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Edge detection is one of the categories of geometric seismic attributes that has the ca-

pability to delineate vital information from seismic reflection data which can be used to

aid qualitative and quantitative interpretation. To characterize reservoirs with complex

fault blocks, geophysicists often need to depict the edge of geologic bodies. This study

evaluates a new method for geologic interpretation based on templates derived from

magic squares and cubes. These are discrete differential operators that approximately

calculate the spatial derivative of seismic amplitude through 2-D and 3-D convolution

to locate edges and/or geological features of interest in seismic data. The new opera-

tor’s mode of computation benefits from multidirectional scanning leading to efficient

detection of different edge locations and their respective orientations. Testing using

real seismic data containing a channel system shows good results in both 2-D and 3-

x



D cases. To evaluate the robustness of the operator, the operation was implemented

in the presence of noise, the result was better with 5 x 5 magic square and 5 x 5 x 5

magic cube operators than for the operators with smaller spatial dimension. The over-

all results suggested better edge detection for steeply dipping events and more details

compared with that of Sobel operator which suggests that the method can serve as a

complementary tool to other existing seismic attributes.
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Abstract – Arabic 

نتاج ستإ علي القدرة هتزازية التي لهاالإلسمات  ةالهندسي المزاياهم أمن  ةحواف واحدال  تحديد ةمليتعتبر ع

النوعي  التفسير تيستخدامها في عمليإو يمكن  ةالانعكاسي الاهتزازية تمن بيانا  ةحقيق جيولوجيه معلومات

د المعقدة , عادة يحتاج الجيوفيزيائيين لتحدي ةتراكيب التصدعيالالصخريه ذات  من التوصيف المك .والكمي

 حواف تلك الوحدات والتراكيب الجيولوجيه. 

من  بطنباستخدام نموذج مست الاهتزازية تبيانال جيولوجيالتفسير لطروحه تم عرض طريقة جديدة لفي هذه الأ

  المكعب السحري.المربع و

 عن طريق الاهتزازيةمشتقه المكانية لسعة ال تحسب عن  معاملات تفاضليه منفصلة ةعبار نموذجالهذا 

انات بي فيالجيولوجيه  ظواهرالو أوتستخدم في تحديد الحواف و/ ابعاد   ةو ثلاثفي بعدين ا كونفلوشن

بحث عن التراكيب الالمسح  و  يستخدم خاصية  الحوسبة المستحدث  في عملية  نموذجالهذا . الاهتزازية

 لبيانات الاهتزازية. متعددة اتتجاهإفي   الصخريه 

  ةثلاث و دينبع إنظمة قنوات ذاتعلي  تحتوي  حقيقية إهتزازيهبيانات التفاضليه علي معاملات الهذه ختبار إتم 

 ت  تم هذه المعاملا فعالية كفاءة و  .  لتقييم مدىحالتينالكلتا واظهرت نتائج ذات مصداقية عالية في ,  ابعاد

 ربعمالنموذج   اظهر .التشويش في البيانات الاهتزازيه بعض في وجود النموذج لهذا اختبار  اطوال مختلفة

افضل النتائج في تحديد التراكيب مقارنه  5×5×5ذو ابعاد سحريالمكعب النموذج  و5×5 سحري ذو ابعادال

 .صغرلابعاد االابالنماذج ذات 

 حواف التراكيب الصخريه ذات  زواياالقدرة علي تحديد نموذج له البان هذا  بشكل عام  الاطروحه اظهرت

مما  سوبلل معاملات التفاضليهاليمكن مقارنتها بشكل إيجابي مع  و. ميلان حاده مقارنه بالنماذج المتوفرة حاليآ 
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لمتوفرة ا تفسير  التراكيب الجيولوجه لبيانات الاهتزازيه لطرق مكملة بأن الطريقة يمكن أن تكون بمثابة أداة يدل

                                                                                     . حاليا  

    

 

  

 



CHAPTER 1

INTRODUCTION

1.1 Introduction

The demand for oil and gas has been growing because its advent has run in parallel

with many industries that depend on products from petroleum. For example oil

accounts for about 40 per cent of the world energy mix due to its sufficiency and low

cost in many parts of the world, while gas accounts for about 23 per cent of the world

economy mix1. As a result of its immense benefits to mankind, the growing need for

hydrocarbon will continue and this poses a great challenge for geoscientists to find the

reservoirs containing these resources.

In the past few decades exploration and production industries have utilized several

complementary geophysical methods in the search for oil and gas resources. Of all

methods, reflection seismology has been the most robust and widespread method of

1http://www.opec.org/opec_web/en/900.htm
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studying detailed subsurface geology since the 1930s. Seismic data with well logs

integration has provided structural and stratigraphic imaging, pore-fluid estimation

and lithofacies mapping for regional geological studies and in search for petroleum

reservoirs (Sangree and Widmier, 1978; Bouvier et al., 1989; Jurado and Comas, 1992;

Christensen and Mooney, 1995).

As hydrocarbon reservoirs become depleted coupled with exploration in more

complex environments, seismic attribute analysis evolved three decades ago and has

since revolutionized the traditional methods of seismic interpretation. The application

of seismic attributes has led to the discovery of huge oil and gas reserves in subtle

petroleum stratigraphic traps in various parts of the world (Justice et al., 1985;

Hesthammer and Fossen, 1997; Ecker et al., 1998; Walls et al., 1999; Stright et al.,

2009; Meldahl et al., 2001).

Hundreds of attributes have been developed over the decades including edge

detection. Generally edge detection is an image processing operation which finds the

most vital edges in an image. The algorithm has the capability to segment images into

two or more regions by connecting broken edges into lines and boundaries. There are

many edge detection algorithms such as Sobel (Sobel, 1970), Prewitt (Prewitt, 1970),

Roberts (Roberts, 1963) and Canny (Canny, 1986). These algorithms along with others

are routinely employed in digital image processing, pattern recognition and computer

vision as well as in various stages of seismic data processing and interpretation. They
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are used in seismic data analysis to extract vital but subtle structural and stratigraphic

features such as channels, faults and fractures. These geologic features usually appear

sparsely and are not easily detected especially in the presence of noise.

Edge detection also simplifies and enhances image data such that the amount of

data to be processed and interpreted is minimized (Canny, 1986), while discarding

other parts that are of less relevance to the task at hand. One of such algorithms

that has been applied successfully to seismic data is the Sobel filter, which is a

discrete differentiation operator that approximates the local gradient by combining

derivatives of the amplitude between neighboring traces along the x, y, and z directions

(Al-Dossary and Al-Garni, 2013).

1.2 Statement of Problem

Petroleum explorationists are greatly interested in identifying and locating structural

and stratigraphic discontinuities so as to aid proper geologic interpretation, well place-

ment and prediction of potential reservoir performance. This information is often

masked in the data, hence there is a need to transform the data to aid in locating and

identifying these features and their respective orientations for optimum reservoir char-

acterization.
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1.3 Objectives

• Applying the magic square operator to seismic data.

• Extending the 2-D magic square operator to 3-D to find seismic features.

• Applying the method on real seismic data to test its performance relative to Sobel

Filter.

1.4 Motivation of the Study

In recent decades the developments in edge detection have greatly contributed to the

geological interpretation of seismic data. However, the limitation in directions of tra-

ditional edge detection often makes it difficult to get a clear and unbiased view of

structural and stratigraphic features masked in 3-D seismic data which are oriented

in directions not captured by a given attribute direction of computation. It is there-

fore important to develop new robust and efficient multidirectional operators that will

accurately delineate 3-D seismic discontinuities which is vital in mapping lineaments

and stratigraphic features such as faults, fractures and channels in the subsurface. The

method developed in this study will improve the capability to detect different edge di-

rections efficiently. This adds another perspectives by allowing the interpreter to view

vertical, horizontal and directional lineaments independently in the data.

4



1.5 Contributions of the Study

The integration of seismic attribute analysis in seismic interpretation has greatly con-

tributed to understanding the subsurface geology, and has been a major tool in charac-

terizing reservoirs. Specifically, the benefits of this study include:

• Aiding seismic interpretation: The goal of seismic interpretation is to extract

geologic information from seismic data such as reflections indicating geologic

structure, stratigraphy, fluid content and all kinds of noise (random, multiple

reflection, refracted energy etc.). The presence of noise could cause an inter-

preter to overlook prominent features critical to understand the structural and

depositional environment. Moreover, manual interpretation can be tedious, time

consuming and subject to human bias. Volume attributes operate on the entire

data volume and are therefore unaffected by the interpreter or automatic picker

bias, delineating subtle features that may not have been represented by horizon

picks. The method described in this study will help either solely or in combi-

nation with other attributes to identify features such as unconformity, sequence

boundary, major change in lithology, structural deformation (such as faulting),

fault-to-fault relation and fault geometry. For example, knowledge of fault loca-

tion is a key to understanding geological system and in turn a key for building

geocellular models, and successful identification of drilling locations (Aqrawi

et al., 2011). Knowledge of faulting network is also relevant in other applications

such as hydrogeology, mineral exploration, geomechanics, construction and civil

engineering projects and earthquake studies and prediction.
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• Quality control in seismic data processing: Seismic attribute analysis can be in-

corporated in certain stages of data processing to meet interpreter objective. For

example, data can be processed for fault mapping or stratigraphic features alone.

Edge detection allows the seismic processor to carefully display and choose pa-

rameters to achieve his objectives.

• Edge detection is very applicable in potential field studies for finding the hori-

zontal and vertical derivatives of potential field data which is a usual practice for

structural analysis (Sertcelik and Kafadar, 2012).

1.6 Structure of the Thesis

The thesis is organized into five chapters as follows:

Chapter 1 introduces the background of the proposed problem, the objectives of the

study and the expected outcomes.

Chapter 2 gives an overview of relevant previously published works and classification

of seismic attributes. Theory of edge detection is also discussed.

In Chapter 3, I develop two methods of edge detection, and the underlining theory in

accomplishing the objectives of the study are introduced. The magic square and magic

cube algorithms which are the fundamentals or the building blocks of the method are

also discussed.

Chapter 4 is dedicated to the application of the new methods to a real data set. Real

data used to test the method is also discussed. The first part of Chapter 4 involves

the implementation of the magic square (2-D) operator to a time slice from migrated

6



sections, while the latter part involves the application of magic cube operators to real

seismic volume. The results of the new methods and Sobel operator are compared.

In Chapter 5, I draw conclusions from the results and suggest some recommendations

for future studies.
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CHAPTER 2

LITERATURE REVIEW

2.1 General Overview

Seismic attributes can generally be defined as all seismically driven parameters. Chen

and Sidney (1997) defined seismic attributes as specific measurements of geometric,

kinematic, dynamic, or statistical features derived from seismic data. Since their

introduction in the early 1970s, seismic attributes have become powerful interpretation

tools initially employed qualitatively, and later in 1990s the quantitative analysis of

seismic attributes became widely popular (Taner et al., 1994; Hellmich and Trappe,

1998). Since then, attributes have played an important role in contributing towards

reservoir evaluation studies and reservoir property modeling through the calibration of

derived seismic attributes with well measurements to obtain plausible geological maps.

The general objective in seismic attribute analysis is to transform seismic data to

another domain entirely such as certain features of interests become more visible, con-
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tinuous and mappable, and quantitatively to attempt to predict lateral reservoir property

changes by integrating appropriate seismic attributes with well logs to enhance reser-

voir description and characterization of reservoirs between sparse wells.

2.2 Classification of Seismic Attributes

Attributes can generally be classified based on the type of data available. Those com-

puted from normal stacked and migrated data volume are called poststack attributes,

while those computed from amplitude variation with offset (AVO) are called prestack

attributes. Some of the classification of attributes in literature are as follows:

1. Chen and Sidney (1997)

• Horizon-based attributes which compute properties of seismic trace be-

tween picked horizons.

• Sample-based attributes where input traces are transformed to produce out-

put traces with the same number of samples as the input.

2. Taner et al.(1994)

• Geometric Attributes which includes dip, azimuth and continuity

• Physical Attributes which includes amplitude, phase and frequency

3. Brown (2001) (Figure 2.1)

• Time, Amplitude, Frequency, Attenuation

• Postack and Prestack

9



Figure 2.1: Seismic attributes derived from or related to the basic seismic information
of time, amplitude, frequency, and attenuation (after Brown, 2001).

4. Liner et al. (2004)

• Specific category

• General category: The list under this category includes amplitude, time,

phase and frequency, complex trace, coherence, illumination, edge detec-

tion, AVO, spectral decomposition etc.
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2.3 Edge Detection Operators

Edge detection methods started in 1959 (Julesz, 1959). The fundamental basis involves

computing the amplitude gradient at every pixel in an input model. In some operators

a threshold value is usually used as a cut-off to preserve desired gradient of the image.

Over the decades several authors have developed different edge detection algorithms

which can be categorized (Sharifi et al., 2002) as follows

1. Edge detection based on first derivative, e.g., Sobel (Sobel, 1970), Prewitt (Pre-

witt, 1970), Roberts (Roberts, 1963), Woodhall and Lindquist (1997) and so on.

2. Edge detection based on second derivative such as zero crossing (Haralick, 1984),

Laplacian of Gaussian, LoG (Marr and Hildreth, 1980)

3. The Canny detection method based on certain optimal criteria (Canny, 1986)

4. The wavelet multiscale edge detection (Lee et al., 1995; Aydin et al., 1996; Chris-

tov, 2004; Sun et al., 2004)

5. Edge detection based on mathematical morphology (Matheron, 1965; Haralick

et al., 1987; Matheron and Serra, 2002)

6. Edge detection method based on statistics and integral transform (Chen et al.,

2011)

7. Color edge detection method (Carron and Lambert, 1994; Ruzon and Tomasi,

1999)
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The first order differential operators evaluate the gradients computed along two or-

thogonal directions, which can be expressed by the digital discrete approximation of

first-order derivative (Marques, 2011; Gonzalez and Woods, 2008) as follows:

In 2-D

∂ f
∂x

= lim
∆x→0

f (x+∆x,y)− f (x−∆x,y)
2∆x

(2.1)

∂ f
∂y

= lim
∆y→0

f (x,y+∆y)− f (x,y−∆y)
2∆y

(2.2)

In 3-D

∂ f
∂ z

= lim
∆z→0

f (x,y,z+∆z)− f (x,y,z−∆z)
2∆z

(2.3)

where ∂ f
∂x , ∂ f

∂y and ∂ f
∂ z are first order partial derivatives with respect to x, y and z respec-

tively, while f(x,y) and f(x,y,z) represents the input 2-D and 3-D data respectively.

A 3 x 3 equivalent of the first-order derivative above is the Sobel kernel which can be

represented in a matrix form along the x and y directions (Sobel, 1970) as:

Dx =


−1 0 1

−2 0 2

−1 0 1

 , Dy =


−1 −2 −1

0 0 0

1 2 1

 (2.4)
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The gradients along both orthogonal directions are computed by convolving Dx and Dy

with the input data as:

4x(x,y)≈ Dx ∗ f (x,y) (2.5)

4y(x,y)≈ Dy ∗ f (x,y) (2.6)

At each point of an image an approximation of the gradient (D) and angle of orientation

(θ ) in that point is computed by combining both results as follows:

D =
√
42

x +42
y (2.7)

θ = arctan(
4y

4x
) (2.8)

* means convolution operation

2.4 Convolution

Convolution is used in several image processing algorithms to simplify large amount

of data volume since it is a spatial process which explores spatial characteristics of

neighboring traces. The process is routinely carried out to achieve several objectives

such as data smoothing, filtering/denoising, edge enhancement and/or edge detection

using a set of predefined kernels.

Let F be an input continuous function defined on domain Dm1, Dx is the convolution

kernel defined on domain Dm2. At any given point (x) in Dm1, the result is computed as
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(Tertois and Frank, 2004):

Dx ∗F(x) =
∫

α

−α

Dx(a)F(x−a)∂a (2.9)

For each pixel at coordinates (x,y) and (x,y,z) in grid defined on domain Dm1 of 2-D

and 3-D data space respectively, equation 2.9 becomes analogously as:

Dx ∗F(x,y) =
∫

α

−α

∫
α

−α

Dx(a,b)F(x−a,y−b)∂a∂b (2.10)

Dx ∗F(x,y,z) =
∫

α

−α

∫
α

−α

∫
α

−α

Dx(a,b,c)F(x−a,y−b,z− c)∂a∂b∂c (2.11)

Since geological maps are presented as 2-D or 3-D images where pixel values are series

of discrete numbers, we make use of discrete convolution version of equations 2.10-

2.11 which are given below

Dx ∗ f (x,y) = ∑
(a,b)∈Dm2

Dx(a,b) f (x−a,y−b) (2.12)

Dx ∗ f (x,y,z) = ∑
(a,b,c)∈Dm2

Dx(a,b,c) f (x−a,y−b,z− c) (2.13)

where f (x,y) and f (x,y,z) are 2-D and 3-D input data respectively, Dm2 =

{(a,b,c)|Dx(a,b,c) 6= 0} i.e the set of all pairs (a,b,c) with non-zero value of

Dx(a,b,c).

Generally, discrete convolution performs a weighted average of all the pixels in the

specified neighborhood. Intuitively, performing a discrete 2-D or 3-D convolution is
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moving the convolution kernel in the data volume and computing the summation of the

convolution product for each point in the grid.

There are two basic key features of convolution: linear and shift invariance. Shift

invariance means that the same operation is performed for every pixel in the data grid,

while linear invariance means that data points are substituted by linear combination

with their neighborhood pixels.

2.5 Previous Studies

Many examples related to seismic attributes and their applications to reservoir explo-

ration and development are found in the literature. In this section I review common

edge detection operators and their related geometric attributes.

Bahorich and Farmer (1995) presented the coherence attribute which gives an

estimate of seismic coherence based on waveform similarity of adjacent traces from

seismic amplitude in both inline and cross-line directions. The method has the

capability to reveal faults as numerically separated surfaces. Subsequent algorithms

(Gersztenkorn and Marfurt, 1999) based on semblance and eigenstructure provides

more accurate coherence estimation than initially demonstrated. The coherence images

clearly delineate buried deltas, river channels, reefs and dewatering features. The

remarkable detail with which stratigraphic features show up on coherence displays,

with no interpretation bias greatly aids interpretation. Skirius et al. (1999) employed
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seismic coherence in North America and the Arabian Gulf to map faults and fractures

in carbonates.

Al-Dossary et al. (2002) described edge preserving smoothing operator (EPS)

which combines difference method and smoothing process together to achieve two

objectives, namely suppressing random noise and estimating amplitude gradient.

The noise suppression of the method is more robust than the conventional methods

which have blurred sharp edges in their outputs. They showed some applications

on synthetics, and real data from a Saudi Arabian carbonate field where amplitude

gradients helped in delineating fractures.

Pepper and Van Bemmel (2000) introduced variance cube, a measure of signal

unconformity. The attribute estimates the variance in a small horizontal plane, and then

smooths the results vertically. Therefore amplitude changes due to a fault will result in

high variance, while amplitude changes due to non-discontinuous events will result in

low variance. Variance attribute is particularly useful in mapping faults.

Iske and Randen (2005) came up with the chaos, a stratigraphic texture attribute

that takes into consideration various internal configuration properties. It captures the

chaotic nature of seismic signals within every 3-D window. Chaos is effective because

it is invariant to amplitude, dip and azimuth. This attribute is promising in mapping

channel infills, reef internal textures and gas chimneys.
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Luo et al. (1996) used difference and derivative methods to process seismic data

for the recognition of structural and stratigraphic discontinuities where the input data

is the seismic attribute instantaneous phase. They concluded that both methods yielded

high resolution edge detection capabilities, and that dip magnitude and azimuth can be

used to evaluate structural forms of an area.

Lisle (1994) correlated measurement of Gaussian curvature with open fractures

densities measured on outcrops. Although the exact correlation between the open

fractures, paleostructure and present-day stress is not yet clearly understood, several

works have demonstrated the applicability of seismic measures of reflector curvature

to map hidden features. A major breakthrough in this direction is the multispectral

volumetric computation of curvature by Al-Dossary and Marfurt (2006). This method

measures reflector shape (reflector rotation and curvature) at various wavelengths, and

is found to be complementary to the popular seismic coherence.

Al-Dossary et al. (2003) did a comparative study of Canny and Torreao and

Amaral edge detection operators used in image processing to evaluate their ability to

extract the full spectrum of geological features in the presence of random noise and

acquisition footprint, and found Torreao and Amaral edge detector to exhibit better

performance. Al-Dossary and Marfurt (2003) applied Torreao and Amarals filter that

is based on Green’s function to detect sharp edges and found good results since geo-

17



logical features like faults, fractures and channels appear as sharp edges in seismic data.

Jing et al. (2007) demonstrated the performance of the Sobel edge detector to

identify boundaries of salt domes and faults, and the variation of lithological properties.

Aqrawi et al. (2011) presented dip-guided 3-D Sobel to delineate clearer images of salt

bodies in the Gulf of Mexico. Comparison of their results with well-known variance

algorithms yielded better fault definition, more continuity and sharper salt boundary

and shape. Al-Dossary and Al-Garni (2013) proposed multidirectional 3-D Sobel filter

to overcome the limitation of conventional Sobel in effectively locating steeply dipping

features. Song et al. (2014) developed dip guided facet model edge detector that is

based on surface fitting algorithm which finds the local slope of a seismic event. This

characteristic makes it better than the conventional edge detection operators that are

only effective along a plane.

Pampanelli et al. (2013) presented a new edge detector called volumetric fault

attribute based on first and second directional derivatives. The method proves better

than variance attribute. Another advantage is that it does not enhance acquisition

footprints.

Di and Gao (2014) implemented gray-level transformation and Canny edge

detection for discontinuity mapping. The transformation allows the amplification of

subtle local discontinuities in the presence of strong background reflections, leading to
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an enhanced image for subtle faults and depositional features.

Chen and Nie (2007) developed 3 x 3 magic square templates. The method is found

to be very efficient in obtaining an edge gradient map with more continuous histogram

and edge direction relative to existing operators.

In this work I extend this idea into magic cubes of 3 x 3 x 3 convolution kernels

similar to compass masks (e.g. Kirsch, Robinson and Frei-Chen operators) that search

all directions to detect a discontinuity. Their result is comparable to 3-D Sobel operator

although more tests still need to be done to validate this result.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.2: Some application of seismic attributes; (a)-(c) Original data volume and
results with variance and chaos attributes (Randen et al., 2001), (d)-(f) Original time
slice and results with conventional Sobel and multidirectional Sobel (Al-Dossary and
Al-Garni, 2013) and (g)-(f) Original time slice and result with coherence attribute (Ba-
horich and Farmer, 1995)
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CHAPTER 3

METHODOLOGY

3.1 Introduction

In this section I present a new seismic edge detection method based on magic squares

and cubes. The proposed method has the capability to extract seismic edge and

morphological information, and the corresponding azimuths. The starting points are

the magic square operators developed by Chen and Nie (2007), and its 3 x 3 x 3

magic cube extension by Al-Shuhail and Al-Dossary (2014). Both algorithms are

approximate differential gradient operators similar to compass masks. I will implement

their algorithms, improve them and then extend them to 5 x 5 x 5 magic square and

cube operators.

The new operators will be tested using real data provided by Saudi Aramco. The

performance of the operators will be tested by comparing the results obtained to those

of Sobel.
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3.2 Magic Square

Magic square has a long history in recreational mathematics (Benson and Jacoby,

1976; Ollerenshaw and Brée, 1998; Heinz and Hendricks, 2000; Semanišinová and

Trenkler, 2007; Loly et al., 2009). A Magic square of order N is composed of entries

1,2, ...,N2 or 0,1, ...,N2−1 arranged in a square lattice such that the sum of all entries

along the rows, columns and diagonals are equal to the magic constant of the square

lattice/matrix (Heinz and Hendricks, 2000). The magic constant can be found as

C =
N
2
(N2 +1) (3.1)

For N = 3, the magic constant is equal to 15. Figure 3.1 shows the 3 x 3 normal magic

squares consisting of integers 1− 9 constructed by rotation/reflection of one basic

distinct form.

Based on the concept of magic square, Chen and Nie (2007) developed two robust

edge detection operators. The operators work in a fashion similar to compass masks

which search for discontinuities in all eight compass directions. Chen and Nie (2007)

methods are:

i Magic square operator based on contrast function (F1).

ii Magic square operator based on discrete convolution kernel (F2)

The two operators are based on kernels derived from a 3 x 3 magic square. F1 operator

is capable of obtaining gradient map efficiently while F2 can detect both gradient or
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discontinuity and edge direction. These operators take a normal magic square and

rotate it clockwise by 45 degree increments in eight directions. The famous normal

magic square is of the form shown in Figure 3.1a. Rotating the normal magic (or

Lo-Shu) square by 45 degree increments produces seven new templates (Figures 3.1b-

3.1h). A new kernel is formed by subtracting the central element from all elements

of the Lo-Shu as shown in Figures 3.2a-3.2h. With each of these kernels (M1-M8), a

contrast function (F1) can be built.
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8 1 6

3 5 7

4 9 2

(a)

4 3 8

9 5 1

2 7 6

(b)

2 9 4

7 5 3

6 1 8

(c)

6 7 2

1 5 9

8 3 4

(d)

2 7 6

9 5 1

4 3 8

(e)

4 9 2

3 5 7

8 1 6

(f)

8 3 4

1 5 9

6 7 2

(g)

6 1 8

7 5 3

2 9 4

(h)

Figure 3.1: Magic squares; (a) Normal magic square by Lo-Shu, (b)-(h) All 90-degree
rotational and reflectional squares of Lo-Shu.

3 -4 1

-2 0 2

-1 4 -3

(a) M1

-4 1 2

3 0 -3

-2 -1 4

(b) M2

1 2 -3

-4 0 4

3 -2 -1

(c) M3

2 -3 4

1 0 -1

-4 3 -2

(d) M4

-3 4 -1

2 0 -2

1 -4 3

(e) M5

4 -1 -2

-3 0 3

2 1 -4

(f) M6

-1 -2 3

4 0 -4

-3 2 1

(g) M7

-2 3 -4

-1 0 1

4 -3 2

(h) M8

Figure 3.2: New kernels derived from normal magic square.
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3.2.1 Implementation of F1 Magic Operator

Suppose the eight adjacent neighbors of any arbitrary pixel P are numbered with

a0,a1, ...,a7 as shown in Figure 3.3a. First the numbers around the middle pixel of

interest are sorted in ascending order to obtain the sequence

r−4,r−3, ...,r0, ...,r3,r4

where

r−4 < r−3... < r3 < r4

and

ri ∈ {a0,a1, ...,a7}∪P, i =−4,−3, ...,3,4

Using any of Figures 3.3b-d, a contrast function (F1) can be built as

F1 = (|(−1).r−1 +(−2).r−2 +3.r3|+ |3.r3 +(−4).r−4 +1.r1|+

|1.r1 +2.r2 +(−3).r−3|+ |(−3).r−3 +4.r4 +(−1).r−1|+

|+(−1).r−1 +0.r0 +1.r1|+ |3.r3 +0.r0 +(−3).r−3|+

|(−2).r−2 +0.r0 +2.r2|+ |4.r4 +0.r0 +(−4).r−4|)/8

(3.2)

F1 averages eight directional edge spaces corresponding to each row, column, forward

and backward diagonal leading to a good edge magnitude evaluation with good sensi-

tivity to small changes in the gradient.
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a6 a5 a4

a7 P a3

a0 a1 a2

(a)

r3 r−4 r1

r−2 r0 r2

r−1 r4 r−3

(b)

r−4 r1 r2

r3 r0 r−3

r−2 r−1 r4

(c)

r1 r2 r−3

r−4 r0 r4

r3 r−2 r−1

(d)

Figure 3.3: (a) A pixel and its adjacent neighbors sorted in ascending order, (b)-(d)
Rearrangement of sorted elements in square lattice based on M1,M2,M3 and M4.

3.2.2 Implementation of F2 Magic Operator

The second method (F2) utilizes a discrete convolution kernel. It is computed using the

following procedure:

i Start with any magic square aspect and subtract the central element from all ele-

ments to produce a new template.

ii Rotate the new template by 45 degree increment to produce eight templates.

iii Zero all elements of these templates except the absolute maxima and minima to

produce the corresponding eight kernels (K).

iv Perform 2-D convolution of the resulting eight kernels with the 3 x 3 square cen-

tered on the point of interest in the input 2-D seismic data (D). This produces eight

gradient magnitudes: D∗Ki(i = 1,2, ...,8), Ki are shown in Figure 3.4

v The absolute maximum convolution value over the eight orientations at the point

of interest is selected as the edge (E) and its kernel defines the edge direction:

E = max8
i=1(D∗Ki)
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N-S Orientation

0 -4 1
0 0 0
-1 4 0

N

0 4 -1
0 0 0
1 -4 0

S

E-W Orientation

1 0 0
-4 0 4
0 0 -1

E

-1 0 0
4 0 -4
0 0 1

W

NE-SW Orientation

-4 1 0
0 0 0
0 -1 4

NE

4 -1 0
0 0 0
0 1 -4

SW

NW-SE Orientation

0 0 4
1 0 -1
-4 0 0

SE

0 0 -4
-1 0 1
4 0 0

NW

Legend: N = North, S = South, E = East, W =West,
NE = Northeast, NW = Northwest, SE = Southeast

Figure 3.4: Directional magic square operators or kernels (K).
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Each mask responds maximally to an edge oriented in a particular direction. The

orientation of the maximum edge magnitude map corresponds to the edge direction.

F1 operator is highly suited for determining gradient edge map while F2 is well suited

for determining gradient direction although it also provides gradient map. It should

be noted that noise will compromise the efficiency of magic square operators just like

other known edge detection operators.

3.3 Extension to 5 x 5 Magic Square

In this section I present 5 x 5 magic square F1 and F2 operators. Figure 3.5a shows

an example of a normal 5 x 5 magic square and Figure 3.6 shows the corresponding

kernels produced using the procedure for 3 x 3 magic square. The implementation is

the same, but the difference is the spatial analysis window because 5 x 5 incorporates

more neighboring pixels in both x and y directions.

11 18 25 2 9

10 12 19 21 3

4 6 13 20 22

23 5 7 14 16

17 24 1 8 15

(a)

-2 5 12 -11 -4

-3 -1 6 8 -10

-9 -7 0 7 9

10 -8 -6 1 3

4 11 -12 -5 2

(b)

Figure 3.5: (a) 5 x 5 normal magic square, (b) New kernel derived from (a).
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N-S Orientation

0 0 -12 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 -1 0
0 0 12 0 0

N

0 0 12 0 0
0 -1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 -12 0 0

S

E-W Orientation

0 0 0 0 0
0 0 0 -1 0

-12 0 0 0 12
0 1 0 0 0
0 0 0 0 0

E

0 0 0 0 0
0 0 0 1 0

12 0 0 0 -12
0 -1 0 0 0
0 0 0 0 0

W

NE-SW Orientation

-12 0 0 0 0
0 0 0 0 0
0 1 0 -1 0
0 0 0 0 0
0 0 0 0 12

NE

12 0 0 0 0
0 0 0 0 0
0 -1 0 1 0
0 0 0 0 0
0 0 0 0 -12

SW

NW-SE Orientation

0 0 0 0 12
0 0 -1 0 0
0 0 0 0 0
0 0 1 0 0

-12 0 0 0 0

SE

0 0 0 0 -12
0 0 1 0 0
0 0 0 0 0
0 0 -1 0 0
12 0 0 0 0

NW

Legend: N = North, S = South, E = East, W =West,
NE = Northeast, NW = Northwest, SE = Southeast

Figure 3.6: Directional 5 x 5 magic square operators.
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3.4 Magic Cube

The magic cube is a 3-D extension of the magic square. A magic cube of order N

is composed of entries 1,2, ...,N3 or 0,1, ...,N3− 1 arranged in a cubic lattice such

that the sum of all entries along the rows, columns, pillars and four main space diago-

nals are equal to a magic constant (Andrews, 2004). The magic constant can be found as

C =
N
2
(N3 +1) (3.3)

for elements ranging from 1,2, ...,N3 and

C =
N
2
(N3−1) (3.4)

for elements ranging from 0,1, ...,N3−1

A magic cube has four basic distinct forms that are not covered here in this work.

Each of these four has 48 aspects formed by rotation and/or reflection making a total

of 192 aspects (Heinz and Hendricks, 2000). Figure 3.7 shows one aspect of the 3 x 3

x 3 normal magic cube formed by integers 0−26 with a magic constant of 39.

Based on the concept of magic square operator by Chen and Nie (2007), Al-Shuhail

and Al-Dossary (2014) constructed 3-D kernels of the magic cube operator from the 3

x 3 x 3 normal magic cube and used them to find the direction along which amplitude

change is maximum. They found that there are only seven distinct directions along
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which the absolute difference across the central element is maximum. Their procedure

is as follows:

i Start with the seven magic cube aspects that have the maximum absolute difference

across the center element (Figure 3.8).

ii Subtract the central element from all elements of these magic cubes to produce the

corresponding seven templates.

iii Zero all elements of these templates except the absolute maxima and minima to

produce the corresponding seven kernels (Figure 3.9): Ki(i = 1,2, ...,7)

iv Perform 3-D convolution (Tertois and Frank, 2004) of the resulting seven masks

(i.e., kernels) with the 3 x 3 x 3 cube centered on the point of interest in the input

3-D seismic data (D). This produces seven gradient magnitudes: D∗Ki

v The maximum convolution value is selected as the edge (E) at the point of interest

and its mask defines the edge direction: E = max7
i=1(D∗Ki)
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11 3 25

7 20 12

21 16 2

4 26 9

18 13 8

17 0 22

24 10 5

14 16 19

1 23 15
11−3−25 forms a row

25−9−5 forms a column

11−7−21 forms a pillar

1−13−25 forms a diagonal

(a)

11 3 25

7 20 12

21 16 2

17 0 22

18 13 8

4 26 9

24 10 5

14 16 19

1 23 15

(b)

Figure 3.7: Normal magic cube operators.
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1 21 17
12 8 19
26 10 3

15 2 22
20 13 6
4 24 11

23 16 0
7 18 14
9 5 25

15 19 5
22 8 9
2 12 25

23 16 10
0 13 26
16 20 3

1 14 24
17 18 4
21 7 11

1 12 26
21 8 10
17 19 3

15 20 4
2 13 24
22 6 11

23 7 9
16 18 5
0 14 25

0 22 17
16 2 21
23 5 1

14 6 19
18 13 8
7 20 12

25 11 3
5 24 10
9 4 26

1 23 15
17 0 22
21 16 2

14 6 19
18 13 8
7 20 12

24 10 5
4 26 9
11 3 25

1 23 15
14 6 19
24 10 5

17 0 22
18 13 8
4 26 9

21 16 2
7 20 12
11 3 25

23 7 9
15 20 4
1 12 26

16 18 5
2 13 24

21 8 10

0 14 25
22 6 11
17 19 3

Figure 3.8: Seven magic cube kernels (after Al-Shuhail and Al-Dossary, 2014).
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Figure 3.9: The corresponding edge detection kernels along with their associated direc-
tions of maximum gradient in 3-D space (after Al-Shuhail and Al-Dossary, 2014).
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3.5 Modified F2 Magic cube Operator

Al-Shuhail and Al-Dossary (2014) extended the magic square to magic cube, an

approximate differential operator, based on the implementation procedure for the

magic square by Chen and Nie (2007) with seven magic cubes as initial matrices.

In an attempt to produce good result especially when searching for channels in

time slices, I apply their procedure on seismic data in this section. Based on the results

obtained from the magic cube operator by Al-Shuhail and Al-Dossary (2014), I used

the magic cube in which the maximum element lies in the second vertical slice. Such

an arrangement becomes a choice for the initial matrix of the modified algorithm. My

procedure is shown in Figure 3.10, while Figures 3.11-3.13 show application of the

procedure to the normal 3 x 3 x 3 magic cube.

The 3 x 3 x 3 magic cube is also extended to 5 x 5 x 5 (see Figure 3.16) following

the same procedures. The initial matrix found to have this property is that of Andrews

(2004), although 5 x 5 x 5 magic cube by Trump and Boyer (Boyer, 2003) can be

permuted to have this form (Figures 3.14-3.15). They comprise elements 1−125 with

central element 63 and magic constant of 315. They both belong to perfect magic cube

since all rows, columns, diagonals and space diagonals sum to magic constant. The

corresponding directions scanned by kernels, K-5a, K-6a, K-7a, K-8a and their 5 x 5 x

5 equivalents are illustrated in Figure 3.17
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Input magic cube

Subtract the central element
from all elements

Zero all elements except
absolute maximum & minimum

Perform independent rotation of the slice
of new cube in all eight compass directions

Perform 3-D convolution with 3x3x3/5x5x5 cube
centered on the point of interest in seismic data

Extract maximum

Output gradient & direction

Figure 3.10: Flowchart of the procedure to construct and apply the proposed magic
cube operator.
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5 10 24
19 6 14
15 23 1

9 26 4
8 13 18

22 0 17

25 3 11
12 20 7
2 16 21

19 5 10
15 6 24
23 1 14

8 9 26
22 13 4
0 17 18

12 25 3
2 20 11
16 21 7

15 19 5
23 6 10
1 14 24

22 8 9
0 13 26
17 18 4

2 12 25
16 20 3
21 7 11

14 24 10
1 6 5

23 15 19

18 4 26
17 13 9
0 22 8

7 11 3
21 20 25
16 2 12

1 23 15
14 6 19
24 10 5

17 0 22
18 13 8
4 26 9

21 16 2
7 20 12

11 3 25

14 1 23
24 6 15
10 5 19

18 17 0
4 13 22
26 9 8

7 21 16
11 20 2
3 25 12

24 14 1
10 6 23
5 19 15

4 18 17
26 13 0
9 8 22

11 7 21
3 20 16
25 12 2

10 24 14
5 6 1

19 15 23

26 4 18
9 13 17
8 22 0

3 11 7
25 20 21
12 2 16

Figure 3.11: Eight magic cubes produced by the modified algorithm.
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-8 -3 11
6 -7 1
2 10 -12

-4 13 -9
-5 0 5
9 -13 4

12 -10 -2
-1 7 -6

-11 3 8

6 -8 -3
2 -7 11
10 -12 1

-5 -4 13
9 0 -9

-13 4 5

-1 12 -10
-11 7 -2
3 8 -6

1 11 -3
-12 -7 -8
10 2 6

5 -9 13
4 0 -4

-13 9 -5

-6 -2 -10
8 7 12
3 -11 -1

2 6 -8
10 -7 -3
-12 1 11

9 -5 -4
-13 0 13
4 5 -9

-11 -1 12
3 7 -10
8 -6 -2

-12 10 2
1 -7 6
11 -3 -8

4 -13 9
5 0 -5
-9 13 -4

8 3 -11
-6 7 -1
-2 -10 12

1 -12 10
11 -7 2
-3 -8 6

5 4 -13
-9 0 9
13 -4 -5

-6 8 3
-2 7 -11

-10 12 -1

11 1 -12
-3 -7 10
-8 6 2

-9 5 4
13 0 -13
-4 -5 9

-2 -6 8
-10 7 3
12 -1 -11

-3 11 1
-8 -7 -12
6 2 10

13 -9 5
-4 0 4
-5 9 -13

-10 -2 -6
12 7 8
-1 -11 3

Figure 3.12: Templates derived from the eight magic cubes.
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K-5a

0 0 0
0 0 1
0 0 0

0 13 0
0 0 0
0 -13 0

0 0 0
-1 0 0
0 0 0

K-6a

0 0 0
0 0 0
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Figure 3.13: The corresponding 3 x 3 x 3 edge detection kernels.
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Figure 3.14: Normal magic cube by Trump and Boyer (Boyer, 2003).
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Figure 3.15: Normal magic cube (Andrews, 2004).
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Figure 3.16: The corresponding 5 x 5 x 5 edge detection kernels.
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(a) (b)

(c) (d)

Figure 3.17: Schematic illustration of directions scanned by the kernels (shown by the
solid arrow).
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CHAPTER 4

APPLICATION

4.1 Data Summary

In order to test the performance of the proposed two methods, experiments were imple-

mented using a real 3-D seismic data provided by Saudi Aramco. The data is sampled at

4 ms and consists of 630 inlines, 560 crosslines and 300 time slices. The data (Figures

4.1-4.2) is appropriate for this study because it contains interesting geologic features

such as a channel system and a continuous horizon of weak/moderate amplitude. Other

information such as depositional environment, tectonic history and general geology of

the area were not provided due to proprietary reason.

4.2 Examples

In this section, the edge detection capability of magic square and cube operators is

demonstrated using a data volume and a time slice. The performance of the operator is

compared with that of Sobel (3-D Sobel is shown in the Appendix).
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Figure 4.1: 3-D seismic volume. (X = Crossline, Y = Inline, Z = Time slice)

45



(a) (b)

(c) (d)

Figure 4.2: Extracted slices from the 3-D seismic volume; (a) Inline 280, (b) Crossline
310, (c) Time slice extracted at 720 ms and (d) 3-D display of these slices.
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4.2.1 Magic Square Example

The example for the 2-D case utilizes a time slice at 720 ms from the seismic volume.

Figure 4.2c shows the extracted time slice which serves as input data into the magic

square algorithms. The time slice consists of meandering channels trending SE-NW

in the presence of background geology. Figure 4.3 presents the result of 3 x 3 magic

square F1 operator, while Figure 4.4 presents the results of magic square F2 operator

which also shows the amplitude gradient magnitude and their respective orientations.

Figure 4.6 shows corresponding maps for 5 x 5 magic square F2 operator. These figures

show the good performance of the magic square operator in delineating geological

features trending perpendicular to the operator direction. Figures 4.5 and 4.7 show the

result of the maximum convolution values collected over all four compass directions.

This result combines all the geologic features in each of the kernels leading to high

resolution and enhanced output.

Figures 4.8a and 4.8b compare the 3 x 3 Sobel operator to 3 x 3 magic square F1

operator, while Figures 4.8c and 4.8d compare the 5 x 5 Sobel to 5 x 5 magic square F1

operator. Figures 4.9a and 4.9b compare the 3 x 3 Sobel operator to 3 x 3 magic square

F2 operator, while Figures 4.9c and 4.9d compare the 5 x 5 Sobel to 5 x 5 magic square

F2 operator. In all of these comparison, it is clear that the results of the magic square

and 2-D Sobel operators are generally comparable.

For further comparison, I investigated the efficiency and robustness of the operators
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in the presence of noise. A random Gaussian noise of zero mean and 0.1 standard

deviation was added to the data (Figure 4.10) and the corresponding outputs of the

operators are presented in Figure 4.11. The channels (indicated by the blue and green

arrows) are completely masked in the output of the 3 x 3 magic square F2 operator.
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(a)

(b)

Figure 4.3: Gradient edge maps of the 3 x 3 magic square F1 with (a) M1 and (b) M3.
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(a) (b)

(c) (d)

Figure 4.4: Gradient edge maps of the 3 x 3 magic square F2 operator along (a) North
direction, (b) Northeast direction, (c) East direction and (d) Southeast direction.
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Figure 4.5: Maximum gradient edge map of the 3 x 3 magic square F2 operator.
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(a) (b)

(c) (d)

Figure 4.6: Gradient edge maps of the 5 x 5 magic square F2 operator along (a) North
direction, (b) Northeast direction, (c) East direction and (d) Southeast direction.
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Figure 4.7: Maximum gradient edge map of the 5 x 5 magic square F2 operator.
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Figure 4.8: Comparison of gradient edge maps; (a) 3 x 3 Sobel operator, (b) 3 x 3 magic
square F1 operator; (c) 5 x 5 Sobel operator and (d) 5 x 5 magic square F1 operator.

54



 

 

A
m

pl
itu

de

−3

−2.5

−2

−1.5

−1

−0.5

0

(a)

 

 

A
m

pl
itu

de

−3

−2.5

−2

−1.5

−1

−0.5

0

(b)

 

 

A
m

pl
itu

de

−7

−6

−5

−4

−3

−2

−1

0

(c)

 

 

A
m

pl
itu

de
−7

−6

−5

−4

−3

−2

−1

0

(d)

Figure 4.9: Comparison of gradient edge maps; (a) 3 x 3 Sobel operator, (b) 3 x 3 magic
square F2 operator, (c) 5 x 5 Sobel operator and (d) 5 x 5 magic square F2 operator.
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Figure 4.10: Time slice with Gaussian noise of zero mean and 0.1 standard deviation.
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Figure 4.11: Comparison of gradient edge maps in the presence of noise using (a) 3
x 3 magic square F2 kernel and (b) 5 x 5 magic square F2 kernel. The delineation of
the two channels (blue and green arrows) suggests that the higher spatial dimension is
better for data with noise.
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4.2.2 Magic Cube Example

The example for the 3-D case utilizes the seismic volume. Results of the 3 x 3 x 3

magic cubes are presented in Figure 4.12. The results demonstrate the multidirectional

characteristics of the kernels. For example, K-5a performs poorly in delineating the

channel system because it scans in north-south orientation and hence is only capable of

effectively delineating EW trending seismic features. The K-6a clearly and effectively

delineates the channels since the kernel runs perpendicularly to the geological feature.

Figure 4.13 shows inline 5 and its gradient edge map.

Figure 4.14 presents the results of implementing the 5 x 5 x 5 magic cube operators.

The results are better compared with that of smaller spatial window. The amplitude

gradient map of inline 5 (Figure 4.15b) gives a good definition of events. The events at

the lower and upper parts of the map are clearly enhanced. Figures 4.16-4.17 presents

the comparison between time slice and inline amplitude gradient maps obtained by

implementing the 3 x 3 x 3 and 5 x 5 x 5 magic cubes versus Sobel operator respectively.

The results are normalized properly to allow for fair comparison. In general, the result

of the magic cube operator with the larger spatial window produces better definition

of the channel system. The Sobel delineates the channel system but not without some

background noise. The results of inline gradient map is better in magic cubes than in

the Sobel filter (see the portion inside the red circles).
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Figure 4.12: Gradient edge maps of 3 x 3 x 3 magic cube F2 operator using (a) K-5a,
(b) K-6a, (c) K-7a and (d) K-8a kernels respectively. The blue and green arrows denote
delineated channels.
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Figure 4.13: Gradient edge maps; (a) Inline number 5 from 3-D seismic volume and
(b) Result of the 3 x 3 x 3 magic cube F2 operator with K-7a.
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Figure 4.14: Gradient edge maps of 5 x 5 x 5 magic cube F2 operator using (a) K-5b,
(b) K-6b, (c) K-7b and (d) K-8b kernels respectively.
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Figure 4.15: Gradient edge maps; (a) Inline number 5 from 3-D seismic volume and
(b) Result of the 5 x 5 x 5 magic cube F2 operator with K-7b.
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Figure 4.16: Comparison of gradient edge maps of time slice 181; (a) Result of the
maximum convolution of 3 x 3 x 3 magic cube F2 operators, (b) Result of the maximum
convolution of 5 x 5 x 5 magic cube F2 operators and (c) Result of 3-D Sobel operator.
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Figure 4.17: Comparison of amplitude gradient edge maps of inline number 5; (a)
Result of the maximum convolution of 3 x 3 x 3 magic cube F2 operators, (b) Result of
the maximum convolution of 5 x 5 x 5 magic cube F2 operators and (c) Result of 3-D
Sobel operator.

64



4.3 Discussion

The magic square operator is very suited to evaluating amplitude gradients of 2-D

seismic data. Each directional kernel is capable of delineating geological features

that are perpendicular to its primary direction. Both F1 and F2 magic squares clearly

locate the two main channels in the data. The result suggests that stratigraphic

features (such as channels) in any orientation can be mapped effectively with the

magic square operators. The magic square of larger window size shows superior

performance over the 3 x 3 magic square operators particularly in the presence of

noise. The results of 3 x 3 and 5 x 5 magic square F2 operators are comparable to

that of Sobel in all respects, there is little or no visual observable difference, while

5 x 5 magic square F1 operators appear slightly better than that of 5 x 5 Sobel operators.

The proposed magic cube operators clearly delineated two channels (indicated by

green and blue arrows in Figure 4.12b). The kernels enhanced features perpendicular

to their directions. The features are also slightly visible with kernel-7a because it is

capable of identifying vertical/near vertical features, and therefore has the advantage

to delineate steeply dipping events than the Sobel operator. The 5 x 5 x 5 F2 operators

work in a similar fashion. The result is obviously clearer, sharper and crisper. The

inline gradient is superb when compared to that of the 3 x 3 x 3. The 5 x 5 x 5 F2

operator produces high amplitude, more continuous and mappable horizons that can

easily be followed and interpreted better than in the original inline display.
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CHAPTER 5

CONCLUSION AND

RECOMMENDATIONS

5.1 Conclusion

New edge detection methods in both 2-D and 3-D have been presented in this study.

The results obtained reveal the operators capability to evaluate and identify disconti-

nuities in seismic data. The magic square F1 operator averages the full eight separated

items corresponding to all rows, columns and diagonals in derived masks. Therefore

the image edge gradient map obtained by evaluation of the function is sensitive to

small changes in the value of the gradient because it could amplify the magnitude of

the gradient of the original amplitude.

In comparison, the F2 operator is the best choice for edge detection because it scans

through the input seismic data in all compass directions which offers the interpreter the
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advantage and flexibility to view seismic data in orientations of choice to see certain

geologic features of interest at a time among many reflection events. The operators

allow the seismic interpreter to see horizontal, vertical and directional features inde-

pendently that may otherwise have been impossible with other edge detection operators.

The 5 x 5 magic square and 5 x 5 x 5 magic cube operators involve more neighboring

pixel values into the amplitude gradient computation leading to higher quality results

and more geological details. Comparing the results of the 3 x 3 with 5 x 5 magic

squares as well as 3 x 3 x 3 with 5 x 5 x 5 magic cube, we find three main advantages

for increasing the spatial analysis window:

• Noise reduction

• Clearer/crisp geologic features detection

• Better directional delineation of geologic features of interest, leading to a better

understanding of geologic system.

Hence, the proposed method can be used as a complementary tool in seismic attribute

analysis and interpretation. It should however be noted that to get quality output, the

input data has to be filtered and denoised using edge preserving smoothing (EPS), me-

dian filters, wavelet denoising from wavelet analysis or other algorithms that remove

random noise while preserving the inherent masked features of interest.
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5.2 Recommendations

This study has presented a procedural implementation for the use of magic squares and

cubes for edge detection algorithms to map discontinuities in seismic data. Although

the results obtained from the operators are good and promising, future work could

include the following:

• The example shown in this study contains only channels. In order to test the

suitability of the method for mapping structural features like faults, synthetic

data incorporating all geological features is recommended. That will enable us to

adequately evaluate the limitations and strengths of the method.

• The procedure for computer implementation of the edge detection magic square

and cube should be improved to minimize the run time.
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APPENDIX

THE SOBEL OPERATOR
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2-D Sobel

l m n

i j k

f g h

Considering a point (j) on Cartesian grid and its eight neighboring density values as

shown above. The directional derivative estimate vector, 4, is defined (Sobel, 1970)

as:

4=
Density difference

Distance to neighbor
(A-1)

The central gradient estimation is a vector sum of a pair of orthogonal vectors (Sobel,

1970). Each orthogonal vector is a directional derivative estimation multiplied by a unit

vector specifying the derivative direction, i.e.,

4=
h− l

R
.
[1,1]

R
+

f −n
R

.
[−1,1]

R
+(g−m).[0,1]+ (k− i).[1,0] (A-2)

where R =
√

2 which represent the distance to neighbor

4=
h− l√

2
.
[1,1]√

2
+

f −n√
2
.
[−1,1]√

2
+(g−m).[0,1]+ (k− i).[1,0] (A-3)

4=

[
(h− l− f +n)

2
+ k− i,

(h− l + f −n)
2

+(g−m)

]
(A-4)
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4′ = 24= [h− l− f +n+2(k− i),(h− l + f −n)+2(g−m)] (A-5)

The weighting function (kernel) is extracted as follows:

-1 -2 -1

0 0 0

1 2 1

Dx

(a)

-1 0 1

-2 0 2

-1 0 1

Dy

(b)

Dy is a 90 degree rotation of Dx.

3-D Sobel

2-D Sobel filter is extended to 3-D (Al-Dossary and Al-Garni, 2013) as:

Dx =


1 1 1

0 0 0

−1 −1 −1


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 (A-6)

Dy =
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 (A-7)
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Dz =


1 1 1

1 2 1

1 1 1
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0 0 0




−1 −1 −1

−1 −2 −1

−1 −1 −1

 (A-8)

The gradients along orthogonal directions are computed by convolving Dx, Dy and Dz

with the input data, I(x,y,z), as:

4x(x,y,z)≈ Dx ∗ I(x,y,z) (A-9)

4y(x,y,z)≈ Dy ∗ I(x,y,z) (A-10)

4z(x,y,z)≈ Dz ∗ I(x,y,z) (A-11)

* means convolution operation

At each point of an image an approximation of the gradient (D) is computed by com-

bining the results as follows:

D =
√
42

x +42
y +42

z (A-12)
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