

iii

© Ibrahim Ahmed Abdallah Nemer

2015

iv

 بسم الله الرحمن الرحيم

ْال عَالَمِينَْْقلُ ْ{ ِْرَبِّ يَايَْوَمَمَاتيِْلِِله ْصَلاتَيِْوَنُسُكِيْوَمَح }إنَِّ

 صدق الله العظيم

This Thesis is dedicated to

My Mother (Fatima)

Dear Father (Ahmed)

My Wife (Fida’)

My Sisters

My Brothers

My Friends

My Beloved People

My Holy Homeland Palestine

v

ACKNOWLEDGMENTS

In the name of Allah, the most gracious, the most merciful all praise is to almighty Allah

for having guided me all over my life. Acknowledgement is due to King Fahd University

of Petroleum and Minerals for the great support to this work. My deep appreciation is

reserved for thesis advisor Dr. Ali Al-Shaikhi for his guidance, valuable time and

attention he devoted throughout the course of this work. My numerous intrusions into his

office were always met with a considerable response and care. Thanks are also due to

committee members Dr. Ahmad A. Masoud and Dr. Samir Al-Ghadhban for their

interest, attention and suggestion. I wish also to thank all parties who have supported me

in this work. My great appreciations are also due to all members of my family and to

friends who give me the self-confidence to face the challenge.

vi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... V

TABLE OF CONTENTS ... VI

LIST OF TABLES ... X

LIST OF FIGURES .. XII

LIST OF ABBREVIATIONS ... XV

ABSTRACT .. XVII

 XIX .. ملخص الرسالة

CHAPTER ONE INTRODUCTION TO WIRELESS SENSOR NETWORKS 1

1.1 Background .. 1

1.2 WSNs ... 3

1.2.1 Architecture of the Node .. 3

1.2.2 Protocols in WSNs ... 6

1.2.3 Topologies in WSNs .. 7

1.3 Importance of Using WSNs and Some Applications ... 7

1.4 Types of Sensor Nodes ... 9

1.4.1 TinyOS Overview .. 10

1.4.2 Micaz Mote Platform .. 11

1.4.3 MIB520 USB Interface Board .. 12

1.5 WSNs in Harsh Environments .. 13

1.6 Summary .. 15

CHAPTER TWO TIME SYNCHRONIZATION IN WSNS...................................... 16

vii

2.1 Clock Model for the Sensor Node ... 16

2.2 Importance of Synchronization in WSNs .. 18

2.3 Time Synchronization Protocols ... 20

2.3.1 Tree Structure Protocols .. 21

2.3.2 Cluster Structure Protocols .. 25

2.3.3 Distributed Protocols .. 28

2.4 Comparison between Time Synchronization Protocols .. 35

2.5 Stopping Criterion ... 37

2.5.1 Literature on Different Stopping Criteria .. 38

2.5.2 Stopping Threshold ... 41

2.6 Thesis Contributions.. 42

CHAPTER THREE AVERAGING PROTOCOL .. 45

3.1 Averaging Protocol Concept ... 45

3.1.1 Description of Asynchronous Average Consensus Algorithm ... 47

3.1.2 Description of Synchronous Average Consensus Algorithm ... 48

3.2 Examples on this Protocol ... 50

3.2.1 Examples on Small Networks ... 50

3.2.2 Examples on Large Networks .. 54

3.3 Simulation Results ... 60

3.3.1 Simulation Results for Small Networks .. 62

3.3.2 Simulation Results for Large Networks .. 68

3.4 Practical Results ... 77

3.4.1 Practical Results for Small Networks .. 77

3.4.2 Practical Results for Large Networks ... 80

3.5 Summary .. 84

viii

CHAPTER FOUR STOPPING CRITERION ... 87

4.1 Stopping Criterion ... 87

4.2 Steady State Stopping Criterion ... 89

4.3 Proposed Stopping Criterion for the Dip Region .. 91

4.4 Simulation Results ... 101

4.4.1 Simulation Results for the Small Networks .. 101

4.4.2 Simulation Results for the Large Networks .. 106

4.5 Practical Results ... 116

4.5.1 Practical Results for the Small Networks.. 116

4.5.2 Practical Results for the Large Networks ... 119

4.6 Hardware Platform and Implementation Details for Real-world Experiments 121

4.6.1 4-Nodes Grid Topology ... 123

4.6.2 9-Nodes Grid Topology ... 125

4.6.3 16-Nodes Grid Topology ... 128

4.7 Comparisons and Tests of the protocol Under Various Scenarios .. 132

4.7.1 Summarized Simulation Results for Different Sizes (4, 9, and 16) ... 132

4.7.2 Summarized Practical Results for Different Sizes (4, 9, and 16) .. 135

4.7.3 Simulation vs. Practical Results for Different Sizes (4, 9, and 16) .. 136

4.7.4 Practical Results for Different Synchronization Protocols .. 139

4.7.5 Simulation Results for Changing the Initial Values/Different Runs 143

4.8 Summary .. 145

CHAPTER FIVE CONCLUSION: SUMMARY AND FUTURE WORK 147

5.1 Summary .. 147

5.2 Future Work... 150

REFERENCES .. 152

ix

APPENDIX .. 156

VITAE .. 158

x

LIST OF TABLES

Table 1-1 Technical specifications of Micaz mote .. 12

Table 1-2 Technical specifications of MIB520CB .. 13

Table 2-1 Capabilities for different protocols .. 33

Table 2-2 Average absolute errors in millisecond ... 41

Table 2-3 Convergence and accuracy results (1 tick equal to =1/32K=30.5µs) 42

Table 3-1 Specifications of the network .. 61

Table 3-2 Summarized data for 4-Nodes Grid Topology .. 64

Table 3-3 Summarized data for 4-Nodes Hexa Topology ... 66

Table 3-4 Summarized data for 4-Nodes Random Topology .. 68

Table 3-5 Summarized data for 9-Nodes Grid Topology .. 70

Table 3-6 Summarized data for 9-Nodes Hexa Topology ... 72

Table 3-7 Summarized data for 9-Nodes Random Topology .. 74

Table 3-8 Summarized data for 16-Nodes Grid Topology .. 75

Table 3-9 Summarized data for 16-Nodes Hexa Topology ... 76

Table 3-10 Summarized data for 16-Nodes Random Topology 77

Table 3-11 Summarized practical data for 4-Nodes Grid Topology 79

Table 3-12 Summarized practical data for 9-Nodes Grid Topology 81

Table 3-13 Summarized practical data for 16-Nodes Grid Topology 84

Table 4-1 Summarized Data of different filter sizes (W) for Grid network 95

Table 4-2 Optimized C values for different topologies and sizes 95

Table 4-3 Simulation outputs for 4-nodes Grid Topology... 101

Table 4-4 Simulation outputs for 4-nodes Hexa Topology ... 104

Table 4-5 Simulation outputs for 4-nodes Random Topology 105

Table 4-6 Simulation outputs for 9-nodes Grid Topology... 106

Table 4-7 Simulation outputs for 9-nodes Hexa Topology ... 109

Table 4-8 Simulation outputs for 9-nodes Random Topology 110

Table 4-9 Simulation outputs for 16-nodes Grid Topology... 111

Table 4-10 Simulation outputs for 16-nodes Hexa Topology 114

Table 4-11 Simulation outputs for 16-nodes Random Topology 115

Table 4-12 Practical outputs for 4-nodes Grid Topology .. 117

Table 4-13 Practical outputs for 9-nodes Grid Topology .. 120

Table 4-14 Practical outputs for 16-nodes Grid Topology .. 121

Table 4-15 Specification of the implementation part .. 123

Table 4-16 Practical Iteration and Error Values for 4-nodes .. 125

Table 4-17 Iteration and Error Values for 9-nodes .. 128

Table 4-18 Iteration and Error Values for 16-nodes .. 131

Table 4-19 Specifications of three protocols ... 140

Table 4-20 Number of iterations for different periods of 9-nodes................................. 144

xi

Table 4-21 Error value for different periods of 9-nodes .. 145

xii

LIST OF FIGURES

Figure 1-1 Architecture of Wireless Sensor Node ... 4

Figure 1-2 Structure of the Microcontroller... 4

Figure 1-3 Different type of sensors .. 5

Figure 1-4 Distribution of the sensor nodes ... 6

Figure 1-5 ZigBee and IEEE 802.15.4 protocols ... 7

Figure 1-6 Different topologies ... 7

Figure 1-7 List of WSN applications ... 9

Figure 1-8 Different types of sensor nodes .. 10

Figure 1-9 Micaz mote and the block diagram .. 11

Figure 1-10 Top view of MIB520CB .. 13

Figure 2-1 Clock time for the sensor node ... 17

Figure 2-2 Time Synchronization Protocols .. 21

Figure 2-3 WSN graph with the links (left). TPSN, FTSP (center). RBS: (right). 23

Figure 3-1 Continuous re-setting of node clock by consensus protocol 46

Figure 3-2 Flow chart of the Averaging Protocol .. 47

Figure 3-3 Network with N sensor nodes and L links ... 48

Figure 3-4 4-nodes with Grid Topology .. 50

Figure 3-5 4-nodes with Hexa Topology ... 52

Figure 3-6 4-nodes with Random Topology .. 53

Figure 3-7 9-nodes with Grid Topology .. 55

Figure 3-8 9-nodes with Hexa Topology ... 56

Figure 3-9 9-nodes with Random Topology .. 57

Figure 3-10 16-nodes with Grid Topology .. 58

Figure 3-11 16-nodes with Hexa Topology ... 59

Figure 3-12 16-nodes with Random Topology .. 60

Figure 3-13 Pseudo code of the Averaging Protocol .. 61

Figure 3-14 Time values for each node in 4-Nodes Grid Topology 63

Figure 3-15 Error values for each node in 4-Nodes Grid Topology 63

Figure 3-16 Time values for each node in 4-Nodes Hexa Topology 65

Figure 3-17 Error values for each node in 4-Nodes Hexa Topology 65

Figure 3-18 Time values for each node in 4-Nodes Random Topology.......................... 67

Figure 3-19 Error values for each node in 4-Nodes Random Topology.......................... 67

Figure 3-20 Time values for each node in 9-Nodes Grid Topology 69

Figure 3-21 Error values for each node in 9-Nodes Grid Topology 69

Figure 3-22 Time values for each node in 9-Nodes Hexa Topology 71

Figure 3-23 Error values for each node in 9-Nodes Hexa Topology 71

Figure 3-24 Time values for each node in 9-Nodes Random Topology.......................... 73

Figure 3-25 Error values for each node in 9-Nodes Random Topology.......................... 73

xiii

Figure 3-26 Time values for each node for a 4-Nodes Grid Topology 78

Figure 3-27 Error values for each node for a 4-Nodes Grid Topology 79

Figure 3-28 Time values for each node for a 9-Nodes Grid Topology 80

Figure 3-29 Error values for each node for a 9-Nodes Grid Topology 81

Figure 3-30 Time values for each node in 16-Grid Topology ... 82

Figure 3-31 Error values for each node in 16-Grid Topology ... 83

Figure 4-1 SC Concept... 88

Figure 4-2 Error Curve... 89

Figure 4-3 Flow chart of the modified SS-SC ... 90

Figure 4-4 Mathematical representation of the modified absolute SC 91

Figure 4-5 Flow Chart of the propose SC .. 93

Figure 4-6 Cost function for 9-nodes with Grid Distribution .. 96

Figure 4-7 Filter in time domain with C = 1 .. 97

Figure 4-8 Filter in frequency domain ... 97

Figure 4-9 Response of the rectangular pulse .. 98

Figure 4-10 Block Diagram of the Dip SC .. 99

Figure 4-11 Maximum and Average detected iterations by the 2-Filters 100

Figure 4-12 Maximum and Average error values for the 2-Filters 100

Figure 4-13 Simulation Error and the stopping locations for node 1 in 4-Grid 102

Figure 4-14 Simulation Error and the stopping locations for node 2 in 4-Grid 103

Figure 4-15 Simulation Error and the stopping locations for node 3 in 4-Grid 103

Figure 4-16 Simulation Error and the stopping locations for node 1 in 9-Grid 107

Figure 4-17 Simulation Error and the stopping locations for node 2 in 9-Grid 108

Figure 4-18 Simulation Error and the stopping locations for node 3 in 9-Grid 108

Figure 4-19 Simulation Error and the stopping locations for node 1 in 16-Grid 112

Figure 4-20 Simulation Error and the stopping locations for node 2 in 16-Grid 113

Figure 4-21 Simulation Error and the stopping locations for node 3 in 16-Grid 113

Figure 4-22 Practical error curve and the stopping locations for node 1 in 4-Grid 118

Figure 4-23 Practical error curve and the stopping locations for node 2 in 4-Grid 118

Figure 4-24 Practical error curve and the stopping locations for node 3 in 4-Grid 119

Figure 4-25 Real Time implementation for 4-nodes... 123

Figure 4-26 Practical Time Values for each node in 4-Grid .. 124

Figure 4-27 Practical Error Values for each node in 4-Grid .. 124

Figure 4-28 Real Time implementation of 9-nodes ... 126

Figure 4-29 Practical Time Values for each node in 9-Grid .. 126

Figure 4-30 Practical Error Values for each node in 9-Grid .. 127

Figure 4-31 Real Time implementation of 16-nodes ... 129

Figure 4-32 Practical Time Values for each node in 16-Grid .. 129

Figure 4-33 Practical Error Values for each node in 16-Grid .. 130

Figure 4-34 Deviation error for Grid Topology ... 133

xiv

Figure 4-35 Deviation error for Hexa Topology .. 134

Figure 4-36 Deviation error for Random Topology .. 135

Figure 4-37 Deviation error for the practical results ... 136

Figure 4-38 Simulation and practical deviation error for 4-nodes Grid 137

Figure 4-39 Simulation and practical deviation error for 9-nodes Grid 138

Figure 4-40 Simulation and practical deviation error for 16-nodes Grid 139

Figure 4-41 Average error curve of different protocols with 9-Grid nodes 141

Figure 4-42 Maximum error curve of different protocols with 9-Grid nodes 141

Figure A-1 Averaging Protocol with Steady State Stopping Criterion 156

Figure A-2 Averaging Protocol with Dip Stopping Criterion 157

xv

LIST OF ABBREVIATIONS

WSN: Wireless Sensor Network.

AP: Average Consensus Time Synchronization Protocol.

DSN: Distributed Sensor Networks.

DARPA: Defense Advanced Research Projects Agency.

ARPANET: Advanced Research Projects Agency Network.

FPGA: Field Programmable Gate Arrays.

ADC: Analog to Digital Converter.

RAM: Random Access Memory.

I/O: Input/Output.

SPI: Serial Peripheral Interface.

DC: Direct Current.

IEEE: Institute of Electrical and Electronics Engineers.

MAC: Medium Access Control.

NesC: Network embedded systems C.

TinyOS: Tiny Operating System.

USB: Universal Serial Bus.

EM: Electro Magnetic.

API: Application Programming Interface.

TDMA: Time Division Multiple Access.

TPSN: Time-synchronization Protocol for Sensor.

FTSP: Flooding Time Synchronization Protocol.

LTS: Lightweight Tree-based Synchronization.

DMTS: Delay Measurement Time Synchronization.

FBS: Feedback-Based Synchronization.

xvi

NTP: Network Time Protocol.

CPU: Central Processing Unit.

PI: Proportional Integral.

PBS: Pairwise Broadcast Synchronization.

RBS: Reference Broadcast Synchronization.

HRTS: Hierarchy Referencing Time Synchronization.

PCS: Probabilistic Clock Synchronization.

ITR: Individual Time Request.

CCS: Consensus Clock Synchronization.

TDP: Time Diffusion Protocol.

RFA: Reachback Firefly Algorithm.

GTSP: Gradient Time Synchronization Protocol.

EGSyn: External Gradient Time Synchronization Protocol.

ATS: Average Time-Sync Protocol.

MTS: Maximum Time Synchronization Protocol.

WMTS: Weighted Maximum Time Synchronization Protocol.

TSMA: Time synchronization Protocol using the maximum and average values.

EGTSP: Energy-Efficient Gradient Time Synchronization Protocol.

DTSC: Distributed Time Synchronization Protocol.

PLLs: Phase Locked Loop.

SC: Stopping Criterion.

2LTSP: Long Term and Large Scale Time Synchronization Protocol.

DSSS: Direct Sequence Spread Spectrum.

O-QPSK: Orthogonal Quadrature Phase Shift Keying.

UTC: Coordinated Universal Time.

xvii

ABSTRACT

Full Name : Ibrahim Ahmed Abdallah Nemer

Thesis Title :
A Distributed Time Average Synchronization Protocol for

Wireless Sensor Networks

Major Field : Telecommunication

Date of Degree : May 2015

The exact and effective operation for most WSN applications need synchronized notion

of time. In this thesis, we introduce a new control distributed time synchronization

protocol, called Average Consensus Time Synchronization Protocol (AP), in respect of

synchronizing the sensor nodes in Wireless Sensor Networks (WSNs). AP protocol is

based on simple operations: sum and division to evaluate the average time of the

neighbours for each node in every communication cycle; this update for each cycle is

represented by an iterative process. Our aim is to stop this process at the minimum error

with less number of communication cycles; since the error curve of each node for this

protocol has two regions: Dip and Steady State regions, where the minimum errors;

locate in the dip region. So, we propose a stopping creation that consists from filtration

stage that tracks the local time values and detects the minimal value, and then stops at

this value for each node. We present an evaluation of this strategy on a testbed setup

including 9 and 16 Micaz sensor nodes to highlight the benefits of this approach in terms

of improved dip error and scalability as compared to existing synchronization protocols.

We show through real-world experiments and MATLAB simulations that AP protocol

has multiple advantages over the previous protocols that mentioned in the literature, as

using only local information, simple with little communication overhead, the code size of

xviii

this protocol is independent on the network size and topology, scalable, power efficient

and less error value with less communication cycle.

xix

 ملخص الرسالة

ْ
ْ

 إبراهيمْأحمدْعبدْاللهْنمرْ الاسمْالكامل:
ْ

ْية.ْْلكاتْالاستشعارْاللاسكبشلْعنْطريقْحسابْمتوسطْالزمنْللتوافقْالزمنيْبروتوكولْفعال عنوانْالرسالة:
ْ

 اتصالات.ْ–هندسةْكهربائيةْْالتخصص:
ْ

2015ْأيارْْتاريخْالدرجةْالعلمية:

اك العمليات الدقيقة و الفعالة لمعظم التطبيقات في شبكات الاستشعار اللاسلكية يحتاج أن يكون هن

في هذه الرسالة نقدم برتوكول جديد للتحكم .جميع عقد الاستشعارتزامن لعامل الوقت في عمل

بتوافق الزمن ويطلق على هذا البروتوكول بروتوكول متوسط اجماع التوافق الزمني، فيما يتعلق

هذا البروتوكول يعتمد على عمليات بمزامنة عقد الاستشعار في شبكات الاستشعار اللاسلكية.

ساب متوسط الزمن لجميع العقد المجاورة لكل عقدة على حدة في كل بسيطة: كالجمع و القسمة لح

عملية تكرارية. هدفنا هو كيفية التوقف دورة اتصال؛ هذا التحديث في قيمة الزمن لكل دورة يتمثل ب

عند أقل قيمة خطأ و بأقل عدد من الدورات؛ و تمثيل الخطأ في الزمن لكل عقدة يحتوي على

و منطقة الثبات، و أقل نسبة خطأ تقع دائما في منطقة الانحراف. لذلك، منطقتين: منطقة الانحراف

نقدم طريقة للتوقف عند هذه قيم الأقل خطأ، و هذه الطريقة تتكون من مرحلة الترشيح التي تعمل

و .عملية التحديث عندهاعلى فحص قيم الزمن في كل دورة حتى تجد القيم الأقل خطأ و تتوقف

عقدة استشعار لنرى 16و 9نعرض في هذه الرسالة تقييما تجريبيا لهذا البروتوكول باستخدام

اهمية هذا البرتوكول اعتمادا على قيمة الخطأ و امكانية زيادة حجم الشبكة مع فعالية هذا

و أيضا نعرض بالإضافة للتجارب محاكاة باستخدام برنامج الماتلاب لدراسة البروتوكول.

وتوكول بشكل معمق و مقارنته بما هو موجود بالسابق، اعتمادا على الزمن المحلي لكل عقدة، البر

بسيط مع قليل من الضغوط على العقد وقت العمل، حجم البرنامج لا يعتمد على حجم الشبكة و

 و أقل استهلاك للطاقة بأقل قيمة خطأ و أقل عدد من الدورات.توزيعها، قابل لزيادة حجم الشبكة،

1

1 CHAPTER ONE

Introduction to Wireless Sensor Networks

This chapter is an introduction to wireless sensor networks (WSNs). First, it shows the

flow of the communication systems; starting with the wired networks and then wireless

networks. Additionally, it compares the two networks and shows why the wireless

network is more suitable and preferable in the communication system over the wired

networks. After that, it introduces the sensor network in wireless communication. Also it

shows the construction of sensor network (SN) and the main advantages and

disadvantages of using WSNs. Next, it shows some of the network applications,

topologies, types, and investigates the harsh environments in WSNs.

1.1 Background

Each day comes with a tremendous improvement and development in the wireless

communication technology and thus the wireless market is growing rapidly. As the

demandgrows,thecustomers’expectations raise the leading to an equivalent increase in

the future challenges. The wireless technology is expanded beyond voice applications to

include many other types of applications such as mobile e-commerce, real-time internet,

audio and as well as those can respond to the changing demands and also make the

human life safer, more accurate and easier.

2

Due to the fact that this technology has passed many magnificent steps and proved its

efficiency, researchers and engineers decided that sensor nodes need to be used in this

technology. This conclusion came up because sensor nodes have the ability to sense

different physical environments and convert the information into processable data that

can be used in various systems to provide information and/or even act depending on the

information that the sensor nodes have provided to the overall network. The required

information received from various remote places at which physical transmission lines are

not reliable or sometimes almost impossible such as a volcano, underwater and

unpopulated areas. This called to the need for an efficient wireless communication

system that provides accessibility to harsh environments. The solution is based on

wireless networks that can transmit information efficiently and effectively. This is

achieved by employing these types of networks that can provide information about

physical or environmental conditions using various WSNs.

The first generation of WSNs returns to the Distributed Sensor Networks (DSN) project

of the Defense Advanced Research Projects Agency (DARPA) in 1980. After that,

ARPANET (Advanced Research Projects Agency Network) constructed a group from

200 hosts through universities and research centers around the world. DSN project were

searched to achieve a network with multiple sensor nodes that communicate with each

other with less cost. WSNs faced some challenges in the 21
th

 century because of the need

of reliable power supplies like that incorporated in the traditional wireless systems. This

means that it is inefficient to use the predefined wireless protocols and algorithms

because these networks require a reliable power supply which is absent in WSNs. Due to

3

this fact, researchers were motivated to introduce different protocols that consider energy,

time and security as important parameters in WSNs.

WSNs are used in the numerous sensitive applications such as health, military, home,

environments, and industrial. However, itisthetaskoftoday’s researchers to increase the

WSNs’abilitytosupport high data rate, low power consumption, security, and reliability.

These goals can be discussed from different points of view since WSNs depend on

variable parameters and conditions that are involved in routing, synchronization and data

transmission protocols.

1.2 WSNs

1.2.1 Architecture of the Node

WSNs consist of multiple devices called sensor nodes that spread over the required area.

The distribution of these nodes depends on the application and the required coverage

area. Usually, the network may contain small number of sensor nodes or large number up

to hundreds of sensor nodes. Each of these sensor nodes consists of transducer or sensor,

radio transceiver with wireless capabilities, low complexity processing units, and power

supply supported with recharging capabilities or contains harvesting device. Every node

consists of sensing, processing, communication, and power subsystems as shown in

Figure 1-1.

4

Figure 1-1 Architecture of Wireless Sensor Node

The processor subsystem is the central element in WSN and the choice of a processor

specifies the tradeoff between flexibility and efficiency which is related to energy and

performance. The processors have many components which include: microcontrollers,

digital signal processors, application-specific integrated circuits, and field programmable

gate arrays (FPGA) as shown in Figure 1-2.

Figure 1-2 Structure of the Microcontroller

The sensing subsystem consists of more than one analog sensor as shown in Figure 1-3.

Sensors are equipped with an analog or digital output for reading the sensor values. Some

of these sensors have their own built-in analog-to-digital convertor (ADC) which can be

directly connected with the processor through a standard chip-to-chip protocol.

5

Most of microcontrollers have one or more internal ADCs to interface the analog devices.

Modern microcontrollers integrate flash storage, RAM, ADC, and digital I/O onto a

single integrated circuit. When selecting a microcontroller family, many factors should be

considered such as energy consumption, support for peripherals, voltage requirements,

cost, and number of external components required.

Figure 1-3 Different type of sensors

The communication subsystem connected to the processor subsystem by using the serial

port interface (SPI) bus. The communication subsystem is the most energy intensive

subsystem and the power consumption should be managed. Most of the commercially

available transceivers provide a controlling functionality to switch the transceiver

between various operation levels such as active, idle and sleep state.

The power subsystem provides the direct current (DC) power to all subsystems and their

components. This subsystem comprises the energy storage, voltage regulation, and

optionally energy scavenging unit. The energy is usually stored inside a primary battery.

Additionally, some equipment could help in providing energy to the sensor nodes to

increase the life time of the network such as those equipment that are exposed to the sun

in order to provide power supply to the system.

6

1.2.2 Protocols in WSNs

Generally, sensor nodes collect and process the data that are sensed from the surrounding

area. This data can be transmitted to a base station or sink node in a centralized network,

or can be processed rather than sending it to the base station as in distributed network as

shown in Figure 1-4. Different kinds of communication channels such as microwave,

radio links and satellite links can be used to transmit and extract the acquired data from

the WSNs [1].

Figure 1-4 Distribution of the sensor nodes

There are different standards that use in WSNs like: IEEE 802.15.4 and ZigBee as

described in Figure 1-5. IEEE 802.15.4 standard used in low data rate networks that

cover small area. It is a power and efficient standard. ZigBee operates at low data rate

and low power consumption. For upper layers (application and network), ZigBee is

considered as the main protocol, while for the lower layers (MAC and physical) IEEE

802.15.4 is considered as the main protocol.

7

Figure 1-5 ZigBee and IEEE 802.15.4 protocols

1.2.3 Topologies in WSNs

WSNs can be categorized in two types. The first one is centralized networks, while the

second one is distributed networks. Similarly, the sensor nodes in WSNs can be deployed

in different topologies depending on the used application. For example, linear, random,

grid, and ring topologies as indicated in Figure 1-6. Each topology designs to serve a

specific purpose in WSNs.

Figure 1-6 Different topologies

1.3 Importance of Using WSNs and Some Applications

There are different factors that force designers to use WSNs frequently in the

communication/networking part such as:

8

 Network with less energy consumption.

 Monitoring area with no infrastructure.

 Reducing the cabling costs.

 Flexibility, deployment and scalability.

WSNs are usually designed with the main purpose of measuring different physical

variables or tracking events in different fields such as military, automation and civil

applications (monitoring and tracking animals and humans), battlefield surveillance,

monitoring the forests against fire outbreaks. They are also applied for different alarming

systems in monitoring the oil and gas lines as well as detecting lines leakages. In addition

to home automation and health care applications [1-3] as in Figure 1-7, there are other

applications that are using WSNs such as:

 Metrological monitoring that studies and supervises storms, flooding, volcanoes, and

weather forecast.

 Geological monitoring that studies several geological phenomena that have a future

look about the disasters that may happen such as landslide, earthquake, and

volcanoes.

 Pollution monitoring that gives speed, accuracy, and can specify the exact place of

the pollutions including water pollution, noise pollution, and radioactive.

 Energy monitoring that deals with reducing the wasted energy.

9

 Health care monitoring that uses different sensors such as: blood pressure sensors,

skin temperature sensors, and blood oxygen level sensors.

Figure 1-7 List of WSN applications

In some of these applications such as data fusion, human and animal tracking, speed

estimation, the network needs to know the time of all nodes in order to determine the

time occurrence of the events. Exact values of time can help in saving the energy by

reducing the guard times that are attached to the transmitted packets among nodes. This is

mainly true for the networks that use duty-cycling techniques and switch off the radio to

reduce the energy consumption.

1.4 Types of Sensor Nodes

There are different types of sensor nodes that had been invented during the previous 20

years up to now. Each type has different properties that differ from one to other type such

10

as range, frequency, data rate, cost…etc. Figure 1-8 shows some of these sensor nodes

and their specifications.

Figure 1-8 Different types of sensor nodes

There are different sensor nodes that are used in the research fields, such as Micaz,

TelosB and IRIS. These nodes share the same operating system (TinyOS) and they use

nesC language for implementing WSN application. Mica node consists from three main

components they are; MPR2400 (Micaz mote), MIB520 gateway, and sensing boards.

The following sections describe the hardware and software parts of the Micaz node.

1.4.1 TinyOS Overview

TinyOS is an event driven operating system designed for low-power wireless devices,

specifically for sensor networks. TinyOS is written in nesC language like C programming

language that is designed for structured component based applications. Applications that

are written in nesC language are built using interfaces and components that encourage the

11

hardware abstraction and reuse. Components are wired together using the configuration

modules that link specific implementation to dependencies. Using this approach reduces

the application program size and overall memory, which is usually a priority for

embedded devices.

The TinyOS operating system is an open source and it is developed and supported by

different companies and universities. TinyOS supports different platforms including the

Micaz mote. Each new release of TinyOS adds new support directory for wireless sensor

based platforms.

1.4.2 Micaz Mote Platform

Figure 1-9 Micaz mote and the block diagram

Micaz is the latest generation of motes from Memsic. Figure 1-9 shows Micaz mote

which is composed of different hardware components such as processor, radio

transceiver, and external flash (logger). The MPR2400 (2400 MHz to 2483.5 MHz band)

uses the Chipcon CC2420, IEEE 802.15.4 compliant and ZigBee ready radio frequency

transceiver integrated with an Atmega128L micro-controller that described in Table 1-1.

It has 51 pin I/O connectors, and serial flash memory is used (all MICA application,

software and sensor boards are compatible with the MPR2400).

12

Table 1-1 Technical specifications of Micaz mote

Micaz

 MPR2400CA Description

Size (mm) 58 X 32 X 7

The weight and size does not include batteries. Weight

(grams)
18

Connector 51-pin
The Micaz mote is connected to the sensor

board via this connector.

Power 2 X AA batteries The batteries can be rechargeable.

User

Interface

3 LEDs (red, green,

yellow)

These lights indicate when data is received,

sent, synchronized.

RF Transceiver

Frequency

band

2400 MHz – 2483.5

MHz
Data is transmitted using this frequency band.

TX data rate 250 kbps Maximum data rate allowed.

Indoor Range 20m -30m The distance will suffice this project.

1.4.3 MIB520 USB Interface Board

MIB520 provides USB connectivity to the Micaz motes for communication and in-

system programming. It supplies power to the devices through USB bus. MIB520CB has

a male connector as shown in Figure 1-10 and its specifications are described in

Table 1-2. Usually, this board connects to Micaz mote to construct the base station node

that is connected to the PC for recording the received data.

13

Figure 1-10 Top view of MIB520CB

Table 1-2 Technical specifications of MIB520CB

Programming Board

 MIB520 Description

USB Interface

Baud Rate 57.6K 57.6K is a typical rate for regular USB interface.

Connection

Cable

Male to Female

USB

This programming board is connected to the

computer via this cable.

Mote Interface

Connector 51-pin
This programming board is connected to the mote

via this connector.

1.5 WSNs in Harsh Environments

WSNs are usually deployed in harsh environments and unstable conditions at which

regular communication may not be practical. This is challenging for the applications that

consider time as an important factor in their operation. The harsh environment is an

unpredictable and uncontrolled environment where environmental factors such as vast

fluctuation in temperatures, rain, vibration, humidity, chemicals, electrical shock,

pressure, physical damage, etc. may affect the normal operation of the nodes [4]. WSNs

14

along with these obstacles coupled with the goal to achieve other primary requirements

including being computationally light, scalable, and robust to node and link failure

(sometimes do not require a master or controlling node). In this case, using

synchronization protocols may help to increase the packet delivery with minimum errors

[5].

In most cases, sensor network architectures have a task to maximize the performance of

the sensor network by increasing the reliability of the network, decreasing latency,

increasing power efficiency, and increasing lifetime. Moreover, designers are supposed to

take care from the variations in the network topology either permanently such as shutting

down the node, or temporarily like changing the status of the mode.

Designing the network with specific components requires some knowledge about the

performance indicators under specified energy constraints and environmental

conditions[6]. Additionally, the performance of the WSNs in electromagnetically and

physically harsh environments such as in industrial floors will be affected by these

conditions. Wireless communication systems are constructed in industrial environments

to transmit important parameters for monitoring purposes. This kind of transmission is

preferred over the wired one because it has less cost in installing, maintaining, easier

troubleshooting, and fast speed [7]. Performance evaluation in WSNs uses different

measures; (i) network lifetime, (ii) energy costs, (iii) survival rate of sensor nodes, (iv)

data received, and (v) accurate received time.

15

1.6 Summary

WSNs are considered as one of the technologies that are used to sense different

parameters such as light, pressure, temperature...etc., then process the collected data and

send it to the base station node to take the suitable action accordingly. There are different

types of the sensor nodes as discussed in this chapter. Micaz node is one of the most

important types that mostly used in research fields. In this work, we deployed multiple of

Micaz nodes to serve a certain task.

As we have seen in the WSNs introduction, it has been observed that some applications

are sensitive to the transmission time between different nodes. Several researchers

investigated the issue of minimizing power consumption and increasing the efficiency of

the WSNs depending on the time parameter. This was done by developing different time

synchronization protocols that achieve less value of errors with less time using simple

operations. Chapter 2 introduces the time synchronization concept for this kind of

networks.

16

2 CHAPTER TWO

Time Synchronization in WSNs

This chapter discusses the clock model of the sensor node and the time synchronization

concept in WSNs. First, it shows the representation of the clock model for any sensor

node and the most important parameters that describes the clock model. Then, it shows

the importance of the synchronization process in WSNs and what are the reasons that

cause clocks to lose synchronization with each other. After that, it mentions different

time synchronization protocols and divides them into different groups depending on the

architectures of the WSNs. Next, it shows the previous researches in the literature that

already have been done regarding time synchronization protocols. Finally, the

contributions of this work are presented.

2.1 Clock Model for the Sensor Node

WSNs consist of multiple sensor nodes that communicate with each other to serve a

certain purpose. Each sensor node 𝑖 is equipped with a clock that depends on both

hardware and software parts. A clock consists of an oscillator and counter that is

decremented by every oscillation of the quartz crystal oscillator. When the counter back

to 0, it is reset to the original value and an interrupt is generated. Each interrupt called

(clock tick) increments software clock (another counter); software clock can be read

using application programming interface (API). Software clock provides the local time

with 𝜏𝑖(𝑡) being the clock reading at real time 𝑡 is given by:

17

𝜏𝑖(𝑡) = 𝑎𝑖𝑡 + 𝑏𝑖 2.1

where 𝑎𝑖 represents the hardware skew/drift that shows the clock speed, 𝑏𝑖 is the clock

offset and 𝑡 represents the real time for all nodes 𝑖 = 1, 2, … ,𝑁.

The clock offset is defined as the difference between the local times of two nodes.

Additionally, the clock drift (skew) is defined as the difference in frequencies of two

clocks as shown in Figure 2-1.

Figure 2-1 Clock time for the sensor node

The relative skew between node 𝑖 and node 𝑗 is defined by the ratio between the skew of

node 𝑖 and the skew of node 𝑗 and can be evaluated using this equation:

𝜏𝑖(𝑡) =
𝑎𝑖

𝑎𝑗
𝜏𝑗(𝑡) + (𝑏𝑖 −

𝑎𝑖

𝑎𝑗
𝑏𝑖) = 𝑎𝑗𝑖𝜏𝑗(𝑡) + 𝑏𝑗𝑖 2.2

Usually, time synchronization depends on the method that is used to synchronize all

nodes with the master clock:

𝜏𝑐(𝑡) = 𝑎𝑐𝑡 + 𝑏𝑐 2.3

18

From this, all nodes will converge to the same clock and the value of this clock depends

on the master node. Usually, when (offset ≠ 0 or drift ≠ 1) at this point (the nodes are

not synchronized to each other). Time Synchronization can be defined as a problem that

results from the time differences in the internal clock of several sensor nodes in same

network. This difference may be caused from the drift or the offset value which has a

unique effect for each node.

2.2 Importance of Synchronization in WSNs

Synchronization is an important factor for different applications that require an accurate

mapping of the gathered data between sensor nodes with the timestamps as in tracking

and surveillance. However, usually some nodes suffer from missing the synchronization

and hence, this will cause some drift/skew on the clock values of these sensor nodes.

Drift values should be minimized to a reasonable level or completely eliminated if

possible in such applications that consider time as important factor that affect the

operation performance [3]. Clocks of the nodes may be incompatible and have different

values due to several reasons they are:

 Clocks may drift due to several harsh environment changes, such as temperature,

pressure,batteryvoltage…etc.

 The construction of the networks change from time to time.

 Clocks of the sensor nodes start with different speeds due to the use of non-ideal

oscillators. Additionally, each clock has its own starting time. This will create

differences in their local times. Usually, this changes the initial values of these clocks

19

and influence on the transmission and reception packets with different timestamps in

the real time applications.

Nowadays, simple synchronization algorithms are not applicable to deploy or work for

most of the applications especially in the dense networks that need an accurate time

values to do their operations. This is due to several reasons as follows:

 Synchronization in sensor network depends only on some nodes such as reference

node (this will increase the failure of the WSN).

 Achieving high precision in the synchronization process needs to use an expensive

clock or complex algorithms.

 Centralized algorithms make the network not scalable; errors will be cumulative

when the number of clocks increases.

 Usually node should be operated with self-managing, low-cost construction,

lightweight, and self-stabilizing.

 Increase the lifetime can be achieved by using some power saving techniques such as:

I. Sleep scheduling: It is one of the most important factors that decrease the

consumption energy by switching off the radios of the nodes when they are not in

the active mode. Then, when these nodes return to active mode, they should agree

on the transmission times to keep this network synchronized, work correctly, and

efficiently.

20

II. Medium-access: TDMA medium-access protocols need those sensor nodes to be

synchronized with each other. To do that, it is necessary to assign time slots to

minimize the collisions within the network.

III. Coordinated signal processing: Time stamps are required to specify which data

from different nodes can be aggregated in the network.

There are many applications that are sensitive to the time factor such as tracking objects,

home monitoring [8], scheduling, time division multiple access (TDMA) [9], and leakage

control in power lines. These applications need to know times of each node to measure

the elapsed time, schedule wakeups, and compare time coordinates of sensor readings

with different nodes. Therefore, the time synchronization design should depend on the

clock readings of the whole system [10],[11].

2.3 Time Synchronization Protocols

Time Synchronization protocols can be divided into two groups. The first one is

synchronous protocols at which all nodes update their values at the same time [1]. The

second one is asynchronous protocols at which nodes update their values at different time

[2]. Large WSNs requires complex time synchronization algorithms especially, if there is

a dynamic change in the network from time to time where the communication in WSNs is

unreliable and suffering from packet losses. Accordingly, there is a time delay between

any two clocks and this value of delay results from the accessing time (that requires for

reading the clock value), propagation delays, and received delays. Different time

synchronization protocols have been proposed to solve the synchronization problem in

WSNs and these protocols can be divided into three groups based on the architectures of

21

WSNs (tree structure [12, 13], cluster structure [14, 15] and fully distributed protocols

[16-18]) as in Figure 2-2. All these protocols will be discussed in section 2.3.

Figure 2-2 Time Synchronization Protocols

2.3.1 Tree Structure Protocols

The first group is based on the hierarchical structure that is used to build the network.

Usually, one node within the network is chosen as a reference node proceeded by a

spanning tree which is created with respect to this reference node. Subsequently, each

node synchronizes with this parent node by compensating the skew and offset value of

each node depending on the clock of the parent node. There are different time

synchronization protocols represent this group such as time-synchronization protocol for

sensor network (TPSN)[12], flooding time synchronization protocol (FTSP)[13],

lightweight tree-based synchronization (LTS)[19], delay measurement time

synchronization (DMTS)[17], feedback-based synchronization (FBS)[20], and tiny-

sync[21]. All these protocols are described as follow:

22

TPSN [12] represents sender-receiver based time synchronization protocol in WSNs and

it is a centralized synchronization protocol. This scheme consists of two steps they are

discovery step and synchronization step. In the discovery step, TPSN builds the network

with spanning tree shape where each node knows its level and its parent. Level 0 is

returned to one node and named as a root node and the responsibility of this node is to

build the tree by triggering level discovery step. (i) Root node sends a level discovery

packet with its level 0 to all neighbors, then the nodes that receive this packet within one

hop, set their level to 1, parent to 0 and send another level discovery packet with its level

1. (ii) They wait for a random time between two sending steps to avoid the collisions and

errors and then the process continues for other nodes. On the other hand, for the

synchronization step; (i) Node 𝑖 builds a synchronization message and sends this message

to the operating system and the network stack for transmission. (ii) Before starting the

transmission, the message is labeled with time T1 and transmitted over the medium. (iii)

Message will be forwarded to node 𝑗 with label T2 after taking care of the propagation

delay and packet transmission time to prevent the errors from occurring again. (iv)

Node 𝑗 builds synchronization acknowledgment message and sends it to the operating

system and network stack. (v) Message is labeled with T3 and then delivered. (vi) Node 𝑖

receives this message with label T4. (vii) Node 𝑖 estimates the clock offset and fixes its

clock using a specific relation between these parameters. The advantages of using TPSN

are that scalable and synchronization precision is suitable with the variation in the

network and TPSN has less complexity compared to other protocols such as NTP [12,

22]. On the other hand, TPSN has the following drawbacks [12, 22]; it suffers from the

23

link/node failures, not energy conserver, not suitable for the networks that have movable

nodes since it depends on tree-based structure, and not suitable for multi-hop networks.

FTSP is an ad-hoc, multi-hop time synchronization algorithm for WSNs. In FTSP [13],

the node with a low value of ID is selected as a root node to act as a reference time for

other nodes. This root node periodically floods a synchronization packet with its local

time to the network. Other nodes will receive this packet and save the incoming

timestamp and the arrival time of this packet and then broadcast this packet to all the

neighboring nodes with the updated values. These timestamps are normalized by

subtracting the latency value from the receiver side and then a linear regression operation

will be used to estimate the clock drift. This algorithm achieves higher accuracy by using

timestamp of the messages at low layers of the network stack and removing the access

time. Figure 2-3 shows the differences between this and the previous protocols.

Figure 2-3 WSN graph with the links (left). TPSN, FTSP (center). RBS: (right).

Lightweight tree-based synchronization (LTS) protocol discussed in [19]; is presented to

achieve a reasonable level of accuracy while using reasonable amount of computational

resources like memory space and CPU time. The author divided LTS into two categories;

centralized and decentralized. In the centralized, each round starts by only one node with

a certain frequency whereas in the decentralized, each node can start the synchronization.

24

LTS algorithm uses the search to construct the tree-based structure for the whole

network. Tree nodes share the synchronization data with each other. The drawback of this

algorithm is that the accuracy of the synchronization decreases with increasing depth of

tree and this will increase the error value for each node.

DMTS [17] collects different concepts at the same time such as master-slave

synchronization, sender-receiver synchronization and clock correction approach. This

protocol was created to avoid the round trip time estimation in the previous protocols.

DMTS synchronizes the transmitter with multiple receivers at the same time with less

number of packets when compared to RBS. In this protocol, the leader node is selected as

time master and broadcasts its time. All receivers estimate the delay value and set their

time the same as the master time. All nodes that receive this packet can synchronize with

this leader. DMTS has some advantages like [17, 22]; computational complexity is low

and energy efficiency is high. On the other hand, one of the drawbacks of DMTS

protocol [17, 22] is that it uses only low frequency external clocks.

Jiming in [20] proposed a time synchronization algorithm called feedback-based

synchronization that considers the synchronization problem is a closed-loop control

problem and using proportional-integral (PI) controller to compensate the drift of clock

that results from the internal and external factors. The accuracy of this algorithm depends

on the response and overshoot time. This algorithm needs a reference node and its tree-

based synchronization which suffers from link and node failures.

Tiny-sync and mini-sync presented in [21]; it depends on a set of data points, where each

point is collected by two-way message exchange and consisted of two constraints which

25

are bounded by the offset and the skew parameters. Increasing the number of the data

points will increase precision of the estimation bounds of the two parameters. The

computational complexity of the tiny-sync algorithm is low because it is dependent on

the specification of only four points with few operations. The mini-sync algorithm has

improved accuracy greater than tiny-sync, which is achieved at a small computational

cost. This algorithm has an accurate offset and drift information together with tight,

deterministic bound, accuracy, low computation and storage complexity, insensitivity to

communication errors and each clock can be approximated by an oscillator with fixed

frequency.

Generally, it is easy to implement the tree-protocols. However, these protocols have

different drawbacks such as the high overhead behind constructing the whole tree

structure, not suitable in the dynamic topology, and need more time and overhead when

there is a new node added to the network (that requires building new tree structure for the

network). Additionally, when there are two nodes close to each other on different

branches of the tree, this will cause a high difference in their clocks.

2.3.2 Cluster Structure Protocols

In the second group (cluster structure), sensor nodes are divided into subgroups called

clusters named in regard to their locations. Each cluster elects a leader node called

cluster-head node. All nodes in the same cluster synchronize only with the cluster-head

node and all cluster-heads synchronize with each other. There are many protocols that

follow this group such as pairwise broadcast synchronization (PBS) [23], reference

broadcast synchronization (RBS) [15], hierarchy referencing time synchronization

26

(HRTS) [24], and probabilistic clock synchronization (PCS) [14]. These protocols

described as follow:

In Reference broadcast synchronization (RBS) protocol, the node broadcasts multiple

reference beacons to all neighboring nodes. The main advantage of this method

(receiver–receiver approach) is that it has better precision in synchronization and allows

the nodes to construct the local timescales comparing with the previous protocols. RBS is

reliable and flexible since there is no leader election procedure or multi-hop

synchronization protocols that are needed. In RBS, the nodes periodically broadcast their

own time and justify their own clock as the received time from other nodes. However, for

RBS to work in all conditions, the speed and accuracy depend on the network topology

[25]. On the other hand, RBS suffers from high overhead when dividing the network into

clusters and electing the reference node for each cluster. This will cause failure in the

nodes [26]. There are several advantages for using RBS protocol: minimizing errors by

decoupling the sender from the receivers, clock offset and skew are estimated separately

to minimize the interferences, minimize the energy waste by using Post-facto

synchronization, support Multi-hop, applicable to both wired and wireless networks and

timescales can be edited and corrected. On the other hand, the disadvantages include;

using this protocol is not suitable for point-to-point (P2P) networks, convergence time is

high due to the number of messages exchanges and the sender is kept without

synchronization.

TSync in [24] is divided into two categories similar to LTS that discussed above, the

centralized, called the hierarchical referencing time synchronization (HRTS) protocol and

the decentralized one called the individual time request (ITR) protocol. The HRTS

27

protocol combines the concept of hierarchical synchronization in addition to the receiver-

to-receiver synchronization. The researchers have improved the performance of the two

protocols by devoting the MAC-layer for the synchronization process. Unlike in the

HRTS protocol where the node cannot start the synchronization, in ITR any node can

start the synchronization operation. HRTS can achieve accuracy close to the RBS

extension with decreasing number of exchanged messages. ITR is a worst algorithm

compared to HRTS and RBS especially in multi-hop synchronization.

Arvind in [14] presented a probabilistic clock synchronization (PCS) algorithm for wired

networks. This is a new version of RBS protocol for supplying probabilistic clock

synchronization. There are many deterministic algorithms which have an upper bound of

error in clock offset estimation. When the network is badly constrained, the accuracy of

large amount of messages during the synchronization phase will affected. On the other

hand, PCS provides good precision with low complexity and less overhead when

compared to the deterministic algorithms. Elson et al. in [15] presented a distribution of

the synchronization error for these nodes where different massages were sent to the

receivers and the time taken to receive these packets at the receivers are different from

node to node. So, author used gaussian distribution for the error to eliminate the effect of

these errors among the receivers with zero mean. This algorithm can be extended to serve

the communication with multiple hops from the transmitter. But, this extension differs

from the multi-hop RBS as it considers that all nodes are connected to only one hop from

the transmitter [15]. The advantages of using PCS protocol in WSNs is that it decreases

the number of exchange messages and computational load on these nodes. There is a

tradeoff between accuracy and resource cost and it supports multi-hop networks.

28

However, this algorithm also suffers from some shortcomings like [22]; probabilistic

guarantee on accuracy that may not be suitable for critical applications and this algorithm

is sensitive to the packet loss.

In general, this group suffers from an overhead problem when dividing the network into

clusters and selects the cluster-head of each cluster. These protocols usually suffer from

link and node failures.

2.3.3 Distributed Protocols

The above two groups are centralized protocols. However, this group consists of fully

distributed protocols. There is no reference or leader node within the network and all

nodes use the same protocol to be synchronized. These protocols are highly scalable and

robust to node/link failure and it is easy to add new nodes in the network. In addition,

distributed synchronization protocols depend on the consensus concept where it is an

agreement between set of nodes on a certain value using only the local information of

each node. Consensus techniques are used in distributed, dynamic topologies. Many of

these distributed algorithms achieve the consensus concept in both frequency and phase

values [27]. Consensus clock synchronization (CCS) protocols use an external time

reference or UTC and an internal consensus within the network at specific time. Each

synchronization round in CCS updates the estimation of these parameters for each node.

CCS technique consists of two stages they are offset and skew estimation. In the offset

stage, nodes use the local clock readings in order to be synchronized. While in the skew

stage, nodes depend on the comparison between the current and previous synchronization

round to achieve more accurate estimation [7].

29

Consensus protocol is an iterative process where nodes communicate with each other to

achieve the agreement point depending on a certain value without depending on a leader

or reference point. Each node shares data locally with different number of iterations until

a common value is reached. Some of these distributed protocols such as time diffusion

protocol (TDP) [28], reach-back firefly algorithm (RFA) [29], gradient time

synchronization protocol(GTSP) [30], external gradient time synchronization protocol

(EGSync) [31], average time-sync protocol(ATS) [26], maximum time synchronization

protocol [18], weighted maximum time synchronization protocol(WMTS) [16], and time

synchronization protocol using the maximum and average values (TSMA) [32]. These

protocols described as follows:

Weilian et al. [28] proposed time diffusion protocol (TDP) that pushes all nodes to have

time slot with a small difference. Since there is a drift between sensor nodes, this

algorithm will be applied periodically. It is divided into two parts; active and inactive

parts. In the active part, there are multiple of cycles with τ for each cycle. During each

cycle, a set of nodes are selected as master nodes by election. Each master node starts the

diffusion of timing messages; it builds tree-based scenario in the network. Additionally,

the network has non-leaf nodes which are considered as diffused leaders and elected by

the election procedure. This will make some propagation on the timing messages. The

main objectives of this election are: to remove nodes regarding to the clock variance and

to achieve the load distribution for all these nodes. There are some benefits of using this

algorithm like; tolerate to packet losses, the equilibrium can be achieved for all nodes

during all synchronization times; also since it is not dependent on the static structure, this

will provide the network with flexibility, mobility, and many of the master nodes are

30

distributed in the network with the hierarchal structure. The last advantage is that the

synchronization can be done without using an external time. On the other hand, there are

many drawbacks for this algorithm including; high complexity, convergence time is high

when there is no external time, and clocks can run backward. This can occur when the

value of clock is changed to a lower value.

Yi et al. in [29] proposed a clustering firefly synchronization algorithm called reach-back

firefly algorithm (RFA) that depends on the initial phases of all nodes. Due to the

difference between the initial phases, the number of clusters will be evaluated. Each

cluster starts the synchronization process independently and each node receives firing

packets from its cluster, until all clusters reach the synchronous state. These synchronous

clusters are considered as new integrated nodes when the clusters enter the

synchronization phase. This technique deals with nodes that are randomly distributed, all-

to-all communication, has homogeneous oscillators and bi-directional links. The simple

RFA technique mainly suffers from a worse precision in averaging the packet delays and

is not robust. Leidenfrost et al. in [33] proposed another technique that overcome this

drawback by using the two techniques together which called Fault-Tolerant Averaging

(FTA) and robust RFA. This technique is suitable for network that suffers from delays

and provides a high level of synchrony in multi-hop networks.

Sommer in [30] presented the gradient time synchronization protocol (GTSP) which is

fully distributed time synchronization. Every node periodically sends a broadcast packet

with the time information. This packet will be received by all neighbors and used to

estimate their clocks. In this network neither tree nor any reference point is required that

makes GTSP robust to link/node failures; GTSP depends only on the local information of

31

the nodes. Apicharttrisorn et al. in [34] proposed an energy-efficient gradient time

synchronization protocol (EGTSP) that is distributed, gradient-based and energy-

efficient. This protocol is completely localized, achieves time consensus and gradient

using drift estimation and incremental average estimation. In GTSP, every node estimates

its clock by using the received time from all neighbors. According to this estimation, the

global clock is adjusted. This adjustment can be large, this may cause some errors. In

GTSP the broadcasting period is constant and therefore it has small trends that

significantly consume sensor networks’ energy. Each node in EGTPS estimates the

incremental average of time immediately after receiving the broadcasting packet from its

neighbors. Whenever the incremental averaging is less, the global time is improved.

Yildirim et al. in [31] presented another time synchronization algorithm called external

gradient time synchronization protocol (EGSync) to provide a tight synchronization

between nodes when synchronizing one node to its neighbors at the same time. All these

nodes agree on the speed and clock values of the reference node by broadcasting the time

of the reference node to the neighbors based on the average of this time. However,

EGSync has disadvantage; since there is only one reference point for some nodes, if this

node fails, EGSync cannot maintain the synchronization process with the neighbors. This

protocol works by using the received packets from the reference point before the failure.

To solve this, the network needs a redundant node that has an access to the UTC time to

complete the synchronization process.

Qun et al. in [35] discussed a distributed time synchronization protocol (DTSC), it is

consensus-based algorithm that uses to maintain only the clock offsets and neglecting the

clock drifts. On the other hand, Cremaschi et al. in [36] discussed distributed frequency

32

compensation i.e. clock drift compensation for phase locked loops (PLLs) using

consensus techniques. Additionally, Carli in [37] proposed a proportional-integral (PI)

consensus-based controller that compensates both clock offset and clock drift. But, still

these algorithms consume more energy to reach the synchronous state since the internal

components are complex. This will reduce the lifetime of all nodes when they are

deployed.

Schenato et al. in [26] proposed another consensus algorithm called average time sync

(ATS) algorithm. It is an asynchronous consensus protocol and it is used to average the

local time of the nodes to agree on the global synchronization in the network.

Correspondingly, it is used to cascade the two consensus methods to estimate the clock

parameters where the clock converges to a specific value. This algorithm has three main

properties. First it is fully distributed and it is robust to node failure and it is easy to add a

new node. Secondly, it maintains the clock skew differences among all nodes. Thirdly, it

involves only simple computations like sum/product operations [38]. ATS algorithm is

adaptive to slowly time-varying clock drifts and need minimal memory and

computational resources. Since ATS is a fully distributed communication topology, there

are no specific nodes such as roots and all nodes run with the same algorithm; the nodes

broadcast their local time to calculate the skew rates relative to each other. Thereafter, the

nodes broadcast their current estimate of the skew rate. Finally, the receiving nodes

measure the relative skew estimates depending on the skew rate of other nodes to justify

their own virtual clock estimate.

33

Table 2-1 Capabilities for different protocols

 Distributed Skew Compensation

TPSN No No

LTS No No

FTSP No Yes

RBS No Yes

RFA Yes Yes

DTSP Yes Yes

ATS Yes Yes

Jianping et al. in [18] presented the maximum time synchronization (MTS) protocol that

depends on the maximum values and the objective is to maximize the local time to get

global synchronization within the network. The benefits of this algorithm compared to

other algorithms is that it has higher convergence speed with a finite value, compensate

the skew/offset values at the same time, it is fully distributed, asynchronous, robustness

to node failure and replacement or adding new nodes is easier. This algorithm pushes the

nodes to get the maximum value of time for all nodes and each of these nodes broadcasts

a packet with its local hardware clock and relative logical clock skew and offset, without

any feedback data from the neighboring nodes.

The same author proposed another algorithm in [16] called weighted maximum time

synchronization (WMTS) protocol by taking care of the delay problem in the reception

and transmission packets. In this algorithm there are two decision variables; source

reference node and the number of hops where the logical clock information will be sent

according to these variables from a source node to the receiver node. MTS and WMTS

have many advantages over ATS [26] and GTSP [30] such as; GTSP and ATS have

asymptotic convergence while MTS converges to the global synchronization with finite

time. The convergence time of ATS and GTSP depends on the error value but MTS does

34

not, and the compensation of skew and offset can be done simultaneously using MTS but

in GTSP and ATS, offset will be started after skew has been completed. So, the

MTS/WMTS has higher speed convergence compared to the other techniques.

Moreover, these two algorithms are asynchronous, distributed, and robust to packet losses

and node failure, replacement or relocation is possible or easier. On the other hand,

WMTS needs a reference node in its operation.

Qun and Rus in [32] discussed a new time synchronization consensus protocol using

maximum and average values called TSMA. The main idea is that this technique is based

on the maximum and averaging time values to estimate the offset and skew values. This

algorithm is fully distributed like ATS, does the skew compensation, contributes MAC-

layer to increase the accuracy, does not need a root node, it is asynchronous, robust to

node failure and replacement and high convergence speed compared to ATS. This

algorithm uses average consensus to estimate the clock offset. It aims to obtain an

internal agreement of the network on the time and how fast it travels. For each

synchronization round, this algorithm updates the skew and offset for each node until the

clocks converge to a specific value. Mainly, this process is divided into two parts; offset

and skew estimation. In the offset estimation part, nodes exchange their local clocks to

synchronize nodes to the same time. While in the skew estimation, nodes compare their

current and previous values in each round to improve the accuracy of these parameters.

These protocols are robust and flexible to the variations in the network topology and have

a steady state value. Additionally, similar to other protocols they are affecting the

propagation delays and noise. These protocols are characterized by low complexity

iterative process since the neighboring nodes can communicate with each other to achieve

35

the agreement point depending only on the initial evaluations without going to transmit

data to a reference point [39]. Different applications achieve the consensus concept such

as load balancing in parallel computing [40], coordination of autonomous agents [41],

distributed control [42], data fusion problems [43], and flocking in dynamical systems

[44].

2.4 Comparison between Time Synchronization Protocols

Regarding these algorithms, nodes can be synchronized with other nodes in the same

network by the following ways: (1) Synchronizing nodes with an external time source,

(2) synchronizing nodes with a root node in the same network, and (3) synchronizing all

nodes to a specific value. As mentioned previously, synchronization protocols are divided

into two groups they are centralized and distributed. The centralized group is further

divided into two structures they are tree and cluster. The tree structure protocols such as

(TPSN [12], FTSP [13], LTS [19], DMTS [17], Tiny [21], FBS [20]) suffers from

different challenges as follows:

1. Overhead in the network, in tree structure building stage.

2. Node/link failures in this structure (since there is a root node in the tree).

3. Power consumption is high, and hence the lifetime of all nodes is reduced.

4. Not suitable for the topology changes in the network, and not suitable for the multi-

hop communication as well.

5. Some of the tree protocols (DMTS) uses low frequencies to be deployed and this is

not suitable for critical applications.

36

6. Accuracy is low when for long tree structures.

Regarding the cluster structure such as (RBS [15], PCS [14], TSync [24]), similar to tree

structure there are some drawbacks of the group as follows:

1. Overhead caused by clustering the network and nominating the cluster head (needs

more time to build the structure).

2. Convergence time is high.

3. Node/link failures.

4. Power consumption is high.

5. Sensitive for packet loss.

6. Not suitable for topology changes.

For the last group, there are many distributed synchronization protocols such as (TDP

[28], RFA [29], GTSP [30], ESync [31], ATS [26], MTS [18], WMTS [16], TSMA [32]).

For some of these protocols such as (TDP [28], RFA [29], GTSP [30], ATS [26], ESync

[31]) there are several drawbacks including:

1. Compensate the drift and offset individually, and need multiple operations to do the

drift and offset compensations.

2. Keep tracking the neighboring information which will cause an overhead on the

memory and processing unit.

3. There are asynchronous protocols.

4. ESync protocol needs a reference node to start its operation.

On the other hand, the rest of the distributed protocols such as (MTS [18], WMTS [16],

TSMA [32]), are more effective and easy to implement when compared to the previous

37

protocols. Additionally, they are compensating drift and offset at same time, however,

still they are keeping track the neighboring nodes. Generally, the main task for the

researchers is to synchronize the nodes with less value of error, time, overhead, and

consumption energy to be more effective.

Using the CCS algorithms instead of the centralized algorithms can minimize the faults

caused by clocks between the sensor nodes that are located geographically close to each

other to achieve an accurate synchronization. Consensus-based synchronization algorithm

is used to maintain the time offsets and clock frequency skews dynamically. The

advantages of using this concept are computationally light, scalable, robust to node and

link failure, and it does not need a leader node [45]. Furthermore, the consensus-based

approach is not fixed and dynamically chooses the leader node when it is needed.

The convergence speed in the iterative process depends on the number of iterations that

are required to achieve the steady state point. The protocol that needs small number of

iterations to achieve the steady state point is considered as the fastest convergence

protocol. Luckily enough, reducing the number of iterations to achieve the convergence

point in the network will decrease the consumption energy for each node within the

network. Some of the consensus protocols were implemented with static topologies

where nodes and communication links are usually fixed all the time [46].

2.5 Stopping Criterion

In general, it is used to detect the iterative process when there is no sense in proceeding

with more iteration. This acts like a controller within the system that decide wither to stop

or continue the iterative process (it uses to achieve good performance for the WSN).

38

There are many stopping criteria that are mentioned in the previous researches and used

different stopping conditions such as maximum time, maximum number iterations, reach

a specific bound, mean value, standard deviation, variance, relative function, absolute

function,…etc.

2.5.1 Literature on Different Stopping Criteria

Different stopping criteria have been discussed in the previous researches and these

criteria can be classified into two categories direct and derived stopping criteria. Both

stopping criteria depend on the condition that uses to stop the iterative process.

I. Direct Stopping Criterion:

This type of SC depends directly on the iterative process, simple and does not need any

calculations such as maximum time, maximum number of iterations and reach a required

bound [47, 48] as follows:

a. Maximum Time and Maximum Number of Iterations:

The iterative process can be stopped either using the maximum time value or using the

maximum number of iterations and this can be represented by the following equation:

𝑆𝐶 → 𝑡(𝑘 + 1) ≥ 𝑡𝑚𝑎𝑥 2.4

Where; 𝑘 is the iteration value and it changes from (0, 1, … , 𝑁), 𝑡(𝑘 + 1) is the time of

the current iteration and 𝑡𝑚𝑎𝑥 is the stopping condition that uses to stop the iterative

process, all these variables are linearly dependent to each other.

39

b. Reach the required Bound:

This criterion differs from the previous one in the stopping condition and does not require

any complex operations; it depends only on the time threshold that is given to stop the

iterative process called 𝑡𝑙𝑖𝑚𝑖𝑡 as in the following equation:

𝑆𝐶 → 𝑡(𝑘 + 1) ≥ 𝑡𝑙𝑖𝑚𝑖𝑡 2.5

II. Derived Stopping Criteria:

This type of SC uses the proceed output of the iterative process to evaluate the measured

variable that will be used to stop the iterative process and it needs more calculations such

as mean, standard deviation, relative and absolute functions[49, 50]:

a. Mean:

This criterion represents the absolute difference between the objective time 𝑡(𝑘 + 1) for

the current iteration (𝑘 + 1) and the average values of all time values up to the current

iteration 𝑡(0), … , 𝑡(𝑘 + 1) and this measured value uses to stop the iterative process

regarding to specific threshold called 휀 that depends on the accuracy of the application as

in the following equation:

𝑆𝐶 → |𝑡(𝑘 + 1) − (
∑ 𝑡(𝑘+1)𝑘+1
0

𝑁
)| ≤ 휀 2.6

b. Standard Deviation:

This criterion uses the standard deviation concept to stop the iterative process and it

needs more operations than the mean SC. Where the measured value 𝜎𝑡 is equal to the

standard deviation of all times 𝑡 until the current iteration (𝑘 + 1) and it uses to stop the

40

iterative process regarding to specific threshold called 휀 that depends on the accuracy of

the application as in the following equation:

𝑆𝐶 → 𝜎𝑡 = √
1

𝑁
(∑ (𝑡(𝑘 + 1) −

1

𝑁
(∑ 𝑁𝑡(𝑘 + 1)𝑁

𝑘=1))
2

𝑁
𝑘=1) ≤ 휀 2.7

Where: N represents number of iterations.

c. Relative function criterion:

The termination condition for the relative function depends on a small relative difference

between the time value of the current iteration 𝑡(𝑘 + 1) and the time value of the

previous iteration 𝑡(𝑘) dividing by the maximum of all time values 𝑡 and this value uses

to stop the iterative process regarding to specific threshold called 휀 that depends on the

accuracy of the application as in the following equation:

𝑆𝐶 → (
|𝑡(𝑘+1)−𝑡(𝑘)|

𝑚𝑎𝑥 (𝑡)
) ≤ 휀 2.8

d. Absolute function criterion:

The termination condition for the absolute function depends on the difference between

the time value of the current iteration 𝑡(𝑘 + 1) and the time value of the previous

iteration 𝑡(𝑘) and this value uses to stop the iterative process regarding to specific

threshold called 휀 that depends on the accuracy of the application as in the following

equation:

𝑆𝐶 → (|𝑡(𝑘 + 1) − 𝑡(𝑘)|) ≤ 휀 2.9

41

Next section describes different SCs that have been used to stop the iterative process in

some of the previous time synchronization protocols, where the most SC that used is the

absolute SC.

2.5.2 Stopping Threshold

Several techniques were proposed in this field to deploy different algorithms with the

absolute stopping criterion using testbeds of sensor nodes as mentioned in [51], [52] and

[17] (this part shows the accuracy of some protocols that discussed before in the

literature). In [51], Djenouri et al. implemented a testbed of sensor nodes to deploy the

fast distributed time synchronization algorithm. In this research, authors used small

number of Micaz nodes to implement this algorithm experimentally using the external

oscillator frequency 32KHz and the error value has been estimated using these nodes

between 1µs and 7µs, where the most values located between 3µs and 5µs; and with

average is 3.50µs.

In the second research [52], Huang proposed a new time synchronization algorithm called

2LTSP (Long Term and Large Scale Time Synchronization Protocol) which was

implemented using Arduino WSN platform. The error value of this protocol when the

synchronization period is less than 100s is around 0.6ms. In this research, authors

compared this protocol with other previous protocols as shown in Table 2-2:

Table 2-2 Average absolute errors in millisecond

T 100s 300s 500s

2LTSP [0.59, 0.62] [1.13, 1.17] [1.52, 1.56]

FTSP [10.12, 11.27] [18.19, 20.95] [23.23, 26.19]

PulseSync [8.93, 10.24] [15.74, 18.80] [21.22, 24.49]

42

In the last research [17], authors implemented two time synchronization protocols using

Micaz nodes with different topologies the first one called average time synchronization

(ATS) and the second one called maximum time synchronization. The estimated errors

for the two algorithms with different topologies as in Table 2-3:

Table 2-3 Convergence and accuracy results (1 tick equal to =1/32K=30.5µs)

Protocol Topologies Grid Ring Linear

MTS
Cycles

Accuracy/ticks

5

3.7

5

4.1

8

7.4

ATS
Cycles

Accuracy/ticks

16

5.5

42

9.5

122

18.6

From the above error values and the typical sensor nodes (Micaz and IRIS) have drift rate

of ± (30-100) microseconds. The termination threshold depends on the timer that uses in

the sensor node either an internal timer or external with high frequency. The convergence

time of any synchronization algorithm in WSNs can be found using this threshold. In

general, Micaz have multiple of timers and each of these timers has different

specifications that may use in the implementation.

2.6 Thesis Contributions

As can be noticed from the literature survey and the clock model, most of the WSNs are

deployed under harsh environments such as vast fluctuation in temperatures, rain,

vibration, humidity, chemicals, electrical shock, pressure, physical damage, etc. This will

change the normal operation of nodes to serve their tasks with an accurate time,

minimum latency, and high performance without any packet loss. Consequently, accurate

timing is an important factor and essential for many applications such as assigning a

43

global timestamp to sensed data/events, cooperation of multiple sensor nodes, precise

event localization (e.g., shooter detection), and coordination of wake-up and sleeping

times (energy efficiency). Under unexpected conditions the hardware clocks of these

nodes may drift and increase the required time for the network to be synchronized with

the global clock with some skew and offset errors.

All previous averaging researches depend on the averaging time values of the

neighboring nodes with a reference node and update the time of each node regarding to

this average value. However, in our proposed algorithm each node communicates with

the neighboring nodes and averages the value of neighbors with respect to server time.

After that, each node updates their values with respect to the updated value in this

network. Consequently, all nodes will update their values at each iteration until reach the

server time. At this point these nodes will stop updating their values to minimize the

consumption in both memory and energy.

Motivated by what is mentioned before, we propose this consensus distributed time

synchronization protocol for WSN at which the consensus clock synchronization (CCS)

is used to minimize the clock differences between nodes that are located geographically

close to each other. These nodes keep update their values until reach the global time for

all nodes. In the meanwhile, clocks will reset and stop the communication process. This

protocol is mostly deployed in the harsh environments with some properties such as

computationally light, scalable, applicable for the topology changes, fully distributed,

robust to node and link failure, it does not need a leader node, has global stability

regardless to the network connectivity, controllable time accuracy, single hop

communication among nodes, simplicity with little communication overhead, and

44

Hardware-friendly. This protocol can be deployed to work in different systems such as

monitoring pollution, tracking objects, oil industry, precise event localization (e.g.,

shooter detection), and coordination of wake-up and sleeping times (energy efficiency).

In the next chapters introduce the following:

1. The protocol with simple mathematical analysis that has sum and product operations.

2. Extensive computer simulation using MATLAB with different topologies and sizes.

3. Experimental validation using Micaz nodes for the grid topology with different sizes.

4. A stopping criterion for the steady state region and find the convergence time in both

simulation and experimental scenarios.

5. A stopping criterion for the transient region and find the convergence time in both

simulation and experimental scenarios.

This model has some differences and modifications that improve the system performance

by reducing the consumption energy of those sensor nodes, eliminate any overhead on the

nodes, increase the reliably of the network under any variations, and reduce number of

the communication cycles to reach the convergence state with the minimum error. All

these specifications can be achieved with simple operations that are relative to the

averaging concept (sum/product operations) as described in Chapter 3.

45

3 CHAPTER THREE

Averaging Protocol

This chapter discusses the proposed protocol for time synchronization in WSN. First, it

introduces the Averaging Protocol (AP) for the synchronous and asynchronous cases.

Then, it shows the mathematical representation of the synchronous averaging protocol.

Subsequently, it introduces different simulation and practical topologies such as Grid,

Hexa, and Random network with different sizes. The chapter also discusses the error

values behavior for these topologies. Finally, it compares among the results for different

sizes of networks.

3.1 Averaging Protocol Concept

The AP concept relies on exchanging time information among neighbor nodes until all

nodes (consensus) reach the same time stamps with acceptable small errors. The AP

treats the local time as a dynamical variable that is updated by the AP algorithm. The AP

algorithm, through local interaction with one hop neighbors, drives the local time of each

node to that of the master node until all nodes converge to almost the same time. Once

convergence is detected, the local clocks are reset to the ones obtained from the

consensus algorithm as shown Figure 3-1.

46

Figure 3-1 Continuous re-setting of node clock by consensus protocol

The nodes have information about their nearest neighbors or the nodes that are linked

together and the protocol assumes that it doesn’t have global information about the

network, i.e. these nodes update their estimates with respect to their neighbors only. This

algorithm is known as the average consensus algorithm since all nodes converge to the

same average value of all local states for the nodes with respect to the server time.

Generally, there are two average consensus algorithms; synchronous algorithm and

asynchronous algorithm. At each iteration, these nodes transmit their estimated time

values to the neighboring nodes. The nodes then update their values to the new values by

averaging the received estimates. In the synchronous version, all nodes, depending on

their connectivity, exchange their time estimated values with the neighboring nodes at the

same iteration. Subsequently, all nodes in the network update their time estimations using

the AP. In this version, all nodes must update their information at the same time. On the

other hand, in asynchronous version, not all nodes participate in updating its information

at each iteration but all of them do so in a number of iterations. Generally, synchronous

algorithms are easy to explain and analyze than asynchronous algorithms. Therefore and

without loss of generality, the focus will be on the synchronous version. This protocol is

divided into multiple stages as indicated in Figure 3-1. The first stage represents the

averaging concept of the local time. Its flow chart is shown in Figure 3-2. Stage two

47

represents the detection scenario for the iterative process and indicates when the process

should be stopped depending on a certain stopping criterion which will be discussed in

Chapter 4. In the next stage, the time values of all components in the network are reset to

keep them synchronized and updated at any time.

Figure 3-2 Flow chart of the Averaging Protocol

3.1.1 Description of Asynchronous Average Consensus Algorithm

In asynchronous average consensus algorithm, there is only one node that wakes up at

each iteration. This node starts sending messages to other nodes. In this algorithm, at

every iteration of time, there is a subset of nodes that updates its estimation regarding to

Start

Initialize

Send Time

Value to

Neighbors

Receive Time

Value from

Neighbors

Update its

Time Value

Go To another

Process

Depend on the

Averaging

Concept

Number of Nodes: N

Iteration Value: k=0

Time Values

k++

Turn ON Sensor

Node

Stored Time

Values

48

the average of this subset and so on until all nodes update their values and this takes more

than one iteration.

3.1.2 Description of Synchronous Average Consensus Algorithm

Consider a network of N nodes as in Figure 3-3 where the nodes are numbered from 1 to

N-1 and the master node nm is the last one. A node ni has a local time value ti where i = 1,

2,…,N-1, and the master node has the time tm.

Figure 3-3 Network with N sensor nodes and L links

Depending on the connectivity, each node calculates its new time value by averaging the

values it receives from the neighboring nodes. If the nodes in the network are fully

connected, then the average time, tavg, value of a certain node ti is calculated as follows:

𝑡𝑎𝑣𝑔 =
∑ 𝑡𝑗
𝑁−2
𝑗=1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗≠𝑖 +𝑡𝑚

𝑁−1
 3.1

Generally, if a node ni is connected to n nodes where n ≤N-1, then at iteration k, the new

average time at that node is denoted by 𝑡𝑖(𝑘 + 1) and is given by:

49

𝑡𝑖(𝑘 + 1) =
∑ 𝑡𝑗(𝑘)
𝑗=𝑛
𝑗=1

𝑛
 3.2

If the master node is connected to this node then it can be factored out from (3.4) and

yields the following

𝑡𝑖(𝑘 + 1) =
∑ 𝑡𝑗(𝑘)
𝑗=𝑛−1
𝑗=1

𝑛
+
𝑡𝑚(𝑘)

𝑛
 3.3

The above equation can be used for all nodes to yields the new time vector 𝒕(𝒌 + 𝟏) from

the current time vector and it can be put a matrix form as follows:

𝒕(𝒌 + 𝟏) = 𝑨𝒕(𝒌) + 𝑩𝒕𝒎(𝒌) 3.4

Where B represents the connectivity between the nodes and the master node, and A

represents the connectivity matrix between the nodes and their neighbors excluding the

master node; where the size of this matrix A is equal to (𝑁 − 1) × (𝑁 − 1) and matrix B

is (𝑁 − 1) × 1. And the following equations described the two matrices:

𝑨𝒙𝒚 = {

1

𝑛
, 𝑖𝑓 𝐿𝑥𝑦 𝑒𝑥𝑖𝑠𝑡𝑠; 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑥 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠 𝑦

0, 𝑖𝑓 𝐿𝑥𝑦 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑜𝑟 𝑎𝑡 𝑥 = 𝑦
 3.5

𝑩𝒙𝒚 = {

1

𝑛
, 𝑖𝑓 𝐿𝑚𝑦 𝑒𝑥𝑖𝑠𝑡𝑠; 𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑘 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑚𝑎𝑠𝑡𝑒𝑟 𝑛𝑜𝑑𝑒 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠 𝑦

0, 𝑖𝑓 𝐿𝑚𝑦 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑜𝑟 𝑎𝑡 𝑥 = 𝑦
 3.6

And the server time can be represented by this equation that depends on the incremented

time ∆𝑡 multiply by the iteration value k:

𝑡𝑚(𝑘) = 𝑘 × ∆𝑡 3.7

50

3.2 Examples on this Protocol

To illustrate how the protocol updates the time values for the nodes, various examples are

introduced for different network topology. This part includes multiple examples on WSN

scenarios, where the sensor nodes are distributed in different forms such as Grid, Hexa,

and Random with different sizes. The first section introduces the mathematical

representation of this protocol for the small networks whereas the second section

discusses the higher level of networks.

3.2.1 Examples on Small Networks

I. 4-Nodes Grid Topology:

The distribution of nodes as indicated in Figure 3-4 shows that this network consists of

one master node and three normal nodes:

Figure 3-4 4-nodes with Grid Topology

We can write the updated time equation for each node depending on the connectivity

links between the node and its neighbors which are directly connected to it. The time

equation for Node 1, n1, in the iteration k is as follows, using the averaging equation:

51

𝑡1(𝑘 + 1) =
𝑡2(𝑘)+𝑡3(𝑘)

2
 3.8

where n1 as seen in Figure 3-4 is connected to nodes n2 and n3. The time equations for

Node 2 and Node 3 in the iteration k are;

𝑡2(𝑘 + 1) =
𝑡1(𝑘)+𝑡𝑚(𝑘)

2
 3.9

𝑡3(𝑘 + 1) =
𝑡1(𝑘)+𝑡𝑚(𝑘)

2
 3.10

where n2 is connected to nodes n1 and nm while n3 is connected to nodes n2 and nm. The

time equation of these nodes has two parts; first one depends on the connectivity between

the node and his neighbors, and the second one depends on the connectivity between the

node and the master node if there is a link between them.

From these values for each node, we can write the equation for all as in linear equation.

[𝒕(𝒌 + 𝟏)]3×1 = [𝑨]3×3[𝒕(𝒌)]3×1 + [𝑩]3×1𝒕𝒎(𝒌) 3.11

(
𝑡1(𝑘+1)
𝑡2(𝑘+1)

𝑡3(𝑘+1)

) =

(

0

1

2

1

2
1

2
0 0

1

2
0 0

)

(
𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)

) + (
0
1

2
1

2

)𝑡𝑚(𝑘) 3.12

II. 4-Nodes Hexa Topology:

The distribution of nodes as indicated in Figure 3-5 reveals that this network consists of

one master node and three normal nodes:

52

Figure 3-5 4-nodes with Hexa Topology

We can write the updated time equation for each node depending on the connectivity

links between the node and its neighbors which are directly connected to it. The time

equation for Node 1, n1, in the iteration k is as follows, using the averaging equation:

𝑡1(𝑘 + 1) =
𝑡2(𝑘)+𝑡3(𝑘)

2
 3.13

where n1 as seen in Figure 3-5 is connected to nodes n2 and n3. The time equations for

Node 2 and Node 3 in the iteration k are;

𝑡2(𝑘 + 1) =
𝑡1(𝑘)+𝑡3(𝑘)+𝑡𝑚(𝑘)

3
 3.14

𝑡3(𝑘 + 1) =
𝑡1(𝑘)+𝑡2(𝑘)+𝑡𝑚(𝑘)

3
 3.15

where n2 is connected to nodes n1, n3 and nm while n3 is connected to nodes n1, n2 and nm.

The time equation of these nodes depends on the connectivity between the node and his

neighbors, master node if there is a link between them.

From these values for each node, we can write the equation for all as in linear equation.

53

[𝒕(𝒌 + 𝟏)]3×1 = [𝑨]3×3[𝒕(𝒌)]3×1 + [𝑩]3×1𝒕𝒎(𝒌) 3.16

(
𝑡1(𝑘+1)
𝑡2(𝑘+1)

𝑡3(𝑘+1)

) =

(

0

1

2

1

2
1

3
0

1

3
1

3

1

3
0
)

(
𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)

) + (
0
1

3
1

3

)𝑡𝑚(𝑘) 3.17

III. 4-Nodes Random Topology:

The distribution of nodes as indicated in Figure 3-6 reveals that this network consists of

one master node and three normal nodes, all these nodes are randomly distributed in the

first iteration and have same distribution for all iterations:

Figure 3-6 4-nodes with Random Topology

We can write the updated time equation for each node depending on the connectivity

links between the node and its neighbors which are directly connected to it. The time

equation for Node 1, n1, in the iteration k is as follows, using the averaging equation:

𝑡1(𝑘 + 1) =
𝑡2(𝑘)+𝑡3(𝑘)+𝑡𝑚(𝑘)

3
 3.18

54

where n1 as seen in Figure 3-6 is connected to nodes n2, n3 and nm. The time equations for

Node 2 and Node 3 in the iteration k are;

𝑡2(𝑘 + 1) =
𝑡1(𝑘)+𝑡3(𝑘)+𝑡𝑚(𝑘)

3
 3.19

𝑡3(𝑘 + 1) =
𝑡1(𝑘)+𝑡2(𝑘)+𝑡𝑚(𝑘)

3
 3.20

where n2 is connected to nodes n1, n3 and nm while n3 is connected to nodes n1, n2 and nm.

The time equation of these nodes depends on the connectivity between the node and his

neighbors, master node if there is a link between them.

From these values for each node, we can write the equation for all as in linear equation.

[𝒕(𝒌 + 𝟏)]3×1 = [𝑨]3×3[𝒕(𝒌)]3×1 + [𝑩]3×1𝒕𝒎(𝒌) 3.21

(
𝑡1(𝑘+1)
𝑡2(𝑘+1)

𝑡3(𝑘+1)

) =

(

0

1

3

1

3
1

3
0

1

3
1

3

1

3
0
)

(
𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)

) + (

1

3
1

3
1

3

)𝑡𝑚(𝑘) 3.22

3.2.2 Examples on Large Networks

This part describes two sizes of networks, 9 nodes and 16 nodes with different topologies

like Grid, Hexa, and Random. It shows the distribution of these networks and the

mathematical representation for the time equation of each node.

I. 9-Nodes Grid Topology:

The distribution of these nodes is as illustrated in Figure 3-7. This network consists of

one master node and eight normal nodes:

55

Figure 3-7 9-nodes with Grid Topology

The updated equation of the time is summarized as in the following linear equation that is

depending on the connectivity matrix and the averaging equation;

[𝒕(𝒌 + 𝟏)]8×1 = [𝑨]8×8[𝒕(𝒌)]8×1 + [𝑩]8×1𝒕𝒎(𝒌) 3.23

(

𝑡1(𝑘 + 1)
𝑡2(𝑘 + 1)

𝑡3(𝑘 + 1)
𝑡4(𝑘 + 1)
𝑡5(𝑘 + 1)

𝑡6(𝑘 + 1)
𝑡7(𝑘 + 1)

𝑡8(𝑘 + 1))

=

(

0 1/2 0 1/2 0 0 0 0
1/3 0 1/3 0 1/3 0 0 0
0 1/2 0 0 0 1/2 0 0
1/3 0 0 0 1/3 0 1/3 0
0 1/4 0 1/4 0 1/4 0 1/4
0 0 1/3 0 1/3 0 0 0
0 0 0 1/2 0 0 0 1/2
0 0 0 0 1/3 0 1/3 0)

(

𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)
𝑡4(𝑘)
𝑡5(𝑘)

𝑡6(𝑘)
𝑡7(𝑘)

𝑡8(𝑘))

+

(

0
0
0
0
0
1

3

0
1

3)

𝑡𝑚(𝑘) 3.24

II. 9-Nodes Hexa Topology:

The distribution of these nodes is as in Figure 3-8. This network consists of one master

node and eight normal nodes:

56

Figure 3-8 9-nodes with Hexa Topology

Likewise, updated equation of the time is summarized as in the following linear equation

that is depending on the connectivity matrix and the averaging equation;

[𝒕(𝒌 + 𝟏)]8×1 = [𝑨]8×8[𝒕(𝒌)]8×1 + [𝑩]8×1𝑡𝑚(𝑘) 3.25

(

𝑡1(𝑘 + 1)
𝑡2(𝑘 + 1)

𝑡3(𝑘 + 1)
𝑡4(𝑘 + 1)
𝑡5(𝑘 + 1)

𝑡6(𝑘 + 1)
𝑡7(𝑘 + 1)

𝑡8(𝑘 + 1))

=

(

0 1/2 0 1/2 0 0 0 0
1/4 0 1/4 1/4 1/4 0 0 0
0 1/3 0 0 1/3 1/3 0 0
1/5 1/5 0 0 1/5 0 1/5 1/5
0 1/6 1/6 1/6 0 1/6 0 1/6
0 0 1/3 0 1/3 0 0 0
0 0 0 1/2 0 0 0 1/2
0 0 0 1/4 1/4 0 1/4 0)

(

𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)
𝑡4(𝑘)
𝑡5(𝑘)

𝑡6(𝑘)
𝑡7(𝑘)

𝑡8(𝑘))

+

(

0
0
0
0
1/6
1/3
0
1/4)

𝑡𝑚(𝑘) 3.26

III. 9-Nodes Random Topology:

Figure 3-9 shows the distribution of the nodes in this network. This network consists of

one master node and eight normal nodes:

57

Figure 3-9 9-nodes with Random Topology

Likewise, updated equation of the time is summarized as in the following linear equation

that is depending on the connectivity matrix and the averaging equation;

[𝒕(𝒌 + 𝟏)]8×1 = [𝑨]8×8[𝒕(𝒌)]8×1 + [𝑩]8×1𝑡𝑚(𝑘) 3.27

(

𝑡1(𝑘 + 1)
𝑡2(𝑘 + 1)

𝑡3(𝑘 + 1)
𝑡4(𝑘 + 1)
𝑡5(𝑘 + 1)

𝑡6(𝑘 + 1)
𝑡7(𝑘 + 1)

𝑡8(𝑘 + 1))

=

(

0 1/2 0 1/2 0 0 0 0
1/4 0 1/4 1/4 1/4 0 0 0
0 1/3 0 0 1/3 1/3 0 0
1/5 1/5 0 0 1/5 0 1/5 1/5
0 1/6 1/6 1/6 0 1/6 0 1/6
0 0 1/3 0 1/3 0 0 0
0 0 0 1/2 0 0 0 1/2
0 0 0 1/4 1/4 0 1/4 0)

(

𝑡1(𝑘)
𝑡2(𝑘)

𝑡3(𝑘)
𝑡4(𝑘)
𝑡5(𝑘)

𝑡6(𝑘)
𝑡7(𝑘)

𝑡8(𝑘))

+

(

0
0
0
0
1/6
1/3
0
1/4)

𝑡𝑚(𝑘) 3.28

IV. 16-Nodes Grid Topology:

The distribution of these nodes is indicated in Figure 3-10. This network consists of one

master node and fifteen normal nodes:

58

Figure 3-10 16-nodes with Grid Topology

Depending on the connectivity matrix and the averaging equation, the updated time

equation for each node is summarized as follow;

[𝒕(𝒌 + 𝟏)]15×1 = [𝑨]15×15[𝒕(𝒌)]8×1 + [𝑩]15×1𝑡𝑚(𝑘) 3.29

(

𝑡1(𝑘 + 1)

𝑡2(𝑘 + 1)
𝑡3(𝑘 + 1)

𝑡4(𝑘 + 1)

𝑡5(𝑘 + 1)
𝑡6(𝑘 + 1)

𝑡7(𝑘 + 1)
𝑡8(𝑘 + 1)

𝑡9(𝑘 + 1)

𝑡10(𝑘 + 1)
𝑡11(𝑘 + 1)

𝑡12(𝑘 + 1)

𝑡13(𝑘 + 1)
𝑡14(𝑘 + 1)

𝑡15(𝑘 + 1))

=

(

0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0
1/3 0 1/3 0 0 1/3 0 0 0 0 0 0 0 0 0
0 1/3 0 1/3 0 0 1/3 0 0 0 0 0 0 0 0
0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 0
1/3 0 1/3 0 0 1/3 0 0 0 0 0 0 0 0 0
0 1/4 0 0 1/4 0 1/4 0 0 1/4 0 0 0 0 0
0 0 1/4 0 0 1/4 0 1/4 0 0 1/4 0 0 0 0
0 0 0 1/3 0 0 1/3 0 0 0 0 1/3 0 0 0
0 0 0 0 1/3 0 0 0 0 1/3 0 0 1/3 0 0
0 0 0 0 0 1/4 0 0 1/4 0 1/4 0 0 1/4 0
0 0 0 0 0 0 1/4 0 0 1/4 0 1/4 0 0 1/4
0 0 0 0 0 0 0 1/3 0 0 1/3 0 0 0 0
0 0 0 0 0 0 0 0 1/2 0 0 0 0 1/2 0
0 0 0 0 0 0 0 0 0 1/3 0 0 1/3 0 1/3
0 0 0 0 0 0 0 0 0 0 1/3 0 0 1/3 0)

(

𝑡1(𝑘)

𝑡2(𝑘)
𝑡3(𝑘)

𝑡4(𝑘)

𝑡5(𝑘)
𝑡6(𝑘)

𝑡7(𝑘)
𝑡8(𝑘)

𝑡9(𝑘)

𝑡10(𝑘)
𝑡11(𝑘)

𝑡12(𝑘)

𝑡13(𝑘)
𝑡14(𝑘)

𝑡15(𝑘))

+

(

0
0
0
0
0
0
0
0
0
0
0
1/3
0
0
1/3)

𝑡𝑚(𝑘) 3.30

V. 16-Nodes Hexa Topology:

Figure 3-12 indicated the distribution of these nodes in which the network consists of one

master node and fifteen normal nodes:

59

Figure 3-11 16-nodes with Hexa Topology

Depending on the connectivity matrix and the averaging equation, the updated time

equation for each node is summarized as follow;

[𝒕(𝒌 + 𝟏)]15×1 = [𝑨]15×15[𝒕(𝒌)]8×1 + [𝑩]15×1𝑡𝑚(𝑘) 3.31

(

𝑡1(𝑘 + 1)

𝑡2(𝑘 + 1)
𝑡3(𝑘 + 1)

𝑡4(𝑘 + 1)

𝑡5(𝑘 + 1)
𝑡6(𝑘 + 1)

𝑡7(𝑘 + 1)
𝑡8(𝑘 + 1)

𝑡9(𝑘 + 1)

𝑡10(𝑘 + 1)
𝑡11(𝑘 + 1)

𝑡12(𝑘 + 1)

𝑡13(𝑘 + 1)
𝑡14(𝑘 + 1)

𝑡15(𝑘 + 1))

=

(

0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0
1/4 0 1/4 0 1/4 1/4 0 0 0 0 0 0 0 0 0
0 1/4 0 1/4 0 1/4 1/4 0 0 0 0 0 0 0 0
0 0 1/3 0 0 0 1/3 1/3 0 0 0 0 0 0 0
1/5 1/5 0 0 0 1/5 0 0 1/5 1/5 0 0 0 0 0
0 1/6 1/6 0 1/6 0 1/6 0 0 1/6 1/6 0 0 0 0
0 0 1/6 1/6 0 1/6 0 1/6 0 0 1/6 1/6 0 0 0
0 0 0 1/3 0 0 1/3 0 0 0 0 1/3 0 0 0
0 0 0 0 1/3 0 0 0 0 1/3 0 0 1/3 0 0
0 0 0 0 1/6 1/6 0 0 1/6 0 1/6 0 1/6 1/6 0
0 0 0 0 0 1/6 1/6 0 0 1/6 0 1/6 0 1/6 1/6
0 0 0 0 0 0 1/5 1/5 0 0 1/5 0 0 0 1/5
0 0 0 0 0 0 0 0 1/3 1/3 0 0 0 1/3 0
0 0 0 0 0 0 0 0 0 1/4 1/4 0 1/4 0 1/4
0 0 0 0 0 0 0 0 0 0 1/4 1/4 0 1/4 0)

(

𝑡1(𝑘)

𝑡2(𝑘)
𝑡3(𝑘)

𝑡4(𝑘)

𝑡5(𝑘)
𝑡6(𝑘)

𝑡7(𝑘)
𝑡8(𝑘)

𝑡9(𝑘)

𝑡10(𝑘)
𝑡11(𝑘)

𝑡12(𝑘)

𝑡13(𝑘)
𝑡14(𝑘)

𝑡15(𝑘))

+

(

0
0
0
0
0
0
0
0
0
0
0
1/5
0
0
1/4)

𝑡𝑚(𝑘) 3.32

VI. 16-Nodes Random Topology:

This network consists of one master node and fifteen normal nodes and the distribution of

these nodes is as shown in Figure 3-12.

60

Figure 3-12 16-nodes with Random Topology

Depending on the connectivity matrix and the averaging equation, the updated time

equation for each node is summarized as follow;

[𝒕(𝒌 + 𝟏)]15×1 = [𝑨]15×15[𝒕(𝒌)]8×1 + [𝑩]15×1𝑡𝑚(𝑘) 3.33

In the next section, these networks will be simulated using MATLAB to study the

behavior of the time and error curves for each node in these networks.

3.3 Simulation Results

The AP has been tested by simulating the previously introduced networks topologies of

different sizes with the AP using MATLAB. The general protocol used in the simulation

is described as in the pseudo code shown in Figure 3-13 and Flow Chart in Figure 3-2.

61

Algorithm: Averaging Protocol

1. Initialize (Number of Nodes (N), the time values for each node (ti (0) fori=1…N-1),

incremented time (∆t), and Specify the Master node (M=N)).

2. Distribute the nodes using (Grid, Hexa and Random) Topologies.

3. Find the neighbors for each node and save them with 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟.

4. Start the transmission between these nodes and apply the averaging concept for each

node every iteration k:

FOR k=0: ∆t :t

 FOR Node=1: 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑡𝑁𝑜𝑑𝑒_𝑎𝑣𝑔(𝑘 + 1) =
∑ 𝑡𝑗(𝑘)
𝑁−2
𝑗=1 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑗≠𝑖 + 𝑡𝑚(𝑘)

𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

 END

END

5. Calculate the Error values of each node:

FOR j=1:N-1

𝐸𝑗 = 𝑡𝑗 − 𝑡𝑚

END

Figure 3-13 Pseudo code of the Averaging Protocol

There are some specifications and parameters that are used in MATLAB as given in

Table 3-1.

Table 3-1 Specifications of the network

The output results for each network described in section 3.2 will be explained in the

following subsections.

Factor Specification

Number of nodes N 3, 8, and 15 normal nodes + 1 master node

Step size ∆t 0.001

Topology Grid, Hexa, and Random

Initial time values Randomly selected from [0.20-0.30]

62

3.3.1 Simulation Results for Small Networks

The simulation results for the small size networks of 4 nodes with different topologies are

shown. For each topology, two plots are shown which are the average time of each node

versus master time and the error between the average value and the master node time

value.

I. 4-Nodes Grid Topology:

Figure 3-14 and Figure 3-15 show the average time calculated using the averaging

protocol and error value between the average time and master node time for each node at

each iteration, respectively. As shown in Figure 3-13, time values at each node starts with

initial random values and they are kept updated at each iteration until the values are close

to each other. Additionally, it is observed from the error curves in Figure 3-14 that the

this proposed averaging protocol exhibits and important phenomenon in which it reaches

a minimum error value in a region in the middle of the curve called (Dip Region) way

before it converges to the master node value at the (Steady State Region) as shown in

Figure 3-15. This implies that this protocol can achieve two goals which are reaching

convergence earlier than the steady state which means that we need less number of

iteration and hence operations plus at this dip region actually the error is even smaller

than the steady state error which means that the synchronization is more accurate.

63

Figure 3-14 Time values for each node in 4-Nodes Grid Topology

Figure 3-15 Error values for each node in 4-Nodes Grid Topology

From the time and error figures shown above, we can summarize the critical values for

the time and error as shown in Table 3-2 and the average number of iterations to reach

the average minimum error for all nodes was noted to be 15 iteration with 0.00028695

error value.

64

Table 3-2 Summarized data for 4-Nodes Grid Topology

3+1-nodes Dip Region

Nodes Iterations Error Value

N1 15 0.000671774

N2 15 9.45E-05

N3 15 9.45E-05

Maximum 15 0.000671774

Minimum 15 9.45386E-05

Deviation 0 0.000577235

Average 15 0.00028695

II. 4-Nodes Hexa Topology:

Likewise for Hexa topology, Figure 3-16 and Figure 3-17 show the average time

calculated using the averaging protocol and error value between the average time and

master node time for each node at each iteration, respectively. As shown in Figure 3-16,

time values at each node starts with initial random values and they are kept updated at

each iteration until the values are close to each other. Additionally, it is observed from

the error curves in Figure 3-17 that the this proposed averaging protocol exhibits and

important phenomenon in which it reaches a minimum error value in a region in the

middle of the curve called (Dip Region) way before it converges to the master node

value at the (Steady State Region) as shown in Figure 3-17. This implies that this

protocol can achieve two goals which are reaching convergence earlier than the steady

state which means that we need less number of iteration and hence operations plus at this

dip region actually the error is even smaller than the steady state error which means that

the synchronization is more accurate. And still the behavior of the error curve for both

Grid and Hexa topologies has same trends.

65

Figure 3-16 Time values for each node in 4-Nodes Hexa Topology

Figure 3-17 Error values for each node in 4-Nodes Hexa Topology

From the time and error figures shown above, we can summarize the critical values for

the time and error as shown in Table 3-3 and the average number of iterations to reach

66

the average minimum error for all nodes was noted to be 18 iteration with 0.000395728

error value.

Table 3-3 Summarized data for 4-Nodes Hexa Topology

3+1-nodes Dip Region

Nodes Iterations Error Value

N1 18 0.000523788

N2 18 3.32E-04

N3 18 3.32E-04

Maximum 18 0.000523788

Minimum 18 0.000331698

Deviation 0 0.000192089

Average 18 0.000395728

III. 4-Nodes Random Topology:

Same thing in Random topology, Figure 3-18 and Figure 3-19 shows the time and error

values for each node. The time curves start with different values and keep updated until

the values are close to each other. Similarly, the error curves have two regions, one in the

middle with the minimum value of error (Dip Region) and the second one in the last

section of the curve when the error values reach the steady state values (Steady State

Region) as illustrated in Figure 3-19. Also, still the error curve has same behavior for

Random comparing to Grid and Hexa topologies.

67

Figure 3-18 Time values for each node in 4-Nodes Random Topology

Figure 3-19 Error values for each node in 4-Nodes Random Topology

68

From the time and error figures above, we can summarize the critical values for the time

and error as indicated in Table 3-4 and the average number of iterations to reach the

average minimum error for all nodes is equal 13 iteration with 0.0000402741 error value.

Table 3-4 Summarized data for 4-Nodes Random Topology

3+1-nodes Dip Region

Nodes Iterations Error Value

N1 13 4.03E-05

N2 13 4.02E-05

N3 13 4.03E-05

Maximum 13 4.03107E-05

Minimum 13 4.02398E-05

Deviation 0 7.08835E-08

Average 13 4.02741E-05

3.3.2 Simulation Results for Large Networks

In this part, we simulated two sizes of networks (9 and 16 nodes) for different topologies

and we show the time and error curves for each node in these networks.

I. 9-Nodes Grid Topology:

Figure 3-20 and Figure 3-21 show the time and error values for each node; where the

time curves starting with different values and keep updated until the values are closed to

each other. The error curves still have two regions, one in the middle with the minimum

value of error (Dip Region) as in Figure 3-21 and the other one in the last part of the cure

when the error values reach the steady state values as in Figure 3-21.

69

Figure 3-20 Time values for each node in 9-Nodes Grid Topology

Figure 3-21 Error values for each node in 9-Nodes Grid Topology

From the time and error Figure 3-20 and Figure 3-21 respectively, we can summarize the

critical values for the time and error as laid out in Table 3-5 and the average number of

70

iterations to reach the average minimum error for all nodes was recorded to be 44

iteration with 0.000384398 error value.

Table 3-5 Summarized data for 9-Nodes Grid Topology

8+1-nodes Dip Region

Nodes Iterations Error Value

N1 45 5.70E-05

N2 43 0.000815579

N3 45 0.000200615

N4 43 0.000815579

N5 45 0.000200615

N6 43 0.0003926

N7 45 0.000200615

N8 43 0.0003926

Maximum 45 0.000815579

Minimum 43 5.69782E-05

Deviation 2 0.000758601

Average 44 0.000384398

II. 9-Nodes Hexa Topology:

Figure 3-22 and Figure 3-23 show the time and error values for each node whereby the

time curves start with different values and are periodically updated until the values are

closed to each other. The error curves have two regions, one in the middle with the

minimum value of error (Dip Region) and the second one in the last part of the curve

when the error values reach the steady state values (Steady State Region) as in

Figure 3-23.

71

Figure 3-22 Time values for each node in 9-Nodes Hexa Topology

Figure 3-23 Error values for each node in 9-Nodes Hexa Topology

72

From the time and error figures above, we can summarize the critical values for the time

and error as in Table 3-6. The average number of iterations to reach the average

minimum error for all nodes is equal 37.125 iteration with 0.000377289 error value.

Table 3-6 Summarized data for 9-Nodes Hexa Topology

8+1-nodes Dip region

Nodes Iterations Error Value

N1 38 4.70E-04

N2 37 0.000527282

N3 37 0.000241893

N4 37 0.000532532

N5 37 0.000285639

N6 37 0.000142758

N7 37 0.000458648

N8 37 0.00035947

Maximum 38 0.000532532

Minimum 37 0.000142758

Deviation 1 0.000389774

Average 37.125 0.000377289

III. 9-Nodes Random Topology:

Figure 3-24 and Figure 3-25 show the time and error values for each node in which the

time curves start with different values and keep on being updated until the values are

closed to each other. The error curves have two regions, one in the middle with the

minimum value of error (Dip Region) and the second one in the last when the error

values reach the steady state values (Steady State Region).

73

Figure 3-24 Time values for each node in 9-Nodes Random Topology

Figure 3-25 Error values for each node in 9-Nodes Random Topology

74

From the time and error figures above, we can summarize the critical values for the time

and error as in Table 3-7 and the average number of iterations to reach the average

minimum error for all nodes is equal 37 iteration with 0.0000942024 error value.

Table 3-7 Summarized data for 9-Nodes Random Topology

8+1-nodes Dip Region

Nodes Iterations Error Value

N1 37 2.10E-04

N2 37 7.04E-05

N3 37 0.000146435

N4 37 8.44E-05

N5 37 5.85E-05

N6 37 0.000123708

N7 37 3.28E-05

N8 37 2.71E-05

Maximum 37 0.000210247

Minimum 37 2.71062E-05

Deviation 0 0.000183141

Average 37 9.42024E-05

IV. 16-Nodes Grid Topology:

The minimum time and error values for each node in this network is as indicated in

Table 3-8. From this table we can see that the average number of iterations needed to

reach the average minimum error of all nodes is 79 iterations with 0.000342492 error

value.

75

Table 3-8 Summarized data for 16-Nodes Grid Topology

15+1 Exact in Dip Region

Nodes Iterations Error Value

N1 80 0.000711993

N2 80 0.000145546

N3 79 0.000633557

N4 79 0.000265769

N5 80 0.000145546

N6 79 0.00075918

N7 79 0.000277854

N8 79 7.58253E-05

N9 79 0.000633557

N10 79 0.000277854

N11 79 7.74176E-05

N12 79 0.000449196

N13 79 0.000265769

N14 79 7.58255E-05

N15 79 0.000449196

Maximum 80 0.00075918

Minimum 79 7.58253E-05

Average 79.2 0.000349605

V. 16-Nodes Hexa Topology:

The minimum time and error values for each node in this network are shown in

Table 3-9. From this table we can see that the average number of iterations needed to

reach the average minimum error of all nodes is 88.3 iterations with 0.000256281 error

value.

76

Table 3-9 Summarized data for 16-Nodes Hexa Topology

15+1 Exact in Dip Region

Nodes Iterations Error Value

N1 89 0.000359786

N2 89 0.000472502

N3 88 0.000313058

N4 88 4.88986E-05

N5 89 0.000456458

N6 88 0.000379195

N7 88 2.22991E-05

N8 88 0.00013476

N9 89 0.000529627

N10 88 0.000381809

N11 88 9.87801E-07

N12 88 0.000154575

N13 88 0.000380926

N14 88 8.68129E-05

N15 88 0.000122524

Maximum 89 0.000529627

Minimum 88 9.87801E-07

Average 88.26667 0.000256281

VI. 16-Nodes Random Topology:

The minimum time and error values for each node in this network are as shown in

Table 3-10. From this table we can see that the average number of iterations needed to

reach the average minimum error of all nodes is 90 iterations with 0.0000999658 error

value.

77

Table 3-10 Summarized data for 16-Nodes Random Topology

15+1 Exact in Dip Region

Nodes Iterations Error Value

N1 90 0.000206789

N2 90 0.000127355

N3 90 6.06407E-05

N4 90 0.000121399

N5 90 0.000148503

N6 90 3.0945E-05

N7 90 0.000101025

N8 90 0.000143706

N9 90 0.000135718

N10 90 9.23675E-05

N11 90 1.07263E-05

N12 90 8.36796E-05

N13 90 0.000144487

N14 90 7.95591E-05

N15 90 1.25872E-05

Maximum 90 0.000206789

Minimum 90 1.07263E-05

Average 90 9.99658E-05

3.4 Practical Results

This part indicates how the protocol was implemented using MEMSIC components.

Micaz nodes are used and the operating system of those motes is TinyOS that is using

nesC as a programming language. Micaz nodes contain different kind of hardware

components like: MPR2400 (Micaz mote), MIB520 gateway, and sensing boards.

3.4.1 Practical Results for Small Networks

In this part, practical implementation of one size of networks (4 nodes) with different

topologies described in section 3.2.1, and the time and error curves for each node in these

networks will be discussed as follow:

78

I. 4-Nodes Grid Topology:

Similar to the simulation part, the time curves start with different values and keep

updated until values are close to each other. The error curves likewise have two regions,

one in the middle with the minimum value of error (Dip Region) and the second one in

the last when the error values reach the steady state values (Steady State Region) as

indicated in Figure 3-26 and Figure 3-27.

Figure 3-26 Time values for each node for a 4-Nodes Grid Topology

79

Figure 3-27 Error values for each node for a 4-Nodes Grid Topology

From the time and error figures above, the critical values for the time and error are

summarized in Table 3-11. The average number of iterations to reach the average

minimum error for all nodes was found to be 15.3 iterations with 0.000197656 error

value.

Table 3-11 Summarized practical data for 4-Nodes Grid Topology

3+1 Exact in Dip Region

Nodes Iterations Error Value

N1 18 0.000463281

N2 14 6.48437E-05

N3 14 6.48437E-05

Maximum 18 0.000463281

Minimum 14 6.48437E-05

Average 15.33333 0.000197656

80

3.4.2 Practical Results for Large Networks

Two sizes of networks (9 and 16 nodes) with different topologies were also implemented.

As well, the time and error curves for each node in these networks are discussed as

follow.

I. 9-Nodes Grid Topology:

For the higher size of networks, still the behavior of the time and error curves for

practical results have same characteristics for each node when compared with the

simulation results. The time curves Figure 3-28 start with different values and they keep

updated until the values are close to each other. Repeatedly, the error curves have two

regions, one in the middle with the minimum value of error (Dip Region) as shown in

Figure 3-29 and the second one in the extreme end of the curve occurring when the error

values reach the steady state values (Steady State Region) as illustrated in Figure 3-29.

Figure 3-28 Time values for each node for a 9-Nodes Grid Topology

81

Figure 3-29 Error values for each node for a 9-Nodes Grid Topology

From the time and error figures above, we can summarize the critical values for the time

and error as in Table 3-12 and the average number of iterations to reach the average

minimum error for all nodes is equal 53 iteration with 0.000442363 error value.

Table 3-12 Summarized practical data for 9-Nodes Grid Topology

8+1 Exact in Dip Region

Nodes Iterations Error Value

N1 55 0.000729527

N2 51 0.000480831

N3 55 0.000343489

N4 51 0.000480831

N5 55 0.000343489

N6 51 0.000408626

N7 55 0.000343489

N8 51 0.000408626

Maximum 55 0.000729527

Minimum 51 0.000343489

Average 53 0.000442363

82

II. 16-Nodes Grid Topology:

Also, in 16-Nodes still the behavior of the time and error curves for practical results has

same characteristics for each node when compared with the simulation results. The time

curves start with different values and they keep updated until the values are close to each

other as in Figure 3-30. Repeatedly, the error curves have two regions, one in the middle

with the minimum value of error (Dip Region) as shown in Figure 3-31 and the second

one in the extreme end of the curve occurring when the error values reach the steady state

values (Steady State Region) as illustrated in Figure 3-31.

Figure 3-30 Time values for each node in 16-Grid Topology

83

Figure 3-31 Error values for each node in 16-Grid Topology

From the time and error figures above, we can summarize the critical values for the time

and error as in Table 3-13 and the average number of iterations to reach the average

minimum error for all nodes is equal 95.67 iterations with 0.000238497 error value.

84

Table 3-13 Summarized practical data for 16-Nodes Grid Topology

15+1 Exact in Dip Region

Nodes Iterations Error Value

N1 94 0.000328504

N2 98 0.000552229

N3 94 0.00013527

N4 98 3.44644E-05

N5 98 0.000552229

N6 94 2.5456E-05

N7 98 4.97064E-05

N8 94 0.000553441

N9 94 0.00013527

N10 98 4.97064E-05

N11 97 0.000425289

N12 93 7.39918E-05

N13 98 3.44644E-05

N14 94 0.000553441

N15 93 7.39918E-05

Maximum 98 0.000553441

Minimum 93 2.5456E-05

Average 95.66667 0.000238497

From the above simulation and practical results; increasing the number of nodes for

different topologies requires more iteration value to reach the dip region and achieve the

minimum value of error. Also, the error curves for all scenarios have same shape.

3.5 Summary

In this thesis, a new protocol has been introduced that consists of simpler operations like

sum and division compared to other previous protocols. Each node in the network

communicates with only the nearest neighbors after which it averages the time of those

neighbors and updates its time regarding to this value. Usually, nodes keep updating their

values until a convergence state is reached. This protocol depends only on the local

information of each node without knowing anything about the global information of the

85

whole network. So, since it is simple and does not need reference node, this protocol is

suitable for all networks either light or dense with different shapes and can be deployed

in harsh environments.

From all examples that have been simulated and implemented, it has been noticed that the

error curves have two regions; the first one is the dip region that has minimum error

values with less number of iterations and the second region when the system reach the

steady state though the number of iterations needed to reach this region is larger than that

needed in the first region. If the first region can be stopped, then the energy and memory

of the sensor nodes can be saved with less number of iterations as well as with minimum

value of error. Most of the previous protocols did not exhibit this behavior for the error

plots collected between the two regions and this will be discussed in Chapter 4.

This implies that this protocol can achieve two goals which are reaching convergence

earlier than the steady state which means that we need less number of iteration and hence

operations plus at this dip region actually the error is even smaller than the steady state

error which means that the synchronization is more accurate.

Practically, the node only knows the time value of its clock and the neighboring nodes

values. The question here and to benefit from the protocol, how a node knows that it

reaches to the minimum error value by observing only its own time values. Also, add to

this that the observation window must not be too large since the protocol must be kept

simple and light and should not use large processing power or large memory size from

the nodes. These questions will be answered and analyzed in Chapter 4.

86

Chapter 4 discusses theoretically and practically how the node knows when to stop in the

dip region in or close to the minimum error value by developing a stopping criterion from

only the time values of the nodes itself without knowing much about the network in

general.

87

4 CHAPTER FOUR

Stopping Criterion

This chapter introduces a criterion that enables the node, from only its own time values

calculated from the AP, to know that it reaches an acceptable synchronization accuracy in

the dip region before reaching the steady state region and stops synchronization process.

This is called stopping criterion (SC) protocol. The chapter discusses the stopping

criterion concept for the iterative process, it uses one of the steady state stopping criteria

that had been mentioned in the previous researches, and introduces a new stopping

criterion to stop in the dip region. First, it introduces the stopping criterion concept and

why it uses in the iterative process. Then, it discusses one of the stopping criteria for the

steady state region depending on the previous researches and tests this criterion on both

the simulation and experimental parts. Next, it introduces a new stopping criterion to stop

in the dip region depending only on the local information for the sensor nodes. Finally, it

shows the performance of this criterion in both the simulation and experimental parts for

WSNs.

4.1 Stopping Criterion

The objective of the stopping criterion in this research is to terminate the iterative process

(the iterations) way before the steady state by exploiting the dip behaviour exhibited in

the AP algorithm. Without finding a suitable SC, the advantage and characteristics of the

AP algorithm will not be exploited. At each iteration of the AP algorithm, the designed

88

SC is used as decision rule to stop the iterative process and indicated that synchronization

has been reached and it works as shown in the below algorithm Figure 4-1.

Figure 4-1 SC Concept

In practical applications, the SC terminates the iterative process once it is satisfied and

this improves the efficiency of the system. . The SC optimally stops the iterative process

when the following conditions occurred:

1. The amount of computation is sufficient.

2. A solution obtained so far is satisfactory.

3. The solution is not satisfactory, but a better one is unlikely to be produced.

4. The method is not able to converge to a solution.

5. Additional computation will provide little or no improvements in the current solution.

As mentioned in Chapter 2, there are many SC exist in the literature. We design a SC that

having the following features: simple, robust, requires as little operations as possible,

practical, and exploits the dip region of the AP algorithm. Before we introduce our

proposed SC, one SC from literature will be tested for our proposed AP algorithm.

SC Threshold

STOP

Yes

No

Iterative

Process

89

4.2 Steady State Stopping Criterion

The AP protocol is tested with a number of existing SC to see the usability of them with

our AP algorithm. These SC normally works well in the steady state region. When they

are applied to our protocol, they stopped the iteration in random different location of the

chart; making them impractical to be used. This is because of the unique behaviour of our

protocol as shown before. For example, from Figure 4-2 and we deployed the AP

algorithm with the absolute SC; some time stops in the three regions and this not our

objective, we need to stop either in dip region or in the steady state region.

Figure 4-2 Error Curve

To be able to use this SC in the steady state, the absolute SC can be modified as shown in

Figure 4-3. The modified absolute SC works by ignoring the dip region, then save the

current time and previous time. After that, evaluate the difference between the two values

and store it in memory. Next, we do the previous until reach the length of our window if

this happens it will evaluate the average value of the differences for the window size.

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

Server Time

E
rr

o
r

V
a
lu

e
s

Error Curve with respect to server time

Steady State RegionInitialization Region Dip Region

90

Then, if the average value is less than the absolute threshold; the iterative process will be

stopped but if this not happens it will go back to the iterative process and so on.

Figure 4-3 Flow chart of the modified SS-SC

We deployed this SC for the networks - (4, 9 and 16)-nodes using only the local values

for each node with different size of window (number of samples), and the mathematical

representation of this algorithm as in Figure 4-4 by going from the lower to the upper

level.

Get the Current and

Previous Time Values

Calculate Local Error Values and

the Difference between the Local

Error Values

Length of the Values

inside the Window = W

Calculate the Decision Value

(DV) = Average Value of all

values inside the window

DV Threshold

k++

Output Data from

the Averaging

Process

Store

Data

STOP

Nodes i=1,...,N

Previous Iteration = k

Current Iteration = k+1

Error Values

and Deviation

Values

Check if the

length of Stored

Data is equal to

Window Size (W)

Save the

Difference Values

Calculate

Average of the

Stored Values

91

Figure 4-4 Mathematical representation of the modified absolute SC

We deployed this stopping criterion in both the simulation and the practical parts for the

previous examples that were discussed in Chapter 3 and this technique succeed in

detecting the iterative process for the steady state region with reasonable values as in

section 4.4 and 4.5.

4.3 Proposed Stopping Criterion for the Dip Region

It was noted that all synchronization error curves in Chapter 3 have the same shape with a

dip region where the minimum error values reached before and the error values of the

steady state region for all previous networks. Therefore, it is important to propose a new

stopping criterion that can terminate the iterative process of the AP algorithm for all

nodes in the Dip region by utilizing only the local time information of these nodes

without knowing any global information of the whole network. This will save time,

memory and battery life for the sensor nodes in the network.

We need to find a way or method that can detect the minimum error value. One way to do

that is to use the discrete differentiation operator. It is known that differentiation can

kk-1k-2k-3k-4k-5k-6k-7

t(k)t(k-1)t(k-2)t(k-3)t(k-4)t(k-5)t(k-6)t(k-7)

|E(k)||E(k-1)||E(k-2)||E(k-3)||E(k-4)||E(k-5)||E(k-6)|

|D(k)||D(k-1)||D(ik-2)||D(k-3)||D(k-4)||D(k-5)|

Moving Window (W=7)

Iteration Values

Time Values (Get & Store)

Absolute Error Values

- -----

Absolute Difference Values
++++

W

|DV(k)| Threshold Decision Value

92

detect a flipping point in a curve. This is what needed to detect the minimum/maximum

point in a curve. From the theory of filter design [53], an optimum discrete difference

filter can be designed. In literature, two such filters of length 5 and 7 are given by the

following impulse responses, respectively:

ℎ1(𝑘) =
−1

12
𝛿(𝑘 + 2) +

2

3
𝛿(𝑘 + 1) +

−2

3
𝛿(𝑘 − 1) +

1

12
𝛿(𝑘 − 2) 4.1

ℎ2(𝑘) =
1

60
𝛿(𝑘 + 3) +

−3

20
𝛿(𝑘 + 2) +

3

4
𝛿(𝑘 + 1) +

−3

4
𝛿(𝑘 − 1) +

3

20
𝛿(𝑘 − 2) +

−1

60
𝛿(𝑘 − 3) 4.2

The above two filters are non-causal and a causal version of them will be of length 4 and

6 and are given by:

ℎ1(𝑘) =
−1

12
𝛿(𝑘) +

2

3
𝛿(𝑘 − 1) +

−2

3
𝛿(𝑘 − 2) +

1

12
𝛿(𝑘 − 3) 4.3

ℎ2(𝑘) =
1

60
𝛿(𝑘) +

−3

20
𝛿(𝑘 − 1) +

3

4
𝛿(𝑘 − 2) +

−3

4
𝛿(𝑘 − 3) +

3

20
𝛿(𝑘 − 4) +

−1

60
𝛿(𝑘 −

5) 4.4

Along with this difference filter and to smooth the time data to get better result, averaging

filters of the same size of the difference filter is used whether before or after the

difference filter. These two filters constitute our method to stop the iteration and detect

the minimum value. The method works by filtering the time data of each node with these

two finite impulse response (FIR) filters, then checks a sign change of the resultant value

at the current iteration with respect to the previous iteration and save it as bipolar data of

1’sand-1’sinwhicha1representsapositivevalueand-1 represents a negative value. If

93

there is a change in the sign, the iterative process stops and declares a minimum value;

otherwise the next iteration continues as shown in Figure 4-5.

Figure 4-5 Flow Chart of the propose SC

Based on this premise, we wanted to design a better difference filter that works better for

our AP algorithm especially in the practical situations. Based on extensive trials, we

found a better filter and is given by the following:

Convolve Time Values with

the our Filter Then Convolve

output with Averaging Filter

Check the Sign

of the output data

Sign Change

&

k

STOP

Give:

Iteration, Time,

and Error

Window Size

represents the

Length of the

Stored Data

h(k)

Check if there is

a change in the

sign of the OUT

Data

Stop or Sleep

the Transmission

Specify

Coefficients of

the Filter

Output Data from

the Averaging

Process

Get the Current and

Previous Time Values

Store

Data

Length of the Values

inside the Window = W

k++

94

ℎ𝑑(𝑘) = 0.2𝐶 ∙ 𝛿(𝑘 + 3) + 0.5𝐶 ∙ 𝛿(𝑘 + 2) + 0.2𝐶 ∙ 𝛿(𝑘 + 1) − 0.2 ∙ 𝛿(𝑘 − 1) − 0.5 ∙

𝛿(𝑘 − 2) − 0.2 ∙ 𝛿(𝑘 − 3) 4.5

Where; C is used to optimize the filter coefficients for the best results that detect the

minimum value. To find the optimal C, the procedure starts by taking range of C values.

Then, specify the exact iteration value that has the minimum value for each node and

determine the detected iteration by the filter for the first C. After that, subtract the

detected iteration from the exact iteration and find the square of these values for each

node. Next, define the cost function as the sum of the squared values for all nodes.

Finally, repeat the same steps for all C values and find the minimum cost of all values;

where the optimal C is equal to the C value that achieves the minimum cost.

Usually, the filter size (W) should be selected to achieve the best detection with

acceptable cost. Therefore, to study the effect of changing the filter size on the network,

we simulated grid network with different sizes 4, 9 and 16 nodes to specify the minimum

cost of two filter sizes (5 and 7) and compare between the two sizes. Table 4-1 shows the

cost and the optimal C of the three sizes with the two filter sizes. The cost value for W=5

is less than the cost values for W=7 and with less value of C; we see that for 4-nodes the

cost value is 1 in both filter sizes, while the cost value for 9 nodes is equal to 43 for W=5

and 53 for W=7. Therefore, when the size of the filter increases the cost value will be

slightly increased and the optimal C will be closed to one for the Large Network. In

addition, increasing the size of the filter requires more processing and memory size in the

sensor nodes but it achieves more accurate data and this is what is the required in the

synchronization process.

95

Table 4-1 Summarized Data of different filter sizes (W) for Grid network

So that, we used the size (W=7) for more accurate detection in the filter stage. Then, we

optimized C parameter for other topologies and we got the following C-values for

different sizes as in Table 4-2, and we used these C values in the simulated and practical

networks:

Table 4-2 Optimized C values for different topologies and sizes

Topology 4-Nodes 9-Nodes 16-Nodes

Grid 1.821 1.035 1.002

Hexa 1.38 1.045 1.004

Random 2.453 1.04 1.004

From Table 4-2; C values change from 0.95 to 1.05 for 9 and 16 nodes while for 4 nodes

C changes from 1.3 to 2.5, and we noted that the optimum C for the dense and Large

Network will be closed to 1.

Figure 4-6 shows an example on the cost function for Grid 9-nodes; where is the

minimum cost occurred at C=1.035 and it is equal to 53, assume that the filter size equal

7.

W Parameters 4-nodes Grid 9-nodes Grid 16-nodes Grid

5
C Values 1.421 1.0160 1.00153

Cost 1 43 915

7
C Values 1.821 1.035 1.002

Cost 1 53 930

96

Figure 4-6 Cost function for 9-nodes with Grid Distribution

The responses of this filter in time and frequency domains when C = 1 are shown in

Figure 4-7 and Figure 4-8, and the form of this filter that tries to detect the minimum

value ℎ𝑑, as follow:

ℎ𝑑(𝑘) = 0.2 ∙ 𝛿(𝑘 + 3) + 0.5 ∙ 𝛿(𝑘 + 2) + 0.2 ∙ 𝛿(𝑘 + 1) − 0.2 ∙ 𝛿(𝑘 − 1) − 0.5 ∙

𝛿(𝑘 − 2) − 0.2 ∙ 𝛿(𝑘 − 3) 4.6

0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
10

1

10
2

10
3

10
4

10
5

X: 1.035

Y: 53

C Values

C
o
s
t

97

Figure 4-7 Filter in time domain with C = 1

Figure 4-8 Filter in frequency domain

Then, this filter with the optimal C will be convolved with time values of each node and

the output data will be convolved with the rectangular pulse to minimize the effect of the

noise (fluctuation of the time values from the AP algorithm); this rectangular pulse can be

represented as in Figure 4-9, and the form of this filter ℎ𝑎 as follow:

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k values

h
(k

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-200

-100

0

100

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

98

ℎ𝑎(𝑘) = 𝛿(𝑘 + 3) + 𝛿(𝑘 + 2) + 𝛿(𝑘 + 1) + 𝛿(𝑘) + 𝛿(𝑘 − 1) + 𝛿(𝑘 − 2) + 𝛿(𝑘 −

3) 4.7

Figure 4-9 Response of the rectangular pulse

In short, we can think of the procedure as convolving the time values with two filters

with an overall impulse response that detect the minimum and denoted by hm. for node i

and it is given as follows:

𝑂𝑢𝑡𝑖(𝑘) = ℎ𝑑(𝑘) ∗ 𝑡𝑖(𝑘) 4.8

ℎ𝑚𝑖(𝑘) = 𝑂𝑢𝑡𝑖(𝑘) ∗ ℎ𝑎(𝑘) 4.9

Basically, in the AP with this filter; a node stores a finite number of data depending on

the size of the filter used. These data come from the AP algorithm, then, they are

convolved with the impulse response of the filter. Then, the output data will be convolved

once more with the averaging filter that has same size of the filter. The resulted values

along with the previous results from previous iteration are checked for a sign change in

the values to obtain bipolar data. So, if there is a variation in the sign; this gives an

indication about a new crossing iteration or minimum point. So that, we must track the

time values of these nodes to stop the iterative process at the minimum point as much as

-4 -3 -2 -1 0 1 2 3 4
-0.5

0

0.5

1

1.5

n

D
e
lt
a
 F

u
n
c
ti
o
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-40

-20

0

20

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

99

possible in the dip region. The first 10 iterations in the simulation and practical examples

are neglected since those represent transient data. The diagram in Figure 4-10

summarizes these steps:

Figure 4-10 Block Diagram of the Dip SC

The above described method was tested in simulation for a number of networks for the

two filters ℎ2(𝑘) and ℎ𝑑(𝑘) where the outputs as shown in Figure 4-11 and Figure 4-12.

Figure 4-11 shows the average and maximum detected iterations by the two filters; the

maximum iterations that can be achieved using the difference filter ℎ2(𝑘) is equal to 52

iteration while by using our filter ℎ𝑑(𝑘) the number of iteration is less and equal to 46

iterations and this value is closed to the exact iterations for Grid 9-nodes. In addition,

increasing the number of nodes will increase the number of iteration that is detected by

any filter and same relation achieves for the average iteration curve. Figure 4-12 shows

the average and maximum detected errors for these two filters and the exact error; the

maximum error value that can be reached using the difference filter ℎ2(𝑘) is equal to 5.8

ms while by using our filter ℎ𝑑(𝑘) the error value is less and equal to 3.8 ms and this

value is closed to the exact error comparing to the error value of ℎ2(𝑘) for Grid 9-nodes.

So that, the two filters work very well and either it detects the minimum or close to it, and

the best filter is the optimized filter ℎ𝑑(𝑘).

Initialization

Parameters

&

Finding Optimal C

of The Filter

Filtration Stage Detection Stage

100

Figure 4-11 Maximum and Average detected iterations by the 2-Filters

Figure 4-12 Maximum and Average error values for the 2-Filters

We deployed this stopping criterion in both the simulation and the practical networks of

different sizes that were discussed in Chapter 3. It is found that this method succeeded in

detecting the crossing iterations for all nodes in the Dip region around the minimum error

values with very good accuracy. The next section presents the simulation and practical

results for various networks.

4 9 16
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

It
e
ra

ti
o
n
s

Maximum Iteration Value for Grid Topology

Exact

Optimized Filter hd with W=7

Difference Filter h2 with W=7

4 9 16
0

10

20

30

40

50

60

70

80

90

100

Number of Nodes

It
e
ra

ti
o
n
s

Average Iteration Value for Grid Topology

Exact

Optimized Filter hd with W=7

Difference Filter h2 with W=7

4 9 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Number of Nodes

M
a
x
im

u
m

 E
rr

o
r

Maximum Error for Grid Topology

Exact

Optimized Filter hd with W=7

Difference Filter h2 with W=7

4 9 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Number of Nodes

A
v
e
ra

g
e
 E

rr
o
r

Average Error for Grid Topology

Exact

Optimized Filter hd with W=7

Difference Filter h2 with W=7

101

4.4 Simulation Results

4.4.1 Simulation Results for the Small Networks

I. 4-nodes Grid Topology:

Table 4-3 summarizes the simulation results for the 4 nodes Grid topology when applying

the AP algorithm along the stopping method. The table shows that some nodes were able

to find the exact minimum value and some other nodes were very close in detecting the

minimum value. Also, compared to SSR, there is a large saving in the number of iteration

to halt the algorithm which means as stated before more saving and faster reaching to the

minimum value. On average, it is noted that the stopping method for all nodes detects the

minimum in 15.3 iterations with respect to the exact 15 iterations. Also, the average

minimum error of all nodes is 0.43 ms compared to 0.29 ms of the exact minimum error

and the variance of all detected iterations is equal 0.333.

Table 4-3 Simulation outputs for 4-nodes Grid Topology

3+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 15 0.000671774 38 0.00299907 16 0.001094539 0.000422765

N2 15 9.45386E-05 37 0.00199907 15 9.45386E-05 0

N3 15 9.45386E-05 37 0.00199907 15 9.45386E-05 0

Maximum 15 0.000671774 38 0.00299907 16 0.001094539 0.000422765

Minimum 15 9.45386E-05 37 0.00199907 15 9.45386E-05 0

Average 15 0.00028695 37.33333333 0.002332403 15.33333333 0.000427872 0.000140922

Variance 0 1.11067E-07 0.333333333 3.33333E-07 0.333333333 3.33333E-07 5.95766E-08

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. Figure 4-13 shows the results for

102

node 1 in which the method declares a stop in three locations: one detection in the

beginning (transient), near the DR, and at the SSR. If we ignore the transient region, the

method is able to detect the DR and hlats the iteration and declares a minimum is

reached. The same can be said for the other two nodes: node 2 in Figure 4-14 and node 3

for Figure 4-15.

Figure 4-13 Simulation Error and the stopping locations for node 1 in 4-Grid

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 16

Y: 0.001095

X= 16

Y= 1.9

Detected Iterations

Error Curve

103

Figure 4-14 Simulation Error and the stopping locations for node 2 in 4-Grid

Figure 4-15 Simulation Error and the stopping locations for node 3 in 4-Grid

0 20 40 60 80 100 120
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

X: 15

Y: 9.454e-05

X= 15

Y= 1.9

Detected Iterations

Error Curve

0 20 40 60 80 100 120
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

X: 15

Y: 9.454e-05

X= 15

Y= 1.9

Detected Iterations

Error Curve

104

II. 4-nodes Hexa Topology:

Table 4-4 summarizes the simulation results for the 4 nodes Hexa topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

were able to find the exact minimum value and some other nodes were very close in

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 18.3 iterations with respect to the exact 18

iterations. Also, the average minimum error of all nodes is 0.66 ms compared to 0.39 ms

of the exact minimum error and the variance of all detected iterations is equal 0.333.

Table 4-4 Simulation outputs for 4-nodes Hexa Topology

3+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 18 0.000523788 43 0.003995329 19 0.001331698 0.000807911

N2 18 0.000331698 42 0.002995329 18 0.000331698 0

N3 18 0.000331698 42 0.002995329 18 0.000331698 0

Maximum 18 0.000523788 43 0.003995329 19 0.001331698 0.000807911

Minimum 18 0.000331698 42 0.002995329 18 0.000331698 0

Average 18 0.000395728 42.33333333 0.003328663 18.33333333 0.000665032 0.000269304

Variance 0 1.22994E-08 0.333333333 3.33333E-07 0.333333333 3.33333E-07 2.17573E-07

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. The same results were observed here

when compared to the results in Grid topology.

105

III. 4-nodes Random Topology:

Table 4-5 summarizes the simulation results for the 4 nodes Random topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

were able to find the exact minimum value and some other nodes were very close in

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 13 iterations with respect to the exact 13 iterations.

Also, the average minimum error of all nodes is 0.04 ms which is equal to the exact

minimum error and the variance of all detected iterations is equal zero.

Table 4-5 Simulation outputs for 4-nodes Random Topology

3+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference between

the errors using the

stopping method and

the exact error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 13 4.03107E-05 32 0.00199908 13 4.03107E-05 0

N2 13 4.02398E-05 32 0.00199908 13 4.02398E-05 0

N3 13 4.02719E-05 32 0.00199908 13 4.02719E-05 0

Maximum 13 4.03107E-05 32 0.00199908 13 4.03107E-05 0

Minimum 13 4.02398E-05 32 0.00199908 13 4.02398E-05 0

Average 13 4.02741E-05 32 0.00199908 13 4.02741E-05 0

Variance 0 1.25978E-15 0 8.95445E-34 0 1.25978E-15 0

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. The same results were observed here

when compared to the results in Grid topology.

106

4.4.2 Simulation Results for the Large Networks

I. 9-nodes Grid Topology:

Table 4-6 summarizes the simulation results for the 9 nodes Grid topology when applying

the AP algorithm along the stopping method. The table shows that some nodes were able

to find the exact minimum value and some other nodes were very close in detecting the

minimum value. Also, compared to SSR, there is a large saving in the number of iteration

to halt the algorithm which means as stated before more saving and faster reaching to the

minimum value. On average, it is noted that the stopping method for all nodes detects the

minimum in 44 iterations with respect to the exact 42.875 iterations. Also, the average

minimum error of all nodes is 2.2 ms compared to 0.38 ms of the exact minimum error

and the variance of all detected iterations is equal 7.

Table 4-6 Simulation outputs for 9-nodes Grid Topology

8+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 45 5.69782E-05 165 0.016995179 46 0.002325414 0.002268436

N2 43 0.000815579 164 0.015995179 45 0.001325414 0.000509834

N3 45 0.000200615 162 0.013995594 43 0.001812688 0.001612074

N4 43 0.000815579 164 0.015995179 45 0.001325414 0.000509834

N5 45 0.000200615 162 0.013995594 43 0.001812688 0.001612074

N6 43 0.0003926 157 0.00999558 39 0.003646339 0.003253739

N7 45 0.000200615 162 0.013995594 43 0.001812688 0.001612074

N8 43 0.0003926 157 0.00999558 39 0.003646339 0.003253739

Maximum 45 0.000815579 165 0.016995179 46 0.003646339 0.003253739

Minimum 43 5.69782E-05 157 0.00999558 39 0.001325414 0.000509834

Average 44 0.000384398 161.625 0.013870435 42.875 0.002213373 0.001828975

Variance 1.142857 8.29288E-08 9.410714286 6.9813E-06 6.982142857 8.8256E-07 1.12492E-06

107

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. Figure 4-16 shows the results for

node 1 in which the method declares a stop in three locations: one detection in the

beginning (transient), near the DR, and at the SSR. If we ignore the transient region, the

method is able to detect the DR and halts the iteration and declares a minimum is

reached. The same can be said for another two nodes: node 2 in Figure 4-17 and node 3

for Figure 4-18. The same behavior is observed for the remaining nodes.

Figure 4-16 Simulation Error and the stopping locations for node 1 in 9-Grid

0 50 100 150 200 250 300 350
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

X: 46

Y: 0.002325

X= 46

Y= 1.9

Detected Iterations

Error Curve

108

Figure 4-17 Simulation Error and the stopping locations for node 2 in 9-Grid

Figure 4-18 Simulation Error and the stopping locations for node 3 in 9-Grid

II. 9-nodes Hexa Topology:

Table 4-7 summarizes the simulation results for the 9 nodes Hexa topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

were able to find the exact minimum value and some other nodes were very close in

0 50 100 150 200 250 300 350
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 45

Y: 0.001325

X= 45

Y= 1.9

Detected Iterations

Error Curve

0 50 100 150 200 250 300 350
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 43

Y: 0.001813

X= 43

Y= 1.9

Detected Iterations

Error Curve

109

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 37.25 iterations with respect to the exact 37.125

iterations. Also, the average minimum error of all nodes is 1.5 ms compared to 0.38 ms of

the exact minimum error and the variance of all detected iterations is equal 5.

Table 4-7 Simulation outputs for 9-nodes Hexa Topology

8+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using the

stopping method

and the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 38 0.000470093 95 0.01323586 40 0.002531802 0.002061709

N2 37 0.000527282 94 0.012361519 39 0.001554297 0.001027015

N3 37 0.000241893 92 0.010699382 37 0.000241893 0

N4 37 0.000532532 94 0.0121102 39 0.001509306 0.000976774

N5 37 0.000285639 90 0.009395969 36 0.001178707 0.000893067

N6 37 0.000142758 88 0.007339151 33 0.003311162 0.003168404

N7 37 0.000458648 93 0.011549251 38 0.000553999 9.5351E-05

N8 37 0.00035947 90 0.008990248 36 0.001221922 0.000862452

Maximum 38 0.000532532 95 0.01323586 40 0.003311162 0.003168404

Minimum 37 0.000142758 88 0.007339151 33 0.000241893 0

Average 37.125 0.000377289 92 0.010710197 37.25 0.001512886 0.001135597

Variance 0.125 2.05549E-08 6 3.97419E-06 5.071428571 1.00071E-06 1.07602E-06

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. The same results were observed here

when compared to the results in Grid topology.

III. 9-nodes Random Topology:

Table 4-8 summarizes the simulation results for the 9 nodes Random topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

110

were able to find the exact minimum value and some other nodes were very close in

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 36.75 iterations with respect to the exact 37

iterations. Also, the average minimum error of all nodes is 1.54 ms compared to 0.1 ms of

the exact minimum error and the variance of all detected iterations is equal 4.7.

Table 4-8 Simulation outputs for 9-nodes Random Topology

8+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference between

the errors using the

stopping method

and the exact error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 37 0.000210247 94 0.013231195 39 0.001960585 0.001750338

N2 37 7.04358E-05 93 0.012356809 39 0.001937868 0.001867432

N3 37 0.000146435 91 0.010694614 37 0.000146435 0

N4 37 8.44079E-05 93 0.01210558 38 0.000943595 0.000859187

N5 37 5.85219E-05 90 0.009399316 35 0.001743444 0.001684922

N6 37 0.000123708 87 0.007334509 33 0.002933161 0.002809453

N7 37 3.27568E-05 93 0.011552438 38 0.000944243 0.000911486

N8 37 2.71062E-05 90 0.008993481 35 0.001767299 0.001740193

Maximum 37 0.000210247 94 0.013231195 39 0.002933161 0.002809453

Minimum 37 2.71062E-05 87 0.007334509 33 0.000146435 0

Average 37 9.42024E-05 91.375 0.010708493 36.75 0.001547079 0.001452876

Variance 0 3.89666E-09 5.410714 3.96918E-06 4.785714 7.17341E-07 7.13351E-07

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. The same results were observed here

when compared to the results in Grid topology.

IV. 16-nodes Grid Topology:

Table 4-9 summarizes the simulation results for the 16 nodes Grid topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

111

were able to find the exact minimum value and some other nodes were very close in

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 79.867 iterations with respect to the exact 79.2

iterations. Also, the average minimum error of all nodes is 5.6 ms compared to 0.35 ms of

the exact minimum error and the variance of all detected iterations is equal 69.

Table 4-9 Simulation outputs for 16-nodes Grid Topology

15+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 80 0.000711993 357 0.043543766 88 0.008921185 0.008209192

N2 80 0.000145546 356 0.042543766 87 0.007921185 0.007775639

N3 79 0.000633557 354 0.04018738 85 0.005387451 0.004753894

N4 79 0.000265769 351 0.037758506 82 0.002567965 0.002302196

N5 80 0.000145546 356 0.042543766 87 0.007921185 0.007775639

N6 79 0.00075918 354 0.040901112 86 0.006881178 0.006121999

N7 79 0.000277854 351 0.037258878 82 0.002548629 0.002270775

N8 79 7.58253E-05 346 0.033329904 77 0.001901044 0.001825219

N9 79 0.000633557 354 0.04018738 85 0.005387451 0.004753894

N10 79 0.000277854 351 0.037258878 82 0.002548629 0.002270775

N11 79 7.74176E-05 343 0.030615441 74 0.003698408 0.00362099

N12 79 0.000449196 330 0.02197224 62 0.012420188 0.011970992

N13 79 0.000265769 351 0.037758506 82 0.002567965 0.002302196

N14 79 7.58255E-05 346 0.033329904 77 0.001901044 0.001825219

N15 79 0.000449196 330 0.02197224 62 0.012420194 0.011970998

Maximum 80 0.00075918 357 0.043543766 88 0.012420194 0.011970998

Minimum 79 7.58253E-05 330 0.02197224 62 0.001901044 0.001825219

Average 79.2 0.000349605 348.6666667 0.036077444 79.86666667 0.005666247 0.005316641

Variance 0.171429 5.79858E-08 73.38095238 4.62651E-05 68.98095238 1.31779E-05 1.2449E-05

112

The stopping method was applied for each node separately for all regions in the curve to

test where and how many times it can declare a halt. Figure 4-19 shows the results for

node 1 in which the method declares a stop in three locations: one detection in the

beginning (transient), near the DR, and at the SSR. If we ignore the transient region, the

method is able to detect the DR and halts the iteration and declares a minimum is

reached. The same can be said for another two nodes: node 2 in Figure 4-20 and node 3

for Figure 4-18. The same behavior is observed for the remaining nodes.

Figure 4-19 Simulation Error and the stopping locations for node 1 in 16-Grid

0 100 200 300 400 500 600
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 88

Y: 0.008921

X= 88

Y= 1.9

Detected Iterations

Error Curve

113

Figure 4-20 Simulation Error and the stopping locations for node 2 in 16-Grid

Figure 4-21 Simulation Error and the stopping locations for node 3 in 16-Grid

V. 16-nodes Hexa Topology:

Table 4-10 summarizes the simulation results for the 16 nodes Hexa topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

were able to find the exact minimum value and some other nodes were very close in

0 100 200 300 400 500 600
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 87

Y: 0.007921

X= 87

Y= 1.9

Detected Iterations

Error Curve

0 100 200 300 400 500 600
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 85

Y: 0.005387

X= 85

Y= 1.9

Detected Iterations

Error Curve

114

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 88.267 iterations with respect to the exact 86.6

iterations. Also, the average minimum error of all nodes is 4.5 ms compared to 0.26 ms of

the exact minimum error and the variance of all detected iterations is equal 54.2.

Table 4-10 Simulation outputs for 16-nodes Hexa Topology

15+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using the

stopping method

and the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 89 0.000359786 239 0.049468008 94 0.005649195 0.005289409

N2 89 0.000472502 238 0.04846966 93 0.004656662 0.00418416

N3 88 0.000313058 235 0.045905541 90 0.001749268 0.00143621

N4 88 4.88986E-05 233 0.043409819 88 4.88986E-05 0

N5 89 0.000456458 238 0.048466356 93 0.004641728 0.004185271

N6 88 0.000379195 236 0.046043134 90 0.001690352 0.001311156

N7 88 2.22991E-05 231 0.041796743 86 0.001979288 0.001956989

N8 88 0.00013476 228 0.03945525 83 0.004635745 0.004500984

N9 89 0.000529627 237 0.047632921 92 0.00364551 0.003115883

N10 88 0.000381809 235 0.045722651 90 0.001675424 0.001293615

N11 88 9.87801E-07 229 0.039763147 84 0.003813714 0.003812726

N12 88 0.000154575 217 0.030227179 72 0.013253929 0.013099355

N13 88 0.000380926 235 0.045712115 90 0.001675798 0.001294872

N14 88 8.68129E-05 230 0.040793424 85 0.002991204 0.002904391

N15 88 0.000122524 213 0.027945782 69 0.015221346 0.015098822

Maximum 89 0.000529627 239 0.049468008 94 0.015221346 0.015098822

Minimum 88 9.87801E-07 213 0.027945782 69 4.88986E-05 0

Average 88.26667 0.000256281 231.6 0.042720782 86.6 0.004488537 0.004232256

Variance 0.209524 3.26093E-08 57.4 4.09786E-05 54.25714286 1.81442E-05 1.84136E-05

VI. 16-nodes Random Topology:

Table 4-11 summarizes the simulation results for the 16 nodes Random topology when

applying the AP algorithm along the stopping method. The table shows that some nodes

115

were able to find the exact minimum value and some other nodes were very close in

detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 90 iterations with respect to the exact 90 iterations.

Also, the average minimum error of all nodes is 2.5 ms compared to 0.1 ms of the exact

minimum error and the variance of all detected iterations is equal 15.1.

Table 4-11 Simulation outputs for 16-nodes Random Topology

15+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference between

the errors using the

stopping method

and the exact error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 90 0.000206789 244 0.04970001 94 0.003938713 0.003731924

N2 90 0.000127355 243 0.048666345 93 0.0029465 0.002819145

N3 90 6.06407E-05 240 0.045624842 90 6.06407E-05 0

N4 90 0.000121399 240 0.04572843 90 0.000121399 0

N5 90 0.000148503 243 0.048733675 93 0.002930926 0.002782423

N6 90 3.0945E-05 241 0.046611968 91 0.000970757 0.000939812

N7 90 0.000101025 238 0.044360777 89 0.000872278 0.000771253

N8 90 0.000143706 238 0.044156018 88 0.001812313 0.001668608

N9 90 0.000135718 243 0.048407629 93 0.002922366 0.002786648

N10 90 9.23675E-05 241 0.047197819 92 0.001917977 0.00182561

N11 90 1.07263E-05 240 0.045822958 90 1.07263E-05 0

N12 90 8.36796E-05 230 0.036939189 80 0.008909279 0.0088256

N13 90 0.000144487 243 0.048461796 93 0.002917562 0.002773075

N14 90 7.95591E-05 241 0.046736317 91 0.000925858 0.000846299

N15 90 1.25872E-05 232 0.038780077 83 0.006385163 0.006372576

Maximum 90 0.000206789 244 0.04970001 94 0.008909279 0.0088256

Minimum 90 1.07263E-05 230 0.036939189 80 1.07263E-05 0

Average 90 9.99658E-05 239.8 0.045728523 90 0.002509497 0.002409531

Variance 0 3.05713E-09 16.17143 1.29953E-05 15.14286 6.07586E-06 6.05691E-06

116

4.5 Practical Results

In this part, we generate real data by applying AP algorithm on real sensor nodes without

stopping criterion. Then, stopping criterion was tested on these real data using MATLAB

to check if the SC method can detect the minimum error in the DR for each node. The

grid topology of different sizes will be presented next. It is worth mentioning here that

other topologies exhibit similar behaviour.

4.5.1 Practical Results for the Small Networks

I. 4-nodes Grid Topology:

Table 4-12 summarizes the practical results for the 4 nodes Grid topology when applying

the AP algorithm along the stopping method. The table shows that some nodes were able

to find the exact minimum value and some other nodes were very close in detecting the

minimum value. Also, compared to SSR, there is a large saving in the number of iteration

to halt the algorithm which means as stated before more saving and faster reaching to the

minimum value. On average, it is noted that the stopping method for all nodes detects the

minimum in 17.3 iterations with respect to the exact 15.3 iterations. Also, the average

minimum error of all nodes is 1.1 ms compared to 0.2 ms of the exact minimum error and

the variance of all detected iterations is equal 0.333.

117

Table 4-12 Practical outputs for 4-nodes Grid Topology

3+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 18 0.000463281 47 0.002999968 18 0.000463281 0

N2 14 6.48437E-05 46 0.001999968 17 0.001463281 0.001398438

N3 14 6.48437E-05 46 0.001999968 17 0.001463281 0.001398438

Maximum 18 0.000463281 47 0.002999968 18 0.001463281 0.001398438

Minimum 14 6.48437E-05 46 0.001999968 17 0.000463281 0

Average 15.33333 0.000197656 46.33333333 0.002333302 17.33333333 0.001129948 0.000932292

Variance 5.333333 5.29175E-08 0.333333333 3.33333E-07 0.333333333 3.33333E-07 6.51876E-07

The stopping method with length of filter equal 7 was applied for each node separately

for all regions in the curve to test where and how many times it can declare a halt.

Figure 4-22 shows the results for node 1 in which the method declares a stop in three

locations: one detection in the beginning (transient), near the DR, and at the SSR. If we

ignore the transient region, the method is able to detect the DR and halts the iteration and

declares a minimum is reached. The same can be said for the other two nodes: node 2 in

Figure 4-23 and node 3 for Figure 4-24.

118

Figure 4-22 Practical error curve and the stopping locations for node 1 in 4-Grid

Figure 4-23 Practical error curve and the stopping locations for node 2 in 4-Grid

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

10
1

X: 18

Y: 0.0004633

X= 18

Y= 1.9

Detected Iterations

Error Curve

0 20 40 60 80 100 120
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

X: 17

Y: 0.001463

X= 17

Y= 1.9

Detected Iterations

Error Curve

119

Figure 4-24 Practical error curve and the stopping locations for node 3 in 4-Grid

4.5.2 Practical Results for the Large Networks

I. 9-nodes Grid Topology:

Table 4-13 summarizes the practical results for the 9 nodes Grid topology when applying

the AP algorithm along the stopping method. The table shows that nodes were very close

in detecting the minimum value. Also, compared to SSR, there is a large saving in the

number of iteration to halt the algorithm which means as stated before more saving and

faster reaching to the minimum value. On average, it is noted that the stopping method

for all nodes detects the minimum in 52.625 iterations with respect to the exact 53

iterations. Also, the average minimum error of all nodes is 4.2 ms compared to 0.44 ms of

the exact minimum error and the variance of all detected iterations is equal 9.4.

0 20 40 60 80 100 120
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

X: 17

Y: 0.001463

X= 17

Y= 1.9

Detected Iterations

Error Curve

120

Table 4-13 Practical outputs for 9-nodes Grid Topology

8+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 55 0.000729527 195 0.016998716 56 0.005181115 0.004451588

N2 51 0.000480831 194 0.015998716 55 0.004181115 0.003700284

N3 55 0.000343489 191 0.013998636 53 0.002436176 0.002092687

N4 51 0.000480831 194 0.015998716 55 0.004181115 0.003700284

N5 55 0.000343489 191 0.013998636 53 0.002436176 0.002092687

N6 51 0.000408626 187 0.009999088 48 0.00648722 0.006078594

N7 55 0.000343489 191 0.013998636 53 0.002436176 0.002092687

N8 51 0.000408626 187 0.009999088 48 0.00648722 0.006078594

Maximum 55 0.000729527 195 0.016998716 56 0.00648722 0.006078594

Minimum 51 0.000343489 187 0.009999088 48 0.002436176 0.002092687

Average 53 0.000442363 191.25 0.013873779 52.625 0.004228289 0.003785925

Variance 4.571429 1.67182E-08 9.357142857 6.98131E-06 9.410714286 2.9647E-06 2.79594E-06

II. 16-nodes Grid Topology:

Table 4-14 summarizes the practical results for the 16 nodes Grid topology when

applying the AP algorithm along the stopping method. The table shows that nodes were

very close in detecting the minimum value. Also, compared to SSR, there is a large

saving in the number of iteration to halt the algorithm which means as stated before more

saving and faster reaching to the minimum value. On average, it is noted that the stopping

method for all nodes detects the minimum in 94.8 iterations with respect to the exact

95.67 iterations. Also, the average minimum error of all nodes is 5.1 ms compared to 0.23

ms of the exact minimum error and the variance of all detected iterations is equal 68.1.

121

Table 4-14 Practical outputs for 16-nodes Grid Topology

15+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 94 0.000328504 447 0.04356728 103 0.004796991 0.004468487

N2 98 0.000552229 446 0.04256728 102 0.003796991 0.003244763

N3 94 0.00013527 444 0.040210629 100 0.006042952 0.005907682

N4 98 3.44644E-05 441 0.037782017 97 0.003230824 0.003196359

N5 98 0.000552229 446 0.04256728 102 0.003796991 0.003244763

N6 94 2.5456E-05 444 0.04092484 100 0.006054611 0.006029155

N7 98 4.97064E-05 441 0.037282067 97 0.003202441 0.003152734

N8 94 0.000553441 436 0.033353441 92 0.001237424 0.000683983

N9 94 0.00013527 444 0.040210629 100 0.006042952 0.005907682

N10 98 4.97064E-05 441 0.037282067 97 0.003202441 0.003152734

N11 97 0.000425289 433 0.030638745 89 0.007785826 0.007360537

N12 93 7.39918E-05 420 0.021995837 77 0.011772343 0.011698351

N13 98 3.44644E-05 441 0.037782017 97 0.003230824 0.003196359

N14 94 0.000553441 436 0.033353441 92 0.001237424 0.000683983

N15 93 7.39918E-05 420 0.021995837 77 0.011772344 0.011698352

Maximum 98 0.000553441 447 0.04356728 103 0.011772344 0.011698352

Minimum 93 2.5456E-05 420 0.021995837 77 0.001237424 0.000683983

Average 95.66667 0.000238497 438.6666667 0.036100894 94.8 0.005146892 0.004908395

Variance 4.666667 5.09708E-08 73.38095238 4.62647E-05 68.17142857 1.0459E-05 1.10657E-05

4.6 Hardware Platform and Implementation Details for Real-world

Experiments

The AP algorithm and our designed SC provided promising results in simulation and

when they are applied to real data. Therefore, the ultimate test will be to test these two

algorithms for synchronization in the real network. We performed our experiments with

single hop wireless sensor networks using one type of commercially available sensor

nodes called Micaz made by Memsic Company supported with multiple of oscillators

7.37 MHz and 32 KHz, 8-bit Atmel Atmega128L microcontroller, 4kB RAM, 128kB

122

program flash and Chipcon CC2420 radio chip has data rate equal to 250 kbps; CC2420

transceiver on Micaz nodes has the capability to timestamp synchronization packets at the

MAC layer with the timer used for timing measurements. We used the packet level time

synchronization interfaces provided by TinyOS to timestamp synchronization messages

at the MAC layer. Micaz nodes run on the open source TinyOS operating system and

operate over the 2.4 GHz IEEE 802.15.4 protocol, compliant to Direct Sequence Spread

Spectrum (DSSS) radio with Orthogonal-QPSK modulation technique. We used a total of

4, 9, and 16 Micaz nodes and another node called sink or Base station node. This sink

node was connected through a MIB520 gateway supported with USB port and directly

connected to Laptop that is using an open source OS Ubuntu. TinyOS 2.1.2 package was

installed on that Laptop. The sink node was used to capture the transmitted packets

between the sensor nodes over the USB interface. The oscillators of the Micaz nodes

represent the clock source for the timer that uses for the timing measurements. Micaz

have three timers: TMilli, T32khz, and TMicro, so the accuracy of these sensor nodes

will depend on the timer. In this implementation we used the TMilli timer and the

accuracy will be within milliseconds. Besides to the implementation of our protocol, we

implemented two other protocols for reference which are RFTSP and EGTSP and the

results are presented in section 4.7.4. The whole flow charts of this protocol with the two

stopping criteria can be found in the APPENDIX. In this part, we implemented the whole

system using Micaz nodes that were discussed in Chapter 1 using NesC language. The

specifications used in the implementation are summarized in Table 4-15. We concentrate

also here in the grid topology of various sizes and similar results were observed for other

topologies.

123

Table 4-15 Specification of the implementation part

Parameter Specification

Topology Grid

Nodes 4-nodes, 9-nodes, and 16-nodes.

Packet Size 32bit(Time)+32bit(Error)+16bit(ID)+16bit(Iteration)=64bits

C Value 1.8 (4-Nodes), 1.035 (9-Nodes), and 1.002 (16-Nodes)

Stopping Condition Give the (Iteration, Time, and Error) Values + Stopping the Transmission

Timer TMilli

4.6.1 4-Nodes Grid Topology

Figure 4-25 shows how the 4-nodes grid topology is distributed in real time

implementation before taking the output data.

Figure 4-25 Real Time implementation for 4-nodes

124

The time values and the error values are plotted for each node as shown in Figure 4-26

and Figure 4-27, respectively.

Figure 4-26 Practical Time Values for each node in 4-Grid

Figure 4-27 Practical Error Values for each node in 4-Grid

125

The two figures show that the protocol works. Each node is able to detect the minimum

error using our protocol and stops the iterative process inside the dip region. Table 4-16

shows the values in the above two figures. Also, the Table shows the exact minimum

values and the steady state values as presented in section 4.2 for comparison.

Table 4-16 Practical Iteration and Error Values for 4-nodes

3+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using the

stopping method

and the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 15 0.000538281 47 0.002599969 18 0.000862109 0.000323828

N2 19 3.10547E-05 46 0.001699969 18 0.00118457 0.001153516

N3 19 3.10547E-05 46 0.001699969 18 0.00118457 0.001153516

Maximum 19 0.000538281 47 0.002599969 18 0.00118457 0.001153516

Minimum 15 3.10547E-05 46 0.001699969 18 0.000862109 0.000323828

Average 17.66667 0.00020013 46.33333333 0.001999969 18 0.001077083 0.000876953

Variance 5.333333 8.57596E-08 0.333333333 0.00000027 0 3.46604E-08 2.2946E-07

Table 4-16 summarizes the real results for the 4 nodes Grid topology when applying the

AP algorithm along the stopping method. The table shows that some nodes were very

close in detecting the minimum value. Also, compared to SSR, there is a large saving in

the number of iteration to halt the algorithm which means as stated before more saving

and faster reaching to the minimum value. On average, it is noted that the stopping

method for all nodes detects the minimum in 18 iterations with respect to the exact 17.7

iterations. Also, the average minimum error of all nodes is 1ms compared to 0.2 ms of the

exact minimum error and the variance of all detected iterations is equal 0.

4.6.2 9-Nodes Grid Topology

Figure 4-28 shows how the 9-nodes grid topology is distributed in real time

implementation before taking the output data.

126

Figure 4-28 Real Time implementation of 9-nodes

The time values and the error values are plotted for each node as shown in Figure 4-29

and Figure 4-30, respectively.

Figure 4-29 Practical Time Values for each node in 9-Grid

127

Figure 4-30 Practical Error Values for each node in 9-Grid

The two figures show that the protocol works. Each node is able to detect the minimum

error using our protocol and stops the iterative process. Table 4-17 shows the values in

the above two figures. Also, the Table shows the exact minimum values and the steady

state values as presented in section 4.2 for comparison.

128

Table 4-17 Iteration and Error Values for 9-nodes

8+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 67 0.000271674 195 0.007998733 67 0.000271674 0

N2 61 0.000210105 194 0.007498733 66 0.000228326 1.82214E-05

N3 67 0.000247653 191 0.006498654 64 0.001056578 0.000808926

N4 61 0.000210105 194 0.007498733 66 0.000228326 1.82214E-05

N5 67 0.000247653 191 0.006498654 64 0.001056578 0.000808926

N6 61 0.000265107 187 0.004499105 59 0.000960327 0.00069522

N7 67 0.000247653 191 0.006498654 64 0.001056578 0.000808926

N8 61 0.000265107 187 0.004499105 59 0.000960327 0.00069522

Maximum 67 0.000271674 195 0.007998733 67 0.001056578 0.000808926

Minimum 61 0.000210105 187 0.004499105 59 0.000228326 0

Average 64 0.000245632 191.25 0.006436296 63.625 0.000727339 0.000481707

Variance 10.28571 5.67611E-10 9.357142857 1.74512E-06 9.410714286 1.62774E-07 1.53439E-07

Table 4-17 summarizes the real results for the 9 nodes Grid topology when applying the

AP algorithm along the stopping method. The table shows that some nodes were very

close in detecting the minimum value. Also, compared to SSR, there is a large saving in

the number of iteration to halt the algorithm which means as stated before more saving

and faster reaching to the minimum value. On average, it is noted that the stopping

method for all nodes detects the minimum in 63.625 iterations with respect to the exact

64 iterations. Also, the average minimum error of all nodes is 0.7 ms compared to 0.25

ms of the exact minimum error and the variance of all detected iterations is equal 9.4.

4.6.3 16-Nodes Grid Topology

Figure 4-31 shows how the 16-nodes grid topology is distributed in real time

implementation before taking the output data.

129

Figure 4-31 Real Time implementation of 16-nodes

The time values and the error values are plotted for each node as shown in Figure 4-32

and Figure 4-33, respectively.

Figure 4-32 Practical Time Values for each node in 16-Grid

130

Figure 4-33 Practical Error Values for each node in 16-Grid

The two figures show that the protocol works. Each node is able to detect the minimum

error using our protocol and stops the iterative process. Table 4-18 shows the values in

the above two figures. Also, the table shows the exact minimum values and the steady

state values as presented in section 4.2 for comparison.

131

Table 4-18 Iteration and Error Values for 16-nodes

15+1 Exact in Dip Region Stopping in SSR Stopping in Dip

Difference

between the

errors using

the stopping

method and

the exact

error

Nodes Iterations Error Value Iterations Error Value Iterations Error Value Error Value

N1 96 0.00010285 447 0.041338725 106 0.00957014 0.009467291

N2 100 0.00033942 446 0.040388725 105 0.00862014 0.00828072

N3 96 0.000315173 444 0.038149931 103 0.002891579 0.002576406

N4 100 0.000188637 441 0.035842747 100 0.000188637 0

N5 100 0.00033942 446 0.040388725 105 0.00862014 0.00828072

N6 96 0.000215716 444 0.038828428 104 0.007612213 0.007396497

N7 100 0.000200307 441 0.035367798 100 0.000200307 0

N8 99 0.000459066 436 0.0316356 96 0.000669474 0.000210408

N9 96 0.000315173 444 0.038149931 103 0.002891579 0.002576406

N10 100 0.000200307 441 0.035367798 100 0.000200307 0

N11 99 0.000284579 433 0.029056619 92 0.002428683 0.002144104

N12 95 1.00546E-05 420 0.020845853 80 0.014000267 0.013990213

N13 100 0.000188637 441 0.035842747 100 0.000188637 0

N14 99 0.000459066 436 0.0316356 96 0.000669474 0.000210408

N15 95 1.00546E-05 420 0.020845853 80 0.014000268 0.013990213

Maximum 100 0.000459066 447 0.041338725 106 0.014000268 0.013990213

Minimum 95 1.00546E-05 420 0.020845853 80 0.000188637 0

Average 98.06667 0.000241897 438.6666667 0.034245672 98 0.004850123 0.004608226

Variance 4.352381 1.87544E-08 73.38095238 4.17539E-05 68.28571429 2.5784E-05 2.65968E-05

Table 4-18 summarizes the real results for the 16 nodes Grid topology when applying the

AP algorithm along the stopping method. The table shows that some nodes were very

close in detecting the minimum value. Also, compared to SSR, there is a large saving in

the number of iteration to halt the algorithm which means as stated before more saving

and faster reaching to the minimum value. On average, it is noted that the stopping

method for all nodes detects the minimum in 98 iterations with respect to the exact 98.1

iterations. Also, the average minimum error of all nodes is 4.8 ms compared to 0.25 ms of

the exact minimum error and the variance of all detected iterations is equal 68.2.

132

4.7 Comparisons and Tests of the protocol Under Various Scenarios

In this section, the synchronization protocol is tested extensively under various scenarios

such as different sizes, different topologies, different C values and different initial

parameters. Also, comparisons of the results are presented for simulated and practical

networks.

4.7.1 Summarized Simulation Results for Different Sizes (4, 9, and 16)

This part shows the effects of increasing the number of nodes on the detected minimum

values by calculating the error values between the exact minimum and detected

minimum. This effect is presented using bar plots for different sizes with different

topologies. Here, the error values are represented by the (maximum, average, and

minimum) deviation error between the exact and detected time for all nodes. The

following simulation results for the Grid, Hexa, and Random Topologies with different

sizes (4, 9, and 16 nodes) are presented.

Figure 4-34 shows the deviation error for the Grid topology with various sizes. The

figure shows that the deviation error increases as the network size increases. The error

deviates between (0 − 0.3 × 10−3) for the 4-nodes network, between (0.3 × 10−3 −

0.3 × 10−2) for the 9-nodes network, and between (0.1 × 10−2 − 0.1 × 10−1) for the

16-nodes network. This behaviour is expected as the network size increases.

133

Figure 4-34 Deviation error for Grid Topology

Figure 4-35 shows the deviation error for the Hexa topology with various sizes. The

figure shows that the deviation error increases as the network size increases. The error

deviates between (0 − 0.8 × 10−3) for the 4-nodes network, between (0 − 0.3 × 10−2)

for the 9-nodes network, and between (0 − 0.1 × 10−1) for the 16-nodes network. This

behaviour is expected as the network size increases.

4 9 16
10

-4

10
-3

10
-2

10
-1

10
0

Number of Nodes

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for Grid Topology with Different Sizes

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

134

Figure 4-35 Deviation error for Hexa Topology

Figure 4-36 shows the deviation error for the Random topology with various sizes. The

figure shows that the deviation error increases as the network size increases. The error

equal to zero (no bars) for the 4-nodes network, between (0 − 0.2 × 10−2) for the 9-

nodes network, and between (0 − 0.9 × 10−2) for the 16-nodes network. This behaviour

is expected as the network size increases.

4 9 16
10

-4

10
-3

10
-2

10
-1

10
0

Number of Nodes

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for Hexa Topology with Different Sizes

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

135

Figure 4-36 Deviation error for Random Topology

4.7.2 Summarized Practical Results for Different Sizes (4, 9, and 16)

Figure 4-37 shows the practical deviation error for the Grid topology with various sizes.

The figure shows that the deviation error increases as the network size increases. The

error deviates between (0 − 0.2 × 10−2) for the 4-nodes network, between (0.2 ×

10−2 − 0.6 × 10−2) for the 9-nodes network, and between (0.7 × 10−3 − 0.2 × 10−1)

for the 16-nodes network. This behaviour is expected as the network size increases.

4 9 16
10

-3

10
-2

10
-1

10
0

Number of Nodes

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for Random Topology with Different Sizes

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

136

Figure 4-37 Deviation error for the practical results

4.7.3 Simulation vs. Practical Results for Different Sizes (4, 9, and 16)

The error results presented in sections 4.7.1and 4.7.2 are compared in this section.

Figure 4-38 shows the deviation error for the 4-node grid topology. It can be noted that

the error values increase slightly when comparing the simulation and practical results.

The maximum simulation error is =0.3 × 10−3 while the maximum practical error is

= 0.1 × 10−2; The average simulation error is =0.1 × 10−3 while the average practical

error 0.9 × 10−3), and minimum simulation and practical error are both Zero which

represents by blue colour in this curve.

4 9 16
10

-4

10
-3

10
-2

10
-1

10
0

Number of Nodes

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for Grid Topology with Different Sizes

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

137

Figure 4-38 Simulation and practical deviation error for 4-nodes Grid

Figure 4-39 shows the deviation error for the 9-node grid topology. It can be noted that

the error values increase slightly when comparing the simulation and practical results.

The maximum simulation Error is =0.5 × 10−3 while the maximum practical error is

= 0.2 × 10−2; The average simulation error is =0.2 × 10−2 while the average practical

error 0.4 × 10−2), and the minimum simulation error (=0.5 × 10−2) while the minimum

practical error (= 0.2 × 10−3).

Practical Simulation
10

-4

10
-3

10
-2

10
-1

10
0

Output Data

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for 4-Grid Topology

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

138

Figure 4-39 Simulation and practical deviation error for 9-nodes Grid

Figure 4-40 shows the deviation error for the 16-node grid topology. It can be noted that

the error values increase slightly when comparing the simulation and practical results.

The maximum simulation Error is =0.2 × 10−1 while the maximum practical error is

= 0.2 × 10−1; The average simulation error is =0.5 × 10−2 while the average practical

error = 0.5 × 10−2), and the minimum simulation error (=0.2 × 10−2) while the

minimum practical error (= 0.7 × 10−3).

Practical Simulation
10

-4

10
-3

10
-2

10
-1

10
0

Output Data

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for 9-Grid Topology

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

139

Figure 4-40 Simulation and practical deviation error for 16-nodes Grid

4.7.4 Practical Results for Different Synchronization Protocols

This section shows the behaviour without stopping criterion of our protocol and other two

protocols that discussed in the literature: Rftsp (Rated Flooding Time Synchronization

Protocol) [13] and Egtsp (Energy-Efficient Gradient Time Synchronization Protocol)

[34]. Table 4-19 describes the specifications of the RFTSP, EGTSP and proposed

protocol.

Practical Simulation
10

-4

10
-3

10
-2

10
-1

10
0

Output Data

D
e
v
ia

ti
o
n
 E

rr
o
r

Deviation Error for 16-Grid Topology

MIN Deviation Error

AVG Deviation Error

MAX Deviation Error

140

Table 4-19 Specifications of three protocols

Specification RFTSP EGTSP Our Protocol

Type Centralized/Tree Distributed Distributed

Reference/Root

Node

Reference/Root

Node to start the

Flooding Process

Broadcasting Packet

contain the local

information about the

neighbours to start

periodically the updates

Directly

communicate with

the neighbours and

no reference node

Failures Node/Link Failures None None

Overhead

Problem

High overhead,

power consumption

is high and life of

time is low

Less overhead, power

efficient and high life of

time comparing with

FTSP

Suitable for dense

network, power

efficient and high

life of time

Communication

Type

Multi Hop

Communication

Single Hop

Communication

Single Hop

Communication

Compensation

Compensate drift

and offset at the

same time

Compensate drift and

offset individually

Compensate drift

and offset at the

same time

Communication

Cycles
High Medium Low

We implemented these protocols 9-nodes grid topology using Micaz sensor nodes and the

TMilli timer has been used in this implementation for three protocols. Figure 4-41 and

Figure 4-42 show the error curves of the two protocols compared to our protocol for 9-

nodes grid topology. We notice that our protocol is better and faster than the two

protocols and has different shape from the previous protocols.

141

Figure 4-41 Average error curve of different protocols with 9-Grid nodes

Figure 4-42 Maximum error curve of different protocols with 9-Grid nodes

0 20 40 60 80 100 120 140 160 180 200
10

-3

10
-2

10
-1

10
0

10
1

Iterations

A
v
e
ra

g
e
 E

rr
o
r

V
a
lu

e
s

Error Values for 9-Nodes with Grid Topology

OurProtocol

RFTSP

EGTSP

0 20 40 60 80 100 120 140 160 180 200

10
-2

10
-1

10
0

10
1

Iterations

M
a
x
im

u
m

 E
rr

o
r

V
a
lu

e
s

Error Values for 9-Nodes with Grid Topology

OurProtocol

RFTSP

EGTSP

142

The two figures show that our protocol differs from the other protocols in the shape of

error curve; our protocol has two regions: dip and steady state regions with different error

values while other protocols have only steady state region. Our protocol reaches the

minimum values with less number of iteration comparing to other protocols. Therefore,

our protocol is faster than the other protocols and we can stop at the dip region to save

time, memory, and power of the sensor nodes. Our protocol needs around 53 iterations to

reach the dip region with minimum error while EGTSP needs 62 iterations and RFTSP

needs around 70 iterations to reach the steady state with minimum error.

From practical view, communication and memory overheads in the time synchronization

protocols are important factors to take in account. For RFTSP, the amount of memory

which is used to save the collected time values specifies the memory requirements. While

in the distributed protocols the amount of memory which is used to save and track the

neighbors’informationdefinedthememoryrequirements.SincetheROMisusedto store

the program code of the protocol, the overhead of any protocol depends on the code size.

The energy consumption of the sensor nodes depends on the communication between the

nodes and the packet size: more communication cycles and larger packet size increase the

consumption energy; while small packet size consumes less energy. Therefore, the

overhead problem is another factor which influences the energy consumption; from

receiving time of the time information to the processing state until the clock is updated;

amount of energy will be consumed.

Regarding receiving a new synchronization packet from the server node, RFTSP is

required to save 8 values from the received times to perform a least-squares regression.

This regression consists of many multiplication and floating point division operations

143

besides the effect of the flooding process on the network; this will increase the overhead

and energy consumption of the network. While in EGTSP is not only performed these

steps, but also it evaluates the average of the clock offset and rate multipliers of the

neighbors by considering saved time for these neighbors; this will increase the overhead

on all nodes and increase the energy consumption for the network. On the other hand, our

protocol uses sum and product operations on the time information for each node by

considering the saved time for the neighbors, and the packet size of this protocol is less

than the RFTSP and EGTSP. Therefore, the overhead and energy consumption in our

protocol are less than comparing to RFTSP and EGTSP.

4.7.5 Simulation Results for Changing the Initial Values/Different Runs

This section shows the effect of changing the initial time values for the sensor nodes.

Two ranges of time were used in the simulation part for 9 nodes; first range of the time

locates between [0.2-0.3] and the period is 0.1, while the second range locates between

[0.2-0.5] and the period is 0.3. Table 4-20 and Table 4-21 summarized the simulation

results for three topologies: Grid, Hexa and Random with 9-nodes, the effect of

increasing the period of initial values that increases the number of iterations that are

detected by the filter in the dip region and error values increases for all topologies. On the

other hand, the iteration and error values slightly change for the same period either 0.1 or

0.3. The average of the exact iterations mentioned by (AIE) in the grid topology is 44

iterations and the average of the detected iterations by the filter in the dip region

mentioned by (AID) is 42.875 iterations when the period is equal to 0.1, while the

average steady state iterations mentioned by (AIS) is higher than AID by three times. On

the other hand, when the period is 0.3; the number of iterations that are detected in the

144

three regions is higher than the values when the period is 0.1; also this has occurred in

hex and random topologies.

Table 4-20 Number of iterations for different periods of 9-nodes

Topology [0.2-0.3] [0.2-0.5]

Grid

C 1.035 1.025

AIE 44 49

AIS 161.625 182.625

AID 42.875 48.625

Hexa

C 1.045 1.046

AIE 37.125 41

AIS 92 95.625

AID 37.25 40.75

Random

C 1.04 1.04

AIE 37 40.125

AIS 91.375 94.875

AID 36.75 40.25

Table 4-21 shows the simulation error values for the three topologies with two periods

0.1 and 0.3, we notice that the difference between the average exact error mentioned by

(AEE) for the grid topology and the average error that is detected by the filter mentioned

by (AED) for 0.1 is equal to 1.82 ms, while for 0.3 the difference is 3.419 ms and the

difference between the (AEE) and the average steady state error mentioned by (AES) is

for 0.3 higher than the difference between the two when the period is 0.1. It seems that

the error values decreases when the period is decreased and same thing for other

topologies.

145

Table 4-21 Error value for different periods of 9-nodes

Topology [0.2-0.3] [0.2-0.5]

Grid

C 1.035 1.025

AEE 0.000384398 0.000251152

AES 0.013870435 0.01387339

AED 0.002213373 0.003677471

Hexa

AEE 1.045 1.046

AES 0.000377289 0.000293071

AED 0.010710197 0.010708134

AEE 0.001512886 0.00150807

Random

AEE 1.04 1.04

AES 9.42024E-05 0.00036984

AED 0.010708493 0.010709287

AEE 0.001547079 0.001512971

4.8 Summary

In this chapter, a new stopping criterion was proposed to detect that a synchronization

time has been reached in the DR of the AP algorithm. Once the synchronization time is

detected, the iteration process of the AP algorithm stops.

This criterion consists of a two filters: a form of difference filter to detect a flipping point

(minimum point) in the AP algorithm curve and an averaging filter to smooth the

fluctuation of the time values of the AP algorithm. The stopping criterion was tested

using simulation and practical networks for various network topologies and/or for various

network sizes. Also, this criterion was compared with steady state criterion. Extensive

simulation was carried out to verify that the criterion works. The stopping criterion and

the AP algorithm were deployed in real grid networks of various sizes using Micaz sensor

nodes. Various parameters of the criterion were tested to test its sensitivity in detecting

synchronization. It was concluded that the AP algorithm and the stopping criterion

constitute a very good protocol that is able to synchronize all the nodes in a network with

146

less number of iterations compared to steady state synchronization that is usually used for

many protocol and with very good accuracy compared with the exact synchronization

with the master node.

The protocol was also compared with two other time synchronization protocols. It was

noted that the performance of the protocol in synchronization outperform these protocols.

In addition to that, the proposed protocol is very simple, needs only the local times of the

node and the nodes that are connected to it, and can work for any size and type of

network. The suggested protocol due to its simplicity can be used in harsh environment in

unstructured networks. The protocol is also globally stable and it is linear in complexity.

All these excellent features of the protocol make it a very excellent choice in many

applications.

147

5 CHAPTER FIVE

Conclusion: Summary and Future Work

This thesis purposes a new time synchronization protocol for wireless sensor networks.

The protocol consists of a new averaging protocol algorithm and a new stopping

criterion. The AP algorithm iteratively synchronizes all nodes in a network with the

master node time. It is based on averaging the time values received from only

neighboring nodes. It uses simple operations of scalar multiplication and addition. The

stopping criterion enables the node using only its time values to detect that

synchronization is reached and halt the iterative synchronization process. The stopping

criterion is nothing but two FIR filters: a difference filter and an averaging filter.

5.1 Summary

The thesis detailed work, achievements, and contribution can be summarized in the

following paragraphs.

First, a literature review has been accomplished for the wireless sensor networks; this

review compares wireless and wired networks, shows the advantages of using wireless

networks over the wired ones in the sensor networks. In addition, the review presents the

structure of the sensor nodes, types, and specifications. It also highlights the main

features of the hardware that used to implement the wireless network which is Micaz

nodes. Moreover, the review presents the importance of time synchronization of the

nodes in WSNs.

148

Second, it is noted that the main causes of time variations of the nodes are the drift and

the offset of the clocks in the nodes in the sensor network. Therefore, different time

synchronization protocols have been developed to minimize the drifts among nodes. The

thesis presents a comprehensive literature review for the of time synchronization

protocols of WSNs. These protocols were divided into three categories depending on the

hierarchy structure of the network: tree protocols, cluster protocols, and distributed

protocols. It is noted that tree and cluster protocols have many problems that preventing

them from being used efficiently (fast convergence, low processing hardware) in dynamic

and dense topologies and in harsh environment. The distributed protocols have the

capability to overcome these problems if one such protocol can be designed. A new

consensus distributed time synchronization protocol is proposed for WSNs; where the

Consensus Clock Synchronization (CCS) is used to minimize the clock differences

between nodes that are located geographically in close proximity to each other especially

for dense networks. The proposed protocol synchronizes each node by only receiving the

time values from the neighboring nodes connected to that node. The protocol does not

need to know about the whole network. The protocol consists of an averaging protocol

algorithm and a stopping method. In a node, the averaging algorithm iteratively averages

the received time values from the neighboring nodes and updates its time values with this

new average value. At each iteration each node keeps updating its time value until the

convergence state is reached and detected by the stopping method in which the node

stops the iteration and declares synchronization is reached. The proposed averaging

protocol exhibits a unique behavior compared to other protocols. The error curve, that

represents the difference between the current time value of a certain node with the time

149

value of the master node, dips quickly to a very low value then increases slowly and

saturates in the steady state region. The stopping method detects that a minimum error is

reached while the process is still in the dip region and declares synchronization. By doing

this, synchronization is achieved for each node with less number of iteration and with

better accuracy.

The protocol is tested using three types of topologies –Grid, Hexa, and Random with

various sizes 4, 9, and 16 nodes. Conformity of the simulated and practical results are

observed.

The deployment of the protocol in real networks shows that the proposed protocol

reaches synchronization with error value of 1.1 ms in 17 iterations which is less than the

steady state iterations by 2.7 times in the grid topology of size 4. In the grid topology of

size 9, it reaches synchronization with error value of 4.2 ms in 53 iterations which is less

than the steady state iterations by 3.6 times. For the same topology of size 16, it reaches

synchronization with error value of 5.1 ms in 95 iterations which is less than the steady

state iterations by 4.6 times. While in the simulation results for the same topology, the

proposed protocol reaches synchronization with error value of 0.5 ms in 15 iterations

which is less than the steady state iterations by 2.4 times in the topology of size 4. When

the network size is 9 nodes, it reaches synchronization with error value of 2.2 ms in 43

iterations which is less than the steady state iterations by 3.77 times. For the same

topology of size 16, it reaches synchronization with error value of 5.7 ms in 80 iterations

which is less than the steady state iterations by 4.37 times. The same relationship resulted

from the hexa and random topologies.

150

The protocol was also compared with two other time synchronization protocols in the real

grid networks of size 9 nodes. It was noted that the performance of the proposed protocol

in synchronization outperform these protocols. In addition, the error curve of our protocol

has different shape comparing with the two protocols and can reach minimum error with

less iteration. The proposed protocol reaches synchronization in 53 iterations with error

value of 4.2 ms. On the other hand, RFTSP reaches synchronization in 70 iterations and

EGTSP in 62 iterations with error value between [3-8] ms. Therefore, proposed protocol

achieves the synchronization with less iteration and minimum error, less operations, it is

suitable for dense networks under harsh environments, less overhead, and linear

complexity.

The summary is concluded by stating the main features of this protocol. It is applicable to

deploy in harsh environments and has some properties such as: computationally light,

scalable, applicable for topology changes, distributed, robust to node and link failure, it

does not need a leader node, it has global stability regardless to the network connectivity

and the stopping criterion, controllable time accuracy, single hop communication among

nodes, simplicity with little communication overhead, and Hardware-friendly using

Micaz nodes. This protocol can serve different applications like monitoring pollution,

tracking objects and monitoring the oil industry.

5.2 Future Work

In order to develop a time synchronization protocol for synchronizing the WSNs, number

of problems should be solved. These problems result variety of research directions that

need to be pursued to make the protocol more effective by: modifying this protocol to

serve multi-hop communication and take in the consideration delay factor in the

151

transmission and reception packets between nodes, studying the behavior of this protocol

under random connectivity with various sizes, designing an adaptive filter to track the

exact minimum and stop at this minimum exactly, and designing a fitting model to

smooth the time values of each node and easily detect the iteration with the minimum

error.

152

REFERENCES

1. Chee-Yee, C. and S.P. Kumar, Sensor networks: evolution, opportunities, and

challenges. Proceedings of the IEEE, 2003. 91(8): p. 1247-1256.

2. Akyildiz, I.F., et al., A survey on sensor networks. Communications Magazine,

IEEE, 2002. 40(8): p. 102-114.

3. Bernard, T. and H. Fouchal. Efficient Communications over Wireless Sensor

Networks. in Global Telecommunications Conference (GLOBECOM 2010), 2010

IEEE. 2010.

4. Sisinni, E., et al. High availability wireless temperature sensors for harsh

environments. in Sensors Applications Symposium (SAS), 2012 IEEE. 2012.

5. Yoshigoe, K. Data-driven data transmission mechanism for wireless sensor

networks in harsh communication environment. in GLOBECOM Workshops (GC

Wkshps), 2010 IEEE. 2010.

6. Gandelli, A., S. Marchi, and R.E. Zich. Sensor Networks Performance in Harsh

Environments. in Sensors for Industry Conference, 2005. 2005.

7. Kadri, A. Performance of IEEE 802.15.4-based wireless sensors in harsh

environments. 2012.

8. Szewczyk, R., et al., Habitat monitoring with sensor networks. Commun. ACM,

2004. 47(6): p. 34-40.

9. Hohlt, B., L. Doherty, and E. Brewer, Flexible power scheduling for sensor

networks, in Proceedings of the 3rd international symposium on Information

processing in sensor networks. 2004, ACM: Berkeley, California, USA. p. 205-

214.

10. Zennaro, D., et al. Fast clock synchronization in wireless sensor networks via

ADMM-based consensus. in Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks (WiOpt), 2011 International Symposium on. 2011.

11. Herman, T. and C. Zhang, Best paper: Stabilizing clock synchronization for

wireless sensor networks. 2006. p. 335-349.

12. Ganeriwal, S., R. Kumar, and M.B. Srivastava, Timing-sync protocol for sensor

networks, in Proceedings of the 1st international conference on Embedded

networked sensor systems. 2003, ACM: Los Angeles, California, USA. p. 138-

149.

13. Maroti, M., et al., The flooding time synchronization protocol, in Proceedings of

the 2nd international conference on Embedded networked sensor systems. 2004,

ACM: Baltimore, MD, USA. p. 39-49.

14. Arvind, K., Probabilistic clock synchronization in distributed systems. Parallel

and Distributed Systems, IEEE Transactions on, 1994. 5(5): p. 474-487.

15. Elson, J., L. Girod, and D. Estrin, Fine-grained network time synchronization

using reference broadcasts. SIGOPS Oper. Syst. Rev., 2002. 36(SI): p. 147-163.

16. He, J., et al., Time Synchronization in WSNs: A Maximum-Value-Based

Consensus Approach*. Automatic Control, IEEE Transactions on, 2013. PP(99):

p. 1-1.

153

17. He, J., et al., Study of consensus-based time synchronization in wireless sensor

networks. ISA Transactions, 2014. 53(2): p. 347-357.

18. Jianping, H., et al. Time synchronization in WSNs: A maximum value based

consensus approach. in Decision and Control and European Control Conference

(CDC-ECC), 2011 50th IEEE Conference on. 2011.

19. Greunen, J.v. and J. Rabaey, Lightweight time synchronization for sensor

networks, in Proceedings of the 2nd ACM international conference on Wireless

sensor networks and applications. 2003, ACM: San Diego, CA, USA. p. 11-19.

20. Jiming, C., et al., Feedback-Based Clock Synchronization in Wireless Sensor

Networks: A Control Theoretic Approach. Vehicular Technology, IEEE

Transactions on, 2010. 59(6): p. 2963-2973.

21. Yoon, S., C. Veerarittiphan, and M.L. Sichitiu, Tiny-sync: Tight time

synchronization for wireless sensor networks. ACM Trans. Sen. Netw., 2007.

3(2): p. 8.

22. Sundararaman, B.e.a., Clock synchronization for wireless sensor networks: a

survey. Ad Hoc Netw.

23. Kyoung-lae, N., E. Serpedin, and K. Qaraqe, A New Approach for Time

Synchronization in Wireless Sensor Networks: Pairwise Broadcast

Synchronization. Wireless Communications, IEEE Transactions on, 2008. 7(9): p.

3318-3322.

24. Dai, H. and R. Han, TSync: a lightweight bidirectional time synchronization

service for wireless sensor networks. SIGMOBILE Mob. Comput. Commun.

Rev., 2004. 8(1): p. 125-139.

25. Fontanelli, D. and D. Macii. Master-less time synchronization for wireless sensor

networks with generic topology. in Instrumentation and Measurement Technology

Conference (I2MTC), 2012 IEEE International. 2012.

26. Schenato, L. and F. Fiorentin, Average TimeSynch: A consensus-based protocol

for clock synchronization in wireless sensor networks. Automatica, 2011. 47(9):

p. 1878-1886.

27. Mallada, E. and T. Ao. Distributed clock synchronization: Joint frequency and

phase consensus. in Decision and Control and European Control Conference

(CDC-ECC), 2011 50th IEEE Conference on. 2011.

28. Weilian, S. and I.F. Akyildiz, Time-diffusion synchronization protocol for

wireless sensor networks. Networking, IEEE/ACM Transactions on, 2005. 13(2):

p. 384-397.

29. Yi, S., J. Qing, and Z. Kai. A clustering scheme for Reachback Firefly

Synchronicity in wireless sensor networks. in Network Infrastructure and Digital

Content (IC-NIDC), 2012 3rd IEEE International Conference on. 2012.

30. Sommer, P. and R. Wattenhofer, Gradient clock synchronization in wireless

sensor networks, in Proceedings of the 2009 International Conference on

Information Processing in Sensor Networks. 2009, IEEE Computer Society. p. 37-

48.

31. Yildirim, K.S. and A. Kantarci, External Gradient Time Synchronization in

Wireless Sensor Networks. Parallel and Distributed Systems, IEEE Transactions

on, 2014. 25(3): p. 633-641.

154

32. Zhao, D., Z. An, and Y. Xu, Time Synchronization in Wireless Sensor Networks

Using Max and Average Consensus Protocol. International Journal of Distributed

Sensor Networks, 2013. 2013.

33. Leidenfrost, R., W. Elmenreich, and C. Bettstetter. Fault-tolerant averaging for

self-organizing synchronization in wireless ad hoc networks. in Wireless

Communication Systems (ISWCS), 2010 7th International Symposium on. 2010.

34. Apicharttrisorn, K., S. Choochaisri, and C. Intanagonwiwat. Energy-Efficient

Gradient Time Synchronization for Wireless Sensor Networks. in Computational

Intelligence, Communication Systems and Networks (CICSyN), 2010 Second

International Conference on. 2010.

35. Qun, L. and D. Rus, Global clock synchronization in sensor networks. Computers,

IEEE Transactions on, 2006. 55(2): p. 214-226.

36. Cremaschi, M., O. Simeone, and U. Spagnolini. Distributed timing

synchronization for sensor networks with coupled discrete-time oscillators. 2007.

37. Carli, R., E. D'Elia, and S. Zampieri. A PI controller based on asymmetric gossip

communications for clocks synchronization in wireless sensors networks. in

Decision and Control and European Control Conference (CDC-ECC), 2011 50th

IEEE Conference on. 2011.

38. Schenato, L. and G. Gamba. A distributed consensus protocol for clock

synchronization in wireless sensor network. in Decision and Control, 2007 46th

IEEE Conference on. 2007.

39. Olfati-Saber, R. and R.M. Murray, Consensus problems in networks of agents

with switching topology and time-delays. Automatic Control, IEEE Transactions

on, 2004. 49(9): p. 1520-1533.

40. Bertsekas, D.P. and J.N. Tsitsiklis, Parallel and distributed computation:

numerical methods. 1989: Prentice-Hall, Inc. 715.

41. Olshevsky, A. and J.N. Tsitsiklis. Convergence Rates in Distributed Consensus

and Averaging. in Decision and Control, 2006 45th IEEE Conference on. 2006.

42. Wu, C.W. Agreement and consensus problems in groups of autonomous agents

with linear dynamics. in Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on. 2005.

43. Schizas, I.D., A. Ribeiro, and G.B. Giannakis, Consensus in Ad Hoc WSNs With

Noisy Links Part I: Distributed Estimation of Deterministic Signals. Signal

Processing, IEEE Transactions on, 2008. 56(1): p. 350-364.

44. Olfati-Saber, R., J.A. Fax, and R.M. Murray, Consensus and Cooperation in

Networked Multi-Agent Systems. Proceedings of the IEEE, 2007. 95(1): p. 215-

233.

45. Maggs, M.K., S.G. O'Keefe, and D.V. Thiel, Consensus Clock Synchronization

for Wireless Sensor Networks. Sensors Journal, IEEE, 2012. 12(6): p. 2269-2277.

46. Scherber, D.S. and H.C. Papadopoulos. Locally constructed algorithms for

distributed computations in ad-hoc networks. in Information Processing in Sensor

Networks, 2004. IPSN 2004. Third International Symposium on. 2004.

47. Hoffmeister and Baeck, Genetic Algorithms and Evolution Strategies: Similarities

and Differences 1992.

48. Pohlheim, H., Evolutionäre Algorithmen - Verfahren, Operatoren, Hinweise aus

der Praxis. Berlin, Heidelberg, New York.

155

49. Raymer, M.L., et al., Dimensionality Reduction Using Genetic Algorithms. 2000.

50. Siegfried, R.E. and S. Vössner, Genetic Algorithms With Cluster Analysis For

Production Simulation. 1997.

51. Djenouri, D., et al., Fast distributed multi-hop relative time synchronization

protocol and estimators for wireless sensor networks. Ad Hoc Networks, 2013.

11(8): p. 2329-2344.

52. Huang, G., et al., Long term and large scale time synchronization in wireless

sensor networks. Computer Communications, 2014. 37(0): p. 77-91.

53. Handbook for Digital Signal Processing, ed. K.M. Sanjit and F.K. James. 1993:

John Wiley \& Sons, Inc. 1312.

156

APPENDIX

Figure A-1 Averaging Protocol with Steady State Stopping Criterion

Get the Current and

Previous Time Values

Calculate Local Error Values and

the Difference between the Local

Error Values

Length of the Values

inside the Window = W

Calculate the Decision Value

(DV) = Average Value of all

values inside the window

DV Threshold

k++

Store

Data

STOP

Nodes i=1,...,N

Previous Iteration = k

Current Iteration = k+1

Error Values

and Deviation

Values

Check if the

length of Stored

Data is equal to

Window Size (W)

Save the W-Difference

Values

Calculate

Average of the

Stored Values

Start

Initialize

Send Time

Value to

Neighbors

Receive Time

Value from

Neighbors

Update its

Time Value

Depend on the

Averaging

Concept

Number of Nodes: N

Iteration Value: k=0

Time Values

Turn ON Sensor

Node

Store

Data

Save the Current and

Previous Values

157

Figure A-2 Averaging Protocol with Dip Stopping Criterion

Convolve Time

Values with the

Filter

Check the Sign

of the OUT data

Sign Change

&

k

STOP

Give:

Iteration, Time,

and Error

Window Size

represents the

Length of the

Stored Data

Select the

optimal C

Parameter

Check if there is

a change in the

sign of the OUT

Data

Stop or Sleep

the Transmission

Specify

Coefficients of

the Filter

Get the Current and

Previous Time Values

Store

Data

Length of the Values

inside the Window = W

k++

Start

Initialize

Send Time

Value to

Neighbors

Receive Time

Value from

Neighbors

Update its Time

Value

Depend on the

Averaging

Concept

Number of Nodes: N

Iteration Value: k=0

Time Values

Turn ON Sensor

Node

158

VITAE

Name : Ibrahim Ahmed Abdallah Nemer.

Nationality : Jordanian.

Date of Birth : 3/24/1988

Email : ibrahim.nimer@hotmail.com, inemer@kfupm.edu.sa

Address : KFUPM, Dhahran, Al-Sharqiya, KSA.

Academic Background :

 1. Bachelor Degree in Science of Electrical Engineering at Palestine, Birzeit

University, Rammallah in June 2011.

2. Teaching Assistant in Electrical Engineering Department of Birzeit University,

Rammallah, Palestine from September 2011 to January 2013.

3. Research Assistant in Electrical Engineering Department of KFUPM, Dhahran,

KSA from January 2013 until now.

4. Master Degree in Science of Telecommunication Engineering at KFUPM,

Dhahran, KSA from January 2013 until now.

