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And Tensleep Formations, Wyoming 

Major Field : Geophysics 

Date of Degree : May, 2015 

 

In this study, I addressed the problem of converting seismic amplitudes into rock 

characterization, through integration of petrophysical measurements and 3D seismic data. 

Particularly, I present an application that allows interpreters to obtain porosity and 

fractional lithology constituent 2D maps from post-stack 3D seismic data. I used 3D 

seismic cube, density and neutron logs of two target reservoirs in Teapot basin as input 

data. In this technique, seismic amplitudes were transformed to attribute combinations by 

stepwise regression analysis, then attributes transformed into fractional lithology 

constituent and porosity by training Radial Basis Function Neural Network with available 

well log. To evaluate the credibility of the attributes to log properties transformation, 

cross-well validation was performed. In this procedure one well is omitted from the 

training set and the transformation is re-calculated. The accuracy of the transformation in 

estimating properties from the omitted well is then evaluated, this is applied to each well 

in the training set. The comparison between actual and predicted log reveals good 

matching, which is indicated by small differences between estimation and validation 

errors. The overall results of two approaches reveal a better illumination of the two 

reservoir targets. The fractional lithology constituent approach can be used for automated 

interpretations and can work as an extension of conventional interpretation techniques. 
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 ملخص الرسالة

 
 

 : ابوذر مأمون علي فواد  الكاملالاسم 

 

:  مكون لاهتزازيةاتنبؤ بالخصائص المسامية و الليثولوجية من معلومات  :  عنوان الرسالة

 فورنتير و تينسليب , وايومن

 

 :  الجيوفيزياء  التخصص

 

 2015 مايو:    تاريخ الدرجة العلمية

 . قدمتةالي خصائص صخري لاهتزازيةة تحويل المعلومات امكانيإفي هذه الاطروحة تمت مناقشة 

الي  ثلاثيه الابعاد الاهتزازيه البياناتبتحويل  , تطبيق يسمحعلي وجه خاصهذه الاطروحه 

 نسب المعادن المكونه لصخر. و ة المساميتي خاصي

من المسامية و  بار لكلالآثلاثية الابعاد بالاضافه الي تسجيلات  الاهتزازيه البياناتتم استخدام 

  الاهتزازيه البيانات ,. في هذا التطبيقلتحقيق الغرض من الدراسة تيبوتحوض في  لمكمنين الكثافة 

المساميه  تيالي خاصي الاهتزازيهسمات من ثم تم تحويل تلك و , الاهتزازيهسمات   تحويلها الي تم 

نموذج  ة مصداقي لتحقق مناعي. صخر باستخدام نموذج  الذكاء الاصطنلالمعادن المكونه ل نسبو  

خريه. تم استخدام صالي خصائص  الاهتزازيه البيانات  تحويل  عمليةفي    الذكاء الاصطناعي

ن  م ةف بئر واحدذحبتم تفي كل مرة تحقق ال آلية. التحقق في عمليه المتوفرة بار سجيلات الآت

م ت ,وفةالمحذ لبئراتنبؤ بمعلومات الفي نموذج اليتم قياس قدرة تدريب  نموذج  الذكاء الاصطناعي ثم 

تم عمل مقارنة بين و من ثم  تدريب . لل المتوفرة  تسجيلات الابار لتحقق   علي كل تكرارعملية ا

نموذج     البيانات الاهتزازيه بواسطة استنتاجها منتم  التي تتسجيلاالو  بارللآ يةالحقيق تتسجيلاال

في    هذا التشابه يظهر جليآ   .تسجيلينالرنة تشابه كبير بين مقاالاظهرت هذه  .الذكاء الاصطناعي

  .لتحققاعن  الناتج أالخطالتدريب و الناتج عن  قياس الخطأ
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 في مجمل النتائج كانت نسبة الخطأ الناتج عن التدريب و التحقق صغيرة نسبيآ . أظهر تطبيقي  

المساميه و نسب المعادن المكونة للصخور  إمكانية و دقة عالية  في إيجاد و التنبؤ بالتغيرات الجانبية 

 للمكامن البترولية في منطقة الدراسة. تطبيق نسبة المكون المعدني للصخرالذي تم استحداثه في هذه 

الدراسة يمكن استخدامه في عمليه التفسير الآلي وكأدة إضافية لادوات التفسير الموجودة حالياً.        
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CHAPTER 1 

 

INTRODUCTION 

1.1 Introduction  

Estimation of log properties from seismic volume by integrating well log and multi 

seismic attributes data has become the cornerstone in reservoir characterization studies. 

Nonlinear and inhomogeneous behaviors of reservoir properties associated with 

petroleum systems are considered the major concerns during understanding and 

integrating seismic and well log data. It is also similarly difficult to spatially characterize 

the relationship between reservoir variables obtained from both data sources. Statistical 

approaches, such as multi-linear regression analysis and neural networks, are widely 

employed to estimate reservoir properties from well logs and seismic amplitude 

(Nikravesh et al, 1998). In the last decade, artificial intelligence algorithms such as Self-

Organizing Maps, NeuroFuzzy, Radial Basis Function, Discriminative Analysis and 

Learning Vector Quantization have gained attention as promising and powerful tools to 

solve nonlinear and complex problems, particularly in the prediction of reservoir 

characteristics (Nikravesh and Aminzadeh, 1998; Hampson et al., 2001; Nikravesh and 

Hassibi, 2003; Bosch et al, 2005; Hamada and Elshafei, 2010; Bosch et al., 2010).  

1.2 Problem Statement  

Prediction of subsurface properties, such as fractional lithology composition and porosity 

variations, from seismic volume has always been a fundamental problem in the earth 
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sciences. The traditional approach that employs seismic data to estimate reservoir 

properties consisted of searching for a physical relationship between the properties to be 

identified and seismic attributes, then employing that attribute over the entire seismic 

data in order to estimate the target properties. Even in cases when the functional 

relationships between target properties and attributes can be obtained, the physical basis 

is not often solid or clear. From the other hand, inferring such properties from well log 

data is considered more reliable, however costly, time-consuming and difficult. 

Properties such as porosity, and lithology variations (fractional composition) are among 

the most essential properties of reservoir systems that are typically distributed spatially in 

a non-uniform and non-linear manner. Although integration of multi attributes and 

available log is considered more reliable and efficient in estimating reservoir properties. 

However, the integration of this type of data set is not straightforward, and could produce 

false results. Therefore, special knowledge of accurate well to seismic integration is 

required to achieve proper estimation of reservoir properties.  Moreover the presence of 

shale affects the amount of effective porosity. Therefore a special correction has to be 

made in order to correctly estimate such variables.  

1.3 Study Objective  

 

The main objective of this research is to predict well log measured properties, namely 

porosity and fractional lithology (fractional composition) variations via integrating multi 

seismic attributes and well logs by using ANN to predict spatial reservoir property 

changes. As far as I know the approach (fractional lithology) I proposed is new and 

nobody has done it before. The work can be divided into subcomponents as follows:  
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1. To correct the neutron porosity fractional values in order to compute the correct 

porosity values. 

2. To correlate between multi-attributes transforms with available porosity logs to 

predict pseudo log porosity over the entire zone of interest (Frontier Second Wall 

Creek and Tensleep reservoirs) from full stack seismic volume. 

3. To use the proposed new log (fractional lithology log) guided with seismic 

attributes to estimate the lithological fraction over the Frontier Second Wall 

Creek and Tensleep reservoirs. 

1.4   Geological setting of Target Formations 

 

This study makes use of data over the Frontier Second Wall Creek and Tensleep 

Formation, Wyoming. Several studies of the formation have been published by USGS 

and other geoscientists addressing stratigraphic, geological, geochemistry and 

geophysical aspects (Anna, 2009; Dennen et al., 2005; Kirschbaum and Roberts, 2005). 

1.4.1 Frontier Formation  

The Upper Cretaceous Frontier Formation was deposited as an eastward-prograding 

clastic wedge into a foreland basin as result of the Sevier orogenic disturbance in Late 

Cretaceous Cenomanian to Turonian period. Distal lithologies consist of marine 

nearshore strata, whereas proximal lithologies of the clastic wedge consist of coarse-

grained non-marine fluvial strata intersecting into marine strata. The Frontier is confining 

between the Mowry Shale and Cody Shale as upper and lower strata respectively; the 
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upper and lower boarder of the Frontier are marked by the Clay Spur Bentonite Bed and 

an unnamed bentonite, respectively. Ammonite zones that bracket the Frontier include 

Calycoceras gilberti at the base and Scaphites nigricollensis at the top (Merewether et al., 

1976, 1979). 

Frontier Formation consists of three members namely the lower Belle Fourche Member, 

the middle Emigrant Gap Member (unnamed member by Merewether et al., 1976), and 

the upper Wall Creek Sandstone Member. About half of the total interval is composed of 

fine-grained rocks and includes laminated to variably bioturbated shales and siltstones 

with different bentonite beds. Facies and geometry of sandstones infer probable 

deposition as delta lobes (Bhattacharya and Willis, 2001). The deltas were perhaps 

truncated at the top during transgression, as evidenced by truncated inclined beds, a lack 

of subaerial exposure, and presence of topset lags. 

The porosity of this formation varies from near zero to 20 percent, with hydrocarbon- 

producing sandstones having porosities between 10 to 20 percent. The Wall Creek 

Sandstone Member thicknesses are around 400 ft in western Converse County and 

eastern Natrona County, Wyoming (Anna, 2009). In this study I will focus on one single 

member of Frontier Formation (the second Wall Creek Sands reservoir) figure (1.1). 

1.4.2 Tensleep Formation 

Tensleep formation is equivalent to Minnelusa Formation C, D, and E cycles (Anna, 

2009). The Tensleep has similar depositional and reservoir properties as the Minnelusa 

Formation; which is, it includes multiple boundaries as a result to frequent and high-

amplitude sea-level variations. A generalized upward succession of Tensleep strata 
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consists of thick marine carbonate beds, thin low porosity interdune sandstone layers, 

generally porous and permeable eolian crossbedded dune sandstones, and thin 

discontinuous carbonates. The siliciclastic units form the dominant reservoir, whereas 

dolomites, although vuggy, rarely produce because of their low bulk permeability and 

porosity. Tensleep production in the Basin Margin is from large anticlines such as those 

found at Teapot Dome and Salt Creek fields and from stratigraphic traps such as those at 

North Fork field and parts of Sussex field (Anna, 2009). The porosity values of this 

formation vary from near zero to 10 percent, with hydrocarbon-producing sandstones 

having porosities around 10 percent. The Tensleep formation thickness is as much as 320 

ft, it is underlain by Permian Goose Egg formation and is overlying the Madison 

formation (Anna, 2009) figure (1.1). 

 

Figure1.1: A  gamma ray/ resistivity log, Frontier Formation, northern Moxa Arch( from 

Dutton et al 1992)sandstones are shaded; B1 _ B5 are sandstone in second frontier.  
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Figure 1.2: A stratigraphic column of reservoir (Tensleep) and the caprock (Goose Egg 

Fm.) (After P. Yin et al., 2005). 

1.5 Available Data 

There is a comprehensive database available for this study, it is one among the open 

dataset put by SEG in their website for the benefit of students, teachers and researchers. 

The validity, credibility and high quality of the data is guaranteed by SEG, the link to 

data is http://wiki.seg.org/wiki/Open_data.  My selected data include well-log material 

from 12 wells, well-log curves consisting of: 

 gamma ray  and  Caliper     

 Bulk density   

 Neutron porosity  

http://wiki.seg.org/wiki/Open_data
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 P-wave sonic log 

In addition to the log data, there is a 3-D seismic cube covering the fields of interest. The 

processing steps applied to the raw seismic data are shown in the Appendix (Table 5.1). 

The survey area has inlines (ILN) 1-345 (increment = 1) and crosslines (XLN) 1-188 

(increment = 1). Other survey parameters are: inline spacing, 110 ft; crossline spacing, 

110 ft; sample rate, 2 ms, and record length of 3 seconds. 

1.6 Scientific Importance 

From one hand, this study addresses the problem of estimating porosity by integrating 

sparse well logs data with multi seismic attributes, form other hand it provides a detailed 

information about porosity distribution in the two target reservoirs. The lithological 

fractions (fractional composition) on the basis of neutron and density logs along with 

seismic attributes will be investigated. The use of the above described approach along 

with lithological fraction estimation allows a better understanding of lateral lithological 

(fractional composition) changes within these reservoirs. The lateral lithology changes 

associated with these reservoirs will be obtained using neural networks. 

1.7 Thesis Organization 

The thesis is composed of 5 chapters. The first chapter introduces an overview and the 

motivation of this study.   A brief of the geological setting of the two target reservoirs is 

presented and the available petrophysical and geophysical characterization datasets are 

described. The second chapter summarizes the literature and previous work in the area of 

lithology identification and porosity estimation from seismic data, with special emphasis 
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to recent advancement. The third chapter focuses on data preparation and well-log pre-

processing, identifies the lithology log codes and describes the porosity calculation. The 

procedures of establishing seismic-to-well ties will be also explained.  

I employed the Elog and STRATA modules of the Hampson-Russell for the well-log 

analysis and seismic-to-well tie, and  inverting seismic data to acoustic impedance and 

density properties by means of a model-based (acoustic impedance) inversion algorithm 

using P-wave sonic, density curves, picked horizons, and extracted wavelets.  EMERGE 

was used to calculate some attributes and to optimize the functional correlation between 

the seismic attributes and well log (well log normalizing and smoothing).  At the end of 

Chapter 3, the two types of algorithms, namely multi-linear regression and ANN’s 

utilized to correlate between log and seismic attribute will be discussed mathematically.  

In Chapter 4, Uncertainty Analysis is carried out and discussed, using results of estimated 

acoustic impedance. The uncertainty analysis of predicted porosity and lithology of the 

target zones is evaluated according to the principles of the Design of Experiments by 

(Hampson et al. 2001). Graphs and different section slices of the target zone are 

presented. 

Chapter 5 serves for conclusions and recommendations. There is also an Appendix 
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2 CHAPTER 2  

LITERATURE REVIEW 

 

Seismic attributes were introduced as interpretation technique in seismic exploration in 

the early 1970’s. Since then attribute analysis has become the corner stone of seismic 

interpretation. First, attributes were considered and analyzed in a qualitative manner.  

Later, since the late 1990's, the quantitative analysis and description of attributes have 

become commonly accepted and applied via integration with log data. Integration of 

seismic attributes with well log data to predict pseudo log properties is widely used 

especially in prediction of litho-facies and porosity.  Litho-facies illumination is crucial 

in reservoir exploration and development for facies always controls petrophysical 

variations. Illumination of litho-facies generally relies on core data and outcrop 

description. However availability of the core and outcrop data is always big concern, 

therefore establishing correlations between litho-facies and available data, such as well 

logs and seismic, is highly desirable. Many approaches have been proposed, based on 

statistical techniques to estimate litho-facies from well logs (Sakurai and Melvin, 1988; 

Avseth et al., 2001; Tang et al., 2004). The previous decades have also witnessed 

successful implementations of Artificial Neural Networks   (Dereket al., 1990; Wong et 

al., 1995; Siripitayananon et al., 2001; Helle et al., 2002) and fuzzy logic algorithms 

(Cuddy, 2000; Saggaf and Nebrija, 2003) in reservoir properties estimation. 

The breakthrough of ANN's for reservoir properties identification has encouraged 

geoscientists, leading to claims that the technique has the high potential to overcome 
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other statistical tools employed in the reservoir characterization. However, the proper 

application of ANN’s needs experimentation with changing the layers structure of ANN’s 

and a time consuming training, particularly in case of a huge amount of input data (Wong 

et al., 1995; Avseth et al., 2001; and Iloghalu, 2003). All approaches employ a training 

data set consisting of observed cases with full knowledge about both predictors, in our 

case (seismic attributes) and groups (litho-facies and porosity).  

Taner et al., (1979) applied complex trace analysis to seismic data and demonstrated its 

usefulness in geologic interpretation especially when displayed in color as a guidance in 

conveying seismic information to the interpreter.  

Wolff and Pelissier (1982) employed principal component analysis (PCA) to separate and 

cluster the measured log value into different domains which could be considered as 

indicators for lithology.  PCA maps the actual input space into another output space of 

lesser dimensions such that the distances between the projected points are closest to the 

distances in the original space. In other words, the emphasis is to minimize the distortion 

inflicted by the projection. 

Busch et al., (1987) utilized discriminant factor analysis (DFA) to map the well log to 

litho-facies. DFA maps the original input space (log) into an output space of lesser 

dimensions so that the projected cluster centers are as far apart as possible while the 

projected points from same cluster are as near as possible to each other.  

Rogers et al., (1992) developed a computer program to automatically determine 

lithologies from well logs using a back-propagation NN. The neural network was very 

efficient to determine the lithologies (limestone, dolomite, sandstone, shale, sandy and 
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dolomitic limestones, sandy dolomite, and shale sandstone) from selected well logs and 

did it much faster than an experienced human log analyst. 

Schultz et al., (1994) were the first to employ multiple seismic attributes to estimate log 

properties away from well control, their results were presented in three articles. 

 Santoso et al., (1995) predicted the porosity of a limestone reservoir by employing post-

stack seismic attributes and AVO analysis. 

Smith and Maret (1995) estimated the sand-shale ratio of the target reservoirs in 

Myanmar by employing both statistical and deterministic approaches with attributes 

derived from pre and post-stack seismic volume. Models were calibrated at two wells in 

order to predict the lithologies and target reservoir parameters into places far from the 

wells. Their results show that, the two models provide same sands and shales distribution 

in the target reservoir, which is better than in the existing regional model. 

Todorov et al., (1998) utilized multiple attributes from a 3C (3-component) 3D seismic 

survey to predict well logs using a nonlinear statistical approach. Stepwise regression was 

employed to determine the optimal set of seismic attributes to be used as input in a neural 

network for sonic velocity estimation.  

Walls et al., (1999) characterized reservoir lithology employing neural networks, post-

stack seismic data, well log and core.  

Saggaf and Nebrija (2000) identified litho-facies from well logs by employing NN's that 

perform vector quantization on the input data. Their approach could be used in different 
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modes (supervised, semi-supervised, unsupervised) and it produced similar results to 

those obtained manually by an experienced geologist. 

David et al., (2001) quantified and mapped the abundance and distribution of the 

dolomite across the Arab-D reservoir in Ghawar field, using density and neutron porosity 

as input data. Analysis of the presence and distribution of the dolomite in the field 

showed that dolomite occurs as a series of linear trends, which was attributed to structural 

events.  

Hampson et al., (2001) described approach for estimating pseudo-log from seismic. The 

data consisted of a number of target logs from wells tied to a 3-D seismic cube, the aim 

had been to calculate a multi-attribute transform, which is a nonlinear or linear transform 

between the target log values and an optimally selected subset of the seismic attributes. 

Hampson et al., (2003) presented the application of the radial basis function neural 

network (RBFN) to estimate pseudo-log from seismic attributes. The outputs of the new 

technique were compared with the generalized regression neural network (GRNN) 

outputs, discussed by Hampson et al. (2001).  The error between the estimated and actual 

the log samples has shown the improvement of the results of RBFN over GRNN when 

the three are small number of samples.  

Iturrarán and Spurlin (2005) used the gamma test as guidance for selecting the 

appropriate combinations of the seismic attributes in porosity prediction from 3D seismic 

data.  They also addressed the problem of the minimum number of data required to 

estimate the desired log properties and maximal number of attributes to be combined. 
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Yumei and Sprecher (2006) evaluated the predictability performance of a naïve Bayes 

classifier by comparing it with a sophisticated statistical algorithm (the linear 

discriminant analysis). They considered log and core data from marine sediments of the 

Tensleep reservoir. The result of the both approaches seem reasonable, and the 

predictions of the Gaussian naïve Bayes classifier are same as those relying on the linear 

discriminant analysis.  

Phan and Sen (2010) integrate well log and multi seismic attributes to quantitatively 

estimate porosity and permeability from pre-stack seismic volume.  

AlBinHassan and Wang (2011) introduced a new nonlinear regression approach, named 

the group method of data handling (GMDH). The new approach performed better than 

the conventional statistical approaches in terms of selecting the best network structure, 

and the   nodes number, which resulted in better prediction of porosity distribution than 

that obtained using ANN. 

Adekanle   and Enikanselu (2013) estimated porosity of ‘XLD’ Field, in Niger Delta via 

integrating sparse well log measurements with properties obtained from 3D seismic 

simultaneous inversion.  The estimated porosity from inversion properties was found 

suitable for making reservoir management decisions. Besides, the result gave a 

geologically realistic porosity distribution which aids to understand the variations of the 

subsurface reservoirs in the study area.  

Chaki et al., (2013) designed a modular neural network to predict sand fraction between 

the well tops taking three seismic attributes as input. Their result showed that, the 
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modular based neural networks can be applied to characterize reservoir parameters if the 

input values are seismic attributes. 

Kumar et al., (2014) used relative seismic impedance to predict porosity in the Eagle 

Ford shale. This study proved that if the seismic data have well-preserved low-frequency 

content, the relative acoustic impedance alone can be sufficient to estimate porosity due 

to its sensitivity to the low-frequency components of the model. 

Na’imi et al., (2014) employed non-linear support vector regression algorithm with some 

selected seismic attributes, to find   quantitative relationship between porosity and water 

saturation. Support vector regression was found to be a powerful tool to estimate 

reservoir properties from seismic data and the results show improvement over 

conventional neural network.   
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3 CHAPTER 3  

4 METHODOLOGY 

I applied different pre-processing, correction and calculations steps to the well log data 

before correlating them with multi seismic attributes and inverted volume. These steps 

include 

3.1 Porosity correction and lithology identification  

The neutron-density-sonic master charts permit the determination of porosity and provide 

insight into lithology. Chart selection depends on the anticipated mineralogy. Neutron-

density can be utilized to distinguish between the common reservoir rocks [quartz 

sandstone, calcite (limestone) and dolomite] and shale and some evaporites. 

3.1.1 Finding the True Porosity 

From the apparent limestone neutron porosity fractional value  ∅N one computes the 

corrected neutron porosity value for sandstone, limestone and dolo-stone respectively as 

follows: 

  ∅𝑁,𝑆𝑆𝑇,𝐶𝑂𝑅𝑅 = 0.222 ∅𝑁
2 + 1.021 ∅𝑁 + 0.39 [1] 

  ∅𝑁,𝐿𝑠𝑡,𝐶𝑂𝑅𝑅 = ∅𝑁 [2] 

 

  ∅𝑁,𝑆𝑆𝑇,𝐶𝑂𝑅𝑅 = 1.40 ∅𝑁
2 + 0.389 ∅𝑁 + 0.01259 [3] 
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3.1.2 Finding the Fractional Composition 

Here the aim is to find the unknown lithology from measured  ∅𝑁,𝑚 and 𝜌𝑀,values (i.e. 

from the measured neutron porosity and density). There are the following seven cases 

possible, listed in (table 3.1).  Suppose that for the measured ∅𝑁,𝑀 the measured density 

𝜌𝑀 is between two successive pure lithology curves (cases 3 and 5 in the (Table 3.1)). Let 

 𝜌𝑀,𝑙𝑖𝑡ℎ1 < 𝜌𝑀 < 𝜌𝑀,𝑙𝑖𝑡ℎ2 [4] 

then the percentage content of lith1 is  

 𝜌𝑙𝑖𝑡ℎ1[%] = 100𝑋
𝜌𝑀 − 𝜌𝑀,𝑙𝑖𝑡ℎ1

𝜌𝑀,𝑙𝑖𝑡ℎ2 − 𝜌𝑀,𝑙𝑖𝑡ℎ1
 

[5] 

and the percentage content of lith2 is 

 𝜌𝑙𝑖𝑡ℎ2[%] = 100𝑋
𝜌𝑀,𝑙𝑖𝑡ℎ2 − 𝜌𝑀

𝜌𝑀,𝑙𝑖𝑡ℎ2 − 𝜌𝑀,𝑙𝑖𝑡ℎ1
 

[6] 

Using Eqs [5, and 6] one can calculate the fractions of the lithology by following steps 

explained for different cases in (Table 3.1). The result is a new log named lithology 

fraction log, which gives percentages fraction of each composite rocks based on the 

Schlumberger master chart. For example we can code the composite rocks in the scale of 

this new log starting from one up to three. The value "1" indicates   pure sand, "2" and 

"3" are for pure lime and dolomite respectively. Fractional values between the numbers 

indicate the rock is not pure lithologically. For example "1.2" means a lithology 

consisting of 80% sand and 20% lime, or "2.6" means a lithology with 40% limestone 

and 60% dolomite, and   so on. This way we can identify and quantify the lithology 

fraction of the entire well log based on the neutron porosity and density logs. 
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Table 3.1: Finding the fractional composition lithology of composite rocks (after Gabor 

Korvin,   2011. Unpublished manuscript).  

 

 

 

 

Case number If  then the lithology is Percent composition 

1 

sstmm ,   

 

Not clean (shaly),  

shale correction  

is necessary, see 

Section 3 

Eliminate 

shale, and try 

again! See 

Section 3 

2 

sstmm ,   

Pure sandstone 100% sst 

3 

lstmmsstm ,,  
 

Sandstone/limestone 

mixture 

See  Eqs.[5 

and 6] with 

lith1=sst, 

lith2=lst  

4 

lstmm ,   

Pure limestone 100% lst 

5 

dstmmlstm ,,  
 

Limestone/dolostone 

mixture 

See  Eqs.[5 

and 6] with 

lith1=lst, 

lith2=dst 

6 

dstmm ,   

Pure dolostone 100% dst 

7 

 
mdstm  ,  

Not clean (shaly),  

shale correction  

is necessary, see 

Section 3 

Eliminate 

shale, and try 

again! See 

Section 3 
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3.1.3 Shale Effect Correction 

Whenever crossplot of neutron and density data lie outside the boundaries of the three 

different rock curves, is indicating present of shale effects, which can be computed from 

the Natural Gamma Ray Log as follows in (Eq.7) we use conventional Well Logging 

notations 

  
 GrcsGrsh

GrcsGr
Vsh






 

[7] 

   

Abbreviations mean Vsh= (fractional) shale volume, Gr= Gamma Ray reading,  Grcs= 

Gamma Ray reading in clean sand, sh = shale,  Grsh= Gamma Ray reading in shale. 

After computing Vsh, the measured 
mN ,

and the measured density m is corrected 

for shale as follows: 

By the mixture rule of densities, we have for any shaly lithology (including for the 

unknown measured one) 

𝜌𝑀,𝑟𝑜𝑐𝑘 = 𝑉𝑠ℎ𝑎𝑙𝑒𝜌𝑠ℎ𝑎𝑙𝑒 + (1 − 𝑉𝑠ℎ𝑎𝑙𝑒)𝜌𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑐𝑘  [8] 

wherefrom  

𝜌𝑠ℎ𝑎𝑙𝑒𝑐𝑜𝑟𝑟 = 𝜌𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑐𝑘 =
𝜌𝑀,𝑟𝑜𝑐𝑘 − 𝑉𝑠ℎ𝑎𝑙𝑒𝜌𝑠ℎ𝑎𝑙𝑒

(1 − 𝑉𝑠ℎ𝑎𝑙𝑒)
 

 [9] 

For the shale-correction of the neutron porosity we use the formula: 
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  ∅𝑁,𝑠ℎ𝑎𝑙𝑒𝑐𝑜𝑟𝑟 =  ∅𝑁 − 𝑉𝑠ℎ𝑎𝑙𝑒 ∅𝑁,𝑠ℎ𝑎𝑙𝑒 [10] 

 

3.2 Well Log Pre-Processing 

To make the well logs directly comparable to the seismic data, a significant amount of 

pre-processing is necessary. 

3.2.1 Well log Smoothing and Normalizing  

The first processing steps is despiking. The despiking of the well logs is achieved through 

applying filtering to logs with a running mean filter of specified length. The running 

mean filter has significant impact on the results that are visually evident in the log 

character. 

 

Figure 3.1: Differences between the frequency content of the trace of seismic attribute 

(right) against that of the target log (left). After (Hampson et al., 2001) 
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3.3 Seismic Attributes Derivation  

Seismic attributes are measures of kinematic and statistical features of seismic data. A 

seismic trace is the product of complicated interrelationships between bed properties such 

as thickness, porosity, water saturation, and lithological properties. A seismic trace can be 

transformed into an attribute through amplifying one, or more, of above mentioned 

properties.  

So far hundreds of seismic attributes have been derived and published, however only a 

few of these are of real significance and well enough understood to be quantitative, 

actually many seem to be redundant. We have chosen to use Instantaneous Attributes, so 

called because they are calculated at every time sample of the seismic trace. A detailed 

list of the attributes used, and their potential geologic significance is shown in (Table 

3.2). The instantaneous phase, frequency, and envelope of the seismic traces is computed 

through complex trace analysis. In the theory of complex trace analysis, a seismic trace, 

𝑆(𝑡), can be expressed as the real part of an analytical signal 𝑆(𝑡) that consists of an 

imaginary and a real part (Taner et al., 1979). 

 𝑆(𝑡) = 𝑠(𝑡) + 𝑗𝑠∗(𝑡) [11] 

where 𝑗 = √−1 ,  𝑠∗(𝑡) is the trace's so-called quadrature component which can be 

uniquely obtained by Hilbert transform  from the observed signal s(t) if the  theoretical 

assumptions about the physical realizability of the trace are met. 

Eq. [11] may be re-written in polar form to produce two other instantaneous attributes 

Eqs. [12and 13]: 
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 𝐴(𝑡) = [𝑠(𝑡)2+𝑗𝑠∗(𝑡)2]1/2 [12] 

 
  Φ(t) = arctan [

𝑗𝑠∗(𝑡)

𝑆(𝑡)
] 

[13] 

where 𝐴(𝑡)  is the amplitude envelope and Φ(t) is the instantaneous phase. The seismic 

trace and its Hilbert transform may be reconstructed via combining amplitude of the 

instantaneous phase and envelope such that 

 𝑆(𝑡) = 𝐴(𝑡)cos (Φ(t)) [14] 

     𝑗𝑠∗(𝑡) = 𝐴(𝑡)sin (Φ(t)) [15] 

A nother instantaneous attribute may be derived by differentiating the instantaneous 

phase (the rate of change of phase with respect to time). This yields the instantaneous 

frequency attribute 𝜔(𝑡): 

     
  𝜔(𝑡) =

dΦ(t)

𝑑(𝑡)
  

[16] 

The above three instantaneous attributes (amplitude, phase, and frequency) are the basic 

seismic attributes. More attributes are calculated from the basic three as listed above in 

Eqs. [11 to 15] (Taner et al., 1994), this is implemented in the multi-attribute program 

EMERGE. These main attributes are generally used in the statistical derivation of 

reservoir properties. Some of these attributes derived from the primary ones are: 

Amplitude-weighted Cosine Phase: This is the product of the cosine of the 

instantaneous phase and amplitude envelope. In equation form, 

     𝐴𝑐(𝑡) = 𝐴(𝑡)𝑐𝑜𝑠 (Φ(t)) [17] 

Amplitude-weighted instantaneous frequency: This attribute is defined as the product 

of the instantaneous frequency and the amplitude envelop:    
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      𝐴𝐹(𝑡) = 𝐴(𝑡)𝜔(𝑡) [18] 

Amplitude-weighted phase:  It is the product of the instantaneous phase, and amplitude 

envelope. 

4  

     𝐴𝑃(𝑡) = A(t)Φ(t) [29] 

 Derivative: The (numerical) derivative of the input trace is found via simply taking the 

difference between adjacent seismic trace sample points:   

     𝐷(𝑡) = 𝑠(𝑡) − 𝑠(𝑡 − 1) [20] 

Integrate: This seismic attribute is constructed by computing first the running sum of the 

input trace. Then, the smoothed seismic trace is subtracted from the running sum. The 

default smoother length is 50 samples. In equation form, the integrate attribute is 

represented by 

     

𝐼(𝑡) = ∑[𝑆(𝑡)] −

𝑁

𝑖=1

s^(t) 

[21] 

 where s^(t)  is the smoothed trace 

5  

Integrated Absolute Amplitude: it is defined as the running sum of the absolute 

amplitude of the seismic trace input, minus the smoothed amplitude envelope. In equation 

form: 

6  

     

𝐼(𝑡) = ∑[𝐴(𝑡)] −

𝑁

𝑖=1

A^(t) 

[22] 
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where A^(t)  = the smoothed envelope 

 

Table 3.2: List of some seismic attributes and their significance. 

Attribute Significance in interpretation 

Amplitude Acoustic Impedance Contrast 

Instantaneous Phase Indicative of Lateral Continuity 

Instantaneous Frequency Bed Thickness Indicator 

Amplitude Envelope Reflection Strength 

First Derivative of the Amplitude Absorption Effects 

Second Derivative of the Amplitude Bed Thickness; Reflection Strength 

Integrated Absolute Amplitude Low Frequency Trends 

 

Table 3. 3: List of inverted seismic attributes and the employed method of inversion. 

External Attribute Method 

Acoustic Impedance Contrast Colored inversion approach 

Acoustic Impedance Contrast Sparse spike approach 
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3.4 Post Stack Seismic Inversion 

 

There are several different approaches currently well established to invert seismic data 

spanning from very naïve to sophisticated methods. In this study I employed a Parametric 

Inversion method, namely Colored Inversion. 

3.4.1 Colored Inversion Approach  

Colored Inversion (Lancaster and Whitcombe, 2000) utilizes a method whose philosophy 

is borrowed from seismic processing, which simultaneously analyze the power spectra of 

a seismic trace and the well log to find an operator that would transform the   spectrum of 

the average seismic trace to that of a fitted smooth curve which is representing the 

average reflectivity log spectrum. This gives the spectrum of the operator in question. 

Theory shows us that a phase rotation of 90 degree is also needed. This rotation is 

integrated into the operator. The theory behind this approach is that we consider the input 

seismic being zero phase. The Colored Inversion operator is simply an inverse-Fourier-

transformed back to time domain then applied to seismic volume using a convolution 

algorithm.  

3.5 Well to Seismic Tie 

The second pre-processing step is the depth to time conversion. The seismic traces are 

sampled in units of time, the well logs are sampled in units of depth. Since the objective 

is to create synthetic seismic data, it is recommended to reference the well logs in time 

rather than depth.  
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Well log to Seismic tie is fundamental step in seismic interpretation (White and Simm, 

2003). The main difficulty is that seismic amplitudes are usually interpreted in time 

domain, whereas well logs are measured in depth domain.  Seismic- well-tie provides a 

functional relationship of time and depth which allows comparison of log properties 

recorded on wells with seismic attributes. 

Tying wells to seismic data usually consists of forward modeling that is calculating a 

synthetic seismogram from p-wave and density logs, then comparing the synthetic data to 

the measured seismic. Problems arise for all kind of reasons: the accuracy of the logs, the 

quality of seismic data, uncertainty about handling the shallow section, uncertainty about 

integrating checkshots, and uncertainty about wavelets. Tying wells can be performed in 

the following steps: 

1. calculate time-depth functional relationship from the sonic log 

2. calculate reflection coefficients from the density and sonic  logs 

3. construct a synthetic seismogram utilizing  the reflection coefficients  

4. match the synthetic seismogram with the nearest seismic trace 

5. update the time-depth functional relationship (if needed) 

The results of each of these steps should be separately checked to assure correct well- 

seismic-ties. Every step can be modeled for credibility enhancing of the well-seismic-ties. 

For example, check shots enhance the credibility of the function relationship of initial 

time to depth conversion. Error-free well logs enhance the quality of well-seismic-ties, as 

shown by White and Hu (1998). Credible modeling approaches for synthetic 

seismograms improve the correlation with seismic traces (White and Hu, 1998; White 

and Simm, 2003). A step of particular importance is an accurate wavelet estimation to be 
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used for synthetic seismogram modeling, and of course the seismic data must be of very 

high-quality for a good tie. 

3.6 Multi-attribute Linear Regression 

3.6.1 Conventional crossplotting 

Assuming we have a particular seismic attribute, the easiest way for checking if there is 

an acceptable correlation between this seismic attribute and the target log properties is to 

crossplot the two variables. Assuming a linear functional correlation between the two 

parameters, a straight line fit of the form: 

     
𝑦 = 𝑎 + 𝑏𝑥 [23] 

can be found by regression analysis, that is by minimizing the mean-squared prediction 

error of coefficients  a and b in Eq. [23] should minimize the expression 

     𝐸2 =
1

𝑁
∑(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)

2

𝑁

𝑖=1

 

[24] 

The computed estimated error E is a measure of the how goodness-of-fit for the line of 

the regression, where the sum is over all samples in the plot. 

3.6.2 Generalizing of crossplotting to include multiple attributes 

The generalization of the traditional linear analysis to multi-variate linear regression can 

be done as follows, in the simplest case of  only three attributes at every time sample. The 

target log can be modeled as a linear combination: 
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     𝐿(𝑡) = 𝑤0 + 𝑤1𝐴1(𝑡) + 𝑤2𝐴2(𝑡) + 𝑤3𝐴3(𝑡) [25] 

After minimization of the mean-squared prediction error, the weights may be derived as 

values minimizing the expression 

     

𝐸2 =
1

𝑁
∑(𝐿𝑖 − 𝑤0 + 𝑤1𝐴1𝑖(𝑡) + 𝑤2𝐴2𝑖(𝑡) + 𝑤3𝐴3𝑖(𝑡))2

𝑁

𝑖=1

 

[26] 

Let us consider the case when we have three attributes and four log samples, in matrix 

form the problem is formulated as 

      𝐿1 = 𝑤0 + 𝑤1𝐴11 + 𝑤2𝐴21 + 𝑤3𝐴31 

𝐿2 = 𝑤0 + 𝑤1𝐴12 + 𝑤2𝐴22 + 𝑤3𝐴32 

𝐿𝑁 = 𝑤0 + 𝑤1𝐴1𝑁 + 𝑤2𝐴2𝑁 + 𝑤3𝐴3𝑁 

[27] 

Where the subscripts in Aij are indicating the j-th sample point of the i-th attribute.  In 

matrix form:   
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[28] 

or  

     L =  AW [29] 

where L is a vector representing the known target values (log), W is a 4×1 matrix with 

the unknown  weights and A is an N×4 matrix representing the attribute. Least-squares 

minimization gives the solution as 
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     𝑊 =  [𝐴𝑇𝐴]−1 𝐴𝑇𝐿 [30] 

Based on (Hampson et al., 2001) a more detailed form of this equation is 
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[31] 

This approach assumes an individual weight for every attribute. However the resolution 

of   the target well log is much higher than that of the corresponding attributes of seismic 

trace (figure 3.1). So it is not possible to compare the seismic attributes trace with the 

well log in a sample point-by- sample point manner. A better way is to consider that 

every sample point on well log is represented by a number of neighboring sample points 

in a trace of the attribute. Generally,  for   any kind of  well log property we can assume a 

special short filter operator which smears out the influences of each well log value over a 

range of contiguous traces of seismic sample points (Hampson et al,. 2001). When we 

include such an operator into the Eq. [25], the equation becomes   

     𝐿(𝑡) = 𝑤0 + 𝑤1 ∗ 𝐴1(𝑡) + 𝑤2 ∗ 𝐴2(𝑡) + 𝑤3 ∗ 𝐴3(𝑡) [32] 

where wi are operators of some prescribed length and * is indicating convolution. Note 

that the number of unknowns (weights and filter coefficients) to be estimated has 

increased to (operator length times number of attributes) +1.   By minimizing the mean-

squared prediction error we can easily find both the weights and the operator coefficients.  
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𝐸2 =
1

𝑁
∑(𝐿𝑖 − 𝑤0 + 𝑤1 ∗ 𝐴1𝑖(𝑡) + 𝑤2 ∗ 𝐴2𝑖(𝑡) + 𝑤3 ∗ 𝐴3𝑖(𝑡))2

𝑁

𝑖=1

 

[33] 

 

As a simplest example, consider Eq. [32] for the case of four sample values and two 

attributes. With a convolution filter of 3-point length, 

     𝑤𝑖 = [𝑤𝑖(−1), 𝑤𝑖(0), 𝑤𝑖(+1)] [34] 

Eq. [32] can be arranged in matrix form as: 
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[35] 

By rearranging Eq. [35] we obtain   
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[36] 
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Eq. [36] shows that the inclusion of the convolutional operator of length N has multiplied 

the number of attributes by a factor of N, by shifting the attributes by -1 and +1 sample 

point the additional attributes can be obtained. By employing the same least-squares 

solution technique illustrated in the multi linear regression above, the final result 

derivation is 
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3.6.3 Determining the Number of Attributes by Stepwise Regression 

A stepwise regression algorithm was proposed by (Draper and Smith, 1966) as a fast, 

although not optimal approach. The idea behind this approach is the observation that if a 

linear combination of N seismic attributes is known to optimize some objective function, 

[37] 

[38] 
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then the best linear combination of N +1 seismic attributes including the former N 

seismic attributes could only perform equally or better. (To prove this observe that the 

combination of N attributes can be considered as a special combination of N+1 attributes, 

by taking the N+1st with zero weight). During stepwise regression, the previously 

computed coefficients must be re-calculated. The procedure is implemented in the 

following steps.  First, obtain the first, optimal single seismic attribute by exhaustive 

search. For every meaningful seismic attribute in the list, for example acoustic 

impedance, instantaneous phase, and so on, solve for the optimal coefficients and 

estimate the error of the prediction. The optimal one is the attribute with the minimum 

estimation error, let us call it optimal single attribute1. Second, search for the best 

combination of two attributes considering the optimal single attribute 1 to be one of them. 

From the other available and meaningful seismic attributes, form the best combination of 

two attributes, for example, (optimal single attribute1, instantaneous phase), (optimal 

single attribute1, second derivative), and so on. For each such pair of attributes, solve for 

the optimal weights and find the prediction error. The optimal two attributes is the pair 

for which this error is the smallest. Call the second attribute from the optimal combination 

as attribute 2, etc.  Continue this procedure as long as needed. At each step of adding new 

attribute we also measure validation error, (which is the average error for all hidden 

wells, is employed as an estimation of the likely prediction error when the weight design 

is applied to the volume) we stop adding more new attribute when the validation error is 

starting not improving or even starts increasing. 

Observe that the required computation time to implement this approach is much less than 

for an exhaustive normal search that would use all possible combinations.  The main 
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theoretical difficulty with this approach is that we cannot be certain of really arriving at 

the optimal selection. However, the approach has the positive feature that we do not have 

to check whether the seismic attributes in the list are independent or not, because the 

stepwise regression spontaneously picks another seismic attribute whose contribution in a 

direction perpendicular to the subspace spanned by linear combinations of the former 

attributes is greatest. Consider, for instance, that we have a pair of seismic attributes, say, 

Si and Sj, which depend on each other as : Sj =a +b ∗ Si.   If during the stepwise 

regression   process one will be selected, say, Si, then Sj will not be selected, because 

including Sj would not improve the estimation.  

3.7 Theoretical Background of the Neural Networks 

An artificial neural network (ANN) generates a nonlinear mapping between a set of input 

data and target outputs data. The properties of such nonlinear mapping depend not only 

upon the type and adjustable parameters of the ANN employed, but in a certain manner 

also on the input and output data used. This study aims to use feed forward (also called 

back propagation) ANN's, and Radial Basis Function implemented in the EMERGE 

software. 

 

3.7.1 Feed Forward Back Propagation ANN’s 

 

This type of neural network is consisting of an input layer, one or more hidden layers, 

and an output layer (Figure 3.2) (Martin et al. 1996). Every layer has a number of 

neurons, every neurons of the previous and next layers is connected simultaneously. The 

input layer neurons are performing no computation, because they are simply input gates. 
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The hidden and output layers neurons have weights and biases connecting them to the 

neurons in the previous layer (Martin et al., 1996). Every neuron sums the weighted and 

biased inputs from each neuron in the previous layer and then computes a nonlinear 

function of the sum. This way, the output data and target input relationship is nonlinear. 

In the neurons one can utilize the commonly employed sigmoid-shaped nonlinear transfer 

function, the hyperbolic tangent sigmoid (Figure 3.2) and Eq. [39] or the log sigmoid 

(Figure 3.3) and Eq. [40]. The hyperbolic tangent sigmoid transfer and the log-sigmoid 

transfer functions respectively are 

 

 

 

 

 

 

 

     
tanh(𝑛) =

𝑒𝑛 − 𝑒−𝑛

𝑒𝑛 + 𝑒−𝑛
 

[39] 

 

 

 

     log(𝑛) =
1

1 + 𝑒−𝑛
 

[40] 
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Figure 3.2: Architecture of a simple ANN’s with hidden layer. In this scenario, the O1, 

O2 and O3 are input, hidden, and the output layer respectively. Every circle represents a 

node. 
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Figure 3. 3: Hyperbolic tangent sigmoid transfer function. Note how quickly the function 

saturates for absolute values greater than three. To make full use of the shape of this 

transfer function, the inputs are normalized to the range -1 to 1. 

 

 

 

 

Figure 3. 4: Log sigmoid transfer function. Note how quickly the function saturates for 

absolute values greater than five. To make full use of the shape of this transfer function, 

the inputs are normalized to the range -1 to 1. 

  

 

 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

lo
g-

si
g 

(n
)

Log-sigmoid transfer function

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n

ta
nh

 (
n)

Hyperbolic tangent sigmoid transfer function



36 

 

The output layer is the weighted and biased sum from the output of the neurons in the last 

hidden layer. This sum is not transformed in a nonlinear manner. Let the input vector, I, 

be of length k. (Bias is a constant input given to neurons, the introduction of BIAS 

neurons permits us to move the transfer function curve horizontally along the input axis 

while keeping the curvature/ shape unchanged. This will make the network to produce 

arbitrary outputs different from the defaults and hence we can shift the input-to-output 

mapping to suit our particular needs). 

For simplicity, suppose the case of single hidden layer. The output of the j-th neuron in 

such case, with transfer function f2 is: 

where 𝑊𝑖𝑗 and 𝑏𝑖𝑗are the weights and biases respectively, corresponding to the edge 

connecting the jth neuron in the hidden layer to the ith neuron in the input layer. The final 

output has single neuron, in case a single predicted property. 

In order to correctly map the inputs to the output, the network will continuously update 

the weights and biases along the edges connecting each pair of neurons from successive 

layers till some performance criterion is achieved. This process is called training. Many 

different training algorithms exist, but error backpropagation is the most common) for 

multi-layered neural networks (Martin et al., 1996; Taji et al., 1999). The ANN 

minimizes the difference between the predicted and target values using some specified 

error criterion. In backpropagation it is the square of mean error between the network 

    

𝑂2𝑗 = 𝑓2(∑ 𝐼𝑖

𝑘

𝑖=1

𝑊𝑖𝑗 + 𝑏𝑖𝑗) 

[41] 

                                     𝑂3 = (∑ 𝑂2𝑗
𝑛
𝑗=1 𝑊𝑖𝑗 + 𝑏𝑖𝑗)    [42] 
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target and the input values that is used as the objective function to be minimized. 

Actually, in this case, as has been demonstrated, using the mean absolute error as the 

performance criterion would yield better results (Taji et all., 1999). I describe below 

backpropagation using mean absolute error, and the method when gradient descent 

method with momentum and a variable learning rate are utilized to train the ANN’s. 

For estimation-target pairs, (𝑝1, 𝐿1), (𝑝2, 𝐿2) … (𝑝𝑁, 𝐿𝑁), we want to minimize the mean 

absolute error:  

As the objective function is non-differentiable, this minimization can be accomplished by 

gradient descent. The name comes from the idea that in order to descend towards the 

local minimum of a function, one can take steps always in the direction of the negative 

gradient of the function at that value.  For example, if γ is sufficiently small, then xn+1will 

be closer to the local minimum of F then was xn. (Superscripts are iteration numbers and 

F is the objective function to be minimized). 

 𝑥𝑛+1 = 𝑥𝑛 − γ∆F(𝑥𝑛) [44] 

This is an iterative process, which in many circumstances will converge towards some 

local minimum. Our aim is, therefore, to move towards the minimum in the mean 

absolute error surface, E. Weights and biases, w and b, are iteratively updated until this 

minimum is reached or reasonably well approximated. This is done for all weights and 
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[43] 
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biases in the network for a number of iterations until some stopping criterion is reached. 

The gradient descent algorithm in this case becomes:    

 
 𝑤𝑖𝑗

𝑛+1 = 𝑤𝑖𝑗
𝑛 − γ∆ ∂

𝐸(𝑤𝑖𝑗
𝑛)

(𝑤𝑖𝑗
𝑛)

 
[45] 

 
𝑏𝑖𝑗

𝑛+1 = 𝑏𝑖𝑗
𝑛 − γ∆ ∂

𝐸(𝑏𝑖𝑗
𝑛 )

(𝑏𝑖𝑗
𝑛 )

 
[46] 

The value of γ can change between successive iterations, in this case it is called an 

adaptive learning rate. Convergence can be sped up if the learning rate is increased on flat 

parts of the error surface, and decreased where the slope is steep. To implement this in a 

simple way, the learning rate is increased if the error decreases, and decreased if the error 

increases. 

A momentum operator may also be employed to stabilize the trajectory of the 

convergence. This will act as a low pass filter to smooth any oscillations in the 

convergence trajectory. To clarify momentum learning, let us recall that at the n-th 

iteration the weight update is:  

    
∆𝑤𝑖𝑗

𝑛 = −γ
𝜕𝐸(𝑤𝑖𝑗

𝑛)

𝜕(𝑤𝑖𝑗
𝑛)

 
[47] 

Momentum is the additional learning rate used at the beginning of learning to make 

learning faster. e.g. learning error is usually initially very large, so one starts with high 

momentum and adjust weights more aggressively. Later on during learning as the error 

decreases, momentum should also decrease so learning goes more slowly but   it will be 

less likely to overshoot the target. 
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With momentum learning, updating becomes:  

    
∆𝑤𝑖𝑗

𝑛 =  ∆𝑤𝑖𝑗
𝑛−1 − (1 − α)γ

𝜕𝐸(𝑤𝑖𝑗
𝑛)

𝜕(𝑤𝑖𝑗
𝑛)

 
[48] 

for some  that satisfies 

 0 < α < 1 [49] 

Weights and biases will now converge quickly and stably towards the minimum on the 

mean absolute error surface (Martin et al., 1996). In this way, Neural Networks can create 

a transformation that minimizes the error between the output and the desired target. 

3.7.2 Radial Basis Function (RBF) ANN’s 

 

Radial basis function (RBF) networks are feed-forward ANN’s learned by a supervised 

learning algorithm (activation function in form of RBF).  Such type of ANN’s are 

typically built up of a single hidden layer where the functions of activation are selected 

from a set of functions named basis functions. Although this RBF NN is seem like back 

propagation one in various procedure, but RBF networks learns quicker, and less 

sensitive to non-stationary of the inputs. 

Moody and Darken (1989), Popularized RBFNN and have proved to be a powerful neural 

network configuration. The RBF networks is different than the other networks by having  

one hidden layer that employ Gaussians as basis functions. Every unit in the hidden layer 

measures the degree of similarity between the weights or centers of the input vector and 

input vector itself. The basis unit is specialized pattern recognition. The basis units and 

outputs are connected through weights which employed to take linear combinations of the 

hidden layer's units to produce the final output. 
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3.7.2.1 Structure of the RBF Networks 

Broomhead and Lowe (1988) were the pioneers to introduce RBF in the configuration of 

NN’s. The configuration of an RBFNN’s in its simple model has three level of layers. 

The input level consists of neurons whose dimension is similar to M of the input Z. 

3.7.2.2 Hidden layer 

This layer consists of nonlinear parts that are liked to all of the neurons in the input. 

Every hidden part has its input from all the nodes in the input layer. The hidden units 

contains a basis function, which has the two parameters: center and width. The mean of 

the basis function for a node i at the hidden layer is a vector ci whose size is the same as 

of the input u, and there are generally various centers associated with every unit in the 

network. The radial distance 𝒅𝒊, between the input vector Z and the center of the basis 

function 𝒄𝒊 is calculated for each unit i in the hidden layer as 

    𝒅𝒊 = ||𝐙 − 𝐜𝐢|| [50] 

where 


denotes the Euclidean norm. 

The output  𝒉𝒊 of each hidden unit i is then calculated by applying the basis function G to 

this distance. 

    𝒉𝒊 = 𝑮(𝒅𝒊, 𝝈𝒊) [51] 

where 𝝈𝒊 is a smoothness parameter and can also be interpreted as the variance of a 

Gaussian distribution centered on di. 
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3.7.2.3 Output layer 

The mapping from the input space to the hidden unit space is nonlinear, however the 

mapping from the hidden unit space to the output space is linear. The j-th output is 

calculated as 

    

𝑥𝑗 = 𝐹𝑗(𝑍) = 𝑤0𝑗 + ∑ 𝑤𝑖𝑗ℎ𝑖

𝑙

𝑖=1

     𝑗 = 1,2, … , 𝑀 

[52] 

In summary, the mathematical model of the RBF network can be formulated as: 

 

    X = F(Z), F: RN → RM [53] 

 

𝑥𝑗 = 𝐹𝑗(𝑍) = 𝑤0𝑗 + ∑ 𝑤𝑖𝑗𝐺(||Z − ci||)

𝑙

𝑖=1

     𝑗 = 1, 
[54] 

 

The weight is calculated as in the following simple case (considering three attributes 

only): 

    x1 = w1A11 + w2A12 + wNA1N 

x2 = w1A12 + w2A22 + wNA2N 

∶    ∶           ∶               ∶                    ∶ 

x𝑁 = w1AN1 + w2AN2 + wNANN 

 

 

[55] 

the subscript Aij is indicating the jth sample of the ith attribute.  The equations above can 

be arranged in matrix form as 
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[56] 

 Or  

    X =  AW 

 

[57] 

The solution to Eq.57 is simply the matrix inverse.  

    𝑊 = [𝐴 + λI]−1𝑋 

 

[58] 

   

where λ is a pre-whitening factor and I is the identity matrix. When the weights are 

calculated, they are applied to the application dataset using the equation (54) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Wavelet Estimation  

Wavelet estimation is a sensitive part in my study especially in the stage of seismic-to-

well tie, and inversion of acoustic impedance. I estimated the wavelet by two different 

methods: (1) statistical approach by estimating wavelet using seismic data (2) 

deterministic approach by estimating   wavelet from well-log data, then I accounted for 

the phase shift between the two results to optimize the correlation between seismic data 

and synthetics seismogram.  In case 1 I extracted 200-ms long wavelets, constrained by 

the cosine taper with 25% wavelet length at both start and end of the wavelets to limit 

side-lobe amplitudes (figure 4.1). I extracted the wavelet from the average of nine traces 

centered at the well location. The estimated wavelets in frequency domain were zero 

phase (figure 4.2),   due to the fact that the seismic data had been processed for zero 

phase. 

In case 2, to improve the correlation and matching between synthetics and seismic 

section, I also extracted a wavelet, by utilizing information of the well logs to determine 

the correct phase. I extracted 150-ms long wavelets, constrained by the cosine taper with 

20% wavelet length at both start and end to limit side-lobe amplitudes and to get constant 

phase (figure 4.3). In frequency domain I found the average phase to be –33 degrees 

(figure 4.4). Then the two results were combined to yield better correlation and well-to-

seismic-tie. 
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1  

Figure 4.1: Amplitude of extracted wavelet by statistical approach in time domain from 

the seismic data alone. The extracted wavelet parameters are: wavelet length 200ms, 

sample rate 2ms,   taper length 25, and Phase type is constant with zero phase rotation 

2  

3  

Figure 4.2: Phase spectra and amplitude of the extracted wavelet in (figure 4.1). Note 

that the maximum frequency, and spectral amplitude are around 100, and 40 Hz 

respectively. It is a zero phase wavelet. 
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4  

Figure 4.3: Wavelet extracted by statistical approach from the well logs alone. The 

parameters of extracted wavelet are:  wavelet length 200 ms, sample rate 2ms, length of 

taper 25, and Phase type is constant with zero phase rotation. Note that this wavelet is 

slightly shifted compared with (Figure 4.1) which indicates there is phase shift between 

synthetic seismogram and seismic data that has to be corrected. 
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5  

Figure 4.4: Phase spectra and Amplitude in frequency domain of the extracted wavelet in 

(figure 4.3). The maximum frequency and amplitude of this wavelet are around 100 Hz, 

and 0.02 (occurring at around 35Hz) respectively, however it is not a zero phase wavelet 

because the phase is rotated around -33 degrees. This phase information is used to solve 

phase mismatch problem. 
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4.2 Post-stack inversion 

For performing post-stack seismic inversion, a primary velocity model of the earth’s 

subsurface is constructed from two data streams consisting of picked horizons and 

velocity/density information in the form of well logs. The main role of this model is to 

add a consistent low frequency component missing from the seismic, and using it in a full 

inversion of the seismic data. Different post-stack inversion algorithms are available 

however only one "colored" inversion technique was employed in this study to 

simultaneously invert the seismic and well log data for P-impedance. To validate the 

inversion accuracy and credibility, I plotted the predicted impedance against the actual 

impedance calculated from well log data. The result shows that the predicted and actual 

data are aligned around the 45-degree direction, which indicates their high correlation 

(figure 15). The inversion accuracy and errors are displayed in (Table 4.1) documenting 

an acceptable level of accuracy.  
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Figure 4. 5: Cross plot between original acoustic impedance calculated from log data (x 

axis) and inverted acoustic impedance calculated from seismic data being constrained by 

well logs (y axis), the red is the regression line.  
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Table 4.1:  The correlation coefficients and corresponding estimation errors of inversion 

result. 

 

 

 

 

 

 

 

 

Well name RMS Error Between Original 

and Inverted Result 

Inverted Synthetic 

Correlation 

Synthetic Relative 

Error 

1-10 3888.51 0.99 0.05 

10-10 3501.94 0.99 0.06 

62-11 4048.51 0.99 0.08 

76-10 4533.43 0.99 0.04 

17-21 3788.45 0.99  0.47 

2-25 4508.21 0.99  0.06 

56-10 4871.05 0.99  0.03  

25-11 4112.72 0.99  0.03  

41-3 4443.42 0.99  0.06  

51-10 4424.13 0.99  0.04  

52-10 4435.76 0.99  0.04  
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4.3 Results of Lithology and Porosity Estimation 

This study focuses on two target reservoirs in Teapot Basin, namely, Second Wall Creek 

member of Frontier Formation and Tensleep Formation.  

The top of the first target reservoir occurs at depths between 2900-3300ft around 400-441 

ms, where its lithology is sand. The top of the second reservoir target occurs at a depths 

between 5500-5900ft (810-840ms) where the lithology is alternating sandstone and dolo-

stone, Darton (1906, 1904).  One of the objectives of the study are to distinguish between 

sandstone, limestone and dolomite constituent fractions of each unit, and to delineate 

their porosity. From the Schlumberger master chart of neutron porosity and density cross 

plot, I was able to calculate porosity, and construct a lithology log curve.  For the 

lithology log curve numerical values ranging from 1-3 were assigned, where 1 represents 

pure sandstone, 2 represents pure limestone, and 3 represents pure dolo-stone, while the 

fractional values between1 to 3 represent mixed lithologies. For example 1.3 indicates a 

lithology of 70 percent sand and 30 percent limestone; 2.8 represents lithology of 20 

percent limestone and 80 percent dolo-stone, and so on (figures 5.1 and 5.2). 

4.3.1 Lithology Identification of Second Wall Creek and Tensleep  

After having performed pre-processing, and tying wells to seismic as explained in 

(chapter 3 section 3.1).  I had to decide first which seismic attributes are the most 

appropriate for predicting the target log (in this case: lithology). First I cross-plotted each 

attribute versus the lithology log of the reservoir targets, then I calculated the normalized 

correlation coefficients and ranked them in decreasing order (Tables 4.2, 4.3).  
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Table 4.2 shows the normalized cross correlation results of different seismic attributes 

cross-correlated against the well lithology log from Second Wall Creek reservoirs. The 

attribute with best correlation coefficient is Filter 35/40-45/50, though the correlation 

seems rather poor,   0.45, with high error percentage around 20%. The weakest 

correlation was obtained for the attribute Average Frequency which gave a correlation 

about 0.07, with error of 22%. Table (4.3) contains cross-correlations of different seismic 

attributes against the lithology log of Tensleep reservoir with normalized correlation 

coefficients and the corresponding error. The best correlating attribute in this case is 

Integrated Absolute Amplitude, which gives a correlation coefficient of 0.4 with an error 

of 32%,  the lowest correlation belongs to the from Second Derivative (correlation 

coefficient -0.05, error about 36%.). 

From (Tables 4.2, 4.3) we can deduce that none of these attributes can be considered 

sufficient to be used individually for predicting the lithology log in Second Creek and 

Tensleep reservoir. 

 Figure 4.6 shows cross plot between lithology log of nine wells and a single seismic 

attribute (filter 5/10-15/20 of inverted volume) in the Second Wall Creek reservoir, the 

red line is regression line. From this figure we can see how widely the two variables are 

scattered in the graph which explains the low correlation (about 0.46) and high error 

(about 25%). 

Figure 4.7 shows the cross plot between lithology log and another seismic attribute 

(Dominant Frequency) of Tensleep reservoir, the red line is regression line. While there 

is a clear positive correlation, the data is scattered in the graph which results in low 
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correlation (about 0.4) and high error (about 41%). To increase the predictive power of 

the attributes, I decided to employ combination of a set of attributes rather than single 

attributes. From the listed attributes in (Tables 4.2, 4.3) a set of attributes were taken 

simultaneously (by the method of Hampson et al., 2001). I found that using four 

attributes and applying an eight-point convolutional operator is the best way to handle the 

differences in frequency between log and seismic data for Second Creek and Tensleep 

respectively.  The appropriate attributes combination were identified using the step-wise 

regression analysis approach (Hampson et al., 2001).   The results are illustrated in 

(Tables 4.4, and 4.5).  

In table (4.4) the first row, for example, shows the best single attribute which is Filter 

5/10-15/20 (inversion), the other selected attributes are Cosine instantaneous phase, Filter 

25/30-35/40, and Average frequency (inversion result). These four attributes are the best 

combination of attributes that can be used as input. Although adding more attributes 

would further reduce the training error, it might cause an increase in validation error. This 

is very clear in table (4.4) when I added a fifth attribute (filter 35/40-45/50) to the set of 4 

attributes above it, which had caused the training error to be reduced from 0.139 to 0.130. 

At the same time however the validation error increased from 0.180 to 0.190.  Finally, 

only the combination of the first four attributes listed in (table 4.4) with different weights 

were used to predict the lithology, due to their minimum validation error.  

Table 4.5 shows the training and validation errors for combination of up to seven 

attributes, namely, Integrated Absolute Amplitude, Instantaneous Frequency, Average 

Frequency (Inversion), Filter 55/60-65/70 (Inversion), Dominant Frequency (Inversion), 

Filter 25/30-35/40, and Filter 25/30-35/40 (Inversion). For example, the second row is 
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combination of two, namely the first and second attributes, the third raw is combination 

of the first, second and third attributes, and so on. The selection criterion for the optimal 

number of attributes to be used is the behavior of the validation error: we stop adding 

more attributes when the validation error starts to increase. In the above-discussed case 

the optimal combination was obtained when I used the first five attributes (table 4.5). 

Note that, for both reservoir targets the correlation error is slightly improved compared to 

the case of single attribute 

To compute the validation error, in my study I divided the entire input dataset into two 

groups (Figure 4.8, 4.9): a training dataset (original data in black) and a validation dataset 

(predicted data, in red).  

Figure 4.8 shows the optimal number of attributes to be used to predict the Second Wall 

Creek reservoir lithology, the horizontal axis indicates the number of attributes employed 

in the estimation. The vertical axis is the root-mean-square prediction error of attributes. 

By using a filter operator length of four points, we can see that the optimal number of 

attributes to be combined are four, and afterward no improvement occurs. (Figure 4.9) 

illustrates the errors associated with a set of nine attributes  in (Tensleep reservoir), the 

black line is training error of nine attributes when we are using all wells, the red line is 

validation error of nine attributes when we are excluding one well and re-derive the log 

of the excluded well. As anticipated, the training error as well as the validation error are 

decreasing as we add more attributes, however at some point the validation error is starts 

to increase once again when we add more attributes, which is the criterium telling that no 

more attributes are needed.   From (figure 4.8), we can infer it is best to use only a set of 
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four attributes to avoid a greater validation error, while from (figure 4.9), the optimal 

number of attributes to be combined with minimum error and high correlation is five.  

Figure (4.10) shows the cross plot between original lithology log calculated from density 

and neutron porosity logs and predicted lithology log estimated from combinations of 4 

attributes in Second Wall Creek reservoir. The correlation between the two logs is 0.84 

which is considered better than in the case of single attributes in (Figure 4.6), however 

the data are still scattered.   

Figure (4.11) shows the cross plot between original lithology log and predicted lithology 

log estimated from combinations of five attributes in Tensleep reservoir. The correlation 

between the two logs is weaker (0.70 with error of 0.32) compared with the case of the  

Second Wall Creek reservoir, however, it is certainly better than in case of single 

attributes. The data are still scattered.  
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Table 4.2: Lithology results of a single seismic attributes estimation, the last two 

columns contain the estimation and coefficients of correlation (Second Wall Creek).  

Target Log Attribute Error Correlation 

Lithology Filter 5/10-15/20 (Inversion) 0.20  0.45  

Sqrt-Lithology Second Derivative  0.20  -0.35  

Lithology Filter 15/20-25/30 0.20  0.33  

1/Lithology Filter 25/30-35/40  021  -0.18  

1/Lithology Amplitude Weighted Phase 0.22  -0.18  

Lithology Cosine Instantaneous Phase 0.22  -0.15  

(Lithology)^2 Instantaneous Frequency 0.22  0.13  

Lithology Amplitude Envelope 0.22  0.12  

Log-Lithology Apparent Polarity  0.22  0.12  

Log-Lithology Average Frequency 0.22  -0.07  
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Table 4.3: Single seismic attribute Table with corresponding estimation errors and 

coefficients of correlation for Tensleep reservoir. 

Target Log Attribute Error Correlation 

Lithology Integrated Absolute 

Amplitude 

0.32  -0.40  

Lithology Dominant Frequency 0.33  0.37  

1/Lithology Integrated Amplitude 

(Inversion) 

0.33  -0.34  

Log-Lithology Average Frequency 0.34  0.28  

Lithology Average Frequency 0.34  0.27  

Sqrt-Lithology Filter 15/20-25/30 0.34  -0.24  

Sqrt-Lithology Amplitude Envelope 0.34 -0.22  

Lithology Instantaneous Phase 0.34 0.20  

Lithology Instantaneous Frequency 0.34 0.19  

Log-Lithology Amplitude Weighted Phase 0.34 -0.18  

Sqrt-Lithology Cosine Instantaneous Phase 0.35 -0.15  

Lithology Apparent Polarity 0.35 0.12  

Lithology Second Derivative 

(Inversion) 

0.35 0.06  

Lithology Second Derivative   0.35  -0.05  
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Figure 4.6: Crossplot of actual lithology and Filter 5/10-15/20 attribute (Second Wall 

Creek). 

 

Figure 4.7: Crossplot of original lithology and Dominant Frequency attribute (Tensleep). 
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Table 4.4: Performance of stepwise regression, implemented for the lithology prediction 

problem in Second Creek reservoir. Every line illustrates a different attribute transform 

with increasing number of seismic attributes involved. The set of multi-attributes for each 

row involves all previous attributes. The error of validation for each transform is 

illustrated in the final column in the same units as the target log.   

Target Log Attribute Training Error Validation Error 

Lithology Filter 35/40-45/50 (Inversion) 0.18  0.20  

Lithology Cosine Instantaneous Phase 0.17  0.20  

Lithology Filter 25/30-35/40 0.15  0.19  

Lithology Average Frequency (Inversion) 0.13  0.18  

Lithology Filter 35/40-45/50 0.13  0.19  

 

Table 4.5: Result of stepwise regression, implemented to the lithology prediction 

problem in Tensleep reservoirs. Each row reveals a different set of multi-attributes with 

increasing numbers of attributes. The set of attributes in each row contain all previous 

attributes. The last column gives the validation error of that transform. 

 

Target Log Attribute Training Error Validation Error 

Lithology Integrated Absolute Amplitude 0.40  0. 44  

Lithology Instant Frequency 0.36  0.43  

Lithology Average Frequency (Inversion) 0.35  0.41  

Lithology Filter 55/60-65/70 (Inversion) 0.35  0.40  

Lithology Dominant Frequency (Inversion)  0.32   0.39 

Lithology Filter 25/30-35/40 0.30  0. 40  

Lithology Filter 25/30-35/40 (Inversion) 0.27  0.39  
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Figure 4.8: Plot of validation error of wells showing the optimal combination of 

attributes to estimate lithology is four. The black dots show the error using all wells, 

whereas the red dots illustrate the error once one well is removed. (Second Wall Creek). 

 

 

Figure 4.9: Plot of Validation error for all wells showing that the optimal number of 

attributes to estimate lithology is five. The black dots illustrate the error when we 

utilizing all wells, whereas the red dot illustrate the error when one well is removed, 

(Tensleep). 
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Figure 4.10: Cross validation between original lithology log calculated from density and 

neutron porosity logs and predicted lithology log estimated by using combinations of 4 

different attributes. (Second Wall Creek). 

 

 

Figure 4.11: Cross plot between original lithology log calculated from density and 

neutron porosity logs   and predicted lithology log estimated from combinations of five 

attributes. (Tensleep). 
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4.3.2 Application of Neural Networks  

4.3.2.1 Lithology Prediction with an Artificial Neural Network 

When an appropriate set of seismic attributes had been identified as illustrated in 

previous steps, a neural network may be trained to generate pseudo well logs from the 

cube of seismic attributes. The selection of appropriate neural network is heuristic in 

nature. Before I found an appropriate network, I investigated and tested four types of 

networks, and ultimately selected only one to work with. The tested networks differed in 

the number of hidden layers, the number of neurons in each of those hidden layers, 

transfer functions of the neurons, training algorithms, and optimization criteria. Among 

the many networks tested, the most accurate and well-generalizing network was a radial 

basis function network consisting of input, hidden and output layers with Gaussian 

transfer functions. All wells were used in the prediction process,   the performance of the 

ANN was analyzed by keeping one well aside as a test case, and training the network on 

the remaining nine wells. This procedure was performed as many times as number of 

wells.  

 Figure (4.12) shows correlation between predicted lithology and actual lithology for 

Second Creek reservoir. Five attributes were used to train the RBF neural networks with 

operator length of four points. The correlation coefficient is higher in this case (0.87) than 

for Multi-attribute Analysis (0.84%), the validation error is less compared with the linear 

mode, the data is more aligned when checking the fitting (almost 45 degree).  

Figure (4.13) shows the result of training RBF neural networks using five attributes, with 

operator length of seven points with 11 well data from Tensleep reservoir. The model has 
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reached high improvement in correlation between predicted and calculated logs compared 

with the case of multi linear attribute:  the normalized correlation coefficient is more than 

0.87 with a small training error around 0.14.  

In both cases, as expected, due to the non-linear behavior of the targets, the Neural 

Network performed better due to its non-linearity compared with the linear model. This is 

clearly seen from the coefficient of normalized correlation, and the less amount of outlier 

data.  

Figure (4.14) shows result of training RBF neural networks with the same configuration 

as figure (4.13) except excluding one well. Note the improvement in correlation between 

predicted and calculated logs compared with the case of multi linear attribute. The 

normalized correlation coefficient is more than 0.90 with small training error of 0.15 in 

units of the lithology log.  

Figure (4.15) shows results of using RBF neural networks, with the same number of 

attributes and parameters as in figure (4.14), after excluding two wells with high error 

contribution. Note the improvement in correlation between predicted and calculated logs 

(0.92 with error of 0.14). 

The improvement in prediction when I excluded three wells were attributed to two 

reasons: either high error of these well data or non-perfect well to seismic tie, because the 

locations of the wells are not far from each other. 

Figures (4.16, 4.17) show validation errors of Second Wall Creek and Tensleep 

reservoirs, respectively. The lower curve (black line) is training error when all wells were 

used in the analysis, while the upper curve (red line) is validation error when some 
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specific well was excluded. The differences between training and validation errors in 

cases of both reservoirs are relatively small. 

Figure (4.18) shows the application of the learning output of RBF neural networks to 

target zone (blue line, Second Wall Creek) of  wells using the same number of attributes 

and parameters as in figure (4.13),  Note the good match between actual log (black) and 

predicted log (red).   Figure (4.19) shows application of learning output of RBF neural 

networks to the target zone (Tensleep reservoirs) using the same number of attributes and 

parameters as in figure (4.14), Note the excellent  match between actual log (black) and 

predicted log (red).   
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Figure 4.12: Result of using RBF neural networks with the same attributes as in the 

figure (4-10). Note the improvement in correlation and error between predicted and 

calculated logs compared with the case of multi linear regression (Second Wall Creek). 

 

 

Figure 4.13: Result of using RBF neural networks with the same attributes as in the 

(figure 4.11).  Note the improvement in correlation and error between predicted and 

calculated logs compared with the case of multi linear regression. (Tensleep). 
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Figure 4.14: Result of using RBF neural networks with the same configuration 

parameters as in (Figure 4.13). However, one well has been excluded. Note the 

improvement in correlation and error between predicted and calculated logs compared 

with the case of six attributes. (Tensleep). 

 

Figure 4.15: Result of using RBFNN’s, with the same combination of attributes and 

parameters as (Figure 4.13), after excluding two wells with high error contribution. Note 

the improvement in correlation and error between predicted and calculated logs. 

(Tensleep). 
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Figure 4.16: The estimation errors for each of the 9 wells (Second Wall Creek). The 

black line illustrates the estimation error when a particular well is utilized in the 

prediction. The red line illustrates the validation error when the specified well is not 

employed in the prediction. 

 

Figure 4.17: The estimation for each of the 8 wells (Tensleep reservoir). The black line 

illustrates the error of estimation when a particular well is employed in prediction. The 

red line illustrates the error of validation that well when is not employed in the prediction. 
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Figure 4.18: Applying the RBFNN’s utilizing set of four attributes (Second Wall Creek). 

The original lithology and the predicted log is shown in black and red respectively.  

 

 

Figure 4.19: Applying the RBFNN’s utilizing set of six attributes (Tensleep). The 

original lithology and the predicted log is shown in black and red respectively. 



68 

 

4.3.3 Corrected Neutron Porosity Result 

To predict porosity I applied the same procedures as to predict lithology. To examine 

which seismic set of attributes is most appropriate to estimate porosity, I cross-plotted the 

different attributes versus porosity. During this step I calculated the correlation 

coefficients for all the attributes (Tables 4.6 and 4.7). 

Table (4.6) shows the most appropriate single attributes, which can be correlated with the 

porosity log of Second Wall Creek reservoir. The correlation coefficients for the 

attributes are ranked in decreasing order.  

Table (4.7) shows result of the most appropriate single attributes, which can be correlated 

with the porosity log of the Tensleep reservoir. Also the attributes were ranked in 

decreasing order of their correlation with target porosity.  

Figure (4.20) shows cross-plot of the most appropriate nonlinear target attribute (which 

has turned out to be the square root of well log porosity, Second Wall Creek) against 

Amplitude Weighted Cosine Phase. Although this is the best-correlating attribute for 

porosity, it only gives a normalized cross correlation of 0.48, and a small error, however, 

it is considered not having high confidence level. Figure (4.21) shows the cross-plot of 

well log porosity (Tensleep) against Instantaneous Frequency. The normalized cross 

correlation is very small (0.30). 

Table (4.8) shows the improvement during stepwise regression, implemented to the 

porosity prediction problem in Second Creek reservoir. The combination of attributes are 

Amplitude Weighted Phase (Inversion), Instantaneous Phase, Apparent Polarity, 
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Quadrature Trace (Inversion), Derivative Instantaneous Amplitude. From this Table we 

see that combination of four attributes is sufficient to predict the porosity, due to the 

decreasing in validation error up to this number of attributes, and no more, which is the 

criterium of selecting the optimal number of attributes to be combined. 

Table (4.9) shows the performance of multi attribute selection, applied to the porosity 

prediction problem in Tensleep reservoir. From the Table we can see the best 

combination of  five attributes are Time, Average Frequency, Filter 25/30-35/40, 

Integrated Absolute Amplitude, Second Derivative, while adding more attributes could 

only introduce more error. This is clearly seen from the increased validation error when 

we add another attribute (Filter 55/60-65/70) to the previous attributes. 

Figures (4.22, and 4.23) show the optimal number of attribute set to be used to predict 

porosity in both reservoirs (Second Wall Creek and Tensleep). The black curve indicates 

the prediction error using all wells in training, whereas the red curve shows the validation 

error when a well is re-moved and the transform is re-derived. From both figures we see 

that the validation error first is decreasing when we add more attributes till it reaches 

some point when it starts to increase with additional attributes. From these two figures 

the optimal number of attributes to be used to predict porosity in Second Wall Creek and 

Tensleep reservoirs are four and five, respectively.  

 Figures (4.24, and 4.25) show a cross-plot of predicted porosity against actual porosity, 

for the case when a combination of 4, and 5 attributes with various operator lengths were 

used to derive the transform. A good cross correlation between the predicted and actual 

porosity was achieved using all proposed attributes together to derive a multi-regression, 
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the normalized correlations in these cases are 0.63 and 0.85 for Second Wall Creek and 

Tensleep, respectively. 
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Table 4.6: Results of porosity prediction employing a single seismic attribute, with 

estimation errors and coefficients of correlation (Second Wall Creek). 

Target Log Attribute Error Correlation 

Sqrt-Porosity Amplitude Weighted Phase (Inversion) 0.03   -0.48 

Porosity Cosine Instantaneous Phase 0.03  -0.43 

Porosity Quadrature Trace 0.03   -0.33 

Porosity Amplitude Weighted Frequency 0.03   -0.32 

(Porosity)^2 Instantaneous Frequency 0.03   -0.30 

  Log-Porosity Average Frequency 0.03   0.28 

Porosity Instantaneous Phase 0.03   -0.27 

Porosity Amplitude Envelope 0.03  0.22 

Porosity Apparent Polarity  0.03   -0.21 
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Table 4.7: Results of porosity prediction employing a single seismic attribute, with 

estimation errors and coefficients of correlation (Tensleep reservoir). 

 

 

 

 

 

 

 

 

 

 

 

Target Log Attribute Error Correlation 

Porosity Instantaneous Frequency 0.034  0.30 

Porosity Filter 15/20-25/30 0.035  -0.24  

Porosity Amplitude Weighted Phase 0.035  0.20  

Porosity Instantaneous Phase 0.035  0.18  

Porosity Cosine Instantaneous Phase 0.035  0.16  

Porosity Average Frequency 0.035  0.12  

Porosity Second Derivative (Inversion) 0.035  -0.10  

Porosity Amplitude Envelope 0.036  -0.10  

Porosity Apparent Polarity 0.036  0.09  

Porosity Integrated Amplitude (Inversion) 0.036  -0.05   

Porosity Instantaneous Frequency 0.03450 0.30  
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Table 4.8: Performance of stepwise regression, implemented for the porosity prediction 

problem in Second Creek reservoir. Each row shows a different attribute transform. The 

multi attribute transform for every row involves all previous attributes. The final column 

illustrated corresponding validations. 

Target 

Log 

Attribute Training Error Validation 

Error 

Porosity Amplitude Weighted Phase 

(Inversion) 

0.034  0.036  

Porosity  Instantaneous Phase 0.033  0.035  

Porosity Apparent Polarity 0.032  0.035  

Porosity Quadrature Trace (Inversion) 0.030  0.033  

Porosity  Derivative Instantaneous Amplitude 0.030  0.034  

 

Table 4.9: Performance of stepwise regression, implemented for porosity prediction 

problem in Tensleep reservoirs. Each row reveals a different attribute transform. The 

attribute transform for every row involves all previous ones above it. The final column 

illustrated error of estimation for that conversion.  

Target Log Attribute Training Error Validation 

Error 

Porosity  Average Frequency 0.023  0.0272  

Porosity Average Frequency(Inversion) 0.021  0.0240  

Porosity Filter 5/10-15/20 0.018  0.0247  

Porosity Filter 15/20-25/30 (inversion) 0.017  0.0240  

Porosity Filter 25/30-35/40 0.015   0.0240  

Porosity Integrate 0.014   0.0241  
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Figure 4.20: Cross plot of a single attribute (Amplitude Weighted Cosine Phase) against 

square root of porosity (Second Wall Creek). 

 

 

Figure 4.21: Crossplot of a single attribute Instantaneous Frequency against actual 

porosity (Tensleep). 

Actual 

Porosity 
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Figure 4.22: Validation for all wells showing that the optimal set of attributes to estimate 

porosity is five. The red and black dots illustrate the error when one well is removed and 

error using all wells (Second Wall Creek). 

 

 

Figure 4.23: Validation for all wells showing that the optimal set of attributes to estimate 

porosity is five. The red and black dots illustrate the error when one well is removed and 

error using all wells (Tensleep). 
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Figure 4.24: Crossplot of original porosity logs against estimated porosity logs in Second 

Wall Creek. 

 

Figure 4.25: Crossplot of original porosity logs against estimated porosity logs in 

Tensleep reservoir. 
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4.3.4 Corrected Porosity Prediction with Artificial Neural Network 

Having identified the appropriate combination of seismic attributes to estimate porosity 

by step-wise regression as illustrated in previous steps, a neural network was applied with 

the same configuration parameters as obtained from step-wise regression.  

The performance of the RBF neural network was analyzed by keeping one well aside as a 

test case, and training the network on the remaining wells. This procedure was repeated, 

till all wells were tested.  

 Figure (4.26) shows cross plot of actual measured porosity versus porosity predicted by 

the RBF neural network for the 11 wells in the study of Second Wall Creek reservoir. 

Four attributes were used to predict the target. Note the high correlation 0.83 with small 

error around 2%. 

Figure (4.27) illustrates the cross plot of measured porosity versus porosity predicted by   

the RBF neural network for the 12 wells in the study of Tensleep reservoir. Five 

attributes were used to predict the target porosity. Note the high correlation, larger than 

0.92, with small error around 1%. 

Figure (4.28) presents the error analysis of RBF in Second Wall Creek reservoir. A set of 

11 wells were used to evaluate the performance. The dots are training errors when using 

all wells, the red dots are validation error when I excluded one well and re-derived by 

RBF prediction the log of the excluded well 

Figure (4.29) shows the same as Figure (4.28) for the data from Tensleep reservoir. For 

both reservoirs, the tests demonstrate that the network generalizes well, and has 
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impressive predictive powers.  This is clear when comparing the two curves of predicted 

and validation error, where only a single well 62-11 in the Tensleep reservoir shows big 

validation error, which does not match the learning rule. This could be attributed to non-

accurate well-to-seismic tie or more heterogeneous local geology near the anomalous 

well. 

Figures (4.30, and 4.31) show results of applying the neural network training result to 

Second Wall Creek and Tensleep, respectively.  The black line is actual porosity log, the 

red line is predicted porosity. Note the good correlation between them. 

 

 

 

 

 

 

 

 

 



79 

 

 

Figure 4.26: Crossplot of estimated porosity versus original porosity. (Second Wall 

Creek reservoir). 

 

Figure 4.27: Crossplot of estimated porosity against original porosity (Tensleep 

reservoir). 
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Figure 4.28: Errors of the RBF Neural Network results (Second Wall Creek) using four 

attributes. The black and red line are Error of the actual and the estimated porosity log.  

 

Figure 4.29: Errors of the RBF Neural Network results (Tensleep) using four attributes. 

The black and red line are Error of the actual and the estimated porosity log.  
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Figure 4.29: RBF results using 4 attributes (Second Wall Creek reservoir). The actual 

porosity log in black; the estimated log in red.  

 

 

 

  



82 

 

  

 

 

Figure 4.30: RBF results using 5 attributes (Tensleep). The actual porosity log in black; 

the estimated log in red.  
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4.4 Section Results 

 

I was satisfied with the training results and the technique was found robust according to 

the sensitivity tests. As a final step I decided to apply the learning outputs of fractional 

lithology and porosity from the RBF neural networks training to the zones of interest 

(Second Wall Creek and Tensleep reservoirs) in the 3D seismic volume. I selected only 

one inline for each reservoir to evaluate and compare the capabilities of three different 

models (namely acoustic impedance inversion, porosity and fractional lithology model 

results), to resolve questions of reservoir heterogeneity and extension.  

Figures (4-32 a, b, c) show Inline 147 from the 3D seismic survey, with log from well 62-

11 superimposed at cross-line 71. The Figure illustrates (a) inverted seismic impedance 

(b) the RBFN result for porosity prediction and (c) the RBFN result for lithology. The 

target feature in this inline sections, which is the Second Wall Creek reservoir, is 

highlighted by black line. Notice in Figure (4-32 a) that even though impedance was 

inverted by using a sophisticated algorithm such as colored inversion, still the target is 

not perfectly illuminated, and we cannot trace it to define its extension. Also, the 

frequency content of this result is too low. However in Figure (4-32 b) the   frequency 

content is much richer in high frequencies than in Figure (4-32 a), so more details can be 

seen. The key element to observe is the Second Wall Creek reservoir, highlighted by 

black line. A comparison with our previous result reveals that we obtain much better 

results with predicted porosity log than with impedance log, Figure (4-32 c) shows the 

lithology of the same feature, this result is in line with the porosity result obtained in 

figure (4-32 b), that the high porosity values coincide with low lithology values (low 
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lithology values represent sand with small amount of lime) which is typical lithology of 

the reservoir recorded at the well.   

Figures (4-33 a, b) show Inline 305 from the 3D seismic survey, illustrating (a) inverted 

impedance, and (b) the RBFN result for lithology. The target feature in this inline 

sections is the Tensleep reservoir, it is highlighted by black line between (1063-1200 ms). 

In Figure (4-33 a) shows inverted impedance, notice that even though  the impedance had 

been inverted by the powerful colored inversion algorithm, still the target has not been 

completely resolved, especially the thin layer.  Also, the frequency content is too low. 

However, in Figure (4-33 b)    the frequency content of the target is much higher than in 

Figure (4-33 a), much more details have become visible. The key element to observe is 

the number of the   layers that were successfully resolved in the reservoir by using this 

new approach of fractional lithology. 
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(a) 

 Porosity 
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(b) 

Fractional Lithology composition 
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(c) 

Figure 4. 31: Inline 147 from the 3D volume, with well 62-11 superimposed at crossline 172, showing (a)   inverted impedance, (b) 

porosity predicted by the RBF algorithm, and (c) the lithology derived by the RBF algorithm. 
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(b)  

Figure (4.33) Inline 46 from the 3D seismic survey, illustrating (a)   inverted impedance, (b) RBF prediction of lithology.

Fractional Lithology composition 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

In this study I have introduced and demonstrated a new approach of lithology prediction 

based on the digital approximation of the Schlumberger neutron porosity and density 

master curves. Firstly, I described how to estimate the lithology fraction of three rocks 

types namely sandstone, limestone, and dolomite and to correct the porosity, then I 

illustrated how the corrected porosity log and the constructed lithology log should be 

integrated with seismic attributes to predict porosity and lithology over entire 3D seismic 

volume. In both prediction cases, there were an improvement in predictive power as we 

move from simple crossplotting (i.e. single attribute regression) to multivariate linear 

regression. A further significant improvement was achieved when using artificial 

intelligence, namely to RBF method. This gradual improvement is vividly observable on 

the training data and is also demonstrated by the validation data. The correlation 

coefficients for porosity and lithology are good. For lithology the trend and dispersion of 

data prediction are more convincing than for porosity.  The results indicate that the 

Radial Basis Function NN is a powerful technique which is suitable to predict fractional 

lithology and porosity from seismic attributes and to solve complicated problems 

intractable by conventional methods. The implemented strategy is a robust tool for 

reducing the costs of well logging and coring. As a follow up of this study I would expect 

further improvements in cases if there is available core data to validate the result of the 

predicted fractional lithology 
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Appendix  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Fractional lithology log of 11 wells form Tensleep reservoir, the horizontal 

scale of   1, 2 and 3 is corresponding to sand, lime and dolo stone numerical codes,   

respectively. Note that the all three types of rocks actually occur in the graph. 
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Figure 5.2: Fractional lithology log of 10 wells form Second Wall Creek reservoir, the 

horizontal scale of   1, 2 and 3 is corresponding to sand, lime and dolomite numerical 

codes, respectively.  Note that the dominate rock types in all wells is sandstone. 
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Table 5.1:  Processing workflow (Courtesy of EXCEL Geophysical Services Inc). 

PROCESSING SEQUENCE 

FORMAT CONVERSION – SEGD IEEE to Internal 

GEOMETRY APPLICATION 

RECORD AND TRACE EDITS 

REFRACTION STATICS DERIVATION  

Green Mountain Delay Time Method  -  Single  Layer Case  -  Vo =  4000’/s  

Statics computed to 6500’ datum @ 9000’/s 

AMPLITUDE RECOVERY 

1/(time*vel^2) spherical divergence correction  t^1.4 Gain Correction 

SURFACE CONSISTENT AMPLITUDE SCALING 

MINIMUM PHASE CONVERSION 

Filter derived from correlated sweep 

SURFACE CONSISTENT MINIMUM PHASE SPIKING DECONVOLUTION 

140 msec Operator  -  0.1% Prewhitening 

SPECTRAL BALANCING 

6/10 – 90/100 Hz 8 gates 

STATICS TO PROCESSING DATUM 

CDP SORT 

VELOCITY ANALYSIS 

SURFACE CONSISTENT RESIDUAL STATICS 

VELOCITY ANALYSIS 

SURFACE CONSISTENT RESIDUAL STATICS 

NORMAL MOVEOUT CORRECTION 

TRACE EQUALIZATION 

1000 msec AGC 
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FIRST BREAK MUTE 

STATICS TO FINAL FLAT DATUM 

Datum = 6500 ft  -  Replacement Velocity = 9000 ft/sec 

DIP MOVEOUT CORRECTION 

INVERSE NORMAL MOVEOUT CORRECTION 

 VELOCITY ANALYSIS 

NORMAL MOVEOUT CORRECTION 

MUTE ANALYSYS 

CMP STACK 

SEGY OUTPUT OF THE UNFILTERED FINAL STACK 

BANDPASS FILTER  

STOLT 3D TIME MIGRATION 

100% of the RMS stacking velocities 

SEGY OUTPUT OF THE UNFILTERED POST STACK TIME MIGRATION 

FX PREDICTIVE FILTER 

BANDPASS FILTER 

TRACE SCALING 

1000 ms windows, 50% overlap 

SEGY OUTPUT OF THE FX FILTERED MIGRATION 

FX PREDICTIVE FILTER 

BANDPASS FILTER 

TRACE SCALING 

1000ms windows, 50% overlap 

SEGY OUTPUT OF THE FX FILTERED DMO STACK 
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