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THESIS ABSTRACT

NAME: Adewale Wasiu Adeniji

TITLE OF STUDY: A Global Optimization Approach to the Gradual Defor-

mation Method of History Matching

MAJOR FIELD: Department of Petroleum Engineering

DATE OF DEGREE: May, 2015

Due to large uncertainty and scarcity of hard data used to build a reservoir sim-

ulation model, geostatistically simulated estimates of reservoir parameters do not

usually produce data that match the observed data. Such model cannot be used

for forecasting since the model cannot present the actual behavior of the reser-

voir. The model parameters need to be modified until the model can at least re-

produce the measured data through a process termed history matching. History

matching may be done manually or automated (using optimization algorithms).

Stochastic or gradient-based algorithms may be used. Recently, gradual deforma-

tion method (GDM) was proposed to constrain history matching to simple statis-

tics so that important geologic information can be preserved. GDM estimates high

number of reservoir parameters using few deformation parameters. An optimiza-

xix



tion algorithm is required to optimize these deformation parameters. Tradition-

ally, gradient-based algorithms are used for this purpose but they have challenges

of local minimum entrapment. This study proposes the use of global optimization

algorithms to estimate the deformation parameters in GDM. In doing this, three

global algorithms namely differential evolution, particle swarm optimization, and

simulated annealing algorithms were used to estimate the deformation parameters.

For fair comparison with the gradient-based algorithm, Levenberg-Marquardt algo-

rithm was also used to estimate the deformation parameters. The use of global

optimization algorithms is aimed at minimizing the challenges of the gradient-

based algorithms. A 3D synthetic reservoir comprising sixty-thousand grid cells

was used in this study. Measured water cut was matched to estimate the reservoir

permeability distribution. The reservoir was divided into sixty sub-regions with

each region assigned a deformation parameter. Hence, sixty-thousand unknowns

were reduced to sixty. From the solutions of the seven different realizations con-

sidered in this study, the performances of the algorithms were evaluated. In all the

seven realizations, the global optimization algorithms outperformed the gradient-

based algorithm with particle swarm optimization algorithm emerging the most

effective, most efficient and most reliable amongst all the algorithms considered in

this study.
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 مستخلص الرسالة
 

 أدينيجيديوالي  واسيو  أ  الإسم: 

 النهج الأمثل العالمي إلى أسلوب تشويه التدريجي من التاريخ مطابقة. عنوان الرسالة:
 

 قسم هندسة البترول التخصص:  

 2015مايو ،        التاريخ:
 

 الخزان المعلمات من محاكاة تقديرات المكامن، محاكاة نموذج لبناء المستخدمة الصلبة البيانات وندرة الكبير اليقين لعدم نظراو

 تقدم أن يمكن لا نموذج منذ للتنبؤ استخدامها يمكن لا النموذج هذا. المرصودة البيانات مع تتطابق التي البيانات تنتج لا عادة

 من المقاسة البيانات خراجاست الأقل على للنموذج يمكن حتى تعديل إلى نموذج المعلمات تحتاج. للخزان الفعلي السلوك على

 مؤشر(. الأمثل خوارزميات باستخدام) آليا أو يدويا التاريخ مطابقة يتم أن ويمكن. مطابقة التاريخ تسمى عملية خلال

( GDM) التدريجي تشوه طريقة واقترح الأخيرة، الآونة في. استخدام ويمكن التدرج على القائم خوارزميات أو ستوكاستيك

 من كبير عدد GDM وتقدر. الهامة الجيولوجية المعلومات الحفاظ يمكن بحيث بسيطة لإحصاءات مطابقة التاريخ لتقييد

 يتم تقليديا،. تشوه المعايير هذه لتحسين الأمثل خوارزمية مطلوب. تشوه المعالم من قليل عدد باستخدام الخزان المعلمات

 .المحلي انحباس الأدنى الحد تحديات لديهم ولكن الغرض لهذا التدرج على القائم الخوارزميات استخدام

 ثلاثة بذلك، القيام في. GDM في تشوه المعلمات لتقدير العالمية التحسين خوارزميات استخدام الدراسة هذه وتقترح

 لتقدير محاكاة الصلب خوارزميات تستخدم وكانت الأمثل، الجسيمات سرب التطور، الفرق وهي العالمية خوارزميات

 خوارزمية ماركوارت-ليبرغ يستخدم وكان التدرج، على القائم الخوارزمية مع عادلة المقارنة سبيل وعلى. تشوه المعلمات

 على القائم الخوارزميات تحديات من التقليل في العالمية التحسين خوارزميات استخدام ويهدف. تشوه المعلمات لتقدير أيضا

 لتقدير قياسها المياه انقطاع وواكب. الدراسة هذه في الشبكة خلايا ألف والستين تضم 3D صناعي خزان استخدام تم. التدرج

 خفضت وبالتالي،. تشوه المعلمة تعيين منطقة كل مع والستين فرعية مناطق إلى الخزان تقسيم تم. الخزان نفاذية التوزيع

. الخوارزميات أداء تقييم تم الدراسة هذه في تعتبر مختلفة انجازاتهم سبعة من الحلول من. ستين إلى المجهولة ألف والستين

 سرب الأمثل خوارزمية مع التدرج على القائم الخوارزمية العالمية الأمثل خوارزميات تفوقت سبعة، انجازاتهم جميع في

 .الدراسة هذه في بحثها خوارزميات جميع بين موثوقية والأكثر كفاءة الأكثر فعالية، الأكثر الناشئة الجسيمات



CHAPTER 1

INTRODUCTION

1.1 General Overview of History Matching

Large portions of hydrocarbon reservoirs are inaccessible. Hence, hard data are

acquired with the use of sophisticated equipment to build a reservoir model that

can simulate the reservoir behavior. The model is built by integrating data

from well logs, well test analysis, core samples, seismic surveys, pressure-volume-

temperature (PVT) analysis etc. Also, during the time of producing from the

reservoir, data such as water, oil and gas rates, bottom-hole flowing pressure,

water cut are measured and archived as production data. Seismic responses are

also obtained at exactly the same location at two different times with usually the

same equipment to generate reliable time-lapse seismic data. The time-lapse seis-

mic data are then interpreted as pressure and saturation changes in the reservoir

between the two different measurement times. Both the production and time-

lapse seismic data constitute what is generally known as historic data. In reality,

1



when the reservoir model is used to generate production data, the historic data is

not reproduced. This implies that the model does not present the actual behavior

of the reservoir (that is, the measured data are not the actual properties of the

reservoir). This is not unconnected to the fact that there could be noise in the

data. Also, interpolation errors are unavoidable if the data are not representative

of the reservoir as they are usually taken at few locations in the reservoir. The few

data are then populated over the entire reservoir using geostatistical algorithms.

In order to have a model that can reproduce the historic data, the model pa-

rameters need to be adjusted. The process of adjusting the latter to honor the

historic data is regarded as history matching. It is a type of ill-posed inverse

problems because the problem is strongly under-determined due to large number

of the unknown parameters compared to few measured data. It also has an in-

finite number of solutions which all honor the measured data equally well. The

parameters (for instance, permeability and porosity) of the model that reproduces

the historic data are not necessarily the actual properties of the reservoir. But,

this model is more reliable than the one that do not reproduce the historic data

and have better predictive abilities since it can at least behave like the reservoir.

The essence of history matching is to have a valid model that can be used to

forecast future productions. This is necessary for efficient and effective reservoir

management and development.

History matching was originally done manually by experienced reservoir engi-

neers for relatively small reservoirs. They adjust some of sensitive properties of
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the reservoirs by trial and error until an acceptable history match is achieved. For

large reservoirs, it is done automated using optimization algorithms which could

either be stochastic or gradient-based. Stochastic algorithms includes particle

swarm optimization (PSO) algorithm, differential evolution (DE) algorithm, co-

variance matrix adaptive evolution strategy (CMA-ES), genetic algorithm (GA),

simulated annealing (SA) algorithm, ant colony, neighborhood algorithm, etc.

Gradient-based algorithms include Levenberg-Marquardt (LM) algorithm, conju-

gate gradient algorithm, steepest descent (SD) algorithm, Gauss-Newton (GN)

algorithm, Newton’s method, etc.

The solutions from all the mentioned algorithms may not preserve the geologi-

cal structure of the reservoir. In the late 90s, a parameterization technique known

as gradual deformation method was proposed. This technique helps to constrain

the reservoir model to hard data in order to preserve the geological structure of

the reservoir while reproducing the historic data. Gradual deformation method

(GDM) preserves the geological structure of the reservoir by ensuring that the

spatial variability (mean, variance and histogram) of the prior and posterior mod-

els are the same. Another pro of GDM is that GDM reduces the dimensionality

of the inverse problem to few deformation parameters. These deformation pa-

rameters are conventionally estimated with gradient-based algorithms. Although,

gradient-based algorithms give fast convergence, they are local and can thus find

only a limited region of the problem space.

In this study, we proposed global optimization algorithms as alternatives to
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gradient-based algorithms in estimating deformation parameters in GDM for bet-

ter history matching performance. Water cut data from all the producers in the

3D synthetic reservoir model were matched to estimate the reservoir permeability

distribution. With the use of GDM, the dimensionality of our inverse problem

was reduced from six thousand to sixty. This concept of dimensionality reduction

can also be applied to real reservoir. The performances of the algorithms were

evaluated to determine the most effective, the most efficient and the most reliable

algorithm.

1.2 Problem Statement

Uncertainties in reservoir parameters estimation are unavoidable. One of which

is why a newly built reservoir model does not honor the historic data of the same

reservoir. Nonetheless, forecast and vital decisions need to be made to efficiently

and effectively manage and develop the reservoir. History matching is aimed at

providing some level of confidence in the reservoir model by iteratively adjusting

the model until the simulated production data matches the historic data. The

deformation parameters in GDM are conventionally estimated with gradient-based

algorithms. But, gradient-based algorithms have inherent shortcoming of being

trapped in the local minima. Hence, global optimization algorithms are proposed

as alternatives to gradient-based algorithms. In this study, LM algorithm was

selected as the gradient-based algorithm. The choice of LM algorithm was based

on the fact that it is one of the most widely used gradient-based algorithms because
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of its rapid convergence and suitability for estimating few unknown parameters.

Three global optimization algorithms namely DE, PSO and SA algorithms were

used in this research.

1.3 Significance of the Study

The use of global optimization algorithms in GDM is aimed at minimizing the

challenge of local minimum entrapment peculiar to the gradient-based algorithms.

As the history matching performance gets better, the reliability and robustness

of reservoir models get improved. Once a reliable and robust model is developed,

production forecasts can be performed and consequently, critical decisions about

infill drilling, work-over, production/injection rate, surface facilities procurement

etc. can be rightly made. The proper execution of these decisions will help

minimize expenses and maximize profits.

1.4 Research Objectives

The objectives of this study are to:

1. Optimize GDM parameters using a gradient-based algorithm (LM).

2. Optimize GDM parameters using three different global optimization algo-

rithms (DE, PSO and SA) separately.

3. To replace the gradient-based algorithm in GDM with a global optimization

algorithm.
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4. To evaluate the performances of the three global optimization algorithms

embedded in GDM against the performance of the LM used in GDM.

1.5 Thesis Organization

This thesis comprises five chapters. Chapter 1 gives the general overview of his-

tory matching, problem statement, significance of study and research objectives.

Chapter 2 presents the review of existing literatures on GDM, its applications

in history matching, and the concepts of gradient-based and global optimization

algorithms. Chapter 3 presents how DE, PSO, SA and LM were applied in GDM

to history match the historic water cut data to estimate the synthetic reservoir

permeability distribution. Chapter 4 presents the results of how the objective

function (OF) decayed as the historic water cut was matched by the simulated

water cut from all the algorithms in the seven different realizations considered in

this study. Chapter 5 gives the conclusion of this study as well as recommenda-

tions for future research studies.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, existing literatures related to GDM, history matching and opti-

mization algorithms were reviewed. The different studies on GDM and its appli-

cations in history matching are presented. Also, the concepts of gradient-based

and global optimization algorithms are discussed.

2.1 Gradual Deformation Method

The gradual deformation method (GDM) was proposed in 1998 [1]. It was initially

developed for gradually changing Gaussian-related stochastic reservoirs models

while preserving their spatial variability. Then, GDM was extended to non-

Gaussian reservoir models simulated from sequential indicator and Boolean al-

gorithms [2]. GDM is a method for gradually deforming continuous geostatistical

models to generate reservoir models which honor historic production data. Start-

ing from an initial geological model that does not match history, GDM allows to

gradually change the initial model without compromising the geological continuity
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of the reservoir model, until a history match is achieved [3].

2.1.1 Fundamental Principles of GDM

GDM is a parameterization technique that aims at generating continuous per-

turbations of a prior model, so that the resulting posterior model can match the

history data better. It also ensures that the statistical variability of the prior and

posterior models are the same. GDM significantly reduces the dimensionality of

unknown parameter space of stochastic models to few deformation parameters.

Irrespective of the number of grid cells in the reservoir model, it is modified by

varying the parameters. This method preserves the properties of the stochastic

model due to the fact that linear combinations of multi-Gaussian random func-

tions are still multi-Gaussian random functions [4].
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The concept of GDM is described in Figure 2.1.

Initialize ~x0

Generate n Gaussian re-

alizations of prior model

Randomly draw 2 re-

alizations ~k1 and ~k2

~xopt = minimize Φ(~x) =

{~dmeas − f(~k1 cos(~x) + ~k2 sin(~x))}

Set ~k1 = ~k (~xopt)

All realizations

drawn?

Randomly draw a

new realization ~k3

defs = defs + 1

Set ~k2 = ~k3

End

No

Yes

Figure 2.1: Flow diagram of GDM.

2.1.2 Forming Chains of Realizations

Realizations of posterior model are obtained by perturbing those of the prior

model. The perturbation is achieved by the linear combination of the prior model

realizations. After several linear combinations, chains of realizations are formed.
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This helps to achieve faster convergence and better history matching performance.

Any of the three methods below can be used to linearly combine realizations:

1. Unconditional method

Two or more independent standard Gaussian realizations, ~k1 and ~k2 may be

unconditionally combined linearly as follows:

~k = α1
~k1 + α2

~k2 (2.1)

Posterior model, ~k has the same statistical properties (mean, variance, var-

iogram, histogram etc.) as the realizations of the prior models, ~k1 and ~k2.

The statistical preservation is achieved by ensuring that:

α1
2 + α2

2 = 1 (2.2)

2. Conditional method

In reality, the linear combination in Equation 2.1 does not preserve the sta-

tistical properties of the prior model in the posterior model when there is

hard conditioning data (for instance, production data). Therefore, prior

geological knowledge about the reservoir structure is expressed as a geosta-

tistical constraint that must be integrated into the conditioning process [2].
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To solve this problem, Ying and Gomez (2000) proposed to linearly combine

three independent realizations as shown below [5]:

~k = α1
~k1 + α2

~k2 + α3
~k3 (2.3)

Under the joint conditions that:

α1 + α2 + α3 = 1 (2.4)

α1
2 + α2

2 + α3
2 = 1 (2.5)

This guarantees that the posterior model, ~k honors the hard data as well as

the variogram. The coefficients can easily be re-parameterized to a single

parameter, x with the following equations [4]:

α1 =
1

3
+

2

3
cos(x) (2.6)
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α2 =
1

3
+

2

3
sin

(
−π
6

+ x

)
(2.7)

α3 =
1

3
+

2

3
sin

(
−π
6
− x
)

(2.8)

3. Dependent realizations method

Most studies on GDM combine independent realizations. However, Hu

(2002) investigated combining dependent realizations to improve the nu-

merical stability of GDM and derived a new formulation that can com-

bine dependent realizations. Posterior models only preserve the statistical

properties (mean, variance, covariance etc.) of the stochastic (prior) model

theoretically. They are never perfect due to numerical fluctuations; they

never have the exact mean, variance and covariance of the prior model, and

are never completely independent of each other. To eliminate this challenge,

their standardized realizations (prior models) were proposed to be combined

instead of directly combining the realizations [6].

~k = ~k1 cos(x) + ~k2 sin(x) (2.9)
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Their standardized realizations should be combined as thus:

~K =
~k1 − ~m

~σ
cos(x) +

~k2 − ~m

~σ
sin(x) (2.10)

By this, the mean of the realization is then exactly zero and its variance is 1.

2.1.3 Speed of Convergence

GDM is known for slow convergence because it reduces large dimensionality of

a stochastic model to few parameters. The convergence of the OF when using

GDM was investigated by Le Ravalec et al. (2000) [4]. They mentioned that the

optimization process with GDM uses a hybrid of a random search scheme and

gradient-based computations. They proposed that OF exhibits an exponential

convergence rate shown in Equation 2.11.

Φ(x) ∝ exp

(
−n
M

)
(2.11)

Where Φ(x) is the OF, n is number of realization chain (number of times, realiza-

tions have been linearly combined), M is the number of grid cells in the reservoir

model.

The convergence rate was experimentally found to increase when the reservoir

is divided into sub-regions [2]. A deformation parameter is attributed to every
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sub-region, this helps to reduce components associated to a single deformation

parameter. If the reservoir model is divided into S sub-regions with the same

number of grid blocks, the convergence rate becomes:

Φ(x) ∝ exp

(
−nS
M

)
(2.12)

The greater the number of combined realizations, the smaller the OF. Further-

more, the convergence rate is strongly influenced by the number of combined

realizations. If (S + 1) realizations are combined to form a chain, that is, the

number of deformation parameters is S, then, the convergence rate is given by:

Φ(x) ∝ exp

(
−nS
M

)
(2.13)

Apparently, combining (S + 1) realizations or dividing the reservoir into S sub-

regions is equivalent in terms of convergence. When n is larger than M , the OF

becomes negligible with respect to M and decreases exponentially.

2.2 Applications of GDM in History Matching

GDM was combined with multiple-point geostatistics and a fast streamline simu-

lator to achieve acceptable history matching with limited amount of flow simula-

tions [3]. Mezghani and Roggero (2001) applied GDM to directly update fine-scale
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geostatistical reservoir models during history matching process. The deformation

parameters were estimated using an undisclosed gradient-based algorithm [9]. His-

tory matching was achieved by combining streamline-based approach with GDM.

Gauss-Newton algorithm was used in GDM to estimate the deformation param-

eters [10]. Busby et al. (2009) combined GDM with adaptive response surface

methodology to history match production data [11]. They used an undisclosed

optimization algorithm used to estimate the deformation parameters. Reis et al.

(2000) applied GDM to history match the production data from PBR oil field

(Offshore Brazil) by building fine scale geostatistical lithofacies model using the

non-stationary truncated Gaussian approach. The deformation parameters were

manually selected [12] without using any optimization algorithm. Le Gallo et al.

(2000) proposed a new history matching methodology based on GDM to constrain

3D geostatistical reservoir models to well and production data [13]. Gervais et al.

(2007) applied local GDM to history production data from the PBR oil field (Off-

shore Brazil). They used an undisclosed gradient-based optimization algorithm

in GDM to estimate the deformation parameters [14].

2.3 Gradient-based Algorithms

Gradient-based algorithms are methods of solving optimization problems where

the search directions are dependent on the gradient of the OF at a particular

point. Unlike the global methods, they have fast convergence but are trapped in
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local minimum of the OF. Hence, they are poor in wide navigation of the search

space. For problems with non-differentiable OF, gradient-based algorithms can-

not be used. These methods include GN, SD, LM, conjugate gradient algorithms

etc. For fast convergence, gradient-based methods computes sensitivity coeffi-

cients which are used to define the changes in the simulated data with respect to

small variation in the model parameter being perturbed. However, some of these

methods such as conjugate gradient and GN algorithms do not use sensitivity co-

efficients. As such, they converge slowly. The coefficients may be estimated in any

of these ways: substitution, adjoint and forward sensitivity methods. Substitution

method involves perturbing each element of the vector of the unknown parameter

at a time and estimating its effect (sensitivity coefficients) on the simulated data.

After all the elements in vector has been perturbed, all the coefficients are put

together to obtain a sensitivity matrix. This method is simple to use but it is time

consuming most especially when the vector of unknown parameters has many el-

ements. Substitution method requires the OF to be computed M + 1 number

of times. The adjoint and forward sensitivity methods require the estimation of

the OF M and N number of times, respectively. Hence, the forward sensitivity

method does not depend on the number of design parameters but rather on the

number of match parameters [15]. The forward sensitivity method has been ap-

plied in history matching [16], [17], and [15]. The adjoint method was first used

by Jacquard (1965) to estimate fourteen design parameters of a 2D single-phase

transient flow model [18]. The adjoint method has also been used by researchers
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to compute sensitivity coefficients [19] and [20].

2.3.1 Steepest Descent Algorithm

Steepest descent (SD) algorithm also known as gradient descent algorithm was

derived from the expansion of Taylor series truncated at first order. As such,

SD algorithm is a first order optimization algorithm and simple to use because it

does not require second-order derivatives. In this method, the search direction to

minimize the OF is the opposite of the gradient of the OF at a particular point.

Consider the expansion of a multi-dimensional optimization problem truncated at

second-order approximation:

f(~x+ δ~x) ≈ f(~x) + δ~xg(~x) + δ~xTHδ~x (2.14)

For an OF given as:

Φ(x) =
(
~dcal − ~dmeas

)T (
~dcal − ~dmeas

)
(2.15)

The gradient of the OF is:

g(~x) = Sm
T
(
~dcal − ~dmeas

)
(2.16)
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Sensitivity matrix is:

Sm =
∂~dcal
∂~x

(2.17)

By differentiating Equation 2.14 with respect to δ~x, we obtain:

g(~x) +Hδ~x = ~0 (2.18)

Equation 2.14 is the basis of Newton’s method and the H is an exact Hessian

given by the differentiation of the gradient of the OF with respect to ~x. However,

the Hessian used by SD algorithm is an approximated one and it is given by:

HSD = ||g(~x)||2.I (2.19)

By substituting HSD in Equation 2.18, we obtain:

~g + (||g(~x)||2.I)δ~x = ~0 (2.20)

By solving the linear equation for δ~x, we obtain:

δ~x =
g(~x)

||g(~x)||2
(2.21)
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The vector of unknown parameters is updated as:

~xiter+1 = ~xiter + ~δxiter (2.22)

19



Procedural steps of SD algorithm are described in Figure 2.2.

Initialize ~x0

Compute OF for ~x0 as cbest

Compute ~g( ~ )x0 and HSD

Compute step length, δ~xiter

Update unknown pa-

rameter to get ~xiter+1

Compute OF for ~xiter+1 as nbest

nbest lower than

cbest

iter = iter + 1

Set cbest = nbest

~xopt = ~xiert+1

Stopping criteria

met?
End

Yes

No

No

Yes

Figure 2.2: Flow diagram of SD algorithm.

2.3.2 Gauss-Newton Algorithm

Gauss-Newton (GN) algorithm is a modification of Newton’s method used for solv-

ing non-linear least square optimization problems. Unlike the Newton’s method,

GN algorithm does not require the second derivative of OF. The modified method

was named after the Mathematicians Friedrich Gauss and Isaac Newton who pro-
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posed it. Another drawback of Newton’s method is the singularity of Hessian

obtained from the second derivative of OF. To eliminate this, pre-conditioning is

often done. By this, the GN algorithm is more efficient in terms of convergence

than Newton’s method. The Hessian of GN algorithm can be prevented from

being ill-posed by having a good initial guess so that the eigen values can span

a wide range of acceptable orders of magnitude [21]. The GN algorithm has a

disadvantage of convergence control difficulty. Sometimes, the Hessian diagonal

elements may be too small or big and would not give a good step size for the next

iteration. This problem is usually eliminated by modifying the algorithm [22].
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Procedural steps of GN algorithm are described in Figure 2.3.

Initialize ~x0

Compute OF for ~x0 as cbest

Compute ~g(~x0) and HGN

Compute step length, δ~xiter

Update unknown pa-

rameter to get ~xiter+1

Compute OF for ~xiter+1 as nbest

nbest lower than

cbest

iter = iter + 1

Set cbest = nbest

~xopt = ~xiert+1

Stopping criteria

met?
End

Yes

No

No

Yes

Figure 2.3: Flow diagram of GN algorithm.

In GN algorithm, an approximate Hessian is also used and is given by:

HGN = STmSm (2.23)

If the Hessian is positive definite, GN algorithm gives a quadratic convergence in

the neighborhood of the true solution.
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The search direction is computed by solving:

~g +HGN
~δ~x = 0 (2.24)

The vector of unknown parameters is updated as:

~xiter+1 = ~xiter + ~δxiter (2.25)

2.3.3 Levenberg-Marquardt Algorithm

Levenberg-Marquardt (LM) algorithm is a local optimization strategy originally

proposed by Levenberg in 1944 [23] and modified by Marquardt in 1963 [24]. LM

algorithm requires the gradient of OF as well as Hessian to solve non-linear least

squares problems. LM algorithm is also known as damped least-squares (DLS)

method. Its high efficiency is due to its adoption of a sensitivity matrix that

contains significant information about the curvature of the OF, thus resulting in

a quadratic convergence rate when close to the local minimum. LM algorithm

is actually a combination of two minimization methods: SD and GN algorithms.

In SD algorithms, the OF is minimized by updating the unknown parameters in

the negative direction of its gradient while in GN algorithm, OF is minimized by

assuming it is locally quadratic, and finding its minimum [25]. When the cur-

rent OF estimate is far from the local minimum, LM algorithm behaves like SD

algorithm and when OF estimate is close to the local minimum, LM algorithm

behaves like GN algorithm. Levenberg modified GN algorithm by adding a prod-
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uct of damping factor and an identity matrix to perturb the Hessian diagonal

elements. This modification enables the Hessian to be always positive definite

and diagonally dominant. The magnitude of the diagonal elements has a great

influence on the eigen values which are responsible for the positive definiteness of

the Hessian. Matsui and Tanaka (1994) discovered that the damping factor should

be the median of the eigen values of the Hessian [26]. The damping factor is a

variable and usually adjusted from one iteration to another. When the damping

factor is small, LM algorithm behaves like GN algorithm and takes nearly zero

step length. When the damping factor is large, LM algorithm behaves like SD

algorithm and takes a large step length in the descent direction. The choice of

damping factor has a huge impact on the performance of LM algorithm. Mar-

quardt(1963) suggested that the damping factor should be decreased by a factor

if there is a sufficient reduction in the OF and vice-versa [24]. Many authors

have applied LM algorithm in history matching problems [27],[28] and [29]. Xian

(2015) applied LM algorithm to reservoir parameter estimation and estimated the

damping factor using DE algorithm [30].

While LM algorithm can be very fast when applied to solve small to medium

sized inverse problems, it is susceptible to being trapped in a local optimum in the

neighborhood of the starting guess. This drawback makes it unsuitable for solving

non-convex or multi-modal optimization problems. Furthermore, the gradient and

Hessian of the OF that needs to be computed make LM algorithm unsuitable for

optimization problems with discontinuities.
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Procedural steps of LM algorithm are described in Figure 2.4.

Initialize ~x0 and λ

Compute OF for ~x0 as cbest

Compute ~g(~ 0)x and HLM

Compute δ~xiter and ~siter

Update unknown pa-

rameter to get ~xiter+1

Compute OF for ~xiter+1 as nbest

nbest lower than

cbest

iter = iter + 1

Decrease λIncrease λ

Set cbest = nbest

~xopt = ~xiert+1

Stopping criteria

met?
End

Yes

No

No

Yes

Figure 2.4: Flow diagram of LM algorithm.
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The LM algorithm Hessian is:

HLM = HGN + λI (2.26)

Solve for descent direction as:

HLMδ~x = −~g(~x) (2.27)

Estimate step size using line search and update the vector of unknown parameters

as:

~xiter+1 = ~xiter + ~siterδ~xiter (2.28)

2.4 Global Optimization Algorithms

Unlike the gradient-based algorithms, randomized approaches also known as global

optimization algorithms are theoretically capable to reach the global optimum of

the optimization problem, although they converge slowly [2]. Global optimiza-

tion algorithms possess the ability to escape local minima and navigate complex,

non-convex and even non-smooth OF landscape due to the adoption of random

numbers. Global algorithms do not require the first or second derivative of the

OF. Example of global optimization algorithms include SA, DE, GA, PSO, CMA-

ES algorithms etc. These algorithms are based on certain characteristic features

of molecular, biological, insects and neurological systems. Global algorithms have
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wide applications in history matching [31], [32] and [33]. Awotunde (2015) esti-

mated parameters of a radial composite reservoir for well test analysis using DE,

LM, CMA-ES and PSO algorithms [29].

2.4.1 Differential Evolution Algorithm

Differential evolution (DE) algorithm was proposed by Rainer Storn and Kenneth

Price in 1997 [34]. As a global method, DE algorithm navigates farther from the

initial guess to seek a candidate solution in the search space that will give the

least OF. This suffices to say that this candidate solution is a global minimum.

Lee and El-Sharkawi (2008) opined that DE algorithm is the simplest algorithm

for solving multi-modal optimization problems [35]. DE algorithm was designed

to fulfill the following users requirements:

1. Capability to handle non-differentiable, non-linear and multi-modal OF.

2. Parallel computing of intensive OF.

3. Ease of use.

4. Good convergence properties [34]

Many authors have worked on DE algorithm to improve its performance [36],

[37],[38], [39], and [40].
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Fundamental Principles of DE Algorithm

DE algorithm optimizes model parameters by iteratively improving candidate so-

lutions (agents) through a cycle of population initialization, mutation, crossover

and selection.

The concept of DE algorithm is described in Figure 2.5.
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Initialize parent popu-

lation (target vectors)

Compute OF for

each target vector

Mutation to get mutant vectors

Crossover to generate trial vectors

Compute OF for each trial vector

target vector OF <

trial vector OF

iter = iter + 1

Select target vector for

next generation population

Select trial vector for next

generation population

Stopping criteria

met?
End

Yes

No

No

Yes

Figure 2.5: Flow diagram of DE algorithm.
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Population Initialization

A population, P of dimension D x Np is initialized. Each vector of the population

is regarded as genome/chromosome, target vector or candidate solution. Each

of these solutions is perturbed to minimize the OF. Lower and upper bounds

are specified for the unknown parameter to estimate the genomes. The initial

population is computed as:

~x0 = ~lb + rand(D, 1) ∈ [0, 1](~ub −~lb) (2.29)

Where randi,j [0, 1] is a uniformly distributed random number ranging from

0 to 1 (that is, 0 ≤ randi,j [0, 1] ≤ 1) and is instantiated independently for each

component of the ith vector. D is the dimension of the optimization problem

(that is, number of unknown parameters),~lb and ~ub are vectors of the lower and

upper bounds of the unknown parameters.

Mutation

After the population has been initialized, they are mutated. Mutation involves

linearly combining the best or randomly selected candidate solutions for each

target vector, ~xi to come up with a mutant/donor vector,~νi. The six different

mutation variants are given below:

30



”DE/rand/1”

~νi = ~xr1 + F (~xr2 − ~xr3) (2.30)

”DE/best/1”

~νi = ~xbest + F (~xr1 − ~xr2) (2.31)

”DE/current-to-best/1”

~νi = ~xi + F (~xbest − ~xi) + F (~xr1 − ~xr2) (2.32)

”DE/best/2”

~νi = ~xbest + F (~xr1 − ~xr2) + F (~xr3 − ~xr4) (2.33)

”DE/rand/2”

~νi = ~xr1 + F (~xr2 − ~xr3) + F (~xr4 − ~xr5) (2.34)

”DE/rand to best/1”

~νi = ~xr1 + F (~xr2 − ~xr3) + F (~xbest − ~xr1) (2.35)
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Crossover

After the target vectors have been mutated, crossover is done to determine which

agent in the mutant and target vectors will cross over to a new population called

the trial vector. This crossover process (also known as parameter mixing or recom-

bination) is based on probability and it must be ensured that at least one agent

in the mutant vector crosses over to the trial vector. The trial vector contains

elements which are either from the target or donor vector. There are basically two

crossover methods: exponential (or two-point modulo) and binomial (or uniform).

The binomial crossover is performed on each pair of corresponding elements in the

target and mutant vectors by randomly generating a number between 0 and 1.

Its value is compared with crossover probability, (CR) to determine which of the

elements in the two vectors will crossover. Its process is given as:

If (randi,j ∈ [0, 1] ≤ CR or j = jrand)

yj,i = νj,i (2.36)

Otherwise,

yj,i = xj,i (2.37)
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Selection

Selection between the target and trial vectors is done to determine which of them

would survive to the next generation (iteration) based on how well they minimize

the OF. The vector that gives the least value of the OF is selected for the next gen-

eration (or iteration) and the process continues until the OF convergences. With

these processes, the DE algorithm does not get trapped in the local minimum.

The selection operation is described as:

If f(~yi) ≤ f(~xi)

~yi,new = ~yi (2.38)

Otherwise,

~yi,new = ~xi (2.39)

2.4.2 Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) algorithm was proposed in 1995 [41] based on

swarm intelligence. PSO algorithm comes from the research on the bird flock or

fish school movement behavior [42]. The algorithm iteratively improves a popu-

lation (swarm) of candidate solutions (particles) by moving them around in the

search space based on the particles’ positions and velocities. The behavioral model

each particle exhibits follows three rules [43]:
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1. Separation: each particle tries to move away from its neighbors if they are

too close.

2. Alignment: each particle steers towards the average heading of its neighbors.

3. Cohesion: each particle tries to go towards the average position of its neigh-

bors.

The movement of each particle is affected by its local best known position and

that of the swarm. This is aimed at moving the swarm towards the best solution

and making the OF converges. PSO algorithm is simple and easy to implement

and has been widely applied in the fields of neutral network training, function

optimization, model classification, machine study, signal procession, vague system

and automatic adaptation controls etc. [44].

The advantages of PSO algorithm are [42]:

1. It is based on swarm intelligence. As such, it can be applied to both scientific

and engineering research.

2. Its speed of search is very fast as the particles are moved towards the best

position of the swarm.

3. Its computations are very simple.
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The PSO algorithm is described in Figure 2.6.

Intialize swarm of particles

Compute OF for each particle

current OF < new

pBest?

Keep previous pBestcurrent OF = new pBest

pBest = sBestiter = iter + 1

Calculate velocity for

each particle

Update the particles’positions

Stopping criteria

met?
End

No

Yes

Yes

No

Figure 2.6: Flow diagram of PSO algorithm.

2.4.3 Simulated Annealing Algorithm

The concept of simulated annealing (SA) algorithm is based on the annealing pro-

cess in metallurgy. The annealing process involves heating and controlled cooling

of a material to enlarge its crystals and decrease their defects. These two effects

depends on the thermodynamic free energy of the material. SA algorithm is a

good choice if an acceptable solution is being sought within a short time rather
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than the best possible solution. The rate of cooling is inversely and directly

proportional to the decrease in thermodynamic free energy and temperature re-

spectively. Decreasing the energy is tantamount to minimizing the OF by seeking

better solutions. Sometimes, SA algorithm accepts worse solutions to search more

extensively for an optimal solution. The process of slow cooling is implemented

as a slow decrease in the probability of accepting worse solutions as it explores

the search space. SA algorithm was proposed by Scott Kirkpatrick et al. [45] and

by Vlado Cerny in 1985 [46].
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Procedural steps of SA algorithm are described in Figure 2.7.

Intialize ~x0 and ~T0

Evaluate OF of ini-

tial guess as cbest

Randomly exploits new point

from solution space based

on current temperature

Evaluate OF of

new point as nbest

nbest lower than

cbest?
Set cbest to nbest

Reannealing for CT

reached?

Decrease temperature by

a defned rate

iter = iter + 1

Stopping criteria

met?
End

Yes

No

No

No

Yes

Yes

Figure 2.7: Flow diagram of SA algorithm.
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CHAPTER 3

METHODOLOGY

3.1 Geostatistical Modeling

In this section, the characterization of the 3D synthetic reservoir simulation model

used in this study with a 2D dataset was presented. Geostatistical modeling

involves the spatial interpolation of parameters measured at sparse locations in

the domain of interest to the entire domain of interest and generating several

equi-probable realizations of these parameters through stochastic simulation for

the purpose of history matching. Porosity and permeability data obtained from

eighty-five wells (well logs) at different locations in a reservoir were populated to

the entire reservoir.

3.1.1 Data Analysis

The dataset used for geostatistical modeling comprises theX, Y and Z coordinates

of the sampled locations (wells) in ft, porosity in percentage and permeability in
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the x-direction in md. The range of the Z coordinate is relatively small. As

such, the dataset is assumed to be two-dimensional (2D). In order to make the

permeability distribution Gaussian, its logarithm to base ten was estimated and

used for parameterization. The dataset is given in Table 3.1.

Table 3.1: Permeability and porosity measured from wells.

X(ft) Y (ft) Z(ft) φ(%) kx(md) log10kx

6050 4150 7037.1531 14.652 421 2.624

2650 4350 7031.4993 14.509 453 2.656

1750 6950 7036.9185 14.064 528 2.723

2550 950 7024.0156 15.108 561 2.749

4950 6850 7035.0411 13.919 577 2.761

1450 450 7028.4249 13.130 604 2.781

3950 3350 7033.2458 14.572 893 2.951

8450 2450 7037.0216 15.081 968 2.986

9350 750 7040.0446 13.910 1010 3.004

1350 1050 7029.1565 13.402 1050 3.021

5350 2550 7035.4579 14.940 1070 3.029

3750 6450 7031.44 15.216 2020 3.305

2750 5550 7035.2379 14.578 19 1.279

4750 4550 7034.9151 14.248 26.6 1.425

7650 1550 7033.4161 14.428 30.5 1.484

Continued on next page.
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Table 3.1 – Continued from previous page.

X(ft) Y (ft) Z(ft) φ(%) kx(md) log10(kx)

2350 4850 7032.3707 15.261 32.2 1.508

8350 7850 7043.8217 16.186 32.9 1.517

9750 4850 7037.3289 14.208 33.5 1.525

8450 6550 7038.0937 16.958 35.7 1.553

450 1850 7027.6737 13.835 38 1.580

250 5950 7032.3485 14.186 40.6 1.609

4550 650 7028.0296 14.038 90 1.954

4550 6850 7034.096 14.369 92 1.964

4950 6450 7036.3549 13.402 95.7 1.981

3150 50 7026.0119 15.895 97.1 1.987

1850 2550 7029.1077 12.867 97.6 1.989

8150 450 7036.6456 15.104 107 2.029

9150 6750 7038.7817 15.774 118 2.072

4750 3450 7031.9071 14.133 119.5 2.077

8950 1550 7037.5415 13.337 121.9 2.086

4950 7750 7043 15.136 233 2.367

3550 4450 7033.0404 15.085 258 2.412

9650 3550 7042.5253 14.250 285 2.455

1150 2850 7029.7727 12.681 337 2.528

Continued on next page.
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Table 3.1 – Continued from previous page.

X(ft) Y (ft) Z(ft) φ(%) kx(md) log10(kx)

3650 4450 7032.2021 14.938 349 2.543

6950 1850 7034.9958 15.601 361 2.558

4250 5050 7032.5227 13.780 394 2.595

4050 4350 7031.6919 15.291 400 2.602

7350 5950 7039.784 15.688 42.3 1.626

3150 1150 7030.3988 15.368 43 1.633

5950 6450 7034.9988 14.328 44 1.643

9050 3550 7038.3948 14.737 44.9 1.652

5650 3550 7035.3294 15.055 45.3 1.656

6250 1550 7030.4755 14.889 46 1.663

1350 6350 7038.0117 14.436 47.1 1.673

1350 2150 7029.1415 12.149 48 1.681

4250 5650 7035.0381 13.624 48.7 1.688

750 450 7024.0766 14.188 52.8 1.723

3650 650 7032.3753 14.907 168 2.225

5350 2050 7032.9269 15.203 172 2.236

3550 950 7033.334 15.347 180 2.255

1950 4250 7031.0577 15.939 188 2.274

8550 3050 7034.2641 15.727 191.3 2.282

Continued on next page.
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Table 3.1 – Continued from previous page.

X(ft) Y (ft) Z(ft) φ(%) kx(md) log10(kx)

7050 5050 7038.2068 15.324 194 2.288

5750 2450 7037.6076 14.045 199 2.299

6650 7850 7036.9157 14.403 216 2.334

950 6050 7038.5827 14.359 224 2.350

7550 1450 7033.966 14.601 74.3 1.871

3250 450 7029.2442 16.146 75.3 1.877

4450 3050 7032.2726 15.773 76 1.881

2250 1150 7027.8722 13.623 76.5 1.884

6450 5150 7033.7745 15.102 79.2 1.899

5450 2850 7033.9646 15.355 79.8 1.902

1750 350 7028.3525 13.843 80.5 1.906

8150 1850 7033.9217 14.943 82 1.914

450 2550 7030.3675 14.414 83.2 1.920

6450 6450 7038.3666 13.618 83.7 1.923

7650 4650 7038.2326 16.379 88.3 1.946

3650 3450 7032.2048 14.258 124.1 2.094

8150 6250 7037.3239 15.777 126.5 2.102

50 4450 7031.7183 14.655 130 2.114

850 5850 7037.7883 14.363 139 2.143

Continued on next page.
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Table 3.1 – Continued from previous page.

X(ft) Y (ft) Z(ft) φ(%) kx(md) log10(kx)

8750 5550 7038.016 15.966 143 2.155

7450 4150 7038.374 16.010 151 2.179

4150 5450 7032.7182 13.964 158 2.199

2050 7250 7038.4526 14.265 162 2.210

5550 7650 7039.7254 15.768 165.8 2.220

250 2450 7029.5005 14.591 55 1.740

6550 750 7032.2007 15.138 56.2 1.750

9450 850 7040.5902 14.095 57.9 1.763

1750 3750 7033.2246 15.149 59.2 1.772

1850 3450 7030.6871 13.958 62 1.792

7250 6650 7039.6297 14.738 63.4 1.802

2450 4550 7031.2961 15.069 66 1.820

4850 2850 7032.8684 15.804 69 1.839

An essential part of geostatistical data analysis is building a variogram of the

dataset to determine the degree of spatial correlation between any rock property

at two different locations across the reservoir. Details of the parameters used to

build the variogram are given in Table 3.2.
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Table 3.2: Variogram parameters.

Variogram parameter Value

Lag distance, ft 1000

Lag tolerance, ft 500

Number of lags 15

Number of directions 5

Azimuth, degree 0, 0, 45, 90, and 135

Azimuth tolerance, degree 90, 22.5, 22.5, 22.5, and 22.5

Bandwidth, ft 108, 5000, 5000, 5000, and 5000

Nugget effect 0

Sill 1

Variogram type Exponential

Maximum range, ft 5500

Medium range, ft 5500

Minimum range, ft 5500

3.1.2 Kriging

Kriging is used to predict the value of a parameter at a location by computing

a weighted average of the known values of that parameter at the neighboring

locations based on the variogram. Higher weights are given to neighbors with

higher spatial correlation. Porosity and permeability from the eighty-five wells
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were populated to the entire 2D reservoir model.

The rectangular 2D model of size 10000 ft x 8000 ft x 100 ft was discretized

into a grid of 50 x 40 cells to be assigned the kriged values. Each grid cells have

dimension of 200 ft x 200 ft x 100 ft. Since the dataset is 2D, the kriged rock

properties can be considered for only a layer in the 3D simulation model. As

such, three realizations of each rock property would be required to characterize

the three layers in the 3D model. Note that the discretization of the 2D model

and that of each layer of the 3D model (discussed in Subsection 3.2.1) are the

same.

kriged porosity and the kriging variance (porosity estimation error) were ob-

tained from porosity kriging. Also, kriged permeability and the kriging variance

(permeability estimation error) were obtained from permeability kriging. Ordi-

nary kriging type was adopted.

3.1.3 Stochastic Simulation

For the characterization of the 3D model, three realizations of porosity as well

as permeability are required. Stochastic simulations was used to generate three

realizations of porosity using sequential Gaussian simulation (SGS) algorithm with

simple kriging type. These porosity realizations were used for characterizing the

3D model and served as the true or reference porosity field of the model.

GDM of history matching involves linearly combining multiple realizations of

the design parameter (which in this study is the reservoir permeability). There-
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fore, forty-eight equi-probable permeability realizations were generated stochasti-

cally using SGS algorithm with simple kriging type.

Three permeability realizations were used to characterize the 3D model. This

served as the true or reference permeability field of the model. The remaining

forty-five realizations were grouped to create fifty realizations for the 3D model

to be used in the GDM for the purpose of history matching.

3.2 Reservoir Modeling

In this section, the 3D model geometry and discretization, rock and fluid proper-

ties, well specifications and completions data and other pertinent parameters used

to build the synthetic model are presented. Although the model is synthetic but

the values of the parameters are based on real field data. The reservoir modeling

was done using Eclipse commercial simulator.

3.2.1 Reservoir Discretization

This part of the modeling goes to the ”GRID” section of the Eclipse input file.

The model has a rectangular geometry with the size 10000 ft x 8000 ft x 300

ft. The reservoir was discretized into 6000 (50 x 40 x 3) grid cells with each

cell having a dimension of 200 ft x 200 ft x 100 ft. The method of solving the

pressures and saturations in the grid cells is fully implicit. The top of the reservoir

is at a depth of 7000 ft.
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3.2.2 Reservoir Rock Properties

This part goes to the ”PROPS” section of the Eclipse input file. The permeability

and porosity of the reservoir rock were obtained by geostatistical modeling dis-

cussed above. The permeability is assumed anisotropic such that its value in the

z-direction equals half of its value in the x-direction and the permeability in the

x and y directions are equal. The rock compressibility is presented in Table 3.3.

Table 3.3: Rock compressibility.

Pref (psia) Cr(psia
−1)

5801.5 2.8 x 10−6

3.2.3 Reservoir Fluid Properties

This part also goes to the ”PROPS” section. The reservoir fluids are oil, water,

dissolved gas and dry gas (gas cap). The reservoir has no aquifer connected to it.

The fluid properties are presented in Tables 3.4 to 3.9.

Table 3.4: PVT properties of live oil.

Rso(Mscf/stb) P (psia) Bo(bbl/stb) µo(cp)

0.137 250.0 1.274 0.107

0.368 500.0 1.459 0.094

0.433 570.3 1.510 0.091

0.449 587.8 1.523 0.090

Continued on next page.
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Table 3.4 – Continued from previous page.

Rso(Mscf/stb) P (psia) Bo(bbl/stb) µo(cp)

0.466 605.4 1.536 0.089

0.500 640.5 1.562 0.088

781.1 1.548 0.091

1062.2 1.522 0.096

1500.0 1.489 0.105

1783.8 1.471 0.111

2000.0 1.458 0.115

2500.0 1.433 0.124

3035.7 1.410 0.134

3400.0 1.397 0.141

0.642 781.1 1.674 0.083

0.973 1062.2 1.934 0.073

1500.0 1.871 0.081

1783.8 1.838 0.085

2000.0 1.816 0.089

2500.0 1.773 0.097

3035.7 1.735 0.105

3400.0 1.714 0.111

1.686 1500.0 2.508 0.060

Continued on next page.
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Table 3.4 – Continued from previous page.

Rso(Mscf/stb) P (psia) Bo(bbl/stb) µo(cp)

1783.8 2.437 0.064

2000.0 2.392 0.067

2500.0 2.309 0.074

3035.7 2.240 0.081

3400.0 2.202 0.086

2.403 1783.8 3.107 0.052

2000.0 3.025 0.055

2500.0 2.881 0.061

3035.7 2.770 0.067

3400.0 2.709 0.071

5.000 3300.0 3.500 0.041

3400.0 3.460 0.042

Table 3.5: Fluid density.

ρo(Ib/ft
3) ρw(Ib/ft3) ρg(Ib/ft

3)

42.28 62.43 0.0971
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Table 3.6: PVT properties of dry gas.

P (psia) Bg(Mscf/stb) µg(cp)

250.0 12.651 0.012

500.0 6.076 0.013

570.3 5.662 0.013

587.8 5.558 0.013

605.4 5.455 0.013

640.5 5.248 0.013

781.1 4.420 0.013

1062.2 3.413 0.014

1500.0 2.037 0.016

1783.8 1.494 0.018

2000.0 1.326 0.019

2500.0 1.073 0.023

3035.7 0.916 0.026

3400.0 0.845 0.029

Table 3.7: PVT properties of water.

Pref (psia) Bw(bbl/stb) Cw(psia−1) µw(cp) νw

3118 1.013 2.7 x 10−6 0.4 0.0
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Table 3.8: Oil-water saturation.

Sw Krw Krow Pcow(psia)

0.20 0.000 0.900 50.0

0.22 0.000 0.803 45.0

0.30 0.001 0.487 25.0

0.40 0.009 0.221 12.5

0.50 0.045 0.078 6.3

0.60 0.154 0.014 2.5

0.70 0.387 0.001 1.3

0.73 0.480 0.000 1.1

0.80 0.800 0.000 0.8

1.00 1.000 0.000 0.0
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Table 3.9: Oil-gas saturation.

Sg Krg Krog Pcog(psia)

0.00 0.000 0.900 0.0

0.06 0.000 0.525 0.0

0.10 0.000 0.375 0.0

0.14 0.000 0.213 0.0

0.19 0.002 0.106 0.0

0.24 0.006 0.042 0.0

0.29 0.013 0.011 0.0

0.33 0.035 0.001 0.0

0.37 0.061 0.000 0.0

0.80 0.900 0.000 0.0

3.2.4 Reservoir Equilibration

This subsection goes to the ”SOLUTION” section of Eclipse input file. The initial

state of the reservoir is given in Tables 3.10 and 3.11.
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Table 3.10: Reservoir initial state.

Equilibration parameter Value

Datum depth, ft 7000

Datum pressure, psia 3400

Oil-water contact depth, ft 7285

Gas-oil contact depth, ft 7050

Oil-water capillary pressure, psia 0

Table 3.11: Variation of initial solution gas-oil ratio with depth.

Depth (ft) Rso(Mscf/stb)

6000 0.77

8000 0.77

These parameters are used by Eclipse to estimate the initial pressures and

saturations in all the grid cells.

3.2.5 Well and Completion Specifications

This subsection goes to the ”SCHEDULE” section of the Eclipse input file. A

total of fifteen vertical wells are strategically placed in the reservoir to give high

sweep efficiency. There are ten producers and five injectors. The wells information

are presented in Table 3.12.
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Table 3.12: Well information.

Well name Well type x-coordinate y-coordinate Completion layer Phase

P1 producer 3 37 2 oil

P2 producer 20 34 2 oil

P3 producer 35 36 2 oil

P4 producer 15 22 2 oil

P5 producer 30 25 2 oil

P6 producer 45 29 2 oil

P7 producer 5 7 2 oil

P8 producer 22 20 2 oil

P9 producer 27 5 2 oil

P10 producer 43 18 2 oil

I1 injector 11 32 3 water

I2 injector 24 30 3 water

I3 injector 38 27 3 water

I4 injector 12 15 3 water

I5 injector 35 16 3 water

The producers are completed in the second layer (oil zone) while the injectors

are completed in the third layer (water zone). All wells have a diameter of 0.625

ft and zero skin.
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3.2.6 Well Constraints for Producers

This part goes to the ”SCHEDULE” section of the Eclipse input file. Each pro-

duction well is open for production and primarily controlled by an oil rate target of

700 stb/day. Each producer is secondarily controlled by a minimum bottom-hole

pressure of 2000 psia.

3.2.7 Well Constraints for Injectors

This part goes to the ”SCHEDULE” section of the Eclipse input file. All injection

wells are water injectors. Each of the injectors is primarily controlled by a bottom-

hole pressure target whose maximum value is set at 5500 psia. The maximum

surface flow rate for each injector is 4200 stb/day.

3.2.8 Time Step and Report Time

This subsection goes to the ”SCHEDULE” section of the Eclipse input file. The

minimum and maximum length of the next time step is 0.1 day and 1 day respec-

tively. Maximum length of all time steps after the next is 5 days. The minimum

and maximum number of Newton iterations in a time step are defaulted. Simula-

tion is done for 10 years starting from November 01, 2011 to October 31, 2021.

3.2.9 History Production Data

The synthetic true reservoir model was used to generate production data. Water

cut was reported from the ten production wells at the end every month for a period
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of ten years. Each well reports 121 water cut data points for the entire simulation

period (making a total of 1210 water cut data points for all the production wells).

In real life, history production data are measured in the field and measurements

are prone to noise. Therefore, Gaussian noise was added to the water cut to

simulate field measurement as follows:

dmeas = Wc +Wc

(
~R
√
Nsr

)
(3.1)

where Wc is the reported water cut; Nsr is the noise-to-sound ratio which equals

10−6; R is the vector of N normally distributed random numbers and dmeas is the

noisy water cut.

The noisy water cut is taken as the measured data to be matched in the history

matching process.

3.3 Implementation of History Matching

In this section, how both the gradient-based and global optimization algorithms

were applied in the GDM of history matching are presented. The true permeability

distribution of the synthetic reservoir is assumed to be unknown and will be

determined through GDM. The noisy water cut is also assumed to be the available

history production data.

Thus, in the history matching process, the noisy water cut was matched to
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estimate the permeability distribution of the reservoir.

3.3.1 Realizations

In this study, seven different realizations were considered. Each realization uses

a different random seed. The seed is used by the algorithm to generate random

numbers which are used for computations while it is running. With the same seed,

the same set of random numbers are generated every time the algorithm is run.

Also, for each realization, LM, DE, PSO and SA algorithms were used in GDM

to optimize the deformation parameters. The random seeds 0, 14807, 911, 111,

237, 4567, 2541 were used for Realizations 1 to 7, respectively.

3.3.2 Sample Application of GDM in History Matching

In this study, the fifteen permeability realizations (discussed in Chapter 3, Sub-

section 3.1.3) were transformed to standard normal score and linearly combined

to generate new Gaussian realizations using Equation 2.10.

The vector of mean is the kriged permeability. The number of elements in the

vectors of mean and the standard deviation is equal to the number of grid cells

in a layer of the synthetic model (that is, each grid cell has its own mean and

standard deviation). The same vectors of mean and standard deviation were used

in all the layers of the synthetic model.

In this work, each linear combination of two Gaussian realizations is regarded

as a deformation stage. In the first stage, ~K1 and ~K2 are Gaussian realizations
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selected from the fifteen Gaussian realizations. An optimization algorithm is used

to estimate ~x. The optimum ~x is that vector of deformation parameters that gave

the minimum OF in that stage. This optimum ~x is used to estimate the optimum

~K which is used as ~K1 in the second deformation stage and a new ~K2 is selected

from the pool based on the third random number. An optimization algorithm is

again used to estimate ~x. The optimum ~x is used to estimate the optimum ~K

which is used as ~K1 in the next deformation stage if and only if the minimum OF

in the second stage is less than that of the first stage, otherwise, the optimum

~K from the first deformation stage will be used as ~K1 in the current deformation

stage. A new ~K2 is selected from the pool based on the next random number and

the process continues in the cycle discussed above until all the fifteen Gaussian

realizations have been drawn. There is a total of fourteen deformation stages.

At the end of the 14th deformation stage, the ~K that gives the overall minimum

OF is the optimum permeability distribution of the synthetic reservoir model.

These procedures were repeated for each optimization algorithm used.

3.3.3 Deformation Parameters

The synthetic reservoir model was divided into sixty sub-regions with each sub-

region having one hundred grid cells and a deformation parameter assigned to it.

Hence, there are sixty parameters to be estimated by each of LM, DE, PSO and

SA algorithms. The lower and upper bounds for all the deformation parameters

are the natural logarithm of 10−3 and π in radians, respectively. The natural
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logarithm of these bounds have been used for effective optimization. Note that

whenever the deformation parameters are to be used to estimate the reservoir

permeability, the deformation parameters are first back-transformed to their real

values by computing their exponents.

3.3.4 Objective Function

Objective function (OF) was estimated as the sum of squares of the difference

between the simulated and measured water cut using Equation 2.15.

3.3.5 Sample Application of LM in GDM

LM algorithm is the gradient-based algorithm used in this study to estimate the

deformation parameters in GDM. Initial guess of the deformation parameters was

computed using their lower and upper bounds with the formulation below:

~x0 = ~lb + rand(Lx, 1) ∈ [0, 1](~ub −~lb) (3.2)

The deformation parameters are used to estimate the reservoir permeability which

is used generate simulated production data, dcal.

Sensitivity Coefficients Estimation

Sensitivity coefficients represent how the change in the design parameter (~x) af-

fects the reservoir response (for example, water cut). In this study, sensitivity

coefficients were estimated using the substitution method where each element of
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~x0 is perturbed and replaced with the new value in the ~x0. The new ~x0 is used

to estimate permeability. The estimated permeability is used to generate simu-

lated production data and a new OF, ~dycal is estimated. Sensitivity coefficients

are estimated with the formulation in Equation 3.3.

~S =
~dycal − ~dcal

dx
; (3.3)

Where dx = 5 x 10−3 and ~S is a vector of sensitivity coefficients. This process is

repeated for all the elements in ~x0 after which a sensitivity matrix is computed.

The N x D matrix was computed by multiplying each ~S by its corresponding

element in ~x0 before the perturbation. The new ~S for all the elements in the

perturbed ~x0 are placed in the columns that correspond to the location of the

elements to form the sensitivity matrix, Sm.

Gradient Estimation

The gradient of the OF was estimated using Equation 2.16. Its length is D.

Hessian Estimation

The LM algorithm Hessian is computed using Equation 2.26. Its dimension is D

x D.
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Line Search

The line search approach involves finding a descent direction along which the OF

will be reduced and then estimates a step size that determines how far ~x should

move along that direction.

Inexact line search can be performed by using backtracking line search or the

Wolfe conditions. Strong Wolfe conditions given in Equations 3.4 and 3.5 were

adopted in this study.

∣∣∣Φ(~x+ ~s ~δx)
∣∣∣ ≤ ∣∣∣Φ(~x) + b1~s(~g(~x)T ~δx)

∣∣∣ (3.4)

∣∣∣~g(~x+ ~s ~δx)
T ~δx
∣∣∣ ≤ b2

∣∣∣~g(~x)T ~δx
∣∣∣ (3.5)

Where constants b1 and b2 are 10−5 and 0.9, respectively. Equations 3.4 and 3.5 are

the sufficient decrease (or Armijo rule) and the curvature conditions, respectively

which any descent direction and step size to be used must satisfy.

1. Descent direction

The descent direction can be computed by various methods, such as gradient

descent, Newton’s method and Quasi-Newton method. Newton’s method

was adopted in this study. The resulting linear system of equations (see

Equation 2.27) from Newton’s method can be solved by various factoriza-
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tions or iterative methods. In this work, it was solved using a MATLAB

in-built function ”linsolve” to estimate the descent direction, δ~x. The func-

tion solves a linear system of equations using LU factorization with partial

pivoting when H is square matrix and QR factorization with column piv-

oting otherwise. Since H is a square matrix, LU factorization with partial

pivoting was used.

This search direction is expected to be a descent one but if not, it is forced

to be as follows:

Firstly, the directional derivative, p of the gradient is estimated

p = δ~xT~g(~x) (3.6)

If p is non-negative, then

δ~x = −δ~x (3.7)

The estimated search direction was used to update the ~x0 to minimize the

OF.

2. Step size

Line search is done to determine the step size to move in the descent di-

rection. Its lower and upper bounds are 10−15 and 1015 respectively. It is
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initialized as 1 and subsequently adjusted within its bounds until a step size

that satisfies the strong Wolfe conditions is obtained.

The step size as well as the corresponding OF are updated as the line search

approach is repeated in a loop until a maximum of five function evaluations

is reached. The best step size is the step size that gives the least OF and

also satisfy the curvature condition.

The best step size is used to update ~x0 using Equation 2.28

Damping Factor Estimation

After line search, the updated deformation parameters are used to estimate reser-

voir permeability which is then used to generate simulated production data and a

new OF is computed. The value of the damping factor is maintained at its initial

value of 10−2 if the OF decreases sufficiently. But if it reduces but not up to half

of its penultimate value, the damping factor is divided by 10. If the function does

not decrease at all, damping factor is updated by multiplying it by 10.

The algorithm runs for many iterations with the deformation parameters and

damping factor being updated accordingly until the stopping criteria is met.

3.3.6 Sample Application of DE in GDM

The DE algorithm was used to estimate the deformation parameters in GDM.

The concept of the algorithm is explained bellow.
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Population Initialization

DE algorithm being a global algorithm requires a population of candidate solutions

as initial guess. Since normally, a set of initial guess is a vector, therefore, a

population of it would be a matrix with each row of the matrix being a population

member. The number of population member, Np which is 16 is computed using

Equation 3.8.

Np = 4 + floor(3 ln (D)) (3.8)

Where Lx is the length of ~x. The word ”floor” is a command used by MATLAB

to round-off the value in the bracket down to the nearest whole number.

The population with size Np x D was computed using their lower and upper

bounds as in Equation 2.29. Each population member (target vector) was then

used to estimate permeability and OF is computed. The population member with

the least OF is the current best member and the least OF is the current best OF.

Mutation

The mutation of each population member is computed using the mutation variant

”DE/best/1 ” to generate a mutant vector. The mathematical formulation is given

in Equation 2.31. Where the differential weight, F = 0.85.
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Cross over

Crossover is done for each population member to generate a trial vector. The

elements of this vector would either come from the target vector or mutant vector.

To know which vector would donate to the trial vector, a vector of random numbers

between 0 and 1 is generated. The size of the vector is the same as that of the

trial and mutant vector. Each random number in the vector is compared with

the cross-over probability, CR = 0.95. If the first random number is less than CR,

first element in the mutant vector will cross-over to be the first element in the

trial vector, but if otherwise, the target vector element will cross-over to the trial

vector. The crossover process is repeated for all the elements in the target and

mutant vectors and subsequently for all the population members. This variant of

crossover is binomial.

Selection

In this part of the algorithm, the target or trial vector is selected to form the new

population. Selection is also done for each target vector and its corresponding

trial vector. They are used to estimate permeability and OF is computed. If the

OF value of the trial vector is less than that of the target vector, the trial vector

is selected, otherwise, the target vector is selected.

The mutation, crossover and selection processes are repeated for several iter-

ations until the stopping criterion for each deformation stage is met. During all

the computations, the overall best population member and OF are updated.
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3.3.7 Sample Application of PSO in GDM

The PSO algorithm was used to optimize the deformation parameters in GDM.

PSO algorithm also uses a population (swarm) of candidate solutions particles)

as initial guess.

Population initialization

The initialization of population in PSO algorithm was done exactly as discussed

in Subsection 3.3.6. Velocities of particles were initialized to zero.

Determine the Best Particle

Each particle of the population is used to estimate permeability and OF is es-

timated. The particle that gives the least OF is tagged the best particle in the

population with other particles still retaining their positions and OFs as the cur-

rent local best. The position and OF of the best particle are assigned the swarm’s

best position and OF.

Velocity Update

The particle’s velocity is updated using Equation 3.9.

~v = w~v + c1~r1(~p− ~x) + c2~r2(~q − ~x) (3.9)
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Where ~v is particle’s velocity, weight, w = 0.7, cognitive parameter, c1 = 1, and

social parameter, c2 = 1. ~p is the particle’s best position, ~q is the swarm’s best

position and ~x is the particle’s current position. ~r1 and ~r2 are vectors of randomly-

generated numbers between 0 and 1.

Position Update

The position of a particle is updated based on its local best position and the

swarm’s best position. This is done for every particle in the swarm using Equation

3.10.

~xiter+1 = ~xiter + ~viter (3.10)

It is ensured during the update that the new position does not fall below or

above the lower and upper bounds respectively. The new swarm is evaluated by

generating simulated production data and estimating the OF for all particles. If

the new OF of a particle is less than its old one, the new OF is updated as its

local best OF. The swarm’s best position and OF are updated accordingly. The

velocity and position updates are repeated for several iterations until the stopping

criterion for each deformation stage is met.
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3.3.8 Sample Application of SA in GDM

The SA algorithm was written in MATLAB programming language as an in-built

function. This function was used to estimate the deformation parameters in GDM.

Initial guess of the deformation parameters was computed using Equation 3.2.

SA Algorithm Options

These are some of the SA algorithm options (functions) adopted in this study.

Other option parameters are defaulted. Note that the functions are invoked by

putting ”@” in front of their names.

1. Annealing function

Annealing function is used to generate new ~x for the next iteration. The

names of the available function are:

(a) annealingfast : The step has length temperature, with direction uni-

formly at random. This is the default.

(b) annealingboltz : The step has length square root of temperature, with

direction uniformly at random.

(c) myfun: This function allows the user to update ~x using a custom an-

nealing algorithm, myfun.

The default annealing function was used in this study.

2. Temperature function
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Temperature function specify how the temperature will be lowered at each

iteration while the algorithm is running. The names of the available tem-

perature functions are:

(a) temperatureexp: This function updates the temperature schedule with

the formulation below. This is the default function.

T = 0.95γT0 (3.11)

(b) temperaturefast : This function updates the temperature schedule with

the formulation below.

T =
T0

γ
(3.12)

(c) temperatureboltz : This function updates the temperature schedule with

the formulation below.

T =
T0

ln (γ)
(3.13)

where T0 and T are the initial and current temperatures, respectively

and γ is the iteration number until re-annealing.
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(d) myfun: This function allows the user to update the temperature sched-

ule with a custom function, myfun.

In this study, the default temperature function was used.

3. Acceptance function

This function is used by the algorithm to determine if a new point is accepted

or not. The names of the available acceptance functions are:

(a) acceptancesa: This is the simulated annealing acceptance function and

also the default. It involves estimating an acceptance probability which

recommends whether the new ~x should be accepted or not. For exam-

ple, if the acceptance probability is

• 1 : the new ~x must be accepted (the new solution is better).

• 0 : the new ~x must be rejected (the new solution is infinitely worse).

• 0.5 : the new ~x may or may not be accepted.

The acceptance probability is given as:

1

1 + exp (∆Φ
T

)
(3.14)

Where ∆Φ is the difference between the new and old OF. Since T is al-

ways positive, larger ∆Φ leads to smaller acceptance probability. If ∆Φ

is negative which signifies reduction in OF, smaller temperature leads
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to higher acceptance probability. Once the probability is estimated, it

is compared to a randomly-generated number between 0 and 1.

(b) myfun: This function allows the user to define an acceptance condition

with a custom function, myfun.

The simulated annealing acceptance function was used in this study.

4. Initial temperature

Initial value of temperature, T0 = 300. The algorithm expands the scalar

initial temperature into a vector with same length as ~x.

5. Re-anneal interval

The re-anneal interval represents the number of ~x accepted before re-annealing.

Re-annealing interval of 100 was used in this study and this is the default.

Several iterations were run until the stopping criterion for each deformation stage

is met.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the results obtained from the geostatistical modeling, reservoir

modeling and the history matching process are presented.

4.1 Kriging

Figures 4.1, 4.2, 4.3 and 4.4 are the kriged porosity, kriged porosity variance,

kriged permeability and kriged permeability variance, respectively. The procedure

of kriging has been discussed in Chapter 3, Subsection 3.1.2. In Figures 4.2 and

4.4, the blue-colored zones indicate areas of low estimation (interpolation) error.

The low error is due to the fact that the eighty-five wells from which porosity and

permeability were measured are clustered around that area thereby increasing the

reliability of the interpolation.
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Figure 4.1: Porosity kriging.

Figure 4.2: Porosity kriging variance.
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Figure 4.3: Permeability kriging.

Figure 4.4: Permeability kriging variance.
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4.2 Stochastic Simulation

Figures 4.5 to 4.19 are the fifteen permeability realizations to be linearly combined

in the GDM of history matching. The process of obtaining these realizations has

been discussed in Chapter 3, Subsection 3.1.3.

Figure 4.5: Permeability realization 1.
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Figure 4.6: Permeability realization 2.

Figure 4.7: Permeability realization 3.
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Figure 4.8: Permeability realization 4.

Figure 4.9: Permeability realization 5.
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Figure 4.10: Permeability realization 6.

Figure 4.11: Permeability realization 7.
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Figure 4.12: Permeability realization 8.

Figure 4.13: Permeability realization 9.
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Figure 4.14: Permeability realization 10.

Figure 4.15: Permeability realization 11.
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Figure 4.16: Permeability realization 12.

Figure 4.17: Permeability realization 13.
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Figure 4.18: Permeability realization 14.

Figure 4.19: Permeability realization 15.
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4.3 Reservoir Modeling

In this section, the properties of the 3D synthetic model used in this study are

presented.

4.3.1 Well Locations

Figures 4.20 and 4.21 show the planar view of well locations with the true porosity

and the permeability distributions of the reservoir’s first layer, respectively.

Figure 4.20: Planar view of wells locations and porosity distribution.
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Figure 4.21: Planar view of wells locations and permeability distribution.

4.3.2 Reservoir Permeability and Porosity

Figures 4.22 and 4.23 are the true permeability and porosity fields of the 3D

synthetic reservoir model. In reality, the true permeability and porosity fields

of a reservoir are unknown. But the true permeability field shall be used for

comparison with the estimated permeability fields obtained from the algorithms

in all the realizations considered in this study.
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Figure 4.22: Reservoir true permeability distribution.

Figure 4.23: Reservoir true porosity distribution.
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4.4 History Matching

In this section, the outcomes of the history matching process in terms of how the

OF was reduced, how the measured water cut was matched and the optimized

permeability are presented. Only the best, the median and the worst realizations

for each algorithm out of the seven realizations are presented.

4.4.1 Objective Function Decay

Figures 4.24 to 4.26 show how the OF is reduced by the algorithms during op-

timization. The vertical axis represents the natural logarithm of the OF value.

This was used to show the distinction in the variability of the OF decay. Figure

4.24, 4.25 and 4.26 are the best, the median and the worst reduction of the OF

for all the algorithms, respectively. There was sharp decay at the beginning of the

optimization, as expected. The rate of decay however reduced as the optimization

approaches convergence. All the global algorithms reduced the OF lower than LM

algorithm at the end of the optimization.
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Figure 4.24: Best OF decay.

Figure 4.25: Median OF decay.

87



Figure 4.26: Worst OF decay.

4.4.2 Water Cut Match

Producer 1

Figures 4.27 to 4.29 show how the measured water cut in Producer 1 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.27, 4.28 and 4.29 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.27: Best match of water cut from Producer 1.

Figure 4.28: Median match of water cut from Producer 1.
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Figure 4.29: Worst match of water cut from Producer 1.

Producer 2

Figures 4.30 to 4.32 show how the measured water cut in Producer 2 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.30, 4.31 and 4.32 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.30: Best match of water cut from Producer 2.

Figure 4.31: Median match of water cut from Producer 2.
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Figure 4.32: Worst match of water cut from Producer 2.

Producer 3

Figures 4.33 to 4.35 show how the measured water cut in Producer 3 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.33, 4.34 and 4.35 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.33: Best match of water cut from Producer 3.

Figure 4.34: Median match of water cut from Producer 3.
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Figure 4.35: Worst match of water cut from Producer 3.

Producer 4

Figures 4.36 to 4.38 show the measured water cut in Producer 4 was matched by

the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.36, 4.37 and 4.38 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.

94



Figure 4.36: Best match of water cut from Producer 4.

Figure 4.37: Median match of water cut from Producer 4.
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Figure 4.38: Worst match of water cut from Producer 4.

Producer 5

Figures 4.39 to 4.41 show how the measured water cut in Producer 5 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.39, 4.40 and 4.41 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.39: Best match of water cut from Producer 5.

Figure 4.40: Median match of water cut from Producer 5.
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Figure 4.41: Worst match of water cut from Producer 5.

Producer 6

Figures 4.42 to 4.44 show how the measured water cut in Producer 6 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.42, 4.43 and 4.44 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.42: Best match of water cut from Producer 6.

Figure 4.43: Median match of water cut from Producer 6.
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Figure 4.44: Worst match of water cut from Producer 6.

Producer 7

Figures 4.45 to 4.47 show how the measured water cut in Producer 7 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.45, 4.46 and 4.47 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.45: Best match of water cut from Producer 7.

Figure 4.46: Median match of water cut from Producer 7.

101



Figure 4.47: Worst match of water cut from Producer 7.

Producer 8

Figures 4.48 to 4.50 show how the measured water cut in Producer 8 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.48, 4.49 and 4.50 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.48: Best match of water cut from Producer 8.

Figure 4.49: Median match of water cut from Producer 8.
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Figure 4.50: Worst match of water cut from Producer 8.

Producer 9

Figures 4.51 to 4.53 show how the measured water cut in Producer 9 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.51, 4.52 and 4.53 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.

104



Figure 4.51: Best match of water cut from Producer 9.

Figure 4.52: Median match of water cut from Producer 9.
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Figure 4.53: Worst match of water cut from Producer 9.

Producer 10

Figures 4.54 to 4.56 show how the measured water cut in Producer 10 was matched

by the simulated water cut obtained from the optimum solution of the algorithms.

Figure 4.54, 4.55 and 4.56 are the best, the median and the worst match of the

measured and simulated water cut from the optimum solution of the algorithms.
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Figure 4.54: Best match of water cut from Producer 10.

Figure 4.55: Median match of water cut from Producer 10.
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Figure 4.56: Worst match of water cut from Producer 10.

4.4.3 Estimated Reservoir Permeability

Figures 4.58 to 4.61 present the estimated reservoir permeability distribution ob-

tained from the best realization of LM, DE, PSO and SA algorithms, respectively.

To evaluate the performances of the algorithms in the estimation of the reservoir

permeability, L1 norm of the estimate was computed. The norm is a measure of

how close to the actual permeability is the estimated permeability. This implies

that the algorithm with the lowest norm is the most accurate in optimizing the

reservoir permeability. The L1 norm of permeability is:

knorm =
Σ |ln (kmeas)− ln (kest.)|

M
(4.1)
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Where kmeas and kest. are the true and estimated reservoir permeability distribu-

tion, respectively.

Figure 4.57: L1 norm of estimated reservoir permeability distribution.

Figure 4.57 presents the L1 norm of the estimated reservoir permeability dis-

tribution.

GDM + LM

In Figure 4.57, out of the seven realizations, GDM + LM gave the lowest norm of

reservoir permeability estimate in only Realization 5. Therefore, for this realiza-

tion, GDM + LM estimated the reservoir permeability most accurately.
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Figure 4.58: Optimum estimated permeability field from GDM + LM.

GDM + DE

In Figure 4.57, out of the seven realizations, GDM + DE gave the lowest norm

of permeability in only Realization 6. Therefore, for this realization, GDM + DE

estimated the reservoir permeability most accurately.

110



Figure 4.59: Optimum estimated permeability field from GDM + DE.

GDM + PSO

In Figure 4.57, out of the seven realizations, GDM + PSO gave the lowest norm

of permeability in Realizations 1 and 3. Therefore, for these realizations, GDM

+ PSO estimated the reservoir permeability most accurately.

111



Figure 4.60: Optimum estimated permeability field from GDM + PSO.

GDM + SA

In Figure 4.57, out of the seven realizations, GDM + SA gave the lowest norm of

permeability in Realizations 2, 4 and 7. Therefore, for these realizations, GDM +

SA estimated the reservoir permeability most accurately.
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Figure 4.61: Optimum estimated permeability field from GDM + SA.

In summary, GDM + SA performed best in 3 realizations (that is, Realizations

2,4 and 7), GDM + PSO performed best in 2 realizations (that is, Realizations

1 and 3), GDM + DE and GDM + LM performed best in only Realizations 6

and 5, respectively. It suffices to say that GDM + SA performed best overall in

estimating the reservoir permeability.

4.5 Evaluation Criteria

In this study, the performances of the optimization algorithms were evaluated

based on three criteria which are:

1. Effectiveness: This is a measure of how close to the true value of a parameter

is the estimated value. This implies that the algorithm whose estimated

parameter (that is, simulated water cut) is closest to the true value (that is,
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measured water cut) is the most effective and this is shown by the algorithm

with the lowest L1 norm. The L1 norm was computed as:

dnorm =
Σ |dmeas − dcal|

N
(4.2)

Figure 4.62: Measure of effectiveness of the optimizers.

Figure 4.62 presents the L1 norm of the simulated water cut from all the

producers. GDM + PSO gave the lowest L1 norm in all the realizations.

Thus, in this study, GDM + PSO is the most effective algorithm for history

matching purpose.

2. Efficiency: This refers to the number of function evaluations required to
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reach a particular value of the OF. In this study, the value of the function

used is 10% of its initial value. Thus, the algorithm that can reduce the OF

to 10% of its initial value with the least number of function evaluations is

the most efficient.

Figure 4.63: Measure of efficiency of the optimizers.

Figure 4.63 presents the number of time the OF was evaluated in order

to reduce the function to 10% of its initial value. GDM + PSO was able

to reduce the OF to 10% of its initial value with the lowest number of

function evaluations in Realizations 2, 3, 6 and 7. GDM + LM algorithm

was most efficient in Realization 1 while DE algorithm was most efficient in

Realizations 4 and 5. Thus, in this study, GDM + PSO is the most efficient

algorithm for history matching purpose.
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3. Reliability: This criterion is a measure of how often an algorithm is able to

reduce the OF to a preset value for different realizations considered in this

study. In this study, the preset value is 0.5. Thus, the algorithm that most

often reduce the OF to 0.5 in all the realizations is the most reliable.

Figure 4.64: Measure of reliability of the optimizers.

Figure 4.64 presents the OF value at the 4200th function evaluation. All the

global optimization algorithms were able to reduce the OF to 0.5 or below in

the seven realizations. GDM + LM was able to reduce the OF below 0.5 in

Realization 2 only. Thus, in this study, the global optimization algorithms

are more reliable than the gradient-based algorithm.
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CHAPTER 5

CONCLUSION AND

RECOMMENDATION

In this chapter, relevant conclusions based on the outcome of this study were

presented and possible recommendation for future research studies were given.

5.1 Conclusion

The following are the conclusions made from this study:

1. The GDM was adopted to history match the measured water cut in order

to estimate the reservoir permeability.

2. A gradient-based algorithm (LM) was used to estimate the deformation

parameters in GDM.

3. Three different global algorithms (DE, PSO, SA) were used separately to

estimate the deformation parameters in GDM.
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4. Seven realizations of the results were obtained.

5. In all the realizations, the global algorithms (DE, PSO and SA) were more

effective, efficient and reliable than the gradient-based algorithm (LM).

6. PSO algorithm was the most effective, most efficient and most reliable

amongst the global algorithms used in this study.

7. It has been established that using global optimization algorithms in GDM

gave better history matching than using gradient-based algorithm.

5.2 Recommendation

The following recommendations are proposed for future studies:

1. 3D dataset should be used for geostatistical modeling.

2. More permeability realizations should be linearly combined in GDM to en-

hance its convergence.

3. Other global optimization algorithms should be used in GDM.

4. Sensitivity analysis should be conducted for each algorithm to determine

the optimum parameter value to be used as well as the optimum number of

sub-regions the reservoir should be divided into.
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