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The area of nonlinear control has received significant consideration during the 

past decades because of the insight that linear controllers are insufficient even for 

moderately nonlinear processes and the availability of new powerful tools. In addition, 

several symbolic software packages have been developed within various mathematical 

languages to solve various control problems. 

However, complex systems like nonlinear chemical processes that are consuming 

calculations have led to the need of additional aid, and therefore, development of specific 

user-friendly computer software/package that can considerably streamline the research. In 

addition, such software helps finding the gaps in the existing theory and/or verifying its 

correctness. In the literature quite a lot of methods are proposed for the exact/ analytical 

solutions of analysis and design problems formulated earlier. 

In this thesis, A MATLAB package, which contains a set of symbolic procedures, is 

introduced and further described. The functions/subroutines available in the package are 

aimed at the analysis and the design of nonlinear control systems for which it is called 

“NLC”. The package is implemented utilizing the symbolic MATLAB toolbox. The 

contribution of this research is as follows: it introduces an extension to the previous 

MATLAB package intended to compute exact linearizing controller for square, affine and 

well-defined relative degree systems. The extension covers dynamic extension algorithm 

to achieve full order relative degree and covers non-affine and non-square systems. 
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 ملخص الرسالة

 
 

 خالد عيسى مهدي الخاطر :الاسم الكامل
 

 حزمة برمجية لتصميم المتحكمات الغير خطية :عنوان الرسالة
 

 هندسة النظم التخصص:
 

 ٢٠١٤، ديسمبر :تاريخ الدرجة العلمية
 

بالنسبة حتى  ية بسبب أن التحكم الخطي غير كاف  خلال العقود الماض ا  كبير ا  هتمامكم الغير الخطي احتلقى مجال الي

عدة حزم  تم تطويربالإضافة إلى ذلك،   فر أدوات جديدة وقوية.وكذلك بسب تو ،الخطية بشكل معتدل للأنظمة الغير

   لفة.لحل مشاكل التحكم المخت برمجيةمختلف اللغات البرمزية  ةبرمجي

إلى الحاجة لمساعدات إضافية،  هاحساباتالتي تستهلك وخطية غير الأدت الأنظمة المعقدة مثل العمليات الكيميائية لقد 

ه الحزم هذ تبسيط كبير في البحث. تؤدي إلىحزمة سهلة الاستخدام التي أو  مخصصةوبالتالي، تطوير برامج 

 قترح الكثيرت هناك أبحاث كثيرةصحتها. من التحقق القائمة و اترينظالساعد في العثور على الثغرات في ت البرمجية

 وضعت في وقت سابق.أنظمة التحكم لمشاكل تحليل وتصميم  والرمزيةطرق الحلول التحليلية  من

( )مختبر Laboratory-Matrix ,MATLABماتلاب )بالإنجليزية: حزمة  يتم عرض، رسالةفي هذه ال

 عملياتحتوي على مجموعة من الت هذه الحزمة .في التطبيقات الهندسية والرياضيةهو برنامج رائد والمصفوفات( 

تحليل  إلىحزمة هذه الالفرعية المتاحة في  برمجياتالتهدف . في البحث بشكل دقيق هاوصف يتمسوف و، رمزيةال

 (inear Control L-Non)نسبة إلى العبارة الإنجليزية  "NLC" لهذا تسمى، والغير الخطي وتصميم أنظمة التحكم

 . في الماتلاب رمزيةالالأدوات ام حزمة باستخدهذه الويتم تنفيذ 

 للأنظمة المربعة التحكم الغير خطيلحساب حاليا   ستخدمةالموالسابقة الماتلاب حزمة  امتداد في هذا البحثيساهم 

  شمل:ي الامتداد هذانسبية واضحة المعالم. الدرجة ذات ال نظمةالأووالتآلفية 

 " الكاملةدرجة النسبية اللتحقيق  "ديناميكيالتمديد الخوارزمية. 

 ةمربعمتآلفة والغير غير ال ةنظمالأ.   
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Symbolic computation is an evolving practice that can be beneficially used in various areas of 

applied mathematics and engineering. One of those areas is nonlinear control system analysis and 

design.  A MATLAB package, which contains a set of symbolic procedures, is going to be introduced 

and further described. The functions/ subroutines available in the package are aimed at the analysis 

and the design of control systems for which it is called “NLC”. The package is implemented utilizing 

the symbolic MATLAB toolbox. Other approaches and tools to use symbolic computation in this 

area of engineering are also known. The contribution of this research is as follows: it introduces an 

extension to the previous MATLAB package intended to compute exact linearizing controller for 

square, affine and well-defined relative degree systems. The extension covers dynamic extension 

algorithm to achieve full order relative degree and covers non-affine and non-square systems.   

This chapter is organized as follows: Section 1.2 explains the benefits of nonlinear control methods 

in the field of control systems design. In section 1.3, the importance of symbolic computation 

methods in Nonlinear Control is addressed and the motivation this research is highlighted. Section 

1.4 states the objectives of this thesis. Finally, the thesis organization is presented in section 1.5.   

1.2 Why Nonlinear Control? 

There have been remarkable developments in linear control theory. Indeed, it might be reasonably 

claimed that this topic has been basically resolved. Moreover, linear theory has been widely used in 

applications. It is not uncommon to find practical systems that utilize very sophisticated linear 

controllers, e.g., based on high order Kalman filters and LQR theory. However, the real world 

behaves in a nonlinear fashion – at least when considered over wide operating ranges. Though this 
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observation, linear control design methods have been successful and hence it must be true that many 

systems can be well approximated by linear models. In spite of the good performance of linear 

controllers in many applications, over the last few years the more general topic of nonlinear control 

has attracted substantial research interest from such broad areas as aircraft control, robotics, process 

control, and biomedical engineering. This interest due to many reasons such as improvement of 

existing control systems, analysis of hard nonlinearities, dealing with model uncertainties, and design 

simplicity.  

Linear control methods rely on the key assumption of small range operation for the linear model to 

be valid. When the required operation range is large, a linear controller is likely to perform very 

poorly or to be unstable, because the nonlinearities in the system cannot be properly compensated 

for. Nonlinear controllers, on the other hand, may handle the nonlinearities in large range operation 

directly. Another assumption of linear control is that the system model is indeed linearizable. 

However, in control systems there are many nonlinearities whose discontinuous nature does not 

allow linear approximation. These so-called "hard nonlinearities" include Coulomb friction, 

saturation, dead-zones, backlash, and hysteresis, and are often found in control engineering. Their 

effects cannot be derived from linear methods, and nonlinear analysis techniques must be developed 

to predict a system's performance in the presence of these inherent nonlinearities.  

In designing linear controllers, it is usually necessary to assume that the parameters of the system 

model are reasonably well known. However, many control problems involve uncertainties in the 

model parameters. A linear controller based on inaccurate or obsolete values of the model parameters 

may exhibit significant performance degradation or even instability. Nonlinearities can be 

intentionally introduced to the controller part of a control system so that model uncertainties can be 

tolerated. Good nonlinear control designs may be simpler and more intuitive than their linear counter 

parts. This result comes from the fact that nonlinear controller designs are often deeply rooted in the 

physics of the plants. Linear control may require high quality actuators and sensors to produce linear 
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behavior in the specified operation range, while nonlinear control may permit the use of less 

expensive components with nonlinear characteristics. Thus, the subject of nonlinear control is an 

important area of automatic control.  

For highly nonlinear systems, controller design approaches based directly on nonlinear system 

models can be expected to provide significantly improved performance. During the last decade 

important progress has been made in the development of such systematic design methodologies for 

nonlinear control systems. Some of the most promising controller techniques are based on exact 

linearization theory. Unlike Jacobian linearization, which linearizes the system only at the nominal 

working point, these methods employ nonlinear transformations and feedbacks that provide exact 

linearization of the model. The nonlinear model can be linearized under some quite strict conditions. 

Once a linear model is available, linear controller design techniques can be employed in order to 

satisfy additional control objectives. Exact linearization theory will be explained further in chapter-4. 

1.3 Symbolic Computation in Nonlinear Control 

Complex systems like nonlinear chemical processes that are consuming calculations have led to the 

need of additional aid, and therefore, development of specific user-friendly computer software/ 

package that can considerably streamline the research. In addition, such a software help finding the 

gaps in the existing theory and/or verifying its correctness. In the literature quite a lot of methods are 

proposed for the exact/ analytical solutions of analysis and design problems formulated earlier. For 

small scale test problem these approaches require already a fair amount of computation. For 

industrial scale problems these methods can only be applied when the computations are assisted by 

Symbolic Computation programs. This is of specific scientific concern because numerical solutions 

often gives only an approximation of the properties of the system (along a trajectory or in a working 

point). At the moment, there is little (industrial) experience with these new controller design 

strategies due to this computational problems and the fact that they were just recently developed. 
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However, results established so far in mechanical and process control, seems to be promising, though 

many problems are yet to be solved. More research is required, in which more realistic models 

should be used and experimental studies should be conducted. It is expected that the introduction of 

symbolic computation will be of great consequence to this future research. 

1.4 Thesis Objectives 

The goal of this research is to present and describe a specific MATLAB-based symbolic 

computational package (NLC). This is a software project addressing Non-Linear Control systems. 

The focus will be on Input-Output exact linearization for nonlinear SISO and MIMO systems (affine 

and non-affine, square and non-square). It is also aimed to build up a user-friendly MATLAB 

package that can be used for nonlinear controller design and to ensure effectiveness of the package 

via testing of several nonlinear systems. New contributions and list of drawbacks as well as 

suggested improvements and future works to be addressed. 

1.5 Thesis Organization 

The rest of this thesis is organized as follows. Chapter-2 will give a literature review while chapter-3 

will present an overview of MATLAB and MATLAB symbolic toolbox. In chapter-4, theory of 

exact linearization will be explained in details. The developed NLC package will be covered in 

details in chapter-5. Finally, the conclusion and future research areas will be discussed in the sixth 

chapter. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

Various methods for nonlinear control has been proposed in the literature. Many of those control 

methods have been applied utilizing symbolic computation software. This chapter is showing an 

overview of literatures. It is divided into two sections. The first section covers nonlinear control 

literature review and the second section is about control methods using symbolic computation. 

2.2 Nonlinear Control 

The area of nonlinear control has received significant consideration during the past decades because 

of the insight that linear controllers are insufficient even for moderately nonlinear processes and the 

availability of new powerful tools. There have been several review articles aiming at giving a view 

on the present status of the area and trace further directions (McLellan et al., 1990; Roger Brockett, 

2014). So far, the two major research directions have been the model-predictive approach and the 

geometric approach. The key advantage of model-predictive control (MPC) has been its attractive in-

built explanation, whereas the key advantage of the geometric approach has been its solid theoretical 

justification. Geometric process control methods have evolved after about a decade of research on 

the mathematical characteristics of continuous-time nonlinear systems, using techniques from 

differential geometry. The system theoretic properties of continuous-time nonlinear systems become 

well-understood (Isidori, 1989; Khalil, 1996), and they provide the theoretical foundations for 

nonlinear controller design.  

In 1980s, the fundamental differential geometry for nonlinear systems was developed fast. The 

modern nonlinear control theory was formed. The formation of modern nonlinear control theory not 

only expand the linear control theory, but also boost the theory’s application and research in all kinds 

of the complex nonlinear control objects. Exact linearization is one of the most important outcomes. 

This kind of feedback linearization, which is based on differential geometry and different from the 
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traditional Taylor expansion formula in local linearization, is more precise as a whole, because none 

higher order nonlinear term is ignored in the linear progress. After decades of development, the 

nonlinear differential geometry control not only has been a whole system in theory, but also has been 

widely applied to engineering control, such as in the power electronic system, robots, and chemical 

processes. Kravaris and Soroush (1990) utilized the I/O linearization framework for multi-input 

multi-output (MIMO) systems in conjunction with an external multivariable controller with integral 

action to derive a globally linearizing controller (GLC). The proposed control methodology is tested 

through simulations in a semi-batch copolymerization reactor. Tarn (1984) proposed nonlinear 

feedback control for implementation of an advanced dynamic control strategy for robot arms. An 

algorithm is given for the construction of the required nonlinear feedback. To design a dynamic 

control for robot arms the above result applied to the JPL-Stanford arm and proposed a new control 

strategy, which also contains an optimal error-correcting feedback. Simulation results show great 

promise for the obtained dynamic control strategy. Guay and McLellan (1994) developed algorithm 

to treat input output linearization for general nonlinear systems. SCHWARTZ (1995) provided a 

parameter-independent method of achieving full vector relative degree for nonlinear multivariable 

systems which do not have it. Karimi et al. (2006) proposed a robust feedback linearization scheme 

based on Lyapunov function in order to cope the model uncertainties of a non linearizable MIMO 

nonlinear System. The suggested technique was applied to a Twin Rotor system. Bennoune et al. 

(2007) applied feedback linearization techniques to the problem of maximizing the efficiency of the 

induction motor by minimizing the energy losses. Next section will give a survey of the symbolic 

computations applied in linear and nonlinear control systems. 

2.3 Symbolic Computation in Control Systems 

Several symbolic software packages exist that implement different theoretical results, developed 

within various mathematical languages, and allow to solve various control problems. (Polyakov, 

Ghanadan, & Blankenship, 1994) developed mathmatica package called “CAS” for nonlinear and 
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adaptive control law synthesis and simulation. CAS provides functions for basic mathematical 

operations frequently encountered in analysis of nonlinear systems, implements algorithms for 

adaptive and approximate nonlinear control. (Ogunye, Penlidis, & Reilly, 1996) describes a 

collection of algorithms developed in a computer algebra package (MapleV) using polynomial 

matrix theory. The developed algorithms provide a medium in which polynomial matrix operations 

are carried out. Most importantly, these polynomial matrix procedures, enable the design and 

analysis of multivariable control systems using the algebraic or polynomial equation approach. 

(Abdalla, Wang, & McLauchlan, 1996) developed a Maple language procedure to solve continuous 

Lyapunov equations symbolically in conjunction with the Kronecker product. A comprehensive 

CACSD package SYMCON, for the design of multivariable discrete-time control systems using the 

polynomial equation approach has been described by (Ogunye, 1996). (Guay, McLellan, & Bacon, 

1997) used the computer algebra program Maple to generate state and state feedback transformations 

using elements of the Lie Symmetry package and custom code where several dynamic feedback 

linearizable systems are used to illustrate the implementation. (Benyo, Palancz, Juhadz, & Varady, 

1998) applied symbolic computation to design procedure for blood glucose control of diabetic 

patients under intensive care. To design of multivariable modal control based on nonlinear state-

space model fully symbolically, MAPLE packages were employed. The model have been verified 

and tested in clinical environment. (Panjapornpon, Soroush, & Seider, 2006) presented a new 

software package that carries out symbolic manipulations to generate automatically analytical, 

model-based controllers and subsequently test the performance of the designed controller 

implemented on the process model. The software package has a user-friendly interface that was 

developed using Visual Basic and linked to MATHEMATICA using MathLink. Polynomial Control 

System is created by (Soylemez & Ustoglu, 2007) for Mathematica which presents new tools for the 

modeling, analysis, and design of linear control systems described by polynomial matrix equations or 

matrices with rational polynomial entries and PolyX (PolyX Ltd, 1998) which is a package for 
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systems, signals and control analysis and design based on advanced polynomial methods and written 

for MATLAB. However, both deal only with linear systems. In addition, there exist a number of 

smaller packages designed for specific problems, mostly in Maple or MATLAB software. 

OreModules, a software package, offers symbolic tools to investigate the structural properties of 

multidimensional linear systems over Ore algebras (Chyzak, Quadrat, & Robertz, 2007). NelinSys 

designed for analysis, design and simulation of nonlinear control systems (Ondera, 2005). (Antritter 

& Middeke, 2011) developed Maple-based package implementing concepts based on flatness theory. 

(Abramov, Le, & Li, 2005) developed OreTools which is a general-purpose package including 

theory of Ore algebras. DAISY is a software based on the methods of differential algebra for 

identifiability of systems (Bellu, Saccomani, Audoly, & D’Angiò, 2007). 
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CHAPTER 3: MATLAB 

3.1 Introduction 

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-

generation programming language. Developed by “Math Works”, MATLAB allows matrix 

manipulations, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran 

and Python. Although MATLAB is intended primarily for numerical computing, an optional toolbox 

uses the “MuPAD” symbolic engine, allowing access to symbolic computing capabilities. An 

additional package, Simulink, adds graphical multi-domain simulation and Model-Based Design for 

dynamic and embedded systems. Here, we will give an overview of MATLAB and its symbolic 

toolbox. 

3.2 MATLAB Overview 

MATLAB is a popular mathematical programming language based on matrix computation in the 

floating point domain. MATLAB also offers certain Maple functionality through the “Symbolic 

Toolbox”. It offers an interactive command-line interface, and provides a variety of plotting and 

graphical functionality in pop-up windows. MATLAB consists of the main program, with a variety 

of Toolboxes associated with it that may be used for different applications. It is probably the most 

common choice for engineers working with control systems. The MATLAB Control System Toolbox 

allows for the creation and manipulation of Linear Time Invariant (LTI) objects, a MATLAB data 

type. These objects may be instantiated using a transfer function format or a state space model. LTI 

objects may also be created by pole placement methods or even through graphical pole placement. 

Model conversion and extraction is possible. LTI objects may be added, multiplied, and concatenated 

easily with overloaded arithmetic operations. Graphical analysis is available, such as the Bode 

diagram, the Nyquist diagrams, and the Nichols chart. Time domain responses are available for 
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impulse or step inputs. MATLAB’s Robust Control Toolbox is an additional collection of functions 

for the design of control systems. This Toolbox contains functions for so-called H2 and H∞ control, 

singular value analysis, and Riccati equation tools. A software tool for MATLAB called Simulink is 

a graphical tool for the construction and analysis of control systems. This tool allows the user to 

draw out the desired system using a GUI, and then perform simulations of system response. The 

systems may be continuous or discrete with respect to time, and may be linear or nonlinear. Third 

party software for MATLAB is abundant. For example, Shinners [Stanley M. Shinners. Modern 

Control System Theory and Design. John Wiley Sons, Inc., 1998.] provides freeware for use by 

readers of his textbook, called the Modern Control System Theory and Design Toolbox. This is a 

general-purpose package of control functionality that is based around the textbook. It has a full set of 

graphical routines as well as some analytical routines, including a small set of polynomial arithmetic 

functionality. Other third party software for MATLAB may be more specialized. For example, the 

Submarine Control Toolbox allows the user to design and simulate a virtual submarine. Typical 

design tools are present, including feedback control and eigenvalue assignment. The resulting design 

may be previewed in an impressive 3D graphical interface. 

The MATLAB application is built around the MATLAB language, and most use of MATLAB 

involves typing MATLAB code into the Command Window (as an interactive mathematical shell), 

or executing text files containing MATLAB code, including scripts and/or functions. Variables are 

defined using the assignment operator, =. MATLAB is a weakly typed programming language 

because types are implicitly converted. It is an inferred typed language because variables can be 

assigned without declaring their type, except if they are to be treated as symbolic objects, and that 

their type can change. Values can come from constants, from computation involving values of other 

variables, or from the output of a function. MATLAB supports elements of lambda calculus by 

introducing function handles, or function references, which are implemented either in .m files or 

anonymous /nested functions.  
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3.3 Symbolic Toolbox 

The Symbolic Math Toolboxes incorporate symbolic computation into the numeric environment of 

MATLAB. These toolboxes supplement MATLAB numeric and graphical facilities with several 

other types of mathematical computations.  The computational engine underlying the toolboxes is the 

kernel of Maple, a system developed primarily at the University of Waterloo, Canada and, more 

recently, at the Eidgenössiche Technische Hochschule, Zürich, Switzerland. Maple is marketed and 

supported by Waterloo Maple, Inc. 

The basic Symbolic Math Toolbox is a collection of more than 100 MATLAB functions that provide 

access to the Maple kernel using a syntax and style that is a natural extension of the MATLAB 

language. The basic toolbox also allows you to access functions in the Maple linear algebra package. 

The Extended Symbolic Math Toolbox augments this functionality to include access to all non-

graphics Maple packages, Maple programming features, and user-defined procedures. With both 

toolboxes, you can write your own M-files to access Maple functions and the Maple workspace. 

The symbolic toolbox is a bit difficult to use but it is of great utility in applications in which 

symbolic expressions are necessary for reasons of accuracy in calculations. The toolbox simply calls 

the MAPLE kernel with whatever symbolic expressions you have declared, and then returns a 

(usually symbolic) expression back to MATLAB. It is important to remember that MAPLE is not a 

numeric engine, which means that there are certain things it doesn't let you do that MATLAB can do. 

Rather, it is useful as a supplement to provide functions which MATLAB, as a numerical engine, has 

difficulty with. 

The symbolic math toolbox takes some time to initialize, so if nothing happens for a few seconds 

after you declare your first symbolic variable of the session, it doesn't mean you did anything wrong. 

The MATLAB student version comes with a copy of the symbolic math toolbox. 

3.3.1 What MATLAB Symbolic Toolbox can do? 

You can declare a single symbolic variable using the 'sym' function as follows. 
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>> a = sym('a1') 

a = a1 

 

You can create arrays of symbolic expressions like everything else: 

>> a1 = sym('a1'); 

>> a2 = sym('a2'); 

>> a  = [a1, a2] 

a = [ a1,  a2] 

 

Symbolic variables can also be declared many at a time using the 'syms' function. By default, the 

symbolic variables created have the same names as the arguments of the 'syms' function. The 

following creates three symbolic variables, a b and c. 

>> syms a b c 

>> a 

a = a 

 

You can create functions of symbolic variables, not just the variables themselves. This is probably 

the most intuitive way to do it: 

>> syms a b c %declare variables 

>> f = a + b + c 

ans = a + b + c 

 

If you do it this way, you can then subsequently perform substitutions, differentiations, and so on 

with respect to any one of these variables. 
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The symbolic math toolbox is able to solve an algebraic expression for any variable, provided that it 

is mathematically possible to do so. It can also solve both single equations and algebraic systems. 

MATLAB uses the 'solve' function to solve an algebraic equation. The syntax is solve(f, var) where f 

is the function you wish to solve and var is the variable to solve for. If f is a function of a single 

variable you will get a number, while if it is multiple variables you will get a symbolic expression. 

First, let us say we want to solve the quadratic equation x^2 = 16 for x. The solutions are x = -4 and x 

= 4. To do this, you can put the function into 'solve' directly, or you can define a function in terms of 

x to solve and pass that into the 'solve' function. The first method is rather intuitive: 

>> solve('x^2 = 16', x) 

ans = -4 

       4 

>> solve(x^2 - 16, x) 

ans = -4 

       4 

 

Either of these two syntax works. The first must be in quotes or you get an 'invalid assignment' error. 

In the second, x must be defined as a symbolic variable beforehand or you get an 'undefined variable' 

error. 

For the second method you assign a dummy variable to the equation you want to solve like this: 

>> syms x 

>> y = x^2 - 16; 

>> solve(y, x); 

 

Note that since MATLAB assumes that y = 0 when you're solving the equation, you must subtract 16 

from both sides to put the equation into normal form. 
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In addition to all mentioned above, MATLAB symbolic toolbox can do many analytical problem 

solving like integration, differentiation, systems of equations, differential equations, … etc. What 

have been mentioned here should be enough for the reader to use the NLC package. For more 

information, you may refer to MATLAB manual or documentations. 
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CHAPTER 4: INPUT-OUTPUT EXACT LINEARIZATION 

4.1 Introduction 

A classical way to control nonlinear systems is to compute a linear controller using the first-order 

approximation of the system dynamics around the origin 𝑥 = 0, which gives a local linear 

approximation of the system. A non-approximating linearization called input-output exact feedback 

linearization is discussed here. Feedback linearization is a common approach used in controlling 

nonlinear systems. The approach involves coming up with a transformation of the nonlinear system 

into an equivalent linear system through a change of variables and a suitable control input. The goal 

is to develop a control input 𝑢 that renders a linear input–output map between the new input 𝑣 and 

the output. An outer-loop control strategy for the resulting linear control system can then be applied. 

In this chapter, the methodology of exact input-output linearization will be explained. 

4.2 Affine and Non-affine Nonlinear Systems 

Generally, the nonlinear systems are described in the following state space form: 

 

𝑥̇ = 𝑓(𝑥, 𝑢) 

𝑦 = ℎ(𝑥) 

(1) 

Where 𝑥 is the 𝑛-dimensional state space variable vector, 𝑢 the 𝑚-dimensional input vector, 𝑦 the 𝑝-

dimensional output vector, 𝑓 the state vector function and ℎ the output vector function. When a 

system belongs to this class of systems, the system is called a non-affine nonlinear system or a 

system not affine in the input. The class of systems most writers refer to is a special case of nonlinear 

systems: affine nonlinear systems or systems affine in the input. Systems belong to this class when: 

𝜕𝑓(𝑥, 𝑢)

𝜕𝑢
= 𝑔(𝑥) (2) 
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If this is true (and g is not a function of u) the system is an affine nonlinear system (system affine in 

the input) and can be written in the following way: 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥) 

(3) 

With 𝑔 the input matrix function.  

It is however always possible to change a non-affine system into an affine system so that the theories 

applied to affine systems suffices also in cases where we are dealing with non-affine systems. The 

change into an affine system is done by extending the state 𝑥 with the input 𝑢 (Henson & Seborg, 

1997). 

𝑥̅ = [
𝑥
𝑢
] (4) 

and by the definition of the new input: 

𝑢̅ = 𝑢̇ (5) 

The non-affine system can now be written in the following way: 

𝑥̇ = 𝑓(𝑥) + 𝐺(𝑥, 𝑢) = 𝑓(𝑥) + 𝐺(𝑥̅) (6) 

and the extended affine system  

[
𝑥̇
𝑢̇
] = [

𝑓(𝑥)
0
] + [

𝐺(𝑥̅)
0
] + [

0
1
] 𝑢̅ (7) 

This is the affine form of the same system with new 𝑓 and 𝑔. It can be written as follows: 

𝑥̇̅ = 𝑓(̅𝑥̅) + 𝑔̅(𝑥)𝑢̅ (8) 

The inputs (𝑢̅) adds an integrator to the system and this has to be handled with care. The 

extra integrator gives the system a phase lag and this can compromise the stability of the 

system. 
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4.3 The Relative Degree 

For linear systems, the input-output property of relative degree corresponds to the difference between 

the number of poles and the number of zeros of the system. For nonlinear systems, the relative 

degree of System (3) corresponds to the number of times the output 𝑦 = ℎ(𝑥) has to be 

differentiated with respect to time before the input 𝑢 appears explicitly in the resulting equations. 

The objective of the method of input-output exact linearization is to control a nonlinear system given 

in the form (3) by turning it into a linear and controllable one i.e. such that can be described by 

linear state-space equations: 

𝑦̇ = 𝑣 (9) 

Consider the state space system in (3), in case of single input single output (SISO), the time 

derivative of y is then given by: 

𝑦̇ =  
𝜕ℎ

𝜕𝑥
𝑥̇ 

    =
𝜕ℎ

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) 

    = 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 

(10) 

𝐿𝑓ℎ(𝑥) is called the lie derivative along the vector field 𝑓 and it is defined as follows:  

𝐿𝑓ℎ(𝑥) =
𝜕ℎ

𝜕(𝑥)
𝑓(𝑥) 

𝐿𝑔𝐿𝑓ℎ(𝑥) =
𝜕(𝐿𝑓ℎ)

𝜕(𝑥)
𝑔(𝑥) 

𝐿𝑓
𝑖 ℎ(𝑥) = 𝐿𝑓𝐿𝑓

𝑖−1ℎ(𝑥),      𝑤ℎ𝑒𝑟𝑒 𝐿𝑓
0ℎ(𝑥) = ℎ(𝑥) 

(11) 

In above equation (10), if 𝐿𝑔ℎ(𝑥) ≠ 0, then the control law is given by: 
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𝑢 =
1

𝐿𝑔ℎ(𝑥)
(−𝐿𝑓ℎ(𝑥) + 𝑣) 

(12) 

yielding 𝑦̇ = 𝑣. Otherwise, (that is 𝐿𝑔ℎ(𝑥) = 0) , differentiate once more: 

𝑦̈ =
𝜕𝐿𝑓ℎ

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) = 𝐿𝑓

2ℎ(𝑥) + 𝐿𝑔𝐿𝑓ℎ(𝑥)𝑢 
(13) 

if 𝐿𝑔𝐿𝑓ℎ(𝑥) ≠ 0, then the control law is given by: 

𝑢 =
1

𝐿𝑔𝐿𝑓ℎ(𝑥)
(−𝐿𝑓

2ℎ(𝑥) + 𝑣) (14) 

yielding 𝑦̈ = 𝑣 and so on. So, basically we differentiate until 𝑢 appears. Number of derivatives 

required for 𝑢 to appear is called the relative degree 𝑟 which is defined as follows (Isidori, 2013; 

Khalil, 2001; Slotine, Li, & others, 1991). 

Definition 4.1: There exists an integer 𝑟 ≤ 𝑛 such that 𝐿𝑔𝐿𝑓
𝑖 ℎ(𝑥) = 0 for all 𝑖 ∈ {1,… , 𝑟 − 2} and 

𝐿𝑔𝐿𝑓
𝑖−1ℎ(𝑥) ≠ 0 that is called the relative degree. 

The notion of the relative degree is an important property of a system. It is important because of the 

fact that most theory coming up in this chapter is applicable only if the system has a well-defined 

relative degree. The term "well-defined" will be made clear further in this section. The relative 

degree 𝑟 denotes exactly the number of times the output has to be differentiated until the input 

explicitly appears in the output. 

For MIMO systems, with 𝑚 inputs and 𝑝 outputs (𝑚 ≥ 𝑝), we can expand the definition of the 

relative degree.  The relative degree now consists of a vector, the vector relative degree, with 

elements which denote the relative degree of each output channel. So the vector relative degree 

consists of 𝑝 elements, [𝑟1, 𝑟2, . . , 𝑟𝑝], where 𝑟𝑖 denotes the number of times output 𝑦𝑖 has to be 

differentiated until at least one of the inputs appear in that output 𝑦𝑖. The outputs derivatives of 

MIMO systems can be written as follows: 
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𝑑𝑘𝑦

𝑑𝑡𝑘
= 𝐿𝑓

𝑘ℎ𝑖(𝑥),               𝑘 = 1, … , 𝑟𝑖−1 

𝑑𝑟𝑖𝑦𝑖
𝑑𝑡𝑖

= 𝐿𝑓
𝑟𝑖ℎ𝑖(𝑥) +∑𝐿𝑔𝑗𝐿𝑓

𝑟𝑖−1ℎ𝑖(𝑥)𝑢𝑗

𝑚

𝑗=1

 

(15) 

If a system output 𝑦𝑖 does not have a relative order, this means that y, and all its derivatives are not 

explicitly dependent on 𝑢; consequently, 𝑦𝑖 is not affected by 𝑢. In every well-formulated control 

problem, all outputs 𝑦𝑖 must possess a relative order. Otherwise, the system will not be output 

controllable. The definition of the relative degree for MIMO systems can be written as follows 

(Isidori, 2013): 

𝐿𝑔𝐿𝑓
𝑘ℎ𝑖(𝑥) = 0 ∀ 𝑘 < 𝑟𝑖 − 1,   1 ≤ 𝑖 ≤ 𝑝 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 (16) 

Definition 4.2: Consider a system of the form of equation (1) and assume that each output 𝑦𝑖 has a 

relative degree 𝑟, the matrix: 

𝐸(𝑥) = [

𝐿𝑔1𝐿𝑓
𝑟1−1ℎ1 ⋯ 𝐿𝑔𝑚𝐿𝑓

𝑟1−1ℎ1
⋮ ⋯ ⋮

𝐿𝑔1𝐿𝑓
𝑟𝑝−1ℎ𝑝 ⋯ 𝐿𝑔𝑚𝐿𝑓

𝑟𝑝−1ℎ𝑝

] (17) 

is called decoupling matrix or characteristic matrix. In this matrix, immediately it can be seen which 

input(s) will affect which output(s). Raw 𝑖 relate to output 𝑖 and column 𝑗 related to input 𝑗. This 

vector relative degree is not well defined in the following cases: 

1. As the rank of 𝐸 is not equal to 𝑝 because of a zero-row. This means that output 𝑖 is not 

affected by any input at all. 

2. As each output channel apart has a well-defined relative degree but the rank of 𝐸 is less than 

𝑝 due to zero-columns which means that one of the input channels does always appear later 

than at least one of the other input channels, in all outputs. 
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In some cases where the rank of decoupling matrix is less than number of outputs (𝑝), it is possible 

to achieve a well-defined relative degree via dynamic extension which is going to be explained in the 

coming section. 

4.4 Dynamic Extension 

If the relative degree for the system is not defined because one or more input(s) appear always later 

than other(s), then the decoupling matrix 𝐸 does not have a rank equal to the number of output(s). By 

adding the early input to the state, the appearance of this input is "delayed" to higher orders of the 

outputs and it is then possible that the late input shows up while determining the relative degree. It is 

then possible that the matrix 𝐸 has a rank equal to the number of output(s) and the relative degree 

becomes defined (Isidori, 2013). Following simple example will make this clearer. 

Example 4.1: consider a MIMO system with following state space: 

[
𝑥1̇
𝑥2̇
𝑥3̇

] = [
cos 𝑥3 0
sin 𝑥3 0
0 1

] [
𝑢1
𝑢2
] 

[
𝑦1
𝑦2
] = [

𝑥1
𝑥2
] 

Applying formula given by (17) gives the following decoupling matrix 𝐸 = [
𝑐𝑜𝑠𝑥3 0
sin 𝑥3 0

] which is 

clear has a rank 1 less than the number of outputs 2 and thus relative degree is not well-defined. Let's 

define a new input 𝑢̇1 = 𝜇 which will extend the original system to the following: 

[

𝑥1̇
𝑥2̇
𝑥3̇
𝑥4̇

] = [

𝑢1𝑐𝑜𝑠𝑥3
𝑢1𝑠𝑖𝑛𝑥3
0
0

] + [

0 0
0 0
0 1
1 0

] [
𝜇
𝑢2
] 

Now decoupling matrix becomes 𝐸 = [
𝑐𝑜𝑠𝑥3 −𝑢1𝑠𝑖𝑛𝑥3
sin 𝑥3 𝑢1𝑐𝑜𝑠𝑥3

] which has a rank of 2 equals to the 

number of outputs and thus relative degree is well-defined. 
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∫  
 

𝜇 

𝑢2 

𝑢1 𝑦1 

𝑦2 

 

What we have done in previous example is that the affecting input 𝑢1 has been delayed by adding an 

integrator which make the higher output derivative show non-affecting input 𝑢2 (see figure 4.1). 

4.5 State Transformation 

As we have mentioned earlier, the idea of input-output exact linearization is to control a nonlinear 

system given in the form (2) by turning it into a linear and controllable one (𝑦̇𝑖 = 𝑣𝑖). So, the 

linearized states are actually the output derivatives and can be written as follows for SISO systems: 

𝑧1 = 𝑦, 𝑧2 = 𝑦̇,… , 𝑧𝑟 = 𝑦
(𝑟−1)  →  𝑧𝑖(𝑥) = 𝐿𝑓

𝑖−1ℎ(𝑥),             𝑖 = 1, . . , 𝑟 (18) 

For MIMO systems, the state transformation takes the following form (Henson & Seborg, 1997; 

Isidori, 2013): 

𝑧(𝑥) = [

𝑧1
⋮
𝑧𝑚
] =

[
 
 
 
 
 
 
 

ℎ1
⋮

𝐿𝑓
𝑟1ℎ1(𝑥)

⋮
ℎ𝑚
⋮

𝐿𝑓
𝑟𝑚−1ℎ𝑚(𝑥)]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑦1
⋮

𝑦1
𝑟−1

⋮
𝑦𝑚
⋮

𝑦𝑚
𝑚−1]

 
 
 
 
 
 

 (19) 

When the relative degree is equal to the number of states then the states transformation is already 

complete. If 𝑟 <  𝑛, then it is possible to find an additional 𝑛 –  𝑟 functions so that a local coordinate 

transformation is reached. When input-output linearization is applied to a system with 𝑟 <  𝑛 then 

𝑛 –  𝑟 system equations (internal dynamics) remain which are not input-output linearized. In order for 

Figure 1 Demonestration of Dynamic Extension 
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the controller to be useful in practice, these equations have to define a stable system. A way to study 

the stability of these equations is by looking at the zero-dynamics. The zero-dynamics are defined to 

be the internal dynamics of a system when the system output(s) are kept at zero by the input(s). A 

nonlinear system whose zero-dynamics is stable is called a “minimum phase” system. Especially for 

the analysis of the tracking dynamics of a system it can be very useful1 if the input(s) don't appear in 

these last equations. Then there are no restrictions on the input(s) for the stability of the zero-

dynamics. Sometimes, it is possible to achieve full order relative degree (𝑟 = 𝑛) using dynamic 

extension. It is also very important to know that when having a full order relative degree then it is not 

necessary to check stability of internal dynamics. So, the case of 𝑟 <  𝑛 is not going to be considered 

in our MATLAB package, instead will try to achieve full order relative degree using dynamic 

extension. 

4.6 Feedback Linearizing Control Law 

If a system has a relative degree (𝑟1, … , 𝑟𝑚) and the total relative degree (𝑟1 + 𝑟2+. . +𝑟𝑚) equals to 

𝑛, then this system can be rendered linear by means of a feedback and a transformation of states. One 

can at least obtain a system whose input-output behavior is linear. The latter condition is not 

necessary, but we will commit to this condition (total relative degree equals system order, 𝑛)  since 

the case of total relative degree less than 𝑛 is not considered here.  

The control law can be derived from the output(s) derivative(s). Recall the definition of relative 

degree in section 4.2 where we mentioned that it is the number of output derivatives (𝑟) required 

until input appears. The 𝑟𝑡ℎderivative of SISO system can be written as follows: 

𝑦(𝑟) = 𝐿𝑓
𝑟ℎ(𝑥) + 𝐿𝑔𝐿𝑓ℎ(𝑥)𝑢 (20) 

the feedback linearizing control law yielding to 𝑦̇ = 𝑣, is given by: 
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𝑢 =
1

𝐿𝑔𝐿𝑓ℎ(𝑥)
(−𝐿𝑓

2ℎ(𝑥) + 𝑣) (21) 

Similarly, for MIMO systems the output derivatives can be writer as follows (Henson & Seborg, 

1997; Isidori, 2013; Khalil, 2001): 

[
𝑦(𝑟1)

⋮

𝑦(𝑟𝑝) 

] = [

𝐿𝑓
(𝑟1)ℎ1(𝑥)

⋮

𝐿
𝑓

(𝑟𝑝)ℎ𝑝(𝑥)

]

⏟        
𝑏(𝑥)

+ [

𝐿𝑔1𝐿𝑓
𝑟1−1ℎ1 ⋯ 𝐿𝑔𝑚𝐿𝑓

𝑟1−1ℎ1
⋮ ⋯ ⋮

𝐿𝑔1𝐿𝑓
𝑟𝑝−1ℎ𝑝 ⋯ 𝐿𝑔𝑚𝐿𝑓

𝑟𝑝−1ℎ𝑝

]

⏟                    
𝐸(𝑥)

[

𝑢1
⋮
𝑢𝑚
]

⏟
𝑢

 
(22) 

Under the condition that rank of 𝐸 equals to 𝑝, the control law is giving by: 

𝑢 = 𝐸(𝑥)−1([

𝑣1
⋮
𝑣𝑚
] −  𝑏(𝑥)) (23) 

which gives following chains of integrators: 

𝑦1
(𝑟1) = 𝑣1, 𝑦2

(𝑟2) = 𝑣2, … , 𝑦𝑝
(𝑟𝑝) = 𝑣𝑝  (24) 

Exact linearization techniques can be interpreted as shown in below figure 2.  In this figure 𝑧(𝑥) is  

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 

𝑦 = ℎ(𝑥) 

𝑦 
𝐸−1(𝑥) 

𝑏(𝑥) 

𝐾𝑧(𝑥) 

𝑣 

− − 

𝑟 

Figure 2 Feedback linearization interpretation 
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the state transformation given in equation (19) and 𝐾 is the linear controller gain. 

4.7 Exact linearization for non-square systems 

For a non-square MIMO system represented by (3), 𝐸 is a 𝑝 ×𝑚 matrix, 𝐸−1 is not defined. Thus, 

Eq. (23) cannot be used to define new inputs required for I/O linearization. Instead of inverse 

calculation, in non-square systems we calculate the Moore-Penrose pseudo-inverse of the decoupling 

matrix 𝐸 denoted by 𝐸# and its existence is guaranteed by the assumption that it has full row rank. 

So, the I/O linearization feedback law can be written as follows: 

𝑢 = 𝐸#(𝑥)([

𝑣1
⋮
𝑣𝑚
] −  𝑏(𝑥)) (25) 

The calculation of pseudo-inverse requires solution to the following optimization problem. Consider 

the solution to a set of algebraic equations in which the number unknowns is greater than the number 

of equations, i.e. of the form 𝐴𝑥 = 𝑏. There are infinite solutions to the above set of equations. 

However, the solution that minimizes a cost function defined by 𝐽 = ‖𝑊𝑥‖2
2, is unique and can be 

obtained by solving the following problem: 

min‖𝑊𝑥‖2
2,      𝑠. 𝑡. 𝐴𝑥 = 𝑏  (26) 

where 𝑊 is the weight of the cost function. The solution to the above optimization problem can be 

interpreted as finding a pseudo-inverse of A. In other words, the solution that is obtained can be 

written as 𝑥 = 𝐴#𝑏, where 𝐴# is the Moore-Penrose pseudo-inverse of 𝐴. For more information, the 

reader may refer to literatures (Noble, 1976; Kolavennu et al., 2001). The Moore-Penrose pseudo-

inverse can be calculated in MATLAB using built in function "𝑝𝑖𝑛𝑣". 
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CHAPTER 5: The NLC Package 

5.1 Introduction 

The NLC package is a collection of functions and subroutines that is designed to perform exact 

linearization symbolically. Each function is saved in a separate "m" file where all files have to be 

saved in the same directory. The NLC can be started by running nlc_main.m file or simply by typing 

nlc_main in MATLAB command window. NLC is a text based package with a self-guiding user 

interface. It has been designed to overcome limitations in previous work and minimize the amount of 

user-input data and give a very clear documentation on the executed results. In this chapter, each 

function will be explained and algorithms will be presented. In last section of this chapter, the 

package will be tested using several examples demonstrating the package features. 

5.2 Package Overview and Features 

NLC starts with a list of models to be selected to perform the exact linearization analysis. There is an 

option to edit a user-defined model. Once this option is selected, m file editor will be opened and 

instructions are giving on how to edit the file and write differential equations. MATLAB command 

will be on hold waiting for the user response to continue. Once the model is entered, user is 

instructed to save the file and return to MATLAB command window and hit any key to continue. 

The first thing the program will do is to check the affine system. If the system is affine, it will 

display a message and continue the analysis. Otherwise, it will convert it to an affine system (refer to 

4.1 for more details on how to convert non-affine into affine). Then, the program will display the 

states, input(s), 𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥). The next step is to calculate the relative degree victor, 

decoupling matrix 𝐸, and output derivatives 𝑏. The result of the analysis will be shown. Here, there 

could be three different situations: 
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1. Rank of 𝐸 < 𝑝 where it will give a warning that relative degree is not well defined and will 

give an option to run dynamic extension to achieve well-defined relative degree. 

2. Rank of 𝐸 = 𝑝 and the sum of relative degree vector (r-total) is less than system order, 𝑛 then 

it will show a warning that the system may have internal dynamics unstable and will give an 

option to run dynamic extension to achieve full order relative degree. 

3. Rank of 𝐸 = 𝑝 and 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑛, then the system is having full 

order and well-defined relative degree, therefore the control law and state transformation will 

be calculated and the state space matrices of the linearized system will be shown. 

For more information on the above three cases of relative degree, please refer to 4.2. 

Once the control law is calculated and shown, the program will give an option to generate code for 

which it can be used for simulation. This code can be used in SIMULINK MATLAB Function block. 

This block is designed to accept MATLAB command that can be used inside Simulink. All what user 

have to do next is to connect the outputs of the block to integrator(s), except those for ℎ(𝑥) where 

they are usually connected to display or scope function block, and connect output(s) of integrator(s) 

to the input(s) of the MATLAB function block, except those for desired outputs (reference inputs). 

The entire program execution flowchart is presented in Appendix A and the program source code is 

available in Appendix B. Each subroutine will be explained in detail with algorithms in the following 

sections. Several examples will be shown and demonstrated. Below is a summary of the NLC 

package features that distinguish it from others: 

1. The system is to be entered as a set of differential equations and algebraic equations (if any) 

which mean the computation effort by user is minimized/ eliminated. 

2. It Supports SISO and MIMO systems without any intervention from user. In other words, the 

system is dealing with both without asking the user to identify whether it is SISO or MIMO. 



 

27 

 

3. It accepts non-square systems with condition 𝑚 ≥ 𝑝 (number of inputs is greater than or 

equal to number of outputs). 

4. It converts non-affine into affine system since the theory is based on affine systems. 

5. It performs dynamic extension to convert into affine and possibly get full order and well-

defined relative degree. 

6. It immediately shows the state space matrices for the linearized system where it can be easily 

used to analyze and design linear controller. 

7. It generates codes for use with MATLAB Function SIMULINK block. LQI controller will be 

included in the code (refer to section 5.8 for more details). The user will be asked to give 

states and input weights.  

8. It offers self-guidance and easy text based interface. All results will be show with useful 

comments and demonstrations. 

5.3 Converting to affine, "nlc_affine" subroutine 

This subroutine tests the differential equations 𝑓(𝑥, 𝑢) to see if the system is affine in input. If the 

system is not affine, it will change the system to affine by introducing new state as integration of 

non-affine input. The inputs are: differential equations vector, 𝑓(𝑥, 𝑢), states of the system, and 

input(s), 𝑢. Outputs are: state functions vector, 𝑓(𝑥), input(s) vector, 𝑔(𝑥), new differential 

equations vector, 𝑓(̅𝑥), new states, 𝑥̅, and new inputs, 𝑢̅. The last three outputs will be same as inputs 

in case the system is affine already. The algorithm is shown below.  

1. Compute partial derivatives of 𝑓(𝑥, 𝑢) with respect to inputs and assign result to 𝑔(𝑥)  

𝑔(𝑥) ≔
𝜕𝑓(𝑥,𝑢)

𝜕𝑢
 

2. Let 𝑔𝑣𝑎𝑟 be a vector contains the list of all variables in 𝑔(𝑥) 

3. If 𝑔𝑣𝑎𝑟 is not containing any elements equals to any elements in 𝑢, then the system is affine 

else the system is not affine 
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4. If the system is affine, go to 8 else go to 5 

5. Define new state and input  𝑥̅ ≔ [
𝑥
𝑢
], 𝑢̅ ≔ 𝑢̇ 

6. Compute 𝑓(̅𝑥, 𝑢) by substituting 𝑥̅ and 𝑢̅ into 𝑓(𝑥, 𝑢) 

7. Go to 1. 

8. Compute 𝑓(𝑥) ≔ 𝑓(𝑥, 𝑢) − 𝑔(𝑥) ∗ 𝑢 

9. Stop 

Steps 5 to 7 is executed by a different subroutine called "nlc_MakeAffine". So, false condition of 

step 4 is executed by calling "nlc_MakeAffine" and step 7 is executed by calling original subroutine 

"nlc_affine".  

5.4 Relative Degree Calcution, "nlc_RelDeg" subroutine 

This subroutine computes the relative degree vector. Inputs are 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥), and 𝑢. Outputs are 

relative degree vector and total relative degree (in case of SISO both will have the same value). This 

subroutine is calling "nlc_liederivative" which calculates lie derivate. Recall the definition of lie 

derivative giving by (11), the lei derivative subroutine is using that definition to calculate the first 

order lie derivative. The higher order lie derivative is calculated in the original subroutine 

"nlc_RelDeg" recursively. The algorithm is shown below. 

1.  𝑖 ≔ 0, 𝑚 ≔ number of inputs, 𝑝 ≔ number of ouptus, 𝑘 ≔ 1 

2. 𝑖 ≔ 𝑖 + 1 

3. If 𝑘 = 1, then  𝐿𝑓ℎ ≔ ℎ𝑖(𝑥), else go to 8 

4.  𝑗 ≔ 0 

5. 𝑗 ≔ 𝑗 + 1 

6. 𝐿𝑔𝐿𝑓ℎ𝑗 ≔ 𝐿𝑔𝑗ℎ𝑖(𝑥) 

7. If 𝑗 ≤ 𝑚, then go to 5, else go to 8 
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8.  𝑟𝑖 ≔ 𝑘 

9. 𝐿𝑓ℎ𝑛𝑒𝑤 ≔ 𝐿𝑓(𝐿𝑓ℎ) 

10.  𝑗 ≔ 0 

11. 𝑗 ≔ 𝑗 + 1 

12. 𝐿𝑔𝐿𝑓ℎ𝑗 ≔ 𝐿𝑔𝑗(𝐿𝑓ℎ𝑛𝑒𝑤) 

13. 𝐿𝑓ℎ ≔ 𝐿𝑓ℎ𝑛𝑒𝑤 

14. If 𝑗 ≤ 𝑚, then go to 11, else go to 15 

15. 𝑧 ≔ 0 

16. 𝑧 ≔ 𝑧 + 1 

17. If 𝐿𝑔𝐿𝑓ℎ𝑧 ≠ 0, then go to 20, else 𝑘 ≔ 𝑘 + 1 

18. If 𝑧 ≤ 𝑚, then go to 16, else go to 19 

19. Go to 3 

20. If 𝑖 ≤ 𝑝, then go to 2, else go to 21 

21. 𝑟𝑣𝑒𝑐𝑡𝑜𝑟 ≔ 𝑟1, . . , 𝑟𝑖 

22. 𝑟𝑡𝑜𝑡𝑎𝑙 ≔ 𝑟1+. . +𝑟𝑖  

23. Stop 

5.5 Decoupling and output derivatives matrices, "nlc_decoupling" subroutine 

This subroutine computes decoupling (characteristic) matrix, 𝐸 and output derivatives vector, 𝑏. In 

fact it is applying the following formula (refer to section 4.3 for more details on derivation of these 

formulas): 

 𝐸(𝑥) = [

𝐿𝑔1𝐿𝑓
𝑟1−1ℎ1 ⋯ 𝐿𝑔𝑚𝐿𝑓

𝑟1−1ℎ1
⋮ ⋯ ⋮

𝐿𝑔1𝐿𝑓
𝑟𝑝−1

ℎ𝑝 ⋯ 𝐿𝑔𝑚𝐿𝑓
𝑟𝑝−1

ℎ𝑝

] , 𝑏(𝑥) = [

𝐿𝑓
(𝑟1)ℎ1(𝑥)

⋮

𝐿
𝑓

(𝑟𝑝)
ℎ𝑝(𝑥)

] 

The inputs to this subroutine are 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥), 𝑥, 𝑢, and 𝑟𝑣𝑒𝑐𝑡𝑜𝑟 while the outputs are 𝐸(𝑥) and 

𝑏(𝑥). This subroutine calls "nlc_leiderivative" subroutine as well. The algorithm is presented in the 

following paragraph. 
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1. 𝑖 ≔ 0, 𝑚 ≔ number of inputs, 𝑝 ≔ number of outputs 

2. 𝑖 ≔ 𝑖 + 1 

3. 𝑘 ≔ 0 

4. 𝑘 ≔ 𝑘 + 1 

5. If 𝑘 = 1, then  𝐿𝑓ℎ ≔ ℎ𝑖(𝑥), else go to 10 

6.  𝑗 ≔ 0 

7. 𝑗 ≔ 𝑗 + 1 

8. 𝐿𝑔𝐿𝑓ℎ𝑗 ≔ 𝐿𝑔𝑗ℎ𝑖(𝑥) 

9. If 𝑗 ≤ 𝑚, then go to 7, else go to 10 

10. 𝐿𝑓ℎ𝑛𝑒𝑤 ≔ 𝐿𝑓(𝐿𝑓ℎ) 

11.  𝑗 ≔ 0 

12. 𝑗 ≔ 𝑗 + 1 

13. 𝐿𝑔𝐿𝑓ℎ𝑗 ≔ 𝐿𝑔𝑗(𝐿𝑓ℎ𝑛𝑒𝑤) 

14. 𝐿𝑓ℎ ≔ 𝐿𝑓ℎ𝑛𝑒𝑤 

15. If 𝑗 ≤ 𝑚, then go to 12, else go to 5 

16. If 𝑘 ≤ 𝑟𝑖, then go to 4, else go to 16 

17. 𝑏𝑖 ≔ 𝐿𝑓(𝐿𝑓ℎ) 

18. 𝑖𝑡ℎ raw of 𝐸 ≔ 𝐿𝑔(𝐿𝑓ℎ) 

19. If 𝑖 ≤ 𝑝, then go to 2, else go to 20 

20. Stop 

5.6 Dynamic Extension, "nlc_dynamicExt" subroutine  

This subroutine perform dynamic extension in a very simple idea. It is looking at the decoupling 

matrix, 𝐸 and identify the index of the column having minimum zeros. If more than one column is 

having the same number of zeros it will select the first one. This column index correspond to the 

most input having effect on all inputs and this input is selected to be delayed by adding an  integrator 

to it which means defining new state and new input (refer to section 4.4 for more details). The 

program will display the input number selected in every iteration and recalculate relative degree and 

decoupling matrix and displays them. The program will terminate in either following conditions: 



 

31 

 

1. The relative degree becomes well-defined and equals to the number of states. Here, the 

algorithm succeeds. 

2. The iteration number reaches maximum number selected by the user (normally the maximum 

iteration number is selected to be equals to number of states). Here the algorithm fails. 

The inputs to this subroutine is 𝑓(𝑥), 𝑔(𝑥), 𝐸, 𝑥, and 𝑢 while the outputs is new set of functions 

𝑓(̅𝑥), 𝑔̅(𝑥), 𝐸̅, 𝑥̅, and 𝑢̅. In case the algorithm succeeds it will continue the analysis by executing the 

next subroutines namely, the state transformation and feedback linearizing controller which will be 

described in the coming sections. Below, the algorithm is presented. 

1.  𝑝 ≔ number of outputs 

2. Prompt user to choose value of the maximum iteration and assign it to 𝑖maximum 

3. 𝑖 ≔ 0 

4. 𝑖 ≔ 𝑖 + 1 

5. 𝑗 ≔ 0 

6. 𝑗 ≔ 𝑗 + 1 

7. 𝑚 ≔ number of inputs, 𝑛 ≔ number of states 

8. Find non-zero elements in column 𝑗 of 𝐸 and store the total number in element 𝑗 of the vector 

𝐸𝑛𝑜𝑛𝑧𝑒𝑟𝑜 

9. If 𝑗 ≤ 𝑚, then go to 6, else go to 10 

10. 𝑢𝑖 ≔ maximum of 𝐸𝑛𝑜𝑛𝑧𝑒𝑟𝑜 

11. Define new state and input  𝑥𝑛 ≔ [
𝑥
𝑢𝑢𝑖
], 𝑢𝑛 ≔ 𝑢𝑢𝑖̇  

12. Compute 𝑓𝑛(𝑥), 𝑔𝑛(𝑥) by substituting 𝑥𝑛 and 𝑢𝑛 into 𝑓(𝑥), 𝑔(𝑥) 

13. Compute 𝑟𝑣𝑒𝑐𝑡𝑜𝑟 , 𝑟𝑡𝑜𝑡𝑎𝑙 by executing "nlc_RelDeg" subroutine 

14. Compute 𝐸𝑛 by executing "nlc_decoupling" subroutine 

15. If rank of 𝐸𝑛 = 𝑝 and 𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑛, then go to 16, else go to 18 
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16. 𝑥 ≔ 𝑥𝑛, 𝑓 ≔ 𝑓𝑛, 𝑢 ≔ 𝑢𝑛, 𝑔 ≔ 𝑔𝑛 

17. If 𝑖 ≤ 𝑖𝑚𝑎𝑥𝑖𝑚𝑢𝑚 then, go to 4, else go to 18 

18. Stop 

5.7 State Transformation,"nlc_StatTrans" subroutine 

This subroutine is direct application of the formula (19) where the derivative of each output is 

calculated with respect to its relative degree. The inputs are 𝑓(𝑥), ℎ(𝑥), 𝑟𝑣𝑒𝑐𝑡𝑜𝑟 and outputs are 

𝑍 = 𝑧1, 𝑧2, … , 𝑧𝑛. In the next paragraph, algorithm is shown. 

1. 𝑝 ≔ number of outputs 

2. 𝑖 ≔ 0 

3. 𝑖 ≔ 𝑖 + 1 

4. 𝑘 ≔ 0 

5. 𝑘 ≔ 𝑘 + 1 

6. If 𝑘 = 1, then  𝐿𝑓ℎ ≔ ℎ𝑖(𝑥), else go to 7 

7. 𝐿𝑓ℎ𝑛𝑒𝑤 ≔ 𝐿𝑓(𝐿𝑓ℎ) 

8. 𝐿𝑓ℎ ≔ 𝐿𝑓ℎ𝑛𝑒𝑤 

9. 𝑧𝑘 ≔ 𝐿𝑓ℎ 

10. If 𝑘 ≤ 𝑟𝑖, then go to 5, else go to 11 

11. If 𝑖 = 1, then 𝑍 ≔ 𝑧, else 𝑍 ≔ (𝑍, 𝑧) 

12. If 𝑖 ≤ 𝑝, then go to 3, else go to 13 

13. Stop  

 

5.8 Feedback linearizing controller, "nlc_FBL" subroutine 

Recall the control law for square system, equation (23): 
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 𝑢 = 𝐸(𝑥)−1([

𝑣1
⋮
𝑣𝑚
] −  𝑏(𝑥))  

and for non-square system, equation (25): 

𝑢 = 𝐸#(𝑥)([

𝑣1
⋮
𝑣𝑚
] −  𝑏(𝑥)), where 𝐸# is Moore-Penrose pseudo-inverse. The "nlc_FBL" subroutine 

checks the size of the system and compute the control law accordingly. The inputs to this subroutine 

are as follows: 𝐸(𝑥), and 𝑏(𝑥) which are computed in "nlc_decoupling" subroutine. The output is the 

control law. Algorithm is presented below. 

1. 𝑚 ≔ number of inputs, 𝑝 ≔ number of outputs 

2. If 𝑝 = 𝑚, then go to 3, else go to 7 

3. Define 𝑉 = 𝑣1, . . , 𝑣𝑝 

4. Compute inverse of 𝐸, 𝐸𝑖𝑛𝑣 ≔ 𝐸−1 

5. 𝑢 ≔ 𝐸𝑖𝑛𝑣 ∗ (𝑉 − 𝑏) 

6. Go to 9 

7. Compute Moore-Penrose pseudo-inverse of 𝐸, 𝐸𝑝𝑖𝑛𝑣 ≔ 𝐸# 

8. 𝑢 ≔ 𝐸𝑝𝑖𝑛𝑣 ∗ (𝑉 − 𝑏) 

9.  Stop  

5.9 Simulation code generation, "nlc_WriteToFile" subroutine 

One of the powerful tools of MATLAB is the SIMULINK. It is a block diagram environment for 

multi-domain simulation and Model-Based Design. It supports simulation, automatic code 

http://www.mathworks.com/model-based-design/
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generation, and continuous test and verification of embedded systems. In SIMULINK, there is a 

block which Includes MATLAB code in models that generate embeddable C code. With a MATLAB 

Function block, you can write a MATLAB function for use in a SIMULINK model. The MATLAB 

function you create executes for simulation and generates code for a Simulink Coder target. The 

main function of this subroutine is to generate MATLAB code where it can be used in MATLAB 

Function block. This code contains differential equations of the system, state transformation, linear 

controller design, and feedback linearized controller. The code is saved in nlc_DiffEqFile.m where 

the user can open and copy the code to MATLAB function block. Following section contains an 

example explaining how to use this feature.  

The linear control technique chosen is LQI (Linear Quadratic Integral control). Since the most 

application of the input-output exact linearization is the tracking control, LQI is selected because it is 

popular and powerful in this area. LQI is an optimal state-feedback control law for the tracking loop 

shown below. The state-feedback control is of the form 𝑢 =  − 𝐾 [
𝑥
𝑥𝑖
] where 𝑥𝑖 is the integrator 

output. This control law ensures that the output 𝑦 tracks the reference command 𝑟. For MIMO 

systems, the number of integrators is equal to the dimension of the output 𝑦. 

 The built in MATLAB function "LQI" calculates the optimal gain matrix 𝐾 given a state-space 

model system of the plant and weighting matrices 𝑄, 𝑅, and 𝑁. In our case, the state space system is 

the equivalent linearized system and its state-space matrices is generated by subroutine 

"nlc_EquLinSys"). The control law 𝑢 = −𝐾 [
𝑥
𝑥𝑖
] = −𝐾𝑧 minimizes the cost function:  

∫  −𝐾 System 𝑦 𝑟 

𝑥 

𝑥𝑖 

𝑥 

− 

Figure 3 LQI interpretation 
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𝐽(𝑢) = ∫ (𝑧′𝑄𝑧 + 𝑢′𝑅𝑢 + 𝑧𝑧′𝑁𝑢)𝑑𝑡 (26) 

Weighting matrix is neglected in our LQI design (𝑁 = 0). The error integration (∫ (𝑟 − 𝑦)𝑑𝑡) is 

generated by introducing new states as shown below in equation (27). 

𝑥𝑖̇ = 𝑟 − 𝑦 → 𝑥𝑖 = ∫ (𝑟 − 𝑦)𝑑𝑡,     𝑖 = 1,… , 𝑝 (27) 

5.10 Examples 

In this section the NLC package will become clearer by representing different examples. 

Applications of simulation functions, changing to affine, dynamic extension, as well as some models 

that cannot used in this package. 

5.10.1 Contrived Model 

The model used here is taken from (Isidori, 2013). The system has full order and well defined 

relative degree as it will be shown below. It is a MIMO systems with 2 inputs and 2 outputs. The 

system dynamics is represented by: 

𝑥̇ =

[
 
 
 
 

𝑥2 + 𝑥2
2 + 𝑢2

𝑥3 − 𝑥1𝑥4 + 𝑥4𝑥5
𝑥2𝑥4 + 𝑥1𝑥5 − 𝑥5 + 𝑢1 cos(𝑥1 − 𝑥5) + 𝑢2

𝑥5
𝑥2
2 + 𝑢2 ]

 
 
 
 

, 𝑢 = [
𝑢1
𝑢2
] , ℎ(𝑥) = [

𝑥1 − 𝑥5
𝑥4

]  

The system model is loaded already in the package, it will be shown in menu where the user can 

select it by typing the corresponding serial number. Below is the program output: 

 

*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 
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  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 

  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 

  5. User Defined Model 

  6. General nonlinear model examples 

  

Select a model by typing the corresponding number: 6 

       

  1. An example of Dynamic Extension Algorithm Failure (MIMO). 

  2. An example of Dynamic Extension Algorithm Sucess (MIMO). 

  3. Mechanical  Arm (SISO). 

  4. The Contrived Model (MIMO). 

  5. Go back to previous menu. 

  

Select a model by typing corresponding serial number: 4 

    

System is affine! 

States of the system are:  

[ x1, x2, x3, x4, x5] 

  

f(x) =  

              x2^2 + x2 

     x3 - x1*x4 + x4*x5 
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 - x5^2 + x1*x5 + x2*x4 

                     x5 

                   x2^2 

  

g(x) =  

[            0, 1] 

[            0, 0] 

[ cos(x1 - x5), 1] 

[            0, 0] 

[            0, 1] 

  

u =  

 u1 

 u2 

  

h(x) =  

 x1 - x5 

      x4 

  

Decouping Matrix, E =  

[ cos(x1 - x5), 1] 

[            0, 1] 

  

No. of States (n) is : 5 

Total relative degree (r_total) is : 5 
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Relative degree vector (r_vector) is : [3  2] 

Number of inputs (m) is : 2 

Number of outputs (p) is : 2 

Rank of decoupline matrix is : 2 

                

Transformation Equations, Z =        

                

z1 = x1 - x5 

z2 = x2 

z3 = x3 - x1*x4 + x4*x5 

z4 = x4 

z5 = x5 

                         

Nonlinear feedback, U =  

                                 

u1 = (v1 - x1*x5 - x2*x4 + x5*(x1 - x5) + x4*(x2 + x2^2) - x2^2*x4 + x5^2)/cos(x1 - x5) - 

(v2 - x2^2)/cos(x1 - x5) 

u2 = v2 - x2^2 

Following is the linearized state space system:  

        

A =  

     0     1     0     0     0 

     0     0     1     0     0 

     0     0     0     0     0 

     0     0     0     0     1 

     0     0     0     0     0 
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B =  

     0     0 

     0     0 

     1     0 

     0     0 

     0     1 

 

C =  

     1     0     0     0     0 

     0     0     0     1     0 

 

D =  

     0 

 

Above A,B,C,D matrices can be used for linear controller desing. This package 

can prepare a code to be used in a simulink block "MatlabFunction" where you 

can perform simulation more effectively. The code will have an emeded LQI 

 controller. To prepare the code type "nlc_WriteToFile" 

Elapsed time is 6.397189 seconds. 

 

As seen above, it is giving a full analysis of the system. Starting from testing affine to computing the 

linearized feedback control law. The next step is to get the code for the simulation by typing 

"nlc_WriteToFile" as it is instructed. 
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nlc_WriteToFile   

LQI controller design.... 

please specify the states weight, q =: 50000 

please specify the inputs gain, r =: 0.01 

The code will be shown below, select and copy then past it in MatlabFunction block 

which is in the Simulink file. Once you copy press any key then the Simulink file 

will be opened. You can save the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

Press any key when your are ready... 

       

%%%%%%%% Begining of the code %%%%%%% 

 

function [dx1,dx2,dx3,dx4,dx5,dx6,dx7,h1,h2] = 

nlc_DiffEqFile(x1,x2,x3,x4,x5,x6,x7,yd1,yd2) 

 z = [ x1 - x5;x2;x3 - x1*x4 + x4*x5;x4;x5;x6;x7 ]; 

 K = [ 2577.8981,367.9581,27.1278,-1.0828e-13,-2.9891e-17,-2236.068,-5.5614e-13;-1.3811e-

14,3.1095e-14,-2.9891e-17,2302.9348,67.8666,1.4718e-12,-2236.068 ]; 

 v = -K*z; 

 v1 = v(1); 

 v2 = v(2); 

 u1 = (v1 - x1*x5 - x2*x4 + x5*(x1 - x5) + x4*(x2 + x2^2) - x2^2*x4 + x5^2)/cos(x1 - x5) - 

(v2 - x2^2)/cos(x1 - x5); 

 u2 = v2 - x2^2; 

 dx1 = u2 + x2 + x2^2; 

 dx2 = x3 - x1*x4 + x4*x5; 

 dx3 = u2 + x1*x5 + x2*x4 - x5^2 + u1*cos(x1 - x5); 
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 dx4 = x5; 

 dx5 = u2 + x2^2; 

 h1 = x1 - x5; 

 h2 = x4; 

 dx6 = yd1 - h1; 

 dx7 = yd2 - h2; 

       

%%%%%%%% End of the code %%%%%%% 

          

Copy above code and past it in MatlabFunction block. You can save 

the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

          

Press any key when your are ready... 

This may take while, be patient please.... 

 

Below is the Simulink blocks where the generated codes is used in MATLAB Function block. The 

plot of the simulated outputs and tracking reference is show as well. 
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Figure 4 Simulation of Exampale 5.10.1 

 

Figure 5 Simulation of the ouput for the system in Example 5.10.1 
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5.10.2 Dynamic Extension Example 

Here we will show the program output when using a system shown before in as example of Dynamic 

Extension (see section 4.4). The dynamic equations are as follows: 

[
𝑥1̇
𝑥2̇
𝑥3̇

] = [
cos 𝑥3 0
sin 𝑥3 0
0 1

] [
𝑢1
𝑢2
] 

[
𝑦1
𝑦2
] = [

𝑥1
𝑥2
] 

*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 

       

  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 

  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 

  5. User Defined Model 

  6. General nonlinear model examples 

  

Select a model by typing the corresponding number: 6 

       

  1. An example of Dynamic Extension Algorithm Failure (MIMO). 

  2. An example of Dynamic Extension Algorithm Sucess (MIMO). 

  3. Mechanical  Arm (SISO). 
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  4. The Contrived Model (MIMO). 

  5. Go back to previous menu. 

  

Select a model by typing corresponding serial number: 2 

    

System is affine! 

States of the system are:  

[ x1, x2, x3] 

  

f(x) =  

 0 

 0 

 0 

  

g(x) =  

[ cos(x3), 0] 

[ sin(x3), 0] 

[       0, 1] 

  

u =  

 u1 

 u2 

  

h(x) =  

 x1 
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 x2 

  

Decouping Matrix, E =  

[ cos(x3), 0] 

[ sin(x3), 0] 

  

No. of States (n) is : 3 

Total relative degree (r_total) is : 2 

Relative degree vector (r_vector) is : [1  1] 

Number of inputs (m) is : 2 

Number of outputs (p) is : 2 

Rank of decoupline matrix is : 1 

Attention!! The system dose not have a well defined relative degree. 

You may consider to apply Dynamic Extension Algorithm. 

NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion Algorithm. 

Elapsed time is 4.263459 seconds. 

 

As expected, it gives a warning message that the system is not having a well-defined relative degree 

because the rank of decoupling matrix is less than number of outputs. As instructed, we will typ 

"nlc_DynamicExt" to start Dynamic Extension. 

nlc_DynamicExt   

Type the maximum number of iteration to run dynamic extenstion 

NOTE: normally the maximum iteration is n (number of states). If you 

choose big number, you may experience showness in program execution 

and endup with a very complicated model with many input delays!! 
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If you decide to choose it equal to n, leave it blank and just hit enter key! 

:  

.....Adding integrator to input number 1   

System is affine! 

New States, xn =  

[ x1, x2, x3, u1] 

New Inputs, un =  

 mu1 

  u2 

New Decoupling Matrix, En =  

[ cos(x3), -u1*sin(x3)] 

[ sin(x3),  u1*cos(x3)]        

 

No. of States is : 4 

Total relative degree is : 4   

Relative degree vector is : [2  2] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

Full System Order Relative Degree Achieved!! 

New f(x), fn =  

 u1*cos(x3) 

 u1*sin(x3) 

          0 

          0             
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New g(x), gn =  

[ 0, 0] 

[ 0, 0] 

[ 0, 1] 

[ 1, 0]         

Transformation Equations, Z =                

z1 = x1 

z2 = u1*cos(x3) 

z3 = x2 

z4 = u1*sin(x3) 

Nonlinear feedback, U =                   

u1 = (v2*sin(x3))/(cos(x3)^2 + sin(x3)^2) + (v1*cos(x3))/(cos(x3)^2 + sin(x3)^2) 

u2 = (v2*cos(x3))/(u1*cos(x3)^2 + u1*sin(x3)^2) - (v1*sin(x3))/(u1*cos(x3)^2 + 

u1*sin(x3)^2) 

Following is the linearized state space system:  

A =  

     0     1     0     0 

     0     0     0     0 

     0     0     0     1 

     0     0     0     0 

B =  

     0     0 

     1     0 

     0     0 

     0     1 
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C =  

     1     0     0     0 

     0     0     1     0 

D =  

     0     

Above A,B,C,D matrices can be used for linear controller desing. This package 

can prepare a code to be used in a simulink block "MatlabFunction" where you 

can perform simulation more effectively. The code will have an emeded LQI 

 controller. To prepare the code type "nlc_WriteToFile" 

Elapsed time is 1.412005 seconds. 

 

As it can be seen from the result the program succeeded to achieve full order relative degree. Now 

we simulate tracking controller. 

 

nlc_WriteToFile 

LQI controller design.... 

please specify the states weight, q =: 50000 

please specify the inputs gain, r =: 0.01 

The code will be shown below, select and copy then past it in MatlabFunction block 

which is in the Simulink file. Once you copy press any key then the Simulink file 

will be opened. You can save the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

Press any key when your are ready... 
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%%%%%%%% Begining of the code %%%%%%% 

 

function [dx1,dx2,dx3,dx4,dx5,dx6,h1,h2] = nlc_DiffEqFile(x1,x2,x3,u1,x5,x6,yd1,yd2) 

 z = [ x1;u1*cos(x3);x2;u1*sin(x3);x5;x6 ]; 

 K = [ 2302.9348,67.8666,-3.4536e-16,-1.1744e-15,-2236.068,2.4937e-12;-2.3557e-14,-

1.1744e-15,2302.9348,67.8666,3.8044e-12,-2236.068 ]; 

 v = -K*z; 

 v1 = v(1); 

 v2 = v(2); 

 mu1 = (v2*sin(x3))/(cos(x3)^2 + sin(x3)^2) + (v1*cos(x3))/(cos(x3)^2 + sin(x3)^2); 

 u2 = (v2*cos(x3))/(u1*cos(x3)^2 + u1*sin(x3)^2) - (v1*sin(x3))/(u1*cos(x3)^2 + 

u1*sin(x3)^2); 

 dx1 = u1*cos(x3); 

 dx2 = u1*sin(x3); 

 dx3 = u2; 

 dx4 = mu1; 

 h1 = x1; 

 h2 = x2; 

 dx5 = yd1 - h1; 

 dx6 = yd2 - h2; 

       

%%%%%%%% End of the code %%%%%%% 

          

Copy above code and past it in MatlabFunction block. You can save 

the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 
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you can plot the resluts using the command "nlc_PlotSimulation" 

          

Press any key when your are ready... 

This may take while, be patient please.... 

 

Below figure shows the plot of the output versus desired reference. 

 

Figure 6 Simulation results for the system of example 5.10.2 
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In which 𝑞1 and 𝑞2 are the link displacement and the rotor displacement, respectively. The link 

inertia 𝐽1, the motor rotor inertia 𝑗𝑚, the elastic constant 𝑘, the link mass 𝑀, the gravity constant 𝑔, 

the center of mass 𝑙 and control 𝑢 is the torque delivered by the motor. The objective is to design 

control signal 𝑢 so that 𝑞1 tracks a desired reference 𝑞𝑟1(𝑡) assuming the whole state [𝑞1, 𝑞1̇, 𝑞2, 𝑞2̇] 

is measured. The model can be written in state space format by choosing as state variables: 

𝑥1 = 𝑞1,      𝑥2 = 𝑞1̇,       𝑥3 = 𝑞2,       𝑥4 = 𝑞2̇  

The model is rewritten in state space form as: 

𝑥1̇ = 𝑥2 

𝑥2̇ = −(
𝐹1
𝐽1
) 𝑥2 − (

𝑀𝑔𝑙

𝐽1
) sin(𝑥1) − (

𝑘

𝐽1
) (𝑥1 − 𝑥3) 

𝑥3̇ = 𝑥4 

𝑥4̇ = −(
𝐹𝑚
𝐽𝑚
) 𝑥4 + (

𝑘

𝐽𝑚
) (𝑥1 − 𝑥3) +

𝑢

𝐽𝑚
 

 Now, we will run the NLC package and select user defined model to enter above state space 

equations. 

*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 

       

    1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 

  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 
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  5. User Defined Model 

  6. General nonlinear model examples 

  

Select a model by typing the corresponding number: 5 

      

User defined model is selected. 

           

After 10 seconds, you will be directed to m file editor where you can type your own model 

follow the instruction and save the file when complete.  

Come back here and press any key to continue... 

 

It gives an instruction to wait for 10 seconds until m-file editor opens the user defined model. Here it 

is shown below where the robot model is entered. Notice a detailed description is give on how to 

enter the model. 

function [dx,x,u,h] = nlc_UserDefinedModel 
disp('         '); 
%% User Defined Model:  
% this function is part of NLC package (type help nlc_main for more information). 
% 
% (C) 2014-2015, Khalid E. Al-Khater, King Fahd University of Petrolume and 
%  Minerals (KFUPM), abumahdi1425@gmail.com 
% 
% Here you can enter you own model in a ordinary differential fromat. below 
% is an example of entering the model: 
% 
% first of all, you need to define number of states, copy below line and 
% change the assigned number to "n"  
% 
% n = 5; 
% 
% then you need to define symbols for inputs and states, you can use the 
% common convention (u1, u2, u3,..x1, x2, x3,..) or use you own convention 
% (F, R, mu,...,T, S,...), however, in either cases you need to save your 
% states in a column vector called "x" and inputs in a column vector called 
% "u". Here an example of declaring five states as (x1,x2,..,x5): 
% 
% x = sym(zeros(1,n)); 
% for countr = 1 : n 
%    eval(sprintf('syms x%d', countr)); 
%    x(:,countr) = eval(sprintf('x%d',countr)); 



 

53 

 

% end 
% 
% in above the variables x1,x2,...,xn already stored in coloumn vector x. 
% another way to define states is shown by following example: 
% 
% syms T F Rd Y G1 
% x = [T; F; Rd; Y; G1]; 
% 
% you can define the inputs in the same way. for example: 
%  
% syms u1 u2 
%  
% parameters can defined as variables as well in the similar way. like the 
% example below we have 15 parameters labled as a1, a2, .., a15 defined as 
% follows: 
%  
% for countr = 1 : 15 
%    eval(sprintf('syms a%d', countr-1)); 
%    a(:,countr) = eval(sprintf('a%d',countr-1)); 
% end 
% 
% The next step is to write your differential equation. The derivatives can 
% are stored in vector dx, so dx1/dt is entered as dx(1) = ... and dx2/dt 
% is entered as dx(2) = ...  
% another way is to assign derivative to any varialbe name like dT, dF, dRd 
% and then define derivatives as dx = [dT; dF; dRd; ... ] 
% one way to writed differential exqaution is given below: 
% dx(1) = x(2); 
% dx(2) = a(1) + a(2)*x(2) + a(3)*x(2)^2 + (a(4) + a(5)*x(4)-sqrt(a(6) + ... 
%     a(7)*x(4)))*x(3)^2; 
% dx(3) = a(8) + a(9)*x(3) + (a(10)*sin(x(4)) + a(11))*x(3)^2+u1; 
% dx(4) = x(5); 
% dx(5) = a(12) + a(13)*x(4) + a(14)*x(3)^2*sin(x(4)) + a(15)*x(5) + u2; 
%  
% another way shown by following: 
% dT = F/R + u1; 
% dF = T*u2 - Y; 
% dx = [dT; dF]; 
%  
% The last step is to define ouputs and store then in store them coloumn 
% vector "h", example is shown below: 
% 
% h = [x(1); x(3)]; 
% 
% type your differential equations below. When you finish save this file 
% and return to command window to continou the analysis. You can edit 
% whatever written below or delete everything and type your model. 
% 
% 
%% Robot with flexible joint  
disp('Robot with flexible joint...'); 
n = 4; 
syms u F1 J1 M g l k Fm Jm  
x = sym(zeros(1,n)); 
for countr = 1 : n 
   eval(sprintf('syms x%d', countr)); 
   x(:,countr) = eval(sprintf('x%d',countr)); 
end 
dx(1) = x2; 
dx(2) = -(F1/J1)*x2-(M*g*l/J1)*sin(x1)-(k/J1)*(x1-x3); 
dx(3) = x4; 
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dx(4) = -(Fm/Jm)*x4+(k/Jm)*(x1-x3)+(1/Jm)*u; 

  
% Parameters 
Jm = 3.7e-3; 
J1 = 9.3e-3; 
M = 2.1e-1; 
l = 3.1e-1; 
k = 1.8e-1; 
Fm = 4.6e-2; 
F1 = 3.0e-2; 
g = 9.8e-3; 

  
dx = eval(dx); 

  
h = x1; 

 

after that we save the file and go back to MATLAB command window where it is waiting for user 

response to continue. 

After 10 seconds, you will be directed to m file editor where you can type your own model 

follow the instruction and save the file when complete.  

Come back here and press any key to continue... 

          

Robot with flexible joint... 

System is affine! 

States of the system are:  

[ x1, x2, x3, x4] 

 

f(x) =  

x2 

(600*x3)/31 - (100*x2)/31 - (600*x1)/31 - 

(1838852153772690625*sin(x1))/26805424982109192192 

x4 

(1800*x1)/37 - (1800*x3)/37 - (460*x4)/37 

g(x) =  
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        0 

        0 

        0 

 10000/37 

  

u =  

u 

  

h(x) =  

x1 

  

Decouping Matrix, E =  

6000000/1147 

  

No. of States (n) is : 4 

Total relative degree (r_total) is : 4 

Relative degree vector (r_vector) is : [4] 

Number of inputs (m) is : 1 

Number of outputs (p) is : 1 

Rank of decoupline matrix is : 1 

                

Transformation Equations, Z =                       

z1 = x1 

z2 = x2 

z3 = (600*x3)/31 - (100*x2)/31 - (600*x1)/31 - 

(1838852153772690625*sin(x1))/26805424982109192192 
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z4 = (60000*x1)/961 + (10000*x2)/961 - (60000*x3)/961 + (600*x4)/31 + 

(45971303844317265625*sin(x1))/207742043611346239488 - 

x2*((1838852153772690625*cos(x1))/26805424982109192192 + 600/31) 

Nonlinear feedback, U =                                 

u1 = (1147*v1)/6000000 - (9*x1)/50 + (9*x3)/50 + (449*x4)/7750 - 

(1147*((1838852153772690625*cos(x1))/26805424982109192192 + 8600/961)*((600*x1)/31 + 

(100*x2)/31 - (600*x3)/31 + (1838852153772690625*sin(x1))/26805424982109192192))/6000000 - 

(1147*x2*((45971303844317265625*cos(x1))/207742043611346239488 + 

(1838852153772690625*x2*sin(x1))/26805424982109192192 + 60000/961))/6000000 

Following is the linearized state space system:        

A =  

     0     1     0     0 

     0     0     1     0 

     0     0     0     1 

     0     0     0     0 

 

B =  

     0 

     0 

     0 

     1 

 

C =  

     1     0     0     0 

 

D =  

     0 

 

Above A,B,C,D matrices can be used for linear controller desing. This package 
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can prepare a code to be used in a simulink block "MatlabFunction" where you 

can perform simulation more effectively. The code will have an emeded LQI 

 controller. To prepare the code type "nlc_WriteToFile" 

Elapsed time is 22.033676 seconds. 

nlc_WriteToFile  

LQI controller design.... 

please specify the states weight, q =: 50000 

please specify the inputs gain, r =: 0.01 

The code will be shown below, select and copy then past it in MatlabFunction block 

which is in the Simulink file. Once you copy press any key then the Simulink file 

will be opened. You can save the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

Press any key when your are ready... 

       

%%%%%%%% Begining of the code %%%%%%% 

 

function [dx1,dx2,dx3,dx4,dx5,h1] = nlc_DiffEqFile(x1,x2,x3,x4,x5,yd1) 

 z = [ x1;x2;(600*x3)/31 - (100*x2)/31 - (600*x1)/31 - 

(1838852153772690625*sin(x1))/26805424982109192192;(60000*x1)/961 + (10000*x2)/961 - 

(60000*x3)/961 + (600*x4)/31 + (45971303844317265625*sin(x1))/207742043611346239488 - 

x2*((1838852153772690625*cos(x1))/26805424982109192192 + 600/31);x5 ]; 

 K = [ 3084.8694,1009.9021,179.0229,18.9221,-2236.068 ]; 

 v = -K*z; 

 v1 = v(1); 

 u = (1147*v1)/6000000 - (9*x1)/50 + (9*x3)/50 + (449*x4)/7750 - 

(1147*((1838852153772690625*cos(x1))/26805424982109192192 + 8600/961)*((600*x1)/31 + 

(100*x2)/31 - (600*x3)/31 + (1838852153772690625*sin(x1))/26805424982109192192))/6000000 - 
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(1147*x2*((45971303844317265625*cos(x1))/207742043611346239488 + 

(1838852153772690625*x2*sin(x1))/26805424982109192192 + 60000/961))/6000000; 

 dx1 = x2; 

 dx2 = (600*x3)/31 - (100*x2)/31 - (600*x1)/31 - 

(1838852153772690625*sin(x1))/26805424982109192192; 

 dx3 = x4; 

 dx4 = (10000*u)/37 + (1800*x1)/37 - (1800*x3)/37 - (460*x4)/37; 

 h1 = x1; 

 dx5 = yd1 - h1; 

       

%%%%%%%% End of the code %%%%%%% 

          

Copy above code and past it in MatlabFunction block. You can save 

the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

          

Press any key when your are ready... 

This may take while, be patient please.... 

The system is having  a well-defined degree equals to number of states. The linearized model used to 

desing LQI controller. Like previous examples the code for Simulink has been copied and below is 

the simulation results: 
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Figure 7 Simulation Results of Example 5.10.3 
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𝑥̇5 = 𝑘2(𝑥1𝑥4 + 𝑥1𝑐𝐷𝑆 + 𝑥4𝑐𝐴𝑆) −
𝐹

𝑉
𝑥5 

 The program results of designing input-output linearizing control is shown below. 

*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 

       

  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 

  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 

  5. User Defined Model 

  6. General nonlinear model examples 

  

Select a model by typing the corresponding number: 3   

CSTR, Series Reaction Model is selected.  

System is affine! 

States of the system are:  

[ x1, x2, x3, x4, x5] 

  

f(x) =  

 - 4*x1 - 2*x2 - 4*x4 - x1*x2 - 2*x1*x4 

                    - x1 - 3*x2 - x1*x2 
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                 x1 + 2*x2 - x3 + x1*x2 

                - 2*x1 - 5*x4 - 2*x1*x4 

             2*x1 + 4*x4 - x5 + 2*x1*x4 

  

g(x) =  

[ 1, 0, 0] 

[ 0, 1, 0] 

[ 0, 0, 0] 

[ 0, 0, 1] 

[ 0, 0, 0] 

  

u =  

 u1 

 u2 

 u3 

  

h(x) =  

 x3 

 x5 

  

Decouping Matrix, E =  

[   x2 + 1, x1 + 2,        0] 

[ 2*x4 + 2,      0, 2*x1 + 4] 

  

No. of States (n) is : 5 
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Total relative degree (r_total) is : 4 

Relative degree vector (r_vector) is : [2  2] 

Number of inputs (m) is : 3 

Number of outputs (p) is : 2 

Rank of decoupline matrix is : 2 

WARNING: Total relative degree is lower than system order!!! 

         It is essential to analyze stability of internal dynamics! 

         However, Applying Dynamic Extension Algorithm may help to achieve full 

         order relative degree. 

NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion Algorithm. 

Elapsed time is 4.970026 seconds. 

 

As it is noticed above, the system is having total relative degree less than the number of states. 

Which mean the stability of internal dynamics is not guaranteed. However, we can still design the 

controller and since the program is designed for full order relative degree systems, we have to 

execute the remaining functions manually. Namely, the state transformation, control law, and state 

space of linearized system as it is shown below. Following is the state transformation: 

nlc_StatTrans(f,h,x,r_vector); 

                

Transformation Equations, Z =        

                

z1 = x3 

z2 = x1 + 2*x2 - x3 + x1*x2 

z3 = x5 

z4 = 2*x1 + 4*x4 - x5 + 2*x1*x4 
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next, is the control law and state space of linearized system: 

Nonlinear feedback, U =  

                                 

u1 = (((x2 + 1)*(4*x1 + 2*x4 + x1^2 + x4^2 + 5))/(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24) - ((2*x4 + 2)*(x2 + 1)*(x4 + 1))/(2*(40*x1 + 8*x2 + 

8*x4 + x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 

2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)))*(v1 + x1 + 2*x2 - x3 + (x1 + 

2)*(x1 + 3*x2 + x1*x2) + x1*x2 + (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)) + 

(((2*x4 + 2)*(4*x1 + 2*x2 + x1^2 + x2^2 + 5))/(4*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)) - ((x2 + 1)^2*(x4 + 1))/(2*(40*x1 + 8*x2 + 8*x4 + 

x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 

+ 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)))*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 

2)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + (2*x1 + 4)*(2*x1 + 5*x4 + 2*x1*x4)) 

u2 = ((x1 + 2)*(4*x1 + 2*x4 + x1^2 + x4^2 + 5)*(v1 + x1 + 2*x2 - x3 + (x1 + 2)*(x1 + 3*x2 

+ x1*x2) + x1*x2 + (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)))/(40*x1 + 8*x2 + 8*x4 

+ x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 

2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24) - ((x1 + 2)*(x2 + 1)*(x4 + 

1)*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 2)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + 

(2*x1 + 4)*(2*x1 + 5*x4 + 2*x1*x4)))/(2*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + x1^2*x4^2 + 

8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 

4*x2^2 + x1^4 + 4*x4^2 + 24)) 

u3 = ((2*x1 + 4)*(4*x1 + 2*x2 + x1^2 + x2^2 + 5)*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 2)*(4*x1 

+ 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + (2*x1 + 4)*(2*x1 + 5*x4 + 

2*x1*x4)))/(4*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 

+ 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)) - 

((2*x1 + 4)*(x2 + 1)*(x4 + 1)*(v1 + x1 + 2*x2 - x3 + (x1 + 2)*(x1 + 3*x2 + x1*x2) + x1*x2 

+ (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)))/(2*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)) 

nlc_EquLinSys(r_vector);     

A =  

     0     1     0     0 

     0     0     0     0 

     0     0     0     1 

     0     0     0     0 

B =  

     0     0 
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     1     0 

     0     0 

     0     1 

C =  

     1     0     0     0 

     0     0     1     0 

D =  

     0 

Now we can design LQI for linearized system: 

 

nlc_WriteToFile  

LQI controller design.... 

please specify the states weight, q =: 50000 

please specify the inputs gain, r =: 0.01 

The code will be shown below, select and copy then past it in MatlabFunction block 

which is in the Simulink file. Once you copy press any key then the Simulink file 

will be opened. You can save the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

Press any key when your are ready... 

       

%%%%%%%% Begining of the code %%%%%%% 

 

function [dx1,dx2,dx3,dx4,dx5,dx6,dx7,h1,h2] = 

nlc_DiffEqFile(x1,x2,x3,x4,x5,x6,x7,yd1,yd2) 

 z = [ x3;x1 + 2*x2 - x3 + x1*x2;x5;2*x1 + 4*x4 - x5 + 2*x1*x4;x6;x7 ]; 
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 K = [ 2302.9348,67.8666,-3.4536e-16,-1.1744e-15,-2236.068,2.4937e-12;-2.3557e-14,-

1.1744e-15,2302.9348,67.8666,3.8044e-12,-2236.068 ]; 

 v = -K*z; 

 v1 = v(1); 

 v2 = v(2); 

 u1 = (((x2 + 1)*(4*x1 + 2*x4 + x1^2 + x4^2 + 5))/(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24) - ((2*x4 + 2)*(x2 + 1)*(x4 + 1))/(2*(40*x1 + 8*x2 + 

8*x4 + x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 

2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)))*(v1 + x1 + 2*x2 - x3 + (x1 + 

2)*(x1 + 3*x2 + x1*x2) + x1*x2 + (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)) + 

(((2*x4 + 2)*(4*x1 + 2*x2 + x1^2 + x2^2 + 5))/(4*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)) - ((x2 + 1)^2*(x4 + 1))/(2*(40*x1 + 8*x2 + 8*x4 + 

x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 

+ 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)))*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 

2)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + (2*x1 + 4)*(2*x1 + 5*x4 + 2*x1*x4)); 

 u2 = ((x1 + 2)*(4*x1 + 2*x4 + x1^2 + x4^2 + 5)*(v1 + x1 + 2*x2 - x3 + (x1 + 2)*(x1 + 3*x2 

+ x1*x2) + x1*x2 + (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)))/(40*x1 + 8*x2 + 8*x4 

+ x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 

2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24) - ((x1 + 2)*(x2 + 1)*(x4 + 

1)*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 2)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + 

(2*x1 + 4)*(2*x1 + 5*x4 + 2*x1*x4)))/(2*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + x1^2*x4^2 + 

8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 

4*x2^2 + x1^4 + 4*x4^2 + 24)); 

 u3 = ((2*x1 + 4)*(4*x1 + 2*x2 + x1^2 + x2^2 + 5)*(v2 + 2*x1 + 4*x4 - x5 + (2*x4 + 

2)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4) + 2*x1*x4 + (2*x1 + 4)*(2*x1 + 5*x4 + 

2*x1*x4)))/(4*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 

+ 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)) - 

((2*x1 + 4)*(x2 + 1)*(x4 + 1)*(v1 + x1 + 2*x2 - x3 + (x1 + 2)*(x1 + 3*x2 + x1*x2) + x1*x2 

+ (x2 + 1)*(4*x1 + 2*x2 + 4*x4 + x1*x2 + 2*x1*x4)))/(2*(40*x1 + 8*x2 + 8*x4 + x1^2*x2^2 + 

x1^2*x4^2 + 8*x1*x2 + 8*x1*x4 + 4*x1*x2^2 + 2*x1^2*x2 + 4*x1*x4^2 + 2*x1^2*x4 + 26*x1^2 + 

8*x1^3 + 4*x2^2 + x1^4 + 4*x4^2 + 24)); 

 dx1 = u1 - 4*x1 - 2*x2 - 4*x4 - x1*x2 - 2*x1*x4; 

 dx2 = u2 - x1 - 3*x2 - x1*x2; 

 dx3 = x1 + 2*x2 - x3 + x1*x2; 

 dx4 = u3 - 2*x1 - 5*x4 - 2*x1*x4; 

 dx5 = 2*x1 + 4*x4 - x5 + 2*x1*x4; 

 h1 = x3; 
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 h2 = x5; 

 dx6 = yd1 - h1; 

 dx7 = yd2 - h2; 

       

%%%%%%%% End of the code %%%%%%% 

          

Copy above code and past it in MatlabFunction block. You can save 

the simulation outputs to workspase and name them as: 

y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the simulink 

you can plot the resluts using the command "nlc_PlotSimulation" 

          

Press any key when your are ready... 

This may take while, be patient please.... 

 

Below is the simulation results: 

 

 

Figure 8 Simulation Results of Example 5.10.4 (Output 1) 
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Figure 9 Simulation Results of Example 5.10.4 (Output 2) 
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will present here two well-mixed models one with first order model approximation for heat 

exchanger and the other one with staged heat exchanger model. The nonlinear model presented by 

set of differential equations and another set of algebraic equations describing the dynamic behavior 

of the reactor as well as heat and mass balance. Following are the list of those equations. Description 

of symbols and algebraic equation are listed in table 1. 

 Monomer Mass balance: 

dM1
𝑑𝑡

=
1

𝑉𝑔
(𝐹M1f  − 𝑏M1  − 𝑅M1) 

 Catalyst Mass Balance: 

𝑑𝑦

𝑑𝑡
= 𝐹𝑦 − 𝑘𝑑𝑦 − 𝑦 (

𝑂𝑝

𝐵𝑤
) 

 Energy Balance (to be used when first order heat exchanger model is considered): 

𝑑𝑇

𝑑𝑡
=
𝐻𝑓 − 𝑄𝑑 + 𝐻𝑟 − 𝐻𝑝 + 𝐻𝑐

𝑀𝑟𝐶𝑝𝑟 + 𝐵𝑤𝐶𝑝𝑝𝑜𝑙
 

 Inert Gas Mass Balance: 

𝑑𝐼

𝑑𝑡
=
1

𝑉𝑔
(𝐹𝐼𝑓 − 𝑏𝐼) 

 First Order Heat Exchanger Model 

𝑑𝑄𝑑
𝑑𝑡

=
𝐹𝑔𝐶𝑝𝑔(𝑇 − 𝑇𝑔0𝑠𝑠) − 𝑄𝑑

𝜏
 

 Staged Heat Exchanger Model 

𝑑𝑇𝑤1
𝑑𝑡

=
𝐹𝑤
𝑀𝑤

(𝑇𝑤𝑖 − 𝑇𝑤1) −
𝐴𝑈

𝑀𝑤𝐶𝑝𝑤
(𝑇𝑤 − 𝑇𝑔1) 

𝑑𝑇𝑔1

𝑑𝑡
=
𝐹𝑔

𝑀𝑔
(𝑇 − 𝑇𝑔1) −

𝐴𝑈

𝑀𝑔𝐶𝑝𝑔
(𝑇𝑤1 − 𝑇𝑔1) 

 Energy Balance (to be used when staged heat exchanger model is considered) 

𝑑𝑇

𝑑𝑡
=
𝐻𝑓 + 𝐻𝑔0 − 𝐻𝑡𝑜𝑝 + 𝐻𝑟 − 𝐻𝑝 + 𝐻𝑐

𝑀𝑟𝐶𝑝𝑟 + 𝐵𝑤𝐶𝑝𝑝𝑜𝑙
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Table 1 List of all symbols and algabraic equations for FBR model 

Symbol Definition and related algebraic equation 

𝑴𝟏 Monomer concentration, 
𝑚𝑜𝑙

𝑚3
 

𝑽𝒈 Volume of gas phase in the reactor, 𝑚3 

𝑭𝑴𝟏𝒇 Molar feed rate of monomer to reactor, 
𝑚𝑜𝑙

𝑠
 

𝒃𝑴𝟏 

Outflow rate of monomer in the bleed stream,  

𝑏M1 =
𝑀1

𝑀1 + 𝐼
𝑏t 

𝑹𝑴𝟏 Rate of monomer consumption due to reaction 

𝒃𝒕 
Total bleed stream flow rate that depends on the reaction pressure,  

𝑏𝑡 = 𝑣p𝐶v√𝑃 − 𝑃v
2

 

𝑰 Concentration of inert gas, 
𝑚𝑜𝑙

𝑚3  

𝒗𝒑 Bleed stream valve position 

𝑪𝒗 Valve coefficient 

𝑷𝒗 Pressure downstream of bleed valve 

𝑷 
Reactor Pressure,  
𝑃 = (𝑀1  + 𝐼)𝑅𝑇 

𝑹 Ideal gas constant 

𝑻 Reactor Temperatur 

𝑹𝐌𝟏 Monomer Ration,  𝑅M1 = 𝑀1𝑘p(𝑇)𝑦 

𝒌𝒑 
Temperature independent propagation rate constant,  𝑘𝑝(𝑇) = 𝑘p𝑇ref𝒆

(−  
𝐸a

𝑅
)(
1

𝑇
 − 

1

𝑇ref
)
 

𝑬𝒂 Activation energy for propagation 

𝑻𝒓𝒆𝒇 Reference Temperature 

𝑭𝒚 Molar feed rate of catalyst,  𝐹𝑦 = 𝐹𝑐𝑎𝑐 

𝑭𝒄 Mass flow rate of catalyst to reactor, 
𝑘𝑔

𝑠
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Symbol Definition and related algebraic equation 

𝒂𝒄 Active site concentration on the catalyst, 
𝑚𝑜𝑙

𝑘𝑔
 

𝑶𝒑 Outflow rate of the polymer product from the react,   𝑂𝑝 = 𝑅𝑀1𝑚𝑤1 

𝒌𝒅 Deactivation rate constant, 
1

𝑠
 

𝒎𝒘𝟏 Molecular weight of monomer, 
𝑘𝑔

𝑚𝑜𝑙
 

𝑩𝒘 Mass of polymer in the reactor, 𝑘𝑔 

𝑯𝒇 Enthalpy of gas entering in the fresh feed stream, 
𝐽

𝑘𝑔
,  𝐻𝑓 = 𝐹𝑀1𝑓𝐶𝑝𝑓(𝑇𝑓 − 𝑇𝑟𝑒𝑓) 

𝑪𝒑𝒇 Specific heat capacity of monomer, 
𝐽

𝑚𝑜𝑙.𝐾
 

𝑻𝒇 Feed Temperature, 𝐾 

𝑸𝒅 Heat removal rate (refer to heat exchanger model) 

𝑯𝒓 The rate of heat generation by reaction 

𝚫𝑯𝒓 Enthalpy of reaction, 
𝐽

𝑘𝑔
 

𝑯𝒑 Enthalpy associated with polymer leaving reactor,  𝐻𝑝 = 𝑂𝑝𝐶𝑝𝑝𝑜𝑙(𝑇 − 𝑇𝑟𝑒𝑓) 

𝑪𝒑𝒑𝒐𝒍 Specific heat capacity of polymer, 
𝐽

𝑘𝑔.𝐾
 

𝑯𝒄 Enthalpy associated with catalyst enters the reactor,  𝐻𝑐 = 𝐹𝑐𝐶𝑝𝑐(𝑇𝑓𝑐 − 𝑇𝑟𝑒𝑓) 

𝑪𝒑𝒄 Specific heat capacity of catalyst, 
𝐽

𝑘𝑔.𝐾
 

𝑻𝒇𝒄 Catalyst feed temperature 

𝑴𝒓𝑪𝒑𝒓 Thermal capacitance of polymer, 
𝐽

𝐾
 

𝑭𝑰𝒇 Molar flow rate of inert gas, 
𝑚𝑜𝑙

𝑠
 

𝒃𝑰 Mole fraction of inert gas,  𝑏𝐼 =
𝐼

𝑀1+𝐼
𝑏𝑡 

𝑭𝒈 Recycle gas flow rate, 
𝑚𝑜𝑙

𝑠
 

𝑪𝒑𝒈 Specific heat capacity of gas 

𝝉 The first order time constant for the exchanger 
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Symbol Definition and related algebraic equation 

𝑻𝒈𝟎𝒔𝒔 The gas side outlet temperature,  𝑇𝑔0𝑠𝑠 =
𝑇𝑤(1−𝑒

𝛾)−𝑇(1−
𝐹𝑔𝐶𝑝𝑔

𝐹𝑤𝐶𝑝𝑤
)

𝐹𝑔𝐶𝑝𝑔

𝐹𝑤𝐶𝑝𝑤
−𝑒𝛾

 

𝑻𝒘 Cooling water temperature, 𝐾 

𝑭𝒘 Cooling water flow, 𝑘𝑔/ 𝑠 

𝑪𝒑𝒘 Cooling water heat capacity, 
𝑗

𝑠.𝐾
 

𝜸 𝛾 = 𝐴𝑈 (
1

𝐹𝑔𝐶𝑝𝑔
+

1

𝐹𝑤𝐶𝑝𝑤
) 

𝑷𝑴𝟏 Monomer partial pressure,  𝑃𝑀1 = 𝑅𝑀1𝑇 

𝑷𝒓 Production rate,  𝑃𝑟 = 𝑘𝑝𝑦𝑀1𝑚𝑤1 

𝑴𝒘 Mass holdup of cooling water in heat exchanger, 𝑘𝑔 

𝑻𝒘𝒊 Inlet cooling water temperature to heat exchanger, 𝐾 

𝑴𝒈 Mass holdup of recycle gas in heat exchanger, 𝑘𝑔 

𝑪𝒑𝒈 Specific heat capacity of recycle gas, 
𝐽

𝑘𝑔.𝐾
 

𝑯𝒕𝒐𝒑 The enthalpy of the gas leaving the reactor, 𝐻𝑡𝑜𝑝 = (𝐹𝑔 + 𝑏𝑡)𝐶𝑝𝑔(𝑇 − 𝑇𝑟𝑒𝑓) 

𝑯𝒈𝟎 the enthalpy of the recycle stream entering the reactor, 𝐻𝑔0 = 𝐻𝑡𝑜𝑝 − 𝐻𝑏 − 𝑄𝑑 

 

Below is the program results when FBR with fist order heat exchanger model is selected. 

 
*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 

       

  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 
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  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 

  5. Semibatch Co-polymerization Reactor 

  6. User Defined Model 

  7. General nonlinear model examples 

  

Select a model by typing the corresponding number: 1         

FBR with 1st order heat exchanger model is chosen.   

System is not affine!    

...Changing to affine by adding integrator(s) to the non-affine input(s). 

System is affine! 

States of the system are:  

[ M1, Y, T, I1, Qd, Fw] 

 

f(x) =  

                                                                                                                                                                                                                                              

-(M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R) - FM1f + (Cv*M1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 

+ M1))/Vg 

                                                                                                                                                                                                                                                                                          

- Y*kd - (M1*Y^2*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R))/Bw 

                                                                                                                                                              

-(Qd - CpIn*FIf*(Tf - Tref) - Cpf*FM1f*(Tf - Tref) + DeltaHR*M1*Y*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R) + Cppol*M1*Y*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref))/(MrCpr + Bw*Cppol) 

                                                                                                                                                                                                                                                                                      

(FIf - (Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1))/Vg 

 -(Qd - Fg*(T - (Tw*(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) 

- 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw - 1))/(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw))*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/tau 
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0 

  

g(x) =  

[  0, 0] 

[ ac, 0] 

[  0, 0] 

[  0, 0] 

[  0, 0] 

[  0, 1] 

  

u =  

     Fc 

 alpha1 

  

h(x) =  

 M1 

  T 

  

Decouping Matrix, E =  

[-(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg, 0] 

[ -(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol), 0] 

  

No. of States (n) is : 6 

Total relative degree (r_total) is : 4 
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Relative degree vector (r_vector) is : [2  2] 

Number of inputs (m) is : 2 

Number of outputs (p) is : 2 

Rank of decoupline matrix is : 1 

Attention!! The system dose not have a well defined relative degree. 

You may consider to apply Dynamic Extension Algorithm. 

NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion Algorithm. 

Elapsed time is 8.279945 seconds. 

 

The system doesn’t have a well-define relative degree, hence the dynamic extension will be 

executed. 

 

nlc_DynamicExt   

Type the maximum number of iteration to run dynamic extenstion 

NOTE: normally the maximum iteration is n (number of states). If you 

choose big number, you may experience showness in program execution 

and endup with a very complicated model with many input delays!! 

If you decide to choose it equal to n, leave it blank and just hit enter key! 

:  

.....Adding integrator to input number 1 

System is affine! 

New States, xn =  

[ M1, Y, T, I1, Qd, Fw, Fc] 

 

New Inputs, un =  
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    mu1 

 alpha1 

  

New Decoupling Matrix, En =  

[                                                                                        -

(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg

0] 

[ -(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol), (Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 

+ M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

        

No. of States is : 7 

Total relative degree is : 6 

Relative degree vector is : [3  3] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

   

.....Adding integrator to input number 1  

System is affine! 

New States, xn =  

[ M1, Y, T, I1, Qd, Fw, Fc, mu1] 

  

New Inputs, un =  

    mu2 
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 alpha1 

  

New Decoupling Matrix, En =  

[ -(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg, -(Fg*((Cv*M1*RR*Vp)/(2*(RR*T*(I1 + M1) - 

Pv)^(1/2)) + (Ea*M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R))/(R*T^2))*(((Cpw*Fg*T*((CpIn*I1)/(I1 

+ M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(Vg*tau*(MrCpr + Bw*Cppol))] 

[                                          0,                                                                                                        

(Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - 

(AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - (((Cpw*Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw - 

1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

            

No. of States is : 8 

Total relative degree is : 7 

Relative degree vector is : [4  3] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

   

.....Adding integrator to input number 2   

System is affine! 

 

New States, xn =  
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[ M1, Y, T, I1, Qd, Fw, Fc, mu1, alpha1] 

  

New Inputs, un =  

 mu2 

 mu3 

  

New Decoupling Matrix, En =  

[                                                                                        -

(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg

0] 

[ -(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol), (Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 

+ M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

            

No. of States is : 9 

Total relative degree is : 8 

Relative degree vector is : [4  4] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

 

.....Adding integrator to input number 1 

System is affine! 

 

New States, xn =  
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[ M1, Y, T, I1, Qd, Fw, Fc, mu1, alpha1, mu2] 

  

New Inputs, un =  

 mu4 

 mu3 

  

New Decoupling Matrix, En =  

[ -(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg, -(Fg*((Cv*M1*RR*Vp)/(2*(RR*T*(I1 + M1) - 

Pv)^(1/2)) + (Ea*M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R))/(R*T^2))*(((Cpw*Fg*T*((CpIn*I1)/(I1 

+ M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(Vg*tau*(MrCpr + Bw*Cppol))] 

[                                          0,                                                                                                        

(Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - 

(AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - (((Cpw*Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw - 

1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

            

No. of States is : 10  

Total relative degree is : 9 

Relative degree vector is : [5  4] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

.....Adding integrator to input number 2  
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System is affine! 

 

New States, xn =  

[ M1, Y, T, I1, Qd, Fw, Fc, mu1, alpha1, mu2, mu3] 

  

New Inputs, un =  

 mu4 

 mu5 

  

New Decoupling Matrix, En =  

[                                                                                        -

(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg

0] 

[ -(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol), (Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 

+ M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

  

            

No. of States is : 11  

Total relative degree is : 10 

Relative degree vector is : [5  5] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

.....Adding integrator to input number 1 
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System is affine! 

New States, xn =  

[ M1, Y, T, I1, Qd, Fw, Fc, mu1, alpha1, mu2, mu3, mu4] 

New Inputs, un =  

 mu6 

 mu5 

  

New Decoupling Matrix, En =  

[ -(M1*ac*kp*exp(-(Ea*(1/T - 1/Tref))/R))/Vg, -(Fg*((Cv*M1*RR*Vp)/(2*(RR*T*(I1 + M1) - 

Pv)^(1/2)) + (Ea*M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R))/(R*T^2))*(((Cpw*Fg*T*((CpIn*I1)/(I1 

+ M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - 

(((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 

1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) 

+ (Cpf*M1)/(I1 + M1)))/Fw - 1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - (Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/(Vg*tau*(MrCpr + Bw*Cppol))] 

[                                          0,                                                                                                        

(Fg*(((Cpw*Fg*T*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw^2 - 

(AU*Cpw*Tw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + 

M1))))))/Fw^2)/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw) - (((Cpw*Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/Fw^2 - (AU*Cpw*exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))))/Fw^2)*(Tw*(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1))))) - 1) - T*((Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw - 

1)))/(exp(AU*(Cpw/Fw + 1/(Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))))) - 

(Cpw*Fg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)))/Fw)^2)*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)))/(tau*(MrCpr + Bw*Cppol))] 

            

No. of States is : 12 

Total relative degree is : 11 

Relative degree vector is : [6  5] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 
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Reached to maximum number of iterations!! Relative Degree cannot be achieved. 

Elapsed time is 120.575130 seconds. 

 

As we can see in the above results, the program failed to achieve full order relative degree. Now we 

will run the program selecting FBR with staged exchange heater model.   

 

*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM ***  

Below is a list of nonlinear models where you can select to apply 

nonlinear control design. You can enter your own model as well. 

       

For Help and more Information about this package typ 0 "zero" 

       

  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model 

  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model 

  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-square). 

  4. Induction Motor 

  5. Semibatch Co-polymerization Reactor 

  6. User Defined Model 

  7. General nonlinear model examples 

  

Select a model by typing the corresponding number: 2           

FBR with staged heat exchanger model is chosen. 

System is affine! 

 

States of the system are:  
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[ M1, I1, Y, T, Tw1, Tg1] 

  

f(x) =  

                                                                                                                                                                                                                                                                               

(FIf - (Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1))/Vg 

                                                                                                                                                                                                                                       

-(M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R) - FM1f + (Cv*M1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 

+ M1))/Vg 

                                                                                                                                                                                                                                                                                   

- Y*kd - (M1*Y^2*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R))/Bw 

 (CpIn*FIf*(Tf - Tref) + Cpf*FM1f*(Tf - Tref) - (Fg + Cv*Vp*(RR*T*(I1 + M1) - 

Pv)^(1/2))*(T - Tf)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) + Fg*(Tg1 - 

Tref)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) - DeltaHR*M1*Y*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R) - Cppol*M1*Y*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref))/(MrCpr + Bw*Cppol) 

                                                                                                                                                                                                                                                                                                                 

(AU*(Tg1 - Tw1))/(Cpw*Mw) 

                                                                                                                                                                                                                                                      

(Fg*(T - Tg1))/Mg - (AU*(Tg1 - Tw1))/(Mg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))) 

  

g(x) =  

[  0,               0] 

[  0,               0] 

[ ac,               0] 

[  0,               0] 

[  0, -(Tw1 - Twi)/Mw] 

[  0,               0] 

  

u =  

 Fc 

 Fw 



 

83 

 

  

h(x) =  

  T 

 M1 

Decouping Matrix, E =  

[                                                                                                                                                                                                                                                             

-(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol), 0] 

[ ac*((M1*kp*exp(-(Ea*(1/T - 1/Tref))/R)*((Cv*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1) - 

(Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1)^2 + (Cv*I1*RR*T*Vp)/(2*(RR*T*(I1 + M1) - 

Pv)^(1/2)*(I1 + M1))))/Vg^2 + (Cv*I1*RR*Vp*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) 

+ Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref)))/(2*Vg*(MrCpr + 

Bw*Cppol)*(RR*T*(I1 + M1) - Pv)^(1/2))), 0] 

  

No. of States (n) is : 6 

Total relative degree (r_total) is : 5 

Relative degree vector (r_vector) is : [2  3] 

Number of inputs (m) is : 2 

Number of outputs (p) is : 2 

Rank of decoupline matrix is : 1 

Attention!! The system dose not have a well defined relative degree. 

You may consider to apply Dynamic Extension Algorithm. 

NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion Algorithm. 

Elapsed time is 6.489193 seconds. 

nlc_DynamicExt   

Type the maximum number of iteration to run dynamic extenstion 

NOTE: normally the maximum iteration is n (number of states). If you 

choose big number, you may experience showness in program execution 

and endup with a very complicated model with many input delays!! 
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If you decide to choose it equal to n, leave it blank and just hit enter key! 

:  

.....Adding integrator to input number 1 

System is affine! 

 

New States, xn =  

[ M1, I1, Y, T, Tw1, Tg1, Fc] 

  

New Inputs, un =  

 mu1 

  Fw 

New Decoupling Matrix, En =  

[                                                                                                                                                                                                                                                             

-(ac*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) + Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(MrCpr + Bw*Cppol),                                             -

(AU*Fg*(Tw1 - Twi))/(Mg*Mw*(MrCpr + Bw*Cppol))] 

[ ac*((M1*kp*exp(-(Ea*(1/T - 1/Tref))/R)*((Cv*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1) - 

(Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1)^2 + (Cv*I1*RR*T*Vp)/(2*(RR*T*(I1 + M1) - 

Pv)^(1/2)*(I1 + M1))))/Vg^2 + (Cv*I1*RR*Vp*(DeltaHR*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) 

+ Cppol*M1*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref)))/(2*Vg*(MrCpr + 

Bw*Cppol)*(RR*T*(I1 + M1) - Pv)^(1/2))), (AU*Cv*Fg*I1*RR*Vp*(Tw1 - 

Twi))/(2*Mg*Mw*Vg*(MrCpr + Bw*Cppol)*(RR*T*(I1 + M1) - Pv)^(1/2))]          

No. of States is : 7  

Total relative degree is : 7 

Relative degree vector is : [3  4] 

Number of inputs and outputs is : 2 

Rank of decoupline matrix is : 2 

Full System Order Relative Degree Achieved!!          

New f(x), fn =  
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(FIf - (Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1))/Vg 

                                                                                                                                                                                                                                       

-(M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R) - FM1f + (Cv*M1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 

+ M1))/Vg 

                                                                                                                                                                                                                                                                             

Fc*ac - Y*kd - (M1*Y^2*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R))/Bw 

 (CpIn*FIf*(Tf - Tref) + Cpf*FM1f*(Tf - Tref) - (Fg + Cv*Vp*(RR*T*(I1 + M1) - 

Pv)^(1/2))*(T - Tf)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) + Fg*(Tg1 - 

Tref)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) - DeltaHR*M1*Y*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R) - Cppol*M1*Y*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref))/(MrCpr + Bw*Cppol) 

                                                                                                                                                                                                                                                                                                                 

(AU*(Tg1 - Tw1))/(Cpw*Mw) 

                                                                                                                                                                                                                                                      

(Fg*(T - Tg1))/Mg - (AU*(Tg1 - Tw1))/(Mg*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1))) 

                                                                                                                                                                                                                                                                                                                                         

0               

New g(x), gn =  

[ 0,               0] 

[ 0,               0] 

[ 0,               0] 

[ 0,               0] 

[ 0, -(Tw1 - Twi)/Mw] 

[ 0,               0] 

[ 1,               0]             

Transformation Equations, Z =                     

z1 = T 

z2 = (CpIn*FIf*(Tf - Tref) + Cpf*FM1f*(Tf - Tref) - (Fg + Cv*Vp*(RR*T*(I1 + M1) - 

Pv)^(1/2))*(T - Tf)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) + Fg*(Tg1 - 

Tref)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) - DeltaHR*M1*Y*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R) - Cppol*M1*Y*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R)*(T - Tref))/(MrCpr + Bw*Cppol) 

z3 = ...WARNING!! The formula is too long and will not be displayed 
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z4 = M1 

z5 = (FIf - (Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1))/Vg 

z6 = ((M1*Y*kp*exp(-(Ea*(1/T - 1/Tref))/R) - FM1f + (Cv*M1*Vp*(RR*T*(I1 + M1) - 

Pv)^(1/2))/(I1 + M1))*((Cv*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1) - (Cv*I1*Vp*(RR*T*(I1 

+ M1) - Pv)^(1/2))/(I1 + M1)^2 + (Cv*I1*RR*T*Vp)/(2*(RR*T*(I1 + M1) - Pv)^(1/2)*(I1 + 

M1))))/Vg^2 + (((Cv*I1*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))/(I1 + M1)^2 - 

(Cv*I1*RR*T*Vp)/(2*(RR*T*(I1 + M1) - Pv)^(1/2)*(I1 + M1)))*(FIf - (Cv*I1*Vp*(RR*T*(I1 + 

M1) - Pv)^(1/2))/(I1 + M1)))/Vg^2 - (Cv*I1*RR*Vp*(CpIn*FIf*(Tf - Tref) + Cpf*FM1f*(Tf - 

Tref) - (Fg + Cv*Vp*(RR*T*(I1 + M1) - Pv)^(1/2))*(T - Tf)*((CpIn*I1)/(I1 + M1) + 

(Cpf*M1)/(I1 + M1)) + Fg*(Tg1 - Tref)*((CpIn*I1)/(I1 + M1) + (Cpf*M1)/(I1 + M1)) - 

DeltaHR*M1*Y*kp*mw1*exp(-(Ea*(1/T - 1/Tref))/R) - Cppol*M1*Y*kp*mw1*exp(-(Ea*(1/T - 

1/Tref))/R)*(T - Tref)))/(2*Vg*(MrCpr + Bw*Cppol)*(RR*T*(I1 + M1) - Pv)^(1/2)) 

z7 = ...WARNING!! The formula is too long and will not be displayed 

                         

Nonlinear feedback, U =                             

u1 = ...WARNING!! The formula is too long and will not be displayed 

u2 = ...WARNING!! The formula is too long and will not be displayed 

  

Following is the linearized state space system:      

A =  

     0     1     0     0     0     0     0 

     0     0     1     0     0     0     0 

     0     0     0     0     0     0     0 

     0     0     0     0     1     0     0 

     0     0     0     0     0     1     0 

     0     0     0     0     0     0     1 

     0     0     0     0     0     0     0 

B =  

     0     0 

     0     0 
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     1     0 

     0     0 

     0     0 

     0     0 

     0     1 

C =  

     1     0     0     0     0     0     0 

     0     0     0     1     0     0     0 

D =  

     0      

Above A,B,C,D matrices can be used for linear controller desing. This package 

can prepare a code to be used in a simulink block "MatlabFunction" where you 

can perform simulation more effectively. The code will have an emeded LQI 

 controller. To prepare the code type "nlc_WriteToFile" 

Elapsed time is 5.822795 seconds. 

 

After executing dynamic extension, the program succeeded to achieve full relative degree and 

computed the control law. But due to complexity of the system, the control law formula is too long 

and not recommended to be used since it will cause a lot of delay.  
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CHAPTER 6: Conclusions and Recommendations 

6.1 Conclusions 

The collection of functions/ subroutines developed in this thesis as NLC package forms a valuable 

contribution to the improvement of systematic design methodologies for nonlinear control systems. 

The NLC package offers powerful computational tools which provide options for symbolic analysis 

and design of nonlinear control systems.  It provides a reliable treatment of important field of interest 

in the (analytic) analysis and design of nonlinear control systems: the exact linearization theories. It 

is made possible to compute and analyze symbolically for a class of (MIMO as well as SISO) 

systems for which the relative degree can be defined, the state transformation, an exact linearization 

of the input-output equations, and automatic code generation for simulation including linear 

controller design. The results established so far with this package seem to be promising, yet its value 

should be verified in practice, when elaborate tests with a real implementations in industry plants, 

robots, electrical systems, etc. 

An important shortcoming in this MATLAB package is dealing with large scale problems like 

distillation columns where number of states is huge, and difficulties dealing with a very lengthy 

symbolic expressions. 

 

6.2 Recommendations and Future Work 

Fore future research it is recommended to provide extensions of the existing NLC package by the 

following:  
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 Implementation of additional control objectives in order to shift the attention from specific 

analysis to more complete synthesis of control problems. One may consider to add sliding 

mode control or adaptive control as an option for different control objectives. 

 Improvement of the possibilities for symbolic evaluation of the MATLAB results. 

 Improvement of the subroutines to become more user-friendly by offering choices whether or 

not some tests or parts of the program should be performed, or by providing better help and 

guidance during program execution. 

 Optimization of messages, in order to return as much information as possible.  

 Performing elaborate tests on existing NLC package with a number of different system 

models, in which realistic models should be incorporated. 

 Assessment of the control approaches introduced in this thesis and implemented in NLC 

package when they are imposed on real control problems. 

 Considering zero-dynamic analysis and to compute state transformation for systems having 

total relative degree less than the number of states. 

 Providing more analysis and tests of non-square systems. 
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Appendix A: NLC Package Flow Chart 
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Appendix B: Program Codes of NLC Subroutines 

 

B.1 Main Program "nlc_main.m" 

% nlc_main.m - Main program file for NLC package (see description below). 
% 
% NLC: NonLinear Control package for design of nonlinear controllers 
%      based on MATLAB symbolic toolbox. 
% 
%  The application carries out computations of relative degree, state 
%  transformation as well as input output nonlinear feedback according to 
%  the rules of exact linearization for SISO and MIMO systems. Conditions 
%  for MIMO syststems is taht the number of inputs greater than or equal  
%  to outputs. This program accept an input of differential equations.  
%  A set of nonlinear models written in m files as ordinary differential 
%  equations are provided. Follow program instructions to see examples and/ 
%  or to write your own model. 
% 
%  To run NLC package type "nlc_main" in command line and hit "enter" key. 
%  
% (C) 2014-2015, Khalid E. Al-Khater, King Fahd University of Petrolume and 
%  Minerals (KFUPM), abumahdi1425@gmail.com 
% 

  
tic 
clear all 
clc 

  
% Model Selection 
disp('      ') 
disp('*** Welcome to NLC MATLAB Package By Khaild Al-Khater, KFUPM *** '); 
disp('Below is a list of nonlinear models where you can select to apply'); 
disp('nonlinear control design. You can enter your own model as well.'); 
disp('      ') 
disp('For Help and more Information about this package typ 0 "zero"'); 
disp('      ') 
disp('  1. Fluidized Bed Reactor (FBR) with 1st order heat exchanger model'); 
disp('  2. Fluidized Bed Reactor (FBR) with staged heat exchanger model'); 
disp('  3. Continous Stirred Tank Reactor (CSTR), Series Reaction (non-

square).'); 
disp('  4. Induction Motor'); 
disp('  5. Semibatch Co-polymerization Reactor'); 
disp('  6. User Defined Model'); 
disp('  7. General nonlinear model examples'); 
disp(' '); 
choices = input('Select a model by typing the corresponding number: '); 
disp('     ') 

  
if choices == 0 
    help nlc_main 
    break 
elseif choices == 1 
    disp('           ') 
    disp('FBR with 1st order heat exchanger model is chosen.'); 
    disp('           ') 
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    [dx,x,u,h] = nlc_FBR_Model_1stOrder_HE; 
elseif choices == 2 
    disp('           ') 
    disp('FBR with staged heat exchanger model is chosen.'); 
    disp('         ') 
    [dx,x,u,h] = nlc_FBR_Model_Staged_HE; 
elseif choices == 3 
    disp('       ') 
    disp('CSTR, Series Reaction Model is selected.'); 
    disp('        ') 
    [dx,x,u,h] = nlc_CSTR_series; 
elseif choices == 4 
    disp('       ') 
    disp('Induction Motor Model is selected.'); 
    disp('        ') 
    [dx,x,u,h] = nlc_Induction_Motor_Model; 
elseif choices == 5 
    disp('       ') 
    disp('Semibatch Co-polymerization Reactor Model is selected.'); 
    disp('        ') 
    [dx,x,u,h] = nlc_Semibatch_Copoly_Reactor_Model; 
elseif choices == 6 
    disp('User defined model is selected.'); 
    disp('          ') 
    disp('After 10 seconds, you will be directed to m file editor where you can 

type your own model'); 
    disp('follow the instruction and save the file when complete. '); 
    disp('Come back here and press any key to continue...') 
    pause(10) 
    edit nlc_UserDefinedModel 
    pause 
    [dx,x,u,h] = nlc_UserDefinedModel; 
elseif choices == 7 
    disp('          ') 
    [dx,x,u,h] = nlc_NonLinModel_example; 
else 
    error('Invalid Entry!!') 
end 

  
% Retrieve number of inputs and ouptus 
p = length(h); 
m = length(u); 

  
% This package valid for only systems with m >= p 
if m < p 
    error('Number of inputs has to be greater than or equal to number of 

outputs.') 
end 

  
% Exctract f(x) and g(x) (affine form) 
[f,g,dx,x,u] = nlc_affine(dx,x,u); 
disp('                ') 
disp('States of the system are: '); disp(x)%pretty(x) 
disp('       '); 
disp('f(x) = '); disp(f)%pretty(f); 
disp('        '); 
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disp('g(x) = '); disp(g)%pretty(g); 
disp('     '); 
disp('u = '); disp(u)%pretty(u); 
disp('     '); 
disp('h(x) = '); disp(h)%pretty(h); 

  
% Compute Relative Degree 
[r_vector,r_total] = nlc_RelDeg(f,g,h,x,u); 

  
% Compute decoupling matrix and output derivatives vector 
[E,b] = nlc_decoupling(f,g,h,x,r_vector,u); 
disp('    '); 
disp('Decouping Matrix, E = ');disp(E)%pretty(E) 
disp('              '); 
n = length(dx); 

  
% Disply the results along with system information 
str0 = ['No. of States (n) is : ',num2str(n)];disp(str0);disp('  '); 
str1 = ['Total relative degree (r_total) is : 

',num2str(r_total)];disp(str1);disp('  '); 
str2 = ['Relative degree vector (r_vector) is : 

[',num2str(r_vector),']'];disp(str2);disp('  '); 
str3 = ['Number of inputs (m) is : ',num2str(m)];disp(str3);disp('  '); 
str4 = ['Number of outputs (p) is : ',num2str(p)];disp(str4);disp('  '); 
str5 = ['Rank of decoupline matrix is : ',char(rank(E))];disp(str5);disp('  '); 

  
% Analysis of the results 
if rank(E) == p 
    if (r_total < n) 
       disp(' '); 
       disp('WARNING: Total relative degree is lower than system order!!!'); 
       disp('         It is essential to analyze stability of internal 

dynamics!'); 
       disp('         However, Applying Dynamic Extension Algorithm may help to 

achieve full'); 
       disp('         order relative degree.'); 
       disp('NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion 

Algorithm.');          
       disp('                                '); 
    elseif (r_total == n) 
        disp(' '); 
        Z = nlc_StatTrans(f,h,x,r_vector);  % State Transformation 
        U = nlc_FBL(E,b);  % Feedback linearizing control law 
        disp(' '); 
        disp('Following is the linearized state space system: ') 
        [A,B,C,D] = nlc_EquLinSys(r_vector); % Linearized State Space System 
        disp('       '); 
        disp('Above A,B,C,D matrices can be used for linear controller desing. 

This package') 
        disp('can prepare a code to be used in a simulink block "MatlabFunction" 

where you') 
        disp('can perform simulation more effectively. The code will have an 

emeded LQI') 
        disp(' controller. To prepare the code type "nlc_WriteToFile"') 
    else 
       disp(' '); 
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       disp('Computation Error!! Relative Degree becomes greater than number'); 
       disp('of states. Pleaser verify and try again.'); 
    end 
else 
    disp('Attention!! The system dose not have a well defined relative degree.'); 
    disp('You may consider to apply Dynamic Extension Algorithm.'); 
    disp('NOTE: Type "nlc_DynamicExt" to start Dynamic Extenstion Algorithm.'); 
end 
disp('                                '); 
toc 
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B.2 FBR Model with First Order Heat Exchanger 

function [dx,x,u,h] = nlc_FBR_Model_1stOrder_HE 

  
clear all 

  
% Definition of symbols for the state variables, inputs, and prarameters 
syms M1 Y T I1 Qd 
x = [M1, Y, T, I1, Qd]; 
syms FM1f Fc Fg Vg Vp Cv R Pv kp Tref Ea ac kd mw1 Bw MrCpr Cppol Cpf Tf 
syms DeltaHR tau Fw Cpw AU Cpc CpIn FIf Tw RR kpT 

  
% Algebric equations: 

  
bt = Vp*Cv*sqrt((M1+I1)*RR*T-Pv);  
RM1 = M1*kp*exp(-Ea*(1/T-1/Tref)/R)*Y;  
Cpg = M1*Cpf/(M1+I1)+I1*CpIn/(M1+I1);  
Hf = FM1f*Cpf*(Tf-Tref)+FIf*CpIn*(Tf-Tref);  
Hr = -DeltaHR*mw1*RM1;  
Hpol = Cppol*(T-Tref)*RM1*mw1; 
Gamma = AU*((Fg*Cpg)^(-1)+1/Fw*Cpw);  
Tg0ss = (Tw*(1-exp(Gamma))-T*(1-Fg*Cpg/Fw*Cpw))/(Fg*Cpg/Fw*Cpw-exp(Gamma)); 

  
% Differential equations: 

  
dI1 = (FIf-I1*bt/(M1+I1))/Vg;  
dM1 = (FM1f-M1*bt/(M1+I1)-RM1)/Vg;  
dY = Fc*ac-kd*Y-RM1*mw1*Y/Bw;  
dT = (Hf-Qd+Hr-Hpol)/(Bw*Cppol+MrCpr);  
dQd = (Fg*Cpg*(x(3)-Tg0ss)-Qd)/tau; 

  
PR = kpT*Y*M1*mw1;   % Production Rate 
Pm = M1 * R * T;    % Monomer Partial Pressure 
P = (M1+I1)*RR*T;   % reactor pressure 

  
dx = [dM1, dY, dT, dI1, dQd]; 

  
% U = [Fw FM1f Fc FIf Tw]; 
% H = [M1 I1 Y T Qd PR P Pm]; 
u = [Fc;Fw]; 
h = [M1;T]; 
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B.3 FBR Model with Staged Heat Exchanger 

function [dx,x,u,h] = nlc_FBR_Model_Staged_HE 

  
clear all 

  
% Definition of symbols for the state variables, inputs, and prarameters 
syms M1 I1 Y T Tw1 Tg1 
syms Vg Vp Cv R RR Pv kp Tref Ea ac kd mw1 Bw MrCpr Cppol Cpf Tf Cpg  
syms DeltaHR AU CpIn FM1f Fc Fg FIf Fw Mw Twi Cpw Tw1 Tg1 Mg 

  
% Algebric equations: 
bt          = Vp * Cv * sqrt((M1+I1) * RR * T - Pv); 
RM1         = M1 * kp * exp(-Ea/R*(1/T-1/Tref)) * Y; 
Cpg         = M1/(M1 + I1) * Cpf + I1/(M1 + I1) * CpIn; 
Hf          = FM1f * Cpf * ( Tf - Tref) + FIf * CpIn * (Tf - Tref); 
Hg1         = Fg * (Tg1 - Tref) * Cpg; 
Hg0         = (Fg + bt) * (T - Tf) * Cpg; 
Hr          = -DeltaHR * mw1 * RM1; 
Hpol        = Cppol * (T - Tref) * RM1 * mw1; 

  
% Differential equations: 

  
dI1     = (FIf - I1/(M1 + I1) * bt)/Vg; 
dM1     = (FM1f - M1/(M1 + I1) * bt - RM1)/Vg; 
dY      = Fc * ac - kd * Y - RM1 * mw1 * Y/ Bw; 
dT      = (Hf + Hg1 - Hg0 + Hr - Hpol)/(MrCpr + Bw * Cppol); 
dTw1    = Fw/Mw * (Twi - Tw1) - AU/(Mw * Cpw) * (Tw1 - Tg1); 
dTg1    = Fg/Mg * (T - Tg1)   + AU/(Mg * Cpg) * (Tw1 - Tg1); 

  
dx = [dI1,dM1,dY,dT,dTw1,dTg1]; 

  
PR = kp * exp(-Ea/R*(1/T-1/Tref))*Y*M1*mw1;   % Production Rate 
Pm = M1 * RR * T;                                   % Monomer Partial Pressure 
P = (M1+I1)*RR*T;                                   % reactor pressure 

  
x = [M1, I1, Y, T, Tw1, Tg1]; 

  
u = [Fc;Fw]; 
h = [T;M1]; 
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B.4 CSTR Model 

function [dx,x,u,h] = nlc_CSTR_series 

  
clear all 

  
n = 5;  
syms u1 u2 u3 k1 k2 cBS cAS cDS F V 
x = sym(zeros(1,n)); 
for countr = 1 : n 
    eval(sprintf('syms x%d', countr)); 
    x(:,countr) = eval(sprintf('x%d',countr)); 
end 
dx(1) = -k1*(x(1)*x(2)+ x(1)*cBS + x(2)*cAS) - k2*(x(1)*x(4)+x(1)*cDS + ... 
    x(4)*cAS) - (F/V)*x(1) + u1*F/V; 
dx(2) = -k1*(x(1)*x(2) + x(1)*cBS + x(2)*cAS) - (F/V)*x(2) + u2*F/V; 
dx(3) = k1*(x(1)*x(2) + x(1)*cBS + x(2)*cAS) - (F/V)*x(3); 
dx(4) = -k2*(x(1)*x(4) + x(1)*cDS + x(4)*cAS) - (F/V)*x(4) + u3*F/V; 
dx(5) = k2*(x(1)*x(4) + x(1)*cDS + x(4)*cAS) - (F/V)*x(5); 
u = [u1;u2;u3]; 
h = [x(3);x(5)]; 
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B.5 Induction Motor Model 

function [dx,x,u,h] = nlc_Induction_Motor_Model 

  
% States 
syms omega psia psib ia ib J Ls Lr M Rs Rr np TL 
x = [omega psia psib ia ib]; 

  
% Inputs 
syms ua ub 
u = [ua;ub]; 

  
% Differential Equations 
domega = (np*M/J*Lr)*(psia*ib-psib*ia)-(TL/J); 
dpsia = -(Rr/Lr)*psia-np*omega*psib+(Rr/Lr)*M*ia; 
dpsib = -(Rr/Lr)*psib-np*omega*psia+(Rr/Lr)*M*ib; 
dia = (M*Rr*psia)/((Lr*Ls-M^2)*Lr)+(np*M*omega*psib)/(Lr*Ls-M^2)... 
    -((M^2*Rr+Lr^2*Rs)*ia)/((Lr*Ls-M^2)*Lr)+(Lr*ua)/(Lr*Ls-M^2); 
dib = (M*Rr*psib)/((Lr*Ls-M^2)*Lr)+(np*M*omega*psia)/(Lr*Ls-M^2)... 
    -((M^2*Rr+Lr^2*Rs)*ib)/((Lr*Ls-M^2)*Lr)+(Lr*ub)/(Lr*Ls-M^2); 

  

  
% Parameters 
J   = 0.06;  
Ls  = 0.47; 
Lr  = 0.47; 
M   = 0.44; 
Rs  = 8; 
Rr  = 3.6; 
np  = 2; 
TL = 4; 

  
% States Derviatives Vector 
dx = eval([domega,dpsia,dpsib,dia,dib]); 

  
% Outputs 
h = [omega;psia^2+psib^2]; 
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B.6 User Defined Model 

function [dx,x,u,h] = nlc_UserDefinedModel 
disp('         '); 
%% User Defined Model:  
% this function is part of NLC package (type help nlc_main for more information). 
% 
% (C) 2014-2015, Khalid E. Al-Khater, King Fahd University of Petrolume and 
%  Minerals (KFUPM), abumahdi1425@gmail.com 
% 
% Here you can enter you own model in a ordinary differential fromat. below 
% is an example of entering the model: 
% 
% first of all, you need to define number of states, copy below line and 
% change the assigned number to "n"  
% 
% n = 5; 
% 
% then you need to define symbols for inputs and states, you can use the 
% common convention (u1, u2, u3,..x1, x2, x3,..) or use you own convention 
% (F, R, mu,...,T, S,...), however, in either cases you need to save your 
% states in a column vector called "x" and inputs in a column vector called 
% "u". Here an example of declaring five states as (x1,x2,..,x5): 
% 
% x = sym(zeros(1,n)); 
% for countr = 1 : n 
%    eval(sprintf('syms x%d', countr)); 
%    x(:,countr) = eval(sprintf('x%d',countr)); 
% end 
% 
% in above the variables x1,x2,...,xn already stored in coloumn vector x. 
% another way to define states is shown by following example: 
% 
% syms T F Rd Y G1 
% x = [T; F; Rd; Y; G1]; 
% 
% you can define the inputs in the same way. for example: 
%  
% syms u1 u2 
%  
% parameters can defined as variables as well in the similar way. like the 
% example below we have 15 parameters labled as a1, a2, .., a15 defined as 
% follows: 
%  
% for countr = 1 : 15 
%    eval(sprintf('syms a%d', countr-1)); 
%    a(:,countr) = eval(sprintf('a%d',countr-1)); 
% end 
% 
% The next step is to write your differential equation. The derivatives can 
% are stored in vector dx, so dx1/dt is entered as dx(1) = ... and dx2/dt 
% is entered as dx(2) = ...  
% another way is to assign derivative to any varialbe name like dT, dF, dRd 
% and then define derivatives as dx = [dT; dF; dRd; ... ] 
% one way to writed differential exqaution is given below: 
% dx(1) = x(2); 
% dx(2) = a(1) + a(2)*x(2) + a(3)*x(2)^2 + (a(4) + a(5)*x(4)-sqrt(a(6) + ... 
%     a(7)*x(4)))*x(3)^2; 
% dx(3) = a(8) + a(9)*x(3) + (a(10)*sin(x(4)) + a(11))*x(3)^2+u1; 
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% dx(4) = x(5); 
% dx(5) = a(12) + a(13)*x(4) + a(14)*x(3)^2*sin(x(4)) + a(15)*x(5) + u2; 
%  
% another way shown by following: 
% dT = F/R + u1; 
% dF = T*u2 - Y; 
% dx = [dT; dF]; 
%  
% The last step is to define ouputs and store then in store them coloumn 
% vector "h", example is shown below: 
% 
% h = [x(1); x(3)]; 
% 
% type your differential equations below. When you finish save this file 
% and return to command window to continou the analysis. You can edit 
% whatever written below or delete everything and type your model. 
% 
%% Hilocapter Model 
% disp('Hilocapter Model...'); 
% n = 5;  
% syms u1 u2 
% x = sym(zeros(1,n)); 
% for countr = 1 : n 
%    eval(sprintf('syms x%d', countr)); 
%    x(:,countr) = eval(sprintf('x%d',countr)); 
% end 
% for countr = 1 : 15 
%    eval(sprintf('syms a%d', countr-1)); 
%    a(:,countr) = eval(sprintf('a%d',countr-1)); 
% end 
% dx(1) = x(2); 
% dx(2) = a(1) + a(2)*x(2) + a(3)*x(2)^2 + (a(4) + a(5)*x(4)-sqrt(a(6) + ... 
%     a(7)*x(4)))*x(3)^2; 
% dx(3) = a(8) + a(9)*x(3) + (a(10)*sin(x(4)) + a(11))*x(3)^2+u1; 
% dx(4) = x(5); 
% dx(5) = a(12) + a(13)*x(4) + a(14)*x(3)^2*sin(x(4)) + a(15)*x(5) + u2; 
%  
% u = [u1;u2]; 
% h = [x(1);x(4)]; 
% 
%% Robot with flexible joint  
disp('Robot with flexible joint...'); 
n = 4; 
syms u F1 J1 M g l k Fm Jm  
x = sym(zeros(1,n)); 
for countr = 1 : n 
   eval(sprintf('syms x%d', countr)); 
   x(:,countr) = eval(sprintf('x%d',countr)); 
end 
dx(1) = x2; 
dx(2) = -(F1/J1)*x2-(M*g*l/J1)*sin(x1)-(k/J1)*(x1-x3); 
dx(3) = x4; 
dx(4) = -(Fm/Jm)*x4+(k/Jm)*(x1-x3)+(1/Jm)*u; 

  
% Parameters 
Jm = 3.7e-3; 
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B.6 User Defined Model 

J1 = 9.3e-3; 
M = 2.1e-1; 
l = 3.1e-1; 
k = 1.8e-1; 
Fm = 4.6e-2; 
F1 = 3.0e-2; 
g = 9.8e-3; 

  
dx = eval(dx); 

  
h = x1; 
% 
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B.7 General Nonlinear Model Examples 

function [dx,x,u,h] = nlc_NonLinModel_example 

  
% Model Selection 
disp('      ') 
disp('  1. An example of Dynamic Extension Algorithm Failure (MIMO).'); 
disp('  2. An example of Dynamic Extension Algorithm Sucess (MIMO).'); 
disp('  3. Mechanical  Arm (SISO).'); 
disp('  4. The Contrived Model (MIMO).'); 
disp('  5. Go back to previous menu.'); 
disp(' '); 
choice = input('Select a model by typing corresponding serial number: '); 

  
if choice == 1 
    n = 4;  
    syms u1 u2 
    x = sym(zeros(1,n)); 
    for countr = 1 : n 
       eval(sprintf('syms x%d', countr)); 
       x(:,countr) = eval(sprintf('x%d',countr)); 
    end 
    dx(1) = x(1)+x(1)*x(4)+x(3)*u1+u2; 
    dx(2) = x(2)*exp(x(3))+u1; 
    dx(3) = x(2)+x(3)^2; 
    dx(4) = x(1)+x(2)-x(4)+x(1)*x(4)+(1+x(3))*u1+u2; 

  
    u = [u1;u2]; 
    h = [x(1);x(2)]; 
elseif choice == 2 
    n = 3;  
    syms u1 u2 
    x = sym(zeros(1,n)); 
    for countr = 1 : n 
       eval(sprintf('syms x%d', countr)); 
       x(:,countr) = eval(sprintf('x%d',countr)); 
    end 
    dx(1) = u1*cos(x(3)); 
    dx(2) = u1*sin(x(3)); 
    dx(3) = u2; 

  
    u = [u1;u2]; 
    h = [x(1);x(2)]; 
elseif choice == 3 
    n = 4;  
    syms u I1 m1 lc1 I2 m2 l1 lc2 m2 K 
    x = sym(zeros(1,n)); 
    for countr = 1 : n 
       eval(sprintf('syms x%d', countr)); 
       x(:,countr) = eval(sprintf('x%d',countr)); 
    end 

     
    a = I1 + m1*lc1^2 + I2 + m2*(l1^2 + lc2^2); 
    b = I2 + m2*lc2^2; 
    c = m2*l1*lc2; 
    d = b*(a - b); 
    Delta = d - (cos(x(2)))^2; 
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B.7 General Nonlinear Model Examples 

     
    dx(1) = x(3); 
    dx(2) = x(4); 
    dx(3) = (b*c*(x(3) + x(4))^2*sin(x(2)) + (b + c*cos(x(2)))*K*x(2) + ... 
        c^2*x(3)*sin(x(2))*cos(x(2)))/Delta + u*b/Delta; 
    dx(4) = -((b+c*cos(x(2)))*(x(4)+2*x(3))*c*x(4)*sin(x(2)) + (a + ... 
        2*cos(x(2)))*(c*x(3)^2*sin(x(2)) + K*x(2)))/Delta - u*(b + ... 
        c*cos(x(2)))/Delta;  

  
    h = x(1); 
elseif choice == 4 
    n = 5;  
    syms u1 u2 
    x = sym(zeros(1,n)); 
    for countr = 1 : n 
       eval(sprintf('syms x%d', countr)); 
       x(:,countr) = eval(sprintf('x%d',countr)); 
    end 
    dx(1) = x(2) + x(2)^2 + u2; 
    dx(2) = x(3) - x(1)*x(4) + x(4)*x(5); 
    dx(3) = x(2)*x(4) + x(1)*x(5) - x(5)^2 + u1*cos(x(1)-x(5)) + u2; 
    dx(4) = x(5); 
    dx(5) = x(2)^2 + u2; 
    u = [u1;u2]; 
    h = [x(1) - x(5);x(4)];    
elseif choice == 5 
    dx = []; 
    x = []; 
    u = []; 
    h = []; 
    run nlc_main 
else 
    disp('Invalid Entry!!') 
end 
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B.8 Affine check and affine conversion "nlc_affine.m" & "nlc_MakeAffine.m" 

function [f,g,dx,x,u] = nlc_affine(dx,x,u) 

  
n = length(dx); 
m = length(u); 
g = jacobian(dx,u); 
f = vpa(zeros(n,1)); 
gvar = symvar(g); 
affine = 1; 
index = 0; 
unaffine = []; 
for i = 1:m 
    if ~isempty(find(gvar == u(i))) 
        affine = 0; 
        index = index + 1; 
        unaffine = [unaffine,find(u == u(i))];  
    end 
end 
if affine == 1 
    disp('   '); 
    disp('System is affine!'); 
    for i = 1:n 
        f(i,:) = dx(i) - g(i,:)*u; 
    end 
else 
    disp('     '); 
    disp('System is not affine!'); 
    disp('      '); 
    disp('...Changing to affine by adding integrator(s) to the non-affine 

input(s).'); 
    [f,g,dx,x,u] = nlc_MakeAffine(dx,x,u,unaffine); 
end 

 

 
function [f,g,dx,x,u] = nlc_MakeAffine(dxn,xn,un,unaffine) 

  
NoOfInt = 0; 
for i = 1:length(unaffine) 
    ui = unaffine(i); 
    n_xn = length(xn); 
    xn(n_xn+1) = un(ui); 
    NoOfInt = NoOfInt + 1; 
    eval(sprintf('syms alpha%d', NoOfInt)); 
    un(ui) = eval(sprintf('alpha%d',NoOfInt)); 
    n_dxn = length(dxn); 
    dxn(n_dxn+1) = un(ui); 
end 
[f,g] = nlc_affine(dxn,xn,un); 
dx = dxn; 
x = xn; 
u = un; 
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B.9 Relative Degree Computation Program "nlc_RelDeg" and Lie Derivative 

"nlc_liederivative" 

function [r_vector,r_total] = nlc_RelDeg(f,g,h,x,u) 
p = length(h); 
r = ones(1,p); 
m = length(u); 
LgLfh = vpa(zeros(1,p)); 
for i = 1:p 
    flag = 0; 
    k = 1; 
    while flag == 0 
        if k == 1 
            r(i) = k; 
            Lfh = h(i); 
            for j=1:m 
                LgLfh(j) = nlc_liederivative(g(:,j),h(i),x); 
            end 
         else 
            r(i) = k; 
            Lfh_new = nlc_liederivative(f,Lfh,x); 
            for j=1:m 
                LgLfh(j) = nlc_liederivative(g(:,j),Lfh_new,x); 
                Lfh = Lfh_new; 
            end 
        end 
        for z=1:m 
            if LgLfh(z) ~= 0 
                flag = 1; 
            end 
        end 
        if flag == 0 
            k = k+1; 
        end 
    end 
end 
r_vector = r; 
r_total = sum(r); 

 

 
function L = nlc_liederivative(F,h,x) 
Pd_h = jacobian(h,x); 
L = transpose(F)*transpose(Pd_h); 
return 
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B.10 Decoupling and Output Derivatives Matrices "nlc_decoupling" 

function [E,b] = nlc_decoupling(f,g,h,x,r,u) 
p = length(h); 
m = length(u); 
LgLfh = vpa(zeros(1,p)); 
b = vpa(zeros(p,1)); 
E = vpa(zeros(p,m)); 
for i=1:p 
    for k=1:r(i) 
        if k == 1 
            Lfh = h(i); 
                for j=1:m 
                    LgLfh(j) = nlc_liederivative(g(:,j),h(i),x); 
                end 
            else 
            Lfh_new = nlc_liederivative(f,Lfh,x); 
            for j=1:m 
                LgLfh(j) = nlc_liederivative(g(:,j),Lfh_new,x); 
                Lfh = Lfh_new; 
            end 
        end 
     end 
     b(i) = nlc_liederivative(f,Lfh,x); 
     E(i,:) = LgLfh; 
end 
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B.11 State Transformation Program "nlc_StatTrans.m" 

function Z = nlc_StatTrans(f,h,x,r_vector) 

  
p = length(h); 
n = length(f); 
r = sum(r_vector); 

  
for i=1:p 
    for k=1:r_vector(i) 
        if k == 1 
            Lfh = h(i); 
        else 
            Lfh_new = nlc_liederivative(f,Lfh,x); 
            Lfh = Lfh_new; 
        end 
        z(k,:) = Lfh; 
    end 
    if i == 1 
        Z = z; 
    else 
        Z = [Z;z]; 
    end 
    clear z 
end 
disp('               '); 
disp('Transformation Equations, Z =       '); 
disp('               '); 
for i=1:length(Z) 
            zlen = length(char(Z(i))); 
            if zlen > 1500 
            str1 = '...WARNING!! The formula is too long and will not be 

displayed'; 
            str2 = ['z',num2str(i),' = ',str1]; 
            disp(str2); 
        else 
            str =['z',num2str(i),' = ',char(Z(i))]; 
            disp(str); 
        end 
end 
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B.12 Feedback Linearizing Conrol Law Computation "nlc_FBL.m" 

function u = nlc_FBL(E,b) 
% Feed Back Linearizing Controller 
[p,m] = size(E); 
v = sym(zeros(p,1)); 
for k = 1 : p 
    eval(sprintf('syms v%d', k)); 
    v(k,:) = eval(sprintf('v%d', k)); 
end  

  
disp('                        '); 
disp('Nonlinear feedback, U = '); 
disp('                                '); 

  
% Control Law % 
Evar = symvar(E); 
Evar = sym(Evar,'real'); 
if p == m 
    Einv = E^-1; 
    u = Einv*(v - b); 
    for i=1:m 
        ulen = length(char(u(i))); 
        if  ulen > 1500 
            str1 = '...WARNING!! The formula is too long and will not be 

displayed'; 
            str2 = ['u',num2str(i),' = ',str1]; 
            disp(str2); 
        else 
            str =['u',num2str(i),' = ',char(u(i))]; 
            disp(str); 
        end 
    end 
else 
    for i=1:m 
    Epinv = pinv(E); 
    u = Epinv*(v - b); 
    ulen = length(char(u(i))); 
        if ulen > 1000 
            str1 = '...WARNING!! The formula is too long and will not be 

displayed'; 
            str2 = ['u',num2str(i),' = ',str1]; 
            disp(str2); 
        else 
            str =['u',num2str(i),' = ',char(u(i))]; 
            disp(str); 
        end 
    end 
end 
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B.13 Linearized State Space Sysem " nlc_EquLinSys.m" 

function [A,B,C,D] = nlc_EquLinSys(R) 

  
% Linearized State Space System: This function is used to extract the equavilent 
% linear system given the Relative Vector R. 

  
Rt = sum(R); 
p = length(R); 
A = zeros(Rt,Rt); 
B = zeros(Rt,p); 
C = zeros(p,Rt); 
i = 1; 

  
% Matrix A 
for j = 1:length(R) 
    for ii = i:sum(R(1:j)) 
        if ii ~= sum(R(1:j))  
            A(ii,ii+1) = 1; 
        end 
    end 
    i = ii + 1; 
end 

  
% Matrix B 
for i = 1:p 
    B(sum(R(1:i)),i)=1; 
end 

  
% Matrix C 
for i = 1:p 
    if i == 1 
        C(i,i) = 1; 
    else 
        C(i,sum(R(1:i-1))+1) = 1; 
    end 
end 

  
% Matrix D 
D = 0; 

  
disp('       ') 
disp('A = ');disp(A)%pretty(sym(A)); 
disp('B = ');disp(B)%pretty(sym(B)); 
disp('C = ');disp(C)%pretty(sym(C)); 
disp('D = ');disp(D)%pretty(sym(D));             
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B.14 Simulation Code Generator "nlc_WriteToFile.m" 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%nlc_WriteToFile: Generate a function for use with Simulink MATLABFunction 

Block.%.% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear mn unn nn xnn dxnn p Q R r q q1 zd 

  
% Retrieving size of the system 
if exist('un','var') % Check if inputs are generated by DynamicExt. 
    mn = length(un); 
    unn = un; % store the inputs in a new variable. 
    nn = length(dxn); 
    dxnn = dxn; % store differential equations in a new variable. 
    xnn = xn;   % store states in a new variable. 
else 
    mn = length(u); 
    unn = u; 
    nn = length(dx); 
    dxnn = dx; 
    xnn = x; 
end 
p = length(h); 

  
% Creating new file or overwiting if exist and writing first line to define 
% the function for use with MATLABFunction - Simulink. 
DiffEq = fopen('nlc_DiffEqFile.m','w'); 
str = 'function '; 
fwrite(DiffEq,str); 
fclose(DiffEq); 
% Define states derivatives (function outputs) 
DiffEq = fopen('nlc_DiffEqFile.m','a'); 
for i = 1:nn 
    if i == 1 
        clear str 
        str = ['[dx',num2str(i),',']; 
        fwrite(DiffEq,str); 
    else 
       clear str 
        str = ['dx',num2str(i),',']; 
        fwrite(DiffEq,str); 
    end 
end 
% Define error derivatives (function outputs) 
for j = 1:p 
    clear str 
    str = ['dx',num2str(i+j),',']; 
    fwrite(DiffEq,str); 
end 
% Define system outputs (function outputs) 
for j = 1:p 
    if j == p 
        clear str 
        str = ['h',num2str(j),'] = ']; 
        fwrite(DiffEq,str); 
    else 
        clear str 
        str = ['h',num2str(j),',']; 
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B.14 Simulation Code Generator "nlc_WriteToFile.m" 

        fwrite(DiffEq,str); 
    end 
end 
% Define states (function inputs) 
for i = 1:nn 
    if i == 1 
        clear str 
        str = ['nlc_DiffEqFile(',char(xnn(i)),','];     
        fwrite(DiffEq,str); 
    else 
        clear str 
        str = [char(xnn(i)),','];     
        fwrite(DiffEq,str); 
    end 
end 
% Define error (functions inputs) 
for j = 1:p 
    clear str 
    str = ['x',num2str(i+j),',']; 
    fwrite(DiffEq,str); 
end 
% Define desired outputs (function inputs) 
for j = 1:p 
    if j == p 
        clear str 
        str = ['yd',num2str(j),')']; 
        fwrite(DiffEq,str); 
    else 
        clear str 
        str = ['yd',num2str(j),',']; 
        fwrite(DiffEq,str); 
    end 
end 
% State transformation (define z's) 
for i = 1:length(Z) 
    if i == 1 
        clear str 
        str = ['z = ','[ ',char(Z(i)),';']; 
        fprintf(DiffEq,'\n %s',str); 
    else 
        clear str 
        str = [char(Z(i)),';']; 
        fwrite(DiffEq,str); 
    end 
end 
for j = 1:p 
    if j == p 
        clear str 
        str = ['x',num2str(nn+j),' ];']; 
        fwrite(DiffEq,str); 
    else 
        clear str 
        str = ['x',num2str(nn+j),';']; 
        fwrite(DiffEq,str); 
    end 
end 
disp('         ') 
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B.14 Simulation Code Generator "nlc_WriteToFile.m" 

disp('LQI controller design....') 
disp('       ') 
q = input('please specify the states weight, q =: '); 
r = input('please specify the inputs gain, r =: '); 
if m ~= p 
    R = r*eye(p); 
else 
    R = r*eye(mn); 
end 
Q = q*C'*C; 
Q1 = [Q;zeros(p,length(Z))]; 
Q2 = [zeros(length(Z),p);q*eye(p)]; 
Q3 = [Q1,Q2]; 
sys = ss(A,B,C,D); 
[K,S,e] = lqi(sys,Q3,R); 
clear str 
[Ki,Kj] = size(K); 
for i = 1:Ki 
    for j = 1:Kj 
        if i == 1 && j == 1 
            clear str 
            str = ['K = [ ',num2str(K(i,j)),',']; 
            fprintf(DiffEq,'\n %s',str); 
        elseif i ~= Ki && j == Kj 
            clear str 
            str = [num2str(K(i,j)),';']; 
            fwrite(DiffEq,str); 
        elseif i == Ki && j == Kj 
            clear str 
            str = [num2str(K(i,j)),' ];']; 
            fwrite(DiffEq,str); 
        else 
            clear str 
            str = [num2str(K(i,j)),',']; 
            fwrite(DiffEq,str); 
        end 
    end 
end 
clear str 
str = 'v = -K*z;'; 
fprintf(DiffEq,'\n %s',str); 
% Writing linearizing control law 
[Km,Kn] = size(K); 
for i = 1:Km 
    clear str 
    str = ['v',num2str(i),' = ','v(',num2str(i),')',';']; 
    fprintf(DiffEq,'\n %s',str); 
end 
for i  = 1:length(U) 
        clear str 
        str = [char(unn(i)),' = ',char(U(i)),';']; 
        fprintf(DiffEq,'\n %s',str); 
end 
% Writing differential equations and outputs 
for i = 1:nn 
    clear str 
    str = ['dx',num2str(i),' = ',char(dxnn(i)),';']; 
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B.14 Simulation Code Generator "nlc_WriteToFile.m" 

    fprintf(DiffEq,'\n %s',str); 
end 
ii = i ; 
for i = 1:p 
    clear str 
    str = ['h',num2str(i),' = ',char(h(i)),';']; 
    fprintf(DiffEq,'\n %s',str); 
end 
for j = 1:p 
    clear str 
    str = ['dx',num2str(ii+j),' = yd',num2str(j),' - h',num2str(j),';']; 
    fprintf(DiffEq,'\n %s',str); 
end 
% closing and saving the file 
fclose(DiffEq); 
disp('           ') 
disp('The code will be shown below, select and copy then past it in 

MatlabFunction block') 
disp('which is in the Simulink file. Once you copy press any key then the 

Simulink file') 
disp('will be opened. You can save the simulation outputs to workspase and name 

them as:') 
disp('y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the 

simulink') 
disp('you can plot the resluts using the command "nlc_PlotSimulation"') 
disp('         ') 
disp('Press any key when your are ready...') 
pause 
disp('      ') 
disp('%%%%%%%% Begining of the code %%%%%%%') 
type nlc_DiffEqFile 
disp('      ') 
disp('%%%%%%%% End of the code %%%%%%%') 
disp('         ') 
disp('Copy above code and past it in MatlabFunction block. You can save'); 
disp('the simulation outputs to workspase and name them as:') 
disp('y1,y2,.. for outputs and yd1, yd2,... for desired ouputs. After runing the 

simulink') 
disp('you can plot the resluts using the command "nlc_PlotSimulation"') 
disp('         ') 
disp('Press any key when your are ready...') 
pause 
disp('This may take while, be patient please....') 
open nlc_SimulationFile 
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B.15 Dynamic Extension Program "nlc_DynamicExt.m" 

tic 
NoOfInt = 0; 
flag = 1; 
clear xn dxn fn gn un max ui 
xn = x; 
n = length(x); 
dxn = dx; 
fn = f; 
gn = g; 
un = u; 
En = E; 
i = 0; 
disp('Type the maximum number of iteration to run dynamic extenstion'); 
disp('  '); 
disp('NOTE: normally the maximum iteration is n (number of states). If you'); 
disp('choose big number, you may experience showness in program execution'); 
disp('and endup with a very complicated model with many input delays!!'); 
disp('  '); 
disp('If you decide to choose it equal to n, leave it blank and just hit enter 

key!') 
imax = input(': '); 
if isempty(imax) 
    imax = n; 
end 
p = length(h); 
while flag == 1 
    ms = length(un); 
    i = i + 1; 
    if ms > 1 && p > 1 
        for j = 1:ms 
            Enonzero(j) = length(find(En(:,j))); 
        end 
        [max,ui]=max(Enonzero); 
    elseif p == 1 
        for j = 1:ms 
            if E(j) ~= 0 
                ui = j; 
            end 
        end 
    else 
        ui = 1; 
    end 
    str = ['.....Adding integrator to input number ',num2str(ui)]; 
    disp(str); 
    n_xn = length(xn); 
    xn(n_xn+1) = un(ui); 
    NoOfInt = NoOfInt + 1; 
    eval(sprintf('syms mu%d', NoOfInt)); 
    un(ui) = eval(sprintf('mu%d',NoOfInt)); 
    n_dxn = length(dxn); 
    dxn(n_dxn+1) = un(ui); 
    %[fn,gn] = nlc_affine(dxn,un); 
    [fn,gn,dxn,xn,un] = nlc_affine(dxn,xn,un); 
    [r_vectorn,r_totaln] = nlc_RelDeg(fn,gn,h,xn,un);  
    [En,bn] = nlc_decoupling(fn,gn,h,xn,r_vectorn,un); 
    n_dxn = length(xn); 
    ms = length(un); 
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B.15 Dynamic Extension Program "nlc_DynamicExt.m" 

    disp('New States, xn = ');disp(xn)%pretty(xn); 
    disp('New Inputs, un = ');disp(un)%pretty(un); 
    disp('New Decoupling Matrix, En = ');disp(En)%pretty(En); 
    disp('           '); 
    str0 = ['No. of States is : ',num2str(n_dxn)];disp(str0);disp('  '); 
    str1 = ['Total relative degree is : ',num2str(r_totaln)];disp(str1);disp('  

'); 
    str2 = ['Relative degree vector is : 

[',num2str(r_vectorn),']'];disp(str2);disp('  '); 
    str3 = ['Number of inputs and outputs is : ',num2str(ms)];disp(str3);disp('  

'); 
    str4 = ['Rank of decoupline matrix is : ',char(rank(En))];disp(str4);disp('  

'); 
    if rank(En) == ms && r_totaln == n_dxn 
        flag = 0; 
        disp('Full System Order Relative Degree Achieved!!') 
        disp('              ') 
        disp('New f(x), fn = ');disp(fn)%pretty(fn); 
        disp('              ') 
        disp('New g(x), gn = ');disp(gn)%pretty(gn); 
        Z = nlc_StatTrans(fn,h,xn,r_vectorn); % State Transformation 
        U = nlc_FBL(En,bn); % Feedback linearizing control law 
        disp(' '); 
        disp('Following is the linearized state space system: ') 
        [A,B,C,D] = nlc_EquLinSys(r_vectorn); % Linearized State Space System 
        disp('       '); 
        disp('Above A,B,C,D matrices can be used for linear controller desing. 

This package') 
        disp('can prepare a code to be used in a simulink block "MatlabFunction" 

where you') 
        disp('can perform simulation more effectively. The code will have an 

emeded LQI') 
        disp(' controller. To prepare the code type "nlc_WriteToFile"') 
    elseif i == imax 
        flag = 0; 
        disp('Reached to maximum number of iterations!! Relative Degree cannot be 

achieved.') 
    end 
    clear ui max 
end 
toc 
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B.16 Plot Simulation Code "nlc_PlotSimulation.m" 

for i = 1:p 
    str = ['y',num2str(i)]; 
    figure(i) 
    plot(eval(str)); 
    hold 
    strd = ['yd',num2str(i)]; 
    plot(eval(strd),'r'); 
    strt = ['Output ','(',num2str(i),')']; 
    title(strt) 
    legend('Actual','Desired') 
end 
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