in the inverter model of RTDS, as can be seen in fig 5.7.

• In fig 5.16 After t=4 sec, each DG unit shares equal load of 1 KW which

sums up to 3 KW as there are 3 DG units. This is the total load on

the system. It is clear from comparison that both MATLAB and RTDS

observe similar response to load change.

• In fig 5.17 and 5.18, transients can be seen at t=4 sec due to sudden

application of load. The transient response of RTDS is slightly different

from MATLAB response. This is because of the systematic differences

between the simulation platforms i.e., difference in ’VSC Bridge Inverter’

model in RTDS and ’IGBT Inverter’ in Simulink.

• From fig 5.17-5.18, it can be observed that the transients in output voltage

and frequency are regulated towards zero by the controller. The controller

operates as expected and successfully restores the deviated output values

back to their nominal set points. The set points for output frequency is

314 rad/sec and for output voltage is 381 V.
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5.5.2 Load Sharing During Faults

In this section, load sharing capability of the controller during faults is demon-

strated. For better understanding, we simplify the microgrid system by consid-

ering only two DG units. A three-phase VSC valve breaker from small time step

library is used to apply the fault. This fault is applied manually using a switch

and will completely isolate the DG unit from the system.

Initially, a load of 5 KW is applied on the system. The DG units are seen

sharing the equal load of 2.5 KW which is illustrated by fig 5.19. If due to some

fault condition, DG-1 shuts down then the total load has to be supplied by

DG-2. This condition is illustrated by fig 5.20, where a fault on DG-1 is applied

isolating from the network. As can be seen from the figure, the controller acts

quickly and the total load of 5 KW is supplied by DG-2 alone whereas power

delivered by DG-1 is now reduced to zero.

Same is the case when a similar fault is applied on DG-2 isolating it from the

network and the total load has to be delivered by DG-1 alone which is demon-

strated in fig 5.21. Fig 5.22 illustrates the condition when the fault on DG-2 is

removed, as can be seen both the DG’s start to share the same load.

Finally, a step change of 7 KW is added to the load, due to this addition an

increase in power delivered by both the DG’s is observed as can be seen in fig

5.23. As the total load on system now is 12 KW, both DG units are now seen

sharing equal load of 6 KW. Therefore, the controller shares the load evenly
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among generating units.

Figure 5.19: Load shared by DG units at 5 KW load
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Figure 5.20: Load sharing when the fault is on DG-1

Figure 5.21: Load sharing when the fault is on DG-2
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Figure 5.22: Load sharing when the fault on DG-2 is removed

Figure 5.23: Load shared when the load is increased from 5 KW to 12 KW



Chapter 6

Reinforcement Learning

Solutions for Microgrid Control

Reinforcement Learning (RL) is concerned with how an agent can pick its actions

in a dynamic environment to transit to new states in such a way that optimizes

the sum of cumulative reward [162]. It is an area of machine learning which

allows development of online algorithms to obtain solutions to problems related

to optimal control for dynamic systems that are described by difference equations

[163, 164]. It involves two techniques known as Value Iteration (VI) or Policy

Iteration (PI) [165]. Policy iteration and value iteration algorithms have been

developed for continuous time systems in [166, 167, 168]. Adaptive Dynamic

Programming (ADP) is a kind of RL technique proposed by Werbos [169] to

solve dynamic programming problems. There are different levels of applications
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within the scope of ADP namely Heuristic Dynamic Programming (HDP), Dual

Heuristic Dynamic Programming (DHP), Action-Dependent HDP (ADHDP)

and Action-Dependent Dual HDP (ADDHP) [164].

The concept of microgrid (MG) is well known from the time it was originally

introduced a decade ago [8]. It can operate in both grid connected mode and au-

tonomous mode and facilitates high penetration of distributed generating (DG)

units into the grid. An electrical switch will disconnect the MG from main utility

grid, resulting in an autonomous operation of MG [23], but random applications

of DG units will cause as many issues as it may solve [115]. Therefore, control

of MG is a key aspect which aims towards the stable operation of microgrid and

has been the focus of researchers over the past few years. During the islanded

operation, the main task of MG is to deliver quality power by regulating the

output voltage. The MG with its own control structure should be able to reg-

ulate any disturbances in the load towards zero to ensure the stability of the

system [170].

Multi-level control [121] of MG is extensively studied in the literature, it is

widely used and consists of primary, secondary and tertiary control levels [122].

A pseudo-decentralized control architecture is proposed in [124] which can be

used for the optimization of Wireless Communication Network (WCN) with the

help of a Global Supervisory Control (GSC) and local controllers. A networked

control scheme based on system of systems is proposed for microgrid in [171].

A MG with multiple DG units is treated as system of systems and an out-

put feedback control scheme is applied. A communication network subjected
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to packet dropouts and delays is used for the application of control. A two-

level coordinating control approach for islanded MG is presented in [172]. An

MG with n parallel connections of DG units connected to a common load is

considered for the study, this parallel connections is conveniently controlled in

a two level coordinating scheme as it forms an interconnected control system.

Control of autonomous MG with a local load is introduced in [27], it develops

a dynamic model of MG and presents a classical control approach to design the

controller. A robust servomechanism controller for autonomous MG is presented

in [29]. This approach uses the same dynamic model developed in [27] and uses

a optimal control design procedure to guarantee the robust stability.

In this chapter, a novel approach for the control of MG using RL technique is

proposed. The dynamic model of islanded MG proposed in [27] is adopted to

carry out the research. HDP algorithm based on actor-critic value iteration is

used to develop the control of MG [173]. The actor component applies actions

or control policies to their environment, while the critic component assesses the

values of these actions. Based on this assessment, the actor policy is updated

at each learning step [162]. Both offline and online learning algorithms are used

in the implementation of control technique. To the best of authors knowledge,

this is the first time that RL techniques are applied to the concept of MG.



133

6.1 Autonomous Microgrid System

Autonomous or islanded mode of MG can be caused by network faults/failures

in the utility grid, scheduled maintenance, [42, 156] and due to economical op-

timization or management constraints [157].
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Figure 6.1: Schematic diagram of microgrid

The schematic single-line diagram of an electronically coupled microgrid model

is shown in fig. 6.1. A switch at point of common coupling (PCC) will isolate

the MG from utility grid [23]. The islanded system consists of inverter based

DG units supplying a load via series filter and a transformer. The interface

transformer is of step-up type with 2.5 MVA rating [27], it is used to step up

the MG voltage. The dc voltage source represents generating unit, Rt and Lt

represents the series filter. A local load, modeled by a three-phase parallel RLC

network, is connected at the PCC. The system parameters are tabulated in Table

6.1.

During the islanded operation, the main task of MG is to deliver quality power

by regulating any disturbances in the load towards zero. The MG with its own
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Table 6.1: Parameters Values For Microgrid System
Quantity Value
Rt 1.5 m Ω
Lt 300 µ H
Vdc 1500 V
PWM Carrier Frequency 1980 Hz
Load Parameters
R 76 Ω
L 111.9 mH
C 62.855 µ F
Rl 0.3515 Ω
Grid Parameters
Rs 1 Ω
Ls 10 µ H
Nominal Frequency fo 60 Hz
Nominal Voltage (rms) 13.8 kV
Interface Transformer Parameters
Type Wye/Delta
Rating 2.5 MVA
Voltage Ratio (n) 0.6/13.8 kV

control structure should be able to maintain the load voltage level at a desired

pre-specified set point.

6.1.1 State Space Model of Autonomous Microgrid

Consider the system described in Fig. 6.1 to be balanced then the equations

governing MG are given by
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Vt,abc = Lt

dIt,abc
dt

+RtIt,abc + Vabc (6.1)

It,abc =
1

R
Vabc + IL,abc + C

dVabc
dt

(6.2)

Vabc = L
dIL,abc
dt

+RlIL,abc (6.3)

The above equations are in abc-frame. Since the system is under balanced

conditions, the three-phase quantity xabc can be transferred to a stationary αβ-

reference frame with the help of following transformation
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In αβ-frame, the resulting equations are:

dIt,αβ
dt

= −
Rt

Lt

It,αβ −
Vαβ
Lt

+
Vt,αβ
Lt

(6.5)

dVαβ
dt

=
1

C
It,αβ −

1

RC
Vαβ −

1

C
IL,αβ (6.6)

dIL,αβ
dt

=
1

L
Vαβ −

Rl

L
IL,αβ (6.7)
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which can be transferred to rotating reference frame using the following trans-

formation:
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xq
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cos(θ) −sin(θ)

sin(θ) cos(θ)
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(6.8)

where Vαβ is taken as reference vector such that Vq = 0. In autonomous mode,

the system frequency is controlled in an open-loop manner as VSC generates

three-phase voltages at frequency ω0 by employing an internal oscillator of con-

stant frequency of ω0 = 2πf0. Moreover, the steady state voltage and current

signals are at frequency ω0 if the local load is passive. Therefore, the dq state

variables are given by

dItd
dt

= −
Rt

Lt

It,d + ω0Itq −
1

Lt

Vd +
1

Lt

Vtd (6.9)

dItq
dt

= ω0Itd −
Rl

L
Itq − 2ω0ILd + (

RlCω0

L
−
ω0

R
)Vd (6.10)

dILd
dt

= ω0Itq −
Rl

L
ILd + (

1

L
− ω2

0C)Vd (6.11)

dVd
dt

=
1

C
Itd −

1

C
ILd −

1

RC
Vd (6.12)

Putting the foregoing autonomous MG system into the standard time state-space
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representation

ẋ(t) = Acx(t) + Bcu(t); yt = Ccx(t); u(t) = vtd

it follows that the system matrices are given by

Ac =



















−Rt

Lt
ω0 0 1

Lt

ω0
Rl

L
−2ω0

RlCω0

L
− ω0

R

0 ω0 −Rl

L
1
L
− ω2

0C

1
C

0 − 1
C

− 1
RC



















, Bc =



















1
Lt

0

0

0



















, CT
c =



















0

0

0

1



















(6.13)

where the state vector is

xT =

[

Itd Itq ILd Vd

]

(6.14)

For the purpose of convenience later on, we will discretize model (??)–(6.13).

6.2 Reinforcement Learning Techniques

Reinforcement Learning (RL) [174], also known as action-based learning, refers

to interactions of an actor with its environment so as to improve its actions/control

policies depending on the evaluative information received from the environment.

It implies a relationship between actions and reward or lack of reward. One cat-

egory of RL techniques is based on the Actor-Critic architecture. The actor
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agent applies a control (action) to the environment and the value of this control

is assessed by the critic agent. These agents must prefer past actions that were

found to be effective in order to obtain reward but they also need to explore in

order to select a better actions in the future. The key feature of RL is it starts

with a complete goal-directed agent. The agents have explicit goals, can sense

the characteristics of uncertain environment and have ability to influence the

environment. RL technique is an indirect adaptive controller wherein system

parameters are calculated first and then the controller is estimated. The key

feature of RL is that it provides an adaptive control which converges to the

optimal control [175].

In this study, we will consider HDP algorithm, the simplest but powerful form

to minimize a performance index. A simple HDP system consists of two sub-

networks namely actor and critic networks. These networks have a feed forward

and feedback components.

6.2.1 Heuristic Dynamic Programming

Heuristic Dynamic Programming (HDP) is based on adaptive critics [176] which

uses function value function approximation to solve the dynamic programing

problems. Fig 6.2 shows the structure of HDP design, it consists of a system

to be controlled and two sub-networks namely Actor and Critic networks [177].

The control structure does not require the desired control signals to be known.

Both the cost function and control policy are approximated at each step by these
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two networks.

SYSTEM

xk+1 = Axk + Buk

ACTOR
(Control Policy)

CRITIC

(Value Function)

xk uk

Figure 6.2: Block diagram of actor-critic

The actor network provides the control policy to minimize the value function.

For each iteration, in feedforward mode the output of actor network is a series

of control signals and in feedback mode it adjusts the internal network weights.

Critic network establishes a relationship between the control signals and value

function. After learning the relationship, the critic network provides a proper

feedback to the actor so as to generate the desired control policy. The working

of critic is two folded, in the feedforward mode it predicts the value function

for a initial set of control signals and in the feedback mode it assists the actor

network to generate a control policy which minimizes the value function. The

HDP application often begins with assuming some random initial control signals.

It involves iteration of two key process, one is critic network training to learn

the relationship between a set of controls and corresponding value function and

the next is actor network training to generate the desired control signals [178].
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6.2.2 Discrete-Time Bellman Equation

Consider the following discrete-time system in state-space form

xk+1 = Axk + Buk (6.15)

which is an appropriate discrete version of system (6.13), where the states xk ∈

R
n and control input uk ∈ R

m and k is the discrete time index. Assume that

the system (6.15) is stabilizable on some set Ω ∈ R
n.

Definition 6.2.1 Stabilizable System: A system is said to be stabilized on a set

Ω ∈ R
n if there exists a control input u ∈ R

m such that the closed loop system

given by xk+1 is asymptotically stable on Ω.

A function h(·) : R
n → R

m from state space to control space is known as

control policy such that for every state xk there is a control uk = h(xk). This

describes the actor mathematically as it is the one generating control policy in

RL techniques i.e., the actor takes states xk as input and gives control output

uk. It is desired to find the control policy u(xk) which minimizes the following

performance measure/value function
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V (xk) =
∞
∑

i=k

1

2
(xTkQxk + uTkRuk), (6.16)

where the matrices Q = QT > 0 ∈ R
n×n and R = RT > 0 ∈ R

m×m so that

performance measure is well defined.

Definition 6.2.2 Admissible Control [179]: A control policy uk = h(xk) is said

to be admissible if it stabilizes system (6.15) and yields a finite performance

V (xk).

For any admissible control uk = h(xk), V (xk) is known as cost or value and can

be selected based on minimum energy, minimum cost requirements etc. We can

write (6.16) as follows

V (xk) =
1

2
(xTkQxk + uTkRuk) + V (xk+1), V (0) = 0 (6.17)

Therefore, by using current control policy u the cost can be evaluated by solving

the above difference equation. Equation (6.17) is known as Bellman equation.

It is a fixed-point equation that the value must satisfy if it is consistent with

the current control policy. Bellman equation is a functional equation consisting

of dynamical systems state and a value or optimal return function.
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According to Bellman’s optimality principle [180], the optimal value can be

obatined by

V ∗(xk) = min
uk

[
1

2
(xTkQxk + uTkRuk) + V ∗(xk+1)]

u∗k = −R−1BT∇V ∗(xk+1) (6.18)

The key concept in developing RL techniques is to assess the current policy

value by using bellman equation. To solve the above equation one must know

the policy at k + 1 to determine the policy at k, therefore Bellman equation

is a dynamic programing algorithm which yields backwards in time. These

techniques can be based of value iterations or policy iterations [165]. Policy

iteration and value iteration algorithms have been developed for continuous time

systems in [166, 168, 167]. Unlike value iterations, an initial stabilizing control

action is needed for policy iterations [162]. In this study we are interested in the

value iteration techniques, an iterative method for determining optimal control.

This technique does not require initial stabilizing policy.

6.2.3 Value Iteration Algorithm

In this section, a value optimality iteration algorithm for autonomous microgrid

system is developed and used to solve the discrete-time Bellman equation. It
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can be considered as simple backup operation that integrates the policy im-

provement and truncated policy evaluation steps. The value iteration algorithm

is summarized by Algorithm 1.

Remark 6.2.1 It is important to note that the value iteration depends on solu-

tion of simply recursive equation (6.19), which is easy to compute and is called

partial backup in reinforcement learning. Value iteration successfully mixes one

sweep of policy evaluation and one sweep of policy improvement in each of its

sweep.

Algorithm 1 (Value Iteration Algorithm for Autonomous Microgrid)

1. Initialization: Select any arbitrary initial values for the policies uk and
V (xk), not necessarily admissible or stabilizing.

2. Value Update: Solve the Bellman equation to get V l+1(xk) as follows

V l+1(xk) =
1

2
(xTkQxk + ulTRul) + V l(xk+1) (6.19)

where l is the iteration index.

3. Policy Improvement: The control policy uk is updated as follows

ul+1
k = −R−1BT ▽ V (xk+1)

l+1 (6.20)

where the gradient is defined as ▽V (xk+1) =
∂V (xk+1)

∂xk+1
.

4. Convergence: The above steps are repeated until ‖V (xk)
l+1 − V (xk)

l‖
converges.
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6.2.4 Actor-Critic Networks Implementation

The performance function (6.16) is now approximated by a critic network and

the control policy (6.19) is approximated by an actor network. Let Wc ∈ R
n×n

and Wa ∈ R
n×m are the critic and actor weights respectively. Therefore, the

performance function and control policy approximations can be written as fol-

lows

V̂k(Wc) = xTkW
T
c xk (6.21)

ûk(Wa) = W T
a xk (6.22)

Hence, the network approximation error of the actor is given as

ζV (xk)
uk

= ûk(Wa)− uk (6.23)

the control policy in (6.20) is given in terms of critic network such that
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uk = −R−1BT ∇V̂ (xk+1) (6.24)

On expressing this target control in terms of critic weights, one obtains

uk = −R−1BTW T
c xk (6.25)

The squared approximation error is given by 1
2
(ζ

V (xk)
uk

)T ζ
V (xk)
uk

, the change in the

actor weights is given by the gradient descent method. Therefore, the actor

update rule is given as follows

W (l+1)T
a = W lT

a − λa[(W
lT
a xk − ulk)(xk)

T ] (6.26)

Where 0 < λa < 1 is the actor learning rate.

Let ψ
V (xk)
xk

be the target value of critic network and value update is given by

(6.19), therefore we have
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ψV (xk)
xk

=
1

2
[(xTkQxk + ulTk Ru

l
k)] + V l(xk+1) (6.27)

The network approximation error of the critic is ζ
V (xk)
xk

= ψ
V (xk)
xk

− V̂k(Wc)

Similarly, the squared approximation error is given by 1
2
(ζ

V (xk)
xk

)T ζ
V (xk)
xk

, the

change in the critic weights is given by gradient descent method. Therefore,

critic update rule is given as follows

W (l+1)T
c = W lT

c − λc[ψ
V (xk)
xk

− xTkW
lT
c xk]xkx

T
k (6.28)

where 0 < λc < 1 is the critic learning rate.

6.3 Simulation Results

6.3.1 Actor-Critic Offline Implementation

Algorithm 2 presented in this section is used for solving the microgrid control

problem by tuning of actor-critic networks. Partial knowledge of the dynamics

is required. Only matrix B is needed. In this algorithm, random initial states
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are used to guarantee sufficient exploration in computing the weights of actor

and critic.

Algorithm 2 (Actor-Critic Implementation of Algorithm 1)

1. The weights of actorWa and criticWc are initialized randomly. Initializing
Wa = I4×4 and Wc = rand1×4.

2. Loop-1 The loop-1 begins with q as iteration index.

Start with random initial values for the system state i.e., initializing x0 =
rand4×1.

Loop-2

(a) The iteration loop begins with l as iteration index

(b) The control policy ûlk is evaluated using equation (6.22)

(c) The dynamics of the system xlk+1 as evaluated using (6.15)

(d) The performance measure V̂ l
k+1 is calculated using equation (6.21)

(e) The critic network is updated based on equation (6.28)

(f) The actor network is updated based on equation (6.26)

(g) On convergence of the actor-critic weights end loop-2

3. Calculating the difference V̂ (xk)
l+1 − V̂ (xk)

l

4. On convergence of ‖V̂ (xk)
l+1 − V̂ (xk)

l‖ end loop-2.

Transfer the actor-critic weights to the next iterations i.e., q+1 as initial-
ization for the next iteration. End loop-1

The learning rates are taken as λa = 0.01, λc = 0.01 and the weighting matrices

are selected as Q = 10I4×4, R = I. Fig (6.3) - (6.5) illustrates the simulation

results of Algorithm 2. Fig (6.3) and (6.4) represents the tuning of actor

weights and critic weights respectively. There are 4 weights for the actor and

16 weights for the critic. Some of the critic weights are overlapping with each

other. Fig (6.5) shows the error dynamics of the system.
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It can be seen that approximately after 100 iteration steps the weights of actor

and critic converges and error dynamics is also seen to be going towards zero,

thereby finding the optimal control policy uk. This control is fed back to the

system by actor. Fig (6.6) shows the response of all four states when subjected

to the generated control signal. At t = 0.2 seconds, a pulse disturbance is

introduced in the system states. By observing the figure, it can be concluded

that the offline algorithm yields stability and proves the synchronization of the

weights.
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Figure 6.3: Actor weights update during iterations

6.3.2 Actor-Critic Online Implementation

The following algorithm 3 is used for solving the microgrid control problem

by online tuning of actor-critic networks. In this algorithm, we start with given
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Figure 6.4: Critic weights update during iterations
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Figure 6.5: Error dynamics during iterations
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Figure 6.6: Response of the system states

initial conditions for the system states. The algorithm makes use of real-time

data measured along the system trajectories and tunes the actor-critic structure

to generate the suitable control policy.

The parameters for the online algorithm were chosen as λa = 0.2, λc = 0.2, Q =

I4×4, R = I. Fig 6.7 describes the simulink structure for implementation of

algorithm-3 for the system. The control generated is fed online to the system,

at time t = seconds a a pulse disturbance is introduced in the system states.

Fig (6.8) - (6.10) represents the tuning of actor weights, tuning of critic weights

and error dynamics respectively. Fig (6.11) shows the response of all four states

By observing the figure, it can be concluded that the online algorithm too yields

stability and proves the synchronization of the weights.
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Algorithm 3 (Actor-Critic Online Implementation of Algorithm 1)

1. The weights of actorWa and criticWc are initialized randomly. Initializing
Wa = I4×4 and Wc = rand1×4.

Loop Iterations Begins

(a) The iteration loop begins with l as iteration index

(b) Start with given initial values for the system state.

(c) The control policy ûlk is evaluated using equation (6.22)

(d) The dynamics of the system xlk+1 as evaluated using (??)

(e) The performance measure V̂ l
k+1 is calculated using equation (6.21)

(f) The critic network is updated based on equation (6.28)

(g) The actor network is updated based on equation (6.26)

2. Calculating the difference V̂ (xk)
l+1 − V̂ (xk)

l

3. On convergence of ‖V̂ (xk)
l+1 − V̂ (xk)

l‖ end loop-2.

6.4 Performance Evaluation of Proposed Con-

troller

The microgrid system described in fig (6.1) is simulated using SimPowerSys-

tems library in the MATLAB/Simulink. Fig (6.12) shows the Simulink imple-

mentation of microgrid system. An IGBT inverter is used as converter and the

Simulink model is built using Table I. A parallel RLC load is supplied by both

utility grid and DG unit. Two simulation cases are considered. First, the mi-

crogrid is isolated from the grid and operated in the islanded mode. Second, the

microgrid starts to operate in islanded mode, a load disturbance is included to

observe the behavior of system. Both cases are carried out independently.
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Figure 6.7: Simulink blocks for algorithm-3 implementation
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Figure 6.8: Actor weights
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Figure 6.9: Critic weights
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Figure 6.10: Error dynamics
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Figure 6.11: Response of the system states
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Figure 6.12: Simulink implementation of an autonomous microgrid

To evaluate the performance of controller, at t = 0.2 seconds, the circuit breaker

(CB) is opened and at the same time, the control strategy is changed from

conventional id/iq [27] control to the proposed RL based control. The control

policy uk generated by the Algorithm-2 is fed to gating signal generator. Fig

(6.13) shows the instantaneous three-phase voltage at point of common coupling

(Vpcc) and control effort. It has be noted here that the scale of Vpcc and control

effort are not the same. The units of Vpcc is in p.u. scale with 13.8 KV as base

value and the units of control effort are in normal volts scale. At t = 0.2 seconds

transients can be seen due to disconnection of the grid from the network. The

voltage at PCC is brought back to desired reference value of 1 p.u.

The system is now completely isolated from the grid. The microgrid is supplying

the load on its own control structure and is said to be operating in autonomous

mode. Now, another set of experiment is carried out on the system. To verify the

robustness of proposed controller, the system is subjected to disturbance in the
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Figure 6.13: Dynamic response of system under islanding
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load. An additional parallel RLC load of R = 42.8Ω, L = 0.2119H,C = 10µF

is added to the local load at t = 0.4. Fig (6.14) shows the instantaneous three-

phase voltage at PCC and control effort of the proposed scheme. Again the scale

of Vpcc is p.u. and control effort is volts. Transients can be seen in load voltage

at t = 0.2 seconds due to change in load parameters. Within few cycles, the

load voltage is maintained at desired reference value of 1 p.u. by the proposed

scheme.
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Figure 6.14: Dynamic response of system under load disturbance



Chapter 7

Conclusion and Future Work

To sum up the work presented in the thesis, we have provided novel control tech-

niques for the stable operation of microgrid system. In chapter 1 and 2, the role

of Microgrid in penetration of DG’s in the present utility network is discussed.

The most recent developments in the modeling of microgrid are presented in

both grid-connected and autonomous mode. The control techniques of micro-

grid available in literature for various modes of operation are also discussed.

The microgrid can be viewed as a special case of SoS. It can be concluded that

using networked control system, a better control of microgrid can be obtained.

In chapter 3 and 4, dynamic model of microgrid system is presented. A neural-

network-based distributed secondary control scheme for an autonomous smart

microgrid system has been proposed. In this scheme, the controller is designed

to act dynamically to load changes and the associated optimized gains have been

159
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evaluated using differential evolution optimization procedure. Performance com-

parison between the proposed controller with traditional fixed-gain controller is

also shown. The controller performance when subjected to time varying load

is also summarized. The ensuing results have emphasized that the proposed

controller has been able to restore the output voltage and frequency to their

nominal values, by eliminating the transients, whenever there is a change in

load. Proper load sharing among the generating units have been also achieved.

The simulation results shows that the proposed controller is much faster with

greater adaptability and robustness when operating point changes and therefore

ensures superior performance when compared to traditional one.

In the next part, chapter 5 describes the real-time implementation of multi-

level distributed control for autonomous microgrid system using RTDS platform.

The effectiveness of the model and controller is demonstrated with the help of

experimental results in RTDS compared with the simulated results in MATLAB.

Additionally, fault analysis with respect to load sharing aspect of the controller

is also displayed. The proposed controller dynamically regulates the output

voltage and frequency during load changes to their nominal values. Results

verify the controller to be reliable and robust.

In the last part, chapter 6, reinforcement learning technique for the control

of autonomous microgrid based heuristic dynamic programming is proposed.

The strategy is based on value iteration algorithm and is implemented using

actor-critic networks. Based on this structure, both offline and online learning

algorithms are developed to solve the Bellman equation. From the simulation
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results, it is evident that the converging weights of actor-critic stabilizes the

system and regulates the output voltage to nominal value. The proposed control

strategy is also robust against any disturbances in the states and load.

There is vast scope for research in the field of microgrid. The work carried out in

this thesis has a great potential to be expanded in several directions. Following

subjects are suggested for the future study

1. The work in this thesis addresses autonomous operation of microgrid.

Studies can be carried out for various control problems related to grid-

connected mode of microgrid.

2. The DC voltage of inverter in microgrid model is assumed to be constant.

In practice, the dc coming from energy source might contain fluctuations.

Microgrid model with variable DC source can be considered for the control

problem.

3. Different optimization techniques other differential evolution and different

performance index other than ITSE can be used to check the effectiveness

of the controller.

4. The communication network at the secondary control level is assumed to

be ideal. A research can also be performed by considering communication

delays in network.

5. Other forms of reinforcement learning such as Dual Heuristic Dynamic Pro-

gramming (DHP), Action-Dependent HDP (ADHDP) and Action-Dependent
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Dual HDP (ADDHP) can also be taken into consideration for the design

of controller
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